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Enabling Computer Decisions Based on EEG Input
Benjamin J. Culpepper and Robert M. Keller, Member, IEEE

Abstract—Multilayer neural networks were successfully trained
to classify segments of 12-channel electroencephalogram (EEG)
data into one of five classes corresponding to five cognitive tasks
performed by a subject. Independent component analysis (ICA)
was used to segregate obvious artifact EEG components from other
sources, and a frequency-band representation was used to repre-
sent the sources computed by ICA. Examples of results include an
85% accuracy rate on differentiation between two tasks, using a
segment of EEG only 0.05 s long and a 95% accuracy rate using a
0.5-s-long segment .

Index Terms—Brain-computer interface (BCI), electroen-
cephalogram (EEG), independent component analysis (ICA),
neural networks.

I. INTRODUCTION

FOR QUITE some time now, we have been using our phys-
ical actions to control computers. The most primitive in-

terfaces (e.g., punch cards) were designed to accommodate the
requirements of the computer, rather than to provide the fastest
and most intuitive link between the human and the machine.
However, as interface technology progressed, efforts to improve
this link became more concentrated on making things easier for
the human: The keyboard was invented, and then the mouse.
Although there are many other, less widely used techniques
for controlling computers, these tools have become the modern
standard. The others include eye-tracking devices that perform
the same basic function as a mouse, and speech recognition,
which can be used to perform the functions of both the mouse
and keyboard. Different types of input devices appeal to people
with different needs (for example, the physically handicapped),
and some are more appropriate for certain applications than
others. Yet, they all share one similarity that is particularly rel-
evant to this study—the requirement that the user encode his or
her intentions into a stream of physical movements, which is
then decoded by the computer into a set of signals to be used
for control.

It seems natural to wonder whether the physical encoding
process is necessary. Can we not convey our intentions to the
computer in a more direct fashion by skipping the physical layer
entirely? Assuming we had some method of sensing and differ-
entiating between two or more of the mental processes, we could
use these few states as a simple alphabet, from which a more
complicated language of control could be built. The process of
encoding intentions would take place entirely inside a person’s
head. For example, instead of thinking “I want that window to
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move to the foreground, so I will move the mouse to it and
click,” a user might think, “I want that window to move to the
foreground, so I will think A, B, C, A,” where the latter is a
sequence of mental states recognized as signals by the com-
puter. This particular sequence would, in turn, trigger the cor-
responding decision in the computer. A further question asks
whether this mental encoding process is even necessary. Can
we use the power of the computer to decode our intentions as
we think them? Unfortunately, the latter question is beyond the
scope of this paper; at present, we do not know enough about
how the underlying brain processes encode thoughts to perform
this task well. This paper concentrates on the first approach: dis-
crimination between mental states based on thought patterns for
prescribed mental stimuli.

Electroencephalogram (EEG) signals are an important source
of information for studying the underlying brain processes that
make up our thoughts and actions. EEG recorders with up to
256 electrodes are currently in use, and experiments using them
produce large amounts of raw data. Thus, the question naturally
arises: How much can we find out about the brain’s activities
from all that data? Can we read a person’s mind by properly
deciphering their EEG? It has been known for some time that
this is possible, to a modest extent. Recently, more than a few
researchers have investigated using EEG signals as a new way
of conveying intentions to a computer. EEGs produced during
a very limited set of mental tasks can be classified according to
tasks. Offline analysis of multichannel EEG has been performed
by the groups of Wolpaw and Pfurtscheller since 1992 [7], [8],
and more recently by Andersonet al. [1], [2].

In this paper, we describe the methods and results of our ex-
periments with EEG signals recorded from one subject while
the subject performed five mental tasks. The EEG signals were
processed by independent component analysis (ICA) to remove
artifacts, and presented to three-layer artificial neural network
classifiers using a frequency-band representation.

II. RELATED WORK

Prior to acquiring our own EEG signals, we experimented
with the data used in [1] and [3], both of which investigated the
classification of five different mental tasks: a baseline resting
task, mental multiplication, geometric figure rotation, mental
letter composition, and visual counting. These tasks were
chosen by Keirn and Aunon to invoke hemispheric brainwave
asymmetry [3].

In [3], Keirn and Aunon recorded data from seven subjects
using six channels. They transformed the data into features
based on spectral estimates calculated from both the Fourier
transform of the windowed autocorrelation function and a
scalar autoregressive (AR) model. Their features included
asymmetry ratios and power values for each channel from
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four standard frequency bands: delta; theta; alpha; and beta.
Asymmetry ratios , where and are
power values from right- and left-hemisphere electrodes, were
calculated for all combinations of right and left electrodes and
frequency bands. A second set of features was composed of
the autoregressive coefficients from all channels concatenated
together. Their most significant result was that all pairs of tasks
could be discriminated 84.6% of the time using the coefficients
as features.

In [1], Andersonet al.classified EEG from one subject who
performed five mental tasks. He used the six-channel data sam-
pled at 250 Hz from [3] and modeled signals in a half-second
window as sixth-order autoregressive processes. Attempting to
differentiate between five tasks resulted in a 31%–54% range
of classification accuracy. He found that averaging the output
of the network over consecutive inputs improved performance.
By averaging the output of the best performing network over 20
consecutive overlapping time windows, which amounted to 5 s
of actual EEG data, Anderson was able to obtain a range of clas-
sification accuracy from 33% to 71%.

In [2], Andersonet al. evaluated different signal representa-
tions. They used the data from [3], and presented 1580 patterns
of quarter-second data windows to neural networks with a single
hidden layer, the size of which was varied from 1 to 40 nodes.
Four different representations were tried: unprocessed; low-pass
filtered; Karhunen-Loeve; and frequency-band. An unprocessed
feature vector was formed by concatenating one quarter second
(62 samples) of data from each of the six channels (372 values
per pattern). The low-pass filtered representation was similar to
this, except that a finite-impulse response (FIR) low-pass filter
with a cutoff frequency of 40 Hz was applied to the samples, fol-
lowed by down-sampling by a factor of two (every other sample
was removed).

Andersonet al. found that the frequency-band representation
yielded the best results: 73.9% classification accuracy with 40
hidden nodes. The other representations had classification ac-
curacies that hovered around 50%. Although the network with
40 hidden nodes did outperform those with lesser numbers of
nodes, it was not by much. In general, it helped very little to
increase the number of hidden nodes, although it helped the
frequency-band representation the most. This seems to indicate
that the network that was trained using the frequency-band rep-
resentation was learning the most.

In [8], Wolpaw and McFarland let four subjects teach them-
selves to control electrical potentials from two bipolar elec-
trodes located around positions C3 and C4 (see Fig. 1). The
potentials were used to control a cursor on a screen and the sub-
jects had to move the cursor into predefined areas. After 20–30
training sessions, subjects could move the cursor into given cor-
ners of the screen with 41%–70% success rate. For comparison,
a random cursor movement would have a 25% success rate.

In [6], Peterset al.classified brain states corresponding to the
intention of movement in the left and right index finger and right
foot. This classification was done using a “committee” of artifi-
cial neural networks each processing an individual channel of a
56-electrode EEG. The size of the committee was chosen for op-
timal accuracy, and was found to be 9–12, confirming a conclu-
sion of Wolpaw and Pfurtscheller that was obtained differently.

Fig. 1. Electrodes were placed at positions FPZ, F3, FZ, F4, FCZ, C3, CZ, C4,
PZ, P3, POZ, and P4.

A classification rate of 83% was obtained when differentiating
between two intended movements using a one second window
of EEG. When the number of movements was increased to three
and four, the classification accuracy dropped to around 70%.

Independent of the current experiment, which was performed
in 1999, the following noteworthy related experiments were per-
formed concurrently.

Haselsteiner and Pfurtscheller [12] compared the classifi-
cation accuracy of standard multilayer perceptrons (MLPs) to
time-dependent FIR MLPs. Their results demonstrated that
the FIR-MLP classifier decreased the classification error rate
over an ordinary MLP. The error rates were strongly tied to the
subject, varying from 5% to 24% without time-dependency in
the classifier, to 4%–21%. The decrease in error rate indicates
that the temporal information of the input data can be used to
improve classification results.

Further validation that ICA is a useful tool for segregating
artifacts from EEG data and generating better feature sets for
presentation to a pattern classifier is provided by Makeiget al.
in [15], by Vigarioet al. in [14], and by Zhukovet al. in [13]. In
[15], Makeiget al.demonstrated that ICA-derived components
can show much stronger spectral reactivity to motor events than
activity measured for single scalp channels. In [14], Vigarioet
al. showed that the application of ICA to an averaged auditory
evoked response accurately isolates the main response from sub-
sequent components. In [13], Zhukovet al. effectively applied
principal component analysis (PCA) in combination with ICA
to the “inverse” problem: Given a subset of electrostatic poten-
tials measure on the surface of the scalp, and the geometric and
conductivity properties within the head, calculate the current
sources and potential fields within the cerebrum.

In [16], Guger et al. investigated the possibility of using
common spatial patterns to analyze EEG in real time and
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provide feedback to the subjects. They demonstrated that three
subjects, using feedback, could reduce their classification error
within three days to 2%, 6%, and 14% in six to seven sessions.
These results indicate that feedback is a promising technique
for building a highly accurate brain-computer interface (BCI).

III. OUR EXPERIMENT

For the experiment presented here, we used the mental
states chosen in [3], and took our own 12-channel data. We
used ICA to remove the artifactual components found in our
EEG, and trained three-layer neural networks of different sizes
on the Fourier transform of a varied window length of EEG.
Using a 0.5-s window of EEG, we obtained a classification
accuracy of 94% when differentiating between the geometry
and multiplication tasks. Using a 1/20th-s window of EEG, we
obtained a classification accuracy of 85% when differentiating
between the geometry and multiplication tasks.

A. EEG Signal Recording

The data for this experiment were taken using the neu-
roscience facilities at Pomona College, Claremont CA The
subject was seated in a closet with dim lighting, a com-
fortable chair, and a computer running the program used
to present visual stimulae to the subject, NeuroScan Inc.’s
STIM 2.0 (http://www.neuro.com/neuroscan). The com-
puter had internal fans that produced some slight noise, but
other than that, the closet was fairly silent. A QuikCap-64
(http://www.neuro.com/neuromed/quikcap.htm) was used to
record from positions FPZ, F3, FZ, F4, FCZ, C3, CZ, C4,
PZ, P3, POZ, and P4, as shown in Fig. 1, and defined by the
10–20 system of electrode placement [8]. These 12 channels
were referenced to electrically linked mastoids at M1 and
M2. The impedance of all electrodes was kept below 20 k.
The data were recorded at a sampling rate of 250 Hz with a
NeuroScan SynAmps Model 5038 EEG amplifier, which uses
a 16-b A/D converter. A serial cable connected the computer
used to present the stimulae to the SynAmps EEG amplifier,
and was used to signal when a stimulus was presented. The
SynAmps was programmed to do analog bandpass filtering
from 0.15–30 Hz, and was calibrated with a known voltage
before the recording session. Eye blinks were detected by
means of a separate channel of data recorded from an electrode
placed below the subject’s left eye.

Data were recorded from one subject: a 21-year-old,
right-handed, male, college student. Five different programs
of stimulus were presented using STIM, each displaying a
total of ten images. The subject was given written instructions
at the beginning of each program of ten images. In general,
the instructions were to view an image related to a particular
mental task, and to concentrate on the task, after hearing an
audible tone, until the next image was presented. The programs
of stimulus took the following format, shown in Fig. 2:

• image was presented for 5 s;
• blank (dark) screen was presented for 5 s;
• 1-KHz tone (beep) sounded;
• blank screen continued for another 5 s;
• next image in the program was presented.

Fig. 2. Format of the stimulus programs.

All tasks were performed with the subject’s eyes open. The
tasks used in this experiment are the same as those chosen by
Keirn and Aunon in [3] to invoke hemispheric brainwave asym-
metry. The five tasks were the following.

1) Baseline Task: The instructions given to the subject pre-
ceding the stimulus program were not to perform a spe-
cific mental task, but to relax as much as possible, make as
few movements as possible, and think of nothing in par-
ticular. This task is considered a baseline task for alpha
wave production and was used as a control measure of
the EEG. The ten images presented were all exactly the
same and consisted of a white screen.

2) Letter Task: The subject was shown images consisting
of a black word on a white background. Each word was
indicative of a friend or family member (e.g., “father,”
“mother,” “aunt,” “uncle,” etc.), and the subject was
asked to mentally compose a letter to that person without
vocalizing or making any physical movements.

3) Math Task: The subject was shown images consisting of
nontrivial multiplication problems, such as , and
was asked to solve them without vocalizing or making any
physical movements. The problems were designed so that
they could not be solved in the time allowed. Although
they repeated, the subject did not solve any of them to
completion.

4) Geometric Figure Rotation: The subject was shown im-
ages of three-dimensional (3-D) figures (rendered and
shaded), and asked to visualize them rotating about an
axis. The figures were all 3-D extrusions of randomly
drawn two-dimensional shapes.

5) Visual Counting: The subject was shown an image of
black arabic numerals on a white background, and asked
to visualize similar numerals being written onto a black-
board, one after another, sequentially in ascending order,
the previous numeral being erased before the next being
written.

Data were recorded for 15 s per image, or 150 s per program.
Thus, one recording of all five programs resulted in 750 s of
data. The five programs were each recorded twice, giving us a
total of 1500 s of data containing 100 beeps, each indicating the
start of a 5-s period during which the subject was to be concen-
trating on a particular brain state.

After having some time to examine the data, it became
apparent that P, channel 14 on the QuikCap, had not been
recording properly. However, all the other channels were quite
clear, and since P is along the center-line, we surmised that
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Fig. 3. First 10 s of the geometry task, before ICA processing.

Fig. 4. First 10 s of the geometry task, after ICA processing.

discarding it would not adversely affect the usability of the
information encoded in the brainwave asymmetry ratios for
each state. Discarding the malfunctioning channel left us with
11 channels of scalp data, and a single channel for detecting
eye movements.

B. Artifact Removal

Contamination of EEG activity by eye movements, blinks,
cardiac signals, and muscle and line noise is a serious problem
for EEG interpretation and analysis. One way of dealing with
this problem is to simply reject segments of EEG with unac-

ceptable amounts of noise. However, this may result in signifi-
cant data loss. Fortunately, there are algorithmic alternatives to
discarding data. One algorithm in particular stands out from the
rest: ICA. To understand what it does and why it serves our pur-
pose, it is of use to gain some context with regard to the type of
data being analyzed with EEG.

The signals measured when we record the voltage potentials
from a subject’s scalp are those that result from the activity
of neurons some significant distance away from the electrode
that we are using to take the measurement. Each electrode is
“hearing” a summation of all the neural activity in the vicinity.
The signals differ from one another because they are located in
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different geographical areas of the scalp. Neural activity in an
area that is close in proximity to one electrode will be “louder”
in the recording produced by that electrode than one further
from the source. Thus, in an ideal situation, each electrode
would detect a unique linear mixture of all the neural activity
happening in a subject’s brain.

Unfortunately, the ideal linear mixture is augmented by other
electrical activity that does not pertain to neurons being fired.
Typically, these noise signals are much greater in amplitude than
the signals of interest, and have the effect of obliterating a good
amount of useful information. Some of the noise signals, such
as those resulting from eye blinks and other muscle movements,
are infrequent enough such that the segments of data in which
they appear can be simply discarded without losing too much.
Others, such as cardiac signals and eye movements, are regular
enough to make obtaining useful data a cumbersome task. The
problem of removing this noise from the interesting signal can
be stated as follows: from unique linear mixtures of an un-
determined number of sources, can we somehow separate out

statistically independent mixtures? In other words, can we
“unmix” the statistically unrelated noise onto a separate channel
from the interesting signals? In fact, it has been known for some
time that this is possible.

ICA, proposed by Bell and Sejnowski in [5], is a simple
neural algorithm that blindly separates mixtures of independent
sources using infomax. In [5], they show that maximizing the
joint entropy of the output of a neural processor minimizes the
mutual information among the output components. Bell and
Sejnowski offer the following two reasons why ICA is suitable
for performing blind source separation on EEG data: 1) it is
plausible that EEG data recorded at multiple scalp electrodes
are linear sums of temporally independent components arising
from spatially fixed, distinct, or overlapping brain or extra-brain
networks; and 2) spatial smearing of EEG data by volume
conduction does not involve significant time delays [10]. Figs.
3 and 4 exemplify the effect of ICA processing on EEG data.

C. Representation of EEG Signals

The key to training a neural network to do a reliable discrim-
ination is finding a suitable representation of the EEG signals.
Since the early days of automatic EEG processing in the medical
community, representations based on a Fourier transform have
been most commonly applied to the problem of discriminating
and classifying EEG patterns. This approach builds upon earlier
observations that there are some characteristic waveforms that
fall primarily within four frequency bands: delta (1–3 Hz), theta
(4–7 Hz), alpha (8–13 Hz), and beta (14–20 Hz).

In related work, Andersonet al. [2] found that a fre-
quency-band representation yielded the best result of four
methods that they tried. Others [13] have had success with
similar representations as well. Thus, we decided to use a
representation based on the power spectral densities of the
sources computed by ICA. With a sample rate of 250 Hz and
12 channels of data, each 5-s window of time during which the
subject was to be concentrating on a particular brain state con-
tained 15 000 data points. After computing the ICA sources and
discarding the one that was representative of eye and muscle
movements, we were left with 11 channels of data. Fig. 5 shows

Fig. 5. Third ICA source and its Fourier transform around beep 3 of the
counting task.

a portium of the third ICA souce of the counting task before
and after the beep, and its Fourier transform.

Inside the period of concentration, we recorded ten windows
of 11-channel EEG data, each offset by 50 samples from the
one before it. For example, the first of the ten started at the
beep, the second started 50 samples after the beep, etc. Since
there were 100 windows per session, and two sessions of each
mental state, each mental state was represented by 200 feature
vectors. Of these features, half were used for training and half
for validation.

The length of the window was varied from one half second
(125 samples) to one-nineteenth of a second (12 samples). To
point out what may not be obvious, windows longer than 50
samples overlapped other windows, while windows shorter did
not. For each window, we computed the discrete Fourier trans-
form of each channel, which left us with 11 vectors containing
a number of power values equal to the number of samples in
the time domain. The power spectral density was computed by
taking the dot product of the Fourier transform with its conju-
gate, and dividing the resulting vector by the number of power
values in the Fourier transform. These 11 power spectral den-
sity vectors were concatenated together to form a presentation
vector.

D. Pattern Classification

Three-layer feedforward artificial neural networks were
trained using Matlab with the accelerated back-propagation
algorithm (tbpx). The learning rate was dynamically adjusted
as the network trained, such that as the mean-squared error
(MSE) of the network decreased, the learning rate increased,
and when the MSE increased, the learning rate fell back down
to a preset minimum. With regard to the number of hidden
nodes in each hidden layer, a variety of thoughtfully selected
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TABLE I
RESULTS FORTWO-WAY DIFFERENTIATION

TABLE II
RESULTS FORTHREE-WAY DIFFERENTIATION

configurations were tried. Some of the best performing config-
urations were 40-5, 50-10, 100-10, 250-50, 1000-100, where
for example 40-5 indicates that there were 40 hidden nodes in
the first layer, and 5 in the second. All networks were trained
on a six-processor Sun Ultra Enterprise 3000 with 1.5 GB of
memory.

Networks were trained to differentiate between all pairs of
mental states, and all triples of mental states. A one-hot en-
coding was used to enumerate mental states, with a “correct”
classification being one in which the correct output was larger
than all other outputs. Half of the total number of feature vectors
were used as a validation set to prevent over-fitting, and training
was stopped when the MSE of the validation set did not decrease
for 200 epochs. Once this occurred, the network weights were
reset to their values at the point when the network received the
highest “score” upon evaluation of the validation set, where the
“score” of the network was the number of validation patterns
classified correctly. Each recording donated 100 patterns to the
pool, and there were two recordings made of each brain state.
Thus, for two-way differentiation, 200 patterns were used for
training and 200 different patterns were used for validation. For
three-way differentiation, 300 patterns were used for training
and 300 different patterns were used for validation.

IV. RESULTS

Table I shows the results of differentiation between two
mental tasks. The notation used for the “Best Network” column
indicates the number of hidden nodes in each hidden layer. For
example, “40-5” indicates that there were 40 nodes in the first
hidden layer, and 5 in the second. In the “Best Classification”
column, the percentage indicates the number of test patterns
classified correctly. In Table I, the percentage is an indication
of which mental tasks were used in the differentiation that
resulted in that particular percentage. Clearly, some pairs of
tasks are more easily differentiated between than others.

Table II shows the results of differentiation between three
mental tasks. The classification accuracies indicate that this was
a much harder problem for the network to learn. Another indi-
cation of the difficulty of the problem is that networks with a
greater number of hidden nodes performed better. When only
differentiating between two mental tasks, it was sufficient to use
fewer hidden nodes: after a certain threshold, classification ac-
curacy did not increase if the number of hidden nodes was in-
creased. After finishing with the results for three-way differen-
tiation, it became clear that it would not be worth the training
time to compute them for four-way differentiation.
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V. CONCLUSION

Accurate, two-way differentiation can be done using a short
(between 0.05 and 0.5 s) window of EEG data. This is probably
the most significant result of the experiment, because most ap-
plications for control systems have real-time requirements. For
example, with a recognition rate of one symbol per second, it
would be very difficult to steer a wheelchair or compose a letter
on the computer. On the other hand, with a rate of 16 symbols
per second it might be possible to accomplish this.

Increasing the number of hidden nodes in the neural network
classifier increases the accuracy of classification, although the
increase in accuracy is very gradual after a point. Unfortunately,
since larger networks take longer to train, there is a threshold at
which the return in accuracy does not justify the investment in
training time.

ICA is fast and useful for removing artifacts without dis-
carding useful data. This experiment verifies that the ICA algo-
rithm works as a method of removing artifacts from EEG data.
Furthermore, the processing time required to run the ICA algo-
rithm was insignificant compared to the time required to train
the neural networks using backprop.
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