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CONCERNING RINGS OF CONTINUOUS FUNCTIONS
BY

LEONARD GILLMAN AND MELVIN HENRIKSEN

The present paper deals with two distinct, though related, questions,
concerning the ring C(X, R) of all continuous real-valued functions on a
completely regular topological space X.

The first of these, treated in §§1-7, is the study of what we call P-spaces­
those spaces X such that every prime ideal of the ring C(X, R) is a maximal
ideal. The background and motivation for this problem are set forth in §1.
The results consist of a number of theorems concerning prime ideals of the
ring C(X, R) in general, as well as a series of characterizations of P-spaces in
particular.

The second problem, discussed in §§8-10, is an investigation of what
Hewitt has termed Q-spaces-those spaces X that cannot be imbedded as a
dense subset of any larger space over which every function in C(X, R) can
be continuously extended. An introduction to this question is furnished in §8.
Our discussion of Q-spaces is confined to the class of linearly ordered spaces
(introduced in §6). We are able to settle the question as to when an arbitrary
linearly ordered space is or is not a Q-space. The concept of a paracompact
space turns out to be intimately related to these considerations. We also
derive a characterization of linearly ordered paracompact spaces, and we find
in particular that every linearly ordered Q-space is paracompact. A result
obtained along the way is that every linearly ordered space is countably para-
compact. ,

1. Introduction (P-spaces). Kaplansky has pointed out [12, Theorem 30]
that if X is discrete, then every prime ideal of the ring C = C(X, R) is maximal.
Here we examine what topological consequences this property of the ring C
has for the space X. We find that if every prime ideal of C is maximal (or
merely every prime fixed ideal-definition below) then X has the following
feature in common with discrete spaces: every continuous real-valued func­
tion vanishing at a point p vanishes on a neighborhood of p.

The converse is also valid. Such spaces, then, might be termed "pseudo­
discrete." We call them, for brevity, "P-spaces." These constitute a much
wider class than the discrete spaces: examples abound of P-spaces that have
no isolated points whatsoever. The distinction is easily expressed in algebraic
terms: a P~space X is discrete if and only if every maximal fixed ideal of
C(X, R) is principal (Theorem 5.9).

Among the additional characterizations of general P-spaces X that we
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CONCERNING RINGS OF CONTINUOUS FUNCTIONS 341

obtain are the following (Theorem 5.3): every countable intersection of open
sets is open; C(X, R) is a regular ring; every ideal of C(X, R) is an inter­
section of maximal ideals; every ideal of C(X, R) is closed in the m-topology
of Hewitt (for definition see §5).

2. Terminology and notation. Familiarity with the contents of [10] will
be helpful, but an effort has been made to keep the paper reasonably self­
contained. All topological spaces X considered will be assumed to be com­
pletely regular and Hausdorffj '). Let f be any function in the ring C(X, R);
the set Z(f) of all zeros of f is called the zero-set of f. It follows from complete
regularity that every open set of X contains a zero-set. It is easily seen that
every zero-set is a G8 (i.e., a countable intersection of open sets). Conversely,
if X is normal then every closed G8 is a zero-set; but there are non-normal
completely regular spaces in which not every closed G8 is a zero-set [10, p. 69].
For any subset A of C, we put Z(A) = {Z(f) IfEA }. The subring of all
bounded functions of the ring C=C(X, R) is denoted by C*=C*(X, R).

An ideal I of C (or C*) is called fixed if the set nfE1Z(f) is nonempty.
Otherwise, I is called a free ideal. If PEnfE1Z(j), we shall call I an ideal at p.
It is well known that the only maximal ideal of C at a point p is the set

M p = {flfEC,f(P) = O}.

The ring C (or C*) contains a free ideal if and only if X is not compactt")
[10, Theorems 7, 37].

Let I be any proper ideal of C, and Z= Z(I); then (1) Zhas the finite inter­
section property, i.e., it is closed under finite intersection and it does not con­
tain the empty set, and (2) Z is closed under extension, i.e., if Z E Z, Z' E Z(C),
Z'::JZ, then Z'EZ. Conversely, if (1) and (2) hold for any subfamily Z of
Z(C), then Z= Z(I) for some ideal I of C. The ideal I is maximal if and only
if, in addition to (1) and (2), we have (3) if Z' EE Z there is a Z E Z such that
znz' is empty [10, Theorem 36]. Therefore if Z(fl)VZ(j~) ::JZ(!) , where
i belongs to a maximal ideal M, then either ilEM or i2EM (since Z(ftf2)
=Z(!1)VZ(j2), and M is prime).

It is well known [2; 21] that every completely regular space X can be im­
bedded as an everywhere dense subset of a compact space {3X (the Stone-Cech
compactification of X) such that every fEC*(X, R) has a unique con­
tinuous extension to C*({3X, R) = C({3X, R). This extension of f will be de­
noted by 1. For any subset S of X, the closure of S in {3X will be denoted by
S. In particular, the closure in (3X of a zero-set Z(f) (which is a closed subset of
X) is denoted by Z(j). Note that Z(j) CZ(f) (if Jexists).

If Q is any open subset of {3X, then for any PEQ, we shall call Qnx an
X-neighborhood of p.

(1) For general references in topology see [15, Chap. I]; all topological spaces considered
in the present paper will be assumed to consist of more than one point. For references in algebra
see [26, Volume I; 16].

(2) Hewitt, in [10], uses the term bicompact for our compact.
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Since C*(X, R) and C([3X, R) are isomorphic, every maximal ideal M* of
C*(X, R) assumes the form M* = M*p = {f/fEC*(X, R), l(p) =o} for some
PEI3X; and M*p is fixed or free according as PEX or PEI3X - X.

DEFINITION 2.1. For every point p of I3X, we denote by Nr the ideal of
C(X, R) consisting of allfEC(X, R) such that Z(f) contains an X-neighbor­
hood of p.

When PEX, and when this fact deserves emphasis, we write N p in place
of N». Note that if PEX, then N p consists of allfEC(X, R) that vanish on a
neighborhood (in X) of p. On the other hand, if PEI3X -X, then N» is easily
seen to be a free ideal.

From now on, unless otherwise stated, all ideals referred to are ideals of
C(X, R).

For any cardinal number m, we write exp m to denote the cardinal 2m
•

3. Prime ideals of the ring C(X, R). The following lemma, due to
Gelfand and Kolmogoroff, is essential for the development below. A proof of
the lemma is given in [5].

LEMMA 3.1 (GELFAND-KoLMOGOROFF). For every point p of [3X, the set

u» = {j I j E C(X, R), P E Z(f) }

is a maximal ideal of C(X, R). Conversely, for every maximal ideal M of C(X, R)
there is a unique p EI3X such that M = M». If PEX, then M> is the fixed ideal
M p ; otherwise M» is free.

LEMMA 3.2. If P is any prime ideal contained in the maximal ideal Mr,
then P-:)Np.

Proof. Let fENp. By definition of N», there is an open subset 0 of I3X
such that p E U = Q(\X, and f( U) = o. Since I3X is completely regular, there
is a gEC*(X, R) such that g(p) = 1, g(I3X-0) =0. Clearly fg =0. Since P
is prime and gEEMp, we must have fEP. It follows that NpCP.

THEOREM 3.3. For any completely regular space X, every prime ideal P of
C(X, R) tP" of C*(X, R)) is contained in a unique maximal ideal of C(X, R)
(C*(X, R)).

Proof. Since C is a ring with unit, the prime ideal P is contained in at least
one maximal ideal, say M>. Let q be any point of I3X distinct from p; it suffices
to show that P is not contained in the maximal ideal M«. Let Qp, Q q be dis­
joint neighborhoods (in (3X) of p, q, respectively. By complete regularity,
there is anfEC*(X, R) such thatJ(q) = 1, J(I3X -Oq) =0. Since (3X-Oq-:)Op,
f is in Nr and clearly is not in M», But by Lemma 3.2, NpCP. Hence P is
not contained in M«. This establishes the result for C(X, R). Applied to
C(I3X, R), it yields the theorem for C*(X, R).

Note that we have shown that N» is contained in a unique maximal ideal,
namely u-.
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COROLLARY 3.4. The residue class ring CIP of C with respect to any prime
ideal P contains exactly one maximal ideal (namely, M» I P); this ideal consists
of all non-units of CIP. The corresponding statement holds for C*.

Since the square root of a non-negative continuous function is continu­
ous, it may be seen without difficulty that M2 = M for every maximal ideal M
of C (X, R). This is fundamentally different from the situation in the ring of
entire functions-see [8].

THEOREM 3.5. For every point p of {3X, the following two statements are
equivalent.

(1) Mp is the only prime ideal containing N».
(2) M» = Nr (i.e., every continuous function f such that P EZ(f) vanishes

on an X-neighborhood of P).

Proof. That (2) implies (1) follows directly from Lemma 3.2. For the
converse, suppose that fEMp-Np. Since Z(fn) =Z(j) for every positive in­
teger n, we havefnEMp-Np for all such n. Hence the set S of positive powers
of f forms a multiplicative system that does not meet Nr. Consequently there
is a prime ideal P containing N» that does not meet S (see, e.g., [16, p. 105]).
Obviously P~Mp.

We show next that if there is an unbounded f in C(X, R), then the ring
C*(X, R) always has at least one nonmaximal prime ideal. In fact, the referee
has pointed out the following stronger result.

THEOREM 3.6. If C(X, R) ~ C*(X, R), then C*(X, R) has at least exp exp No
nonmaximal prime free ideals.

Proof. If f is any unbounded function of C(X, R) then g = e-/2 is in
C*(X, R) and vanishes nowhere on X, but assumes arbitrarily small values.
Consequently, Z(g) is nonempty and is contained in {3X -X. But X is every­
where dense in (3X, whence Z(g) has a void interior. By Theorem 3.5, there is
a nonmaximal prime ideal PP of C({3X, R) at any point PEZ(g). Since
C*(X, R) is isomorphic with C({3X, R), the corresponding prime ideal P of
C*(X, R) is nonmaximal. Since PE{3X -X, the ideal P is free. Now Theorem
3.3 shows that P is contained in the unique maximal ideal M*p of C*; and
by [10, Theorem 49], the cardinal of Z(g) is at least exp exp No. It follows
that C* contains at least exp exp No nonmaximal prime free ideals.

A related result is stated in Theorem 5.10 below.
REMARK 3.7. More explicit examples of nonmaximal prime ideals of C*

are given in [5, Theorem 6 ff.]; in particular, it can be inferred that for a
discrete Q-space X of power Na (see §8 below), C*(X, R) has exp exp Na
nonmaximal prime ideals.

4. P-points.
DEFINITION 4.1. A point PEX is called a P-point if the only prime ideal

of C(X, R) at P is the maximal ideal M p •
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THEOREM 4.2. For every point PEX, the following statements are equivalent.
(1) p is a P-point.
(2) Every continuous function vanishing at p vanishes on a neighborhood of

p, i.e., Mp=Np.
(3) Every countable intersection of neighborhoods ofP contains a neighbor­

hood of p.

Proof. The equivalence of (1) and (2) is simply a special case of Theorem
3.5. Suppose (3) holds. Since

Z(j) = n~l {xlll(x) 1< :},
f(P) =0 implies that f vanishes on a neighborhood of p. So (3) implies (2).
For the converse, we first recall that the intersection of countably many zero­
sets is a zero-set [10, Theorem 33]. (If {fn} is a sequence of elements of C,
then gn=min {Ifni, 1} is continuous and O~gn~l, and Z(gn) =Z(fn). Then
g= 2::=1 2-ngn is continuous and Z(g) =n:=1Z(fn).) Now let p be any P­
point and {Un} any sequence of neighborhoods of p. By complete regularity,
every o; contains a zero-set z; containing p. Thus n:=1 Un~n:=1 z; =Z(f)
for somefEC, andf(p) =0. By (2), Z(f) contains a neighborhood of p; hence
(3) holds.

This theorem can be generalized to refer to any point of {3X. In giving such
a formulation, one would first define a point PE{3X to be a Ps-poin: with re­
spect to X if every fEMp vanishes on an X-neighborhood of p.

COROLLARY 4.3. Every isolated point is a P'-point, Conversely, if the Pspoint
p is a Ga (in particular, if the first axiom of countability holds at P), then p is
an isolated point.

THEOREM 4.4. If the non-isolated point PEX has a base of neighborhoods
linearly ordered by set-inclusion, then p is a P-point if and only if the first axiom
of countability fails at p.

Proof. Let V = {U(f} be a base of neighborhoods at p that is linearly
ordered by set-inclusion. If the first axiom of countability holds at p, then by
the corollary above, p cannot be a P-point unless it is isolated. Conversely,
let { Vn } be any countable family of neighborhoods of p. For each n there is
a o;E V such that Vn~u.; Then n:=1 Vn~n:=1 U(Jn' and the latter contains
some neighborhood U(fE V. By Theorem 4.2, p is a P-point.

Example 7.5 below shows that a P-point need not have a linearly ordered
base of neighborhoods.

5. P-spaces.
DEFINITION 5.1. X is called a Psspace if every point of X is a P-point,

i.e., every prime fixed ideal of C(X, R) is maximal.
Two of our characterizations of P-spaces will be in terms of what Hewitt
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has called the m-topology [10, p. 49] on the ring C(X, R). Here a neighbor­
hood for a base atfE C is defined to be any set of the following form: all gE C
such that /f(x) - g(x) I<1r(x) for all xEX, where 1r is any function in C that is
everywhere positive. Hewitt has shown that every maximal ideal of C is
m-closed [10, Theorem 38], and has conjectured that every m-closed ideal is
an intersection of maximal ideals. This conjecture has been confirmed by the
present writers, jointly with M. Jerison [5, Theorem 9]:

THEOREM 5.2. Every m-closed ideal of C is the intersection of all the maximal
ideals containing it.

The main result of this section is the following.

THEOREM 5.3. The following statements are equivalent.
(1) X is a Psspace.
(2) Every zero-set of X is open (and closed).
(3) C(X, R) is a regular ring(3).
(4) Every prime ideal (free or fixed) of C(X, R) is maximal.
(5) Every countable intersection of open sets of X is open (every countable

union of closed sets is closed).
(6) Every ideal of C(X, R) is the intersection of all the maximal ideals con-

taining it.
(7) Every ideal of C(X, R) is m-closed.
(8) Every prime fixed ideal of C(X, R) is m-closed.

Proof. (1) implies (2). By Theorem 4.2, for every fin C(X, R), f vanishes
on a neighborhood of every point of Z(f). Hence Z(f) is open.

(2) implies (3). Let f be any element of C. Define g as follows: g = 0 on
Z(f), g = l/f on X -Z(f). Since Z(f) is open and closed, g is continuous. Clearly
f2g = f. It follows that the ring C is regular.

(3) implies (4). Obviously every homomorphic image of a regular ring is
regular, and clearly any regular integral domain is a field. It follows that every
prime ideal of a commutative regular ring with unit is maximal. (One may
also show directly that (2) implies (4) by using the argument given by
Kaplansky in [12, Theorem 30 ].)

That (4) implies (1) is obvious from the definition of a P-space. This estab­
lishes the equivalence of (1), (2), (3), and (4).

(1) implies (5). Let {Un} be any countable family of open sets, and put
U = n:= 1 U«. By Theorem 4.2, there is for any x E U a neighborhood of x
contained in U. Hence U is open.

(5) implies (1) by Theorem 4.2. There remain the equivalences with (6),
(7), and (8).

(3) implies (6). As noted in [1, p. 459], every ideal of a commutative
regular ring is the intersection of all the maximal ideals containing it.

(3) A ring A is called regular if for every aEA there is an xEA such that axa =a.
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(6) implies (7). Every maximal ideal of C(X, R) is m-closed [10, Theorem
38].

That (7) implies (8) is trivial.
(8) implies (1). Suppose that X is not a P-space. Then by Theorem 4.2,

there is a PEX and a prime ideal P at p such that PCMp and P~Mp. Now
M p , being maximal, is m-closed, and from Theorem 3.3 it is the only maximal
ideal containing P. Theorem 5.2 now implies that P is not m-closed. This
completes the proof.

An additional characterization of a P-space X is that every point of {3X
be a P-point with respect to X (cf. the remark following Theorem 4.2).

Since every neighborhood of a point contains a zero-set containing the
point, it is plain that condition (2) of the theorem may be phrased as follows:
the family of zero-sets constitutes a base of open sets for the space.

Spaces with the property (5) have been called (tJl-additive by Sikorski
[19]; he points out that in such spaces every countable set is closed and
discrete. Hence no infinite subset of a P-space can be countably compact.
So we have:

COROLLARY 5.4. Every countably compact Psspace is finite; every locally
countably compact Psspace is discrete.

It can happen that C*(X, R) = C(X, R) and yet X is not countably com­
pact [10, Theorem 29]. But then X cannot be a P-space:

COROLLARY 5.5. If X is a Psspace and C(X, R) = C*(X, R), then X is finite.

Proof. XC{3X, and the hypotheses imply that the compact space (3X is a
P-space.

COROLLARY 5.6. Every subspace of a P-space is a Psspace.

COROLLARY 5.7. An arbitrary sum(4) of Psspaces is a Psspace.

COROLLARY 5.8. Every finite product of P-spaces is a Psspace, but an infinite
product need not be.

Proof. The first statement is an immediate consequence of (5) of the theo­
rem. The second part follows from the observation that by the Tychonoff
theorem [15] the product of infinitely many finite (hence compact) P-spaces
is an infinite compact space.

We can easily give an example of a space X for which every prime free
ideal is maximal and yet X is not a P-space. Let X be the sum of an infinite
compact space Xl and an infinite P-space X 2• Then clearly C(X, R) is the
direct sum of C(XI , R) with C(X2, R), so that C(X, R) has nonmaximal prime
ideals (those contributed by C(Xl, R)), but "every prime free ideal is maximal,

(4) A topological space X is said to be the sum of the spaces X a provided the X a are mu­
tually disjoint, X = UaXa, and each X a is open and closed in X.
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since C(XI , R) has none (Xl being compact), and X 2 is a P-space.

THEOREM 5.9. A Psspace X is discrete if and only if every maximal fixed
ideal of C(X, R) is principal.

Proof. Suppose that X is discrete, and let M p be any maximal fixed ideal
of C. Define gE C by: g(P) = 0, g(q) = 1 if q~p. Then f= fg for every fEMp •

Hence M p is the principal ideal (g).
Conversely, let p be any point of X. By hypothesis, M p = (g) for some g.

Hence for every fEMp , we have Z(f) ~Z(g). Therefore nfEMpZ(f) ~Z(g).
But nfEMpZ(j) = {p}. So {p} ~Z(g). But Z(g) is open, since X is a P-space;
and Z(g) is nonempty, since the ideal (g) is proper. Consequently {p} is an
open set. Thus X is discrete.

As a direct consequence of Theorem 3.6 and Corollary 5.5, we obtain the
following result for arbitrary completely regular spaces.

THEOREM 5.10. Let X be any completely regular space; then C*(X, R) con­
tains a nonmaximal prime ideal if and only if X is infinite.

6. Linearly ordered spaces. By a linearly ordered space we mean any
linearly ordered set provided with its interval topologyt"). It is well known
that every such space is normal. The remainder of our paper is concerned
chiefly with these spaces.

We first recall some concepts from the theory of linearly ordered sets, for
which reference may be made to Hausdorff [7]. The set of all ordinals less
than a given ordinal cP is denoted by W(c/». The initial ordinal of the cardinal
~a is denoted by W a (wo=w). If W(w a ) is cofinal with no subset of type
<Wa , then Wa and ~a are said to be regular; otherwise they are singular. The
number W is regular, and so is every initial ordinal of the form WI3+1.

Let L be any linearly ordered set. A gap of L is customarily defined as a
Dedekind cut (A IB) of L such that A has no last element and B no first; it
may be regarded as a "virtual" element u that satisfies the ordering relations
a<u<b for all aEA and bEB. We shall call this an interior gap. If the set
L itself has no first (last) element, we shall introduce a virtual element u
such that u<x (u>x) for all xEL, and refer to u as a left (right) end-gap.
The linearly ordered set consisting of all elements and all gaps (end-gaps as
well as interior gaps) of L will be denoted by L+.

For every nonvoid subset S of L+ there exists a least element k of L+
such that k?;.s for all sES, and a greatest element h of L+ such that h~s for
all sES; we write, as usual, k=sup S, h=inf S. In case S is an increasing (or
decreasing) sequence having no last term, we also call k (or h) the limit of S,

(5) Observe that a subspace of a linearly ordered space need not be a linearly ordered space.
For example, let X be obtained from the reals by deleting the interval (0, 1]. In the interval
topology of X, every neighborhood of 0 contains points> 1, but this is not true in the relative
topology on X.
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and write k (or h) =lim S.
Let L be a linearly ordered set of more than one element, and let u be

any element of L+; u is called an wa - (w;-) limit of L if Wa (w(j) is regular, and
if the set of all elements of L that precede (follow) u is cofinal (coinitial) with
t»; (w;) (* signifies inverse order). If u is a limit from the left (right), then it
is an wa - (w;-) limit for unique a ({3). Associated with every uEL+ is an
ordered pair (p, u*), called its character, which we define as follows: (1) if u is
an wa- (wt-) limit, then P=Wa (u=W{3); (2) if u has an immediate predecessor
(successor), then p = 1 (u = 1); (3) if u is the first (last) element of L+, then
a (p) has already been defined in (1) or (2), and we put p=u (u=p). A char­
acter of the form (wa , w;> is also denoted by Ca {3 ; in case a ={3, the cor­
responding element or gap is called symmetric.

The symbols ( ), [ ], etc., will be employed in the usual way to denote
intervals of L (open, closed, etc.). The indicated boundaries of the interval
will be in L+, but they need not be in L itself.

The linearly ordered set L is dense if between any two of its elements there
lies another.

We shall make use of a fundamental existence theorem due to Hausdorff
[6, Theorems XVI and XVII], which may be stated as follows.

THEOREM 6.1. (HAUSDORFF). Let (J, r be any ordinals. Let T be any subset
of the Cartesian product W(u+1) 0 W(r+1) such that the ordered pair (a, (3)
is in T only if both Wa and W{3 are regular, and, subject to this restriction, such that

(1) for every a~u there is a {3~T such that (a, fJ)ET,
(2) for every {3 ~ T there is an a ~ (J such that (a, (3) E T,
(3) there is an (a, fJ)ET for which a={3.
Let K denote the set of all characters Ca {3 = (wa , w;) for which (a, (3) E T.

Finally, let E, G be any subsets of K, whose union is K, and with E nonempty,
Then there exists a (dense) linearly ordered set L, such that for every open

interval J of L, the set of element characters of J is precisely the set E, and the
set of gap characters of J is precisely G.

We close this section with a lemma which will be needed subsequently.
The statement of this lemma is in terms of increasing sequences; here and in
similar instances we omit the obvious remark that the corresponding result
for decreasing sequences is also valid.

LEMMA 6.2. Let X be any linearly ordered space. Denote its first element or
gap by a, and its last by b, and let u be an arbitrary element or gap of X. If u >a
and u has no immediate predecessor, then there is an increasing sequence T
= {x~}, with limit u, such that every closed interval [x~, b] is a zero-set of X. (If
in addition u is a gap, then the intervals [x~, u] are also zero-sets.)

Proof. The parenthetical remark follows from the fact that if u is a gap,
then the interval [a, u] is open and closed, hence a zero-set, whence so is each
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intersection [x~, u] = [a, u]n [x~, b]. N O\V in a normal space every closed c,
is a zero-set (§2). Hence [x, b] is a zero-set for every w-limit x, as well as for
every x that has an immediate predecessor. Let a denote the ordinal for which
u is an wa-lirnit, and let S = {y~} ~<Wa be any increasing sequence of type Wa

whose limit is u. If a> 0, the required sequence T may be taken as the set of
w-limits of the set S. For a=O, we define X n (n <w) as follows. If Yn+l has an
immediate predecessor, ,ve take the latter as X n. If Yn+l is an w-limit, we put
X n= Yn+l. Finally, if Yn+l is an wa-limit for SOIne a> 0, then we take as X n any
point satisfying Yn<xn<Yn+l for which [xn, b] is a zero-set: the existence of
such an X n follows from the discussion already given. Then T = {xn} n<w is
as required.

COROLLARY 6.3. Every closed interval of X is an intersection of intervals
that are zero-sets of X.

7. Linearly ordered P-spaces. The following theorem is an easy conse­
quence of Theorem 4.2.

THEOREM 7.1. Let X be any linearly ordered space. A point p EX with
character (p, u*) is a P-point if and only if both p~w and u~w.

COROLLARY 7.2. A linearly ordered space is a Psspace if and only if every
w-limit and every w*-limit are gaps.

We can now present some simple examples.
EXAMPLE 7.3. In the compact space W(WI +1) (§6), every isolated point,

and also the nonisolated end point WI, are P-points; all remaining points of
the space (i.e., the denumerable limit ordinals) are non-P-points. In the
compact space W(w2+1), the P-points consist of the isolated points, the
WI-limits, and the end point W2.

EXAMPLE 7.4. Let X be any linearly ordered space, without gaps, every
interval of which has the character set {COl, CI0, C11} (Theorem 6.1). From
Theorem 7.1, every symmetric element of X is a P-point, and every non­
symmetric element is a non-P-point. Hence both the set Y of all P-points,
and its complementary set, are dense in the space. Furthermore, every point
of Y is a P-point of Y; thus Y is a dense P-space.

EXAMPLE 7.5. Let X be a dense linearly ordered space such that in every
interval every point has the character C21 and every gap has the character
CI0 or coo. Then X is a P-space. From the fact that W2 is not cofinal with WI,
it is clear that no point of X can have a linearly ordered base of neighbor­
hoods.

EXAMPLE 7.6. Let X be a dense linearly ordered space whose set of ele­
ment characters is {CI0} and whose set of gap characters is {coo}. Then no
point of X is a P-point, yet every Z(f) (!EC(X, R)), being a Ga, contains an
open set.

Generalizations of these examples to higher cardinals are readily derived.
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The question of the existence of P-spaces of prescribed cardinality, however,
is most easily settled by means of a direct construction, as follows.

THEOREM 7.7. (1) Let A, B be disjoint nonempty closed subsets of an
arbitrary Psspace X (not necessarily linearly ordered), for each of which every
open covering has a subcovering of power ~NI ; then A, B can be separated by
disjoint open sets. In particular, every Psspace of power ~NI is normal.

(2) For every cardinal f >0, there exists a discrete linearly ordered (hence
normal) Psspace of power f.

(3) For every m~NI , there exists a dense linearly ordered (hence normal)
Psspace of power m.

(4) For every n~N2, there exists a non-normal Prspace of power n.

Proof. (1) This is established by a straightforward generalization of the
standard proof that every regular separable space is normal [14, p. 102]
(cf. also [19, p. 128 ]).

(2) Finite spaces are trivial. For every infinite order type {3 the linearly
ordered space of typef") (w*+w){3 is a discrete space of the same power as {3.

(3) Consider first any regular wa>w, and put

* *7r a = (w + w)(wa + wa ) .

Let A o be any set of type 'Ira. For every pair D Ot i of consecutive elements of
A 0, insert between these elements a new set AIti of type 'Ira, and put Al
= UiAIti. For each pair D I t i of consecutive elements of AI, insert between
them a new set A 2 ti of type 'Ira, and put A 2 = UiA2ti . Likewise define An for
all n <w, and, finally put X = Un<£IlA n. Denote the order type of X by Pa(7).
Since 'Ira is cofinal (coinitial) with Wa (w:), it is clear 't hat every element of X
has the character caa; hence, using Corollary 7.2, X is a dense linearly
ordered P-space of power Na • To obtain a dense P-space Y of arbitrary power
N~ ~NI , including singular N~, one may take for the order type of Y the
type P1W~.

(4) Since Pa is cofinal with Wa, any set of type Pa+1 is also a P-space. To
construct a non-normal P-space of power N2, let Xl be of type PI +1, and X 2

of type P2 +1. Denote their last elements by bi, bs, respectively. The product
X of the P-spaces Xl and X 2 is a P-space of power N2, and therefore so is its
subspace Y = X - {(bI , b2) } (Corollaries 5.6 and 5.8). I t follows from a classical
argument due to Tychonoff [24] (a cofinality argument shows that the dis­
joint closed sets {bI } ~ (X2 - {b2 } ) , (Xl - {bI } ) ~ {b2 } , cannot be separated)
that Y is not normal. Like constructions yield non-normal P-spaces of every
regular cardinal ~N2 (and of some singular cardinals). By taking the sum

(6) By the product ar is meant the order type of a set obtained by replacing each element
of a linearly ordered set of type T by a set of type (1'.

(7) Thus Pa is the order type of the lexicographically ordered set of all finite sequences of
elements of a set of type 7T"a.
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of the above set Ywith an arbitrary P-space of any power Nt3~N2' one ob­
tains a non-normal P-space of power Nt3 (singular Nt3 included).

COROLLARY 7.8. The continuum hypothesis is equivalent to the statement
that every Psspace of the power of the continuum is normal.

Corresponding equivalences are valid for wa-additive spaces [19] with
a>l.

REMARK 7.9. It has recently been shown by Henriksen and Isbell [9,
Theorem 2] that if X is any normal space, the residue class field C(X, R)jM
of any maximal ideal M of C(X, R) is always a real-closed field (for defini­
tion see [26, p. 235]). Actually, the proof is valid for any space X in which
every function continuous on a zero-set of X can be extended continuously
over X. In particular, then, the proof is valid if X is a P-space (see (2) of
Theorem 5.3). As we have just seen, a P-space need not be normal.

8. Introduction (Q-spaces). An important problem in the study of rings
of continuous functions is to ascertain when the ring determines the space.
It has long been known that C*(X, R) determines X if and only if X is com­
pact, and that C(X, R) determines X for a wider class of topological spaces,
namely, Hewitt's Q-spaces.

Hewitt shows that for every maximal ideal M of C(X, R), the residue class
field C(X, R)jM is an ordered field containing the real field R [10, Theorem
41]. M is called a real ideal if CjMis R; otherwise (i.e., if CjMis non-archi­
medean ordered) M is called hyper-real. The maximal ideal M is hyper-real
if and only if there is a countable subfamily of Z(M) whose total intersection
is void [10, Theorem 50]. It is evident that if M is fixed, CjM is R.

Hewitt calls X a Q-space if every maximal free ideal of C(X, R) is hyper­
real. Every completely regular space X can be imbedded as a dense subset of a
Q-space vX (in fact vX C{3X, whence (3vX = (3X), such that every function
fEC(X, R) has a (unique) continuous extension over VX(8). Hence C(X, R)
is isomorphic with C(vX, R). As mentioned above, two Q-spaces X, Yare
homeomorphic if and only if the rings C(X, R), C( Y, R) are algebraically
isomorphic [10, Theorem 57]. '

Shirota has shown [18, Theorem 1] that X is a Q-space if and only if X
is homeomorphic with a closed subset of a product of real lines]"). It follows
that every product of Q-spaces is a Q-space(lO), and that every closed subset
of a Q-space is a Q-space(ll). According to a result obtained independently by
Katetov and Shirota [13, Theorem 3; 18, Theorem 3 ], a paracompact space X
(definition below) is a Q-space if and only if every closed discrete subspace
of X is a Q-space.

(8) See also [18; 5].
(9) The necessity was previously shown by Hewitt [10, Theorem 56].
(10) This theorem was stated by Hewitt, but not correctly proved. We are indebted to Pro­

fessor Hewitt for calling our attention to Shirota's result.
(11) An independent proof is given by Katetov [13, Proposition 4].
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For the complete characterization of linearly ordered Q-spaces, we shall
also need the concept of a nonmeasurable cardinal. A cardinal Na " Till be
called nonmeasurablet-i) if no countably additive two-valued measure can be
defined on the family of all subsets of a set of povver Na , in such a way that
every subset consisting of only one element has measure zero, and the entire
set has measure one. It has been shown by Ulam and Tarski [25; 23, p. 153J
that Na is nonmeasurable for everyN; that is weakly accessible from ~o,

i.e., smaller than the first strongly inaccessible cardinal >NO(13). It is known
that the discrete space of power ~a is a Q-space if and only if the cardinal
Na is nonmeasurable [11, p. 175J (see also Theorem 10.4 ff., below).

I t follows from these remarks that most paracompact spaces of current
interest are Q-spaces. It is known, however, that there exist Q-spaces that
are not normal, hence not paracompact [10, p. 94].

A space X is called paracompaa (Dieudonne [3]) if every open covering
of X has a locally fini tef ") refinement that covers X. Every metric space is
paracompact [20], as is every locally compact space that is expressible as
the union of countably many compact spaces [3].

We shall show that every linearly ordered space is countably paracom­
pactf"), and that every linearly ordered Q-space is paracompact. These re­
sults are achieved by means of characterizations, in terms of the gaps of the
space, of linearly ordered paracompact spaces (Theorem 9.5) and linearly
ordered Q-spaces (Theorem 10.4). The latter leads, under a mild cardinality
restriction, to a simple direct construction of vX for any linearly ordered space
X-it turns out that vX is a subspace of a linearly ordered space.

9. Linearly ordered paracompact spaces.
DEFINITION 9.1. Let J be an interval of a linearly ordered space X. A

gap u of Jis covered in J by an interval K==(x, y) of X, if either x<u<y, or
one of x, y is an end-gap of J and coincides with u. The gap u is covered in J
by an open subset U of X if there is an interval K of X, contained in U, such
that u is covered in J by K. The gap u is covered in J by a family V of open
subsets of X, if it is covered in J by some member of V.

If a gap u of J is covered in X by V, then it is covered in J by V. The
converse need not hold, since an end-gap of J may be an interior gap of X.

LEMMA 9.2. Every open covering rr3 of a linearly ordered space E, such that
every gap of E is covered (in E) by U, has a finite subcovering.

(12) More precisely: non-two-valued-measurable.
(13) A regular cardinal NO" is strongly inaccessible if exp ~a< ~O" for all a <.«: see [22]. No

such cardinal >N 0 is known to exist; any which might would be of almost incomprehensible
magnitude. (Another proof of the Ularn- Tarski result can be derived from our Theorem 10.4
below.)

(14) A family V of subsets of a space X is locally finite if every point of X has a neighbor­
hood that meets only a finite number of sets of V.

(16) Dowker [4] has defined a space X to be countably paracompact if every countable open
covering of X has a locally finite refinement that covers X.
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Proof. For each TErr5, construct a subset T' of E+ (§6), by adding to T
every gap of E that is covered (in E) by T. Clearly, the family u' = {T'} TEu

is an open covering of E+. Now it is well known that any linearly ordered
space without gaps (including end-gaps) is compact (see the remark following
Theorem 10.2 below). Therefore there is a finite subfamily {Tf } of U' that
covers E+. Obviously, the corresponding subfamily {Tk } of rr5 covers E.

Fundamental to our main results are the notions of Q-sequence and
Q-gap, which we now introduce.

DEFINITION 9.3. Let X be any linearly ordered space, and let Wa be any
regular initial ordinal.

(1) An increasing or decreasing sequence 5 =: {x~} ~<Wa of points of X+
(§6) is called a Q-sequence if for every nonzero limit ordinal A<Wa, the limit
(in X+) of the segment {x~} ~<A of 5 is a gap of X. In particular, every w-se­
quence and every w*-sequence are Q-sequences.

(2) If 5 is a Q-sequence, and if the gap u is the limit of the entire sequence
5, we speak of 5 as a Q-sequence at u.

(3) A gap u is called a Q-gap from the left (right) if there exists an increas­
ing (decreasing) Q-sequence at u, a nonmeasurable Q-gap from the left (right)
if the cardinal of the Q-sequence is nonmeasurable.

(4) A gap u is called a Q-gap if it is a Q-gap from both the left and the
right (or only the appropriate one, in case u is an end-gap), a non-measurable
Q-gap if it is a nonmeasurable Q-gap from both the left and the right (or etc.).

It will be seen that the Q-sequences at gaps play.the role of discrete spaces,
whereas the non-Q-sequences of any power ~a behave essentially like the
space of ordinals W(w a ) . For denumerable Q-sequences, these roles coincide.

Let U be any open subset of a linearly ordered space X. For any point p
of U, the union of all the intervals of X contained in U and containing p is
an interval of X, which we shall call a maximal interval(16) of U. Clearly,
distinct maximal intervals are disj oin t.

LEMMA 9.4. Let J =: (p, v) be an interval of a linearly ordered space X, where
v is a gap that is not a Q-gap from the left. Let Q:' be the ordinal for which v is an
wa-limit. Let rr5 be any open covering of J that does not cover the gap v. Then u
has a subfamily of power ~a with nonvoid intersection. In particular, u is not
locally finite.

Proof. We may suppose that every TErr5 is a subset of J. Then every
maximal interval of T is an open subinterval K =: (x, z) of J. Denote by
I( the family, over all TEu, of all these maximal intervals K. Since the gap
v is not covered, we have z<v for every K=(x, z)EI(. Now let {y~}~<wa be
any increasing sequence of points of J whose limit is v. Each point y~ is cov­
ered by at least one TEu, hence by at least one K EI(; and for every T, y~

is covered by at most one maximal interval K of T. Let I(~ denote the family

(16) If X is connected, the maximal intervals of U are the same as the components of U.
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of all intervals KEf( that cover y~. Define K~= (x~, z~) = UKEf(~ K. Nowas­
sume the lemma to be false. Then the cardinal of f(~ must be <~a. But
z <v for every K = (x, z) Ef(; therefore, since v is an wa-limit (whence, accord­
ing to our definition, Wa is regular), we have z~ <v. Since y~ <z~, it is a straight­
forward matter to construct an increasing sequence

The limit of this sequence is v, so by hypothesis S cannot be a Q-sequence.
Accordingly, there is a point y'EJ that is the limit of a segment of S of some
limit type X. Let K' = (x', z') be any member of f( that covers y'. Then
x' <v' <z'. Since y' =lim~<A YlT~' there is an ordinal 'YJ <X such that x' <YlTT/ <y',
Then YlTT/EK'. Consequently K'Ef((1T/ (by definition of the latter). Therefore
K'CKlT, i.e., (x', z')C(xlT, ZlT). But this is impossible, since the relation'II T/ T/
y' = lim~<A ZlT~ implies that ZlTT/ <y', whence ZlT'II <z'.

The theorem that follows is one of our main results.

THEOREM 9.5. A linearly ordered space X is paracompact if and only if every
gap of X is a Q-gap. On the other hand, every linearly ordered space is countably
paracompact.

Proof. Suppose first that there is a gap v, not the left end-gap, say, that
is not a Q-gap from the left. Let {y~} ~<Wa be any increasing sequence of points
of X+ (§6) whose limit is v, in which Yo is the first point or gap of X. Let w
denote the last point or gap of X. Let the open covering V of X consist of
all the intervals [Yo, y~), O<~<Wa, and in addition, if v<w, the interval
(v, w]. Let <G be an arbitrary refinement of V that covers X. Then the gap v
is not covered by u. Hence by Lemma 9.4, u cannot be locally finite. There­
fore X is not paracompact.

For the remainder of the proof, let V be an arbitrary open covering of X,
and suppose that either V is countable or every gap of X is a Q-gap. We are
to find a locally finite refinement of V that covers X. Denote by F+ the set
of all gaps of X that are not covered in X by V. Clearly, every limit-point
(in X+) of non-covered gaps is a non-covered gap; consequently F+ is a
closed subset of X+. I ts complement in X+ is therefore expressible as the
union of disjoint intervals K+ open in X+. Each boundary point of any such
interval K+ is either a non-covered gap, or an end point of X+. The cor­
responding intervals K = K+nX are disjoint open (and closed) intervals of
X, whose union is X. We may accordingly deal with each such K inde­
pendently: for every UEV define UK = UnK; it is sufficient to find a locally
finite refinement of the family VK= {UK}UEV that covers K.

Consider then any fixed K. Write K = [u, v]. Let p be any interior point of
K, and put H = [u, p]; J = [p, v]. If there exist locally finite refinements
W H and W J of UK, covering Hand J, respectively, then there exists a locally
finite refinement of UK that covers K: this follows readily from the fact that
the point p is covered by only finitely many maximal intervals of the open sets
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belonging to the families W H and W J •

The problem is accordingly reduced to that of finding a locally finite re­
finement WJ of UK that covers the interval J = [p, v]. Now by construction
of K, every interior gap of J is covered by U, and hence by UK. Conse­
quently if v itself is covered by UK, then the existence of the desired refine­
ment is provided by Lemma 9.2. Assume, then, that v is a gap and that v is
not covered by UK.

According to our hypotheses, either v is a Q-gap or UK is countable. Then
in any case v must be a Q-gap from the left. For suppose that there is no in­
creasing Q-sequence at v. Then v is an wa-limit for some a>O. But Lemma 9.4
requires that UK contain a subfamily of power Na , so UK cannot be countable.

Let then S = {y~} ~<Wa be an increasing Q-sequence at v. We may certainly
take Yo=P, and we may suppose that every term Y~+l is a point of X. We may
assume further that the limits of the segments of S have been incorporated
into the sequence, so that yx = lim~<x y~ for every nonzero limit ordinal
A<wa ; since S is a Q-sequence, each such term yx is a gap.

Next, for each ~ <Wa, define the closed interval E~ = [y~, Y~+l]. Recall now
that the only gap of J that is not covered by VK is its end-gap v. Hence,
for every ~ <Wa , every gap of E~ is covered by UK. By Lemma 9.2, there is a
finite subfamily W~ of UK that covers E~. Since any two successive intervals
E~, E~+l have just one point in common, and since yx is a gap for every
nonzero limit ordinal A<Wa , we can easily refine every family W~ to a family
W{ having the following properties:

(l)(a) for every ~<Wa, W{UW~+lUW~+2is a finite open covering of E~+l;

(b) for every limit ordinal A<Wa, W{ UW~+l is a finite open covering of
Ex;

(2) for every ~<Wa, and every '7~~+2, W~(\WTI=O for all W~EW{ and
all WTlEW~. The family WJ=U~<lA>aW{ is then a locally finite refinement of
V K which covers J. This completes the proof of the theorem.

One might define a family of subsets of X to be "locally <NtB " if every
point of X has a neighborhood that meets <NtB sets of the family. One can
then find theorems relating this number Np to the cardinal number of an
open covering and the cardinal numbers of the non-Q-sequences, from which
Theorem 9.5 would appear as a corollary. For example, Theorem 9.5 shows
that the space W(Wl) (§6) is not paracompact, whereas the proof shows,
in fact, that there is an open covering of W(Wl) having no "locally denumer­
able" refinement that covers W(Wl). These questions are not our primary con­
cern, however, and we leave the subject at this point without further com­
ment, turning our attention now to Q-spaces.

10. Linearly ordered Q-spaces.
DEFINITION 10.1. Let X be any linearly ordered space, and let u be any

gap of X. Any interval of X whose right (left) boundary is u will be called a
left (right) interval at u. The ideal of C(X, R) consisting of all functions that
vanish on a left (right) interval at u is denoted by L; (Rv,). (It is understood
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here and subsequently that u is not the left (right) end-gap of X.)

THEOREl\1 10.2. Let X be any linearly ordered space. For every gap u of X
the ideals L; and R; of C(X, R) are free (hence every maximal ideal containing
L; or R; is free). On the other hand, if AI is any maximal free ideal of C(X, R),
then there exists (exactly) one gap u of X such that either M~Lu or AI~Ru.

Proof. For the first part of the proof, it suffices to consider the case of L u •

From Lemma 6.2, there is an increasing sequence {x~}, with limit u, such that
every interval [x~, u.] is a zero-set. Obviously these are all in Z(Lu ) , and their
intersection is empty. Thus L; is a free ideal.

For the remainder of the proof, let a denote the first element or gap of X
and b the last. Then [a, b] =XEZ(M). Put

A = {y lyE X+, [a, y] E Z(M)}, B = {x I x E X+, [x, b] E Z(M)},

and define v =inf A, w=sup B (vEX+, wEX+). We shall show first that
w=v. If v<w, then by definition of v there exists a yEA such that y<w; in
turn there exists an xEB such that y <x. Then the zero-sets [a, y], [x, b] of
Z(M) are disjoint, which is impossible. Suppose now that w <v. We define s
and t as follows. If w, v are consecutive elements of X, put s =v, t = w. If not,
let u be any point such that w<u<v. Lemma 6.2 implies that there is an s,
with w <s ~ u, such that the closed interval [s, b] is a zero-set. Likewise there
is a zero-set [a, t], for some t with u ~ t <v. Hence in either case the intervals
[a, t] and [s, b] are zero-sets, and their union is X. Therefore one of them is
in Z(M). Hence tEA or sEE. But each of these is impossible, since t <v and
s>w.

Hence, finally, we must have w=v. Now by the finite intersection prop­
erty, for every xEB and yEA the set [a, y]n [x, b] = [x, y] is in Z(M). Thus
if v is a point of X, then every Z in Z(M) meets every neighborhood of v,
whence Z, being a closed set, contains v; in this event the ideal M is fixed,
not free. I t follows that v is a gap. Then each of the disjoint intervals [a, v],
[v, b] is open and closed, hence a zero-set, and therefore one of them, say
[a, v], is in Z(M). Then for every x in B the interval [x, b]n [a, v] = [x, v] is
in Z(M). Hence }"{~Lv.

I t follows from this theorem that C contains a free ideal if and only if X
has a gap. Since C contains a free ideal if and only if X is noncompact (§2),
we obtain the familiar result that a linearly ordered space is compact if and
only if it has no gaps.

THEOREM 10.3. Let X be any linearly ordered space, and let u be any gap of
X other than the left end-gap.

(1) If u is not a Q-gap from the left, then the ideal L« is a real maximal free
ideal.

(2) If u is a nonmeasurable Q-gap from the left, then every maximal (free)
ideal containing L; is hyper-real.
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Proof. (1) We have already shown in Theorem 10.2 that in any case the
ideal L; is free. Since no increasing Q-sequence exists at u, u is an wa-limit for
some a>O. Therefore every countable intersection of left intervals at u is
nonempty. As pointed out above, a maximal ideal is real if (and only if) every
countable intersection of its zero-sets is nonempty. I t follows that if L u is
maximal, then it is real.

Let M be any maxirnal ideal containing L«; and consider an arbitrary
fEM. We show that fEL u, which will complete the proof. Since Z(f) meets
every member of Z(Lu ) , there is an increasing sequence S = {x~} ~<Wa of zeros
of i, with limit u. Now let n be any positive integer, and denote by Y n the
set of points y <u at which If(Y) I ~ lin; we shall see that if Y n is not empty,
then sup Y n <u. In fact, in the contrary case, there exists a sequence T';
= {y~} ~<Wa' of points of Y n , with limit u. Since Wa is regular, it is an ele­
mentary matter to construct an increasing sequence

{ , , " " }Xo , yo , Xl , YI , ... , Xt , Yt , ...

in which every xl ES, yl ETn . The limit of this sequence is of course u. By
hypothesis, therefore, it cannot be a Q-sequence, so it has at least one segment
whose limit is a point z of X. But then by continuity of I, we have both
fez) =0 and If(z) I ~lln. Put wn=sup Yn ; it follows from the contradiction
just established that we must have io.;«;«. Write w=limo<n<w W n ; since W a is
not cofinal with w, we have W <u. Therefore f vanishes on the interval [w, u],
i.e., fEL u •

(2) Let M be any maximal free ideal such that M~Lu. Let a be the
ordinal for which u is an wa-limit. If a=O, we are finished: by Lemma 6.2,
there is a countable subfamily of Z(Lu ) , hence of Z(M), with void intersection,
whence AI is hyper-real. Assume then that a> o. Take any increasing Q-se­
quence S at u, and let {u~} ~<Wa denote the increasing sequence of gaps con­
stituting the limits, other than u itself, of the set S. The intervals J~ = (u t , U~+l)
are open and closed, and their union J = U~<waJ~ is an open and closed left
interval at u, whence JEZ(M). Consequently, if A, B are any two comple­
mentary subsets of the set of ordinals W(Wa ) , then each of the complementary
subsets J A= U~EAJ~, J B = U71 E BJ71 , of J, is open and closed, and exactly one of
them is in Z(M). Now denote by '] the set of intervals {J~} ~<Wa; every subset
of '] is of the form']A = {J~} ~EA. Define a finitely additive two-valued meas­
ure m on the family of all subsets of '], by putting m(']A) =1 if JAEZ(M),
m(']A) =0 if J AEEZ(M). Since M~Lu, it is obvious that "points" have meas­
ure zero (i.e., for each ~ <Wa, we have J~EEZ(M)). Moreover, me']) = 1. Now
since by hypothesis ~a is a nonmeasurable cardinal, the measure m cannot
be countably additive. Hence there exists a countable family {']An }

(n=l, 2, ... ) of subsets of'] of measure one, whose intersection ']A' is of
measure zero. Then JAIEEZ(M). Therefore J -JAI EZ(M). Hence {JAn
(\(J-JAI)} (n=l, 2,···) is a countable family of zero-sets of Mhaving
empty intersection. Thus M is hyper-real. This completes the proof of the
theorem.
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REMARK. For the special case in which ~a ~ exp No, the following alter­
nate to the last part of the proof may be of interest. Let {r~} ~<Wa be any
set of ~a distinct nonzero real numbers, and define a function f as follows:
f=r~ on J~ (for all ~ <Wa ) , f=O on X -J. Then fEC(X, R). If now M is real,
let r denote that real number for whichf-rEM; then either r=O, or r=r~

for some F, Each of these is impossible, however, since neither X -J nor any
J~ is in Z(M).

The preceding theorem provides us with a large class of maximal free
ideals that can be explicitly described. An easy example is the ideal L W1 in
the space of ordinals W(Wl), that is, the ideal consisting of all functions each
of which vanishes from some point on. A somewhat more interesting example
may be constructed as follows. Let T be a dense linearly ordered space with­
out gaps, whose set of characters is {coo, Cn}. Delete any cn-element u from
T, and call the resulting space S. Clearly there is no Q-sequence at the gap
u of S. The ideals L u and R u (both exist if u is an interior gap) are therefore
maximal ideals. Again, let Y be a dense linearly ordered space whose set of
gap characters is {coo} and whose set of element characters is {Cn, C22}. Con­
struct X by deleting any c22-point u; then L; and R; are maximal free ideals.
In this example, X is a P-space (cf. Example 10.10).

We are now ready to obtain our characterization of linearly ordered Q­
spaces.

THEOREM 10.4. For any linearly ordered space X, the following statements are
equivalent.

(1) X is a Q-space.
(2) X is paracompact, and every closed subspace of X is a Q-space.
(3) X is paracompact, and every closed discrete subspace of X is a Q-space.
(4) Every gap of X is a nonmeasurable Q-gap.

Proof. (1) implies (2). If there is gap of X that is not a Q-gap, then by
Theorem 10.3 there is a maximal free ideal of C(X, R) that is not hyper-real.
Hence if X is a Q-space, then every gap is a Q-gap; therefore, by Theorem
9.5, X is paracompact. The result now follows upon recalling that every
closed subspace of a Q-space is a Q-space.

(2) implies (3). Trivial. Before continuing we remark that according to
the result of Katetov and Shirota, quoted above, (3) implies (1) for arbitrary
spaces, not only for those that are linearly ordered.

(3) implies (4). If X is paracompact, then every gap is a Q-gap (Theo­
rem 9.5). Hence it suffices to show that if every closed discrete subspace of X
is a Q-space, then every Q-gap is nonmeasurable. Let S be any Q-sequence at
a gap u, in which every term of S is a point of X. Then S is a closed discrete
subspace of X. Therefore, by hypothesis, S is a Q-space. Let m be any finitely
additive two-valued measure defined on all subsets of S, with m(S) = 1, and
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such that points have measure zero. The family Z of all sets of measure one
is closed under finite intersection and under extension. Moreover, if a subset
Z' of S meets every ZEZ, then Z' EZ (for if m(Z') = 0 then m(S -Z') = 1, i.e.,
S-Z'EZ), and therefore, finally, Z has total intersection void (since any
point common to all ZEZ would be in Z and hence have measure one). It
follows that Z= Z(M) for some maximal free ideal M of C(S, R) (see §2).
Since S is a Q-space, M is hyper-real, so there is a countable subfamily of
.Z(M) with void intersection. Hence the measure m is not countably additive.
Therefore the cardinal of S is nonmeasurable.

(4) implies (1). This is an immediate consequence of Theorems 10.2 and
10.3. Our proof is now complete.

Since every discrete space can be regarded as linearly ordered (Theorem
7.7), the arguments given above yield an alternate proof of the known fact
[11, p. 175] that the discrete space of power ~a is a Q-space if and only if
the cardinal Na is nonmeasurable.

COROLLARY 10.5. Every linearly ordered Q-space is paracom.pact,

THEOREM 10.6. Let X be any linearly ordered space, and let u be any gap of
X other than the left end-gap. Then u is a non-Q-gap from the left if and only if
every function fEC(X, R) is constant on a left interval at u.

Proof. If no increasing Q-sequence exists at u, then L; is a real maximal
ideal (Theorem 10.3). Hence for every fEC, there is a real number r such
thatf-rELu , sof=r on a left interval at u.

Conversely, let there exist an increasing Q-sequence at u, of type wa •

Suppose first that a> o. Let the family of intervals {J~} ~<Wa be as in the proof
of Theorem 10.3. The function f that is 0 on every J~ with even index ~, and
1 on everyone with odd index (and, say, 0 on X -J), is continuous. Suppose,
finally, that a = o. From Lemma 6.2, there is an increasing sequence {xn } n<w

such that every interval K n= [xn, u] is a zero-set. If Kn=Z(fn), then also
Kn=Z(gn), where gn=min {Ifni, 1}. Define g= 2::=1 2-n gn; then g is con­
tinuous. And g cannot be c.onstant on any left interval at u, for on any in­
terval K n , we have 0<g<2-n •

If X is any linearly ordered space, for which the cardinal of every Q-se­
quence whose limit is a gap is nonmeasurable, then vX (§8) can be described
very simply.

First construct a space X" without gaps by replacing every gap u of X
by two new elements, lu and r« (or only the appropriate one, in case u is an
end-gap). The space X" is to be ordered in the natural way, preserving the
order of X: for every gap u of X, the new elements lu, r; are consecutive ele­
ments of X", with lu<r; and for all xEX, both lu and r; bear the same order
relation to x as does the gap u. Then X is a dense subspace of the linearly
ordered space X". Next construct an intermediate space X', by deleting every
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element l« for which the gap u of X is a Q-gap from the left, and every r«

for which u is a Q-gap from the right(17). Now by Theorems 10.2 and 10.3,
a maximal free ideal M of C(X, R) is real if and only if M = L u or M = Rv , for
some gap u (v) of X that is a non-Q-gap from the left (right). Thus there is a
one-one correspondence between the real maximal free ideals of C(X, R) and
the points of X' -X. Moreover, it follows at once from Theorem 10.6 that
every fEC(X, R) can be continuously extended over X'. Finally, X is dense
in X'. But these are the three characteristic properties of the construction of
vY for an arbitrary space Y [10, Theorem 58; 5]. We have proved:

THEOREM 10.7. Let X be any linearly ordered space, and let X' be the cor­
responding space described above; then X' is vX (under the cardinality restriction
noted).

I t can be seen without difficulty that if m is the cardinal of a linearly
ordered set X, then the cardinal of the set of gaps of X is at most exp m.
Hence:

COROLLARY 10.8. If m is the cardinal of a linearly ordered space X, then
the cardinal of vX is at most exp m (under the cardinality restriction noted above) .

We conclude with some examples.
EXAMPLE 10.9. Let X be a dense linearly ordered space whose set of ele­

ment characters is {Cn} and whose set of gap characters is {coo, C22}, the C22­

gaps being everywhere dense. Then the set of Q-gaps of X, and the set of
non-Q-gaps, are each everywhere dense. (Also, this space is a P-space.)

EXAMPLE 10.10. Let Y be a dense linearly ordered space whose set of gap
characters is {coo} and whose set of element characters is {Cn, C22}. Then Y
is paracompact and a Q-space (and a P-space). Now delete a single C22­

element u. The resulting space X is no longer paracompact, nor is it a Q-space.
But it remains a P-space, and therefore, like Y, it is not countably compact.
If u is an end-gap of X, then vX is Y. If u is an interior gap, then two new
points must be inserted to yield vX. In either case, however, the cardinal
number of {JX - X is at least exp exp ~o (since X is normal but not countably
corn pact; see [2; 17]).

EXAMPLE 10.11. Let Y be a dense linearly ordered space, without gaps,
whose set of characters is {coo, CIO}. Then Y is a Q-space (in fact, Y is com­
pact). Construct X by deleting a clo-element u. Let (A IB) be the Dedekind
cut of X that is the gap u (thus Y =A + {u} +B). Construct X" by replac­
ing the gap u by new elements lu and r «, as in the discussion preceding Theo­
rem 10.7. Then vA ==A + {lu}, and X' =vX is the sum of the two Q-spaces
A+ {lu} and B. Thus, here, vX is not a linearly ordered space, although it is
a subspace of the linearly ordered space X".

Remarks (added November 4, 1953).

(11) In general, X' will not be a linearly ordered space. See Footnote 5 and Example 10.11.
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1. (§3.) The proof of Theorem 3.6 shows that if the maximal ideal M»
is hyper-real, then p is not a P-point of (3X. Hence if X is a Q-space, then
no point of (3X - X is a P -point of (3X. (The converse is false, as is shown by
the example of the space W(w+ 1) Q9 W(WI+1) - { (w, WI)}.) As in Remark 3.7,
we obtain as a corollary: if X is a Q-space, then the number of nonmaximal
prime ideals of C*(X, R) is at least the cardinal of (3X - X. Remark 3.7 itself
is a special case of this corollary, since if X is the discrete space of power ~a,

then (3X is of power exp exp ~a [1 7].
2. (§7.) An example of a nondiscrete linearly ordered P-space was given

by Dieudonne in Notes de teratopologie-I, Revue Scientifique vol. 77 (1939)
pp.39-40.

3. (Remark 7.9.) Isbell has now found a proof (to be published shortly)
that C(X, R)/M is a real-closed field for arbitrary completely regular X(18).

4. (Theorem 9.5.) A family of subsets of X is called point-finite if every
point meets only finitely many members of the family, star-finite if every
member of the family meets only finitely many others. If, in the definition of
paracompact space, we replace locally finite by point-finite resp. star-finite, we
obtain the definition of metacom.pact space resp. space with the star-finite
property. Clearly, every space with the star-finite property is paracompact,
and every paracompact space is metacompact. A trivial modification of our
proof of Theorem 9.5 (making use of the stronger of the two conclusions of
Lemma 9.4) shows that for linearly ordered spaces, these three concepts
coincide.

5. (Theorem 9.5.) The result that every linearly ordered space is count­
ably paracompact has been announced independently by B. J. Ball (Bull.
Amer. Math. Soc. Abstract 59-5-553) (19).

6. (§§9, 10.) Observe that the number of gaps of a linearly ordered space
is not a topological invariant. For example, the denumerable discrete space
can be represented as the space of positive integers, or of all integers, or as the
order type (w*+w)1] (1] = order type of the rationals); these spaces have, re­
spectively, 1 gap, 2 gaps, exp ~o gaps.

7. (Corollary 10.5.) The question is naturally raised as to whether every
normal Q-space (not necessarily linearly ordered) is paracompact. The
answer is no: Professor R. H. Bing has communicated to us a proof that the
space constructed in Example H of his paper Metrization of topological
spaces (Canadian Journal of Mathematics vol. 3 (1951) pp. 175-186) is a
normal Q-space but is not paracompact. We omit the proof here.

Added in proof. We have since proved the following theorem. Let X be a
normal Psspace. Then (A): for every noncom-pact closed subset Y of X, there
exists a function f in C(X, R) such that f is unbounded on Y. For the proof, see
L. N achbin, Topological vector spaces of continuous functions, Proc. Nat. Acad.

(18) Added in proof. Proc. Amer. Math. Soc. vol. 5 (1954) p. 439.
(19) Added in proof. Proc. Amer. Math. Soc. vol. 5 (1954) pp. 190-192.
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Sci. U.S.A. vol. 40 (1954) pp. 471-474, footnote 8. In this paper, it is shown
that if X is not a Q-space but satisfies (A) (e.g., Example 10.9), then C(X, R),
in the compact-open topology, is a t-space that is not bornological. (This was
also proved by T. Shirota, On locally convex vector spaces of continuous func­
tions, Proc. Japan Acad. vol. 30 (1954) pp. 294-298.)
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