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Towards a Theory of Universal
Speed-Independent Modules

ROBERT M. KELLER

Abstract—Of concern here are asynchronous modules, i.e., those
whose activity is regulated by initiation and completion signals with no
clocks being present. First a number of operating conditions are
described that are deemed essential or useful in a system of
asynchronous modules, while retaining an air of independence of
particular hardware implementations as much as possible. Second, some
results are presented concerning sets of modules that are universal with
respect to these conditions. That is, from these sets any arbitrarily
complex module may be constructed as a network. It is stipulated that
such constructions be speed independent, i.e., independent of the delay
time involved in any constituent modules. Furthermore it is required
that the constructions be delay insensitive in the sense that an arbitrary
number of delay elements may be inserted into or removed from
connecting lines without effecting the external behavior of the
network.

Index Terms—Asynchronous, module, networks, parallel, speed-
independent, switching,

INTRODUCTION

T has been suggested that computer design will, in the

future, be dominated by organizations which employ large
arrays of modules operating simultaneously. This is attributed
both to the use of “large scale integration,” in which the cost
and size of each module is very small, and also the realization
that “parallelism” is capable of providing a substantial increase
in computing speed and hardware utilization. Most work done
to date on arrays of modules has been concerned with
synchronous modules, i.e., those which are controlled by a
master clock. In this paper, we will be concerned with
asynchronous modules, i.e., those whose activity is regulated
by initiation and completion signals, with no clocks being
present. Computer designers have long recognized that
utilization of hardware could be improved by the use of
asynchronism, since the length of time that an operation
requires, as viewed by a system containing that operation, is
equal to the actual time required, rather than the least upper
bound, as in the synchronous case. Moreover, the problem of
random-varying or unbounded delays may be avoided by
using asynchronism, providing a kind of built-in error
checking. The fact that a system may be subject to
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evolutionary changes, or modification while operating may
also be provided for. The approach here is also useful in
systematic “flowchart” design methods in which a system can
be designed and implemented almost directly from a flowchart
with little regard for considerations such as races, hazard,
fan-out, etc. Such schemes have the effect of reducing the
complexity of the design-automation process. A number of
systems have been proposed or designed in this spirit.
Representative discussions may be found in Muller [23], Clark
[71, [8], and Dennis [11].

The purpose of this paper is twofold. First, we intend to
make precise a number of operating conditions deemed
essential or useful in a system of asynchronous modules, while
retaining an air of independence of particular hardware
implementations as much as possible. Second, we present some
results concerning sets of modules that are universal with
respect to these conditions. That is, from these sets we are able
to construct any arbitrarily complex module as a network. It is
stipulated that such constructions be speed-independent, i.e.,
independent of the delay time involved in any constituent
modules. It is here that the techniques differ from more
conventional investigations of asynchronous switching (cf.,
[28]). In the latter, dependence on timing to avoid races, etc.,
present such overwhelming difficulties that any proposed
modifications to a system would likely require that it be
redesigned. In the present work we are interested in
constructing arbitrarily large systems without global
considerations of such things. Furthermore, we are interested
in a practical problem that does not presently seem to be
amenable to treatment by such theories, namely, the problem
of simultaneous input changes.

We are especially interested in sets of modules that have as
few interconnecting lines as possible, since the latter would
tend to be representable by arrays of less interconnection
complexity. Although universal sets of modules are presented
here, the author’s intention should not be construed as a
suggestion that all computers be constructed of such modules.
In many cases, commonly used modules could be implemented
much more efficiently than the methods presented here would
suggest. In this case a decomposition technique, which
constructs a network using cheaply implemented modules
wherever possible to replace more complex constructions,
would be very useful. Furthermore, more general models could
be conceived and implemented that might make certain
schemes used in the present model unnecessary. Such
techniques are discussed briefly in Section V.
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I. PRELIMINARY DEFINITIONS

Definition 1.1: A sequential machine is a 6-tuple N = (Q,
4o, 2, A, £, 8), where 1) Q is a finite set of states, 2) q, €Q is
the initial state, 3) X is the input alphabet, 4) A is the output
alphabet, 5) f: Q X ¥ - Q is a partial function, the
state-transition function, 6) g: Q X £ = A is a partial function,
the output function.

Definition 1.2: A module is a 4-tuple (I, O, N, A) where

1) [Iis a finite set of input lines,

2) O is a finite set of output lines,

3) N=(Q,q,, Z, A, f, &) is a sequential machine with Z in
one-to-one correspondence with / and A in one-to-one
correspondence with P[0].!

4) A: Q - P[P[I]] is a function which specifies for each
state the combination of inputs which can occur.

An element of X represents the occurrence of a
(one-valued) “signal” on the corresponding element of I.
Similarly, an element of A represents the occurrence of a
signal on the corresponding elements of O. Signals are placed
on the input lines of a module m by other modules external to
m. In turn, m “assimilates” these signals by possibly changing
state and creating signals on its output lines, according to the
specification of its machine N. When the state-transition
function or output function is undefined for some particular
state and input combinations, it is assumed that this
combination will never occur in actual operation.

In many practical cases it is necessary to place constraints
on the way a module’s environment acts upon it, because of
the internal construction of the module. A general way of
doing this is to specify that.in a certain state, certain inputs
cannot occur. To make this precise, the function A is present
in the definition of a module. For any internal state g of a
module, A(q) € P[I] represents the allowable input sets; i.e., if
S € A(q) then any subset of the lines corresponding to
elements of S are allowed to be signalled concurrently.

Unless otherwise stated, all modules will be required to
satisfy the following.

Condition 1: I and O are disjoint.

Condition 2: A module, once having created a signal on a
line, cannot “withdraw” the signal before it is assimilated by a
module on the opposite end of the line.

Condition 3—(Arbitration Condition): If two signals appear
on different input lines of a module simultaneously, or very
close together in time, the action of the module should be as if
one signal, then the other, occurred as specified by the
sequential machine. If the action depends on the order of
occurrence, then the action may be chosen arbitrarily by the
module. Hence a module may assimilate signals in one order,
even if the actual order of occurrence is just the opposite.

This condition implies the following restriction on the
sequential machine: If f{q, o) and f{q, m) are both defined,
where o # , then so are f{if(q, 0), 7) and Af(q, 7), 0).

If the net effect of two concurrent input signals is the same
regardless of the order in which two signals are assimilated, we
will say that the arbitration condition holds “trivially.” The

!For any set S, P[S] denotes the set of all subsets of S.
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need for nontrivial arbitration arises, for example, in systems
in which certain resources such as a memory must be shared
among two ‘“processes” in a manner in which either can use
the resource but both cannot use it simultaneously. The
modules described in Definition 3.5 are useful in this regard.

Condition 4: There may be an arbitrary delay between the
assimilation of an input signal by a module and the production
of a corresponding output signal. This delay is always finite,
but is not necessarily bounded.

Conditions 1 and 2 have been introduced mainly for
consistency with certain types of physical implementations. It
is possible to remove them and obtain a different class of
modules as far as mathematical modeling is concerned.
Condition 3 is introduced because there is no way of
determining the exact order of two signals occurring
sufficiently close together, due to physical limitations on the
speed of signal propagation inside the module itself. Condition
4 is fundamental to the assumptions of asynchronism.

Definition 1.3: A network is a collection of modules with
some of their lines interconnected. If an input line of a module
is unconnected, then it is an input line to the network. If an
output line of a module is unconnected then it is an output
line of the network.

Just as modules are required to satisfy certain conditions,
networks of modules are required to satisfy the following
additional conditions.

Condition 5: At most two modules in a network are ever
connected by the same line, and this line must be an input to
one module and an output from the other.

Condition 6: If a signal is produced by one module on an
input line to another module, it must be assimilated before a
second signal occurs on the same line.

Condition 7: A line interconnecting two modules has no
intrinsic delay.

Whereas Conditions 1-4 were restrictions on module
operation, Conditions 5-7 restrict the operation of an
interconnection of modules. Conditions 5 and 6 have been
introduced for the same reason as Conditions 1 and 2 and
could be removed for more generality. Condition 7 is
introduced primarily for ease in presenting the model. It will
be seen later that no generality is lost as far as the results of
this paper are concerned.

In some previous models [11], [23], Condition 6 is
ensured by having each interconnecting line from a module m
to another module m' accompanied by another line directed
from m' to m. The function of this line is for m’' to
acknowledge to m that the previous signal has been
assimilated. However the restriction to such paired signaling
conventions causes an unnecessary loss of generality. That is,
although it is necessary to have some form of feedback from
m' to m, it is not necessary to have this feedback be direct.
Instead, feedback may be present through a more indirect
path.

From Conditions 2 and 6, it follows that the following
must hold for any module m.

Condition 8: Two successive signals can be placed on an
input line of m only if they are interspersed by at least one
output signal from m, which occurs in response to the input
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signal. (Otherwise the modules external to m would have no
way of knowing when a signal had been assimilated, and would
tend to violate Condition 6.)

Condition 9: Two signals can be simultaneously placed on
different input lines of m only if the outputs that occur in
response to these signals individually are produced on disjoint
sets of output lines. (This is because if the output signals were
placed on the same line, Condition 6 would be violated for
some module external to m.) Condition 9 may be restated as
follows.

Condition 10: Two signals which could occur successively
on (the same or different) input lines and produce signals on
overlapping sets of lines S must be such the latter input occurs
after the occurrence of all signals on § which are due to the
former.

These conditions impose constraints on the specification of
a module’s behavior in certain cases.

Clearly a network of modules may be described in the same
way as a module itself. The input and output lines of the
network are those which are not otherwise connected. The
internal state of the network is a set of combinations of the
internal states of the constituent modules plus the states of the
internal lines. (The state of a line is the presence or absence of
a signal on it. Even though a line has zero delay, it is valid to
say that it has such a state. A signal is “present” on a line
between the time it is produced and the time it is
“assimilated.”)

In other words, there is a mapping from the set of states of
the network into the product set of the set of states of the
individual modules and the states of the individual lines. What
we are defining then is a type of “realization” of a module by
a network, although this word is reserved for use in the
stronger sense of Definition 1.7. We are mainly concerned with
synthesizing modules as networks of other more-basic
modules. We will be interested in syntheses with certain special
properties, as described in the following paragraphs.

Definition 1.4: A network is called speed-independent if its
external behavior is independent of the delay of the
constituent modules. (The possibility of arbitration, as in
Condition 3, is permitted.)

Definition 1.5: A delay element is a module with one input
line, one output line, and one state. It functions only to
assimilate signals on its input and reproduce them on its
output.

Definition 1.6: A network is called delay-insensitive if its
external behavior remains unchanged, regardless of whether
any number of delay elements are inserted into, or removed
from any lines.

The delay-insensitive condition appears important for two
reasons.

1) It permits a network of any size to be designed without
regard to relative spatial distance between modules (which
correspond physically to time-delays).

2) It permits a network to be modified by inserting or
deleting other networks, so long as such networks have the
external characteristics of a series of delay elements.

Although the speed-independent and delay-insensitive
conditions appear similar, there is a technical difference due to
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the presentation of the model. Consider two modules m and
m' with a line directed from m to m'. Suppose m must
generate a signal on this line, then report to the rest of the
network when m' has received the signal. If m generates a
signal on this line then, since the line delay is assumed to be
nonexistent, m “knows” that the signal has reached m'
immediately. However if delay elements are inserted in the line
this is not the case. Hence m must in general obtain some kind
of feedback from m'. The point is that one reason for
introducing the delay-insensitive requirement is so that the
assumption about zero line delays cannot be used as a trick to
eliminate feedback.

Definition 1.7: A realization of a module m is a
speed-independent delay-insensitive network of modules which
has the same external behavior as m. (A realization always
implies some specific internal initial state.)

Finally we assume that every module satisfies, and every
realization must be made to satisfy, the following condition.

Condition 11—(Finite-blocking condition): If a signal is
present on an input line to a module, this signal must
eventually be assimilated.

This condition is related to the “finite-delay” property in
[18], [19], the “reliability condition™ in [24], and absence of
“blocking” and “individual blocking” in [20].

In most realizations presented in the sections to follow, it
will be obvious that the conditions stated previously hold and
therefore unnecessary to give explicit mention of them. They
were, however, an important criterion in selecting the modules
presented here and it is quite easy to find pitfalls in which sets
of modules appear to be universal, but fail to satisfy these
conditions. The easiest condition to overlook seems to be that
of delay-insensitivity, although the finite-blocking condition is
also subtle.

We now wish to investigate classes of modules which are
universal in the sense that from modules of this class we can
obtain realizations of any module. We begin by defining
universality, and then showing that a certain set of modules is
universal for a restricted class of networks. This is then used to
obtain results about larger classes of networks.

Definition 1.8: Let € be a class of modules and A a set
of modules types. A is called universal for € if every module
in @ may be realized (in the sense of Definition 1.7) by a
network consisting only of module types in .

Definition 1.9: A module is called serial if it must operate
under the condition that every input signal, regardless of upon
which input line it occurs, must be followed by exactly one
output signal on some line before another input can be
applied. Note that this is a proper strengthening of Conditions
2 and 3.

II. DESCRIPTION AND UNIVERSALITY FOR SERIAL MODULES

The behavior of modules will be described either by the
conventional state-transition/output table or directed labeled
graphs, together with an indication of the allowable input set
function 4.

Definition 2.1-Merge Module (M): Referring to Fig. 1, we
see that the M module produces an output signal in response
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I,7{O4
15/ {04}
O Alag)={ {1t , {13}

(a) (b)

(c)

Fig. 1. Merge module (a) Representation. (b) Machine specification.

(c) Binary-tree interconnection to form M.

to a signal on either of its inputs. Simultaneous inputs are not
allowed, hence this is an instance of a serial module. A
generalization of this module is the n-way merge M, , which
may be realized by a binary-tree interconnection of M modules
as shown in the figure.

Definition 2.2—Select Module (S): This module has two
internal states, indicated by X = 0 or 1. The internal state is
set by a signal on the S input (see Fig. 2), reset by a signal on
the R input, and tested by a signal on the T input. The test
signal produces one of two outputs, depending on whether the
internal state is O or 1. It is important to note that the
“signals” in the state diagram are not levels. They are abstract
and may be implemented in a variety of ways. The reader
having difficulty relating this to physical operation should
consult Section IV.

Theorem 2.1: The set.{M,S} is universal for the class of
serial modules.

In presenting the proof, some additional useful modules will
be presented which are constructable from the set {M , S}. The
delay-insensitive and speed-independent requirements follow
from the fact that in each construction at most one line will
have a signal on it at any one time:

It is frequently necessary to have a subsequence of
operations initiated by two different sequences in
non-overlapping time intervals. This is accomplished by the
next module. The terminology is due to [8], [27]. This
module is called a “union” module in [11].

Definition 2.3—Call Module (C): The C module has three
input-output pairs of lines, (/1, 01), (I2, 02), and (I3, 03),
and an internal state X. A signal on either /1 or I2 causes a
signal on O3. This is expected to be followed by a signal on /3
which causes a signal on O1 or 02, depending on whether the
original signal was /1 or /2, respectively. Thus X “remembers”
the original input signal. We refer to (1, O1) and (12, 02) as
“calling” pairs and to (/3,03) as the “called” pair. A
realization is shown in Fig. 3.

Several call modules may be interconnected to achieve any
number of calling pairs. One way to do so is by the

IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1974
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A0) = A1) ={{R}, {s}, (T}}

Fig. 2. Select module.

Fig. 3. Call module: (a) representation, (b) realization.

interconnection shown in Fig. 4. Here (I(k + 2), O(k + 2))
represents the “called” pair of lines. To prevent subsequent
diagrams from being too cluttered, an abbreviation is adopted
for this configuration as shown in Fig. 4. Here a is some
symbol which acts as a link between all of the individual
modules of an interconnection. A box containing “call a”
represents a calling pair and the box containing “a call”
represents the called pair. An alternate method of achieving
this same effect is to use a binary-tree interconnection. This
interconnection uses the same number of modules and is
probably “faster” since only [log,(k)] modules will be
traversed, as compared to an average of [k + 1/2] for the
linear interconnection, assuming that it is equally likely that
the call originates from any unit. A
Definition 2.4—D-call Module (DC): This is a module
similar to the C, except that there are two called inputs and
four calling outputs. The DC functions like a call which
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S ) O3 lke2

(b)

Fig. 4. (a) Cascade interconnection of call modules. (b) Abbreviated
representation.

preserves the outcome of some test. The operation is explained
thoroughly by the diagram of the construction of this module
as shown in Fig. 5.

Definition 2.5—~m-way DC modules (DC,,): By using m S
modules, a call may be constructed which preserves the
outcome of an m-way test. The DC,,, will be depicted as in Fig.
6. The construction is left for the reader. By cascading DC,,,
modules, as was done for C modules, any number of calling
sequences may be achieved. This is abbreviated symbolically as
in Fig. 7.

Using the modules presented previously, we are now able to
show the construction of an arbitrary serial module m =
({,0,N,A) where N = (Q, q,, =, A, f, g)- Assume that n has n
states. We record the current state as a O state in one of a series
of (n — 1) S modules. The network of Fig. 8 shows the means of
testing and setting the state using calls and D-calls. Assume
that the current state is g. A signal on the jth input line
initiates a control sequence as shown in Fig. 9 so as to first
determine the state, given by flq,j), and then set the new
state, given by g(g, /). By “merge to g(q,7)” in the diagram, we
mean that for each output line there is a tree of merge
modules which has inputs from exactly those sequences which
are to produce an output on the line g(q, 7). This completes
the proof of Theorem 2.1. An alternate construction, which
uses only [log,|Ql] S-modules for the state recording
network is also possible. We leave this construction as an
exercise for the reader.

Definition 2.6: A set of modules is said to have modularity
n if n is the maximum number of lines on any one module in
the set.

In the preceding discussion, it was shown that a set with
modularity 7 and cardinality 2 is universal for the class of
serial modules.

We now show that there are universal sets of modularity 6
and 5 for the class of serial modules. The modules G and H as
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Fig. 5. D-call module: (a) representation, (b) realization.
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Fig. 7. Abbreviated representation of cascaded DCm modules.

shown in Fig. 10 may be combined to realize an S module.
Hence we have the following.

Theorem 2.2: The set {G,H,M } is universal for the class
of serial modules.

By using a trick of “sharing” two input lines of the K
module of Fig. 11, we may realize an H using K and M to
obtain the next result.

Theorem 2.3: There exists a set (namely, { K, G,M}) of
modularity 5 which is universal for the class of serial modules.

Open Problem: Is there a set of modules with
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Fig. 8. State testing and setting network for realization of arbitrary
serial module.

Input Line j

Determine state

Call ﬂf(q 1 } ... |Call B{(q ) Set new state
Merge to g@.1) Merge to g@.n) Produce output

Fig. 9. Scheme for realization of an arbitrary serial module.

A0)=AM={{R}, {SH

RARY  AR)=AR)=[(C'}}

1 (b) S/S}

THT)

ONIRO
CHC'}

A(0) = AD=H{C}, (TH

T/}

cnct

h————

(a) . (c)
Fig. 10. (a) Realizing S with G and H. (b) Machine specification for
H. (¢) Machine specification for G.

modularity 4 or less which is universal for the class of serial
modules?

III. FURTHER RESULTS ON UNIVERSALITY

Definition 3.1: A module is called parallel if it allows more
than one signal on different inputs which are not necessarily
separated by an output signal, or if it may produce more than
one output signal on different lines due to a single input.

IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1974

AO) = A1) ={IR}, ISt}
A(2)= A3)= {isl]

Fig. 11. (a) Realizing H with K and M. (b) Machine specification for
K.

(Conditions 2 and 6 are still to be observed however. Hence it
is always assumed, in the case of parallel modules, that the
sequential machine is specified in a manner consistent with
Conditions 8-10.)

Examples of parallel modules are given next.

Definition 3.2—Join Module (J): The J produces an output
signal only after both inputs have been signaled, as shown in
Fig. 12.

Definition 3.3—Fork Module (F): The F produces one
output on each of two lines in response to each input, as
shown in Fig. 13.

Definition 3.4—Arbitrating Test-and-Set Module (ATS):
This module operates in a manner similar to the S module
except that there are fewer lines, the T always sets the
internal state to 1, and simultaneous signals are permitted on
both input lines. By the conditions stated previously, if the
inputs are signaled simultaneously, the module acts as if one
input, then the other, occurred (see Fig. 14). Note that
according to the allowed input function 4, any number of T
inputs may occur in any state, but no R inputs can occur in
state 0. Thus an occurrence of T, or T, indicates that the
previous T has been assimilated and the occurrence of T,
indicates that an R input has been assimilated. However T
never occurs in response to R alone, but only R in conjunction
with T

Observation 3.1: It is not difficult to show that, given an
AS module (“arbitrating S’ module, defined to have the same
specification as the S module, except simultaneous inputs are
allowed), the ATS can be realized. Our purpose in introducing
the ATS is that we wish, for reasons which will become
apparent, to minimize the complexity of atomic parallel
modules as much as possible.

Definition 3.5—Lock-Unlock Modules (LUn): This is a
class of modules, each with a maximum of 2#x input and 2n
output lines. Each module in this class is realizable from the
set {F,M, ATS}. There are n pairs IUi, OUi,i= 1,2, ,nof
unlock lines and m < n pairs ILj, OLj of lock lines. Whenever a
signal occurs on a lock input /Li, a signal is produced on the
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(a)

O

® b
A0) = {1, o1}
A= il
A@)= {{uit

Fig. 12. Join module: (a) representation, (b) machine specification.

Iy 7101,05}

(b)
Fig. 13. Fork module: (a) representation, (b) machine specification.

corresponding lock output line OLi, and all other lock inputs
are “locked out”. This means that signals on other inputs are
not assimilated. This condition holds until one of the unlock
inputs between OLi and OL(i + 1) (additional modulo m) is
signaled. Then the next input signal occurring cyclically to the
right, if any, is assimilated and locks the module. The
realization is shown in Fig. 15. The module’s operation
depends on the fact that there is an initial signal present in the
network. This signal circulates in a “busy-waiting” loop until
an input signal occurs.

It is not difficult to see that sets such as {M, S} which were
universal for the class of serial modules are not generally
universal. This is summarized next.

Theorem 3.1: No set of serial modules can be universal for
the set of all modules.

- Proof: Consider the realization of a parallel module
from only serial modules. The requirement that only one input
be signalled at a time means that the realization is separable
into disjoint serial parts. However in general this is not
possible; e.g., the output of the J module depends on both
inputs, which could be signalled concurrently.

We next investigate sets which are generally universal.
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AO)=[{T]]

A1) =R, TH
(b)

Fig. 14. Arbitrating test-and-set module: (a) representation, (b)
machine specification.

11 out ouz 2 oun-h  ILmOUn
R R
T T T T Toh
( ol w1 w2 oL2 Un-D  OLm  Un

Inftialization Signal

Fig. 15. Realization of a lock-unlock module.

Theorem 3.2: The set {M, S, F, ATS} (modularity 7) is
universal for the class of all modules.

Proof: Let m = (I, O, N, A) be a parallel module. The
behavior of m is given by N = (Q, qo, Z, 4, f, g with T
corresponding to I and A to P[O]. We first realize a serial
module ' with inputs 7 and outputs O’ = P[O], by assuming
that only one input to m changes at a time.

To complete the construction, the inputs of m are fed
through the lock inputs of a lock-unlock module, and into
while the outputs of m’ are fed into the unlock inputs of the
lock-unlock module. This ensures that only 1 input to m'
occurs at a time. The unlock outputs are then fed into a
“distributor” which converts the output signals of m' to
possibly parallel output signals by using a set of fork and
merge modules, in the manner shown in Fig. 16. The fork
modules produce the simultaneous output signals while the
merge modules merge the signals from different control
sequences.

The only subtle point to be discussed lies in the possibility
that once the LU module has been unlocked, another input
may come in, causing m’ to produce an output which would
cause simultaneous inputs to a merge in the distributor.
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Outputs of m’' = elements of P[O]

fa,ol ib,c] facl ic}

Outputs of m
Fig. 16. The final output stage of a parallel module.

However this will not happen, since by Condition 10, two
concurrent input signals must not produce signals on any of
the same output lines.

Example: We demonstrate the construction above by
presenting a realization of an m X n Join module (J(m, n)).
This module is a generalization of the Join presented earlier.
There are m + n input lines, /1, 12, -+, Im and J1,J2, - ,Jn,
and m X n output lines O(1,1), 0(1,2), -, O(1,n), -,
O(m, n). The module waits for an input on one of{]l, n, -,
Im} and one of {Jl, J2, -, Jm} and, supposing that these
signals occur on /i and Jj, respectively, the module produces a
signal on O(i,j). Construction according to the proof of
Theorem 3.2 is shown in Fig. 17. For ease in presentation, we
show only the case m = n = 2. In the figure, certain outputs of
the DC modules are not used, and are marked “nc” to avoid
cluttering. Also, the state changing network, an instance of
Fig. 8 with n = 5, is not shown.

There are 5 internal states:

quiescent;

input on /1 received;
input on 72 received;
input on J1 received;
input on J2 received;

A WO~ O

£, &, and A are specified in Table L.

Since only one output occurs at a time, no distributor is
necessary in this case.

Corollary: The set {M, G, H, F, ATS} (modularity 6) is
universal for the class of all modules. The set {M, G, K, F,
ATS} (modularity 5) is universal for the class of all modules.

Proof: Theorems 2.1, 2.2, and 3.2.

Corollary: The set {M, AS, F } (modularity 7) is universal
for the class of all modules.

Proof: Theorem 2.1 and Observation 3.1.

It is natural to ask whether a realization is possible which
does not use the busy-waiting construction described in
Definition 3.5. Such a question arises, for example, if we are
using a system of asynchronous modules to model interacting
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[&] 11
:t::lz
L3 e—1
L4 we—J2

s

= U1 —0(2,2)
U2 —02,1)
U3 —=001,2)
U4 ——=00,1)
US —enc

My

nc=no connection

Fig. 17. Realization of a J(2, 2) module, aDC and each §;-call are
not shown, being an instance of Fig. 8.

TABLE I
f} Il 12 Jl J2 g‘ Il I2 Jl J2
O; 1 2 3 4 Oi [} ] ® ¢
1 - - o o 1! - - {o,1}  {o(1,2)}
20 - - o o 2i - - 02,1} (0(2,2))
3.0 0 - - 3 l (o, 1)} {o(2,1)} - -
alo o - - alfo,2)) (oz,2)) - -

A is given by

a{q)

{(31), {32}}
{(a1}, {32}}
({11}, {12)}
({11}, (12}}

a|
0' {{11, 1}, (11, J2}, {12, g1}, (12, J2}}
1
24

4

processes in an operating system. In this case, long-term
busy-waiting implies the waste of the resource of one
processor and is to be avoided whenever possible. In contrast,
if we intend each module to be a piece of hardware, we do not
really care about using busy waiting, except possibly from a
timing point of view. The question posed above is now made
precise and answered affirmatively by the following result.

Definition 3.6: We say that a realization is without
busy-waiting if, whenever the realization’s input lines are
without signals for a sufficiently long period of time, the
modules and lines internal to the realization eventually
stabilize. If a set .# of modules is such that any module in
class @ can be constructed without busy waiting, we say that
M is wbw-universal for class € .

We next look for sets which are whw-universal.

Definition 3.7: An arbitrating call (AC) module has the
properties of a call module, except that simultaneous signals
on all inputs are permitted.

Theorem 3.3: The set {M, S, F, AC} (modularity 7) is
wbw-universal for the class of all modules.

Proof: The idea is to realize, without busy-waiting, an
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LUn, for arbitrary n, using only elements of the set
{M, S, AC}. Each locking input line to the LUn module is
connected so that the corresponding signal sets a unique S
module. After doing so, the signal enters a binary-tree of AC
modules which are connected so that only one signal gets
through to the next stage. At this stage a circular test of the §
modules is performed to determine an input which has been
signalled. In order to insure finite-blocking (Condition 11),
there must be a way of starting the circular test at any given
module. This may be done by a second set of § modules. The
circular test terminates with the production of a locking
output. Finally, the unlocking input signal sets an S module,
then routes a signal back through the tree of AC modules, and
finally produces an unlocking output by testing the modules
set by the unlocking input. Further details of the construction
are left as an exercise for the reader.

Corollary: The set {M, G, H, F, AC} (modularity 6) is
wbw-universal for the class of all modules.

IV. IMPLEMENTATIONS

The method of signal flow described in the preceding
sections may appear unusual to some readers. It is the purpose
of this section to discuss some possible signalling conventions
and module implementations which could be used in practice.
The manner in which implementations relate to the choice of
“atomic” modules will also be discussed.

It should be mentioned that in implementing atomic
modules, we are permitted to make assumptions about delays.
This seems essential. In fact, it can be shown that certain
modules, specifically those with ‘“essential hazards” [28],
require delays for their implementation. The utility of
describing a network in terms of modules, however, is that the
modules provide a kind of “sphere of protection™ around
those parts of the network in which delays are critical. In fact,
we may introduce the concept of a quasi-realization as being a
realization in which certain lines are granted immunity from
the delay-insensitivity condition, and then relate this concept
to the discussion in previous sections, but we will not do so.

There are three seemingly natural signalling conventions
which may be used for communication from a module m to
another module m' by a line L.

1) Pulse-m sends a pulse on L. m' must either transmit the
pulse immediately, or contain a flip-flop which is set by the
pulse, indicating the signal’s arrival. In this case, m' has
essentially assimilated the pulse when it resets the flip-flop.

2) Symmetric Transition: Line L is considered to have a
value of one of two possible levels, 0 and 1. A signal is
indicated by a transition from logic value O to 1, and from
logic value 1 to 0. m' assimilates the signal by acting on the
level change.

3) Asymmetric Transition: A signal is indicated by a
transition from logic value 0 to 1. The value must be reset to 0
before m produces another signal.

These conventions are summarized in Fig. 18. Each of these
types of signalling appears useful in finding simple
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: Reset: Reset
I
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Fig. 18. Signalling conventions: (a) pulse, (b) symmetric transition,
(c) asymmetric transition.

implementations of certain modules, but none seems to yield
universally simple implementation. Hence it is instructive to
discuss conversion from one type of signal to the other. To
convert a pulse to a symmetric transition, the scheme shown in
Fig. 19 is used. T represents a standard “trigger” flip-flop. To
convert a symmetric transition to a pulse, the scheme of Fig.
20 is used. The @ symbol indicates the standard
“EXCLUSIVE-OR” and A indicates a delay whose length is
roughly equal to the intended duration of the pulse.

To complete the picture, we must discuss conversion
between symmetric and asymmetric transition signalling. We
first note that a module employing asymmetric signalling can
be viewed as one with symmetric signalling, with every other
transition indicating a reset. Hence it suffices to consider the
symmetric case only in specifying implementations.
Furthermore, due to the necessity of resetting in the
asymmetric case, this type of signalling appears to be usable
only when every line is paired with an oppositely-directly line
which indicates assimilation. In this paired case, a conversion
from one convention to the other is shown in Fig. 21, where
the component modules are S and M modules using symmetric
transition signalling. It is interesting that the same network
performs the conversion in either direction.

Under the assumption that a module is serial, several
techniques are available for implementation. One can use the
Huffman synthesis approach [16] for any of the signalling
conventions, the “pulse-mode” technique [22] for pulse
signalling, and the “transition logic” [6] analog of pulse mode
for transition signalling. Some modules which seem to be
naturally implemented using transition logic are shown in Fig.
22. MC denotes the “Muller C” element, an element with
memory. An implementation of MC using NOR gates is given
in Fig. 23. If both inputs of the MC are the same, then the
output is equal to the input. If they are different then the
output retains its former value. Hence in Fig. 22(c), assuming
that both inputs are initially the same value, no output
transition occurs until transitions have occurred on both
inputs, which is effectively the behavior of a Join. In Fig.
22(d), an (I,J) pair of transitions cause a transition on the
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o}

Fig. 19. Converting pulses to transitions using a trigger flip-flop.

x y A Xy y
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o
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(c)
Fig. 20. Converting transitions to  pulses: (a) “pulser”

representation, (b) implementation, (c) diagram of operation.

output of exactly one of the MC elements. However a
transition has also occurred on one input of two of the other
MC elements. The feedback loops have the effect of cancelling
these signals, through the use of EXCLUSIVE-OR’s. The A
denotes a delay which is introduced for the purpose of
allowing the circuit to stabilize before signalling its
environment. The S and ATS modules seem to be naturally
suited to implementation using pulse signalling, as shown in
Figs. 24 and 25. The reader may wish to observe this by
attempting the design using transition-mode signalling. The
ATS module implementation shown is still rather complicated
and deserves explanation. Referring to Fig. 25, a pulse on the
T input causes the value of FF, to be gated into FF,. Then
the trigger flip-flop value T, is gated into FF,. If R has been
pulsed since the last T pulse, the values of FF, and FF, will
then differ and T, will be pulsed. Otherwise T'; will be pulsed.
Delay A, is adjusted so that it is longer than the settling time
of FF,. It is desirable to adjust A, so that it is longer than the
settling time of FF, .
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Fig. 21. Conversion between symmetric and asymmetric transition
signalling.
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Fig. 22. Modules implemented by transition signalling: (a) merge,
(b) fork, (c) join, (d) J(2, 2).

Unfortunately, - there is a problem with this
implementation. Since the relative timing of R and T is not
constrained in any way, the output of 7, may be changing
when gating into FF,; occurs. This may cause a nonstandard
pulse to be applied to FF,, which in turn may enter a
metastable state or which may oscillate, and in either case not
stabilize in the normal settling time. Experience with these
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Fig. 23. Implementation of MC using NOR gates.
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Fig. 24. Implementation of § module using pulse signalling.
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Fig. 25. Implementation of ATS module using pulse signalling.

phenomena has been reported [5], [9], [21], [31] but
apparently they are not widely recognized. As time increases
after the occurrence of this phenomenon, it can be observed
empirically that the probability that the flip-flop has not
stabilized grows smaller. Hence making A, large increases the
reliability, but by no means to 100 percent. Note that by the
arbitration condition, it does not matter for this module in
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which state FF, finally settles because if it does not reflect the
true state of T, it certainly will on the next T pulse, as R
cannot occur again until the T, output occurs, by the
specification of the module’s operation.

To the author’s knowledge, no totally “reliable” solution to
this problem exists. A recent workshop was directed to the
problem without definite conclusions [32]. The interested
reader may also wish to compare the above cited work to
[33], [34]. Such problems appear to occur whenever the
arbitration condition (Condition 3) does not hold in a trivial
way; that is, the output produced depends on the order of
assimilation of simultaneous inputs. For example, the
implementation of the Join module as shown in Fig. 23 does
not appear to have this flaw. We reemphasize at this point that
it is for such reasons that we would like to do without
nontrivial arbitration whenever possible.

V. GENERALIZATIONS AND RELATION TO OTHER MODELS

Discussed in this section are some generalizations of the
model presented in previous sections and the relation of these
generalizations to other asynchronous computation models.
We first consider a generalization which allows multivalued
signals on lines. This is motivated by the problem of
transmitting “data” from a module 7 to a module m’ which
can take on one of # > 1 values. In the present scheme, this
value could be encoded as a “unary-encoded” signal on one
out of n lines. A more efficient binary encoding could be used
which first encodes the data in binary, then represents each bit
as a signal on one out of two lines, requiring at most 2
[log, n] lines. This method is discussed in [3], [14], [23]. A
still more efficient method is described in [27], however it is
not amenable to description in the present model because
assumptions about delay times are involved. The idea is that
the data are encoded in binary using [log, #] lines, but an extra
line accompanies these lines. A signal on this extra line
indicates when data are being transmitted. This signal lags the
data slightly, so that when it arrives at m’, it is certain that the
data lines have their proper values, assuming the delay in all
lines in the bundle are the same. Other methods for
implementing multiple-valued asynchronous signals are
discussed in [3]. If the model presented here were extended so
that lines could hold multiple-valued signals, then this
implementation could be represented conveniently. Here then
is a case in which it may be beneficial to extend the present
model, since it does not succinctly represent the idea of data
transmission. Related to this are practical considerations for
bus structures, which are discussed in [35].

Another generalization is possible in which concurrent
input signals are given relative priorities which would govern
their order of assimilation by a module. It may or may not be
desirable to remove the finite blocking condition in this case.

Another generalization of the present model would allow a
line to be accessible by more than two modules. This differs
from our intuitively-accepted idea of a line representing a
signal path, but nevertheless could be analyzed
mathematically. Such a generalized line could be realized by
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making each line correspond to a module. However we then
have to have “lines” to connect these modules, and seem to
have travelled in a complete circle. Such generalizations are
discussed in [15], [26], in which the lines are referred to as
“places.” Related to this, and the previous generalization, are
the “links” of [29] and, in a loose sense, the “cells” or
“locations” of [18], [19].

It may be noted that for each of the modules described
herein, there is a representation of the state-transition table in
terms of a “Petri net,” as described in [15], provided that we
impose on the latter a condition which is the equivalent of the
finite-blocking property. This means that Petri nets are, in a
sense, universal for the representation of such structures.
Other investigations have shown that Petri-nets, properly
restricted, can be implemented using modules such as the ones
described here [25], [30].

Another variation allows a line to be connected to only two
modules, but allows it to be both input and output to each
[4]. Condition 1 is therefore removed. This temporarily defies
intuition, until we view it in the light of paired signalling
conventions using transitions, such as discussed in [11], [23].
The idea is that each line is really two oppositely directed
lines. To avoid confusion, we capitalize the first kind of line. A
“Line” is then said to be in one of two states: active if the lines
have different values, and idle if they have the same values.
Thus either module in an interconnection can change the state
of the Line by changing the value on the line directed from it.
Still more complex Lines are discussed in [25], [30].

One final generalization to be mentioned is one in which
each line acts as a queue. That is, Condition 6 is removed. A
restricted case in which the signals are 1-valued corresponds to
the “marked graph” model [15]. In the case in which signals
can be multivalued, we have the models presented in [1],
[17].

It has not been our purpose to generate an all-encompassing
model in this paper, but rather to generate a model which can
represent a wide class of systems and still be reasonably close
to a hardware implementation. How well this goal has been
achieved is summarized in the next section.

CONCLUSIONS AND DISCUSSION

A set of modules has been presented from which may be
~ synthesized a wide class of modules. Furthermore, an effective
way to perform this construction is indicated. Unfortunately,
such constructions may produce somewhat unwieldy end
results, as evidenced by Fig. 17, for example. Part of the
problem appears to be due to the general need for arbitration.
It is this property that adds some of the complexity to the
general construction presented here, namely the requirement
of the lock-unlock module. Another undesirable property is
that the present implementation may be unnecessarily slow,
since only one input can be affecting the state-changing
network at a time. Additional considerations are due to the
fact that nontrivial arbitration seems inherently more difficult
to implement, as discussed in Section IV. Hence it seems
desirable to be able to determine whether nontrivial
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arbitration is required or not, and if not, then to find a
realization which does not use any atomic elements with
nontrivial arbitration. For example, Fig. 21 and the
corresponding explanation in Section IV depicts a much
simpler implementation of the J(2, 2) than shown in Section
II. The MC element forms the only inherently-parallel basis of
this construction. The author conjectures that the set
* M,S,F,J } is universal for the class of modules not requiring
arbitration, however the conjecture is imprecise, since we do
not yet have a formal statement of what it means to “require
arbitration.” The present exposition is not proposed as an end,
but rather a point of departure for future investigation. In
particular, the following questions remain to be answered.

1) Are there other universal sets which are simpler than
those presented?

2) Are there other universal sets which provide for less
complex constructions, although the modules in the set may
be more complex than those presented?

3) Are there restricted classes: which yield simpler
realization methods?

4) What further can be said of the generalizations
presented in Section V in relation to the present model? Are
further generalizations, other than those mentioned, of
significance?

The author is convinced that the answer to questions
concerning universality will not be found in traditional
investigations of universal switching elements, as such
investigations have not strived for the properties deemed
necessary here, e.g., speed-independence, delay-insensitivity,
etc. The work by Muller [24] perhaps comes closest to these
desiderata, but since it was concerned with “autonomous”
and, in a sense, ‘“‘serial” networks, it is not clear that the
results are relevant to the problem presented. Another
discussion, more similar to the present one, is found in Petri
[26]. A preliminary negative result is cited in [10].

Finally we mention again that problems of this nature also
relate to problems encountered in “concurrent programming”
of computers. Since the flow of control in asynchronous
modular networks is similar to that in concurrent
programming, answers to questions presented here can yield
answers to the questions of the adequacy of programming
language constructs in effecting parallel computations. The
questions we ask here also seem to ask something about the
fundamental nature of asynchronous concurrent processes,
apart from the physical realm of one implementation. For
example, although the mutual exclusion problem [12], [13],
[20], a form of arbitration, appears to be solved for software
processes, what has in fact happened is that the problem has
been pushed to a lower level. That is, if the processors are
truly asynchronous, there must be an arbitrating device
between them and the memory. Many readers will
undoubtedly be aware of other such similarities.
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