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TOPOLOGIES AND COTOPOLOGIES 

GENERATED BY SETS OF FUNCTIONS 

A. Dow, M. HENRIKSEN, R. KOPPERMAN, R.G. WOODS* 

ABSTRACT. Let L be either [0, 1] or {0, 1} with the usual order. We study 
topologies on a set X for which the cozero-sets of certain subf•.milies • 
of L X form a ba.se, and the properties imposed on such topologies by hy- 
pothesizing various order-theoretic conditions on •t. We thereby obtain use- 
ful generalizatons of extremally disconcted spaces, basically disconnected 
spaces, and F-spaces. In paxticular we use these tools to study the space of 
minimal prime ideals of certain commutative rings. 

1. Introduction. 

For over half a century topologists have studied what we now call 
Tychonoff topological spaces with the aid of the lattice-ordered ring C(X) 
of continuous real-valued functions on X. Zero-dimensional spaces have been 
studied using the ring C(X, {0, 1}) of continuous functions on X into the 
Boolean ring {0, 1} (with the discrete topology). Much of the early work in 
this area is discussed in the influential book by Gillman and Jeffson [9]. 

If the order-theoretic rather than the ring-theoretic properties are to 
be emphasized, it seems preferable to replace the lattice-ordered ring C(X) 
by the lattice C(X, [0, 1]) of those f e C(X) that map X into the closed 
unit interval. Let L denote either [0, 1] with its usual topology or {0, 1} with 
the discrete topology. As L has a linear order, C(X, L) becomes a lattice if 
suprema and infima are defined in the usual pointwise manner. A number 
of extensively studied topological properties of Tychonoff spaces may be 
characterized by lattice-theoretic properties of C(X, L). For example, the 

* The research of Dow and Woods was partially supported by grants from the 
Natural Science and Engineering Research Council of Canada, and that of Kopperman 
by PSC-CUNY grants. 
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following two results are minor modifications of 3N(6) in [9]. (Recall that 
subsets A,B of X axe completely separated if there is •n f e C(X, [0, 1]) 
such that f[A]- •0• and fiB]- {1•.) 

1.1. A Tychonoff space X is extrema/ly disconnected (i.e., each p•r of dis- 
joint open subsets o[ X is completely separated) iff C(X, [0, 1]) is complete 
• a lattice. 

1.2. A •chonoff space X is b•ic•ly disconnected (i.e., each pair of dis- 
join• open se•s, one of •hich is a cozerose•, is completely sep•a•ed) iff 
C(X, [0, 1]) is •-complete iff C(X, {0, 1}) is •-complete. 

The following result is essenti•ly the s•me • the m•in result in [Se]. 

1.3. A •chonoff space is • F-space (i.e., each p•r of disjoin• cozerose•s 
is completely sep•a•ed) iff whenever (c•)•<• •s an incteeing sequence and 
(dn)n<w is a decreeing sequence in C(X, [0, 1]) such that cn • dm whenever 
n, m e w, there is • f e C(X, [0, 1]) such that Cn • f • dn for every n • w. 

E•ch of the three topologic• properties mentioned •bove involves the 
•sertion that certain p•irs of disjoint subsets of a •chonoff sp•ce X •e 
completely separated. These properties in turn imply that certain subspaces 
are C*-embedded; see [9] for more details. 

E•ch of the three closes of sp•ces mentioned •bove is character- 
ized by imposing lattice-theoretic conditions on •ll of C(X, [0, 1]) •nd/or 
C(X, {0, 1}). In t•s p•per we introduce bro•der closes of sp•ces by impos- 
ing simil• l•ttice-theoretic conditions on subsets of these l•ttices, and then 
refining the techniques used in the proofs of 1.1-1.3 to •pply in these more 
gener• conditions. Just • the closes of extrem•lly disconnected, b•sic•ly 
disconnected, •d F-sp•ces h•ve found m•y •pp•c•tions in •lgebr• •d 
function• •lysis (see [9] •d [16], these bro•der closes of sp•ces •lso 
arise naturally in such settings. Perhaps the most interesting •pplic•tion 
is to the study of minim• prime ideas in certain commut•tive rings; see 
Section 3 for details. 

We proceed • fo•ows. For • set X, let • denote a subset of L X. 
The function with const•t v•ue a is denoted by a. If f G •, we denote 
X • f-(0) by cz(/) •d f-(0) by Z(I). (Thus /-(1) = Z(1- f). We 
impose sufficient hypotheses of to ensure that {cz(f): f e •} forms a 
b•c for • topology T(•) On X for which {intZ(1 - h): h e •} is •so • 
open b•se. In gener• r(•) is weber th•n the we• topology generated on 
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X by 7-/, and not all members of 7-/need be continuous with respect to it. 
Hence cz(f) need not be a cozeroset of a continuous function from X to L 
(and hence we have avoided the more common notation coz(f)). Even if 
all members of 7-/are continuous, {cz(f): f e 7-/} may be a proper subset 
of the set of all cozero sets of members of C(X). Observe that if (X, r) 
is Tychonoff and 7-/ = C(X, [0, 1]), then r(7-/) = r, the original topology 
on X. As 7-/inherits the order possessed by L x, it makes sense to impose 
conditions on 7-/similar to those imposed on C(X, [0, 1]) in 1.1, 1.2, and 1.3 
above. By doing so we cause r(7-/) to have properties similar to, but not as 
strong as, being basically or extremally disconnected, or being an F-space. 

In Section 2 we develop the theory outlined above. The section leads 
up to 2.13, in which we prove a very general separation theorem. Besides 
unifying the proofs of familiar results (e.g., regular Lindelof spaces are nor- 
mal and weakly Lindelof subspaces of F-spaces are C*-embedded) usually 
handled by separate arguments, this result can be applied to obtain many 
new results. This is done in section 3, where the machinery developed in 
Section 2 is used to study a class of spaces that includes both subspaces of 
F-spaces and spaces of minimal prime ideals of certain kinds of commutative 
rings. 

Section 4 is devoted to showing that some of the spaces discussed in 
Section 3 cannot be embedded in a compact F-space. In particular, there 
are spaces X such that the space mX of minimal prime ideals of the ring 
C(X) has no compactification that is an F-space. This is the case for 
X = flw \ w if Martin's Axiom holds, and there are other such spaces in 
ZFC. This improves greatly on the results [6] where it was shown that mX 
is not basically disconnected for these latter spaces X. Section 5 is devoted 
to miscellaneous examples and problems, and unsolved problems are posed. 

2. Topologies generated by families of functions. 
Let L denote {0, 1} or [0, 1]. If X is a set, then L X is the complete 

lattice of functions from X to L under the usual pointwise operations A and 
V. If f, g 6 L x and x 6 X, then the functions (f + g) A 1 and (f - g) V 0 6 
L X are defined in the usual manner, i.e., ((f + g) A 1)(x) -- min{f(x) + 
g(x), 1} and {(f-g)VO}(x) = max{f(x)-g(x), 0}. We generedize notations 
involving elements to subsets of LX; for example, A < B means that a _< b 
for each a • A and b • B, and 1 - B denotes {1 - f ß f 6 B}. (Here 0 
and I axe the obvious constant functions in LX.) Throughout this section 
• denotes a subfa,mily of L X. As usual, f'-(0) is denoted Z(f). 
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2.1. Definitions. Let 7-/C_ œx, where œ = {0, 1} or [0, 1]. 
(a) A subset of X of the form X \ f(0) for some ] ½ 7-/ is called an 

7-[-cozero-set of X and is denoted cz(f). If m is an infinite cardinal, 
then an m - 7-[-cozero set of X is a union of fewer than m 7q-cozero- 

sets of X. 

(b) 7-/is called basic if it satisfies the following conditions: 
(i) {cz(f) ß f e 7-[} (henceforth denoted •(7-[)) is a base for a 

topology r(7•) on X 
(ii) for each f e 7-[ and x e cz(f), there are g, h e 7-[ such that 

x e cz(g) C- h-(l) and cz(h) C- cz(/). 
(c) The topology z*(7•) generated by {int•(•t)Z(f) ß f e 7-/} is called 

the cotopology generated on X by 7-/. 
(d) A basic family 7-[ is called regular if X \ f+-(1) e z(7•) whenever 

(e) A basic family 7-[ is completely regularif Tl C_ C(X,L) (where X has 
the topology z(7•)). 

(f) 7-/is complemented if h 6 7-/implies I - h 6 7-/. 
(g) If Y,Z C- X and there exists h e 7-[ such thai h[Y] = {1} and 

h[Z] = {0}, then we say that Y is 7-l-separated from Z by h. If one 
of Y, Z is 7-l-separated from the other, we say that Y and Z are 
completely 7-l-separated. 

If 7-/is complemented, the latter two concepts coincide. Otherwise it 
is possible for a subset Y of X to be +/-separated from Z without Z being 
+/-separated from Y. For example, if X = [0, 1], 7-/= Sier(X) (see 2.2 (d) 
below), Y = (0, 1), and g = {0, 1}, then X¾ e 7-/provides an 7-/-separation 
of Y from Z(X¾ is the characteristic function of Y). But if Z were 7-/- 
separated from Y by some h 6 7-/, then Z = h*-(1) would be open, which 
is not the case. 

2.2. Observations and examples. Topological operations are with re- 
spect to r(7-/). 

(a) If 7-/ is a basic subfamily of L x, then {int 1'-(1) ß f 6 7-/} is a 
base for r(7-/). 

(b) If 7-/ is a basic subfamily of L x, then r*(7•) C- r(7-/), but in 
general these topologies need not be equal. As an example, let (X, a) be 
a topological space, and let • = {Xw ß W • a}. Then r(•) = a, and 
Tl C- C(X, {0, 1}) if and only if 7-/is complemented if and only if each open 
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set is closed (which, of course, is highly unusual). Here •-* (7-/) is the topology 
on X generated by the regular open sets of X, and hence r(7-/) = r*(7-/) if 
and only if cr is a semiregular topology on X (i.e. a topology for which the 
regular open sets form an open base). 

(c) Observe that 2.1 (b) (ii) follows from 2.1 (b)(i) if L = {0, 1}, as 
cz(f) = f•(•). 

(d) Let (X, r) be a topological space. Then several different basic 
families of functions can be defined in terms of r, as follows. Let 

CZe(X) = if ß [0, 1] x' cz(f) ß 
Lsc(X) = if ß [0, 1] x' f•-([a, 1]) ß r if 0 < a < 1), 
Sier(X) = if ß i0,1) x' cz(f) ß 
c(x, i0,1)) = Sier(X) n (1 - Sier(X)), 
C(X, [0, 1]) = Lsc(X) n (1 - Lsc(X)). 
It is an exercise to verify that each of these families is basic (to 

show that Lsc(X) satisfies 2.1 (b) (i), note that if f,g ß Lsc(X), then 
Xcz(f)ncz(g) ß Lsc(X) and that cz(Xcz(f)ncz(g)) - cz(f)f3 cz(g). For the 
first three families, use the characteristic function Xc•(f) for the g and h 
required in 2.1 (b) (ii); the last two families are easily handled. Note that 
C(X, {0, 1)) and C(X, [0, 1]) are also complemented. Further, if 7-/ is any 
of the above five families, then r(7-/) C_ r. On the other hand, if V ß r, it is 
clear that Xv is in Sier(X), Cze(X) and Lsc(X). Thus 

• = •(Lsc(X)) = •(Cze(X))= r(Sier(X)). 

In particular, every topology on a set X is of the form •(7-/) for a suitable 
chosen basic family 7-/. 

Finally, observe that r(C(X, i0, 1)))is the topology on X generated 
by the open-and-closed members of r, and r(C(X, [0, 1])) is the weak topol- 
ogy generated on X by the continuous [0, 1]-valued functions defined on 
(X, r). Thus (X, •) is zero-dimensional if and only if • = w(C(X, {0, 1))), 
and (X, r) is completely regular if and only if r = r(C(X, [0, 1])). 

(e) For an arbitrary space (X, r), we define Reg(X) to be Cze(X)•3 
(1 - Cze(X)). Then Reg(X) is complemented. However, it will not be basic 
in general; in fact, it is basic if and only if r is a regular topology, and in 
this case r(Reg(X)) = r. 

To verify this, first note that if (X, r) is any space and if U, V ß r 
• (Xctv + Xv) henceforth denoted by fv, v, with cœU C_ V, then the function • , 

belongs to Reg(X); to see this, observe that cz(fv, v) = V and cz(1-fv, v) = 
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X \ c•U. Also note that if V ß r, and if we define gv ' X -• [0, 1] by 
gv(x) - « if x ß V, gv(x) - 0 if x ß X \ V, then it is easy to verify that 
gv ß Reg(X) and cz(gv)-- V. 

Now suppose Reg(X) is basic, and let V ß r. Then V - cz(gv), so by 
2.1 (b) (ii), if x ß V there exist g,h ß RegX such that x ß cz(g) and h*-(1) 
is r-closed. Thus c•cz(g) is a closed r-neighborhood of X contained in V. 
Thus r is regular. Clearly r = r(Reg(X)) be the above remarks. 

Conversely, suppose that r is regular. If f,g ß Reg(X) and x ß 
cz(f) Cl cz(g), then V = cz(f)Cl cz(g) ß r so there exists U ß r such 
that x ß U C_ dU C_ V. Then fv, v ß Reg(X) as noted above, and x ß 
cz(fv, v) - V. Consequently 2.2 (b) (i)is satisfied. To verify 2.1 (b) (ii), 
suppose x ß cz f for some f ß Reg(X). Then cz(f) ß r and as r is regular, 
there exist U, W ß r such that 

x ß w _c ctW C_ u C_ ctU c_ cz(f). 

Then fa,cz(f) ß Reg(X) and fw, a ß Reg(X), and one easily checks that 

x ß cz(fw, v) _C fv,cz(f)*-(1) _C cz(fv,•z •,) _C cz f. 

Hence 2.1 (b) (ii) holds, and Reg(X) is regular. Again, one easily checks 
that r(Reg(X)) - r. Thus we have shown that (X, r) is regular iff r - 
for some symmetric (thus regular) 7-/. 

In what follows, we will show that is 7-/is a regular subfamily of L X, 
then certain separated subsets of (X, r(7-/)) can be completely 7-/-separated 
(see 2.14). When 7¾ - (f I X ß f ß C(Y,[0,1])), and X is a (dense) 
subspace of Y, we obtain previously known results concerning separation in 
Tychonoff spaces. Some of these results appear at the end of this section 
(see 2.15 and 2.16). In Section 3 we obtain new consequences of theorems 
2.14 and 2.15. 

The tool that we use to show that separated subsets of X can be 
completely separated by members of 7-/will be the following. We will show 
that if C,/) C_ 7-/, if C _• 1 -/), and if C and/) are not too large, there will 
be an f ß 7-/ "in between" C and I -/), and this function will provide the 
required complete separation. We make these ideas precise in the next few 
definitions. 

2.3. Definitions. (a) Let m,n denote cardinal numbers. Then T/ is 
(m, n)-nested if for each C,/) C_ 7-/, if ]C[ ( m, [/)] ( n, and C _• 1 -/) 
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then there is an f 6 7/ such that C _< f <_ 1 -/P. We say 7/is (m, 
nested if it is (m, n)-nested for every cardinal n. 

(b) If C C/P, a difjoin for C is an f 6 7/such that C _< f and if d 6 7/ 
andC<_l-d, thenf_<l-d. 

(c) If 7/is a basic family, then jo(7/) will denote the set of joins of 
finite subsets of 7/. 

It is routine to verify that if 7/is basic, then jo(7/) is basic, (u•, oo)- 
nested, and if 7/is (m, n)-nested, then so is jo(7/). Also, if 7/is regular or 
completely regular, then so is jo(7/). 

Observe that if 7/is (m, n)-nested, and if p < m and q < n, then 7/is 
(p, q)-nested. As the reader will observe, the concept of being (m, n)-nested 
will be used below mostly when m = n or n = 

2.4. Theorem. Let 7/be a basic subset ofL x for a space X. The following' 
are equivalent for a cardinal m: 

(a) 7-/is (m, oo)-nested. 
(b) 7-/is (m, 17/+)-nested. 
(c) c_ ICl < m, C • dffjoin. 

If in addition 7/is regular and L = {0, 1}, •he following is equivalent to 
each oœ the above: 

(d) If ½ C 7/ and ½ < m, then the characteristic function X.4 • 7/, 
where A = •[U{/-(•) ß i • C}]. (•'opo•ogical operations are with 
respect to 

Proof. Clearly (a) implies (b). To see that (b) implies (c), if ½ C_ 7/ and 
I½l <m, letT)={de7/'½_< 1-d}.Then½,T) C_7/, ½_< l-T), ½l < m, 
and T) < 17/+ so for somef 67/wehaveC < f < l-T). This lisa 
difjoinforC, sinceifd•7/, C_< 1-d, thend•T),soC<_ f_< 1-d. To 
see that (c) implies (a), suppose each subset ½ of 7/of cardinality less than 
m has a difjoin f. For such C, f, if T) C_ 7/and C _< 1 - T) then for each 
d 6 T), C < 1 -- d; thus C < f < 1 -- T) and so 7/is (m, oe)-nested. 

To show (a) implies (d), note that the regularity of 7/implies that if 
h e 7/then h-(O) and h-(l) are both r(7/)-closed; hence 7t C_ C(X, {0, 1}), 
and if d 6 7/then 1 - d • C(X, {0, 1}). 

Suppose (a) holds. For each x 6 X \ A there exists rx 67-/such that 
x • r•(1) C_ X\A. Thus f•-(1)Nr•(1)= •b for each f • 7/and x • X\A. 
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Since f and rx are {0, 1)-valued, it follows that C < 1-{rx 'x ß X• A). 
By (a) there exists h ß 7-/such that f <_ h _< 1 - rx for each f ß 7-/ and 
x ß X • A. Thus h[U{f*-(1) ß f ß C}] = {1}, so by continuity of h,h[A] = 
{1 }. If x ß X • A, then h(x) _< (1 - rx)(x) = 0; hence h[X • A] = {0}. Thus 

Now suppose (d) holds, and let ½ C_ 7-{ such that I½ < m. We will show 
that ½ has a difjoin, and hence (c) holds. Suppose/) C_ 7-{ and ½ 
By hypothesis X A ß •-{. Observe that if f ß ½, and if f(z) = 1, then z ß A 
so •CA(X) = 1. As y and •CA(X) are {0, 1)-valued, it follows that ½ _< 

Now suppose that d ß V and x ß X. •f d(x) = 0, then (1 - 
and so XA(Z) _< (1 --d)(x). If d(x) = l, then x • A; for if x ß A then as 
d*-(1) is open (since 7-{ C C(X, {0, 1)), there would exist y ß ½ such that 
y•(1) n •(1) # •. •f y ß f•(1) n •-(1), then 1 = y(y) _< (1 - •)(y) = 0, 
a contradiction. Thus x • A, so •CA(S) = 0 < (1 -- d)(x). Thus •CA _< 1 --/•, 
and hence X A is a difjoin of ½, and so (c) holds. [] 

2.5. Comments and examples. We have several examples. 
(a) Difjoins need not be unique and need not be joins. For example, 

suppose that 7-{ is the set of non-decreasing functions from [0, 1] onto [0, 1]. 
Then r(7-/) = {(a, 1]' a ß [0, 1]} V {[a, 1]' a ß [0, 1]}, and it follows that 7-/ 
is a basic subset of [0, 1] [ø'1]. Observe that r*(7-/) is the indiscrete topology. 
If c, d ß 7-/it is not possible for c < I - d to hold. Hence if C C_ 7-/and f 
is a join for C, then (vacuously) rf A I is a difjoin for C for each r > 1. As 
another example, let 7-/be the constant function I together with the set of 
characteristic functions on finite subsets of [0, 1]. Then 7-/is a basic subset 
of [0,1] [ø'•], I is the join of any countably infinite subset of 7-/• {1}, but 
such a set has no difjoin in 7-/. On the other hand, if T/is complemented 
then difjoins and joins are identical. 

More generally, if C C_ 7-/ has a difjoin g, and a join VC, then VC is 
a difjoin for C (since if h ß 7-/, then C _< VC _< g _< i - h). If further 
7-/U (1 - 7-/) C_ 7-/ C_ L x, then each 7-/-join in 7-/ is a 7-/-difjoin (and an 
7-/-join) (since if Z) _< 1 - h, Z) _< ¾Z• _< 1 - h, where VZ• denotes 7-/-join of 
:P). 

(b) Recall (see for example [2]) that a zero-dimensional topological 
space X is m-basically disconnected if, whenever .• is a family of fewer 
than m clopen subsets of X, then clx(UY) is clopen in X. (A different 
definition is given in [26] for arbitrary (Tychonoff) spaces which coincides 
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with this one for strongly zero-dimensional spaces). If m = co the condition 
holds automatically, and if m = cox, X is called a basically disconnected 
space (see [23] or [9]). It is clear from the equivalence of (a) and (d) in 
2.4 above that X is m-basically disconnected if and only if C(X, {0, 1}) is 
(m, c•)-nested. 

More generally, suppose that X is zero-dimensional Hausdorff space 
and has an m-basically disconnected compactification crX. Let 7/ = {f [ 
X' f ß C(aX, {0, 1})}; then 7/is a complemented regular subset of {0, 1} X 
and clearly 7/is (m, c•)-nested. Conversely, suppose 7/is a complemented 
regular (m, c•)-nested subset of {0, 1} X. Then {h•-(1) ß h ß 7/} is a Boolean 
algebra B of clopen sets of X that forms a base for the closed sets of X. 
By 2.4, the fact that 7/is (m, c•)-nested means that B is an m-complete 
Boolean algebra, as V(h-(1) ß h ß •'} = cl[U(h•-(1) ß h ß •'}1 if •' C_ B and 
I:1 < m. The Stone space of B is a compactification of X (see, for example, 
41 of [23]), and it will be m-basically disconnected since B is m-complete. 
For background on this latter, see [2] and [26]. 

In summary, we have shown that a zero-dimensional Hausdorff space 
X has a complemented regular subfamily 7/of {0, 1} œ that is (m, c•)-nested 
if and only if X has an m-basically disconnected compactification. (It is 
well-known that not all dense subspaces of basically disconnected spaces 
need be basically disconnected; see example I of [18].) 

(c) As a special case of (b), recall that a Hausdorff space X is 
tremally disconnected if its open sets have open closures. It is clear from 
the preceding discussion that a Hausdorff space X is extremally discon- 
nected if and only if C(X, {0, 1}) is (m, c•)-nested for every m. 

(d) Recall from 1.3 above that a Tychonoff space X is an F-space if 
and only if whenever (cn) is an ascending sequence of members of C* (X), (dn) 
is a descending sequence of members of C*(X), and c• _< d• for each n ß 
there exists an f ß C*(X) such that c• <_ f _< d• for each n ß co. From 
this it follows quickly that X is an F-space if and only if C(X, [0, 1]) is 
(co + , co+ )-nested. 

More generally, suppose that X is a subspace of an F-space Y. Then 
fly is an F-space (14.25 of [9]) and so its C*-embedded subspace cl•¾X is 
an F-space that contains X as a dense subspace (see 14.26 of [9]). Let 
{f I X : f 6 C*(cl•yX)}; then 7-/is a regular, complemented, (w+,w+)- 
nested subfamily of C*(X); in fact, it is a regular subring of C*(X) in the 
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terminology introduced below. 
Conversely, suppose that X is a Tychonoff space and that ,4 is a sub- 

ring of C*(X) (the family of bounded real-valued continuous functions on 
X). We call ,4 regular if it is a complete (with respect to the sup norm met- 
ric on C*(X)) subring C*(X) containing the constant ll•-valued functions, 
and such that {Z(f): f e ,4} is a closed base for X. In 4.5(m) of [23] it 
is shown that the maximal ideal space of m.aX of X is a compactification 
of X, each f • ,4 extends continuously to f.4 • C*(m.aX), and f -• f.4 is 
a ring isomorphism A from ,4 onto C* (rn.aX). As A is necessarily an order 
isomorphism, it is clear that if ,4 is (co+,co+)-nested, then C*(rn.aX) will 
be also; hence as noted above, m.aX will be an F-space. 

In summary, a Tychonoff space X is a subspace of an F-space iff 
C*(X) has a regular subring that is (co•,co•)-nested. Not all subspaces of 
F-spaces are F-spaces; in Example 3 of [18] an extremally disconnected 
space with a closed subspace that is not an F-space is given. (This corrects 
an inessential error in Section 2 of [Se].) Also observe that in constrast 
to Tychonoff m-basically disconnected spaces, F-spaces need not be zero- 
dimensional. 

In what follows it will be useful to have a simple criterion for establish- 
ing the function-theoretic hypothesis involved in the definition of difjoins. 

2.6. Proposition. Let X be a space and let 7/C_ L x, where L = {0, 1} 
or [0, 1]. Let •r, • C 7/. 

(a) Iœ cz(f) C{ cz(g) = eft whenever f e • and g e •, then .T' _• 1 - •. 
(b) Iœ L -- (0, 1), then the converse oœ (a) holds. 

Proof. (a) Let x e X. If f(x) - 0, then f(x) _< (1-g)(x). If f(x) > 0, then 
x e cz(f) C_ X \ cz(g), so f(x) _• 1 - (1 - g)(x). 

(b) Let f e •r,g e G, and suppose f _< 1 -g. If x e cz(f), then 
f(x) - 1, so (1 - g)(x) - O. Hence g(x) - 0 and x • cz(g). [] 

In Section 3, we will consider spaces with a regular subfamily 7/of L x 
that is not complemented, but which is (m, cx:)-nested. It will be shown in 
Section 4 that the lack of complementation means that these spaces need 
not have F-space compactifications, but the (m, cx:)-nesting results in the 
spaces having many properties that one normally associates with F-spaces 
or basically disconnected spaces. 
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The notions of [p, q]-compactness and final p-compactness introduced 
in 2.7 below are discussed at length in [25], but from a perspective quite 
different from the one we shall take. Our terminology is borrowed from 
(and generalized from) that in [25]. 

Henceforth we denote the discrete topology by 5. 

Recall that a space X is weakly LindelSf if each open cover of X 
has a countable subfamily whose union is dense. As noted above, weakly 
LindelSf subspaces of F-spaces are C*-embedded. We introduce a natural 
generalization of wea.kly LindelSf as follows: 

2.7. Definition. Let (X, r) denote a topological space, p, q infinite cardi- 
nals such that p _• q, and let r' denote a topology on X for which r C_ r'. 
Then: 

(a) (X, r) is called (p, q, r')-compact if every r-open cover of cardinal- 
ity no greater than q has a subfamily of cardinality less than p whose union 
is r'-dense in X. It is called (p, •x•, r')-compact if it is (p, q, r')-compact for 
all q _• p. 

(b) (X, r) is called (p,q)-compact if it is (p,q, 5)-compact, and is 
called finally p-compact if it is (p, q)-compact for all infinite cardinals q 
(equivalently, if it is (p, IXl)-compact). 

(c) (X, r) is called (p, q)-weakly Lindeldfif it is (p, q, r)-compact, and 
is p-weakly LindelSfif it is (p, q)-weakly LindelSf for all cardinals q. 

The topology r' will be used below only when r' = r or r' = 5. It 
enables us to handle simultaneously subfamilies of a cover of a space whose 
union is dense or whose union is the whole space. 

Many of the above concepts have more familiar names in the countable 
case, as is illustrated in the following table, where r denotes a topology on 
a space X. The reader should refer to this table to get a quick translation 
of unfamiliar terminology. 
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(co, co)-compact = (co, co, 6)-compact 
finally co-compact = (w, co, 6) compact 

(co, co) -weakly Linde16f = (co, co, r)-compact 

co -weakly LindelSf 

finally co+-compact 

co+-weakly LindelSf 

See 1.1 and 4.8 of [23] 

= (co, oo, r)-compact 

= (co +, oo, 6)-compact 
= (co +, oo, r)-compact 

= countably compact 

- compact 

= feebly compact 

(_= pseudocompact for 
Tychonoff spaces) 

= H-closed 

= LindelSf 

= weakly LindelSf. 

2.8. Proposition. Let X be a space and • be an (m, n)-nested subset of 
L X, where m and n are inIinite cardinMs. Let r = r(•), and let Y and Z 
be subsets of X contained in disjoint members of •. Suppose further that 
Z is n-compact. Then there exists h E 7-[ [or which Y C_ Z(1 - h) and 
Z C_ Z(h), provided that either: 

(i) Y is finally m-compact, or 
(ii) 7-/is regular and Y is m-weakly LindeIoœ. 

Proof. Let P and Q be disjoint members of r containing Y and Z respec- 
tively. Let r'= r (for part (i)), or r'= 6 (for part (ii)). 

As • is basic, we can find 7 9 C- • such that Y C_ U{intxf'-(1) ß f E 
79} C_ U{cz(f) ß f • 79} C_ P. Since Y is (m, oo, •') compact, there exists 
9 r C_ 79 such that 1 9r < m and 

Y'= Y (3 [U{intxf'-(1) ß f e 

is r'-dense in Y. Similarly we can find 6 C_ 7-/such that 6[ < n and 

Z' = Z F1 [U{intxg'-(1) ß g e 61 

is r-dense in Z, while U{cz(g)' g e 6} C_ Q. As P n Q = ½, it follows that 
cz(f) F1 cz(g) = •b for each f • 9 r and g E 6, and so by 2.6 9 r _< 1- 6. As 7-/ 
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is (m, n)-nested there exists h C 7-/such that •r _< h <_ 1-G. Ifx C Y•, then 
I - f(x) _• h(x) for each f e •r, so h[Y •] = {1). If x e Z •, then g(x) -- 1 
so h(x) _< (1 - g)(x) - 0 for each g e G. Hence h[Z •] - (0), and as h*-(0) 
is closed and Z • is dense in Z, h[Z] = 0. Thus h separates Y• and Z. 

In case (i), Y• -- Y and we are done. In case (ii), Y• is T-dense 
Y, Y• C_ Z(1 - h) which is closed since T/is assumed to be regular, and so 
rc_z(•-h). [] 

In 2.8 we gave a condition under which sets contained in disjoint open 
sets can be completely T/-separated. In 2.14 below we give sufficient condi- 
tions for separated sets to be completely T/-separated. [] 

2.9. Lemma. Let X be a space and let 7-l be a basic subfamily of L x. 
Suppose that C C 7-/and let f be a difjoin for C. Then 

and 

i•t z(f) = i•t[n(Z(c) ß c e c}] 
int r-(l) _• U{int c•-(1) ß c e C}. 

Proof. Let S = int[g{g(c) ß c e C}]. If x e S, there exists rx e 7-/ such 
that x e int r•-(1) C- cz(rx) C- $ (since 7-/is basic). Suppose y e X and 
r•(y) > 0. Then y e S so c(y) = 0 for each c e C. Thus c(y) < (1 - r•)(y). 
If r•(y) ---- 0 then c(y) •_ I = (1 - r•)(y). Thus C _• 1 - •D, where •D = 
{rx ß x • S}. As f is a difjoin for C, it follows that c _< f _< 1 - r• for each 
c e C and x e S. Thus if x e S, then f(x) 5 (1 - rx)(x) = 0 so x e g(f). 
Hence $ C- g(f), so $ C_ int g(f). Conversely, if y e g(f) and c e C, then 
0 < c(y) < f(y) = 0, so y e g{Z(c) ß c e C}. Consequently int Z(f) C_ S. 
Finally, if c e C and x e c*-(1), then I = c(x) _< f(x) <_ 1, so x e f*-(1). 
Hence int f*-(1) _D U{int c*-(1) ß c e C}. [] 

2.11). Lemma. Let X be a space and let C, •) C_ L x. Suppose that 
s,t • L x and that either C _< s or •) _< t. Then, for each c • C,d • •), we 
have 

z ((• - (c- •)) v o) • z ((• - (•- ,)) v o) = •. 

Proof. It is routine to verify that Z ((1 - (h - k)) V 0) = Z(1 - h) U Z(k) 
whenever h, k • L x. From this it follows that 

Z((•-(c-t))VO)nZ((•-(d-s))VO) = Z(•-c)nZ(t)nZ(•-d)nZ(,). 
Since Z(1 - c) 91Z(s): • if ½ _< s and Z(1 - d) •1Z(t): • if •) _< t, the 
lemma follows. [] 
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2.11. Definition. Suppose (X, 9) is a topological space, p an infinite 
cardinal and •' a topology on X such that • C_ •'. 

(a) (X, 9) is (p, •")-additive, if whenever $ is a collection of fewer that 
p subsets of X, then intr(ffl$) is 7Ldense in •q{intr(s) ß s 6 $}. 

(b) X is p-additive d X is (p, 6)-additive. 
(c) X is almost p-additive if X is (p, •)-additive. 

All topologies are w-additive, and if • is w+-additive, then (X, 9) is 
called a P-space (see [9] or [23]). If • is m-additive, then (X, 9) is often 
called a Pro-space. Clearly if (X, 9) is any space, m is an infinite car- 
dinal, and •m -- {V C_ X ' there existsk < mand{Wi ' i < k} C 
• such that V = N{Wi ' i < k}, then •m is an m-additive topology on X. 
Clearly if the pseudocharacter of (X, 9) is less than m, then •m is the dis- 
crete topology (see [17] or [23] for a discussion of pseudocharacter). An 
important class of m-additive topologies without isolated points is the class 
of spaces of the form ({0, 1}m, •m), where • is the usual product topology 
on the genera/ized Cantor set {0, 1}m; see chapter 15 of [2] for details. 

Let X be Tychonoff. Then X is a.lmost w+-additive if X is an a.lmost 
P-space (see [20]). 

Finally, it is evident from the equivalence of 2.4(a) and 2.4(d) that if 
7 is m-additive, then C(X, {0, 1})is (m, oo)-nested. 

2.12. Lemma. (a) Let 7' = 7 or 6. Suppose (X, 9) is a (p, q, 7')-compact 
space. IrA is a closed subspace of X and int•,A is 7'-dense in A (i.e., A is 
7'-regular closed), then A is (p, q, 7')-compact. 

(b) If p is regu/ar, then a -n/on of fewer than p (p, q, 7')-compact 
of a .race (X, 9) (p, q, ')-comrac. 

Proof. (a) Suppose C is an open cover of A with at most q elements. Then 
C' = C U ((X \ A)) is an open cover of X a•o of cardina•ty no g•eater 
than q, so there is a subfamily •D' of cardinality less than p whose -nion is 
•'-dense in X. Thus if P =/)'\ {(X \ A)}, then P has cardinality less than 
p, and it su•ces to show that UTP is 7'-dense in A. But 

intr, A C_ clr,(U•) U (X \ A)) = clr,(U•)) U clr,(X \ A) 
= cl•,(U/)) U (X \ int.,A), 

so int•,A C_ cl,-,(U•), whence A C_ cl,,int•,A C_ cl•,(UZ)). 
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(b) Suppose r < p. If, for k < r, Yk is (p, q, •-')-compact, and C is an 
open cover of Y -- U{Yk ß k < r} with at most q elements, then for each k 
there is a subset 7)• of C conta.ining fewer than p elements and whose union 
is r'-dense in Y•. By the regularity of the cardinal p, 7) = O{7)k ' k < r} 
has fewer tha• p elements, and for each k,Y• C_ clr,(OD•) C- clr,(OD). [] 

The following lemma (2.13) is technical in nature and is motivated by 
theorem 2.14, which will be used in section 3. Because of this we state and 
prove 2.14 before giving the proof of 2.13. Note that 2.14(a) is well-known. 

2.13. Theorem. Suppose 7/ is an (m, c•)-nested basic regu/ar subset 
of L x. Let (r and p be topologies such that T C_- (r and • C_ p (where 
• -- T(7/)), and suppose • is (m, p)-additive. Suppose farther that Y•, Y2 
are (m +, c•, e•)-compact y-separated subsets of X (see 2.7 (a) for notation). 
Then there are •-dense (m +, c•, e•)-compact subsets of the Yi contained in 
the p-closures of disjoint T-open sets. 

2.14. Theorem. (a) Regular LindelSf spaces are normal. 
(b) If 7/ is completely regu/ar (•v, cx))-nested, then separated wealely 

LindelSf subspaces oœ X contain dense weakly LindelSf subspaces which are 
contained in disjoint open sets. 

(c) If 7/i8 completely reg./ar and (w+ , w+ )-nested, then .eparated 
weaJdy LindelSf subspaces of X are completely separated. 

Proof of 2. lJ. (a) Let Y•, Y2 denote disjoint closed subspaces of the LindelSf 
(i.e., (w+, cx•, 5)-compact) space X. As is well-known, each of these closed 
subspaces is LindelSf. Notice that since Reg(X) is closed under finite joins, 
it is (•v, oo)-nested. Let 7-/= Reg(X), m = w,a - p - 5; since all spaces are 
w-additive, the conditions 2.13 hold. Hence (5-dense subsets of) the Y/'s 
axe contained in (the a-closures of) disjoint open sets. 

(b) Here we apply 2.13 in the case m - w, a = •-, p = 5, and recall 
that wen]dy LindelSf spaces are (w +, 0% •-)-compact. 

(c) This follows by applying 2.13 to jo(7/) (see 2.3 if.) when m - 
w, •r = •-, p - 5, thus obtaining disjoint open Pi containing (5-closures of) 
dense weakly LindelSf subsets of Y/. Then apply 2.8 (b) and recall that since 
7/ is completely regular, completely 7/-separated subsets are completely 
sepaxated. [] 

Proof of 2.13. As •/is basic and regular, there are for i = 1,2, cardinals 
Pi and subfa.mi[ies •i = {(fi•,gii) ' j < Pi} of 7/x 7/ such that Y/ _C 
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U{cz(fis)'j < Pi}, and for each j < Pi, 

(+) cl cz(fij) C_ int Z(1 - gij) and cl cz (gij) C_ X • cl Ya-i. 

By (+), for j,k < m, cl Ya-i C_ X • cl cz(gik) = int Z(gik), so 

(-t-q-) cl Ya-i C_ Cl{int Z(gik) ' k < j} 

(topological operations are with respect to r). 

Since Y/ is (m +, cx>,a)-compact, there is a subfmnily •i of •Yi with 
cardinality no greater than m (which we reindex so that it is { (fij, gij ' j < 
m)} such that ¬ = (t_J{cz(fij) ß j < m}) NY• is a-dense in Y•. Observe that 

Wi = (U{cl•cz(fij)' j < m)) r3 Y/ 

is a union of fewer than m+a-regular closed subsets of the (m +, cx>, a)- 
compact space Y/ and is thus (m+,•,a)-compact by 2.12 (a) and (b); 
further, it contains •, so Wi is a-dense in Y/. Since 7/is (m, •)-nested, we 
may assume by 2.4 that tij is a difjoin of {g•: k < j}, so by 2.9 int Z(gi•) = 
int[fq{Z(gi•): k < j}]. Now int Z(tij)is p-dense in N{int Z(gik): k < j} 
by this last equality and the (m, p)-additivity of X. Hence, using (++), we 
have 

(*) Y3-i C_ clpint Z(tij) for each j < m. 

If Pi = U{int Z((1 -(gij - ta-i,j)) V0: j < m)}, then Px CIP2 = ½ by 2.10 
(there setting, for n,p < m, C = {gij: j < n}, s = tj,n D = {g2j: j < 
p}, t= t2,p). Now for i= 1,2, we have by (+) and (,): 

Wi C_ (t_J{int Z(1-gij) : j < m})aY/ C_ (t_J{intZ(1-gij) Ci 
clp int Z(ta_•,j): j < m}), which we denote by U•. But it can be shown 
routinely that 

Ui C_ Ll{clp(int Z(1- gij) Clint Z(ta-i,j))'j < m}- 
LI {clpint(Z(1 - gij) CI Z(ta_i,j)) 'j < m) = 
Cl {clp int Z(1 - (gij - ta-i,j) V 0)'j < m} 
C_ clpPi, completing the proof. [] 
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2.15. Theorem. Let 7-{ be a completely regular subfamily of L x that 
is (m,c•)-nested and (m+,m+)-nested for some infinite cardinal m, and 
suppose r(Tl) is m-additive. Then m+-feebly compact subspace of X are 
C*-embedded in X. 

Proof. To show that the m+-feebly compact subset $ of X is C*-embedded, 
it suffices by 1.17 of [9] to show that completely separated subspaces Y and 
Z of $ are completely separated in X. Suppose f ß C*($), flY] = {0), 
and f[Z] = {1}. Then 

Y C f- (-oo, •) = U and Z c f•- (•, oo) = V. 
Observe that U and V are cozero-sets of the m+-feebly compact space $, 
and hence by 2.12 are themselves m+-feebly compact. Clearly they are 
separated in X, and hence by 2.14 are completely 7-{-separated. As 7-{ is 
completely regular, it follows that U and V are completely separated in X. 
As Y C U and Z C V, Y and Z are completely separated in X, and the 
theorem is proved. [] 

2.16. Applications. (a) Suppose that m = co. Then if 7-{ is a completely 
regular subfamily of L x, r(7- 0 is automatically co-additive, and 7/ will 
be (co, cx•)-nested if 7-{ is an upper semilattice. As noted above, the co +- 
feebly compact spaces are usually called weakly LindelSf spaces, and 7-{ is 
(co + , co +)-nested if whenever {fn }new and {g• }•,0 are sequences of elements 
of 7-/such that fk _< 1 -g• for all n, k < co, then there is an h ß 7-/such 
that fk _< h _< 1 - g• for all n,k < co. Hence if m = co, 2.15 yields that 
if 7-/is a completely regular subfamily of L x that is an upper semilattice 
(i.e. is closed under finite joins), and if 7-/is (m+, m+)-nested, then weakly 
LindelSf subspaces of X are C*-embedded. In case 7-/= C(X, [0, 11), then 
by 2.5(d) 7-/is (co+, co+ )-nested if and only if X is an F-space, and 2.15 says 
that weakly LindelSf subspaces of F-spaces are C*-embedded. This result 
was known, of course; it appears in [1]. As we will see in the next section, 
the above result also applies to subspaces of F-spaces; this latter may also 
be inferred indirectly from [1]. 

(b) Suppose 7-/C C(X, {0, 1}) is basic. As noted in 2.4, •t is (m, •)- 
nested if and only if X is m-basically disconnected, and r(7-/) is m-additive 
if and only if X is a Pro-space. Since every union of less than m clopen 
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sets in a Pro-space is clopen, every Pro-space is m-basically disconnected; 
as rico is m-basicMly disconnected for all m and has no non-isolated P- 
points (see 12H of [9]), the converse is false. Thus 2.15 guarantees that if 
{0,1} X contains an (m+,m+)-nested completely regular family and if X 
is a Pro-space, then m+-feebly compact subsets of X are C*-embedded in 
X. Once m > co, insisting that X be a Pro-space is a severe restriction 
that prevents us from applying 2.15 to the space/?co (which is extremally 
disconnected). Without some restriction, there is no hope of showing that 
m+-feebly compact subspaces of m+-basicMly disconnected spaces are C*- 
embedded, since every subspace of/?co is m-feebly compact for sufficiently 
large m, •ud rico is m-basically disconnected for all m; see Section 2 of [26]. 

(c) In the above, we have considered only complemented families 7-/C_ 
L X. In the next section, we consider noncomplemented families that arise 
naturally in the study of spaces of minimal prime ideals. 

3. Applications to spaces of minimal prime ideals and subspaces 
of F-spaces. 

In this pa•t of the paper, we apply the theory developed above to give 
simpler proofs of known results and to derive new results about the class 
of spaces described in the title of this section. Throughout this section we 
assume that MI hypothesized families of functions 7-/yield a topology 
that is Tychonoff (i.e. completely regular and T1). Note that in 2.2(d) we 
show that the complete regularity of r(7-/) is equivalent to the (function- 
theoreticMly defined) complete regularity of 7-/. Clearly r(7-/) is T1 if and 
only if for any orderd p•r (x, y) of distinct points of X, there exists fx,y E 7-/ 
such that f•,y(x) > 0 and f•,y(y) = O. 

a.1. Definition. Suppose 7-/C_ L x is a completely regular subcollection 
for some topological space X with topology 

(a) If L = {0, 1} and 7/is (co+, oo)-nested, then B(7-/) = {cz(f) ' f E 
is called a pretty base for X. 

(b) If Z = [0, 1] and 7-/is (co+,co+)-nested, then B(7-/) = {cz(f) ' f e 7-/} 
is called a Seevet base for X. 

As noted in 2.5(d), if X is an F-space and 7-/ = C(X, [0, 1]), then 
B(7-/) is a complemented Seevet base. 

Clearly, if X has a pretty base B(Tf), where 7f is an (w +, oo)-nested 
subset of {0, 1} X, then the elements of B(7-/) are cozero sets of two-valued 
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elements of O(X, [0, 1]), so every pretty base may be regarded as a Seevet 
base. 

Next, we give some background on spaces of minimal prime ideals. 
See [11], [131, or [12] for more detail.q. 

3.2. Definitions and remarks. A commutative ring R whose only nilpo- 
tent element is 0 is called reduced. If $ C_ R, let A(S) : {a • R ' aS = {0}}, 
and let A(s) -- A({s}) if {s} is a singleton. If R is reduced, let mR de- 
note the space of minimal prime ideals of R. If $ C_ R, let h($) = {P E 
mR ß P _D $}, let he(S) = mR \ h(S), and abbreviate h({s}) by h(s) 
and hC({s) by h•(s when {s is a singleton. As is noted in [11], for any 
a • R,h•(a) = h(A(a)). The halt-kernel topology on mR, i.e., the topology 
whose base is {h*(a) ß a • R}, is a zero-dimensional Hausdorff topology. 
We will assume throughout that mR has the hull-kernel topology. 

A ring R is said to satisfy the countable annihilator condition (ab- 
breviated CAC) if the family {A(a) ' a 6 R} is closed under countable 
intersection. It is shown in [11] that the (reduced) ring C(X) of continuous 
real-valued functions on a space X satisfies CAC. 

It follows from I_,emma 4.2 of [11] that if R is reduced and satisfies 
CAC, then {h•(a) ' a 6 R} is a pretty base for mR. It is shown in Section 
6 of [12] that if R is reduced and commutative, then the ring R[[x]] of all 
formal power series with coefficients in R satisfies CAC. Thus these formal 
power series rings supply another class of spaces with a pretty base. 

Spaces with a pretty base axe also discussed in [10], and the theorems 
in that paper axe almost all special cases of the ones given here. The 
definition of pretty base given here differs superficially from the one given 
in Definition 2.1 of [10]. The verification of the next proposition is an 
exercise. 

3.3. Proposition. A base B of a (Tychonoff) space X is pretty if and 
only if (a) B • B implies B is clopen, and 

(b) if {Bn'n < co} is asequenceofelementsofB, then cl{Un<•oB•} • 
B. 

If Y is a subspace of a space X, and 7/is a completely regular subcol- 
lection of œx, let 7/y -- {f I Y' f e 7/}. We call B(7/¾) the trace of 13(7/) 
on Y. Note that B(7-l¾) isa base for the topology of Y since 7/is completely 
regular and hence basic. If Y is dense in X, then the map f -• f I Y of 
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7-/ onto T/¾ preserves all lattice operators, finitary or infinitary. Hence we 
have: 

3.4. Proposition. Iœ B(•) is a Seever base or a pretty base on a space 
X, then so is its trace on any dense subspace of X. 

Indeed, the trace of a Seever base on any subspace of X is a Seever 
base. As will be seen below, the corresponding assertion for pretty bases is 
false. 

It is easy to verify that the family of all clopen subsets of a basically 
disconnected space X is pretty base for X. In Example 1 of [18], an example 
is given of a dense subspace Y of a basically disconnected space X that fails 
to be basically disconnected. By this last proposition, Y has a pretty base. 
So spaces with a pretty base need not be basically disconnected. Indeed, in 
[5], an example of minimal prime ideals of a C(X) that fails to be basically 
disconnected is supplied. 

The next proposition enlarges further the class of spaces with a Seever 
base or a pretty base. 

3.5. Proposition. (a) Every subspace of an F-space has a $eever base 
(Cœ. 2.5(d)). 

(b) Every dense subspace and every open subspace of a space with a 
pretty base has a pretty base. 

Proof. (a) This follows immediately from 3.4 and the fact that {cz(f): f ß 
c(x, [0,1])) is a Seevet base for an F-space X. 

(b) Suppose ¾ is a subspace of a space X with a pretty base B(T/) 
for some(• +, c•)-nested completely regular (basic)subfamily of {0, 1) x. If 
Y is dense, the result follows immediately from 3.4. So let Y be open in X. 
Then T/y is completely regular. Moreover, if {B•: n • •) is a sequence 
of elements of B(T/), then {B• • Y) is a sequence in B(T/y), and since Y 
is open in X, cly[U{Bn f3 Y: n < •}] = Y f3 clx[U{Bn: n < •}]. Hence 
B(TIy) is a pretty base for Y. [] 

As will be seen in Example 3.7 below, a compact subspace of a space 
with a pretty base need not have pretty base. 

3.6 Proposition. Suppose X is a weakly Linde16f space. Then 
(a) X has a Seever base if and only if X is an F-space. 



TOPOLOGIES AND COTOPOLOGIES 571 

(b) X has a pretty base iœ and only iœ X is basically disconnected. 

Proof. (a) The sufficiency is clear by the theorem of Seevet cited in 2.5(d). 
If X is a weakly LindelSf space, so is any cozero set C, and, by 2.15, a 
weakly LindelSf subspace of X is C*-embedded. Hence X is an F-space. 

(b) As was noted above the family of clopen subsets of a basically 
disconnected space form a pretty base. Conversely, if X has a pretty base 
B, and C is a cozero set in X, then C is weakly LindelSf, and hence contains 
a union of countably many members of B as a dense subspace. Since B is 
closed under taking closures of countable unions by Proposition 3.3, the 
closure of C is open. Thus X is basically disconnected. [] 

3. 7. Example. A compact subspace of a space with a pretty base need not 
have a pretty base. The extremally disconnected space /?co has a pretty 
base, but by Proposition 3.6(b) its compact subspace/?co • co cannot have a 
pretty base since it fails to be basically disconnected by 6W of [9]. 

A base B for a topological space X is called proper if X ½ B. 
We will see below that spaces that have a proper pretty base are 

special in character. 

3.8. Definitions. (a) If B is an open base for a space X, let B' denote the 
family of countable unions of elements of B, and if aX is a compactification 
of X, let K•x(B) = N{cœ•x(X • B' : B' ß B')}. Then K•x(B) is called 
the residue of B in c•X. (Clearly K•x(B) is a compact subset of c•X • X, 
and is nonempty if/•t is a proper pretty base.) 
(b) If B is a clopen base for a space X, let/• denote the Boolean algebra 
generated by /• and let St(/•) denote its Stone space (that is, St(/•) is the 
space of ultrafilters on/•). (Note that St(/•) is a compactification of X since 
the map {A ß ß A} embeds X as a dense subspace of 

Recall that a nonempty subset K of a Tychonoff space X is called a 
P-set if any Ga containing K has K in its interior. Equivalently, K is a 
P-set if and only if whenever K is disjoint from a cozero set V, we have 
K 91 clxV = 05. For background, see [3]. 

3.9. Theorem. If X has a pretty base, then the following are equivalent: 

(a) X has a proper pretty base, 
(b) X fails to be weakly LindelSf, 
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(c) X has a pretty base B such that if •X is any compactitication of 
X larger than St(t•) in the usual ordering of compactit•cations of X 
(see 4.2(c) of [23]), then o•X \ X contains a compact P-set of o•X, 

(d) fix \ X contains a compact P-set of fiX. 

Proof. (a) implies (b). If X has a pretty base B and is weakly LindelSf, 
choose for each x • X, a Bz • B such that x • Bz; then {B:: x • X} 
is an open cover of X which has a countable subfamily {B•(n): n < co} 
whose union is dense in X. Since X is weakly LindelSf, and B is pretty, 
X = clx[Un<wBz(a)] • 13, so 13 is not proper. (b) implies (c). Suppose 13 
is a proper pretty base for X, let crX denote a compactificaton of X larger 
than St(/•), and let V denote a cozero set of crX disjoint from K = Kax(13). 
I•OW• 

SO 

•b = V Cl K = V Cl [Cl(cl•x(X \ B')' B' 6 

V C U{crX \ cl,•x(X \ B')' B' E 13'} 
= U{int,•x{crX \ (X \ B')}' B' E 13'}. 

The locally compact a-compact cozero set V is a Linde16f space, so 
there is a sequence {B',ß n < co} in B' such that V C U{int•x(crX \ (X \ 
B',) ß n E co}. Since each B',is open in X, it follows that X Cl intex {aX \ 
(X \ B&)} = B• for each n< co. So, V f'iX C_ U,<•,B'• = B'. Thus 

cl,•x V = cl•x(V Cl X) _• cl•xe' = cl•x(clxe') = cl•x B0 

where Bo = clxB' • 13 since 13 is a pretty base. Also, since Bo • 13 C_ 
B', K C_ cl,•x(X \ Bo). But both Bo and X \ Bo are in /•; hence since 
aX >_ St(/J), it fonows that cl•xB0 Cl cl,,x(X \ B0) = •b; see 4.2(h) of [231. 
Thus K N cl•xV = •b, and we know that K is a P-set of fiX. Hence (c) 
holds. Obviously (c) imphes (d). 

Suppose (d) holds, K is a compact P-set of fix contained in fix \ X, 
and B is a pretty base for X. Let 

B* = {B •E B' (cl/•xB)Cl K = 

Since X ½ B*, it suffices to show that B* is a pretty base for X. 
Suppose x • X and V is an open neighborhood of x. Since K C fix \ X is 
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closed in fX, there is an f E C(fX) such that f(z) = 1 and f[K] = {0}. 
Choose B0 E B such that x 6 B0 C_ VClcz(f). Since K is a P-set of 
fX, (cl/•xB0)fq K C_ cl/•x(cz(f))fq K = qb. Hence B0 6 B*, so B* is a base 
for X. Suppose {B,},<• is a sequence of elements of B*, in which case 
(cl•xB,) fqK = qb for each n < w. Then S = O{cl•xB, ' n < w} is a cozero 
set of fX disjoint from K. Since K is a P-set, (clcxS) fq K = qb. Thus B* 
is a pretty base and (a) holds. [] 

3.10. Corollary. /fX has apretty base, then either X is a weakly Linde16f 
basically disconnected space, or f X \ X contains a compact P-set of f X. 

3.11. Remark. In [29], Example 5.1, an F-space X is exhibited which 
is not weaMy LindelSf such that fX \ X contains no compact P-set of 
fiX. Hence we ca.nnot replace the hypothesis that X have a pretty base in 
Corollary 3.10 by the weaker assumption that X have a Seevet base. 

As noted earlier, a space X is called an almost-P-space if each of its 
zerosets has nonempty interior. Equivalently X is an almost-P-space if each 
of its zerosets is regular closed; see [20]. The next theorem and its proof 
appear in [10]. We repeat it for the sake of completeness. 

3.12. Theorem. A weakly Linde16f subspace S of an almost P-space X 
with a pretty base is C-embedded. IfS is also realcompact, then it is closed. 

Proof. By Theorem 2.15, $ is C*-embedded in X, so, by 1.18 of [9], we need 
only show that $ is completely sepaxted from any zeroset Z disjoint from it. 
To see this, find for each x 6 S, a B• 6 B such that x E B• C_ X \ Z. Then, 
since S is weakly LindelSf, there is a countable subfamily {B•(n) ' n < w} 
of the open cover {Bz 'x • $} of $ such that B = cl[U{B•(.) ß n < w}] 
contains S. Now B \ U{B•(n) ' n < w} is empty since otherwise it would be 
a zeroset with empty interior in an almost-P-space. Hence B is a clopen 
subset of X containing $ and disjoint from Z. Thus $ and Z are completely 
separated. The second assertion follows immediately from 8A.1 of [9]. [] 

Recall from [7] that fw \ w is an infinite compact F-space and an 
a.lmost-P-space. Since it has no countably infmite closed discrete subspace, 
the conclusion of Theorem 3.12 need not hold for almost-P-spaces with a 
Seever base. 

Recall (see 2.1(c)) that if B is a base for a topological space (X, r) then 
the topology generated by {X \ cl(x,,)B ß B 6 B} is called the cotopology 
r* = r*(B) derived from/•. Observe that r* C_ r. 
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3.13. Definition. If every open cover of (X, r*(/•)) has a finite subcover, 
we ca/1/• a cocompact base. 

Suppose X is the space mR of minimal prime ideals of a commutative 
reduced ring R that satisfies CAC. It is shown in Section 5 of [12] that 
the pretty base (hC(a) ß a ß R) is cocompact; that is, the dual hull-kernal 
topology generated by {h(a)'a ß R} on mR is quasicompact. 

3.14. Theorem. If (X, •) has a Seeyep base B(TI), where 7-/ is a com- 
pletely regular basic subfamily of L x that is (w + , w+)-nested, and r* is the 
cotopology derived from B(•), then, for any wealdy LindelS[ subspace Y 
of X, r Y = r*[Y. 

Proof. As noted •bove, r* [Y • r[Y, so it su•ces to establish (+) for each 
y • Y •d r [ Y-neighborhood V of y, there is an h • • such that y • 
•t•Z(•) a • • V. (+) 

To show (+), observe first that since • is completely regular •nd 
b•ic, r(•) and hence r(•) •e regular sp•ces, so we m•y •sume that V 
is • regular open subset of Y. Then Y k V is • regular closed set of Y •d 
hence is we•kly LindelSf by [1]. 

Since • is b•ic, there is an f • • such that 

y ß Y C•intZ(1 - f) C_ Y C•cl cz (f) C_ V. 

Next choose, for each z ß Y \ clcz(f) - intZ(f) N Y, • gz ß 7-/such that 
Z ß intZ(1 = gz) C_ cz(gz) C_ intZ(f) and note that 

(,) cz(g•) N cz(f) = •b for each z ß Y • cl(cz(f)) = int Z(f). 

Now, {intZ(1 - g•) ß z ß int Z(f)} is an open cover of int Z(f) • Y and 
hence of its weakly Lindelaf subspace Y\ V. So there is a sequence {z(n)) C- 
Y k (cl(cz(f)) such that if S = U•<,oint Z(1 - gz(•)), then $ C1 (Y k V) is 
dense in (Y k V). By (*) and Lemma 2.6, g•(•) _• 1 - f for each n ( co. 
Thus, since B(7-/) is a Seeyep base, there is an h ß 7-/ such that g•(•) _< 
1 - f for each n ( co. Since 7-/is (completely) regular $ C- Z(1 - h) and 
int Z(1-f) C_ Z(h). Thus as h is continuous, it vanishes on a neighborhood 
of y and is 1 on Y \ V. Hence (4-) holds and the proof of the theorem is 
complete. [] 
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3.15. Theorem. Suppose (X, T) has a cocompact Seever base l•(•), 
where 7-[ is a completely regular basic subfamily of C(X, [0, 1]) that is 
(•v+,•v+)-nested, and Y C_ X is a weakly Linde16f subspace of X. Then 
clxY and fly are homeomorphic. In particular, the closure of any count- 
able subspace of X is compact. 

Proof. By Theorem 2.15, Y is C*-embedded in X, so it suffices to show 
that W = cl(x,r)Y is compact. 

Let T* denote the cotopology on X derived from B(T/). We will show 
next that W is closed in (X, z*). (++) 

To see this, choose p E X • W and a •--closed neighborhood U of 
p disjoint from W. Since 7-/ is basic, there is an f 6 7-/ such that p 
intrZ(1- f) C cz(f) C int•V. 

For each x e W, pick gx e • such that x e Int•Z(1 -gx) C- cz(gx) C_ 
X k V, and note that 

(*) cz(g•) FI cz(f) - •b for each x e W. 
Now, {int•Z(1 - g•) FI W ß x e W) is an open cover of the weakly 

LindelSf subspace W, so there is a sequence {x(n)) such that 

D = U{int•Z(1 - g•(,•))'n < w} FI W 

is dense in W. Since (*) holds, by 2.6 g•(,•) _< i - f for all n < •v. Since 
is (•v +, •v+)-nested, there exists h 6 7-/such that gx(,•) < h < i - f. Then, 
as in the proof of 3.14, 

D C_ Z(1 - h) and cl(cz(f)) C_ Z(h). 

Hence h = 1 on D and hence on W, while h = 0 on V. Consequently (++) 
holds. Thus, it follows from 3.14 that W is a quasicompact Hausdorff space 
and hence is compact. [] 

Theorem 3.15 generalizes the corresponding result for spaces with a 
cocompact pretty base in [10], and thus in turn generalizes the result [5] in 
case X = mR is the space of minimal prime ideals of a ring without nonzero 
nilpotents that satisfies CAC. If X is a subspace of an F-space, then it has a 
complemented Seever base B, and the cotopology derived from B coincides 
with the original topology, so Theorem 3.13 tells us nothing new in this 
case. On the other hand, in Section 4 we produce an example of a space 
with a pretty base (and hence a Seever base) that is not a subspace of an 
F-space. 
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Next, we exa.mine locally compact spaces that have a Seevet base or 
a pretty base. 

Recall that X is called an F'-space if disjoint cozero sets of X have 
disjoint closures. Every F-space is an F'-space, every normal F•-space is an 
F-space, but there axe locally compact F•-spaces which fail to be F-spaces. 
Also, if every point of x has a neighborhood that is an F•-space, then X is 
an F•-space. For verifications of these assertions, see [3]. 

The next result is an immediate consequence of Proposition 3.6, the 
fact that the closure of a weakly LindelSf subspace is weakly LindelSf, 
and the fact that locally basically disconnected spaces axe basically dis- 
connected; see [11]. 

3.16. Theorem. Suppose X is a locally weak/y Lindeliif space. 

(a) /f X has a Seevet base, then X is locally an F-space, and hence is 
an F'-space. 

(b) /f X has a cocompact pretty base, then X is locally compact and 
basically disconnected. 

Recall from [16] that a locally compact space is said to be substonean if 
disjoint a-compact open subspaces of X have disjoint compact closures. It is 
established in [16] that X is substonean if and only if X is a compact F-space 
or X fails to be compact and its one-point compactification 7X 
is a compact F-space in which cx• is a P-point. An example is given in [16] 
of a substonean space that fails to be an F-space. 

Next, we relate being a substonean space to having a cocompact pretty 
base. 

3.17. Theorem. If X is asubstonean space, then X has a Seever base, and 
clx S and/•S are homeomorpbic F-spaces for any weak/y Linde16f subspace 
SofX. 

Proof. Every substonean space is a subspace of an F-space and hence has 
a Seevet base by Proposition 3.4. The weakly LindelSf subspace S of X 
is C*-embedded in X by Theorem 2.15. If X is compact, then so is clxS. 
Otherwise, let 7X = X U {cx•} denote the one-point compactification of X, 
which, as noted above, is an F-space in which cx• is a P-point. So each 
s E S has a neighborhood V• in X such that clxV• = cl•xV• is compact. 
The open cover {V•: s (• $} of $ has a countable subf•mily {V•(n): n < w} 
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such that 

$ C_ clx[U{Vs(,) ß n 

Since U{Vs(n) ' n < w} is o-compact and hence LindelSf, its closure in X 
is compact since X is substonean. Hence clxS and/•S are homeomorphic 
spaces which are F-spaces by Proposition 3.6. [] 

3.18. Theorem. If X is locally weakly Lindeliif and has a cocompact 
SeeYet base, then X is substonean. 

Proof. By Theorem 3.15, X is locally compact. Since o-compact open sub- 
spaces are weakly LindelSf, disjoint o-compact open subsets are completely 
separated and hence have disjoint closures. Hence X is substonean. [] 

In [16] a Tychonoff space X is called a Rickart space if each of its 
o-compact open sets has a compact open closure. It is shown in [16] that X 
is a Rickart space if and only if X is a compact basically disconnected space 
or X fails to be compact and its one-point compactification ?X 
is basically disconnected and oo is a P-point of ?X. Moreover, every Rickart 
space is basically disconnected. 

The analogues of Theorems 3.17 and 3.18 for Rickart spaces and spaces 
with a pretty base follow. 

3.19. Theorem. If X is a I•clm. rt space, then X has a pretty base. More- 
oYer, if S C_ X is weakly Lindeliif, then clxS and I•S are homeomorphic. 

Proof. The first assertion holds since Rickart spaces axe basically discon- 
nected, and the second one follows immediately from Theorem 3.15 and the 
fact the Rickart spaces are substonean. [] 

3.20. Theorem. If X is locally weak/y LindelSf and has a cocompact 
pretty base, then X is a Rickart space. 

Proof. By Theorems 3.6(b) and 3.15, the closure of any a-compact open 
subspace of X is compact and basically disconnected. So X has a base 
consisting of compact basically disconnected subspaces and hence is basi- 
cally disconnected. If X is compact, then it is a Rickart space, so we may 
assume that X is not compact and write its one-point compactification as 
?X = X U {c•}. Since a locally compact locally F-space is an F-space and 
has a pretty base, by 3.16 7X is a basically disconnected space and by the- 
orem 3.10, oo is a P-point of ?X. If S is a cozeroset of ?X contained in X, 
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then clvxS = clxS is compact by Theorem 3.17. If S is a cozero set of ?X 
containing c•, then X \ S - ?X \ S and S axe disjoint a-compact subsets of 
the F-space ?X. So, by 2.14 they are completely separated and hence have 
disjoint closures in ?X. Since X \ S is closed in ?X, it follows that clvxS 
is open as well as compact. Hence X is a Rickart space. [] 

Recall that a space X is called almost compact if it has a unique 
compactification. In 6J of [9], it is shown that a Tychonoff space is almost 
compact if and only if IfiX \ X[ _• 1. 

3.21. Example. An almost compact F-space that is not substonean. Ex- 
axnple E of [3] is an almost compact Ft-space that is not a subspace of an 
F-space, and hence cannot be substonean. [] 

3.22. Example. An almost compact extremally disconnected space that is 
not a Rickart space and hence cannot be the space of minimal prime ideals 
of a reduced commutative ring satisfying CAC. 

Let X = rico and let Y = rico \ {p}, where p is any nonisolated point 
of rico. Then X as well as its dense subspace Y is extremally disconnected, 
and p is not a P-point of X since fiw \ co is nowhere dense G• set of rico 
containing p. Since Y is almost compact, its one-point compactification is 
X, so Y is not a Rickart space. The last assertion follows from the fact that 
if a ring R satisfies CAC, then mR has a cocompact pretty base and hence 
must be a Rickart space by Theorem 3.20. [] 

The final result of this section is related to Theorem 3.17. Its proof is 
staightforward and hence omitted. 

3.23. Theorem. Iœ X is a locally compact noncompact space and ?X = 
X O {c•} is its one-point compactitication, the œollowing are equivalent. 

(a) 7X is an F-space. 
(b) Disjoint open a-compact subsets of X have disjoint closures in X, 

at least one of which is compact. 

In 2.5(d), we discussed conditions under which a space with a Seever 
base has an F-space compactification. The next section of the paper is 
devoted to a discussion of a class of examples of spaces with cocompact 
pretty bases that do not have F-space compactifications. 

4. Examples of spaces of minimal prime ideals that have no F- 
space compactifications. 
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If X is a Tychonoff space, we abbreviate the space InC(X) of minimal 
prime ideals of C(X) with the hull-kernel topology by taX. In Corollary 
5.2 of [11] it is shown that mX and minX(= mC*(X)) are homeomorphic, 
so whenever it suits us in studying such spaces of minimal prime ideals, we 
may assume without loss of generality that X is compact. By 2.11 of [9], 
every prime ideal of C(X) is contained in a unique maximal ideal, and the 
map w of mX onto/•X that sends each P • mX to the unique point p of 
/•X such that for each f • P, p • clzxZ(f) is continuous. Moreover, w 
maps no proper closed subset of mX onto/•X; if X is an F-space, then •- 
is a one-one map, and w is a homeomorphism if and only if/•X is basically 
disconnected. (See Theorem 5.3 of [11] for proofs of the above.) Thus, if 
X is a compact F-space, we may identify the points of X and mX while 
assigning to mX the topology with the clopen base {clx$: $ • coz X}. 
See Lemma 2 of [5]. Clearly the topology of mX is finer than that of X, 
and mX is a zero-dimensional Hausdorff space (and hence Tychonoff). 

We had conjectured at one point that if a space Y had a cocompact 
pretty base, in particular if Y =mX for some compact space X, then 
some compactification of Y would be an F-space. This holds if Y is locally 
compact by Theorem 3.16 and the fact that the Stone-Cech compactification 
of a basically disconnected space is basically disconnected. See 5.1 for a 
related result. 

However, there are compact F-spaces X for which mX has no com- 
pactification that is an F-space. The main result in this section (theorem 
4.3) gives sufficient conditions for a compact F-space to be such a space. 
We then point out, assuming only ZFC, that there are examples of spaces 
satisfying these conditions; we also show that if Martin's Axiom (MA) is 
assumed, then/•w • w satisfies these conditions. 

We begin with some straightforward lemmas. Recall that P-sets were 
defined just before 3.9. 

4.1. Lemma. Let K be a basically disconnected P-set of the compact 
F-space X. Then K inherits the same topology from mX as it does from 
X. 

Proof. It clearly suffices to show that if C • cz(f)X, then KNclxC is open 
in the topology that K inherits from X. 

We claim that KnclxC = clx(KnC). Clearly clx(K•C) C_ K(•clxC. 
Suppose that p • K • clx(K FI C). Then there exists V • coz X such that 
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p • V and VfIKFIC = •b. As VFIC • coz X and K is a P-set of X, it follows 
that K 0 clx (V 0 C) - •b. Thus there exists W • coz X such that p • W 
and W FI V fl C = •b. Thus p • clxC, and hence K fl clxC C_ clx(K FI C). 
Our C]•tim follows. 

As K is basically disconnected and K CI C E coz K, it follows that 
clf(K CIC) is open in K. (Here K has the topology inherited from X). But 

dK(K f'l C) = clx(K f'l C) = K VI clxC 

by our claim, so K Cl clxC is open in the topology K inherits from X. The 
lemma follows. [] 

The following result is likely well-known, but we cannot find a refer- 
ence for it. Recall that an F•-space is a Tychonoff space in which disjoint 
cozero-sets have disjoint closures. Every C-space is an F'-space (see [3]). 

4.2. Lemma. If U and V axe cozero-sets of the FLspace X, then clx (U FI 
V) = clxU n clxV. 

Proof. It suffices to show that clxU 0 clxV C_ clx(U O V). Let p • clxU f3 
clxV, and let p E W E coz X. Then p E clx(U N W); for if T is open in X 
and p E T, then p • TOWOdxU, so TO(UOW) f! c•. Thus clx(UOW)O 
clxV f! 4. As X is an FCspace, it follows that U O W Cl V • •b. As W was 
an arbitrary cozero-set containing p, it follows that p E clx(U O V). [] 

Recall that a.lmost P-spaces were defined just before 3.12. A contin- 
uous closed surjection is called irreducible if it maps proper closed subsets 
of its domain to proper closed subsets of its range. A detailed discussion of 
irreducible maps can be found in õ6.5 of [23]. 

4.3. Theorem. Let X be a compact F-space that is also an almost P- 
space. Suppose that there exists a dosed P-set K of X that can be mapped 
irreducibly onto [0,1]. Then mX is not a subspace of an Ft-space; in pax- 
ticulax, mX has no compactification that is an F-space. 

Proof. As K, being compact, is a C*-embedded subspace of X, there is 
a continuous surjection f: X -• [0, 1] such that f [ K: K • [0, 1] is 
an irreducible surjection. It follows that K is separable (see 6B(3) of [23]). 
Since K is also an F-space (see 6L(4) of [23]), it follows that K is extremally 
disconnected (see 6L(8) of [23]) and hence basically disconnected. Hence 
by 4.1 K is a compact subspace of taX. 
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For each r 6 [0,1], we denote intxf*-(r) by A(r). Observe that A(r) 
is clopen in taX, and clxA(r) = f'-(r) since X is an almost P-space. We 
claim that A(r) CI K = •b for each r • [0, 1]. For suppose not; then K \ A(r) 
is a proper closed subset of K, and the irreducibility of f I K implies that 
[0, 1]\f[K\A(r)] is a nonempty open set of [0, 1]. It would follow that {r} is 
open in [0, 1]; from this contradiction we conclude that A(r)•K -- •b. Let Y 
be a Tychonoff space containing mX as a subspace. Then K ClclyA(r) -- 
since K is a compact subspace of mX and hence of Y, and A(r) is a closed 
subspace of mX disjoint from K. Thus there exists g • C(Y, [0, 1]) such 
that y[A(r)] = {0} and y[K] = {1}. 

r•t (•)•e• •,,m•t• • or• ba• fo• [0, q. W• ½hoo• by •d•½- 
tion on n a sequence (r,•),•e • C_ [0, 1], a sequence (U,•),•e • of regular open 
subsets of X, and a sequence (g,•),•e• C_ C(Y, [0, 1]) satisfying the following 
conditions. 

(1) ri • Bi/2 or ri • Bi-1/2, depending on whether i is odd or even. 
(•.) f-(•) • •c _c v•. 
(a) g•[•c] = {1} •d g•[:•(•)naxVd = {0}. 
(4) i //• implies g? [[0, ¬)]•g•- [[0, ¬)] = •. 

Let n 6 ca, and suppose inductively that we have chosen ri, gi, and 
U• for i < n such that (1) to (4) are satisfied if i,k < n. Let j = • if 
n is even, and j = ,•-1 if n is odd. Choose p, q 6 [0, 1] such that p • q 2 

and (p, q) C Bj. As f ] K is surjective, there exists x 6 K such that 
f(x) • (p, q). By induction hypothesis (3), 

ß e n {g;- i < 
which is open in taX. Thus there exists C 6 coz X such that 

ß e axe c •{g? (],1]- i < •. 

f-[(p, q)]]; the last equality follows from 4.2. Thus as K is a P-set of X, 
it follows that K CI C F• f'- (p, q) • •b. As K is extremally disconnected (as 
noted above) it is zero-dimensional, so there is an open-and-closed subset 
B of K such that • V: B c_ K FICIq f'- [(p, q)]. Thus B is a compact subset 
of X contained in C, so there is a regalax open subset U of X such that 
B C_ U C_ clx U C_ C. We define U,• to be U. 

• ! I •C i• •d•½ibl•, th• •t• • ß [0,1] \ linc \ •]. Thu• 
K F• f'-(r,•) = (f I K)'-(r,•) C_ B C_ U = U•, and (2) is satisfied when 
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i = n. •hrthermore, since B C_ f*-[(p, q)], it follows that r• • (p, q) C Bj, 
so (1) is satisfied when i = n. 

Since clxU,• C_ C, it follows that 

clxU,• C rq {g? [-•, 1]-i < m}. 
It quickly follows that clx U• is completely separated in Y from 

U {g? [0, ¬]'i< m} since •'1 {g? [i, 1]' i< m} and U {g? [0, ¬]' i < m} 
are disjoint zero-sets of Y. As noted earlier in the proof, A(%) •d K 
•e completely sepiated in Y. It follows that A(r•) • clxU• is completely 
separated in Y from 

• U [U {g• [[0, i]]' 
•o t• •xi•t• g• • C(Y, [0, ;]) •.c• tn•t g.[•(r•) n clxU•] = {0} 

g• [Z• U [U {g• [[0, i]]' 
Hence induction •sumptions (3) and (4) are satisfied when i, k 

and our inductive construction is complete. 
To finish the proof it suffices to show that 

[{_ i }] [{ • • c• u % [[0,•)] .• • • nc• u g•,+l [[0,1)] '• • • , 
since by (4) above K would be contained in the intersection of Y- 

closures of disjoint cozero-sets of Y. We will show that 

i }] K • ely U g• [[0, •)] 'j • u ; the other inclusion follows by symme- 
try. 

Let x • K and let W be a Y-neighborhood of x. There exists C 
coz X such that x • clx C C W. Thus K nclx C • 4 so (• K is a P-set) 
K n C = 4, and • above there is a K-clopen set B and a regular open 
•t u of x •.cn tn•t • • • 
• f [ K is irreducible, so there exists j • u such Bj • [0, 1] • f[K • B]. 
Let n = 2j; then K n f•(%) • B, so by (2) K n f•(%) • U n U•. Thus 
u nu. n •(r•)• • • dx•(•.)=/•(•.). •y (3) g•[• n U•(r•)] = {0}, 

• 1 

•o • • u n gy [[0, i)] • • n gy [[0, i)]- T•.• [u{% [[0, •)] ß j • •}], 
•d our proof is complete. 

4.4. Examples. (a) In 1.2 of [19], Kunen shows that if Martin's Axiom 
is •sumed, then the compact almost P-space F-space • • • contains a 
compact subspace K that can be mapped irreducibly onto [0, 1]. Henc• 
4.3, Martin's Axiom implies that m(• • •) c•not be embedded in an 
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F'-space. It is immediate that any space containing m(/•co \ co) as an open- 
and-closed subspace, such as ra(/•D \ D) where D is an infinite discrete 
space, cannot be embedded in an F'-space under Martin's Axiom. 

(b) Let X be any locally compact a-compact noncompact space. By 
6L(2) or [23],/•X \ X is a compact F-space that is an almost P-space. As 
X is not pseudocompact it contains a closed C-embedded countably infinite 
discrete subspace D (see 1.21 of [9]). By 2.1 of [21], cl•xD \ X is a P-set 
of/•X \ X, and cl•xD \ X •/•co \ co. If we assume Martin's Axiom, there is 
a P-set K of cl•xD \ X that can be mapped irreducibly onto [0, 1] (see (a) 
above), and K is evidently a P-set of/•X \ X. Hence m(/•X \ X) cannot be 
embedded in an F'-space. 

(c) It has been announced in [8] that is relatively consistent with ZFC 
that/•co \ co has no compact P-set K that can be mapped irreducibly onto 
[0, 1]. As this is written, it is not known whether it is a theorem in ZFC 
that m(/•co \ co) has no F-space compactification. In [4] the axiom "Mel" 
is formulated, and it is shown that "Mel" implies that m(/•co \ co) is not 
basically disconnected; it is not known if "Mel" is a theorem of ZFC. 

(d) In Corollary 6 of [5], an example is produced in ZFC of a quotient 
K of/•co \ co that is a compact F-space and almost P-space, and which 
contains a P-set that maps irreducibly onto [0,1]. Hence by 4.3, mK cannot 
be embedded in an F'-space. This shows that in ZFC there are spaces 
with cocompact pretty bases that cannot be embedded in F'-spaces, and in 
particular do not have F-space compactifications. 

5. Miscellaneous results and open problems. 
It seems natural to ask: when does a space with a cocompact pretty 

base have a basically disconnected compactification? Theorem 5.1 trans- 
lates this query into the language of Boolean algebras, and in doing so 
reinforces the "naturalhess" of the concept of a pretty base. Recall that for 
any space X, B(X) denotes the Boolean algebra of clopen subsets of X. 

5.1. Theorem. A space X has a basically disconnected compactitication 
if and only if there is a subalgebra •4 of 13(X) that is a pretty base for X. 

Proof. Suppose X has such a pretty base .A, and let K denote the Stone 
space of .A. By identifying X with the fixed ultrafilters on B(X), we may 
regard K as a compactification of the zero-dimensional space X. Clearly 
B(K) is a Boolean algebra isomorphic with .A, and clearly .A is countably 
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complete since it is a pretty base. Thus/3(K) is also countably complete, 
whence K is basically disconnected. 

Conversely if X has a basically disconnected compactification K, then, 
as noted in the proof of 3.6,/3(K) is a pretty base for K. The trace of 
on X is a pretty base by 3.5(b), and is clearly a subalgebra of/3(X). So the 
theorem holds. [] 

We know that a Tychonoff space X is an F-space, or basically discon- 
nected, or extremally disconnected if and only if fix has the corresponding 
property. No simple relationship of this sort exists for a space with a pretty 
base; 5.1 above is the best we can do (note that in 4.4(d), we produced a 
space that has a cocompact pretty base but which has no F-space compact- 
ification, and, in particular, no basically disconnected compactification. 

Hence we are motivated to ask: 

5.2. Problem. Is there a "nice" topological property 7 • such that 
chonoff space X has a pretty base ff and only if it has a compactification 
with property 7 • ? 

5.3. Remark. Recall from [14] and [15] that X is called a quasi-F-space 
if dense cozero sets of X are C*-embedded in X. If X is any compact space, 
there is quasi-F-space QF(X) and a continuous irreducible surjection f of 
QF(X) onto X such that if Y is any compact quasi-F-space that maps onto 
Y under a continuous irreducible surjection, then Y maps irreducibly onto 
QF(X). Thus QF(X) is called the quasi-F-cover of X. In unpubnshed 
work, Johannes Vermeer has shown that mX and m(QF(X)) are homeo- 
morphic if X is compact. Hence, in the study of spaces of minimal prime 
ideals of rings C(X), one may assume without loss of generality that X is 
a compact quasi-F-space. 

5.4. Problem. Suppose X is a space with a cocompact pretty base. Is 
there a ring 7• satisfying CAC such that X and mR are homeomorphic? 
Indeed, if the answer is afBrmative, may one always assume that R - C(Y) 
for some (compact quasi-F) space Y ? 

5.5. Problem. Suppose X has a cocompact pretty base and X is basicaMy 
disconnected. Does it fo//ow that X is locaMy compact ? In particular, sup- 
pose X = mY for some (compact) space Y, and X is basicaMy disconnected. 
Does it follo•v then that X is 1ocaMy compact? 
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As we saw in Section 3, the extremally disconnected locally compact 
space obtnJned by removing a nonisolated point from ]3w c•.nnot have a 
cocompact pretty base, so even a.n aflqrmative a.nswer would not provide a 
characterization of basically disconnected spaces with a cocompact pretty 
base. 

The minimal basically disconnected cover described in [V] may be a 
valuable tool in any attempt to solve 5.5. 

There are many other mysteries about spaces with a cocompact pretty 
base. In particular, we pose the following. 

5.6. Problem. Suppose X has a cocompact pretty base. Must X be 
normal, or a k-space, or strongly zero-ch'mensional? 
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