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QUASI F-COVERS OF TYCHONOFF SPACES

M. HENRIKSEN, J. VERMEER AND R. G. WOODS

ABSTRACT. A Tychonoff topological space is called a quasi F-space if each dense
cozero-set of X is C*-embedded in X. In Canad. 1. Math. 32 (1980), 657-685
Dashiell, Hager, and Henriksen construct the" minimal quasi F-cover" QF( X) of a
compact space X as an inverse limit space, and identify the ring C(QF( X)) as the
order-Cauchy completion of the ring C* (X). ·In On perfect irreducible preimages,
Topology Proc. 9 (1984),173-189, Vermeer constructed the minimal quasi F-cover
of an arbitrary Tychonoff space .

In this paper the minimal quasi F-cover of a compact space X is constructed as
the space of ultrafilters on a certain sublattice of the Boolean algebra of regular
closed subsets of X. The relationship between QF( X) and QF( f3 X) is studied in
detail, and broad conditions under which f3(QF( X)) = QF(f3 X) are obtained,
together with examples of spaces for which the relationship fails. (Here f3 X denotes
the Stone-Cech compactification of X.) The role of QF( X) as a "projective object"
in certain topological categories is investigated.

1. Introduction. A Tychonoff space X is called a. quasi F-space if each dense
cozero-set of X is C*-embedded in X. Several recent papers (see [DHH, HdP3 , P,
VI' ZK] have noted that every space X has a "minimal quasi F-cover" (QF( X), <I> x)
which can be characterized as follows:

1.1. THEOREM. For each Tychonoff space X there exists a space QF(X) and a

function <I> x: QF( X) ~ X such that

(i) QF( X) is a quasi F-space,

(ii) <I> x is a perfect irreducible continuous surjection from QF( X) onto x. [Recalls

that a perfect surjection is irreducible if it maps proper closed subsets of the domain onto

proper subsets of the range].

(iii) If K is any other quasi F-space and if '1' is a perfect irreducible continuous

function from K onto X, then there exists a continuous surjection f: K ~ QF( X) such

that <I> x 0 f = '1'.
(iv) The pair (QF( X), <I> x) is unique in the following sense: if Y is a quasi F-space,

if u: Y ~ X is a perfect irreducible continuous surjection, and if there exists a

continuous function g: K ~ Y such that J.I. 0 g = '1' whenever K and '1' are as in (iii),
then there is a homeomorphism h: Y ~ QF( X) such that <I> x 0 h = J.I..
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The uniqueness of (QF( X), <I> X) described in 1.1(iv) follows from 1.1(iii) by .way
of the following result , which appears in 1.37 of [V2 ] and which we use in §4.

1.2. THEOREM. Let f: X ~ Y, g: X ~ Y, and h: Y ~ Z be perfect irreducible
continuous surjections. Let X, Y, Z, be Hausdorff spaces. If h 0 f = hog then f = g.

A proof of 1.2 appears in 8.4(g) of [PW]. It generalizes the lemma of [Ha].
The papers [DHH, HdP3 , and P] essentially consider only the case in which X is a

compact space. (One should note that in [DHH], when the authors speak of "the
quasi F-cover of the Tychonoff space X," they mean by it the quasi F-cover of its
Stone-Cech compactification f3X.) In [VI] the quasi F-cover of an arbitrary Tychonoff
space is constructed, while in [ZK] the authors construct the so-called" sequential
absolute aX." of a Tychonoff space X (but provide no proofs of their results). This
"sequential absolute" coincides with the quasi F-cover when X is compact, but (as
we shall see in §3) does not do so in general. See also §5.

The pair (QF( X), <I> x) is called the minimal quasi F-cover of X. More generally, a
pair (Y, f) is called a cover of X if f is a perfect continuous irreducible surjection
from Yonto X. Thus (QF(X), <I> x) is a quasi F-cover of X by 1.1(i), (ii). The word
"minimal" indicates that (QF( X), <I> x) possesses the property described in 1.1(iii).

Several sorts of construction of QF( X) have appeared in the literature. In [DHH,
and VI] QF(A;) is constructed as an inverse limit, and in [DHH and HdP3 ] it is
constructed as a space of maximal ideals. In all but [VI] X is assumed to be
compact. Park [P] constructed QF( X) as a space of maximal filters on a certain
lattice, but only for a very restricted class of compact spaces X. In [ZK], points of
QF( X) are constructed as equivalence classes of zero-sets of dense cozero-sets of X

(in the case where X is compact). A discussion of the construction of QF( X) also
occurs in §8.4 of [PW].

The minimal quasi F-cover of X is obviously analogous in its properties to the
well-known "abolute" (EX, k x) of a space X (see [PW or W] for background on
absolutes). One standard way of constructing EX is to let its points be the
convergent ultrafilters on the Boolean algebra 9£(X) of regular closed subsets of X,

with a topology inherited from that of the Stone space of 9£(X). This led the authors
to ask if QF( X) could also be represented as a "space of ultrafilters" on some
suitably chosen sublattice of 9£(X). In §2 we construct the quasi F-cover of a
compact space X in precisely this way, and derive additional properties of the map
<I> x. In §3 we investigate under what conditions on the Tychonoff space X it is true
that (QF( X), <I> x) = (<I>,B~[ X], <I>,Bx I <I>,B~[ Xl) (in the sense of 1.1(iv)), and when it is
true that QF( f3X) = f3( QF( X)) (in the sense that <I>,B~[ X] is C *-embedded in
QF(f3X)). Here, of course, f3X denotes the Stone-Cech compactification of X. We
do not obtain complete answers to these questions, but we do obtain both general
theorems and limiting counterexamples.

All topological spaces discussed are assumed to be Tychonoff- the word "space"
will mean "Tychonoff topological space." We will use the notation and terminology
of the Gillman-Jerison text [GJ] without further comment. In particular, ~(X)

denotes the set of zero-sets of the space X.
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The authors wish to express their sincere thanks to the referee for the meticulous
reading that he/she gave to the original version of this paper.

2. The quasi F-cover of a compact space. In this section we construct the quasi
F-cover of a compact space as a space of ultrafilters on a sublattice of 9?( X).

Recall that a subset A of a space X is called regular closed if A = cl x int x A. It is
well known (see [W] for example) that the set 9?(X) of all regular closed subsets of
X is a complete Boolean algebra with respect to the following operations:

A V B = A U B,

A /\ B = clxintx(A n B),
A' = clx(X\A).

If X is compact, the absolute EX of X is the Stone space of 9?(X) (see [W]).
Every Boolean algebra is a lattice; hence 9?( X) is, where the associated partial

order on 9?( X) is set inclusion. If 2 is a sublattice of 9?( X), then we can
topologize the set T( 2) of maximal filters (henceforth called ultrafilters) on 2 in
the same way as one defines the Stone space of a Boolean algebra. Specifically, we
have the following.

2.1. THEOREM. Let X be a space and let 2 be a sublattice of (9?( X), ~) with 0 ,
XE!fJ. IfL E2, letL* = {a E T(2): LEa}. Then

(a) A filter a on 2 is an ultrafilter iff, for each L E !t\ a, there exists ALE a

such that L /\ A L = 0.
(b) {L*: L E 2} is a closed base for a compact topology T on T( 2).

(c) The space (T(2), T) is Hausdorff iff the following condition holds:

(*) If A, B E 2 and A /\ B = 0 then there exist C, D E 2 such that A /\ C = 0,

B /\ D = 0, and (C U D)* = T( 2).
(d) If X is compact and 2 is a base for the closed sets of X, then the map <1>:

T(2) ~ X given by

<1>( a) is the unique point in n{ L: LEa}

is a well-defined perfect irreducible continuous surjection, and <1> [L *] = L for each
LE2.

PROOF. (a) Let a be an ultrafilter on 2, let La E 2, and suppose that La /\ L =1=

o for each LEa. Then {m E 2: 3 LEa such that La /\ L ~ m} is a filter on 2
containing a U {La}. By the maximality of a, La E a. Conversely, if a is a
nonmaximal filter on 2, find an ultrafilter 13 on 2 such that a ~ 13. If La E 13 \ a
then La /\ L =1= 0 for each LEa.

(b) To show that {L*: L E2} is a closed base for a topology T on T(2), it
suffices (since 2 is a sublattice of 9?( X) and hence closed under finite unions) to
show that if L I, L 2 E 2 then (L I U L 2)* = Li U Ls, If a E Li U Li then a E Li
or a E Li so either L I E a or L 2 E a; either way L I U L 2 E a so a E (L I U L 2)*.

Conversely, if a tE Li U Li then L I tE a and L 2 tE a so by (a) there exist AI' A 2 E a

such that L, /\ AI = 0 (i = 1,2). Evidently (L I U L 2 ) /\ (AI /\ A 2 ) = 0 and as
Al /\ A 2 E a, it follows that a tE (L I U L 2 )* .
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Note also that if AI' ... , An E 2 then
(i) (1\~=1 A i)* = n;l=l Ai·

To see this note that a E (1\?=lA[)* iff 1\7=lA i E a iff Ai E a for each i iff

a E n~=l Ai.
To show that T is a compact topology, suppose that {Li: i E I} has the finite

intersection property (where {L[: i E I} ~ 2). If F is a finite subset of I, then
there exists a E n{Li: i E F}. Thus 0 =1= I\{L i : i E F} as I\{L;: i E F} E a.
Thus {m E 2: there exists a finite subset F of I with I\{ L i : i E F} ~ m} is a filter
on 2, and hence contained in an ultrafilter ~ on 2. Evidently ~ E n{ Li: i E i} so
n{ Li: i E I} =1= 0. It follows that (T( 2), T) is compact.

(c) Suppose that 2 satisfies (*) and that a and ~ are distinct points of T(2). By
(a) there exist A E a and B E ~ such that A /\ B = 0. By (*) there exist C, D E 2
such that

A /\ C = B /\ D = 0 and C V D = CUD = X.

Evidently a E T(2) \ C*, ~ E T(2) \D*, and

(T(2) \ C*) n (T(2) \D*) = T(2) - (C U D)* (see (b))

= 0 (as(CUD)*T(2)).

Thus T is a Hausdorff topology.
Conversely, suppose that (T(2), T) is Hausdorff and that A, B E 2 with A /\ B

= 0. Then A* n B* = 0, so as T(2) is compact Hausdorff follows from (i) that
there exist, for each a E A*, sets G(a) and K(a) in 2 such that a E T(2) \ G(a)*,

B* ~ T(2)\K(a)*, and
(ii) (T(2) \ G(a)*) n (T(2) \K(a)*) = 0. As A* is compact there exist

a l , ... , an E A* such that

A* ~ U{"T('p)\G(aJ*: 1 :s;; i «; n} = T(.p)\(l1 G(aJr·

Set C = 1\;1=1 G(ai) and D = U;l=l K(a[). Obviously A* n C* = B* n D* = 0, so
A /\ C = B /\ D = 0. Note that

(CUD)*=C*UD*= [l1G(aJ]* U[J~1K(aj)r

= [,01 G(aJ*] U [j~1K(aj)*]

i01 [j~1 G(aJ* U K(aj)*] (by (i)).

By (ii), G(a[)* U K(a[)* = T(2) for i = 1 to n, so (C U D)* = T(2). Hence C
and D are the required members of 2.

(d) Let X be compact and let a E T(2). Then a (regarded as a family of closed
subsets of X) has the finite intersection property, so n{ A: A E a} (henceforth
denoted by na) is nonempty. If x and yare distinct points in na, then as 2 is a
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base for the closed sets of the compact space X, there exist L I , L 2 E!e such that
x E intxL I, y E int xL2 , and L I n L 2 = 0. (If Hand K are disjoint closed
neighborhoods of x and y, respectively, find a finite subfamily !F of 2 such that
H ~ n!F~ X\ K, and let L I = /\!F. Now define L 2 similarly.) As x E na, we see
that if A E a then A n int XLI =1= 0 and so A /\ L~ =1= 0. Hence by 2.1(a) L I E a;
similarly L 2 E a, which contradicts the fact that L I n L 2 = 0. Thus In al = 1, so
<I> ( a) is indeed well defined.

Now suppose L E 2. If a E L* then LEa so <I>(a) E L. Thus <I>[L*] ~ L.
Conversely, if x E L consider the family !F= {m E 2: x E int x m} U {L}. Since
2 is a closed base for X, a compactness argument like that used above shows that
n!F= {x }, Any finite subfamily of !F has a nonempty infimum in 2, so by Zorn's
lemma there exists a E T(2) such that !F~ a. Then a E L* as LEa, and
<I>(a) E na ~ n!F= {x }, so <I>(a) = x. Thus <I>[L*] = L. In particular <I>[T(2)] =
<I>[X*] = X (since X belongs to every ultrafilter), so <I> is surjective. If L* =1= T(2),
then L =1= X so <I>[L*] = L =1= X. As {L*: L E2} is a closed base for T(2), it
follows that <I> is irreducible.

Let a o E T( 2) and suppose <I> ( a o) E V, where V is open in X. By the regularity
of X there exists t; E 2 such that <I> (ao) E X \ t.; ~ cl x( X \ L o) ~ V. Thus
Lo $. ao so ao E T(2)\L6. We claim that <I>[T(2)\L6] ~ V; this will verify the
continuity of <I> at the arbitrarily chosen point ao. If ~ E T( 2) \ L6 then L o $. ~ so
there exists D E ~ such that D /\ Lo = 525 (see part (a)). Thus D n int xLo = 0, so
D ~ clx(X\Lo) ~ V. As <I>(~) E D, it follows that <I>(~) E V

T

• Our claim is veri
fied, and <I> is continuous. As T(2) and X are compact, the continuity of <I> implies
tha t <I> is perfect. D

Note that if 2 is a base for the closed sets of X, then (C U D)* = T(2) iff
CuD = X, and we can make that change in the statement of 2.1(c). However, this
equivalence will fail in general if 2 is not a base for the closed sets.

2.2. LEM:MA. Let PJ be a base for the closed subsets of the space X. ASSUlne that PJ is
closed under finite unions and intersections. Let PJ# = {clxintxB: B E PJ} U

{ X, 0 }. Then PJ # is a sublattice of 9?( X) and is a base for the closed subsets of x.

PROOF. If B I , B2 E PJ then

(clxintxB I) V (cl xint xB2 ) = clxintxBI U cl xint xB2 = clxintx(BI U B2 ) ,

which belongs to PJ# as B I U B2 E !!J. Also,

cl xint XBI /\ cl xint XB2 = cl x int x( B I n B2 )

which belongs to PJ# as B I n B2 E PJ. Thus PJ# is a sublattice of 9?( X). If A is
closed in X and p $. A, find an open set V( p) of X such that A( p) ~ V( p) ~
cl x V( p) ~ X \ { p }. As PJ is a closed base, there exists B( p) E PJ such that
clxV(p) ~ B(p) ~ X\ {p}. Obviouslyn{clxintxB(p): p E X\A} = A, so PJ#
is a closed base for X. D

We will make use of the following result, which appears as 1.1 of [BU].
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2.3. LEMMA. If C is a cozero-setof a space X and V is a cozero-set of C, then _V is a
cozero-set of x. D

As usual, !!Z (X) denotes the family of zero-sets of the space X.

2.4. THEOREM. If X is a space, then !!Z(X)# is a sublattice of 9£>(X) that is a base
for the closed subsets of X, and T(!!Z(X)#) is a compact Hausdorff space.

PROOF. Since !!Z(X) is a closed base for X closed under finite unions and
intersections, the first assertion follows from 2.2. The second assertion will follow
from 2.1 once we have shown that T(!!Z(X)#) is Hausdorff. To show this, by 2.1(c)

it suffices to show that if Zl' Z2 E !!Z(X) and (cl x int x Zl) 1\ (cl x int x Z2) = 0,

then there exist Z3' Z4 E !!Z( X) such that

and cl xint xZ3 U cl yint j Z, = X.
If (cl xint xZ1) 1\ (cl xint xZ2) = 0, thenint x(Z l n Z2) = 0, so X\(Zl n Z2)

is a dense cozero-set C of X. As Z, n C and Z2 n C are disjoint zero-sets of C,
there exist disjoint cozero-sets VI and V2 of C such that z, n C ~ VI and Z2 n C
~ V2 (see 1.15 of [GJD. By 2.3 Z3 = X\ VI and Z4 = X\ V2 belong to !!Z(X).
Evidently Z3 U Z4 = X, and from this it follows quickly that cl y int y Z, U

cl y int y Z, = X. Furthermore (cl xint xZ1) 1\ (cl xint xZ3) is a regular closed set

contained in Z. n Z3' which is a subset of Z, n Z2 by our choice of VI. Since
int X(Zl n Z2) = 0, it follows that (cl xint XZl) 1\ (cl xint XZ3) = 0. Similarly
(cl x int XZ2) 1\ (cl xint XZ4) = 0; thus T(!!Z(X)#) is Hausdorff. D

2.5 COROLLARY. If X is a compact space, and if <1>: T(!!Z(X)#) ~ X is defined as
in Theorem 2.1(d), then <1> is a perfect irreducible continuous surjection and
<1> [(cl x int x Z)*] = cl x int xZ for each Z E !!Z( X).

PROOF. See 2.1(d). D

In general, if 2 is a sublattice of 9?( X) that is a base for the closed sets of X, the

space T(2) need not be Hausdorff. For example, for each space X the family
{cl x C: C is a cozero set of X} is easily verified to be a sublattice of 9?( X) that is a
base for the closed sets. However, we have the following

2.6. EXAMPLE. Let Y be any locally compact, a-compact noncompact space. Then
/3Y\ Y is a compact F-space with no proper dense cozero-sets (see 3.1 of [FGD. Let
Sand T be any two compact spaces possessing proper dense cozero-sets C1 and C2 ,

respectively. Let A be the direct sum S E9 T E9 (/3Y\ Y). Choose pES \ C1,

q E T\ C2 , and let r be any point of /3Y\ Y. Let X be the quotient space obtained
from A by identifying the set { p, q, r} to a point s. Then X is compact and C4 and
C2 are cozero-sets of X. Let 2= {clxV: V is a cozero-set of X}. Now cl XC1 1\

cl x C2 = 0 as cl y C. n cl x C2 = {s }, Thus if T(2) were Hausdorff, by2.1(c) there

would exist cozero-sets C3 and C4 of X such that cl x C1 1\ cl X C3 = 0, cl X C2 1\

cl x C4 = 0, and cl x C3 U cl x C4 = X. If s E C3 then C3 n C1 =1= 0 as s E cI XC1.

Hence we must have s $. C3 ; similarly s $. C4 • Let (C3 U C4 ) n (/3Y\ Y) = C5 ;
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then c, ~ (f3Y\ Y) \ {s} (here we identify «f3Y\ Y) \ {r}) U {s} with its homeo
morph f3Y \ Y). Obviously Cs is a proper cozero-set of f3Y \ Y, and as cl x C3 U

cl XC4 = X, it follows that C, is a proper dense cozero-set of f3Y \ Y, which is a
contradiction. Thus T(fE) is not Hausdorff. 0

We will show that the pair (T( fZ( X) #), <I», where <I> is as defined in 2.1(d), is the
minimal quasi F-cover of the compact space X. First we recall some well-known
facts about irreducible maps. The first listed below is easily proved; a proof of the
second appears in 2.3 of [W], and the third follows immediately from the second.
These also appear in 6.5(b), (d) of [PW].

2.7. PROPOSITION. If f: X ~ Y is an irreducibleperfect continuous surjection, then
(a) If S is dense in Y then f ~ [S] is dense in X.
(b) The map A 1-4 f[A] is a Boolean algebra isomorphismfrom 9£(X) onto 9£(Y).
(c) If V is open in X then int ; f[V] is dense inf[V].

2.8. DEFINITION. Let X and Y be spaces and let f: X ~ Y be a perfect
irreducible mapping. Then f is called fZ#-irreducible if {f[A]: A E fZ(X)#} =
fZ(Y)#. (For the history of this latter concept, see §5.)

Observe that {f[A]: A E fZ(X)#} :2 fZ(Y)# for any perfect irreducible map;
this follows from 2.7(a) and the fact that if Z E fZ(Y) then f ~ [Z] E fZ(X). Also,
note that by virtue of 2.7(b), the mapping f is fZ#-irreducible iff A 1-4 f[A] is a
lattice isomorphism from the lattice (fZ(X)#, ~) onto the lattice (fZ(Y)#, ~). The
next theorem provides the "nuts and bolts" of the relationship between X and
T(fZ(X)#), for compact spaces X.

2.9. THEOREM. Let X be a compact space and consider the map <I>: T(fZ(X)#) ~ X
as defined in 2.1(d). Then

(a) (If C is a cozero-set of T(fZ(X)#), there exists a cozero-set V of X such that
<I> ~ [V] is dense in C.

(b) If S E fZ(T(fZ(X)#)), then there exists Z E fZ(X) such that

clTU~l'( X)#) intT(.fl'(X)#) S = cIT(.fl'(x)#) <I> ~ [int x Z].

(c) <I> is a fZ # -irreducible map (and thus A ~ <I> [A] is a lattice isomorphism from
fZ(T(fZ(X)#))# onto fZ(X)#).

(d) IfZ E fZ(X) then (clxintxZ)* = cIT(.fl'(x)#)<I>~[intxZ].

(e) fZ(T(fZ(X)#))# = {A*: A E fZ(X)#}.

PROOF. (a) Denote T(fZ(X)#) by K. As C is a cozero-set (and hence an Fa-set) of
a compact space, it is Lindelof. Thus there exists {Zn: nEw} ~ fZ(X) such that

C = U{K\(clxintxZn)*: nEw}. Let V= U{X\Zn: nEw}. Then V is a coun
tabIe union of cozero-sets of X and hence is a cozero-set of X. If a E <I> ~ [V] there

exists k E w such that <I>(a) E X\Zk. Thus cl y int y Z, tE a, so a E

K\(clxintxZk)* ~ C.Thus<I>~[V]~ C.
To see that <I> ~ [V] is dense in C, suppose that A E fZ(X) and C n

[K \ (cl x in t x A)*] =1= 0 (here we are using the notation of 2.1). There exists k E w
such that
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from which it quickly follows that clxintxA U cl y int y Z, =F X. One easily deduces
that A U Z; =F X. Choose X o E X\ (A U Zk); as <I> is surjective (see 2.1(d)),

o =F <I> ~ (x o) ~ <I> ~ [X\ z.] n <I> ~ [X\A]

~ <I> ~ [ X \ Zk] n [K \ (cl x int x A )*] (see 2.1 (d) )

~ <I> <- [V] n [K \ (c1 x int x A)*] .

(b) By (a), if S E !l'(K) then there exists Z E !l'(X) such that <I>~[X\Z] is
dense in K\S. Thus clK(K\S) = clK<I>~[X\Z]. Note that clKintKS =
(clK(K\S))/. (Recall that if A E f!1(K) then A' denotes the Boolean-algebra
complement of A in the Boolean algebra f!1(K).) Since by 2.7(b) the map A ~ <I>[A]
preserves Boolean-algebraic complements, it follows that

<I>[c1 K in t K S] = <I>[(c1 K (K \ S))' ] = (<I>[c1 K (K \ S)]) '

= <I> [clK <I> ~ ( X \ Z)] I = (cl x ( X \ Z)) I = cl x int x Z .

But <I> [clK <I> ~ [int x Z]] = cl x int x Z obviously; since by 2.7(b) A ~ <I> [A] is one-to
one, it follows that cl K int KS = cl K <I> ~ [int x Z].

(c) If ZE!l'(X) then <I>~[Z]E!l'(K) and clKintK<I>~[Z]~<I>~[Z].Thus
<I> [cl K int K <I> ~ [Z]] ~ Z. By 2.7(b) <I> [cl K int K <I> ~ [Z]] is a regular closed subset of
X contained in Z, so <I>[cl K int K <I> ~ [Z]] ~ cl x int x Z. Conversely, <I> ~ [int x Z] ~
int K <P ~ [Z], so <I> [cl K <I> ~ [int x Z]] ~ <I> [clK int K <I> ~ [Z]]. But <I> [cl K <I> ~ [int x Z]]
= cl x int x Z as <I> is closed and continuous. Thus <I> [cl K int K <I> ~ [Z]] = cl x int x Z
and it follows that {f[A]: A E !l'(K)#} :2 !l'(X)#. Conversely, let S E !l'(K). By
(b) there exists Z E !l'(X) such that cl K int K S = cl K <I> ~ [int x Z]. Thus
<I>[clKintKS] = clxintxZ, and {f[A]: A E !l'(K)#} ~ !l'(X)#. Hence <I> is ~#
irreducible.

(d) If a E (cl y int y Z)" and a E K\ (cl j-int y F')", where Z and F belong to
!l'(X), then cl y int y Z E a and clxintxF $ a. By 2.1(a) there exists A E !l'(X)
such that clxintxA E a and intxA n int y F = 0. Thus (cl y int y zl) /\
(cl y int y Z) =F 0 so intxA n int y Z =F 0. Thus there exists X o E intxZ n
(X-clxintxF). If 8E<I>~(xo) then 8E<I>~[intxZ]n(K\(clxintxF)*).

Thus each neighborhood of a meets <I> ~ [int x Z] and a E cl K <I> ~ [int x Z].
Conversely, suppose a E clK<I>~[intxZ]. If a $ (cl y int y Z)" it would follow

that (K\ (cl x int x Z)*) n <I> ~ [int x Z] =F 0. This would be a contradiction, for if
<I>(8) E int y Z then (cl y int y Z) /\ A =F 0 for each A E 8 and so cl y int y Z E 8,
i.e. 8 E (cl y int y Z)", by 2.1(a). Thus a E (cl y int y Z)" and clK<I>~[intxZ]=
(cl x in t x Z) *.

(e) This follows directly by combining (b), (c), and (d). D

REMARK. Note that in the proof of (a) above we used the compactness of X to
assert that cozero-sets of X are Lindelof. It is this detail of the proof that does not
generalize to arbitrary Tychonoff spaces.

To prove that T(!l'( X)#) is a quasi F-space, we will use the following characteri
zation of quasi F-spaces. An equivalent, but different version of this lemma is
established in [HdPtl For the sake of completeness we include a proof.
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2.10. LEMMA. The following are equivalent for a Tychonoff space x:
(a) X is a quasi F-space.
(b) If ZI' Z2 E c2'(X) and int xZ1 n int xZ2 = 0 then cl xint xZ1 n cl xint xZ2

= 0.

PROOF. (a) ~ (b) If 2 1,22 E c2'(X) and int y Z. n int y Z, = 0, then it follows
that X\ (ZI n Z2) is a dense cozero-set C of' X and hence by hypothesis is
C*-embedded in X. Now C n int X21 and C n int XZ2 are contained in the disjoint
zero-sets ZI n C and Z2 n C of C. But Cl X(ZI n C) n Cl X(Z2 n C) = 0 as C is
C*-embedded in X (see 6.4 of [GJD, so

o = clx(C n int xZ1) n clx(C n int xZ2) = cl x(int x'ZI) n cl x(int xZ2).
(b) ~ (a) Let C be a dense cozero-set of X. To show that C is C*-embedded in X

it suffices by 6.4 of [GJ] to show that the disjoint zero-sets ZI and Z2 of C have
disjoint X-closures. There exist cozero-sets VI and V2 of C such that ZI ~ VI'
Z2 s;: V2, ZI n cl.. V2 = 0, 2 2 n cl.. VI = 0, and VI U V2 = C (see 1.15 of [GJD.
Let SI = X\ VI and S2 = X\ V2. By 2.3, SI' S2 E c2'(X) and int xS1 n int xS2 =

o as VI U V2 = C. By hypothesis cl x int x S 1 n cl x int x S2 = 0; obviously cl x ZI

s;: cl x int x S2 and cl x Z2 ~ cl x int x SI. Thus cl x ZI n cl x Z2 = 0, so by 6.4 of [GJ]
C is C*-embedded in X. D

2.11. THEOREM. If X is a compact space then T(c2'(X)#) is a quasi F-space.

PROOF. Denote T(c2'(X)#) by K. By 2.10 it suffices to show that if ZI' Z2 E c2'(K)
and int K Z 1 n int K Z 2 = 0 then clKint K Z 1 n clKint K Z 2 = 0. By 2.9(b) there
exists S, E c2'(X) such that cl Kint KZ, = cl K<1> ~ [int x Si] (i = 1, 2). Since

o = clK(int K Z 1 n int K Z 2) = clKint K Z 1 /\ clKint K Z2,

it follows from 2.7(b) that

o = <1> [cl Kint KZI /\ cl Kint KZ2] = <1> [cl Kint KZI] /\ <1> [cl Kint KZ2]

= cl x int XSI /\ cl x int XS2 (by the above).

It follows that (cl xint xS1)* n (cl xint xS2)* = 0. But by 2.9(d) and the above we
see that clKintKZi = (cl y int y S")". It follows that clKint K Z 1 n clKint K Z 2 = 0

as required. D

Now we know that if X is any compact space then T(c2'(X)#) is a quasi F-space
that can be mapped onto X by a perfect irreducible continuous surjection <1>. It
remains to show that (T(c2'(X))#, <1» satisfies the minimality condition described in
1.1(iii). Our proof is modelled on one originally constructed by Flaschmeyer [F] in
his study of absolutes. (Flaschmeyer's proof is presented in 3.8 of [W] and in 6.11(d)
of [PW].)

2.12. THEOREM. Let X be a compact space. The pair (T(c2'(X)#), <1» is the minimal
quasi F-cover of X. Explicitly:

(a) T( c2'(X)#) is a quasi F-space.
(b) <1> is a perfect irreducible continuous surjectionfrom T( c2'(X)#) onto x.
(c) If Y is a quasi F-space and f: Y ~ X is a perfect irreducible continuous

surjection, then there exists a perfect irreducible continuous surjection g: Y ~
T( c2'(X)#) such that <1> 0 g = f.
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PROOF. Part (a) is 2.11 and (b) is 2.5. It remains to prove (c). Denote T(~(X)#)

byK.
Let II y : K X Y ~ Yand IlK: K X Y ~ K be the projection maps. Let S =

{(a, y) E K X Y: <I>(a) = fey)}. Then S is closed in K X Y, for if a E K, Y E Y,
and <I> (a) =F f(y) there exist disjoint open sets V and W of X containing <I> (a) and
f( y), respectively. Then <I> ~ [V] X f ~ [W] is a K X Y-neighborhood of (a, y)

disjoint from S.
As f is perfect and X is compact, Y must be compact. Hence S is compact and so

IIylS is a perfect map. Note that (IIyIS)[S]= Y, for if yE Y then as <I> is
surjective <I> ~ (f(y)) =F 0, and if 8 E <I> ~ (f(y)) then (8, y) E Sand II y((8, y))
= y. Similarly II K IS is a perfect continuous surjection from S onto K.

We will show that II y IS is a homeomorphism from S onto Y. As II y IS is perfect
it suffices to show II y IS is one-to-one. Suppose not; then there exist Yo E Y and
aI' a 2 E K such that (aI' Yo) E S, (a2' Yo) E Sand a l =F a2. Then there exist
disjoint zero-sets Z, and Z2 of K such that a

l
E int K ZI (i = 1, 2). By 2.9(b) there

exist zero-sets J l and J2 of X such that <I> ~ [int x ~] is a dense subset of int K Z,
(i = 1,2). As f(yo) = <I> (ai) (i = 1,2) it follows that Yo E f ~ [<I> [int KZI]] (i = 1,2).
As f is irreducible and <I> ~ [int x~] is dense in int K ZI' it follows from 2.7(a) that
clyf~[<I>(intKZI)]= clyf~[intxJi]. Thus Yo E clyf~[intxJl] n clyf~[intxJ2]

and so Yo E cl , int , f ~ [Ji ] n cl , int , f ~ [J2]. As f ~ [Ji ] E Z(Y) and Y is a quasi
F-space, it follows from 2.10 that intyf~[Jdnintyf~[J2]=F0. By 2.7(c) this
implies-that int x( Jl n J2) =F 0. But <I> ~ [int x( Jl n J2)] ~ int Kz, n int KZ2 = 0,
so we have a contradiction. Thus II y IS is a homeomorphism as claimed.

If we define g to be IIKo(IIyIS)~, then g is well defined, perfect, and
continuous. If y E Y there is a unique a E K such that (a, y) = (II y IS) ~ (y). As
(a, y) E S it follows that <I>(a) = fey); thus <I>(g(y)) = <I>(IIK(a, y)) = <I>(a) =
fey), so <I> 0 g = f. The irreducibility of g follows immediately from that of f. 0

No~ that we have established that (T(~(X)#),<I» (as defined in 2.4 and 2.5) is
the quasi F-cover of the compact space X" up to uniqueness" (as defined in 1.1(iv)),
we will cease using the notation T(~(X) #) and start referring to this space by the
symbol QF( X). Similarly, the map <I> described in 2.5 will henceforth be denoted by

<I> x. .
Not only is (QF(X),<I>x) the minimal quasi F-cover of X (if X is compact), it is

the largest cover of X that is mapped onto X by a ~ #-irreducible map. Precisely,
we have the following result. (This result was discovered independently by one of us;
however, it had previously been obtained, although not published, by Dashiell [D3 ].

See also §5.)

2.13. THEOREM. Let (Y, f) be a cover of the compact space X (as defined in the
Introduction) and let f be a ~ # -irreducible map (see 2.8). Then there exists a
!!Z # -irreducible function k: QF( X) ~ Y such that f 0 k = <I> x.

PROOF. It is well known that the composition of two perfect irreducible continu
ous surjections is a perfect irreducible continuous surjection. It hence is evident from
2.8 and the comment immediately following it that the composition of two ~ #-irre
ducible functions is ~#-irreducible. Hence f 0 <I>y is a ~#-irreducible map from
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the quasi F-space QF(Y) onto X. By 2.12(c) there exists a perfect -irreducible
continuous surjection g: QF(Y) ~ QF( X) such that <I> x 0 g = f 0 <I> y. We will show
that g is a homeomorphism; as g is a continuous closed surjection, it suffices to
show that g is one-to-one.

Let a and b be distinct points of QF(Y). There exist disjoint zero-sets Z1 and Z2
of QF(Y) such that a E intQF(y) Z1' b E intQF(y)Z2. As f 0 <I>y is ~#-irreducible,

there exist zero-sets S1and S2of X such that f 0 <I> y[cl QF( Y) int QF( Y) Zi] = cl x in t x S,
(i = 1,2). As A ~ f 0 <I>y[A] is a Boolean algebra isomorphism it follows that
cl x int x S1 /\ cl x int x S2 = 0; evidently f 0 <I> y( a) E cl x int x S1 and f 0 <I> y( b) E

cl xint xS2. By 2.9(c) there exist zero-sets T1 and T2 of QF(X) such that clxintxSi
= <I>x[clQF(x)intQF(x)~] (i = 1,2). But as <I>xog =fo<I>y, we know that
cl ; in t , S, = <I>x[g[clQF(y) intQF(y) Zi]] (i = 1,2); hence by 2.7(b),
clQF(x)intQF(X)~= g[clQF(y)intQF(y)Zr]· As cl xint xS1 /\ cl y int y S, = 0, it fol
lows from 2.7(b) that clQF(x) intQF(x) T1 /\ clQF(x) intQF(x) T2 = 0, and so
int QF(x)T1 n int QF(x)T2 = 0. As QF(X) is a quasi F-space, it follows from 2.10

that clQF(x) intQF(x) T1 n clQF(x) intQF(x) T2 = 0. But evidently g(a) E

clQF(x)intQF(x)T1 and g(b) E clQF(x)intQF(x)T2' so g(a) =F g(b). Thus g is one
to-one and thus a homeomorphism. Then <I>y 0 (g~) is the required function k. D

We are now in a position to compare the properties of quasi F-spaces and
extremally disconnected spaces, and the properties of QF( X) and EX.

2.14. THEOREM. (a) The following are equivalent for a Tychonoff space x:
(i) X is extremally disconnected.

(ii) A /\ B = A n B for each A, B E ~(X).

(b) The following are equivalent for a Tychonoff space x:
(i) X is a quasi F-space.

(ii) A /\ B = A n BforeachA, B E ~(X)#.

(c) The compact extremally disconnected spaces X and Yare homeomorphic iff the
lattices ~(X) and ~(Y) are lattice-isomorphic.

(d) The compact quasi F-spaces X and Yare homeomorphic iff ~(X)# and ~(Y)#

are lattice-isomorphic.

PROOF. (a) This is well known and follows from the fact that if A E ~(X), then
A /\ clx(X\A) = A n clx(X\A) if A is clopen.

(b) Suppose A /\ B = A n B for each A, B E ~(X)#. If Z1' Z2 E ~(X) and
int x Z1 n int x Z2 = 0 then cl x int x Z1 /\ cl x int x Z2 = 0. By hypothesis it fol
lows that cl x int x Z1 n cl x int x Z2 = 0. Thus by 2.10 X is a quasi F-space.

Conversely, suppose that A /\ B =F A n B for some A, B E ~(X)#. Choose
pEA n B \ (A /\ B). As X is Tychonoff there exists C E ~(X)# such that
p E int y C and C n (A /\ B) = 0. Now A /\ C and B /\ C are in ~(X)# and it
is easily verified that p E (A /\ C) n (B /\ C) while (A /\ C) /\ (B /\ C) = 0.

Thus int x(A /\ C) n int x(B /\ C) = 0 and it follows from 2.10 that X is not a
quasi F-space.

(c) This is well known.
(d) This follows from 2.12 as the lattice structure of ~(X) # determines the

topological structure of T(~(X)#). D
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2.15. DEFINITION. A cozero-set C of a Tychonoff space X is called a comple
mented cozero-set if there exists another cozero-set V of X such that C n V = 0
and C U V is dense in X.

Recall (see IH of [GJ]) that a Tychonoff space X is basically disconnected if each
cozero-set of X has an open closure. Basically disconnected spaces must have an
open base of open-and-closed subsets. For background see 16 0 of [GJ]; in other
words they must be zero dimensional. We characterize those compact spaces X for
which QF( X) is basically disconnected.

2.16. THEOREM. The following are equivalent for a compact space x:
(a) Each cozero-set of X is complemented.

(b) QF( X) is basically disconnected.

PROOF. (a) => (b) Let Z E ~(X). Then there exists a cozero-set Vof X such that
(X\ Z) n V = 0 and (X\ Z) U V is dense in X. Let S = X\ V. It quickly
follows that cl y int y S' U cl y int y Z = X and that (cl y int y S') 1\ (cl y int y Z) = 0.

It follows that (cl y int y Z)" = QF(X)\(clxintxS)*. Thus by 2.9(e) each member
of !!Z(QF(X))# is a clopen subset of QF(X). But if C is a cozero-set of QF(X) then
clQF(x)C = QF(X)\intQF(x) (QF(X)\ C), which, by the preceding remark, is
clopen. Thus QF( X) is basically disconnected.

(b) => (a) Let C be a cozero-set of X. Then (clxintx(X\ C))* E ~(QF(X))# by
2.9(e). As QF(X) is basically disconnected, each member of ~(QF(X))# is clopen
and hence has a clopen complement. As clopen sets are zero-sets, by 2.9(c)
<I>x[QF(X)\(clxintx(X\ C))*] E ~(X)#. But

<I> x [QF( X) \[elxint AX\ C)] *] = <I> x [([elxint AX\ C)] *r]
= (<I>A[elxint A X\ C)] *])' (by 2.7(b))

= (clxintx(X\C))' (by2.1(d))

= cl y C.

(As usual, in the above' denotes complementation in the Boolean algebra of regular
closed sets.) Thus there is a zero-set S of X such that cl xint xS = cl xC. It is
routine to verify that the cozero-set X\ S has the properties of V in 2.15. D

In [V3 ] it is shown that every Tychonoff space X has a minimal basically
disconnected cover (AX, gx). If X is compact, it follows readily from 2.16 that
QF( X) = A X iff each cozero-set of X is complemented, which in turn is true iff
!!Z( X)# is a sub-Boolean algebra (as distinct from sublattice) of PJt( X).

Recall that a Tychonoff space is an F-space if all its cozero-sets are C*-embedded
(see Chapter 14 of [GJ]). Obviously F-spaces are their own minimal quasi F-covers.
There are compact F-spaces that are not zero dimensional (for example f3R \ R) and
compact zero-dimensional F-spaces that are not basically disconnected (for example
f3N \ N); see [GJ] for proofs of these assertions. Thus minimal quasi F-covers need
not be zero dimensional, and zero-dimensional quasi F-covers need not be basically
disconnected. It is also of interest to note that a compact space does not in general
have a "minimal F-cover"-see 2.11 of [VI].
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3. Quasi F-covers of Tychonoff spaces. If one wishes to construct the absolute eX
of the Tychonoff space X, one can proceed as follows. Construct the absolute
E(f3X) of the Stone-Cech compactification f3X; it can be mapped onto f3X by a

perfect irreducible continuous surjection kf3x. Because kf3x is irreducible, kpX[X] is
a dense subset of E(f3X) and hence is both extremally disconnected and C *

embedded in f3X (see 6M of [GJ] or Chapter 6 of [PWD. The restriction kf3xIkpX[X]
is a perfect irreducible continuous surjection from kpX[X] onto X, and it im

mediately follows that kpX[X] = EX, kf3xIkpX[X] = k x' and f3(EX) = E(f3X) (in
the sense that up to homeomorphism EX is a dense C *-embedded subspace of the
compact space E(f3X)). Thus EX can always be regarded in a natural way as a
dense subspace of E(f3X). (See [W] or Chapter 6 of [PW] for a detailed discussion
of these ideas.)

Because of the analogy between the construction of the absolute and the quasi
F-cover of a compact space (as described in §2), it is reasonable to ask if the quasi
F-cover QF(X) of aTychonoff space X can be related to the quasi F-cover QF(f3X)
of f3X in a similar fashion. The answer is "not always" (see examples 3.16 and 3.19
below); however, for a wide class of spaces it is true that QF(f3X) = f3(QF(X)) (see

3.5 and 3.8). It is also possible for (<Pf3~[ X], <Pf3x I<Pf3~[ XD to be (QF( X), <P x) and
yet not have QF(f3X) = f3(QF(X)) (see 3.16). Finally, there are spaces X for which
<Pp~[X] is not a quasi F-space (see 3.19). We do not as yet have a satisfactory
method of constructing QF(X) as a subspace of a space of ultrafilters on some
sublattice of .9l(X) for an arbitrary Tychonoff space X. Henceforth we will call
(QF( X), <P x) the quasi F-cover of X; i.e. we will delete the word" minimal."

3.1. DEFINITION. A dense subspace X of a Tychonoff space Y is said to be
~#-embedded in Y if, for each Z E 2l'(X), there exists S E 2l'(Y) such that

clxintxZ = X n clyintyS.
Evidently 2l' # -embedding is analogous to the notion of z-embedding introduced

by Blair (see [BUD. (Recall that X is z-embedded in Y if 2l'(X) = {Z n X:
Z E ~(Y)}.) Although 2l'#-embedding is in general weaker than C*-embedding,
they are equivalent for quasi F-spaces. Precisely, we have the following:

3.2. PROPOSITION. The following are equivalent for a dense subspace X of a quasi
F-space Y:

(a) X is C*-embedded in Y.
(b) X is z-embedded in Y.
(c) X is ~#-embedded in Y.

Furthermore, these (equivalent) conditions imply that X is a quasi F-space.

PROOF. It is well known that (a) implies (b). If (b) holds and Z E 2l'(X), find
S E ~(Y) such that Z = S n X. It is routine to verify that cl y int y Z = X n
clyintyS, and so (b) implies (c).

Now suppose that X is dense and 2l' # -embedded in the quasi F-space Y. Let Z,
and Z2 be disjoint zero-sets of X. Then there exist disjoint zero-sets Sl and S2 of X
such that Z, ~ int XSi (i = 1,2); see 1.15 of [GJ]. As X is 2l'#-embedded in Y there
exist zero-sets T1 and T2 of Y such that cl x int x S, = X n cl y int y~ (i = 1, 2). Since
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int XSI n int XS2 = 0, it follows that intyT1 n int yT2 = 0. Since Y is a quasi
F-space it follows from 2.10 that clyintyT1 n cl yint yT2 = 0. Thus clyZ1 n
cl c Z, = 0, and it follows from 6.4 of [GJ] that X is C*-embedded in Y. Thus (c)
implies (a).

In 5.1 of [DHH] it is shown that a Tychonoff space X is a quasi F-space iff f3X is.
Our final claim then follows immediately from (a). D

3.3. PROPOSITION. If X is a space and <P,B~[X] is a quasi F-space, then the pair
(<Pp~[X], <Ppxl <Pp~[XD is the quasiF-cover (QF(X), <P x) of x.
. PROOF. Denote <Ppxl <Pp~[X] by g and <Pp~[X] by T. Since g is the restriction of a
perfect irreducible continuous surjection to a dense preimage, it follows that g is a
perfect irreducible continuous surjection from T onto X (see 1.8(f) of [PWJ). To
verify that (T, g) = (QF( X), <P x) it remains to show that if K is any other quasi
F-space and '!': K ~ X is a perfect irreducible continuous surjection, then there
exists a continuous surjection f: K ~ T such that g 0 f = l/; (see 1.1(iii), (iv) of the
Introduction).

If K and i' are as described, then the Stone extension f3'!' maps 13K onto f3X. By
5.1 of [DHH] (see above) 13K is a quasi F-space, so by the minimality of
(QF(f3X), <Ppx) (see 1.1(iii)), there exists a continuous function h: 13K ~ QF(f3X)
such that <Ppx 0 h = f3'!'.

If a E K then <P,Bx(h(a)) = (f3'!')(a) E X, so h(a) E T. If a E f3K\K then
<Ppx( h(a)) = (f3'!')( a) E f3X\ X since '!' is perfect (see 1.5 of [HI] or 4.2(g) of
[PW]). It follows by 1.5 of [HI] that hi K is perfect and that g 0 (h IK) = '!'. The
irreducibility of h IK follows immediately from that of '!' and g, so h IK is the
required f. D

3.4. DEFINITION. The statement "QF(f3X) = f3(QF(X))" means:
(a) (QF( X), <P x) = (<Pp~[ X], <Ppx I<Pp~[ X]) (" up to uniqueness" as described in

(iv) of the Introduction), and
(b) <Pp~[X] is C*-embedded in QF(f3X).

3.5. THEOREM. Thefollowing are equivalent for a space x:
(a) QF(f3X) = f3(QF(X)),
(b) <Pp~[X] is !!Z#-embedded in QF(f3X),
(c) <Ppx I <Pp~ [X] is a !!Z# -irreducible mapping onto X.

PROOF. (b) => (a) By 3.2 <Pp~[X] is C*-embedded in QF(f3X) and is a quasi
F-space. Thus (a) follows from 3.3.

(a) => (c) Let Z E !!Z(<Pp~[XD. By (a) <Pp~[X] is C*-embedded in QF(f3X) so by
3.2 there exists S E !!Z(QF(f3X)) such that

cl<I>;x[X] int<I>px[X] Z = <Pp~ [X] n cIQF(px) intQF(pX) S.

By 2.9(c) <Ppx is !!Z#-irreducible, so there exists T E !!Z(f3X) such that

<Ppx[ cIQF(px) intQF(PX) S] = clpx intpx T. Thus

( lI>,Bx IlI>,B'X [Xl) [cl<I>ix[Xl int<I>ix[Xl z] = X n cl,Bx int,Bx T = cl x int AT n x).

It now follows quickly that <Ppx I<Pp~[ X] is !!Z#-irreducible.
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(c) ==) (b) Let S E .2'(<P,B;[XD#. By hypothesis there exists T E .2'(X)# such that
(<Ppxl<Pp;[X])[S]= T. As X is C*-embedded (and thus .2'#-embedded) in f3X,
there exists A E .2'(f3X)# such that T = X n A. As <Ppx is .2'#-irreducible (see
2.9(c)) there exists B E .2'(QF(f3X))# such that <Ppx[B] = A. But <Ppx[cIQFCpx)S]
= clpx<Px[S] = clpxT = A. As cIQF(,Bx)S E fJlt(QF(f3X)), it follows from 2.7(b)
that cIQF(,BX) S = B. Thus S = B n <P,B;[X], and it follows that <P,B;[X] is .2'#
embedded in QF(f3X). D

Theorem 3.5 gives a criterion for determining when (<P,B;[X], <Ppxl <P,B;[XD =

(QF( X), <P x). We now show that this criterion is is satisfied for a large class of
spaces, namely the weakly Lindelof spaces.

Recall (see [CHND that a Tychonoff space X is weakly Lindelof if each open
cover of X contains a countable subfamily :F such that U:F is dense in X. The
following theorem gives two known properties of weakly Lindelof spaces that we will
need. The first is 1.5 of [CHN]; the second is an easily proved "folk theorem."

3.6. PROPOSITION. (a) A cozero-setof a weakly Lindelof space is weakly Lindelof.
(b) Every space of countablecellularity is weakly Lindelof.

We also will need the following (to our knowledge) new results concerning weakly
Lindelof spaces.

3.7. PROPOSITION. (a) Iff: X ~ Y is a perfect continuous irreducible surjection and
Y is weakly Lindelof, then X is weakly Lindelof.

(b) If X is weakly Lindelof and a dense subspace of the Tychonoff space T, then X is
.2' # -embedded in T.

PROOF. (a) Let ~ be an open cover of X. If V c X, denote Y\f[X\ V] by V*.
Then sf = {V *: V is a union of finitely many members of ~} is an open cover of
Y. (This follows from the fact that f is a perfect continuous surjection; see 1.8(c) of
[PW], for example.) As Y is weakly Lindelof, there exists {V,l*: n E N} ~ sf such
that U{V,l*: n E N} is dense in Y. As f is irreducible, it follows from 2.7(a) that
U{ f ~ [V,l*]: n E N} is dense in X. Evidently f ~ [V,l*] ~ v,p so U{Vn : n EN},
which is obviously expressible as a union of countably many members of ~, is dense
in X. It follows that X is weakly Lindelof,

(b) Let Z E .2'(X) and choose an open set W of T such that X \ Z = W n X.
Since T is Tychonoff there is a family {C;: a E I} of cozero-sets of T such that
W = U{Ca : a E I}. By 3.6(a) X\ Z is weakly Lindelof so there exists a countable
subset H of I such that U{Ca n X: a E H} is dense in X\Z (and hence in W).
Let C = U{Ca : a E H}; then C is a cozero-set of T (see 1.14 of [GJD and evidently
cIT(X\ Z) = cITC' It immediately follows that cl y int y Z = X n cITintT(T\ C),
and as T\ C E .2'(T) our result follows. D

3.8. THEOREM. Let X be a weakly Lindelof space and let aX be any compactification
of X. Then (<Pa;[ X], <PaX I<Pa~[ XD is the quasi F-cover of X and QF( aX) =
f3(<Pa~[X]). In particular QF(f3X) = f3(QF(X)).
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PROOF. As <1>axl<1>a~[X]: <1>a~[X] ~ X is a perfect irreducible continuous surjec
tion, by 3.7(a) <1>a~[X] is a weakly Lindelof space that is dense in QF(aX). By
3.7(b) it is ,q'#-embedded in aX, and hence by 3.2 is C*-embedded in QF(aX).
Thus QF(aX) = ,B(<1>a~[XD and <1>a~[X] is a quasi F-space by 5.1 of [DHH]. The
minimality of the pair (<1>a~[ X], <1>aXI <1>a~[ XD is verified by an argument identical to
that used to prove 3.3. D

As we noted in 3.6(b), all spaces of countable cellularity are weakly Lindelof; so
are all Lindelof spaces. Thus the above theorem applies to a reasonably large class of
spaces.

3.9. DEFINITION. An almost P-set (resp. P-set) of a space X is a compact subset K
of X such that if Z E ,q'(X) and K ~ Z, then K ~ cl yint y Z (resp. K ~ int y Z).
A point p of X is an almost P-point (resp. P-point) if {p} is an almost P-set (resp.
P-set). The set of almost P-points (resp. P-points) of X is denoted by AP( X) (resp.
P(X)).

P-sets and almost P-sets are discussed in [DF] and [Vek.]; P-points are investi
gated in 4L of [GJ]. Note that it is possible for a set to be an almost P-set but not a
P-set. Such sets will exist in any infinite compact space in which every zero-set is
regular closed; ,BN \ N is such a space (see [FG or Wa]). We now investigate the
relationship between P-points (resp. almost P-points) of X and those of QF( X)
when X is compact. The following proposition is analogous to 3.4 of [DF] and 1.4 of
[vM].

3.10. PROPOSITION. If K is a nonempty closed nowhere dense almost P-set of the
quasi F-space X, then the quotient space X\ K is a quasi F-space.

PROOF. Let Y = X/K, let f: X ~ Y be the quotient map, and let f[K] = {p}.
Note that Y is easily verified to be Tychonoff and f is easily verified to be perfect.

Let C be a dense cozero-set of Y. Then p E C; for suppose not. Then K ~

X\f ~ [C], and since K is nowhere dense, f is irreducible. Thus by 2.7(a)
X\f ~ [C] would be a nowhere dense zero-set of X containing K, contradicting the
fact that K is an almost P-set. Thus p E C, so K ~ f ~ [C].

Let Z, and Z2 be disjoint zero-sets of C. Thus f ~ [Zl] and f ~ [Z2] are disjoint
zero-sets of f~[C], and either K~f~[Zi] or Knf~[Zi] = 0 (i = 1,2). Thus
cl Xf ~ [Zl] n cl Xf ~ [Z2] = 0 since f ~ [C] is a dense cozero-set of X and hence is
C *-embedded in X. As f is closed, continuous, and one-to-one except on K, it
follows that cl c Z, n clv Z, = 0. Thus by 6.5 of [GJ] C is C*-embedded in Y. D

We now show that AP(X) and AP(QF(X)) are "the same" when X is compact.
Specifically:

3.11. THEOREM. Let X be compact. Then <1>; [AP(X)] = AP(QF(X)), and
<1> x IAP(QF(X)) is a homeomorphismfrom AP(QF(X)) onto AP( X).

PROOF. Suppose p E AP(X), and suppose rand s are distinct points of <1>; (p).
Denote QF(X) by Q. There exist Sl,S2E~(Q) such that rEcl Qint QS1,
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S E clQint QS2' and SI n S2 = 0. Find ZI E c2'(X) such that clQint Qs, =
cIQ<1>;-[int xZi ] (i = 1,2); see 2.9(b). Thus p E cl y int y Z, n cl xint xZ2, and by
2.7(b) int xZ1 n int xZ2 = 0. Thus p E (ZI n Z2)\cl xint x(ZI n Z2)' con
tradicting the assumption that p E AP( X). Thus 1<1>;- (p) 1= 1.

Let {r} = <1>;- (p), and suppose rES E c2'(Q). If r $. clQint QS, there exists
T E c2'(Q) such that rET and T n clQint QS = 0. Thus T n S is a nowhere
dense zero-set of Q. Set V = Q \ (T n S). Then V is a dense a-compact subset of Q
(as cozero-sets are Fa-sets and Q is compact), and <1>;-(p) n V= 0. Thus p E

X\ <1>x[V], so as <1>x[V] is a dense a-compact subset of X, there exists a nowhere
dense zero-set H of X such that p E H. Thus p E H \ cl x int x H, which con
tradicts the fact that p E AP(X). Thus <1>;- [AP(X)] ~ AP(Q).

Finally, let r E AP(Q) and suppose <1>x(r) E Z E c2'(X). Then r E <1>;- [Z] E

.2'(Q), so r E cIQintQ<1>~ [Z] as r E AP(Q). By 2.7(b) <1>x[cI Qint Q<1>;- [Z]] E

~(X), so <1>x[cI Qint Q<1>;-[Z]] ~ clxintxZ. Thus <1>x(r) E clxintxZ, so <1>x(r) E

AP(X). Thus <1>x[AP(Q)] ~ AP(X), so AP(Q) ~ <1>;- [AP(X)]. The theorem fol
lows, since <1> xl AP(Q) = <1> xl <1>;- [AP( X)], and the restriction of a perfect map to a
complete preimage is perfect (and thus closed); thus <1> xl <1>;- [AP( X)] is closed,
continuous, and one-to-one, and hence a homeomorphism. D

We note in passing the following related result.

3.12. PROPOSITION. Let X be a compact space. Ifp E P(X) then the uniquepoint
in <1>;- (p) is a P-point of QF( X).

PROOF. By 3.111<1>;-(p)1 = 1; let <1>;-(p) = {r}. Let rES E c2'(Q) (as above,
Q denotes QF(X)). It follows from 3.11 that r E clQintQS. By 2.9(b) there exists
Z E .2'(X) such that clQintQS = cIQ<1>;-[int xZ]. Thus p = <1>x(r) E cl y int y Z,
As p E P( X), it follows that p E int x Z, and it follows from our choice of Z that
r E int QS. Thus r E P(Q). D

As is customary, we think of the ordinal lX as the set of all ordinals less than o. It
is well known that f3w 1 = WI + 1 (ordinal numbers are given the order topology).
We will show that (QF(w 1) , <1>wl) = (<1>j3:J wtJ, <1>j3 wl 1<1>j3:JwtJ) but that QF(f3w 1) =1=

f3(QF( wI)). We need preliminary results.

3.13. LEMMA. Let B be a clopen set of the Tychonoff space X. Then QF(X) =
QF( B) EB QF( X\ B) (where EB denotes topologicalsum).

PROOF. Obviously QF(X) = <1>;- [B] EB <1>;- [X\ B]. Clopen subsets of quasi F
spaces are easily seen to be quasi F, and <1> xl <1>;- [B] is perfect and irreducible as <1> x

is. If '1': K ~ B is a perfect irreducible continuous surjection from the quasi
F-space K onto B, then 'I' EB <1> X\B is a perfect irreducible continuous surjection
from the space KEB QF(X\B) onto X. As KEB QF(X\B) is easily seen to be
quasi F, by the minimality of QF( X) there is a continuous surjection g: K EB

QF(X\B) ~ QF(X) such that <1>x og = l/; EB <1>X\B. One easily checks that
<1> x 1<1> ;- [B] 0 g 1K = '1'. This verifies the minimality of (<1>;- [B], <1> x 1<1>;- [B]), and
shows that <1>;-[B] = QF(B). Similarly <1>;-[X\B] = QF(X\B), and the lemma
follows. D
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3.14. LEMMA. If each point of the Tychonoff space X has a clopen neighborhood
whose quasi F-cover is extremally disconnected, then QF( X) is extremally discon
nected.

PROOF. Let U and V be disjoint open sets of QF(X) (which we denote by Q) and
let r E cl Q UncI Q V. Find a clopen neighborhood B of <I> x( r) in X whose quasi
F-cover is extremally disconnected. It follows from 3.13 that <I>; [B] = QF(B) and
hence <I>; [B] is extremally disconnected. Evidently

r E cl<I>x[B](U n <I>; [B]) n cl<I>x[B](V n <I>; [B]),

which contradicts the extremal disconnectedness of <I>; [B]. Thus cl Q UncI QV = 0
and QF( X) is extremally disconnected. D

3.15. COROLLARY. If each point of the space X has a clopen neighborhood of
countable cellularity, then QF( X) is extremally disconnected.

PROOF. Observe that a quasi F-space of countable cellularity is extremally
disconnected. (Obviously every dense and open U c T is C*-embedded, since it
contains a dense (C*-embedded) cozero set of T.) (In [DHH] 4.7 this was shown for
compact spaces.) Therefore, 3.14 can be applied. D

3.16. THEOREM. QF(w l ) is the absolute EWI of WI' and f3(QF(w l ) ) =/:= QF(f3w l ) .

PROOF. Since WI is locally countable, it follows from 3.15 that QF(w l ) = E(w l ) ,

which is the space {a E f3D( WI): a is in the closure of some countable subset of
D(w l ) } , where D(w l ) denotes the discrete space of cardinality WI (see [WarD. Now

f3w I \ WI = {WI}' and WI is a P-point of f3w l . However,

which is infinite (see 5.13 of [Wa]). (Here k pw1 denotes the canonical map from
E(f3w l ) onto f3w l . ) Note that D(w l ) ~ E(w l ) ~ f3D(wl ) from the above description
of E(w l ) . Thus E(w l ) = f3D(wl ) (see 6.7 of [GJ]). But f3E(w l ) = E(f3w l ) , as noted
in the first paragraph of §3, so f3D( wI) = E(f3w l ) . Thus by 3.11 f3(QF(WI)) =/:=

QF(f3w l ) . (In fact QF(f3w l ) is the one-point compactification of E( WI).) D

We now have an example of a space X for which (<I>p~[X],<I>pxl<I>p~[XD=

(QF(X), <I> x) but for which QF(f3x) =/:= f3(QF(X)). We next produce an example of
a space X for which <I>p~[X] is not a quasi F-space. We need some preliminary

concepts and results.
3.17. DEFINITION. A Tychonoff space X is called weakly realcompact if for each

point p E f3X\ X there exists a nowhere dense zero-set of f3X containing p.

3.18. LEMMA. (a) Realcompact and weakly Lindelof spaces are weakly realcompact.
(b) X is weakly realcompact iffAP(f3X) ~ X.
(c) If X is weakly realcompactand X ~ T ~ f3X then T is weakly realcompact.

PROOF. (a) It is well known that if X is realcompact and if p E f3X\ X, then there
exists Z E ~(f3X) such that p E Z and Z n X = 0 (see 5.11(b) of [PWD. Thus X
is weakly realcompact. If X is weakly Lindelof and p E f3X\ X, then f3X\ {p} is a
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union of cozero-sets of f3X which covers X. There is a countable subfamily {C
L

:

i E N} of these cozero-sets such that X n [U{ C; i E N}] is dense in X. Then
f3X\ U{ C; i E N} E ~(f3X), contains p, and is nowhere dense. Hence X is weakly
realcompact.

(b) If X is weakly realcompact then each point of f3X\ X- belongs to a nowhere
dense zero-set of f3X, and hence not to AP(f3X). Conversely, if AP(f3X) ~ X and
p E f3X\ X, there exists Z E ~(f3X) such that p E Z \ cl,8xint,8xZ. There exists
T E ~(f3X) such that pET and T n cl,8xint,8xZ = 0. Thus Z nTis a nowhere
dense zero-set of f3X containing p. D

(c) This is immediate once one observes that f3T = f3X (see 6.7 of [GJD.

3.19. LEMMA. Let X be weakly realcompact (resp: realcompact). If <I>,8~[X].is not
C*-embedded in QF(f3X) then there exists a weakly realcompact (resp. realcompact)
spacxe T such that X eTc f3X and <I>,8+y, [T] is not a quasi F-space.

PROOF. First suppose that X is weakly realcompact. If the conclusion of the
lemma fails in this case, by 3.18(c) it is true that <I>,8~[T] must be a quasi F-space
whenever X ~ T ~ f3X. Note that f3X = f3T as observed in the proof of 3.18(c)
above, so QF(f3X) = QF(f3T). If p E QF(f3X) \ <I>,8~[X] then <I>,8x(p) E f3X\ X
so there exists a nowhere dense zero-set Z(p) of f3X with <I>x(p) E Z(p). By
assumption <I>,8~[ X u Z( p)] is a quasi F-space and as <I>,8x is irreducible,

<I>,8~ [ X u Z ( P )] \ <I>,8~ [ Z ( P ) ]

is a dense cozero-set of <I>,8~[X,U Z(p)] that is contained in <I>,8~[X]. Hence
<I>,8~[X U Z(p)] \ <I>,8~[Z(p)], and therefore <I>,8~[X], is C*-embedded in
<I>,8~[XU Z(p)]. Thus <I>,8~[X] is C*-embedded in <I>,8~[X] U {p} for each p E

QF(f3X) \ <I>,8~[X]. It follows from 6H of [GJ] that <I>,8~[X] is C*-embedded in
QF(f3X).

If X is realcompact, the argument proceeds in essentially the same manner. In the
above we used the fact that X U Z(p) is weakly realcompact; here we use the fact
that X U Z ( p), being the union of a realcompact subspace and a compact subspace
of f3X, is realcompact (see 8.16 of [GJD. D

3.20. LEMMA. Let Kbea compact space. IfQF(K) = EKthen Yll(K) = ~(K)#.

PROOF. If QF(K) = EK then by 2.9(c) k K: EK ~ K is ~#-irreducible, and
induces a lattice isomorphism A ~ kK[A] from ~#(EK) onto ~(K)#. But as
every regular closed set of EK is clopen and hence a zero-set, and as {k K [ A ]:
A E Yll(EK)} = Yll(K) (see 2.7(b)), the result follows. D

In 3.20 we cannot drop the condition that K is compact, as 3.20 fails if K is
replaced by WI; see 3.16. The converse of 3.20 is also true; see 4.4.

3.21. EXAMPLE. Let X = WI X [0,1]. We show that there exists a space T such that
X ~ T ~ f3X and <I>,8~[T] is not a quasi F-space. Note that since WI X [0,1] is a
pseudocompact product (see 9.14 of [GJD, it follows that f3X = f3w I X [0,1] = (WI

+ 1) X [0,1], and so f3X\ X = {WI} X [0,1] (see 8.12 of [Wa]).
If («, t) E X then [0,a + 1] X [0,1] is a clopen X-neighborhood of («, t) with

countable cellularity, so by 3.15 QF( X) is extremally disconnected.
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Partition the set of isolated points (i.e. nonlimit ordinals) of WI + 1 into two
uncountable sets I and J, and let A = (cl

w 1
+IJ) X [0,1]. Then A E Yll(f3X).

Suppose that Z E .?Z(f3X) and A = cl,8xint,8xZ. Then {WI} X [0, 1] ~ cl,8xint,8xZ,
so if t E [0, 1] then (w l' t) E .?Z«W 1 + 1) X {t}) . Thus as (w r- t) is a P-point of
(WI + 1) X {r }, there exists at < WI such that (a, WI) X {t} ~ Z.

Let 8 = sup{ at: t is a rational number in [0, I]}. Evidently 8 < WI as the rationals
are countable, and it follows that (8, WI) X ([0, 1] n Q) ~ Z (Q denotes the ration
als). Thus [8, WI] X [0,1] ~ cl,8xint,8xZ. If y E I, then {y} X [0,1] is disjoint from
A, and if we choose y to be in (8,w 1) , then {y} X [0,1] ~ cl,8xint,8xZ. This is a
contradiction, and so A $. .?Z(f3X)#. It follows from 3.20 that QF(f3X) is not
extremally disconnected. As QF( X) is extremally disconnected, it follows that
f3( QF( X)) =1= QF(f3X).

Finally, note that X is weakly realcompact, for if t E [0, 1] then (WI + 1) X {r } is
a nowhere dense zero-set of f3X that contains the point (WI' t) of f3X\ X. Thus by
3.19 there exists a space T with X ~ T ~ f3X such that ep,8~ [T] is not a quasi
F-space. (In fact we can let T = X U {(WI' t)} for some t E [0,1].) This concludes
the example. D

In [ZK] the "sequential absolute" aT of an arbitrary Tychonoff space T is
constructed. If T is compact then aT = QF(T). However, in Lemma 3 of [ZK] it is
shown that if T is Tychonoff, then aT = ep,8~[QF(f3T)]. Thus the "sequential
absolute" of Tychonoff space does not always coincide with its quasi F-cover.

4. Quasi F-spaces and projective objects. Next we present some category-theoretic
interpretations of our results. Chapter 10 of [Wa] provides useful background on
category theory in a topological setting.

4.1. DEFINITION. A category ~ is called a topological category if:
(a) Its objects are topological spaces.
(b) If X is an object of ~ and h: X ~ Y is a homeomorphism then Y is an object

of ~ and h is a morphism of ~.

(c) All morphisms of ~ are continuous functions (but not necessarily conversely).
The above definition is a slight modification of that appearing in §9.3 of [PW].
One original motivation for studying extremally disconnected spaces and abso-

lutes was the desire to characterize projective objects (and projective covers) in
various topological categories.

4.2. DEFINITION. (a) An object X of a topological catetgory ~ is called projective
in ~ if, whenever Y and Z are objects of ~, f: X ~ Y and g: Z ~ Yare
morphisms of ~, and g[Z] = Y, there exists a morphism h: X ~ Z in ~ such that
go h = f.

(b) A projective cover of an object Y of a topological category ~ is a pair (X, f)
where X is a projective object of ~ and f: X ~ Y is a morphism of ~ that is a
closed irreducible surjection.

Gleason [GI] showed that the projective objects in the category of compact spaces
and continuous functions are precisely the extremally disconnected spaces, and that
each compact space has an essentially unique projective cover, namely its absolute
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(EX, k x). Iliadis [II] and Banaschewski [B] proved similar results for the category of
Hausdorff spaces (resp. regular spaces) and perfect continuous functions. See
Chapters 6 and 9 of [PW] for an extensive discussion of this topic.

Our purpose in this section is to show that the quasi F-spaces are the projective
objects in the category of Tychonoff spaces and .?Z#-irreducible functions (which we
denote henceforth by 3#), and to investigate the conditions under which an object
in this category has a projective cover.

4.3. THEOREM. In 3# the projective objects are precisely the quasi F-spaces.

PROOF. Suppose that X is a quasi F-space and that f: X~ Yand g: Z ~ Yare
.?Z # -irreducible functions (note that this automatically means that g[ Z] = Y). Then
the Stone extension f3f: f3X ~ f3Y is c2'#-irreducible; to see this note that if
Z E .?Z( f3X) then

f3f [cl,BX int,BxZ] = f3f [cl,Bxclx int x( Z n X)] = cl,BY f [cl x int x( Z n X)] .

As f is .?Z#-irreducible and Y is z-embedded in f3Y, there exists S E .?Z(f3Y) such
that cl,Byf[clxintx(Z n X)] = cl,Byint,BYS. It follows that f3f is .?Z#-irreducible.
Similarly f3g: f3Z ~ f3Y is .?Z#-irreducible. By 5.1 of [DHH] f3X is a quasi F-space,
so by 2.12 there is a perfect irreducible continuous surjection h: f3X ~ QF(f3Y)
such that <I>,BY 0 h = f3f, and by 2.13 there exists a .?Z#-irreducible function k:
QF( Y) ~ Z such that f3g 0 k = <I>,BY. Let h' = k 0 h I X. Arguing as in the proof of
3.3 we see that h' is a perfect irreducible continuous surjection from X onto Z and
that f = go h', As f and g are .?Z#-irreducible, A ~ f[A] and B ~ g[B] are lattice
isomorphisms from .?Z(X)# onto .?Z(Y)# and from .?Z(Z)# onto .?Z(Y)#, respec
tively; thus by 2.7 A ~ h'[A] is a lattice isomorphism from .?Z(X)# onto .?Z(Z)#,
and so h' is .?Z # -irreducible. Thus X is projective.

Conversely, suppose that X is not a quasi F-space and let U be a dense cozero-set
of X that is not C *-embedded in X. Let j: U ~ X be the inclusion map embedding
U in X and f3j: f3U ~ f3X be its Stone extension. Let Z = f3j~ [X] and g = f3j IZ.
Then g is a perfect continuous irreducible surjection from Z onto X. We claim that
g is .?Z#-irreducible. To see this, let A E .?Z( Z). Arguing as in the first part of this
proof, we see that

By 2.3 there is a zero-set B of X such that A n U = B n U, and it quickly follows

that g[clzintzA] = clxintxB.
Let i: X ~ X be the identity map. If X were projective in 3# there would have

to exist a .?Z#-irreducible function h: X ~ Z such that go h = i, g(h(x)) = x for
each x E X. As U is not C*-embedded in X there exist disjoint zero-sets T1 and T2

of U such that cl x T1 n cl x T2 =1= 0. Let p E cl X T1 n cl x T2 • Because i IU and g IU
are the identity on U, h[~] = T, (i = 1,2). As h is continuous, it follows that
h(p) E clzT1 n cl z T2 , which contradicts the fact that U is C*-embedded in Z.
Thus X is not projective in 3#. D
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4.4. COROLLARY. Let K be a compact space. Then QF(K) = EK iff f!Jl(K) =
f!Z(K)#.

PROOF. If QF(K) = EK then by 3.20 f!Jl(K) = f!Z(K)#. Conversely, if f!Jl(K) =
f!Z(K)# then k K : EK ~ K is f!Z#-irreducible (see the comment after 2.8) so by 4.3
there is a f!Z#-irreducible mapping from QF(K) onto EK. As EK is extremally
disconnected, this mapping must be one-to-one (see 10.50 .of [WaD and hence a
homeomorphism. D

We now characterize those objects of s» that have projective covers in s». We
also show that if projective covers exist they are unique.

4.5. THEOREM. (a) The following are equivalentfor a Tychonof] space x:
(i) X has a projective cover in .r»,

(ii) QF(f3X) = f3(QF(X)).
(b) If (Y, g) is a projective cover of X in g-# then there is a homeomorphism h:

Y ~ QF(X) such that g = <I> x ° h.

PROOF. (a) 'If X has a projective cover (Y, g) in g-# then by 4.3 Y is a quasi
F-space; hence f3Y is as well (see 5.1 of [DHH]). Arguing as in 4.3, we see that f3g:
f3Y ~ f3X is f!Z#-irreducible. Thus by 2.13 there exists k: QF(f3X) ~ f3Y such that
f3g ° k = <I>px. By the minimality of (QF(f3X), <I>px) (see 1.1) there exists h: f3Y ~
QF(f3X) such that <I>pxo h = f3g. Thus <I>pxo h «k = <I>pxo1px so by 1.2 h «k = 1px.
Similarly k ° h = 1py so h is a homeomorphism and k = h ~ . Thus f3Y = QF(f3X)
(up to homeomorphism) and Y = (f3g) ~ [X] as g is perfect. As Y is quasi F, it
follows from 3.3 that (Y,g)=(QF(X),<I>x) (up to homeomorphism) and so
f3(QF(X)) = QF(f3X).

Conversely, if QF(f3X) = f3( QF( X)) then by 3.5 <I>px I<I>p~[ X] is f!Z# -irreducible,
and so (QF( X), <I> x) is a projective cover of X in s».

(b) This follows from the proof that (i) ~ (ii) above. D

5. Motivation and historical remarks. A Riesz space (or vector lattice) 2 =
(L, +, V , /\) is a real vector space with a lattice structure such that, if a, bEL,
a ~ 0, b ~ 0, and i\ ~ 0 is a real number, then a + b ~ 0 and i\a ~ O. If na ~ b
(a ~ 0) for n = 1, 2, ... , implies a = 0 then L is said to be archimedean. In the
sequel we assume that all Riesz spaces under consideration are archimedean. For
background on Riesz spaces, see [LZ].

For a E L put lal = a V (-a). If {Pn} is a sequence in L such that Pn ~ Pn+l'
wewrite{Pn}~ and if Pn ~Pn+l wewrite{Pn}i.If{Pn}~ and inf{p: n E N} = 0,
we write e, ~ O. If (Pn - p) ~ 0 for some pEL, we write Pn ~ p. Reversing the
inequalities yields the definition of Pn i p. If for a sequence {fn} in L, there is a

sequence {Pn} such that P; ~ 0 and Ifn+k - fnl ~ Pn' then {fn} is called an order
Cauchy sequence. If every order Cauchy sequence converges, then L is said to be
order Cauchy complete. In [Pap] F. Papengelou showed that L is order Cauchy
complete if and only if

(5.1) If {hl} t and {gn} ~ are sequences in L such that I, ~ s; whenever n,
mEN and A(gn - fn) = 0, then there is an h E L such that I, ~ h ~ gn (n =
1,2, ... ).
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Let X be a Tychonoff space. In 1968, G. Seever had shown in [8] that the Riesz
space C( X) is an F-space if and only if C( X) satisfies:

(5.2) If {hl} i and {gn} ~ are sequences in C( X) such that In ~ s; whenever
n, mEN then there is an h E C(X), such that In ~ h ~ gn for all n E N.

F. Dashiell studied Riesz spaces of continuous functions satisfying (5.1) as early as
1976. Initially he was unaware of Papengelou's work and called such Riesz spaces
up-down semicomplete, a terminology used in [D.] along with order Cauchy
complete. The similarity between (5.1) and (5.2) also inspired the terminology quasi
F-space and it was shown in [0 1] that for compact spaces X, C( X) is order Cauchy
complete if and' only if C( X) is quasi F. In [DHH] this is shown to hold for
arbitrary Tychonoff spaces and it is shown that any Riesz space L has an essentially
unique order Cauchy completion L (for definitions, see [DRH or HdP2D. Moreover

if L = C( X)-for compact X-then L = C(K) for some compact quasi F-space
K, and an example is supplied of a noncompact space X such that C(X) is not a
C(Z), for any space Z.

Recall from [DHH], that in case X is compact, the order Cauchycompletion of
C( X) is C( QF( X)), and QF( X) is constructed as an inverse limit of a directed
family of spaces of the form /3Sa, where each Sa is a countable intersection of dense
cozero-sets of X (see [DHHD. In [HdP2 ] the order Cauchy completion of C( X) is
obtained by identifying appropriate sets of points in the Dedekind-MacNeille
completion.

To describe the construction of QF( X) given in [HdP2] we begin with some
definitions. If S c L, put Sd = {x E L: [x] /\ I'sl = 0 for all s E S}. An I-ideal ,of
L is an ideal S of L such that if s E Sand [x] ~ lsi then XES. Ad-ideal S of L is
an I-ideal such that ({s }d)d C S, for all s E S. In [HdP2] it is shown that QF( X)

can be identified with the space of maximal (proper) d-ideals in C( X) with the
hull-kernel topology in case X is compact.

Yet another construction of the quasi F-cover of X is presented in [ZK], where it
is called the sequential absolute of X. The latter coincides with 'our' QF( X) in case
X is compact, but need not do so if X fails to be compact. The results in [DHH]
were obtained in 1977 and 1978 and were presented at the Spring Topology
Conference in Athens, Ohio in March 1979 (see [HD, but were not disseminated
widely until [DHH] appeared in mid-1980. The results in [0 1] which motivated our
work on QF( X) were communicated to A. Hager and M. Henriksen in preprint
form in 1976, but were not published until 1981. As a result of a letter from A.
Veksler to A. Hager in 1981, and conversations between M. Henriksen and A.
Veksler in Prague in August 1986, we learned that many of the results in [0 1 and
DHH] were obtained in the late 1970s independently by A. Koldunov and V.
Zakharov. For a detailed list of the papers or seminar notes involved, see A. Hager's
review of [1)1] in Mathematical Reviews 83d (1983), #47043 and [Vekj]. The ability
of two research groups to work in ignorance of each other is a consequence of two
different publication systems. In the West, publication is slow but once a paper
appears it is rapidly disseminated. Quick' publication in the form of internally
circulated seminar notes or conference proceedings is common in the Soviet Union
and Eastern Europe, but only in a form that is very slow to reach the West.



802 M. HENRIKSEN, J. VERMEER AND R. G. WOODS

The idea of f!Z#-irreducible map was communicated to A. Hager and M. Henrik
sen by F. Dashiell in a letter in the fall of 1978. This formulation was different from
(but equivalent to) the definition used here, and he used it to prove our Theorem
2.13. Also, C. Neville used an equivalent version of f!Z#-irreducibility in an unpub
lished manuscript, but he restricted his attention to strongly zero-dimensional
spaces. He also made use of our notion of a complemented cozero-set, which appears
also in a mildly disguised form in the work of H. Cohen [C]. The work of F. Dashiell
described above was announced in [D2 ] and appears in an unfinished manuscript
[D3 ] . Part of this was communicated to us by A. Hager when we informed him about
our results. Weare indebted to him for valuable discussions. A. Hager had the idea
of using Dashiell's results to give a topological construction of the quasi F-cover of a
compact space as early as the autumn of 1978 using the methods of [Ha].
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