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Bench-scale experiments were conducted to determine the effectiveness of using pulsed

ultraviolet (UV) irradiation and pulsed-UV/hydrogen peroxide (H202) processes to destroy N

nitrosodimethylamine (NOMA). The effects of various UV and H20z dosages and source 

waters, as well as nitrate (N03- ) and initial NDMA concentrations, were investigated as 

control parameters for both completely mixed batch reactor and continuously stirred tank 

reactor tests. The presence of compounds that interfere with UV light (e.g., N03- ) and the 

formation of tota I trihalomethanes after pulsed-UV treatment were also studied. Pulsed-UV 

technology was highly effective for destroying NOMA. The pseudo- first-order rate constants 

were calculated to be in the range of 1.4 to 12.2 min-l . This technology offers other benefits 

(e.g., disinfection) and can be applied directly to drinking water treatment However, potential 

concerns in pu lsed-UV photolysis of NDMA include (1) the formation of undesirable chemicals 

as rea ction intermediates and (2) possible reformation/regeneration of NOMA after chlorination 

of pulsed-UV- treated effluent Pulsed-UV with a small amount of HzOz could be used to 

control the reaction by-products and to inhibit the reformation of NOMA by using hydroxyl 

radicals generated during an advanced oxidation process. In contrast, pulsed-UV with a 

larger amount of HzOz could inhibit NOMA decay by direct photolysis. 

rocesses 

n February] 998 , the presence of N-nitrosod imethylamine (NDMA) con
ta mination in drinking water sources was detected at an aerospace facil
ity in Northern Ca lifornia (CDHS, 2000). NDMA contamination was sub
sequently found in drinkin g water wells in Southern Ca lifornia (eDHS, 
20(0). NDMA is typically an oxidative degradation product of unsym

metrical dimethylhydrazine, a component of rocket fu ei. However, NDMA is 
also formed during man y kinds of manu facturing processes at industria l s ites, as 
a by-prod uct of reactions involv ing chemica ls ca lled a lkylamines . Alkylamines 
include both natural and synthetic compounds that are found widely di stribu ted 
througho ut the environment. 

The US Environmental Protection Agency ha s identified NDMA as a probable 
human carcinogen. Because N DMA has not historically been considered a comillon 
drinking water contaminant, no fede ral o r state drinking water standards ex ist 
fo r it. In April '199 8, the California Department of H ea lth Services (CDHS) 
announced an action level of 2 ng/L for NDMA (CDHS, 20(0). The leve l of 
NDMA found in a Northern California drinking water well in eastern Sacramento 
Cou nty was approximately 150 ng/L (CDH S, 2(00 ). In Southern Ca liforni a, 
NDMA in the range of 70 to 3,000 ng/L (CDHS, 2(00) was found in three drink-
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FIGURE 1 Characteristics of various types of UV lamps and NDMA absorption spectrum 
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The current widespread detection of 
NDMA and its changing regulatory sta
tus point to the need for a technology 
th a t can remediate drinking water 
sources contaminated by this com 
pound. It is well known that NDMA 
can be reduced by ultraviolet (UV) tech
no logies (Sharpless et ai, 2001; Bolton 
et a i, 200 1; Calgon Carbon, 1996). 
Pulsed-UV has the potential to provide 
muc h more co mplete oxidation of 
NDMA because o f its a bility to deliver 
much higher UV light intensities than 
other continuo us-wave UV techno lo
gies. In addition, pulsed-UVlhydrogen 
peroxide (H 20 2), which uses the gen
eration of hydroxyl radicals, is expected 
to react with NDMA and further break 
down intermedia te NDMA degrada
tion by-products to avoid the refonn a
tion of N DMA a fter chlorin ati on. 
Therefore, there is a growing interest 

ing water wells in the San Gabriel Basin. It has recently been 
suggested that NDMA may be present in (1) sewage and 
reclaimed water after chlorination (Brennan & Robbins, 
2000) and (2) surface water processed by conventional 
drinking water treatment methods (Cho i et ai, 2001; Davis 
et ai, 2000). Although the exact mechan isms of N DMA for
mation are unknown, they appear to be associated with the 
chlorination process. In December 1999, the CDHS estab
lished a " temporary" action level of 20 ngiL for N DMA so 
that more utilities could participate in the initial screening 
effort. In March 2002, the CDHS revised its temporary 
action level to 10 ngiL (CDHS, 2003). 

in pulsed-UV and pu!sed-UV/H20 2 treatment processes 
for removing NDMA from drinking water. 

FIGURE 2 

A 

BACKGROUND 
Physical/chemical properties of NOMA. NDMA is the 

simplest dialkylnitrosamine, with a molecular formula 
of C2H 6N 20 . It is a volatile, combustible, yellow, oily 
liquid (MOE, 1991). NDMA has a high water so lubility 
(Ta ble 1) and a low octanol-water-partitioning coeffi
cient (log Kow = -0.51) and can readily leach into grou nd
wate r. In addition, NDMA is not likely to bioaccumu
late, adsorb to particulate, or volatilize (because of a low 

Henry's law constant, 2.63 x 10-7 atm
m3/mol), which enhances its poten tial 

Schematic of pulsed-UV batch reactor-completely mixed batch reactor (AI 
and continuously stirred tank reactor (8) 

to move through soil and sediment into 
groundwater. 

Pulsed-UV irradiation. Pulsed-UV 
irradiation uses high-intensity UV flash 
lam ps. Flash lamps operate in the 
pulsed mod e with peak intens itie s 
much greater than those that occur 
with continuous sources of the same 

Mixer 

/' -------..... 
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_--i- lamp 
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tap 
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Mixer 

Effluent ......... +_-I+_--'~:n ---J •• (sample 
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o 
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a verage power. The pulse dura tion is 
typically in the microsecond time scale , 
whereas the interva l between pu lses is 
on the order of mil Iiseconds. The elec-
trica l discharge quickly heats the fill 
gas to a high enou gh temp eratu re 
(- 15,000 K) to create a plasma that 
emits blackbody light characteristic of 
its temperature. Unique fea tures of 
pulsed lamps include th e ability to 
come to full power immediately (with
out a warmup period) and the ability 
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to shift th e spectrum of a single lamp by simply 
cha nging the peak pulse power. Unlike low - o r 
medium-pressure mercury-based lamps, commonly 
used fill gases for pulsed-UV lamps include xenon, 
argon, and other inert gases or mixtures. Thus, lamp 
breakage does not pose any signi fica nt cha llenges 
compared with those from the mercury-based lamps. 
Xenon plasmas generally have the grea test efficiency 
for phoron productio n. 

Pulsed-UV treatment systems arc polychromatic in 
nature, providing continuous spectra between tbe 
wavelengths of 185 and 1,000 nm. With high plasma 
temperature occurring during pulsing, the low-wave
length emission reaches maximum energy level. A 
typ ical xenon flash lamp is maximized at 230 nm 
and has significant outpu t at wavelengths below 200 
nm (Figure 1). However, excessively high pulse ener
gies increase thermal stresses and may shorten the 
life of a lamp. Pulsed-UV flash lamp intensiti es of 
several hundred to 1,000 Wlin. (d ischa rge length) 
contrast with a few hundred watts per in ch for low

A pulsed-ultraviolet (UV) system can effectively treat water contaminated 

by N-nitrosodimethylamine with the use of a non-mercury-based lamp. 

Applied UV dosage for a pulsed-UV system can be adjusted easily 

by changing the lamp's pulse frequency. 

and medium-pressure mercury lamps. The greater power 
density may allow tbe use of a shorter contact time or a 
smaller contactor. 

Photolysis and oxidation of NOMA. NOMA absorbs UV 
li ght in a strong band centered at 228 11m (Figure 1) and 
a weak band centered at 332 nm, resulting in breakdown 
of tbe nitrogen- nitrogen bond in tbe molecule-the pri 
mary mechanism of NOMA removal (Bircher et ai, 1999). 
Because the absorption band is strong, direct photolysis 
of NOMA by UV technologies alone is a promising trea t
ment process . Pulsed xenon lamps are even more capable 
of direct pbotolysis of NOMA than low-pressure mer
cury lamps because of the greater polychromatic wave
length produced between 200 and 300 nm (Figure 1). 

FIGURE 3 Correlation between hydraulic retention time and UV 
dose for the pulsed-UV system used 

HRT -hydraulic retention time, UV-u/traviolet 

Wben H20 2 is present during the IN process, hydro xyl 
radicals (·OH) ca n be produced by th e photolysis of 
H20 2, as shown in Eq 1. 

hv 
H20 2 - > 2 · OH (1 ) 

The hydroxyl radicals attack orga nic compounds nonse
lectively, with rate constants ranging from 107 to 109 L 
x mol-I x s- 'I. The rate constant of NDMA oxidation by 
hydroxyl radical s is 3.3 x 108 L x mol- I x s-I (B uxton et 
a i, 1988), and this may serve as a secondary NOMA 
removal mechanism. 

LITERATURE REVIEW 
Treatment technologies. Beca use of NOMA's highly 

water-so lubl e, pola r nature, it cann ot be effec ti ve ly 
removed from water using air-stripping, reverse osmosis 
membranes, or granul a r ac ti va ted ca rbon (Jobb et a i, 
1994; Jobb et aI, 1992). Jobb et al (1994, 1992) showed 
that low-pressu re mercury UV lamp irradiation co uld 
red uce NOMA from 89 to S ng/L a t a UV dosage of 
approximately 2.6 kW·h/m3 (or 10 kW·hll,OOO ga l) in the 
laboratory-sca le test. Furthermore, pilot-scale studies 
(Jobb et ai, 1994; Jobb et ai, '1992) found that a UV 
dose of 1.26 kW·h/m3 (or 4. 85 kW·ht l ,000 ga l) was 
effective in red ucing NOMA to <5 ng/L. Bircher et al 
(1999) reported that NOMA was red uced from 53 to 2 
ng/L in groundwater with a UV dose of 0.39 kW·h/m 3 

(1.5 kW·bll,OOO ga l) produced through a mediu m-pres
sure la111p . 

Potential destruction pathway for NDMA. When NDMA 
strongly absorbs UV light in a band centered arollnd 
228 Hm, an unstable dimethylamino rad ica l and a nitric 
oxide (NO) rad ical are initially formed . Bircher ct al 
(1999) proposed that th e dimethylam ino and NO rad i-
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TABLE 1 Chemical properties of N-nitrosodimethylamine 

Chemical Property 

Molecular weight 

Boiling point at 760 mmHg 

Melting point 

Vapor pressure @ 200 C 

Vapor density at 250 C 

Density at 200 C 

Solubility 

Henry's law at 250 C 

Log Koc 

Log Kow 

Measurement 

74.08 g/mol 

151-154 °C 

- 50oC (estimated) 

2.7 mmHg 

2.56 gIL 

1.0048 

Miscible, 3,978 mg/L 

2.63 x 10-7 atm-m3/mol (estimated) 

1.41 

- 0.57 

TABLE 2 Raw water quality characteristics 

Southern Colorado 
Deionized California River 

Parameters Water* Groundwater Water 

Total organic carbon-mg/L 0.11 0.17 

Electrical conductivitY-f,1mhos 1.08 389 

Nitrate- mg/L NDt 1.98 

Alkalinity- mg/L NM 166 

Turbidity- ntu NA 0.07 

pH- unit 5.4 7.76 

Ultraviolet absorbance at 254 nm-abs/cm ND ND 

·Super·Q,© Millipore Corp., Bedford, Mass. 
tND- not detected 
*NA- not applicable 

FIGURE 4 Effects of pulsed-UV dosages on NOMA reduction in deionized water 
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cals could react with a hydroxyl rad
ical and oxygen to become bicar
bonate and nitrate (N03- ), respec
tively. The dimethylamino radical has 
the potential to combine readily with 
a hydroxyl radical abstracted from 
a water molecule to form dimethy
lamine (Challis et aI, 1978). Di
methylamine may combine with 
nitrite to reform NDMA under cer
tain conditions. This might explain 
the reformationlregeneration of 
NDMA following chlorination of 
UV-irradiated water. 

OBJECTIVES 
The main objective of this study 

was to evaluate the effectiveness of 
pulsed-UV and pulsed-UV/ H 2 0 2 

processes for NDMA removal. The 
following goa ls were pursued during 
the course of the study: 

• investigate the effects of pulsed
UV dosage on NDMA destruction, 

• determine the effects of pulsed
UV and H 2 0 2 dosages in pulsed
UV/H 2 0 2 processes for NDMA 
removal, 

• evaluate the effects on NDMA 
destruction exerted by other pulsed
UV-absorbing compounds that com
pete for pulsed-UV light, 

• using flowthrough tests, evalu
ate the effects of pulsed-UV and 
pulsed-UV/H20 2 dosages on various 
levels of NDMA, and 

• investigate the possible reforma
tion/regeneration of NDMA in water 
treated with pulsed-UV. 

EXPERIMENTAL DESIGN 
Batch reactor description. The 

pulsed-UV system1 consisted of a 
316-grade sta inless-steel batch reac
tor that included a mixer, a 5-kW 
power source, and a I5-cm xenon
filled, tungsten-electrode lamp2 inside 
a quartz jacket-a conduit for deion
ized (DI) cooling water. For bench
top experiments, this lamp arrange
ment was housed inside a treatment 
chamber that could be operated as 
either a completely mixed batch reac
tor (CMBR) or a continuously stirred 
tank reactor (CSTR) system (Figure 
2). With power applied to the lamp, 



a standby "simmer mode" of steady
state partial ionization of the xenon 
gas was maintained with a low-current 
arc between the electrodes (Smith, 
1986). Pulses were genera ted by an 
electrical discharge that quickly heated 
the xenon gas and created a plasma of 
ionized gas, which reached a tempera-

. ture high enough (near 15,000 K) to 
emit blackbody light radiation from 
185 to 400 nm and above. The elec
trica l hardware allowed the bulb to 
opera te up to 30 flashes/so 

In the CMBR experiments, the 
pulsed-UV reaction volume was 10 or 
12 gal (0.038 or 0.045 m3), and samples 
were taken from the reactor after vari
ous exposure times. In the CSTR exper
iments, the pulsed-UV reaction volume 
was 13 gal (0 .049 m3) with a flow rate 
of 7.4 gpm (0.028 m3/min). The sam
ples were collected after approximately 
four retention times. Both US pharma-
ceutical-grade H 20 2 (at 3 % by weight) 
and NDMA3 (at 5,000 Ilg/mL) were 
prespiked to a des ired concentration, 
when appropriate, into 5 gal (0.019 m3) 

carboys in the fume hood. The NDMA
spiked carboys were covered in black 
plastic bags to avoid any exposure to 
sunlight during transfer to the reactor. 

Bench-scale tests. The pulsed-UV 
irradiation and pulsed-UV/H20 2 tests 
for NDMA reduction were conducted in 
two phases. The study tested three types 
of water: organic-free DI water,4 Col
orado River water (CRW), and a South
ern California groundwater. The first 
phase of testing was performed in a 
CMBR to determine (1) the required 
pulsed-UV dosage and H20 2-to-NDMA 
ratios for NDMA oxidation and (2) the 
optimum retention time for NDMA 
destruction. The effects of other com
pounds (e.g., N03- ) on NDMA destruc
tion and the possible reformation of 
NDMA were also investiga ted in the 
CMBR setup. The second-phase tests 

FIGURE 5 Effects of source water on NDMA reduction at 10 Hz 
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were conducted in a CSTR to investigate the effects of two 
influent NDMA concentrations (100 and 3,000 nglL) on 
NDMA removal and to validate the optimized condi
tions for NDMA removal with a pulse frequency of 25 Hz 
and a hydraulic retention time (HRT) of 1.75 min. 

light absorbance at 254 nm (UV 254), sulfate, and total 
organic carbon (TOC). Kinetic samples were also taken 
from the CMBR and CSTR at various time intervals. 
Analyses for H 20 2 residual, NDMA, and N03-, when 
appropriate, were conducted for the kinetic samples. 

Sampling. DI water, CRW, and groundwater pumped 
from the Southern California region were analyzed for tur
bidity, pH, alkalinity, conductivity, bromide, N03- , UV 

Analytical methods. All inorganic and organic analy
ses were performed at the Metropolitan Water District of 
Southern Ca lifornia's Water Quality Laboratory. Each 
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FIGURE 7 Effects of H202 on NDMA reduction in deionized water* at 10 Hz 
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RESULTS AND DISCUSSION 
Raw water quality. The pertinent 

raw water quality parameters of the 
water tested in this study are listed in 
Table 2. In general, DI water contains 
low TO C concentrations, low con
ductivity, and nondetectable levels of 
N03- and UV254 absorbing organic 
compounds. CRW typically contains 
high concentrations of TOC, conduc
tivity, turbidity, and UV 2s4-absorbing 
organic compounds. The groundwater 
selected for this study contained high 
cOllcentrations of total alkalinity, low 
concentrations of TOC and turbidity, 
and N03- at approximately 2 mg/L. EEiO electrical energy per order, H2 0 2-hydrogen peroxide, NDMA-{>J-nitroso

dimethylamine, UV-ultraviolet 
The cbaracteristics of the water can 

play an important role in UV treat
ment. For example, high turbidity 

lowers the transmittance of the source water, thus lowering 
the penetration of the UV for effective photolysis. Also, 
water with constituents that strongly absorb UV light 
(such as N03- ) can compete for UV light with NDMA, 
thus reducing removal efficiency. 

analysis was conducted in accordance with the proce
dures described in Standard Methods (1995), except as 
Iloted in the following paragraphs. 

Residual H 20 Z' The analyses for H 20 2 residual 
involved the reactions of H 20 2 with p-hydroxy-phenyl
acetic acid and horseradish peroxidase, followed by detec
tion of the fluorescent product by a fluorescence spec
trophotometer,5 as described by Kok et al (1986). 

NDMA. Prior to June 1999, NDMA samples were 
analyzed by a contract laboratory,6 which ex tracted 
NDMA samples by continuous liquid-liquid extraction 
and analyzed the extract by gas chromatography/mass 
spectrometry (GC/MS), using a selected ion-monitoring 
mode to determine NDMA. This method has a detection 
limit of 20 ng/L. NOMA samples taken after June 1999 
were analyzed at the Canadian Ministry of the Environ
ment, Etobicoke, Onto NOMA was analyzed by a so lid
phase extraction method combined with low-resolution 
GClMS, as described by Taguchi et al (1994). This method 
has a detection limit of 1 ng/L. Before the NDMA sa m
ples were submitted for analysis, catalase was spiked into 
the samples to quench the residual H 20 2 and prevent 
any further NOMA reaction. 

Simulated distribution system (SDS) tests. The water 
sa mples were dosed with chlorine at 1.5 mg/L in the 
laboratory and incubated at 250 C for one day. The chlo
rine dosage of 1.5 mg/L was chosen because prelimi
nary chlorine demand tests indicated that this was the 
dosage needed to maintain a residual of at least 0.2 
mg/L after 24 h. Analyses were conducted on SDS sa m
ples to evaluate the formation of pentane-extractable 
disinfection by-products (OBPs)-such as total tri
halomethanes (TTHMs), haloacetonitriles (HANs), 
haloketones (HKs), and chloropicrin-that used modi-

NDMA removal. The following discussion of NDMA 
removal examines the effects of pulsed-UV dosage, source 
water, H 20 2, and N03- , as well as the effects of initial 
NDMA concentration. Overall, effective reduction of 
NDMA was observed for most of the test conditions 
used. A pseudo-first-order kinetic model can fit NDMA 
removal data as described in Eq 2. 

In (CICo) = -kt (2) 

in which C is the NDMA concentration (pg/L), Co is the 
initial NOMA concentration (pg/L), k is the pseudo-first
order rate constant (min-I), and t is time (min) . 

The calculated pseudo-first-order ra tes for the condi
tions used are shown in Figures 3-7 for the conditions 
used. Rates for each water matrix with H 20 2 are also 
shown in the fi gures. For comparison purposes, electrical 
energy per order (EE/O) values are also included for the 
pseudo-First-order rates in these figures . 

Effects of UV dosage. UV dosage is commonly derived 
from the product of average UV irradiance and theoret
ical contact time (or HRT) (Figure 3). For conventional 
low-pressure UV, UV irradiance is usually measured by 
collimated beam test equipment (e.g., a joulemeter or 
radiometer) at bench sca le, and residence time distribution 
is determined by tracer studies. However, reliable deter
mination of UV dosages for CMBR and CSTR systems is 
much more difficult. This is especially true fo r polychro
matic UV light, such as pulsed UV, because determination 
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of the synergistic effect of multiple 
peaks on the compounds used in dose 
measurement is more challenging than 
for the case with single-wavelength, 
low-pressure uv. As a result, pulsed
UV dosage cannot be accurately pro
vided in millijoules per square cen
timetre. Alternatively, UV dosage can 
be represented by a measure of total 
lamp electrical energy applied (power 
[kWJ x time [h]) to a fixed volume of 
water (1,000 gal [3.785 m3)) to reflect 
parameters such as flow rate (or 
HRT) and lamp energy into a com
bined number. Therefore, UV dosage 
in kilowatt hours per 1,000 gal, as 
described in Eq 3, was used through
out this study. 

UV dose = average power input (kW) 

residence time (h) 

x reactor volume (gal) (3) 

1,000 gal 

x 1,000 ga l 

The energy input to the system was 
calculated by using th e HRT and 
power requirement from the pulsed
UV system (lamp and system) used 
for this study at 1.6, 3.1, and 5 kWat 
2, 10, and 25 Hz, respectively. 
Approximately 1 kW was a system 
power requirement, and the remaining 
energy input was for the lamp. 

UV dosage can also be provided 
in EE/O of NDMA destruction. EE/O 
is the UV dosage required for 90% 
(I-log) reduction from the initial con
centration. EE/O values are also pro
vided in this article, when appropriate, 
to be used in comparing the efficacy of 
NDMA destruction with that of the 
more commonly used mercury lamps. 

NDMA-spiked Dr water was irra
diated in the ab sence of H 20 2 at 
pulsed-UV frequency inputs of 25, 
10, and 2 Hz in a CMBR system. 
Beca use Dr water contains an insuf
fici ent amount of background pre
cursor to generate hydroxyl radicals, 
the process of NDMA removal is 

TABLE 3 Effects of N03-* on NOMAt reduction in deionized watert at 10 Hz 
in a completely mixed batch reactor system 

Irradiation UV 
Time Oose 

s kW-h/l,OOO gal 

0 0 

30 2.2 

60 4 .3 

80 5.7 

120 8.6 

Percent removal 

* N03-- nitrate 
t N DMA- N-n itrosod i methyl ami ne 
*Super-Q,C Millipore Corp., Bedford, Mass. 
§UV-ultraviolet 
**H,O,- hydrogen peroxide 
ttNA-nol applicable 

Pulsed-UV§ Alone 

NOMA N03-

ng/L mg/L 

2,800 38.4 

690 NA 

180 NA 

58 34.1 

NA NA 

97.9% NA 

Pulsed-UV + 1.0 mg/L H20 2" 

H20 2 
NOMA N03- Residual 

/Jg/L mg/L /Jg/L 

2,700 NAtt 870 

640 NA 900 

170 NA 870 

NA NA NA 

19 NA 800 

99.2% NA NA 

TABLE 4 Effects of N03- on NOMA reduction in Southern California groundwater 
at 25 Hz in a continuously stirred tank reactor system* 

Pulsed-UVt Alone 

UV 
Sampling Oose NOMA 
Location kW·h/ l , 000 gal ng/L 

Infl uent NA§ 2,300 

Effluent 11.2 140 

Percent removal 93.9% 

* N03--nitrate, NDMA-N-nitrosodimethylam ine 
tUV- ultraviolet 
*H,O,-hydrogen peroxide 
§ NA-not applicable 

N03-

mg/L 

41 .6 

37 

NA 

Pulsed-UV + 1.0 mg/L H, 0 2* 

H20 2 
NOMA N03- Residual 
Ilg/L mg/L Ilg/L 

2,400 39.9 NA§ 

110 37.2 NA 

95.4% NA NA 

TABLE 5 Effects of initial NDMA* concentration on NOMA reduction in Southern 
California groundwater at 25 Hz in a continuously stirred tank reactor system 

UV 
Sampling Oose 
Location kW·h/ l ,OOO gal 

Influent 

Effluent 

Percent removal 

* N-nitrosod imethylamine 
tUV- ultraviolet 
*H,O,-hydrogen peroxide 
§NA- not applicable 

NA§ 

11.2 

Pulsed-UVt Alone 

Test 1 Test 2 Test 3 
NOMA NOMA NOMA 
ng/L ng/L ng/L 

2,800 100 100 

30 19 1.6 

98.9% 98.1% 98.4% 

Pulsed-UV + 
1.0 mg/L H20 2* 

H20 2 
NOMA- Residual 

ng/L Ilg/L 

92 NA 

1.5 NA 

98.3% NA 

likely to be dominated by direct photolysis of NDMA. 
It is apparent that the NDMA level dec rea ses with 
increasing UV dosage (irradiation time) at the same 
pulse input (frequency), as shown in Figure 4. For exam-

pIe, NDMA removals of 69 and 88% in Dr water were 
achieved with applied UV doses of 1.3 and 2. 6 kW,hl 
1,000 gal, respectively, at a pulse input of 2 Hz. Accord
ing to Eq 1, the kinetic rates of NDMA decay are 12.2, 
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TABLE 6 Effects of H202 on NOMA reformation in a continuously stirred tank reactor system* 

NDMA in Southern Ca liforn ia Grou ndwater NDMA in Deionized Watert 

UVi: Pulsed- Pu lsed-UV + H20 2 UV Pulsed- UV Pulsed-UV + H20 2 
Dose UV Alone 1 mg/L H20 2 Residual Dose UV Alone Dose 1 mg/L H20 2 Residual 

kWh/ I, 000 gal ng/L ng/L pg/L kW·h/ l ,OOO gal ng/L kWh/ l ,OOO gal ng/L pg/L 

11.2 1.6 1.5 NA§ 5.7 58 8.6 19 800 

1 mg/L C12** 3.9 1.5 NA§ 1 mg/L CI2 99 1 mg/L CI2 35 NA 
for five days fo r five days for five days 

* H20 2- hydrogen peroxide, NDMA- N·nitrosodimethylamine 
tSuper·Q," Millipore Corp., Bedford , Mass. 
WV- ultraviolet 
§NA- Ilot applica ble 
**CI2- ch lorine 

7. 15, and 2.2 miIrI for pulsed-light inputs of 25, 10, and 
2 Hz, respecti ve ly. A compar ison of the kinetic ra tes of 
N OMA decay a t pulsed-light inputs o f 25, 10, and 2 
Hz suggests that strong pulsed-UV intensity is produced 
at the high pulsed-light input of 25 H z, resu lt ing in more 
effective reduction of NDMA . However, optimization of 
the energy input (frequency) may be needed in the des ign 
o f a pulsed-UV system . 

Effects of source water. Different source water su p
plies, such as So uthern Califo rnia groundwa ter and 
CRW spiked with NOMA, we re irradiated at the pulsed
light input ofl ° H z (F igure 5) . Over the duration of 
the experiments «5 min), the pH of the water did not 
change significantly. NOMA remova ls of 98%, in South
ern Ca liforni a groun dwater and 82% in CRW were 
achiev ed with an ap pli ed p ul sed -UV dose of 5.2 
k W·hl1 ,000 ga l. The ki netic rates of NOMA decay were 
4.1 mi n- I in Southern Califo rnia groundwate r and 1.4 
mi n-I in CRW. The results might suggest a strong com
petition for the pulsed-light absorption between NOMA 
and backg ro und organ ic com pounds (e.g ., TOC or a 
UV-absorbing organic) in Southern California grou nd
water and CRW. It appea red that pul sed-UV alone was 
more effectiv e in destroying NOMA in the Southern 
Californ ia gro undwater than in CRW, because CRW 
conta ined hi gher levels of both background organic 
compo unds (which may compete for pulsed UV) and 
turbidity (which reduces the applied UV as a resuit of the 
lower transmittance) th an did the Southern Ca liforn ia 
groundwater. 

Effects of UV/H202. The rate o f NOMA dissociation by 
UV is much bster than the rate of NDMA oxidation by 
hydroxyl radica ls; thus, the addition of H 20 2 docs not 
necessaril y increase the NOMA removal efficiency. Fur
thermore, H 20 2 only weakly absorbs pu lsed-UV light at 
a peak wavelength of 200 nm compa red with NOMA. 
NDMA-spiked OJ water was irradiated in the presence of 
H20). The effects of H 20 2 on NOMA remova l with 0. 1 
and '1.0 mg/L H20 2 (at molar H 20 2-to-NDMA ratios of 
68 and 784) were investigated at a pulsed-UV input of 10 

Hz (Figures 5 and 6) . With the addition of H 20 2, the 
kinetic ra tes of NDMA decay were 7.16 and 7.24 min-I 
for 0.1 and 1.0 mg/L H 20 2, respectively. Compared w ith 
the use of pulsed-UV alone at lO Hz, the addition of 
H 20 2 did not significa ntly increase the kinetic rate of 
NOMA decay. These results showed that pulsed-UV alone 
and pulsed-UV with a low concentra tion of H 20 2 were 
equall y effective in reducing NOMA. 

Beca use NOMA re moval is primarily accomplished 
by direct photolysis, rather than by hydroxy l radicals, 
the presence of a small amount of H 20 2 had no major 
effect on the efficiency of NDMA removal. Similar results 
were o bserved in NDMA-spiked Southern Califo rnia 
groundwater and CRW (Figure 5 ). However, the pres
ence of a high concentration of H 20 2 (79 mg/L) signi fi
candy hindered NOMA reduction beca use o f the strong 
competition for UV light by the high concentration of 
H 20 2 (Figure 7) . The kinetic rate decreased from 7.1 5 
min-I in the absence of the H 20 2 spike to 2.44 min-J 

w ith the add ition of 79 mg/L H 20 2 . The production of 
hydroxyl radica ls from H 20 2 did not improve NOMA 
reduction, because the oxidation of NOMA by hydroxyl 
radica ls is much slower compared w ith direct photolysis 
of NOMA. In fac t, the addition of a high concentration 
of H 20) resu lted in a decrea sed NOMA decay ra te 
beca use of the strong competition for UV light in the 
presence of a high concentration of H 20 2. Thus, H 20 2 

dosage should be optimized if it must be added to inhibit 
reformation of NDMA upon chlorination of UV-treated 
efflu ent. 

Effects of N03- . The UV absorption spectrum of aq ue
ous N03- solution fea tures two bands in the ranges of 
230-240 11111 and 300-310 nm, which are close to the 
abso rption bands of the aqueous NOMA solution (Ca1-
gon Carbon, 1996). For the direct photolysis process, a 
strong competition for UV light absorption between N03-

ions and NOMA can reduce the effectiveness of NDMA 
remova l. In addition to direct photolysis of NO,- ions, the 
irradiation of N03- in its long-wavelength absorption at 
the maximum of 302 nm resu lts in two primary photo-
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chemical pathways (Warneck & Wiirzinger, 1988; Zepp 
et aI, 1987), as shown in Eq 4. 

(4 ) 

The ·0- radical ion generated by the reaction path
way shown in Eq 4 subsequently combines with a proton 
to form a hydroxyl radical. It is suggested that photo
chemically induced hydroxyl radicals from N03- may 
oxidize organic chemicals such as NDMA. However, in 
some cases, the net effect may be small or even negative, 
because N03- competes for UV light, which is the dom
inant source of the NDMA removal mechanism. 

NDMA-spiked D1 water was irradiated in the pres
ence of N03- at a pulsed-light input of 10 H z in the 
CMBR (Table 3). The kinetic rate of NDMA decay 
decreased from 7.15 min-l in tbe absence of N03- to 

2.76 min- I in the presence of 38 mg/L N0 3- (Figure 6) . 
It is apparent that NO]- competed with NDMA for UV 
light, consequently limiting the effectiveness of direct 
photolysis in breaking down NDMA. As discussed earlier, 
the results did not show any nitrate-induced, photooxi
dation-enhanced NDMA reduction, beca use hydroxyl 
radical-mediated NDMA oxidation is a slower process 
than direct photolysis of NDMA by uv. 

With the addition of 1.0 mglL HzOz, the kinetic rate 
of NDMA decay changed only insignificantly (from 2.76 
to 2.82 min-I) in the presence of N03-, as previously 
shown. Similarly, in a CSTR system, no significant dif
ference in NDMA removal was shown between the use of 
pulsed-UV alone (93.9 %) and pulsed-UV with 1.0 mg/L 
HzOz (95.4%) in the presence of approximately 40 mg/L 
N03- in Southern California groundwater at the pulsed
UV input of 25 Hz. Under all tested conditions, N03-

was reduced only up to 11 '1o, in contrast with the NDMA 
removal of >90% (Table 4). 

Effects of initial NOMA concentration in a CSTR system. 

Southern California groundwater, spiked at two con
centrations (2,800 and 100 ng/L) of NDMA, was irra
diated at the applied pulsed frequency of 25 Hz in a 
CSTR system (Table 5). Pul sed UV a lone ach ieved 
NDMA removals of 98% at these conditions wh en 
applied at a UV dose of 11.2 kW·h/1,OOO gal. The reten
tion time of 1. 75 min provided a sufficient UV dosage for 
the test using a low NDMA concentration (<2,800 ng/L) 
to yield <2 ngiL effluent NDMA concentration. Howevel; 
a longer retention time at an applied UV dose of 11.2 
kW·hl1 ,000 gal would be needed for the testing using a 
higher NDMA spike (>2,800 ng/L), when the effluent 
concentration was 30 ng/L-exceeding the proposed 
action level set by the CDHS. 

Reformation/regeneration of NOMA. Tbe reformation/ 
regeneration of NDMA is of concern because the degra
dation products from the photolytic destruction of NDMA 

TABLE 7 Effects of NDMA* destruction on disinfection by-product formation in a Southern California groundwater 

Compound 

TrihalomethaneS- 1l9/ L 

Chloroform 

Dich I orobromo meth a ne 

Dibromochloromethane 

Bromoform 

Total 

Haloacetic nitriles- 1l9/ L 

Di bromoaceton itri I e 

Bromoch I oroaceton itri Ie 

Dich 10 roaceton itri Ie 

Tri ch loroacetonitrile 

HaloketoneS-1l9/ L 

1,1-Dichloropropa none 

1,1,1-Tri ch loropropanone 

Ch 10 rop ic ri n- 1l9/ L 

* NDMA- N-nitrosodimethylamine 
tUV- ultraviolet 
;H20 2- hydrogen peroxide 
§NA- not applicable 

No Pulsed-
UVt Treatment 

0.27 

0.42 

0.45 

<0.1 

1.14 

0.26 

0.17 

<0.1 

NA 

<0.1 

<0.1 

<0.1 

No NDMA Spiking NDMA Spiking With a Conce ntrat ion of 3,000 ngl L 

Pulsed- Pulsed-UV + No Pulsed-UV Pu lsed- Pulsed-UV + 
UV Alone 1 mg/L H202* Treatment UV Alone 1 mg/L H20 2 

0.23 0.3 0.1 7 <0.1 1.28 

0.52 0.44 0.26 0.11 1.31 

0.55 0.49 0.25 0.21 0.96 

0.13 0.1 2 <0.1 0.36 0.19 

1.43 1.35 0.68 0.68 3.74 

NA§ NA NA NA NA 

0.22 0.1 9 0.13 0.13 NA 

NA NA NA <0.1 0.14 

NA NA NA NA NA 

<0.1 <0.1 <0.1 <0.1 <0.1 

<0.1 <0.1 <0.1 <0.1 <0.1 

<0.1 <0.1 <0.1 <0.1 0.15 
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could recombine to form NOMA after chlorinating the 
UV-treated effluent. Samples taken for the NOMA refor
mation study were dosed with Img/L CI2 for five days at 
4 to 8oC. For the test with Southern California ground
water, NOMA concentrations increased from 1.6 (after the 
UV dose of 11.2 kW·hll,OOO gal) to 3.9 ng/L, whereas 
NOMA concentrations did not change for the sample in 
which NOMA was treated with UV combined with 1.0 
mg/L H 20 2 (Table 6). In addition, reformation/regener
ation of NOMA was also observed in 01 water spiked 
with 3,000 ng/L NOMA and 40 mg/L N03- . After chlo
rination, N OMA concentrations increased from 58 ng/L 
(for pulsed-UV alone after a UV dose of 5.7 kW·hll,OOO 
ga l) to 99 ng/L and from 19 ng/L (after a UV dose of 8.6 
kW·h/l,OOO gal combined with 1.0 mg/L H20 2 ) to 35 
ng/L. It is apparent that the pulsed-UVlH20 2 process was 
more effective than pulsed-UV alone in inhibiting NOMA 
reformation. However, the development of an exact mech
an ism for such behavior will need further investigation. 

DBPs. The SOS test was used to estimate the amounts 
of OBPs that would form in the distribution systems (Table 
7). The OBPs analyzed includ ed THMs (chl oroform, 
dichlorobromomethane, dibromochloromethane, bro
moform ); HANs (dibromoacetonitrile, bromochloroace
tonitrile, dichloroacetonitrile, trichloroacetonitrile); HKs 
(l,l -dichloropropanone and 1,1, I-trichloropropanone); 
and chloropicrin. For the control samples without NOMA 
addition , no significant change in THMs, HANs, HKs, 
o r chloropicrin was observed among SOS test samples 
taken from different trea tment processes (e .g., without 
pulsed-UV, with pulsed-UV, and with pulsed-UV com
bined with 1 mg/L H 20 2). With an NOMA spike of 3,000 
ng/L, TTHMs were formed in concentrations of 0.68 and 
3.74 pg/L after treatment by pulsed-UV alone and by 
pulsed UV combined with 1 mg/L H 2 0 2 , respective ly. 
Higher concentrations of chlorinated THMs were formed 
after the advanced oxidation process (pulsed-UV/H20 2), 

whereas higher concentrations of brominated THMs were 
formed after photolysis (pulsed-UV alone) . In the pres
ence of NOMA, the OBPs (e.g., HANs, HKs, and chloropi
crin) did not change significantly among SOS test sam
ples taken from different experiments. 

Residual H202. As mentioned previ ously, H 20 2 is a 
weaker absorber of pulsed-UV light at a peak wavelength 
of 200 nm than is NOMA. In general , addition of H 20 2 
in the pulsed-UV/H20 2 process resulted in only a small 
reduction of H 20 2. According to the analyses done for 
H20 2 residuals, only up to 20 % of H20 2 was reduced in 
the tests . The add ition of H 2 0 2 did not necessarily 
enhance destruction of NOMA by the hydroxy l radica ls 
produced from H20 2 , but the presence of H 20 2 seemed 
to inhibit reformation of NDMA and production of OBPs. 

SUMMARY AND CONCLUSIONS 
On the basis of the tests performed, the foll owing con

clusions can be drawn regarding th e effectiv eness of 

pulsed-UV irradia tion and pulsed-UV/H20 2 processes 
for the destruction of NOMA: 

• The results generated from bench-scale testing in 
both the CMBR and CSTR systems indicated that pulsed
UV alone was effective in removing NOMA. For exam
ple, pulsed-UV alone achieved NOMA removals of 98% 
at initial concentrations of 2,800 and 100 ng/L NOMA 
in Southern California groundwater with an applied UV 
dose of 11.2 kW·h/l,OOO gal in both the CMBR and 
CSTR modes. 

• Although the addition of low concentra tions of 
H20 2 does not significantly enhance removal of NOMA 
or increase the kinetic rate of NOMA decay, the pulsed
UV/H20 2 process was more effective in oxidizing NOMA 
by-products than was pulsed-UV alone and resulted in 
less reformation of NOMA after chlorination. The addi
tion of a high concentration of H20 2 slowed down the 
reduction of NOMA. 

• Applied pulsed-UV dosage was the most signifi
cant parameter affecting the percentage of NOMA reduc
tion. In a CMBR system, NOMA red uction increased 
with increasing UV dosage at a constant pulse input 
(frequency) . For example, NOMA removals of 69 and 
88% in 01 water were achieved with applied UV doses 
of 1.3 and 2. 6 kW·h/l ,OOO ga l, respectively, at a pulse 
input of 2 Hz. 

• The kinetic rates of NDMA decay at pul se rates of 
25, 10, and 2 Hz suggest that a strong UV intensity pro
duced at the pulse rate of 25 Hz resulted in more effective 
reduction of NDMA. 

• A strong competition between NOMA and back
ground organics (e.g., TOC and UV254-absorbing organic 
compounds) for pulsed-light absorption affected NDMA 
removal. Pulsed-UV alone was more effective in destroy
ing NDMA in Southern California groundwater than in 
CRW, possibly because high er level s of background 
organic compounds are present in CRW than in the South
ern California groundwater used for this study. 

• N03- competed with NDMA for UV light and con
sequently limited the effectiveness of direct photolysis of 
NOMA. The test results did not indicate that the nitrate
induced photooxidation enhanced NOMA reduction. 

• Pulsed-UV/H20 2 produced higher TTHMs than 
pulsed-UV alone. With an NDMA spike of 3,000 ng/L, 
TTHMs were fo rmed in concentra tions of 0.68 and 3.74 
~g/L, respectively, after treatment by pulsed-UV alone 
and by pulsed-UV combined with 1 mg/L H 20 2. 
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