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ON MAXIMALLY PARALLEL SCHEMATA

Robert M. Keller

Princeton University*®
Princeton, New Jersey

Summary

A model for parallel computation called a
schema is presented. This model is similar to
that presented in the recent work of Karp and
Miller?., Section 1 presents a description of the
model, and some results on the characterization
of computations within it. Section 2 summarizes
some results on determinacy and equivalence.
Section 3 presents a formalization of the
property of maximal parallelism in schemata.
Several alternate characterizations are shown to
be equivalent for certain classes. Section 4
presents results on the complexity of
a maximally parallel schema equivalent to a given
schema.,

Introduction

A mathematical model for parallel computa-
tion is the basis of this study. The definition
of this model has been motivated by various pro-
posed and existing methods for introducing
parallelism into contemporary computing systems.
By "parallelism" it is meant that several inter-
acting processes may be simultaneously engaged in
a computation, .

The control of such parallel processes will
be studied in the framework of parallel program
schemata, The concept of a parallel program
schema is derived from two historically distinct
concepts: parallel program, and program schema,

The term "parallel program" was apparently
first introduced by S. Gill3, although the con-
cept of parallelism had been used earlier. The
use of special instructions for the control of
parallel processes within programs appears first
in the literature (to the author's knowledge) in
Richards". Similar instructions were called
"fork" and "join" by Conway5. Instructions of a
slightly different nature, such as "lock" and
"unlock"® allow two strings to be executed in
either order, but not simultaneously. Control of
this type is called "non-persistent", in the
terminology to be presented, In the present
work, the concern will be with control of the
persistent type. The model to be presented is of
sufficient generality to make the use of specific
instructions, such as fork and join, unnecessary.
This allows a number of problems in specifying
the control to be circumvented’,

Given a way of expressing parallelism in
programs, it is desirable to be able to convert a

¥ This research was completed while the author

was an NSF Graduate Fellow at the University of
California, Berkeley. The results presented
here are taken from the author's doctoral
dissertationl,

conventional program, i.e., one without explicit
parallelism, to an equivalent parallel program.
Such a conversion would permit the time required
for a computation to be reduced, providing
sufficient computational resources are available,
This problem is of central interest here.

Barnstein® has observed that the problem of
determining whether two consecutive blocks of a
program can be executed in parallel is generally
undecidable, This fact provides part of the
motivation for introducing parallel program
schemata, as will be seen,

The concept of a program schema was intro-
duced by Yanov’. A program schema structurally
resembles a program, but the specific functions
associated with the elements of the program,
e.g. the operations of addition, multiplication,
etc., are replaced by abstract function-symbols,
A program schema can therefore be thought of as a
representation of a family of programs, each
member of which is obtained by specifying
functions in place of the abstract symbols.

The motivation for considering schemata is
that they provide a way of simplifying analysis
techniques, such as those required for removing
inessential parts of programs. Moreover, they
sometimes help avoid problems of undecidability.

* For example, it is well known that the problem
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of deciding whether two programs compute the same
function is unsolvable, However it was shown by
Yanov that the equivalence problem for his formu-
lation of schemata is solvable, By equivalence
of schemata it is meant that the programs result-
ing from assigning functions to the abstract
operation symbols are equivalent, regardless of
the particular assignment,

Recently various authors10,11,12 pave
studied refinements of Yanov's original concept.
These refinements differ essentially ‘in the
amount of information assumed about the memory.
For example Yanov's formulation considers the
entire memory as a single undifferentiated cell,
The work of Luckham, Park and Paterson!® allows
the memory to be divided into a number of cells,
It is notable that they showed that the equiva-
lence problem is undecidable for schemata with
two or more cells,

The schema concept can be combined with
parallel programs in an effort to simplify the
analysis of properties connected with parallel-
ism, Work of this sort was first reported in
Karp and Miller?, The authors show that parallel
program schemata provide a fruitful approach to
the problem of determinacy, a problem which does
not exist when parallelism is absent. The schema
approach will be shown to be useful in the
present work in avoiding undeciable problems of
the type observed by Bernstein,
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Notation

Let f: A > B be a partial function. For any
aeh, f£(a)) means that f is defined for a, For
A'C A fIA' denotes the restriction of f to A',

The set of all natural numbers {0,1,2,3,...}
is denoted by w. "

If L is any set, I" denotes the set of all
finite strings of elements in I. If x,yeE*, Xy
denotes the concatenation of x and y. The string
of length O is denoted o.

I denotes the set of all countably-infinite
strings of elements in . I denotes % Uz,
Concatenation is extended to map *x§ > £ in the
obvious fashion, If xez® and ysf, X £ y means
Hzed  x=yz. X, < ymeans x <y and x # y.

For any xeI and new, if ]x| > n, let . x

n
denote the first n components of x, i.e, the yeiP
such that y < x. X, denotes the n-th component
of x.

For any xel, oel, define oex (0 "occurs in"
x) if dye: zZ€L X=yoz, The same symbol will
be used for set membership. The specific usage
should be clear from context,

Let I'SI. TFor any xel, let E(I',x) denote
the string x' obtained by deleting all occur-
rences of elements of {-I' from x.

l. Parallel Program Schemata

This section presents the basic definitions
and results for the model, to be used throughout
the remainder of this work. Of particular con-
cern will be the method of controlling parallel
computations and the characterization of these
computations in terms of strings of abstract
symbols.,

It should be noted that the definitions to
be presented are not necessarily the most general,
Indeed they represent a compromise of the desire
to give the model sufficient generality to yield
non-trivial results, yet not so general as to
make the exposition cumbersome, An attempt is
made to model those aspects which are felt
significant in studying parallelism, as opposed
to some other aspect of an algorithmic process.,

1.1 Schemata and Interpretations

Definition An operation set is a finite set A=
{a,b,c,....} of elements called operations, togeth-
er with the following for each acA:
(1) = unique symbol 3 called the initiator of a
(2) a non-empty finite set of unique symbols
g;{al,ag,....,aK(a)} called terminators

of a

) a finite set D(a)Cuw called the domain of a

) & non-empty finite set R(a)Cuw called the
range of a

In addition, for any BCA define B={a | acB},

B= U a, and £ = AUA. For any oel let <o> be
a€eB

the operation aeA such that o=& or oea,

(3
(k4

An interpretation for an operation set A is a
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quadruple I=(v,d.,F,G) where

(1)
(2)

(3)

v iswa set called the universe
dOsV is called the initial assignment

for each aeh
Fa:VD(a) -> VR(a) is a total function
Ga:VD(a) + a is a total function

Int(A) will denote the class of all interpreta-
tions for A,

A schema is a pair S=(A,T) vwhere A is an
operation set and T=(Q, o,f,¢) is the transducer,
where '

(1) Q is a countable set of states
(2) q,€Q is the initial state

(3)
(1)

f: OxA »~ Q is a partial function, the
state transition function

¢: Q 2A is a total function, the

. output function

In addition, every transducer must satisfy the
following:

Axion 1 Vaeq Voea (£(q,0)) iff <o>e¢(q).
Axiom 2 Vqeq oeh if £(q,o)

then (¢{q)={<o>})C ¢(f(a,0)).
It will be useful tx define the auxiliary output
function g: QxA + 2° by
flq,0)

V(a,0)eqxa glq,0)=
undefined otherwise

Finally, B, will always denote ¢(q,), the

¢(f(q,03)—(¢(q%—{<c>}) ir

initial-operation set.

The set of natural numbers w is intended to
be the index set of a set of memory cells, each
capable of being assigned some value from the
universe of an interpretation. Fach operation a
may be thought of as a "black box" with corre-
sponding input (domain) and output (range) con-
nections to the memory cells,

A schema S=(A,T) together with an inter-
pretation I for A may be called a program (S,I).
Under an interpretation, the operation a
"computes" two functions, F, and G,. The

function F_ is a "data-processing" function which

performs a transformation on the memory, whereas
G, is a "decision” function which gives informa-
tion about the memory to the transducer in the
form of an element of the set a={a.,a ,....}.
The transducer is responsible for assimilating
this information, and based upon it, allows new
operations to begin. Hence it may be thought of
as a "sequential machine" which makes transitions
as defined by f. TFor any state q, ¢{q) is the
set of operations which are enabled to be active,
i.e. "computing", while the transducer is in
state q. The auxiliary function g tells how ¢
is“'updated” as new terminators occur. Hence, g
rather than ¢ may be considered as the actual
"output" of the transducer.

Axioms 1 and 2 are introduced to prevent an
operation from being re-initiated while it is
active. A transition from state q via a symbol o

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 19:26 from IEEE Xplore. Restrictions apply.



is defined if and only if the operation of which

o is a terminator can be active when T is in

state q. Furthermore, no operation can be removed
from ¢(q) until it actually terminates.
Parallelism in the model is possible because the
transducer may. allow several operations to be
active concurrently; i.e, for some state q,

l6(a)] > 1.

Figure 1 shows a simple example of a trans-
ducer. The customary use of labelled graphs is
assumed!3, The nodes (states) are labelled
a/¢(a). The arcs are labelled with oeA. The
reader may wish to verify that the Axioms 1 and 2
are satisfied.

The initiation and termination of an opera-
tion will be called events., The occurrence of
these events in time will be sufficient to com-
pletely describe all relevant activity in the
model, By allowing an initiator to symbolize the
initiation of an operation and allowing a
terminator to symbolize the termination of an
operation, activity within a schema may be repre-
sented by a sequence of initiators and termina-
tors, providing it is assumed that at most one
event can occur at a single instant, It will be-
come obvious that this is not too stringent an
assumption, Horeover, any disadvantages due to
this assumption are outweighed by what is gained
in tractability. ©Nothing will be assumed about
either the time interval required for an opera-
tion to start once it is enabled, or for the time
interval in which an operation is active,

The following describes the interaction of
an operation a with the memory. For simplicity,
it will be assumed that an operation a retrieves
values from its domain D(a) only at the moment it
initiates, and stores values in its range R(a)
only at the moment it terminates, In the interim,
there is no interaction with memory. Since the
operation is to compute functions F, and G,, the
particular set of values, one assigned to each
domain cell, at the time of initiation will be
designated by u{a). A physical interpretation
might be that u{a) is a buffer. When an opera-
tion is not active, this buffer will be assigned
the empty string, o. A formal definition of the
behavior of a program is given below.

Definition Let S=(A,T) be a schema and IeInt(A).
Conf(S,Ii denotes the set of I-configurations for
3, i.e. quadruples of the form o=(q,B,d,u) where

(1) qeq
(2) BCA
(3) aev"
(4) u assigns to each aeA either
(i) o, the empty stB%n%
or (ii) an element of V- \®

“iore precisely, Conf(S,I) is defined in the
following way: Define

) A e .
Bsd,0 ) to be the initial I-configura-

I
ag=(a,,

tion, where g4 is the initial transducer state,
Bo=¢(q0) is the initial operation set, d, is the
initial assignment, and o” is that function u such
that VaeA wu(a)=o. Then Conf(S,I) is defined to
be the smallest set containing ag and closed
under the set of partial functions {(+o) [ oel}
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to be defined below.
Suppose o=(q,B,d,u).
(1) If oek, faeo) iff
(i) <o>eB
and (ii) wu(<o>)=o0.
In this case, aso=(q,B-{<0>},d,u') where
pla) if a#<o>
\7aeA

Then

u'(a)=
d|D(a) if a=<o>

(2) If oeh, laco) iff

(i) <o>¢B
(ii) wu(<o>)#o
and (iii) ff(q,0)).
In this case, a+o=(f(q,0),BJg(q,0),d",u")
where

d(m) if mfR(<o>)
Vnew a'(m)=
Fegs (n(<0>))(m)
if meR(<o>)

(a) if a#<o>
\7aeA g

u'(a)=
o if a=<g>

The formal description above is meant to
indicate how a given program (S,I) behaves. A
single configuration a=(q,B,d,t) completely
describes the relevant properties of (S,I) at a
single instant, Those oel such that lqeg)
describe the possible transitions to a new con-
figuration. The set B may be thought of as a
"pool" of operations which may begin. The set
{a | u(a)#o} is the set of active operations. As
defined above, an operation cannot be both active
and in the pool simultaneously. The following
algorithm, which is not necessarily deterministic
or terminating, should complete the intuitive
picture of how_a program operates.

(1) Set a=a5=(qg,Bgsdg,0), i.e. the pool
initially contains B,, the state is qg,,
the assignment is d,, and u(a)=o for
every a.

If for some Cel, {a-c\, fix ¢ and go to
step (3). Otherwise stop.

Replace o with a*o. Go to step (2). The
explanation of this step is in two cases.
In the first case o=8eA., Then a is in the
pool and u(a)=o. Remove a from the pool,
put the values d[D(a)into the buffer u(a)

(2)
(3)

and go to step (2). In the second case
o=aseA. Change the state to f(q,aJ), add
g(q,aj) to the pool, replace the memory
cells"in R(a) with new values computed by
Fa(u(a)), set u(a)=o, and go to step (2).

Since a transition between configurations a
and a' may be represented by acoc=a' for some Oel,
it is appropriate to represent a sequence of
transitions by sequences of elements of I,
is done formally in the next definition.

This

Definition Let S=(A,T) be a schema, IeInt(A).
For each xeL¥ define a partial function (ex)
mapping Conf(S,I) - Conf(S,I) inductively:

(1) aeConf(S,I) aso=a

(2) Wxer® Woer YoeConf(s,I) fas(x0)) iff
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asx=a' and fa'e0), and then a-(xo)=(aex)eo=a'+q,
Comp(S,I) is defined to be the subset of z

of I-computations for S, where xef is in
Comp(S,I) iff

(1) Vysx fagey) I

(2) If xeL then VOoeL not (agexo)

(3) 1f xer? then Voes Yz < x Eye):

z £y < x and not {uo-yo

*

The reason for condition (1) is obvious.
Condition (2) says that a computation terminates
only if no further transitions can occur.
Condition (3), called the finite-delay property?,
says that a possible transition (either the
initiation or termination of an operation) cannot
be delayed forever,

Define Pref(S,I)={y | v < x, xeComp(S,I)}=
the set of all prefixes of I computatlons for S.
Deflne Comp(% U {comp(s,1) | IeInt(A) , and
Pref( Uftpref(s,I) | IeInt(a)

Example Let A={a,b,c} be the operation set with
|g[=]§J=2, |c!=l and D and R given by the table
below.

a | {1} {2}
b | {1} {3}
c |{2,3} {1}

Let 5=(A,T) be the schema such that T is the
transducer of Figure 1. Possible computations
for two different interpretations I; and I, are
as follows (It is left to the reader to invent
the actual specifications for Iy and Io.):

For (S,I1): _

a1b byT ¢q

o1

o'l

alblc cy

For (S,IE):

@l
®
o'l
=2
[so] )
o
o’
o’
of
)
o
o'

o1
o

However, the following is not a computation for
any interpretation: _ _

a a,b b2§ a;b blE ¢y
This 1s true because successive initiations of b
must operate on the same values, since
R(a)(1D(b)=¢, and hence the outcome by followed
by the outcome by is inconsistent with the
functionality of Gp for any interpretation. This
phenomenon will be called a "repetition",
precisely defined in the following.

Definition Let S=(A,T) be a schema, xeComp(S).
Suppose x=uavaw for some aecA, The second
indicated occurrence of & is called a repetition

(of the first) if for every terminator ¢ occur-
ring in v is R(<o>)(\D(a)=@. A schema is called
repetition-free if no repetitions occur in any
computation,

The class of repetition-free schemata will
play an important role in this development,
because of the ease with which certain properties
may be characterized for schemata in this class.

Definition A schema (A,T) is called finite-state
if the state set of T is finite.

Theorem 1 It is decidable whether a finite-state
schema is repetition-free.

1.2 Transducers

The transducer of a schema has been defined
in a form similar to the. familiar Moore-type
sequential machine, possibly with an infinite
state set, Because the transition function f is
partial, the machine is in a sense incomplete.
However, in applying certain known automata-
theoretic results, it will be treated as a com-
plete machine by implicitly defining a new state
to which every undefined transition must go. The
next definition extends the available notation
for describing transducers,

Definition Let (A,T) be a schema with
T=(Q,90,f,¢). f is extended to a partial func-
tion f: Qxﬂf + Q by the following induction:
(1) Vqe@ f£(g,0)=q
(2) Waqeq \fxeé \705& if f(q,x)=q' and
f(q',0)=q" then f(q,xo0)=q", otherwise
f(q,x0) is undefined.
Also, define a partial function Ty éf + Q by
\fxeA folx)=f{qe,x).
Define a partlal function ¢: A* > 27 called the
behavior of T (dlstlngulshable from ¢: Q > 27 by
context) to be . .
o(f (x)) if £ _(x)
\fxeéf o(x)= © ©

undefined otherwise

The transducer of a schema has been defined
to have a countable, but not necessarily finite,
set of states. To have physical significance it
is usually desirable that infinite transducers
have a "finite presentation". Examples of trans-
ducers of this sort appearing in the literature
are Turing machines, pushdown machines, etc.

In applying any results of the aforemention-
ed literature, two special properties are of
interest, The first is known as the "on line"
property. Interpreted in the present model, it
means that the transducer produces one output
Be2™ in response to each input ceA. This
property is a consequence of the definition of a
transducer already given. A second property is
called "real time". A transducer has the real=-
time property if it is on line and if it changes
its "internal configuration" at most once for
each input. While this property is not necessary
for transducers as they have been defined, it is
a desirable one for investigation, since the
ultimate goal is to speed up the overall execution
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of operations.

As an example of an infinite-state transducer
having the real-time property, consider a
"real-time counter transducer” which is a finite-
state transducer augmented by a fixed number k of
counters, each capable of recording a natural
number. The transitions depend only on whether
the counters have value O or not, and either
increment, decrement, or leave unchanged any
counter accordingly. A formal definition is
omitted for brevity. It is shown in Section L
that transducers of this type exhibit a rather
gross inadequacy for controlling schemata in a
maximally parallel fashion.

Transducers which employ counters are men-
tioned because much of the literature on parallel
programsz’“’5’6’1“’15 concerns models with
counters., The class of schemata with real-time
counter transducers subsumes the class of
"counter schemata"? and "flowgraph schemata'lS,
if the properties of "persistence" and "permuta-
bility" are assumed for compatibility with the
present model,

Observation 1 'One final form of a transducer
which will have great utility later is the
labelled tree, Although this tree may be infinite
and not have a finite presentation, it is still
well-defined. Let S=(A,T), T=(Q,q4,f,¢) be any
schema, Define a transducer (Q',q5",f',¢'),
where Q' is to be the set of nodes of a tree and
for oeA there is an arc (q,q') with label ¢ if
f(q,0)=g'. This can be done simply by letting
Q'={xeh” | {fo(x)\}; qp =o (the root of the tree);
if q=xe§?, then f(q,0)=x0, if rfo(xo)\; and
finally ¢'(x)=¢(fy(x)). Note that for the tree,
the output function ¢' and the behavior ¢' are
identical.

1.3 Transduction Sets

It is useful to have a description of allow-
able computations which is free of the internal
workings of transducers and of references to
interpretations. The following is a first step
toward this goal.

Definition Let S=(A,T) be a schema with

T=(Q,q.,f,¢). Define a partial functio

s qeofxohxr - Qxeisz by V(q,B,H)eqx2
(1) Woek

R, n

(a,B={<0>},8J {<0>}) if
<o>eB and B()H=¢
T(Q’BaH’0)=

(2) Woea

undefined otherwise

(f(a,40),BUg(a,0),H={<0>})
if <o>eH, B(\H=¢ and
1(q,B,H,0)= le(q,o

undefined otherwise
T is then extendxd to 13 QXZAXZAXZ* > Qx2AX2A by
(Q,B,H)EQx x2
(1) 1(q,B,H,0)=(g,B,H)
(2) Wxer* Yoer if t(q,B,H,x)=(q',B',H') then

1(q',B' ,H',0) if defined
1(q,B,H,x0)=
undefined otherwise

Define the transduction set of T to be the set of
xeI* such that ri(qo,Bo,Q},x)]. Denote this set
by L°.

An allowed sequence of T is an element of T,
A continuation of an allowed sequence x is a
string y such that xy is an allowed seauence.

Observation 2 Upon comparing the behavior of 1
with the definition of the transition between
configurations of an interpreted schema, it will
become clear that an allowed sequence is a string
which could possibly be a prefix of a computation
if the memory interconnections are ignored, i.e.
it is a string satisfying the constraints which
are due to the transducer only
An element (q,B,H)eQx2AX2A is intended to

represent an instant in time when

(1) The transducer is in state g.

(2) BEA is the set of operations waiting to

initiate,
(3) HCA is the set of operations which have
initiated, but not terminated,
This connection will be made precise in Lemma 1.
The function 1t is closely related to the function
T of 2, if the states in the latter case are
defined to be the set QXZAX2A.
The following definitions provide useful

terminology for describing transduction sets,

Definition For any xel, let x be the subsequence
of x consisting of all and only those terminators
in x, i,e. x=E(A,x), For any PC:* define

E?{gj xeP}, e.g. Pref(S), Comp(S).

Define L to be those strings xel  such that
for every y £ X and every acA, the number of
initiators & in y minus the number of terminators
of ainy is O or 1, i.e. 0 s (|E({8},y)]-
|E(2,y)]) < 1.

Define n: T + 2% such that for any xef, n(x)
is the set of aeA such that the number of
initiators & in x minus the number of terminators
of a in x is exactly 1, i.e. -
n(x)={aeh | |E({8},x)]|-|E(a,x)|=1}.

Hence if a sequence of events has occurred
which is represented by x, n(x) is the set of
operations which have initiated but not
terminated.

Definition Suppose xel such that x=uBv for some
ach, u,veZ*. Then an occurrence of an element o
of a in v, if one exists, is called the mate of &
if v=v'ov" and no nev' is mea., Similarly, the
indicated occurrence of 3 is called the mate
of o.

Hence mates are pairs of symbols which
correspond to a single activation of an
operation,

Lemma 1 Let T be a transducer and let 1 be as
defined above. Let xsZ*. Then
(1) =xeIt iff
(1) xef
(i1) I (x)
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(ii1) Vy < x n(y)Se(y)
and (2) if xeIl, letting
T(qoaBoa¢’x)=(Q' ,B',H')
(1V) q'=fo(x)
(v) H'=n(x)
(vi) H'UB'=¢(x)

The interpretation of (1) is that x is an
allowed sequence if and only if (i) no termina=-
tors occur in x before corresponding initiators,
(ii) x is a valid input to the transducer, and
(iii) ‘the initiators occurring are only those
which are allowed by the transducer. Properties
(ii) and (iii) may be verified for a string x by
inspecting the description of the transducer,
The interpretation of (2) is exactly as promised
in Observation 2, The proof involves a rather
tedious induction on the length of x.

Theorem 2 Let A be an operation set, PQ;Z*, Pé¢.
Then there exists a transducer T such that P=
if and only if the following are true for all
x,ysz*, o,mel, and a,beA:

(1) PCI (uUnifold property)

(2) xeP and y < x implies yeP (Prefix-closed
property)

(3) xaeP and cea implies x8ceP (Immediate
property)

(4) xoeP and xmeP where <o>#<m> implies xomeP
(Persistent property)

(5) xa8beP implies xbeP (Permutable property)

(6) x&nbeP and xnaeP implies xmabeP

(Semi-commutative property).
The proof is omitted.

lemark An explanation for the named properties
is in order, The unifold property means that
there must be one and only one initiation of each
operation before each termination. (The name
evolved from a more general model which allowed
up to n copies of an operation to be active con-
currently, this being called "n-fold".) The
immediate property means that a terminator is
allowed to occur immediately after its mate.
persistent property means that an event, once
enabled for occurrence, cannot be disabled by an
event from a different operation, The permutable
property means that an initiation cannot be
enabled solely by another initistion. The semi-
commutative property prevents the order of
occurrence between initiators and other symbols
from affecting the occurrence of other initiators,
It is related to the "commutative" property of 2,
The terms "persistent" and "permutable" are taken
from 2,

The

1.4 Prefix Characterizations

This section states results which show that
the prefixes of computations determine the com-
putations themselves, The precise relation of
transduction sets to prefixes is also determined.

Lemma 2 - Let 5=(A,T) be a schema %eInt(A).
Let xeL™, Then xePref(S,I) iff t ox)

Definition oFor any operation set A, let Sg be a
schema (A,T”) such that T°=({qo},qo,f,¢) where
¢(qo)=A and VoeA f(qq,0)=q4.
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Lemma 3 Let S=(A,T) be a schema, IeInt(A). Then

xePref(S,I) iff stref(So,I) and xeLl”,

It can be noted that Sﬁ allows any computa-
tion, as long as it is "consistent" with an inter-
pretation., Hence the interpretation of this lemma
is that the set of prefixes of computations of a
schema S=(A,T) for an interpretation I is deter-
mined by two constraints:

(1) The transduction set 2T,
(2) The interpretation I.

Theorem 3 Let S=(A,T) be a repetition-free
schema., Then Pref(S)=I".

Corollary 1 If S is repetition-free and
x,yePref(Sj such that 1(aq,Bs,8,%)=1(qsB5s8,sY)
then Vzel” xzeComp(S) iff yzeComp(S).

Coroll 2 If S is repetition-free and %
x,yePref%S5 such that f0(§)=fo(zj then \7za£
xzeComp(S) iff yzeComp(S).

The final result of this section demonstrates
further the relation between computations and
prefixes, It will be used in a rather tacit
fashion in the sequel.

Theorem 4 Let $1=(A,T1), So=(A,To) be schemata.
The following are equivalent:
(i) Comp(Sy)=Comp(S,)
1
(ii) Pref(Sy)=Pref(Sy)
(iii) VIeInt(A) Pref(Sy,I)=Pref(S,,I)
(iv) VIeInt(a) Comp(s],I)=Comp(S,,I)

2, Determinacy and Equivalence

This section defines the notions of equiva-
lence and determinacy of schemata. A syntactic
characterization of these properties is presented
for the class of repetition-free schemata.

2.1 Definitions

Let S=(A,T) be a schema, IcInt(A). For any
mew, xeComp(S,I) Qy{x) denotes the sequence of
elements stored into cell m. (Note that the
elements of Qm(x) are in one-to-one correspondence
with terminators o occurring in x such that

meR{<0>),) S is called_d%t_e_mi%azg it VIeInt(a)

x,yeComp(S,I) Vmew Qm(x)=9m(y).

Let S1=(A,Tq), S,=(A,T,) be schemata. S; and
S» are called §guivalent (written Sq 2 Sp) if
VieInt(A) {9;(x)|xeComp(Sy,I)}=
{Qm(Y)|ysComp(82,I)}.Sl and S, are called

congruent (written 5; = S,) if YieInt(A)
CompZSl,I)=Ccmp(Sg,I .

2.2 Serial Schemata

The following type of schema is determinate
in a very trivial way.

Definition Let S=(A,T) be a schema, IeInt(A),
xeComp(S,I). Then x is said to be a serial

. . I.=( Bd )
computation if \7y < x, letting oag°y=(q,B,d,ul,
there is at most one aeA such that u(a)fo.
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A schema is called serial if every computation is
serial. )

A flowchart is a serial, finite-state schema.,
The alternate representation of a flowchart as
shown in Figure 2 will be frequently used here-
after. This reoresentation should be self=
explanatory. Its validity is derived from the
next lemma.,

Lemma 4 Let 5,I,x be as above.
are equivalent:
(1) x is serial
(2) Vyx [o()] <1
(3) Bol < 1 and Wyo<x
ﬂ?fo(g),c)l <1
5 is serial if and only if for each IeInt(A),
Comp(S,I) has exactly one element,
The proof is left to the reader.

The following

gehA implies

Lemma 5 A schema is determinate if and only if
it is equivalent to a serial schema,
Proof If a schema is equivalent to a serial
schema, it is determinate by definition of the
latter property.and Lemma k4, Conversely, suppose
5=(A,T) is determinate, where T=(Q,q5,f,6). A
second schema S' will be -defined which has, for
any interpretation, the same cell-sequence as S
(there is only one for each mew) and which is
serial, . This is done simply by embedding the
behavior of T in a second transducer T' which only
allows one operation to become active at a time.
Furthermore, the operations become active in a
"round-robin" fashion, so that no operation is
discriminated against for an arbitrarily long
time, emulating the finite-delay requirement for
Hence the computation for S' is one of the
computations of S, and since $ is determinate,
5 = 8'. Formally, T' is defined by
(@xP, (a55p0),f",¢") as follows: For any set BCA,
let B be the operations of B listed in an
arvitrary order, each operation appearing exactly
once. P is defined to be the set of all such
lists. py is defined to. be ﬁo. For any
(qsp)eqxP, ¢'(q,p) is defined to be the first
component of the list p. '
(f(a,0),p') if (f(q,0)Y, where

V(q,0)eqxP p' is formed by deleting
the first symbol of p and
concatenating g(q,0) to
the opposite end of the
list remaining.

Q
De

£'((q,p),0)=

undefined otherwise
By the unifold property of S, no operation will
ever appear twice in the list p.

Corollary 3 Every finite-state, determinate
schema is equivalent to a flowchart.

Definition Let xei. Define the canonical
sequence corresponding to x, denoted X, by the
following induction:
(i) &=0
(ii) y<o>0o if oeh
%:
v if oek
For example, if x=5€5a1c15c1b153 then
i=§alEclEclEbl.
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Corollary 4 Let S be a determinate schema. Let
xePref(S). Then there exists an equivalent
serial schema S' such that XePref(S').

Proof The construction is similar to that above,
except that it must be guaranteed that *
canonical sequence corresponding to x is the
prefix of a computation. The details are left to

the reader.

2,3 Characterizations of Determinacy

Presented here are results on determinacy of
several different classes of schemata. The
proofs, many of which are reminiscent of 2, are
omitted.

Definition Let A be an operation set. Define a
relation p CAxXA by \7(a,b)eAXA (a,blep iff at
least one.of the following is true:

(1) r(a))D(b)#d.

(2) Rr(0) D(a)#d,

(3) e#b and R(a) 1 R(b)#M.
The notation apb means (a,b)ep. afb or (a,b)ep
means (a,b)e(AxA)=p. (a,b)e(p=-I) means (a,b)ep
and a#b, (Note: "I" should not be confused with
an interpretation in this case.,) If (a,b)e(p=-I),
a and b may be said to conflict.

Definition A schema S=(A,T) is called conflict-
free if VxePref(8) Y (a,b)e(p-I) {a,b}§§¢(§).

Definition A schema 5=(A,T), T=(Q,q,,f,¢) is
called commutative if qeQ o,meA if
<g>#<m> and {<0>,<1>}C¢(q) then f(q,om)=f(q,om).
Definition Let A be an operation set. For x,yef
define x v y to hold iff

(1) Vaer E({3},x)=E({3},y) and

(2) V(a,v)eo E({8,5},x)=E({7,b},y)
Let 5=(A,T) be a schema. S is said to be
syntactically determinate if \7IeInt(A)
Vx,yeComp(S,I) x ~ y.

Table I summarizes the known characteriza-
tions of determinacyl.

2.4 Characterization of Equivalence

This section presents, without proof, a
syntactic characterization of equivalence for
repetition-free schemata,

Lemma 6 Let Sl=(A,T ), 5,=(A,T,). If 8 £,
then 54 and S, are elther both repetition-free or
neither is,

Definition Schemata Sl=(a’Tl) and 82=(A,T2) are
said to be syntactically equivalent iff
V1eInt(a)

(1) Vaer {E({8},x) xeComp(S1,I)}=
{E({&},y) |yeComp(S5,1)} and
(2) V(a,blep {E({8,b},x)]|xeComp(s;,I)}=
{E({&,b},y) |yeComp(S,,I)}

Theorem 5 Let Sl=(A,Tl), Sg=(A,T2) be determi-
nate, repetition-free schemata. Then 5, = 5, if
and only if S, and 8, are syntactically
equivalent.,
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The flowcharts of Figure 3 show that the
repetition-free hypothesis cannot be eliminated
from the preceding theorem,

3. Defining Maximal Parallelism

Formal definitions will first be given which
describe the relative parallelism between
schemata, These definitions will then be shown
to be in harmony with an alternate characteriza-
tion incorporating "time assignments".

Definition Let S;=(A,Ty), S5=(A,T,) be equivalent

schemata. Define a relation Sy < Sp to hold if
IeInt(A) Comp(Sy,I)CSComp(S5,I). Define

S1 < Sp to hold if Sy £ Sp and JIelnt(A)

Comp(Sy,I)#Comp(Sy,I).

A schema S87=(A,Ty) is called closed if
\7é2=(A,T2) S, = 5, implies S, < S;.

A schema Sl=(A,Tl) is called a closure of
So=(A,Tp) if Sy is closed and Sy = Sp.

8y < 8, means S, is "more parallel" than Sl'
A schema is closed if it is "maximally parallel
among all equivalent schema., A schema S, is a
closure of $1 if it is a "maximally parallel
equivalent" of 8.

The proofs of the following are left to the
reader,

Lemma 7 Let S=(A,T) be a schema.
and only if VIeInt(A)

S is closed if
Comp(S,I)= U Comp(S',I).
s'ss

Lemma 8 Closures of equivalent schemata are
congruent, i.e. they have exactly the same compu-
tations for each interpretation.

The previous definitions will now be Justi-
fied by an alternate relation on schemata based
on timing, Certain limitations, such as deter-
minacy, etc, will be applied for brevity. This
argument is not essential for an understanding of
the rest of the paper.

Definition V denotes the set of non-negative real
numbers, VY denotes V-{0}.

Let A be an operation set, A time assignment
for A is a set t={1%|acA} where Vaer 12t ¢ » V
and IMevt VaeA View t2(i) > M, TA(A) denotes
the set of all time assignments for A,

The meaning of t will be as follows: If
there is an i-th activation of operation a in a
computation then 18(i) is the time interval of
this activation, i.e., the time elapsed between the
occurrence of & and its mate., The number M is a
positive lower bound on all time intervals,

Definition Let S=(A,T) be a schema, IcInt(A),
1eTA(A). Define a function t: Pref(S,I) -+ V
inductively as follows:

(i) t{o)=0
(ii) t(xa)=t(x)
(iii) If cea then t(xo)=t(u)+t®(i), where u and

i are such that x=ufZv with & the mate

of o, and i is the number of occurrences
of & in x.

Ir S, I, and T are as above, a string
xePref(S,I) Comp(S,I) is said to be consistent
with 1 if t(lx) < t(2x) < t(3x) < eee s

Remark The interpretation of t(x) is obviously
the sequence of times at which events occur in x.
For simplicity, previous assumptions are modified
slightly to allow some events to occur simultane~
ously. Also, for any 1 there is always at least
one consistent computation, e.g. any serial com-
putation.

Definition Let S, I, and 1 be as above, and
suppose zePref(S,I)J Comp(S,I) is consistent with
1. Define the timing of z (relative to t) to be
the set sS={s,|acA}, where VaeA si: w > V' is
defined by

t(uo) where uc < z is such that ¢ is

the i-th terminator of a in z,
sz(i)= if any

undefined otherwise

Hence if there is an i-th occurrence of a in
z, sg(i) is the time at which this occurrence
taminates and stores its range values.

Definition Let Sy=(A,T1), So=(A,Tp) be equiva-
lent, determinate schemata. Let IeInt(A),
1eTA(A), zeComp(Sy,I), and 2'eComp(S,,I) such that
z and z' are consistent with t. For any aeh

define s2 < s, iff View s3(i) < shi(i).

S Sy 7 Define

a a a a . ars a (s
s < g2, irf 5% < 5%, and diew s¥(i) < s%,(1)
s, z! 2 S Sgt 3 z( ) z'( .
Define s, < S, (2 is as fast as z', with respect

to 1) iff Vaea SZ < si,. (z is

Define s_ < s
ef z 2!

faster than z', with respect to 1) iff sz < sg. and

EaasA si < si..
Definition Let Sy=(A,T;), Sy=(A,T,) be equiva-
lent, determinate schemata., Define S1 < S§ (S5
is ps fast as Sy) iff VIeInt(A) VreTA(A
Y zeComp(S,,I) if z is consistent with T then
Jz'eComp(55,I) s,¢ £ s,. Define 51 < S% (s, is
faster than S;) iff S; X S, and JIeInt(A
FreTala) EzeComp(Sg,I) such that z is consis=-
tent with 1 and \VieComp(Sl,I) if £ is consistent
with T then s_ < s,
z £

The following clearly demonstrates the

duality between timing and parallelism,

Theorem 6 Let Sl=(A,T1), Sz=(A,T2) be equivalent,
commutative, repetition-free, determinate
schemata. Then Sy < 5, iff 5) £8p, and 5y < 5;
iff 51 < 8,

Bresented in the following are several
alternate characterizations of maximal parallel-
ism. Incorporated in this presentation is a
series of results which show how the parallelism
of a schema can be increased by a "look-ahead"
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procedure.
Definition Let S=(A,T) be a schema. Define a
predicate UltS on AxPref(S) by

Vber VixePref(s) Ultg(b,x) iff
Vchomp(S) if x < z thendye:® Xy < z and
be¢(xy) and Yu <y \7as¢(§3) bpa.

The subscript "S" may be omitted when S is
understood.

Informally, in view of the finite-delay
property, Ult(b,x) is true iff_for every computa-
tion z with prefix either (i) b occurs in x un-
mated; or (ii) b will ultimately occur in z after
x and no conflicting operations will become ac-
tive in the meantime; and in both cases no con-
flicting operations are concurrently active with
b. For Ult to be well-defined, the definition
must be shown to be dependent only on x, rather
than x. It is simple to show that, if x,x'ePref
(S) are such that x = x} then for any IeInt(A),
alﬂx and aI-x' differ only with regard to which
operations in ¢(§) have initiated, It follows
that if either (i) or (ii) holds for x, then (i)
or (ii) holds for x'.

If be¢(x) then Ult(b,x). The importance of
this predicate is that if Ult(b,x) but bée(x),
then it will be possible to modify the schema S so
that b is enabled in state f (x), without having
the effect of changing the ceéll sequences.,

Definition A schema S=(A,T) is called globally
complete if VxePref(s) Vbeh Ult(b,x) implies
beg(x).

Hence a schema is globally complete if no
operations can be enabled by looking ahead, other
than those already enabled.

The following is the first part of a syntac-
tic characterization of closed schemata.
Theorem 7 Every closed schema is globally
complete.
Proof Suppose S=(A,T) is not globally complete,
Let xePref(S), beA be such that Ult(b,x) and
bfd(x). A new schema S=(A,T) will be constructed
such that S = S and S < S, thereby showing that
S is not closed, By Observation 1, it may be
assumed without loss of generality that T is a
tree. From S, the construction of § proceeds
according to
Construction 1 Let T=(Q,q5,f,¢). Define g, =
fo(x). Q will be decomposed into QllUq?lyas,
where each pair of subsets is disjoint.
Q! ana Q2 are defined inductively by the
following rules:
Ql:

(1) aqueq!

(ii) 1If qeQland JoeA q'=f(q,0) and bé¢(qa*)

then q'te

(iii) The only elements of Q! are those
obtained by a finite number of appli-
cations of the above rules.

Q2
(1) If qeq! and Eﬂoe&i q'=f(q,0) and be¢(q'),
then q'eQZ.
(ii) If qe0? and Joe(A-b) q'=f(q,0), then
quQZ.

The only elements of Q2 are those
obtained by a finite number of appli-
cations of the above rules.

Q3 = a-(qtUq?).

(iii)

In summary, Ql is the set of states reachable
from qx by a sequence yeA such that bg¢(xy) but
Ult(b,xy). Q2 is the set of states reachable
from states in Q! for which the ultimate b
actually becomes enabled.

Under the assumption that T is a tree, Ql, Q2
and Q3 are clearly disjoint, since if y#y' then
fa,y)#r(a,y').

The plan now is to construct a schema S
which behaves as S, except that S enables b when
in state gy. To do so, account must be taken for
the possibility that b terminates in S prior to
the point at which it would terminate in S. The
corresponding terminator of b must be "recorded"
in additional states of §, until the point is
reached in schema S where a transition with this
terminator would normally be defined. Thus for
each qu2 and each meb, the termination of b will
be recorded in a new state named q". Define Q=
{q"lqeq?, meb}. Define T=(Q,qo,§,$), where
6=Q"JQ and Fand f are given in Table II, A
formal proof of the equivalence of § and S is
omitted. This construction is demonstrated in
Figures 4 and 5.

For the repetition-free case, every allowed
sequence is the prefix of a computation., This
fact provides for the use of Construction 1 on
repetition-free schemata of arbitrary (not neces-
sarily tree) structure. This will be shown by the
lemmas to follow.

Lemma 9 If Ultg(b,x) and y is such that x < y,
yePref(S), and no terminator of b occurs in y,
then Ults(b,x). The proof is an immediate con-
sequence of the definition of Ult.

Lemma 10 If S is repetition-free, the value of
Ultg(b,x) for a given b depends only on fy(x), i.e.
folx)=fo(y) implies Ult(b,x) iff Ult(b,y).

The proof follows from the definition of Ult and
Corollary 4

Definition Let S=(A,T) be a repetition-free
schema, q a state of T, beA. Define Ultg(b,q) to
be true iff JxePref(s) folx)=q and Ultg(b,x).

Corollary 5 (Lemma 10) If S is repetition-free,
Ultg(b,q) iff VxePref(s) fol(x)=q implies
Ultg(b,x).
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Lemma 11 Let S=(A,T) be any repetition-free,
determinate schema which is not globally complete.
Let xePref(S), beA be such that Ult(b,x) and
b¢¢(x) The result of applying Construction 1 to
S ylelds S an equivalent schema such that S < 8.
lMoreover 1f S is commutative, so is §, If 8 is
finite-state, so is S.

EQQf It is necessary to show that for the set
Q- of the construction, any continuation from a
particular qeQ" is independent of how q was
reached. This follows from Corollary 1. (This is
not generally true in the non-repetition-free
case. This is why the tree representation was
assumed in Theorem 7, for then the statement is
true.) Frop Lemma 9 and Corollary 5, it follows
that if qeQ” then Ultg(b,q).

To show that commutativity is preserved, it
is necessary to enumerate the different cases in
the definition of f. Only one case will be demon-
strated here, Suppose qu N Web? g an arbltrary

element of A-b, Assume £(q,0m)" and f(q,m0)’.
Then f(q,m0) = £(q" ,c)
£(q,0)" if £(q,0)eq!) |
{ = f(q,om)
f(q,om) if (q,0)eq?

Finiteness is clearly preserved since only
finitely many new states are added if Q is
finite. Figure 6 shows the construction for this
special case.

One final result will prove sufficient for
characterizing closed, repetition-free schemata,
Lemma 12 Let S, S' be equivalent, determinate,
repetition-free schemata, If xePref(S)()|Pref(S')
and beA such that Ultg(b,x), then Ultg (b,x).

The nroof follows from Theorem 5 and the
definition of Ult.

Theorem 8§ Let S be a determinate, repetition-free
schema. S is closed if and only if S is globally
complete.
Proof S closed implies S globally complete is
Theorem 7. Suppose S=(A,T) is a determinate,
repetitlon free schema and 5 is not closed. Let
=(A,T") be such that S'=S and for some IeInt(A)
Comp(“' ,I)ZComp(S,I). Let xePref(S')-Pref(S)
such that x is minimal with respect to <. Then
x=y0 where yePref(s')()Pref(S) and oeZ, o is an
initlator since if 0 were a terminator, then yoe
Pref( r]Pref( ), a contradiction. Let o=b.,
Then b¢¢(5), but be¢'(x), where ¢, ¢' are the
behaviors of S, S' respectively. Then Ult .(b %),
and by Lemma 12, Ultg(b,x); therefore S is not
globally complete.

The schema S of Figure 3 shows that the
repetition~-free hypothesis cannot be eliminated,
since this schema is not closed, but is globally
complete,
Definition A schema S-(A T) is called locall
compléte if VxePref(S) xf(a,b)ep if ac¢(x) and
Voea bed(xo) then bed(x). -
(Local completeness is analogous to being in
"maximum parallel form" in 1°,)

Theorem 9 Let S=(A,T) be a repetition-free,
determinate schema. S is globally complete if and
only if S is locally complete.

‘ace(q)

Proof Suppose S is not locally complete. Let

xePref(S), (a,b)e § be such that aec¢(x) and

Voea bed(xo) but bfe({x). Clearly Ult(b,x) since
b will always occur sometime after the termination
of a, by Theorem 5. Since b¢¢(x), S is not
globally complete. Conversely, suppose S is not
globally complete, but S is locally complete.

Let xePref(S), beA such that Ultg(b,x) and bé¢(x).
Assume, without loss of generality, that T is a
tree, by Observation 1. Let ¥ be the subtree of T
rooted at x and truncated at any path u such that
bed (xu),
Clalm Hve A*
in ¥,

Haea VTre_a_ vn is a maximal path
This claim is the same is saying that
Hveﬁ* Jacs afb and Vrea bed (xvn), by the
definition of Y. Since bd¢Tkv) this would
contradict the assumption that S is locally com-
plete., If the tree ¥ is finite then the claim is
obvious. Suppose that ¥ is infinite and the
claim is false, Then for any finite path v from
the root of ¥, for all ce¢(xv) there must be at
least one yec such that bi¢1kvy), otherwise the
claim would be true. In the manner of construct-
ing an infinite path in the proof of Konig's
Lemmal®, an infinite path w in ¥ may be con-
structed such that Vw' < w bé¢(xw'). By
Judiciously choosing the operation c¢ at each step
of the construction, i.e. in the "round robin"
fashion (see Lemma S5), the canonical sequence
corresponding to path xw satisfies the finite-
delay property and therefore is a computation.
("Canonical sequence" was defined only for finite
strings. It is extended to infinite strings in
the obvious way.) By construction, b does not
occur in this computation after x, therefore

not Ults(b,zj contradicting the hypothesis.

Corollary 6 A repetition-free, determinate
schema is closed if and only if it is locally
complete.

An application of this Corollary is
Theorem 10 It is decidable whether a repetition~-
free, determinate, finite-state schema is closed.
Proof Such a schema 8 is closed iff it is locally
complete, by Corollary 6. S is not locally
complete iff for some reachable state q and some
b¢¢(q) such that bpa and
\705&_ be¢(f(q,0)). This is clearly decidable.

Theorem 11 Let S be a determinate, repetition-
free schema, Then a closure of S exists., In fact
a commutative closure of S exists,

Before presenting the proof, it will be use-
ful to agree on a convention for Construction 1
which makes it a single-valued transformation on
schemata,
Convention Let S be a non-closed, repetition-
free schema, Unless otherwise specified, the
notation § will be agreed to mean the result of
applying Construction 1 to S, such that
(1) x is a least length prefix such that for same
beA Ults(b x) and bf¢(x)
(2) 1If there is a choice of b or x in (1), then
they are chosen by some fixed ordering of A
and I respectively.

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 19:26 from IEEE Xplore. Restrictions apply.



Proof of Theorem 11 Let S be a repetition-free,
determinate schema. Without loss of generality,
by Lemmas 8 and 10, it suffices to let S be a
serial schema and therefore S is commutative,
Define an infinite sequence of schemata
SO,S ,82,... by letting S,=S and, having defined
Si’ efine Si if Si is closed

Bi+17) .

Si otherwise

For iew let P.= Pref(S.) and ¢. be the behavior
i i
of S;. By Lemma 4, Vitw Pi§;§i+l’ and 54 is
repetition-free, determinate, commutative, and
equivalent to S. Define P=|JPj. It is now
lew
claimed that
(i) P is the transduction set of a commutat-
ive schema S§.

(ii) é is repetition-free.

(iii) § is determinate.

(iv) §zs.

(v) S is closed.

To show (i) it suffices to show that P satisfies
the conditions {1)=(6) of Theorem 2 and commutat-
ivity. Since each P;CE, also PCE and (1) is
satisfied., If xeP then for some i, xeP;, and
Yy <x yeP;, therefore yeP and (2) is satisfied.
The proofs of (3)=-(6) and commutativity are
similar. To show (ii) that S is repetition-free,
suppose there is a computation of S with a repe-
tition., =~ Then there is a prefix of S with a repe-
tition, hence a prefix of some Si with a repeti-
tion. However 5; is repetition-free, so this is a
contradiction. To show (iii) it will be shown
that S is conflict-free, determinacy following by
the results of Section 2, Suppose ¥3xePref(S)
J(a,b)e(p-1) ana {a,p}<Cé(x x). Then for some S;
{a b}C:¢ (x), contradicting_the determinacy of S
For (iv) assume S#S. Then JIeInt(A)
dxeComp(s,I) HyeComp(S,I) Emem Q (x)#Q (y).
Since every prefix of y is in Pref(§ 8),Malso
yECOmD(u,I) However this is contrary to the
dete{minacy of 5. Finally it must be_shown that
(v) S is closed. Suppose not. Then S is not
globally complete, i.e. HxePref(s) Jbea
Ulta(b,x) and b¢¢(x) Fixing x and b, let icw be
such that xe€Pj. Since there are only a finite
number of strings of length less that or egqual to
x, for some } 2 i, x is the minimal prefix such
that Ultg, (b, x) and bfd,.(x). Then by definition

of S, 3410 g j+l . hende | bed(x), a contradiction.

i

To see that the repetition-free hypothesis
cannot be eliminated, observe S, of Figure 5. By
enumerating comnutations, the only other equiva-
lent schema is S hence the set of computatlons
of a closure mus% be {Za.bb. Sc.aa., aa.cc, aa.bb.},
However there is no schema with only thes& com-
putations. Hence no closure of Sl exists,

4., Complexity of Closures

The previous section demonstrated the exist-
ence of a closure for any repetition-free deter-
minate schema, regardless of the complexity of
the transducer, In this section, the complexity
of closures of the finite-state schemata will be
investigated, The emphasis will be on repetition

free, determinate schemata, since several helpful
characterizations of closed schemata for this
class are available,

Theorem 12 Let S be a determinate, repetition=-
free, finite-state schema, The predicate Ultg is
recursive, i.e, it is decidable given xePref(S),
bEA, whether Ultg(b,x).

Proof By Corollary % and Lemma 12, it is suffi-
cient to prove this for the case that S is a flow-
chart, This is done by

Construction 2 Let S=(A,T), T=(Q,q,,f,), be a
repetition-free flowchart. Let xePref(S), beA,
and q,=f,(x). Construct a tree ¥ with nodes
labelled from Q with gy as the root. At each
stage of the construction the nodes are in one of
three classes: neutral, frontier, and end. The
following algorithm is that for the construction
of ¥,

1. gy is the initial frontier node and the root
of the tree,

2. If there is no frontier node then stop.
Otherwise let n be such a node and let q be
its label.

3. If there is a predecessor of n with label q,
then n becomes an end node. In this case
go to step 2. Otherwise continue.

L, If there is a ¢ such that f(q,0)', go to
step 5. Otherwise n becomes an end node.
Go to step 2.

5. For each ¢ such that rf(q,c)’, add to the
tree a new son of n labelled with the state
f{q,0), vhich becomes a frontier node. n
now becomes a neutral node. Go to step 2.

Figure 7 shows ¥ for a particular flowchart and a
particular x after the construction is complete.
Observe that the construction has duplicated the
behavior of the transducer until either a cycle
occurs, or until a state q is reached for which
¢(q)=@, hence the construction always terminates.
It is claimed that Ult(b,x) can be computed for
any b from ¥ as follows,

Claim Ult(b,x) if and only if (*) on every path
from the root of Yy there is a node with label q
such that be¢(q) and for no predecessor n' of n
with label q' is there an ae¢(q') such that apb,
Proof Suppose (*) holds. Then clearly every com—
putation with prefix x is such that b occurs after
x (or b is unmated in x), and moreover, no opera-
tion which is p-related to b can occur prior to b.
Formally stated, this is precisely the case that
Ult(b,x). Conversely, suppose (¥) fails. Then
there is a path with no node labelled q such that
be¢ (q), or for some path with such a node, an op-
eration p-related to b occurs prior to the first
occurrence of b, In the latter case it is clear
that not Ult(b,x). In the former case there are
two subcases, If the last node of the path has
label q where ¢(q)=@, then there is a finite com-
putation in which B does not occur after x. If
the last node has a predecessor n' with the same
label, then there is a cycle in the graph of the
transducer in which no state q' occurs with
bed(q'). Since every path on a repetition-free
flowchart corresponds to a computation, there is
an infinite computation with prefix x in which b
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does not occur after x. Hence not Ult(b,x). This
proves the claim and the theorem for the case of
flowcharts.

The preceding theorem will now be used to
show that there is at least some hope for obtain-
ing the closure of a repetition-free, determinate,
finite-state schema.

Theorem 13 Let S=(A,T) be a repetition-free,
determinate, finite-state schema. Let S be the
closure of S and § the behavior of §. Then § is
total recursive in the following sense: For any
string xeé? it is decidable whether (§{x)), and if
so then it is decidable for any beA whether
bed(x).

Proof Referring to the proof of Theorem 11, note
that the sequence of schemata S=53,57,55,4.. 1is
such that each schema is finite-state and can be
effectively constructed from its predecessor.

Note also that this sequence adds prefixes which
belong to the closure in order of increasing
length, Therefore, for any given x, at some stage
i either S; will have x as a valid input or x will
not be a valid input in the closure. In fact,

this stage i is such that i ¢ léllil.

Remark Suppose that S is a finite-state schema
and that somehow it is known that S possesses a
finite-state closure. Consider the procedure of
constructing the sequence of finite-state schemata
§=50,5155p,.+. as in Theorem 11, stopping at each
stage to test whether Sj is closed (using the
local completeness criterion, for example). Hope-
fully this procedure would yield a closure of S
at some stage j, i.e. Sy = 8. The example of
Figure 8 shows that this is not the case, The
flowchart S has the one-state closure as shown;
however the procedure outlined produces the
infinite sequence Sl,SQ,... , none of which are
closed. One case is known, however, when the
procedure always converges. This is given in

Theorem 14 Let S=(A,T) be a finite-state, deter-
minate, repetition-free schema, where T is an
acyclic transducer. A closure of S may be
effectively constructed having these same
properties.

Proof Since there is a uniform bound for the
length of all computations of such a schema (and
hence of any equivalent schema), the procedure of
constructing S=SO,Sl,Sg,... always reaches a
stage where 5; = S;,4 which is the closure of S.

Clearly there are finite-state schemata with
cycles which are also closed; e.g. any schema for
which p=AxA is closed. As motivation for consid-
ering transducers of greater complexity than
finite-state, the following is presented.

Theorem 15 The repetition-free flowchart S5, of
Figure 9 has no finite-state closure.

Proof Consider the infinite family of finite-
state schemata {sn}new of Figure 9. A simple

induction suffices to show Vnew S, = 8. If § is
is a closure of S, then it must include the

computations of every Sj. It is then easy to see
that the domain of ¢, the behavior of S, includes
the set P={xe{ay,by} | |E({al},x)| > IE({bl},x)|L
For any xeP
. {a,b} if [E({a;},x)| > [E({b;},x)|
é(x)=
{a} if |E({a;},x)| = [E({bg},%)|
If there is a finite-state transducer for §, then
the equivalence relation = on {a,,b }* defined by
x =y iff \7we{al,bl}* $(xw)=$%yw} must be of
finite rankl!3, However this is not the case,
since letting x(m)=a1....al, n < m implies

. m-times
x(n)#£x(m), since ¢(x(n)bl....bl)={a}; vhereas
N—
. n-times
$(x(m)by....by)={a,b}. Hence = is of infinite
————
n-times

rank.

This is a possibly surprising result because
it shows that although the number of operations is
finite, an infinite amount of storage (in the
transducer) may still be required to schieve
maximal parallelism, It can be shown that there
is a closure of S with a real-time counter trans-
ducer with one counter. However such schemata are
not of sufficient generality to realize the
closure of an arbitrary repetition-free finite-
state schema, as the following shows.

Theorem 16 The repetition-free flowchart S of
Figure 10 has no closure with a real-time counter
transducer.
Proof From an argument similar to the previous
example, it is easy to see that any
yeleg,eo,a ’bl}* such that Vx <y
|E({cl},x)} >7|E({a1},x)| ana

E({c,},x)| > |E({b,},x)] is
a valid input to the transiucer of the closure,
For any natural number n, Let X, be the set of
inputs '
{(e1)™ ey (€072 cpenanloy)™ cp |
TysTpsessssrpe{1,2}}, where (cl)rl means CyCysesCys

ri-times
Now an appeal is made to the following definition

and lemma from 17,

Definition For any natural number n, define an
equivalence relation

= on A* by \7x,yeA* x 8 y
iff \7weéf |w| < n implies §(xw)=d(yw),

Lemma 17 (Fischer, Meyer, and Rosenbergl?) 1If §
is realizable by a real-time counter transducer

then there exist constants c,k such that for any
new the number of equivalence classes of z does

not exceed cn®.

To continue the proof, let x,y be distinct
words from X,, i.e,

r r r
= 1 2 n
X (Cl) <, (Cl) c ....(cl) ¢, and

2 2
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Tn
c2....(c1) cp, all
Slnce x and y are distinct, there
Let i be the least
Assume witholit loss of generality
Letting

y=( ! ) (eg )
ri,r] e{l 2%
is some i such that r; # r!.
such number.
that r; < r!.
i

r r Ty
z=(ay) 1 by (aq) 2 bye...(ay) 1, $(xz)={a,c}
while ¢(yz)={b,c}. Since each string in X, is of
length no greater than 3n, and noting from above
that |z| 5?x| and |z| < |y| for x,yeX,, it follows

3n
that x#y implies not x = y.
]Xn|=2n,

It is obvious that
so that the number of equivalence

of 3=I'lis at least 2", Now supposing
that ¢ is realizable by a counter transducer,
:Bc k such that Vn the number of classes is not
greater than cn®, Hence 2B < c¢(3n)X. This
1mp11es there exist constants c¢',k such that \7n

classes

n

2% < ¢'n This is an obvious contradlctlon
since 2n/c'n is unbounded as n increases without
limit.

A real-time realization of the closure of S
can be obtained using a single "queue", i.e.
first-in-first-out list which essentially records
the outcomes of c¢. This is a special case of a
real-time "queue transducer" which is basically a
multi-tape Turing machine with one read head and
one write head per tape., All heads move in the
same direction. Transducers of this type are
useful for realizing closures of a sizable class
of repetition-free flowcharts!, Space does not
permit a detailed description of this class. The
essential property of this class which is
exploited is that, in the closure, no two opera-
tions with more than one terminator will ever be
simultaneously active. There is a procedure for
deciding membership in this class!, Moreover the
closure can be effectively constructed for members
of this class.

The question of the sufficiency of real-time
queue transducers for the realization of the
closure of an arbitrary repetition-free flowchart
is open as of this writing.
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Comp(S) = {alalblcl, alalclbi' albialcl’ 92} :;> Ult(ai,c),
1 _

Q 2—{q1'q4'q5’q8'q10}

Q3 ={q3.q6.q9}

@ =}’qoanpq7-Q11'Q12cQ13}

Fig, 4, A schema which is not globally complete.

Comp(S) = Comp(S)U fa;bscqay, ay04a,D4, alclblal}.

Fig. 5. Construction 1 applied to Fig. U.
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Fig. 8. The flowchart S, has the single state
closure shown. However, after 2n iterations of
Construction 1, the result S above is not
closed.
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Fig. 9. A flowchart with no finite-state
closure. Sy is the n-th of infinitely
many equivalents,

ap

Schema sn

Fig, 10, A flowchart with no closure realizable
by a real-time counter transducer.
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