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ON THE DECOMPOSITION OF ASYNCHRONOUS SYSTEMS

Robert M. Keller
Department of Electrical Engineering

Princeton University
princeton, N.J. 08540

~uromary This paper reports results of part
of a continuing investigation of parallel com­
putation, in particular, efforts toward under­
standing the nature of different types of
parallel control. The first section defines
an Uasynchronous system" to be a simple type
of state machine. This was arrived at in an
attempt to generalize from the t:les of con­
trol in parallel program schemata ,2,3,4 and
networks of as~nchronous modules without bound­
ed delays.5,6, ,8 Asynchronous systems with
output are also defined in a familiar way.
The deviation from standard work comes in the
definition of a~parallel decomposition of
asynchronous systems. Some preliminary

4
work

on compositions of this type appears in ·
Such definitions provide a useful analytic
tool for discussion of related theories.

(1) Q is a set of states

(2) ~ is a finite set called the
alphabet

(3) f:Qx~~Q is a partial function,
the state-transition function

For (q,a)€QX~, if f(q,a) is defined, we write
<f(q,o». In the customary manner, f is ex­
tended to f:QXI:*~Q, where t* is the set of all
finite sequences of elements in ~, by the
following inductive definition, where 0 de­
notes the empty sequence:

(1) f(q,o) = q

(2) If x€~*, a€~, and <f(q,x», then

if defined

_
_ {f(f(q,X) ,0)

f(q,xa)

undefined otherwise

ifq€Q

Definition 1.3 A partition of ~ is a pair
of sets (>'::1,2:: 2 } such that ~lUI:2 = Land
IlnL 2=¢·

Definition 1.4 A system M =(Q,2::,f) is said
to have a parallel decomposition with respect
to the partition (El ,E2 ) if there exist sys­
tems M1 = (Ql,Il,f1 ) and M2 = (Q2'~2,f2) with
M realizable by MlxM1 in the sense that there
exists a function C: Q-Ql xQ 2 with the follow­
ing property:

Note that this parallel composition is
actually a proper sub-case of the standard one
standard one for "synchronous" sequential
machines (cf. 9 ) since an input affects only
one of the components. This is depicted in
Figure 1.1.

Definition 1.2 The parallel composition of
'systems Ml = (Ql'~l,fl) and M2 = (Q2'~2,f2)'
wri tten Ml xM2 where >::lnL2 = ¢, is the system
M = (Ql xQ2' ~lUI:2,f) where

Section 3 describes some other types of
decompositions. The first are the series and
quasi-series which are almost trivially test­
able. Finally the fork-join decomposition is
introduced which properly generalizes both
series and parallel. A criterion for fork­
join decomposability is produced for a re­
stricted class of schemata. It is also point­
ed out that there are schemata which are not
fork-join decomposable. This concept is
closely related to the "partial ordering" of
tasks so prevalent in the literature and sheds
some light on the generality of this repre­
sentation.

The first goal is to find necessary and
sufficient conditions for a system to be
parallel decomposable. Such conditions are
found, and bear a relation to the "persistent tI

"permutable, II and lIcommutative" conditions Ofl .
These conditions provide a test for decomposa­
bility which is, in a sense, local to the
states of the system.

1. Parallel Decompositions

The decomposition is applied to parallel
program schemata in Section 2. The relation
between decomposability and the previously de­
fined concepts of determinacy, closure, etc.
is pointed out. For example, for a suffi­
ciently restricted class of schemata, the
closure of the parallel composition of two
schemata is precisely the parallel composition
of the closures of the individual components.

Definition 1.1 An asynchronous system (or
simply system) is a triple M = (Q, ~, f) where

This work was supported by NSF Grant GJ-30l26.

C(f(q",)) (f l (C l (q) ,c), f 2 (~2 (q),~))

where S. denotes the projection of s on Qi'
i=1,2. 1
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(1) g: Q'-'6

f(f(qj_l,n) ,0) = f(qj ,n) or f(f(qj ,n) ,0)

f(qj_l,n). Hence f(q,n) R2 f(q' ,Ti).

R
2

[f(q,,---)]

R
l

[f(q,0)]

f 1 (R
2

[q] , 0 )

f
2

(R
l

[q] ,0)

has the three properties stated. Let Rl and
R2 be the equivalence relations corresponding
to the instances of tl and r2. Let Ql be the
R2 equivalence classes of Q and Q2 be the Rl
equivalence classes of Q. Define Ml =
(Ql' '=1' fl) and M2 = (Q2' L:2, f 2 ) where fl and f2
are given by the following rules, letting
Ri[q] denote the Ri equivalence class of q.

We must now show that M is realizable by
Ml xM2· Let C: Q-Ql xQ 2 be defined by C{q) =
(R2 [q],Rl[q]). Then C(f(q,O')) = (R2 [f(q,cr)],
Rl[f(q,a)]) =~y definition of fl,f2]
(fl (R2 [q] ,cr), f2 (Rl[q] ,rT)) =[by definition of s]
(fl (Sl (q) ,0), f 2 (C2 (q) ,0)). The first and
last terms above give the desired equality.

We proceed to show that fl and f 2 are well­
defined. By symmetry, it suffices to show for
f l only. Suppose that q and ql are such that
q R2 ql. We must show that 'fT"'"e~l if <f(q,n»
then f(q,~) R2 f(q',n). Let qO,ql,q2'··· ,qr
be a sequence such that qo = q, q = q I, and for
each j > 0 3:1}e2::2 with f(qj_l'O) = ~. or
f(qj,a) =qj-l. It follows that i~ <f(qO,TT»
then for each j > 0 <f (qj , n) >. We show thl.s in-
ductively by supposing that <f(qj_l,n». Then
i~ f(qj_l,a) =qj' then <f(qj'~» by the per­
Sl.stent property. If f(q·,c) =qj-l' then
<f(qj,n» by the permutab1e property.

By the commutative property, if
f .( q ~ -1 , (I) ~ qj then f (q j , 11) = f ( f (q j -1 , n) , (') .
Sl.ml.larly J.f f(qj'o) =qj-l then f(qj_l,n) =
f(f(qj,n) ,0). Hence the sequence
f(qo,n) ,f(ql,n), ... ,f(qr,n) is such that
Yj > 0 3:oet2 with

Conversely, suppose M is parallel decom­
posable into Ml, M2 with respect to the parti­
tion (~1'~2J. The reader may verify, byapply­
ing the definitions, that M is indeed
persistent, permutable, and commutative with
respect to ~lx~2 and ~2x~1.

Definition 1.7 An asynchronous system with
output is the generic name for the following
class of objects: M= (Q, i:, f, g,~), where
(Q,~,f) is an asynchronous system as in Def­
inition 1.1,6 is a finite output alphabet,
and g is the output function of one of the
following forms:

f(q,on) = f(q,no).

For the proof of Theorem 1.1, we shall
require the following:

<f(q,0» and <f(q,n» implies <f(q,an».

M is called permutable with respect to LlxL2
iff

M is called commutative with respect to ~lxL2

iff

<f(q,on» implies <f(q,n».

VqeQ V(a,n)etlx~2

if <f(q,0TI» and <f(q,no» then

The terms "persistent", " permutable",
and "commutative" were first used in 1. In
the present sense, these terms would be re­
spectively translated "persistent with respect
to ~xE-I" (where I denotes the identity rela­
tion on E), "permutable with respect to 2:i X2::i"'
and " commutative with respect to tXE."

Obviously the last condition is symmetric
with respect to ~lX~2.

This definition is not the most general,
in that it does not take into account the
possibility of state splitting and merging.
However it will, with slight qualification,
suffice for the applications we intend.

Definition 1.6 Let M= (Q,L:,f) be a system
with Ll~2:. Let 1:2 =t-tl. An instance of 1:1
is a maximal subset QI of Q such that
Vq,q1eQ there exists a (possibly empty)
sequence q = qo ,ql ,q2' · · · ,qr = q I such that for
each j > 0 3:oet2 with f(qj_l'O) =qj or
f(qj,a) =qj-l.
In other words, q and ql are in the same
instance of 2::1 if there exists an edge sequence
in the graph of f, without regard to the
direction of the edges, connecting q to ql
with labels not in 2:1.

Definition 1.5 Let M= (Q,Y",f) be a system
and L1Xt2 ~ rxr. M is called persistent with
respect to rl xL2 iff

Theorem 1.1 Let M= (Q,t,f) be a system with
(~1'~2J a partition of t. Then M possesses a
parallel decomposition with respect to (2:l'~2J

iff M is persistent, permutable, and commuta­
tive with respect to ~lx~2 and ~2x~1.

clearly, given 2:1, the set of instances
of 2::1 partition Q. Hence there is a corre­
sponding equivalence relation Rl. To continue
with the proof of Theorem 1.1, suppose that M

or (2) g: Q x 2:: - 6

Output functions of the second type seem
to be most applicable to asynchronous modules,
is discussed in 5 We will not discuss this
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The function ~ is interpreted as the
parallel control of the set of operations B.
An element xe~(B)* represents the sequence of
terminators of operations which have occurred
and be~(x) indicates that b is "enabled" in
the current state as a result of the sequence
x.

(1) if case (1) of Definition 1.7 holds then
there is a function h: 6lx62~6 such that

De fini tion 1.8 A system wi th output, M=
(Q,~,f,g,~), is parallel decomposable into
Ml= (Ql,Y:l,fl,gl,jl) and M2= (Q2,2:2,f2 ,g2,62)
if (Q,L,f) is decomposable into (Ql'~l,fl)x

(Q2,t2,f2) with map C: Q~QlxQ2 and

type further here. Output functions of the (Recall that <2f (x) > means II (x) is defined '!).
first type seem to be relevant to parallel pro-
gram schemata, as discussed in the next section. Axiom 2 Vxer(B)* VbEB V~e~(b)

if <~(x,~» then C:~(x)-(b}) ~~(x(j).

2. Parallel Decomposition of Parallel
Program Schemata

(2) if case (2) of Definition 1.7 holds then
there is a function h: 61U6 2-6 such that
'j'q€Q VO€r.

The concept of a parallel program schema
has been defined in various waysl,2,3,4 and
parallel compositions of schemata were dis­
cussed in 4 For the purpose of this paper,
we use the definitions below which correspond
most closely to 3. To avoid confusion, the
reader is forewarned that what is called a
ltschema" in 2 corresponds to a ttrea1ization"
in the present work, and what corresponds to
a "sc hema lt in the present work is represented
by the function ~ in 2. Several terms con­
cerning schemata will be alluded to here, but
not formally defined. The reader is referred
to 2 or, preferably, 3.

with any schema we may associate a
countable-state free realization in a rather
obvious way, cf. 3 . Furthermore, Axioms 1 and
2 may be translated into Axioms 1 1 and 2 1

below so that when any asynchronous system
with output of the first type satisfies these
axioms, there is necessarily a corresponding
schema.

Definition 2.3 A realization of a schema ~

over B (or simply "realization over B") is a
quadruple 1J.r = (Q, qo' f, g) where (Q, 'L., f, g, 2B)
comprises an asynchronous system with output
of the first type, and where 'fxeE* ~(x) and
g(f(qo,x)) are either both undefined or are
equal.

Axiom 2 1 Vq€Q 'fb€B Vo€E(b)

if <f (q, (i) > then (g (q) - (b) ) ~ g ( f (q, 0 ) ) •

Axiom 1 1 'fqeQ 'fbeB VO€L(b)

<f(q,o» iff b€g(q).

We will further assume throughout this
paper that B is irredundant in the sense that
for each beB there exists an xeE(B)* such
that becp.(x) .

g(q,:-)

Definition 2.1 An operation set is a finite
set B = (b,c,d, ... ) of elements called opera­
tions, together with:

We will assume in the remainder of the
paper that every state q is reachable from qa.
in the sense that aXeE* f(qo'x) =q.

and (2) a symmetric relation p s=. BXB.

(1) for each beB, a non-empty set of
unique symbols L:(b) =(bl,b2' ... '~(b)) called
terminators of b.

Definition 2.2 A parallel program schema
(or simply schema) over an operation set B is
a partial function ~: L(B)*~2B such that the
following are satisfied:

Definition 2.4 Let ~ be a schema over B.
Define a relation ~ on ~* by x ~ y iff
Vzel:* ~(xz) =cp(yz). cp is called commutative
if

The conditions for parallel-decompos­
ability of realizations is now apparent.
Given a realization (Q,qo,f,g) over B, we
must find a parti tion B = B1UB2 with B1nB2 = ¢
such that (Q,~,f) satisfies the conditions of
Theorem 1.1 with respect to the partition
,~(B1) x 2:(B2) and furthermore Condition 1 of

Definition 1.7 holds for the resulting de-
.. . B1 B2

compos~tJ.on, J.f any, where ~1 = 2 ,6.2 = 2 ,
and ~ = 2B. An example is demonstrated in
Figure 2.1.

Definition 2.5

'fxe~* 'f(o,n)€(~Xl:)-I

if <cp (Xli) > and <~ (xC' ) > then XOTT ~ XTTa •'foeE(b)

becp(x)

'j'xeI:(B) * TheB

<r:o(xa» iff

Axiom 1

For any CoSB define ~(C) = U(~(b) 'beC).
If B is understood then E denotes ~(B). ~

will be the alphabet of interest in relating
schemata to asynchronous systems. Also, for
C,D~B, write CoD iff a(c,d)eCXD such that
c 0 d. We write p for the complement of p.
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Follows from Lemma 2.2.

Vxe~* V(b,c)eo if b€w(x) and

Definition 2.8 Let ~ be a schema over B.
is called locally complete if

Corollary 2.1 If ~ is commutative then ~ is
determinate iff WI and m2 are determinate and
B10B2·

Theorem 2.1 and Lemma 2.1.Proof

In2 ,3 the concept of a closed schema
was introduced. Such a schema corresponds
to the notion of one which is maximally paral­
lel. The closure of a schema is one which
is equivalent (as defined in2 ,3) to it and
closed.

B .~ BiUB2 and BlriB2 = ¢, and ('P = rt'll xCP2. Then ~~

is conflict-free iff ~l and CP2 are conflict­
free and Bl O'B 2.

realization over B. Define the relation ~ on­
Q by q~q' iff Vxe;:* g(f(q,x)) =g(f(q',x)).
A realization is called commutative if VqeQ
VO,iT€2: f(q,an) ~f(q,no) whenever both are de­
fined. A realization is called reduced if
q ~ q' implies q =q' .

It is not difficult to see that if ~ is
commutative then so is every realization of ~.

Furthermore, every schema has a unique reduced
realization, since Axiom I' requires that
realizations be treated as "completely speci­
fied" machines. Hence if we are dealing with
reduced realizations, Definition 1.4 is comple­
ly adequate to model any conceivable notion of
parallel control decomposition.

By a slight abuse of notation, we may
write ~lx~2' when ~l and ~2 are schemata, to
denote the schema which corresponds to the
realization obtained by forming the parallel
composition of two realizations, '1 for ~1 and
~2 for cP2'

Theorem 2.2 and Lemma 2.4.

3. Other Types of Decomposition

We recall the following from previous
papers.

Lemma 2.2 and 2.3.Proof

Theorem 2.3 Suppose Y'~1'~2 are free deter­
minate schemata and ~ = 0"1 x~;'2' Suppose
~'~1'~2 are the respective closures of these
schemata. Then ~ = ~l x~2'

Lemma 2.3 2 ,3 A free determinate schema is
closed iff it is locally complete.

3
Lemma 2.4 For any free determinate schema
there exists a unique closure.

Theorem 2.2 Suppose ~'~1'~2 are free deter­
minate schemata and Q ~s decomposable into
~lxCP2· Then ~ is closed iff ~l and ~2 are
closed.

The concept of a "repetition-free" (or
simply free) schema or a corres~onding realiza­
tion has been defined elsewhere ,2,3 and this
definition will not be repeated here. It
should suffice to say that the "free" assump­
tion is very useful in characterizing certain
properties of schemata, for example "determin­
acy" as pointed out in Lemma 2.1 below. The
reason for this is that a free schema has the
property that any control sequence x for which
~(x) is defined corresponds to a sequence
which can occur as a computation in an inter­
preted schema.

Lemma 2.13 A commutative free schema is
determinate iff it is conflict-free.

Definition 2.6 A schema w over B is called
conflict-free if Vxe~* V(b,c)eo (b,c} ~~-!)(x).

Definition 2.7 Let x,yeE*. By xvy we mean
the set of ze~* such that z is obtained by
interleaving all components of x and y in an
arbitrary way, so long as the original order
in each sequence is preserved. Also if
Sl,S2:=;::* then

S 1VS 2 = U(xvy I xeS l' yeS 2} ·

For example, if Sl = (bl c l,bl c 2 } and S2 =
(dle2}' then SlvS 2 = (blcidle2,bldlc.e2'
dlblcie2,dlble2ci,dle2blci,bldle2ciI i = 1,2}.

Lemma 2.2 If ~l and ~2 are schemata over
Bl and B2 respectively, and B18B2 ·then

(x I <~l (x»} v (y I <:'~2 (y»} = (z I «:~l X:D2) (z»}

Furthermore, if Z€xvy then :s (z) = cp (x) U(S (y) .

Definition 3.1 Let'~ = (Q,qo,f,g) be a
realization over B. A state q~Q is called a
¢-state if g(q) = ¢. ~. is called separable if
it has a unique ¢ state.

f · .. 3 2 1 1 1 1De lnltlon. Let ";1= (Q ,qo,f ,g ) and
222 2 ..

~'2= (Q ,qo,f,g i be real~zatlons over B with
q a ¢ state of Q. Then a series composition
of ~l followed by ~2 (with respect to q) is a
realization which is the disjoint union of
''"1 and '..: 2' except that states q and q2 are. °merged together ~n the obvious way (see
Figure 3.1).

Theorem 2.1 Suppose m, ~l' ~2 are free
schemata over B, Bl' B2 respectively where Clearly if ~l is separable with ~ state
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there is a unique series composition of W1
follo"<,¥ed by ~2'

}Jefinit ion 3.3 Let 0 = {~1' W2' · · · , ~n) be a
collection of realizations. A quasi-series
~omposition of realizations in n is a rea1iza­
~ion ~ obtained by merging all but one initial
state in n with some unique ¢-state. The un­
rnerged initial state becomes the initial state
of ~I"

Quasi-series compositions, of course,
include series compositions and others,such as
the !literate" described in 4.

.Definition 3.4 Let W = (Q,qo,f,g) be a reali­
zation over B. An instance of an operation
bsB is defined to be an instance (as in Defini­
tion 1.6) of l:(b).

(3) R - (Realization) labelled node ­
Each node is labelled with a unique element W

of O. There is one input arc and the output
arcs are in one-one correspondence with
¢-states of 1Jj.

For the present, we will be concerned with
FJ graphs in which the operations are decision­
free and each R node corresponds to a single
operation. Furthermore we will require
that each graph be acyclic and that there be
unique input and output arcs of the graph.
We summarize these requirements by giving
these graphs the name simple, abbreviated SFJ
graph. Our reason for introducing this
restriction here is that the semantics of SFJ
are simpler to describe and the theorems to
be presented are only applicable to this case.

Definition 3.7 Let r be an acyclic directed
graph. If u and 8 are arcs, we write u<s
if u occurs before 8 in some directed path,
and similarly if a and 8 are nodes. We write
u.sS if a<S or a=8. A cut in r is defined
to be a maximal set of arcs which are pair­
wise unrelated by <. (Clearly every cut in
an FJ graph is a marking.) If Q and QI are
cuts, we write Q.s Q I iff \1'3 sQ' 3usQ a.:s B.
We say QI is a minimal cut with a certain
property if there is no other cut Q with this
property such that Q < Q' •

Each SFJ graph represents, subject to a
slight qualification to be stated below, a
realization of a schema. This realization may
be described in several ways. For example,
the "parallel flowcharts" ofl suitably re­
stricted provide a description in terms of
counter machines. The description which will
be employed here will be in terms of the
"marked graphs" of12 and the reader is refer­
red there for a formal description. However
an example should suffice for the reader not
already familiar with the obvious interpreta­
tion of FJ graphs.

Definition 3.6 Given an FJ graph f, a marking
is a subset of the arcs of r. For an SFJ
graph, the initial marking is defined to be
the single input arc of the graph. A node n
in a marked graph is firable with respect to
a marking M if all of the input arcs to n are
in M. If node n is firable in marking M, and
MI is the marking obtained by replacing all of
the input arcs of n with the output arcs of n,
we write M ~ MI. We say that a marking is
stable if no F or J nodes are firable (i.e.
only R nodes are firable). We write M: MI

if M is unstable and there exist nodes
nl,n2, ... ,nk and unstable markings Ml,M2 , ... ,

nl n2
~-l' such that M --> Ml,Ml --> M2 ,···,

nk
~-l ~ MI.

In other words, an instance of b is a set
of states which corresponds to a single enabl­
ing of b, since any states within the instance
can be reached by strings not containing ele­
ments of 2: (b) .

9bservation 3.1 To determine whether a reali­
zation 'J = (Q,qo,f,g) has a quasi-series de­
composition, it is a simple matter of checking
whether there is a disjoint collection of sets
Ql!JQ2Ij ... ,JQn =Q such that each Qi completely
contains all instances whi.ch it intersects. An
example is shown in Figure 3.2.

Observation 3.2 The analog of Theorem 2.3
does not hold for series compositions. For
example, if ~1 and V2 are two acyclic realiza­
tions over disjoint decision-free* operation
sets, then the closure of the schema corre­
sponding to the series decomposition of D1
followed by ~2 is not the same schema as the
one corresponding to the series composition of
the closure realizations, Vl followed by ¢2'
An example is shown in Figure 3.3.

We now present another type of composi­
tion which we will see properly contains all
combinations of parallel and quasi-series
compositions. This composition is obtained by
combining schemata with the "fork" and "join"
primitives, as described in 10,11. For ex­
ample, the equivalents of parallel and series
compositions are indicated in Figure 3.4 (the
series composition does not require either
fork or join). The following definition
generalizes.

Definition 3.5 Let 0= {''''l''~'2'''' ,\"'n) be a
set of realizations. An FJ graph over 0 is a
directed graph with 3 distinguished types of
nodes:

(1) F - (Fork) labelled node - exactly
one input arc.

(2) J - (Join) labelled node - exactly
one output arc.

* - i.e. each operation has exactly one termi­
nator.

82
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graph. There exists a unique stable cut Mt

such that M ~ M'.

Proof Omitted.

Definition 3.8 For a cut M, let L(M) denote
M if M is stable, and the unique stable cut M'
such that M ~ M' otherwise. Given an SFJ
graph r over B~ the realization corresponding
to r is given by .~ = (Q,qo,f,g) where:

(1) Q is a subset of the stable cuts of T'.

(2) q is L (M.) where M= initial marking
o of f.

(3) g (q) = the operations of those opera­
tion nodes which have input arcs in q.

(4) f(q,a) =L(q') where, letting n be
the node corresponding to operation b, q n ql
(i.e. q' is obtained by firing n).

We implicitly assume that each SFJ is
well formed in the sense that each operation
appears at most once in each reachable cut.

An example illustrating a number of these
definitions is given in Figure 3.5.

Theorem 3.1 There exist a (reduced, commuta­
tive, decision free) realization which is
representable by an SFJ graph, but which is
not series-parallel decomposable.

Proof View the example of Figure 3.5a. That
this realization is not series-parallel de­
composable may be verified by testing exhaus­
tively using the criteria previously presented.

Theorem 3.2 There exists a (reduced, commu­
tative, decision-free) realization which is
not representable by an SFJ graph.

Proof Such a realization is shown in Figure
3.6. The proof then follows from the next
theorem.

Definition 3.9 Let '41= (Q,qo,f,g) be a real­
ization over B. w is called orthogonal if for
any beB and any instance Qt of b Vq,qleQI
q -I- q I implies :1r 0 e 2: (b) f (q , 0) = q I .

The "orthogonality" condition is intro­
duced for avoiding a technical pathology. It
can be shown that any commutative, reduced
realization is orthogonal, so not too much
generality is lost.

Theorem 3.3 Let ~ be a reduced, commutative,
finite-state realization. ~ is representable
by an SFJ graph iff each instance of an opera­
tion in ~ contains a unique minimal state.
Here "instance" is defined as in Definition
3.4 and "minimal" means with respect to the
ordering < of nodes in the state graph (not in
the FJ graph).

For the proof, we require the following
lemmas.

Lemma 3.2 Let =-- be an SFJ graph and a an input
arc of an R-node. There is a unique minimal
stable cut (see Definition 3.7) containing a.

Definition 3.10 Let x and y be elements of
r*. We say x and yare similar if they con­
tain the same number of each element of r.

Lemma 3.3 Let V be an acyclic, commutative,
orthogonal realization of a decision-free
schema. Then any two paths from a state q to
a state q' are similar.

Proof Suppose that x and yare two different
paths from q to ql. By induction on the
length of x, lxi, we show that x and yare
similar. If Ixl =0 the conclusion follows
trivially, since the graph is acyclic and thus
x=y. If Ixl >0 write x=ox l . From the pre­
ceding statement, Iyl -I- 0, so we write y = TTY'.
If 0 = n then applying the induction hypothesis,
we have that Xl and y' are similar. Hence x
and yare similar. Suppose instead that ':: ~ il.

By an inelegant innumerationwhich involves
the orthogonality assumption, all cases except
X/~O and y' ~o can be ruled out. Letting
x' = ax" and y I = BY", we have the diagram shown
in Figure 3.7a. We may add the arcs shown in
Figure 3.7b, where the existence of strings
u and v may be determined by Axiom 2 and
commutativity. By the induction hypothesis,
the components of the pairs (Xli, nu), (y", av) ,
and (au,Sv) are similar. Hence so are those
of (aux", Jna.u), (nBy", naSv), and (0TiaU, naBv) .
But since similarity is an equivalence rela­
tion, x=aOX" and nSY"=y are similar, which
completes the induction step.

Proof of Theorem 3.3 Suppose that we have a
realization representable by an AFJ graph. By
Lemma 3.2, to each R-node there is a unique
minimal stable cut containing the input arc of
the R-node. clearly the state corresponding
to such a cut must be minimal with respect to
other states in this particular instance of
the operation corresponding to the R-node.

Suppose instead that we are given a reali­
zation such that every instance contains a
unique minimal state. We demonstrate the con­
struction of a corresponding FJ graph. From
Lemma 3.3, any path from qo to a minimal state
in an instance contains the same terminators,
so we designate the instances by b l ,b2 ,... .
Hence we precede the node corresponding to the
instance in question by a J node, and connect
to the output of each b l ,b2 , ... an F node~
and finally from each F node connect one arc
to the J node. Some of these nodes and arcs
may be redundant. Applying this process to
each instance gives the desired FJ graph. We
illustrate with Figure 3.8.

Theorem 3.4 Suppose B is a decision-free

operation set. and co is ,an acyclic finite-state,
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free, determinate schema over B. Then the
closure ~ of has a realization which is
representable by an SFJ graph. 1.

Proof It is clear that ~ has an acyclic,
finite-state, reduced, commutative realization.
(The fact that commutativity can be assumed is 2.
demonstrated in 3.) It was shown in 3 that in
a determinate schema any computation defines
a partial order and for any two equivalent
computations the partial orders must be the 3.
same. Since the closure of a schema is defin-
ed to be a schema which contains all equiva-
lent computations, the computations of the
closure are completely represented by the
partial order. For any such partial order,
there is an SFJ graph which bears a very close
correspondence to the partial order. The 4.
corresponding realization contains all of the
equivalent computations and therefore is a
realization of the closure.

The use of a partial order to represent 5.
parallel computations pervades much of the
current folklore. In many cases no justifica-
tion for it is given. The results of this
section present justifications of it since
partial orders correspond closely to SFJ
graphs, and also grounds for rejecting it. 6.
For example, Figure 3.6 demonstrates a mean-
ingful parallel program schema which has been
proved not to have a partial order representa-
tion (the state graph is a partial order, but
this is a different sense). Such an example 7.
might arise if each operation requires one
unit of some resource, but only two units are
available. However we show that every suit-
ably restricted closure, (or maximally parallel
equivalent) is representable by a partial
order.

8.
Another area of interest concerns the

removal of the assumption that the SFJ graph
be simple. Then nodes can correspond to
decisions, or realizations with more than one
¢ state. In this case it is useful to intro- 9.
duce another type of node: M (for merge),
which allows recombination of mutual exclusive
arcs. We call the result an FJM graph. This
generalization introduces several new problems. 10.
First, semantics of an FJM graph are more
difficult to describe, and detecting well­
formedness is far from obvious. Some results
on the latter may be found in 13,14,15,16.
Second, the nice partial-order quality of an 11.
FJ graph is lost, even in the acyclic case.
In fact, it appears that a generalized version
of the J node, such as that described in 5, is
essential for representing maximally parallel 12.
realizations.
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~~st of Figures

1.1 One possible representation of the
parallel composition of asynchronous
systems.

2.1 Parallel decomposition of the realiza­
tion of a parallel program schema with
2:

1
= (b

l
,b

2
,c

l
,c

2
), ~2 = {d

l
,d

2
,e

1
}:

(a) Original realization;
(b) Components of the decomposition,

r 0 = (qo'ql' q4)' r 1 = (Q3' q6' q7) ,

r 2 = {Q2' q 5 ' q8) , So = {qo' q2 ' q3) ,

sl = (Q1,Q7,q8)' s2 = {Q4,Q5,Q6)·

3.1 An example of series composition.

3.2 An example of quasi-series composition.

3.3 The closure of the series composition
Figure 3.1(b) is not the series compo­
sition of the individual closures, as
shown.

3.4 Fork-Join representation of parallel
and series compositions.

3.5 Illustrating the realization represent­
ed by an SFJ graph: (a) Realization;
(b) SFJ graph. Table I gives the
correspondence between cuts and states.

3.6 A realization not representable by an
FJ graph.

3.7 A construction in the proof of Lemma 3.3.

3.8 constructing an FJ graph from a
realization.
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{1}* (1= initial marking)

[2,3} = qo

{2, 5} *

{3,4} = q1

{2,6, 7} = q2

{2,7,S} = q4

{2,6,11; = q5

{2, S, 11) = qs

{4, 5) *

{4,6,7) = q3

{4 , 6 , 11} = q6

{4,7 ,S) *

{4,S,1l)*

{7,9) = q7

{9,11) = qlO

{7,lO} = q9

{lO,ll)*

{12} = qll

Table I

The correspondence between
cuts and states in Figure 3.5.
* designates unstable cuts.

Ql / {C/c} d
2

C
1

I d 1

!

Figure 2.1(a)

C..
I

(with outputs)

'.
J

I
1~1
I
I /-', I
L------..c h l.I------ J

\ I
""I......

:A
I,

Figure 1.1
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Figure 2.1(b)
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(a)

Figure 3.1

(b)

Figure 3.3

q Irt;

fork

(a)

Figure 3. 2
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Figure 3.4
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Figure 3. 6
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Figure 3. 5(a)
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Figure 3.8
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