Claremont Colleges

Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

7-1-1984

Simulated Performance of a Reduction-Based
Multiprocessing System

Robert M. Keller
Harvey Mudd College

Frank C. H. Lin

Recommended Citation

Keller, Robert M., and Frank C.H. Lin. "Simulated Performance of a Reduction-Based Multiprocessing System." Computer 17.7 (July
1984): 70-82. DOI: 10.1109/MC.1984.1659188

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion
in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact

scholarship@cuc.claremont.edu.

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu

70

Multiprocessor systems present unique concurrency problems. Rediflow
combines disciplined von Neumann processes with a hybrid reduction and
dataflow model in an effective packet-switching network.

Simulated Performance of a
Reduction-Based Multiprocessor

Robert M. Keller and Frank C. H. Lin, University of Utah

Multiprocessing systems have the potential for increas-
ing system speed over what is now offered by device tech-
nology. They must provide the means of generating work
for the processors, getting the work to processors, and
coherently collecting the results from the processors. For
most applications, they should also ensure the repeat-
ability of behavior, i.e., determinacy, speed-independence,
or elimination of “‘critical races.””!® Determinacy can be
destroyed, tor example, by permitting—in separate, con-
current processes—statements such as *‘x:= x + 1" and
“if x = 0 then ... else...”, which share a common
variable. Here, there may be a critical race, in that more
than one global outcome is possible, depending on execu-
tion order. But by basing a multiprocessing system on
functional languages, we can avoid such dangers.

Our concern is the construction of multiprocessors that
can be programmed in a logically transparent tashion. In
other words, the programmer should not be aware ot pro-
gramming a multiprocessor versus a uniprocessor, except
for optimizing performance tor a specific contiguration.
This means that the programmer should not have to set up
processes explicitly to achieve concurrent processing, nor
be concerned with synchronizing such processes.

Language and concurrency

Programs expressed in tunctional languages possess a
fair amount of implicit concurrency. The conceptual ex-
ecution of a functional program is based purely on the
evaluation of expressions, not on the assignment of values
to memory cells. Accordingly, there can be no ‘‘side ef-
fects” of one function on another, which ensures deter-
minacy; a program gives the same results regardless of the
physical aspects of communication between processors or

QOT8-9162 84 0700-0070%01.00 1984 [LEL:

the number of processors involved in its execution. These
languages seem to be ideal for the programming of multi-
processors when distinction between them and uniproces-
sors is undesirable. Functional languages also have other
conceptual advantages that have been discussed elsewhere’™
To demonstrate how a functional language provides for
concurrent execution, consider an expression such as

max[subexpression-1, subexpression-2]

where max is the usual numeric maximum function (or any
other function which requires both of its arguments). A
concurrent execution model carries out three important
aspects:

(1) Spawning of tasks to evaluate the two subexpres-
sions concurrently;

(2) Synchronization to determine that both subevalua-
tions are complete; and

(3) Evaluation of the maximum, once completion is
established.

Obviously, only the third of these aspects would be found
in a sequential implementation; the first two are implicit in
a concurrent functional implementation. In contrast, the
specitication of these mechanical aspects is often explicitly
required in process-oriented languages.

Generating concurrently processable work can be
amplified through appropriate data structuring. For ex-
ample, in many functional languages, an expression can be
sequence-valued, where a sequence is represented as a list,
array, or tree. Through the use of operators such as apply-
to-all, here designated as \\, a similar expression can be
used to apply a function, such as max, aligned pairwise to
the components in two sequences:

max\([1, 3, 5], [6, 4, 2]) = [6, 4, 5].

COMPUTER

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on November 19, 2008 at 17:51 from IEEE Xplore. Restrictions apply.

Applying max\\ to a pair of sequences of length n could
thus generate n independent tasks for concurrent execu-
tion. Further, if there are unevaluated subexpressions in
those sequences, additional tasks could be generated to
evaluate the subexpressions themselves. Function max
could be replaced with much more complex functions.

Such implicit concurrency is exploitable through a func-
tional language but not in languages such as Pascal, since
evaluating the arguments to a function in them can have
the side effect of modifying parameters or global data.
Then, because of the order in which such side effects might
occur, the behavior is not generally repeatable.

When encapsulated, local side effects provide one way
of dealing with many distributed local states. In fact, total-
ly encapsulated, sequential programs with only local side
effects may be considered semantic abbreviations for a
restricted form of a functional program. '°

Once an appropriate functional framework is built, in-
determinate constructs can be accommodated. For exam-
ple, we have shown how the simple extension that allows
the indeterminate “‘merge””!! can be used to augment a
functional language and ensure serializability in distrib-
uted database applications, including concurrent up-
dating. 12

It is also possible within a functional framework to
assign subprograms to processor and memory resources.
For example, a ‘‘site pragma’’ can force the execution of
particular subtransactions of a database system on par-
ticular sites.

Concurrent evaluation models

Four categories of evaluation model are available, with
varying degrees of facility, for getting work to processors
and collecting results coherently.

Multiple processes with shared memory. The notion of
a ‘‘process’’ is an abstraction of the execution of a pro-
gram for a von Neumann computer. A process obeys a se-
quence of commands, each specifying an assignment to a
register, a test, etc. The earliest concurrent computation
models were based on spawning several such processes
within a common memory space. !3'Communication be-
tween processes involved inspecting a register to which
another process had assigned a value. To make such com-
munication somewhat coherent, a variety of synchroniz-
ing constructs were invented. 14

Multiple processes with message-passing. To eliminate
sources of indeterminacy or isolate their effects, some
systems forbid general sharing of memory locations. They
employ message-passing as the fundamental means of
communication. In such schemes, one process specifies a
message to be sent to another, either by naming the other
or by naming a common linking channel.

Certain disciplines can be imposed on a message-passing
system to guarantee determinacy. For example, deter-
minate behavior is guaranteed &-10 if

(1) a process, once it decides to examine an input
message buffer, is committed to wait for a message
to be there;

July 1984

(2) no two processes can share a common input buffer;
and

(3) no two processes can share a common output buf-
fer.

Put another way, a collection of conventional processes
has an overall functional behavior, provided the above
criteria are met. This functional behavior is used in a
limited form to connect Unix processes via pipes, !5 which
can be viewed as a special case of functional composition.
Other functional programming systems attempt to exploit
this phenomenon in a more general form.

Dataflow. Dataflow computers'!7 use message-pass-
ing in small decomposable units of work. Typically, each
primitive operator is really a ‘‘process’” performing the
same operation time after time on streams of values.
Dataflow machines attempt to eliminate the overhead that
would accompany explicit sequential processes.

A simple extension can augment a functional
language and ensure serial database
distribution and concurrent updates.

Programs in dataflow machines are often represented as
directed graphs, with the nodes representing operators and
arcs representing message queues. Message queues are
assumed to have a one-message capacity. If one wishes
greater asynchrony, which would be necessary for max-
imal concurrency when processes are generating messages
at widely varying rates, additional identity operators can
be introduced to balance the processing rates. These iden-
tity operators provide more buffer stations, through which
messages must pass to get from one node of the original
graph to another. Unfortunately, there is no algorithm for
balancing a cyclic program in which the number of itera-
tions is data dependent.

Evaluation by graph reduction. In order to achieve
maximum asynchrony, it is helpful to decouple the pro-
duction of values from their consumption as much as
possible.

A graph reduction model provides one means of
decoupling. In particular, it provides an alternative to
bounded buffering by using a linked list with cells drawn
from a global storage pool. The reduction model of com-
putation provides an elegant way of achieving such an ef-
fect.

In the reduction model, work is spawned at a finer
granularity than processes. Specifically, task granularity
corresponds to that of function calls in conventional
languages. Tasks might typically perform a few arith-
metic, logical, or structuring operations, including storage
allocation for portions of data structures. However, rather
than having a long-term sequential behavior, they would
continue by generating other such tasks. Thus, a rapidly
dividing computation can be represented by a task which
generates two other tasks, while the equivalent of a se-

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on November 19, 2008 at 17:51 from IEEE Xplore. Restrictions apply.

71

quential computation can be represented by a task that
does some work, spawns another task, then dies.

Task spawning can be illustrated in programs with a
functional syntax similar to one suggested by Burge.” One
can compute the factorial function by the ‘‘divide-and-
conquer”’ strategy as follows:

Factorial(x) = DAC(1,x)
where DAC (m,n) =
if m=n
then m
else DAC(m,med) * DAC(med + 1,n)
where med = (m+n) /2

In the reduction model, a task and its supporting storage
are allocated each time an instance of DAC is demanded.
For example, factorial 100 demands an instance DAC(1,
100). A given instance, DAC(m, n) would either terminate
more or less immediately if 72=n or demand two more in-
stances, as indicated in the definition. When an instance of
a function is computed, the value replaces the instance
itself. This is proper, since in functional languages, a func-
tion with particular arguments can always be replaced with
the corresponding value without loss of generality. Thus,
if the instance is shared, all sharers will benefit from one
computation of the value.

The second example shows process-like behavior in the
reduction model. Suppose we want a process to compute
the sequence

Sy o)
where ~denotes succession, read ‘‘followed by.”” The
following function, NUMS_FROM describes a process
that computes the numbers from its argument 7 on

NUMS_FROM(n) =n ~ NUMS_FROM(n +1)

In the reduction model, a demand for NUMS_FROM(n)
would generate a data structure containing » followed by
an instance of NUMS_FROM(n + 1), as shown in Figure

F_igure 1. Computing a sequence by reduction. Arrows are conven-
tional pointers in a von Neumann memory.

Figure 2. Pipeline interconenction of processes.

2

SQUARER || PARTIAL_SUMS i

1. However, that instance would lie suspended !8 until it is
demanded. This is the analog of a producer process, which
blocks until more data is requested. As more of a sequence
is demanded, more of the structure is generated. If many
such demands are generated rapidly, the evaluator simply
lays out a structure for receiving the result values once they
are computed.

Similarly, we could define a transducer process, for ex-
ample, a SQUARER that squares each element in a se-
quence of numbers:

SQUARER(x) =HEAD(x)**2 ~ SQUARER(TAIL(x))

where HEAD and TAIL are defined by HEAD(a ~ y) =a
and TAIL(a ~ y) = ».3:18-20

The function PARTIAL_SUMS below is a function of
its input sequence, which eventually depends on every ele-
ment of that sequence for its output.

PARTIAL_SUMS(x) = AUX(x, 0)

where AUX(x, ac) = b~ AUX(TAIL(x), b)
and b = ac+HEAD(x)

The “‘state’’ in this case is represented as the second argu-
ment (which serves as an ‘‘accumulator”’) to the auxiliary
function AUX. Incidentally, this example counters the
myth that functional programs are incapable of modeling
‘“‘state’’ or ‘‘history-sensitive’’ operations.

Recalling that pipe connections of processes are func-
tional compositions, we observe that, if we connect our
three functions NUMS_FROM, SQUARER, and PAR-
TIAL_SUMS together in a ‘‘pipeline,”’ as shown in Figure
2, the meaning of functional composition gives us exactly
the intuitive behavior: The output of the pipeline is the se-
quence of partial sums of the sequence of squares, begin-
ning with n%*2.

To compare the reduction and dataflow models, we also
feed the output of function SQUARER into a second
function, POLY, which, let us say, computes some com-
plicated function of each input, such as a large-degree
polynomial. Here PARTIAL_SUMS and POLY would
not be expected to consume the stream at the same rates.
Figure 3 illustrates storage cells that might be allocated in a
particular reduction computation of the functions above.
Obviously, it is hard to predict in advance how much buf-
fer space should be allocated for the output of
SQUARER, so the dynamic allocation scheme provided
by the reduction model is, therefore, useful in relaxing the
constraints imposed by a bounded-buffer dataflow im-
plementation as illustrated in Figure 4.

Combining reduction and dataflow. Each of the reduc-
tion and dataflow models (also called “‘structure’’ and
“token”” models, respectively?!) has certain disadvan-
tages. As we have seen, the reduction model is useful
where asynchrony requires unpredictable buffering or for
rapid task division with recursion. On the other hand,
when stream-based communication does not require great
asynchrony, the dataflow scheme has the advantage that
no storage allocation is required. Dataflow models that
““unfold,”” such as the ‘““U-interpreter,”’?? approach the
unwinding feature of the reduction model within a
dataflow model.

One shortcoming of the reduction model is inefficiency

COMPUTER

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on November 19, 2008 at 17:51 from IEEE Xplore. Restrictions apply.

in the implementation of essentially sequential computa-
tions. Here the reduction model uses “‘tail recursion,”” as
in the function SQUARER above, and allocates a new
task for each iteration of a loop. If the consumption of
SQUARER’s output is sufficiently slow, there is no need
for the unwinding effect provided by reduction. It is more
efficient to compute SQUARER sequentially. However,
with disciplined message passing, it is possible to integrate
such sequential computations in the context of the reduc-
tion model. The technique permits von Neumann code to
be encapsulated into the node of stream processing func-
tions. 1°

This is the approach taken to introduce dataflow
behavior into the Rediflow system, as we will describe in
the next section. In Rediflow, we can use the pointers pre-
sent in the structures of the reduction model to provide
logical channels on which tokens flow. Use of the pointers
provides a convenient way of setting up dynamically
generated dataflow graphs. Such functions can be com-
bined arbitrarily to build more complex systems and can
be interfaced with corresponding systems implemented by
pure reduction. Two simple functions can interface a
reduction-implemented function with a dataflow-imple-
mented function—one produces a stream of tokens from a
structure and the other builds a structure from a stream of
tokens.* The following simulation comes from a pure

*Further details and uses of this construct are treated by Tanaka. B Wealso
describe an overall approach to the corresponding language constructs.

Figure 3. Reduction implementation of pipelining.

reduction subset of the evaluator. Efficiency of examples
containing large, essentially sequential components will be
improved by the proposed Rediflow integration.

Rediflow system organization

““Rediflow’’ is the name we give to our function-based
concept for multiprocessor system design and attendant
software capabilities. The name is a combination of the
words “‘reduction’’ and ‘‘dataflow,”” two models for con-
current evaluation described above. Our model also in-
cludes disciplined aspects of the von Neumann evaluation
model. Having justified the functional approach, we now
turn to issues of physical organization.

Hardware issues. The main problem in assembling pro-
cessors for multiprocessor execution is to distribute work
effectively while avoiding extensive communication
overhead. In general, links between processors and
memories must be provided, and programs expressed in
appropriate computer languages must be mapped onto the
resulting system. Device technology remaining invariant,
it is the ease in mapping that determines the success of a
multiprocessing system.

The ease of mapping depends on the class of applica-
tions, the languages used, compilers, and the underlying
hardware configuration. Clearly, for a fixed application, a

m u n SQUARER n n PARTIAL__SUMS n

POLY m

Figure 4. Dataflow implementation of pipelining.

July 1984

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on November 19, 2008 at 17:51 from IEEE Xplore. Restrictions apply.

Figure 5. Shared-memory multiprocessor configuration.

74

special-purpose machine can be designed to out-perform
all others on that application. Our interest is not in such
machines, but in the techniques that exploit multiprocess-
ing power for a wide range of applications. To delimit this
range, it is useful to group applications, according to
regularity, size span, and granularity.

Applications of high regularity contain many very
similar operations with similar computational demands.
Here, approaches such as vector processors, cellular ar-
rays, or static dataflow may be appropriate. !¢ The size
span characteristic of a set of applications relates to the ex-
tent the problem size is apt to vary over the lifetime of the
system. While a particular array processor may be ideal for
problems that can be contained in one array load, there
may be difficulties in folding or decomposing larger prob-
lems to match the processor configuration and maintain
acceptable performance. We have designed Rediflow to
accommodate problems that lack such regularity, but that
may have very large size spans.

Fine-grain operations would be those at the level of bit
or arithmetic operations. Large grains would be processes
or entire jobs. Rediflow is aimed at applications ap-

propriate for medium or function-level granularity and
larger. Irregularly structured problems, such as knowl-
edge-base systems, should be appropriate for exploiting
this level of granularity: These problems contain strands
of operations that must be done sequentially and are there-
fore of rather coarser grain than simple arithmetic oper-
ations, but of finer grain than many typical processes.
Other applications of medium granularity are certain
adaptive numerical calculations and certain types of signal
processing. Rediflow is also aimed at combinations of
several application areas that interact in unpredictable
ways.

Implications of granularity. Two areas of trade-off in
granularity are communication overhead and flexibility in
load balancing. Systems may fail to exploit their peak
capacity because of excessive data communication be-
tween granules. This form of communication does not ex-
ist in the equivalent purely sequential computation but
may become significant if there are several processors. For
very small grains, the delay due to communication may ex-
ceed the delay of the operations themselves. For this
reason, small granularity is exploitable only if the regulari-
ty is high enough that necessary communication paths are
relatively short and static or if there is little communication
between grains. Wide, indiscriminate distribution of many
small grains increases the likelihood that communication
overhead will be large. Rediflow clusters several small
operations together inside one function body, obviating
their distribution.?’ Thus, the execution rate of a sequen-
tial strand of such operations can approach that of a von
Neumann computer.

Another factor influencing the choice of granularity is
load balancing, by which we mean the distribution of
grains to the processing units. The ideal situation is a single
initial distribution of equal-size granules to all processing
units. However, it is seldom possible to make such deter-
minations beforehand, because many applications present
work loads that are data dependent and not susceptible to
static analysis. To exploit the available multiprocessing
resources fully, thus attaining maximum speedup, we need
to distribute the load dynamically. Here we must pay at-
tention to the trade-off between small granules that permit
a more even balance, and large granules that minimize the
total distribution effort. The reduction model seems to of-
fer sufficiently fine grain to spread the work load widely,
yet not so fine as to entail undue distribution cost. This is
borne out by our initial simulations.

This study concentrates on balancing medium-grain
tasks that occur in reduction evaluation. The embedded
dataflow processes described on p. 73 are large grained.
Their advantages must be weighed against the extra com-
plications in load balancing. Although we have not fully
investigated this issue, it appears that large-grain processes
can be rebalanced during garbage collection, but the costs
and benefits of this approach have not been analyzed.

Interconnection issues. Multiprocessing systems can be
classified by processor-memory structure as well as by ap-
plication granularity. At one extreme are ‘‘shared
memory’’ configuration (see Figure 5, which shows pro-

COMPUTER

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on November 19, 2008 at 17:51 from IEEE Xplore. Restrictions apply.

cessors and memories separated by a switching network).
They appear to provide any processor a uniform access
time to any memory. However, this uniformity may be
compromised if there is significant contention at in-
dividual switches. Unfortunately, the uniform delay also
becomes uniformly longer with increasing numbers of pro-
cessors and memories. It is possible to introduce caches
that are coupled closely with processors and retain local in-
formation for faster access. However, caches also in-
troduce the difficult problem of “coherence”25:26; when
one processor updates information cached by another, the
latter must be invalidated—at a cost of additional com-
munication overhead. Any machinery introduced to over-
come this problem further dilutes the useful capacity of
the system.

At the other extreme, in the Rediflow configuration and
in others,?’ each processor is closely paired with a memory,
and a network of packet switches is used to communicate
between these pairs. Although sometimes called a ‘‘loosely
coupled’’ system, the coupling is actually very tight as far
as a single processor-memory pair is concerned. Certainly,
the peak bandwidth in such a system consisting of n pairs
is much higher than one with n processors and » memories
separated by a large switch. The following points may be
noted about the paired configuration:

® The worst-case delay is not attained for every pro-
cessor-memory reference; many delays will take at
most the time of one local access, and on the average,
the delay will be less than worst-case.

® The configuration permits the exploitation of “‘locali-
ty,”” 28 which means that logically related operations
can cluster their references to a subset of data. In
Rediflow, function-level granularity permits a certain
degree of such clustering.

® The coherence problem is avoided, since each pro-
cessor has exclusive control over its own memory.
This exclusiveness also obviates introduction of
special instructions for multiprocessor memory ac-
cess, such as test-and-set and its derivatives. 2

® The overall cost for switch hardware grows linearly
with the number of processors (rather than as
O(n log n) or worse) because every hardware com-
ponent used for switching has a processor associated
with it.

Figure 6. Sketch of an Xputer.

July 1984

In Rediflow, we call the combination of a processor-
memory pair and a packet switch for information transfer
an Xputer, a term suggested by its similarity to the
“transputer’’ chip announced by INMOS. 3031 A concep-
tual sketch of the Rediflow Xputer information flow is
shown in Figure 6.

The system-level aspects of Rediflow permit a wide
variety of interconnection networks, including the shuffle-
exchange shown in Figure 7, the grid in Figure 8, or var-
ious cube configurations.® The following minimal
assumptions are all that are necessary for effective opera-
tion:

® Addressability: There must be a means for uniquely
addressing any memory location in the entire system
so links between functions concurrently executing in
different Xputers can be dynamically established.

® Routability: Given a request to fetch from or store in a
specified location, the switch can determine where to
route the request once the links have been established.

Links are purely virtual, as implied by pointers; there are
no dedicated logical paths.

Figure 7. Shuffle-exchange Xputer network.

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on November 19, 2008 at 17:51 from IEEE Xplore. Restrictions apply.

75

Switches, processors, and memories, however, can be
taken to form logically parallel layers, as indicated by
Figure 9. Interconnection between Xputers exists only at
the switch layer, while the memories in the memory layer
have a combined global address space. If one Xputer
needs to access the memory of another, it forms a request
packet containing the address to be accessed. That packet
is then routed within the switch layer to the Xputer con-
taining the addressed location. A result packet is eventual-
ly formed; it is then routed to the requesting Xputer. This
request/return mechanism is integrated with the demand/
drive mechanism of reduction evaluation, so that remote
invocation of functions can take place. 20

Input/output devices, which are not shown, may be at-
tached at any nodes. Sequential I/0 devices are interfaced
through von Neumann processes, as mentioned earlier.
There is also no conceptual difficulty in including multi-
ple, secondary storage devices. Addressable devices can be
used to implement a virtual memory mechanism as an ex-
tension of the system-wide address space.

Figure 10 indicates how a data structure appears when
spread over several Xputers. The pointers can serve con-
ventionally as references, but they also define logical chan-
nels to implement the dataflow aspect of Rediflow.

Load distribution and balancing. To avoid bottlenecks
when the system is scaled, we eschew a centralized queue
from which idle processors get their work. Instead, the
method for migrating work is itself distributed. To avoid
granularity so small that communication delays become
significant, we use medium-grain function invocation
tasks as units of migrable work. As shown, for example, in
the definition of SQUARER, process-like behavior can be
implemented by such invocations; thus, the resulting pro-
cess becomes mobile. To describe further load distribu-
tion, we must show the mechanism that permits task
migration and the mechanism that causes it.

Linkage mechanics. As with most multiprocessor
organizations, the backlog of work is held in one or more
queues. In Rediflow, there are four queues per Xputer:

Figure 8. Grid Xputer network.

(1) The IN queue of incoming FETCH requests for
location contents and acknowledgments of such re-
quests (called FORWARD:s).

The APPLY queue of migrable function applica-
tion tasks. The mapping of interfunction into the
global address space permits items on this queue to
be moved at will to other Xputers.

The LOCAL queue, which contains units of non-
migrable fine-grain work.

The OUT queue that receives FETCH and FOR-
WARD requests for other Xputers or the acknowl-
edgment of such requests.

@

3)
@

The items on these queues are represented by four types of
packets:

(1) AFETCH packet, which contains the address of the
location being fetched and the storage location
where the fetched value is to be stored.

(2) A FORWARD packet containing a value and the

Figure 9. Layered view of grid network.

76

address into which the value is to be stored. This

COMPUTER

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on November 19, 2008 at 17:51 from IEEE Xplore. Restrictions apply.

location contains appropriate information to notify
a suspended task waiting for the stored value. For-
ward packets are generated in response to earlier
fetch packets.
(3) An APPLY packet containing
(@) a closure—a record with a pointer to code
for evaluating the function to be applied and a
pointer to a tuple of import values for that func-
tion (the latter correspond to the values of free
variables in the lambda-calculus sense); and
(b) an argument for the function being applied,
which might be a pointer to a tuple, for exam-
ple, if the function is viewed as multiargument.
(4) Packets on the LOCAL queue are simply addresses
in the local memory of operation nodes that need to
be evaluated; they serve as the analog of ‘‘instruc-
tion pointers’’ in a conventional computer.

Because all result data has preallocated globally-
addressable locations, it is not necessary to use any form
of token matching to get the data to its destination. !7 Fast
von Neumann-style addressing is exploited in each Xputer,
as well as among all Xputers. Addressing permits the
switch to provide the shortest possible route. This style of
routing is taken directly from the earlier conception of
AMPS.2! It is inaccurate to suggest that the routing
technique is a form of “‘token matching.’’ 32

A limited form of content addressing may be ultimately
required to cache pure copies of function code in an
Xputer, following an initial fetch from secondary or resi-
dent storage. This addressing is necessary only if the
number of different function codes in a run is too large for
a directly-indexed cache.

There is no correspondence between logical code and
specific Xputers. The same function may be executed
simultaneously in many different Xputers, and one
Xputer may be multiplexing the execution of many func-
tions. For example, one function may be suspended while
it waits for data fetched through the network.

Loading mechanics. We view the migrable tasks as
molecules of fluid poured over the switch layer. The
mechanics of migration are easily described by the notion
of pressure, which forces the fluid to move among
Xputers. The internal pressure of an Xputer indicates how
busy the Xputer is—in other words, its availability for ad-
ditional work. In the present model, the only contribu-
tions to internal pressure are the number of packets on an
Xputer’s LOCAL and APPLY queues and the fraction of
memory occupied. The latter is important because the
reduction model basically relies on a dynamic memory
allocation system. The function currently uvsed is
internal pressure = 1
length of queue + c()

1 — fraction of memory occupied

where ¢ is a constant. This function minimizes the con-
tribution of memory occupancy until it is nearly full.
Our distributed load-balancing technique involves
Xputers furnishing pressure information to one another in
an effort to determine where to route excess backlog.
However, it is not enough for an Xputer to furnish only its
internal pressure to others. If this data were sufficient, a

July 1984

heavily loaded Xputer could be surrounded by a wall of
nominally loaded ones and not be aware that, outside the
wall, there were Xputers that could accept some of the ex-
tra load. Therefore, we introduce the notion of prop-
agated pressure, which is what an Xputer indicates to its
immediate neighbors. The propagated pressure of an
Xputer is a function of both its own internal pressure and
its external pressure, which is in turn a function of the
propagated pressures of its neighbors.

When an Xputer’s internal pressure exceeds the exter-
nal, some packets from its APPLY queue may pass into
the interconnection network, where they are distributed to
Xputers with lower pressures. Rediflow employs a switch
capable of directing packets along pressure gradients to
find such low points. When a packet reaches an Xputer
with a local pressure minimum, it is absorbed into its
APPLY queue. This absorption tends to raise the pressure
of that Xputer and lessen the likelihood that it will receive
more packets until completion of work reduces its internal
pressure.

Obviously, pressure of Xputers is continually changing.
Accordingly, it is necessary to update each Xputer’s sense
of its external pressure frequently. Updating requires that
an Xputer send out a packet containing data on its pro-
pagated pressure when a sufficient pressure change has oc-
curred.

One heuristic function that works moderately well is to
define the propagated pressure in terms of the equations

PP(X) =if PI(X) <threshold
then 0
else min[l + PE(X), ceiling]

where PP, PI, and PE are, respectively, the propagated,
internal, and external pressures, and threshold is a settable
parameter. For ceiling, we use 1 + the diameter of the net-
work (the length of its longest path which does not include
any node twice), and for PE we use

Figure 10. Spreading of a data structure over an Xputer
network.

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on November 19, 2008 at 17:51 from IEEE Xplore. Restrictions apply.

77

78

PE(X) =min{PP(Y) | Y is a neighbor of x}

The above function permits packets to flow toward a
minimally loaded node. In fact, PE(X) can be shown to
give the number of links to be traversed to reach such a
node. The ‘‘continuous’’ computation of PP(X) for each
X is a form of ‘“‘relaxation’’ and, of course, need not be
precise, since the load is constantly changing. The effort
involved is small enough to be integrated into an intelligent
packet switch.

Saturation effects. The phenomenon of saturation oc-
curs when all Xputers are so busy that any attempt to
migrate apply packets would be futile, despite an extreme
internal/external differential. The Rediflow load-bal-
ancing mechanism uses a ceiling on the value of pro-
pagated pressure to detect saturation. When the external
pressure of an Xputer reaches the ceiling, migration
ceases. This mechanism enhances locality, since a greater
proportion of local allocation implies a greater proportion
of local memory references.

As mentioned earlier, the reduction model of computa-
tion offers the advantage of easily spawning concurrently
executable work for migration to other processors. In ef-
fect, a “‘spanning tree’’ is grown. The tree corresponds to a
single growing and shrinking expression; the ‘‘output’ of
the running program may be extracted on a continuing
basis. The default mode of servicing each Xputer’s
APPLY queue is FIFO, which generates the tree breadth-
first and thus reaches concurrently executable nodes
earlier. To prevent the generation of additional work dur-
ing saturation, an Xputer switches to LIFO for depth-first
generation in order to throttle its rate of packet produc-
tion. This constraint reduces queue overflows and over-

commitment of memory space, which could result in a
kind of deadlock (this technique was also observed by Bur-
ton and Sleep.3!) In saturated mode, operators that nor-
mally demand arguments concurrently must demand them
sequentially. This change turns out to be easy in our reduc-
tion implementation, which also allows introduction of
program-control mechanisms for reducing the possibility
of overcommitment of resources. 33

General packet flow. A schematic overview of the
organization of an Xputer appears in Figure 11. This
diagram assumes that pressure-sampling information is
sent through the switching layer in the form of pressure
packets intermingled with other types of packets (APPLY,
FETCH, and FORWARD). This assumption is used in
our simulation results, except for garbage collection,
which is not yet simulated on a packet basis.

Performance evaluation

The performance of the Rediflow architecture is now
being evaluated in simulations. We currently use an in-
trospective model, that is, one in which speedups are
measured against a single processor with the same techno-
logical elements, architecture, and evaluation model.
After certain improvements, we hope to run simulations to
calibrate performance against existing machines.

General simulation technique. The simulator for
Rediflow implements a distributed interpreter for the graph-
reduction model, including embedded von Neumann pro-
cesses. Delays inherent in the switch layer are parameterized

LOAD MANAGER

Figure 11. Packet flow within a Rediflow Xputer.

PROCESSOR

MEMORY

COMPUTER

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on November 19, 2008 at 17:51 from IEEE Xplore. Restrictions apply.

relative to processor delays. All buffers described for the
Xputer are simulated. Also, a FIFO input buffer for each
switch is included for resolving contention.

We assume that each graph-reduction step and primitive
operator computation takes a single time unit, which is set
to an estimated average value. We do not yet simulate the
distribution of code, in effect assuming that a copy of the
pure code of every function is present in each Xputer
memory. Since caching of code is intended and the
number of distinct code blocks is usually small in com-
parison to the number of block instantiations, simulation
of code distribution would change performance by at most
a small additive constant.

Simulations based on the ‘“ply’’ notion
provide a basis for evaluating Rediflow
concurrency in combinations of synchronous
and event-driven processes.

Garbage collection is accomplished by concurrent com-
pactions34 in each Xputer. We intend eventually to have a
message-based,?> global compaction system for coor-
dinating compaction. We do not yet simulate distributed,
concurrent garbage collection because we have so little
memory within which to simulate and collection would
consume an unrealistic proportion of time. We copy
without shifting data from one Xputer to another to avoid
spoiling the spread of data needed for concurrent execu-
tion.

The simulation is a combination of synchronous and
event-driven methods. Processor and switch cycles are ser-
viced at some settable ratio to correspond to their relative
rates. Messages sent between switches are serviced in time-
stamp order. Since we are simulating mostly determinate
programs with an invariable number of noncommuni-
cation operations and each is of a rather uniform dur-
ation, we can compute speedup ‘‘on the fly,”” as

total time of essential operations
simulated time

Unlike simulated time, essential operations do not include
communication delay, so we are rightfully ‘‘charging’’ for
them. Otherwise the measured speedup would be inflated.

Our simulator also makes it possible to measure the con-
currency for infinitely many processors with no com-
munication overhead. The simulator defines concurrency
by using the notion of “‘ply”’ as follows: In ply number
one, there is one packet, which corresponds to the opera-
tion initially demanded. Given ply n, ply n+ 1 is the union
of all packets spawned by packets in ply »n. By definition,
all packets in a ply can be executed concurrently. The con-
currency of a ply is therefore defined as the number of
packets in it. The measured average concurrency gives a
rough upper bound on the attainable speedup of a par-
ticular application. It thus provides a necessary condition
for successful utilization of multiple processors. The
Xputer network used in the present simulation is the rec-
tangular grid. For a small number of nodes, as many as

July 1984

one hundred, this interconnection scheme should be ade-
quate, since the worst-case delay of sqrt(n) is not ap-
preciably different from log (n) for a minimal-delay con-
figuration. Likewise, the grid configuration would prob-
ably be used if a subset of nodes were to be implemented
on a single silicon wafer, although the interconnection of
wafers might assume a different configuration.

Benchmarks. We have been running two kinds of
benchmarks. One consists of toy programs which exhibit a
single kind of activity, such as relatively independent pro-
cess or pure divide-and-conquer functions. In part, they
have been used to tune the parameters and load-balancing
mechanism and demonstrate the system’s effectiveness.
For example, a fair amount of effort was required to bring
the network to a point where n Xputers would spread a
program evenly over n independent processes. Similarly, if
there are, say, 2n independent processes being sequentially
spawned, the network will run the first » until one com-
pletes, then fill the vacancy created with the (n+ 1)th, etc.

One example of a toy program was the divide-and-
conquer factorial program (see p. 72). The upper curve in
Figure 12 demonstrates the speedup for the computation
of factorial 219 on varying numbers of Xputers with square
grid configurations.

The other class of benchmarks consists of more realistic
applications that combine a number of activities in the
areas of simple database searching and updating transac-
tions and correlative signal processing. The lower curve in
Figure 12 indicates speedups from one of these applica-
tions, a signal-processing problem that entails a moving-
window correlation of two complex-valued streams of
data. The computation for a single window consists of a
weighted inner product of the current n values of one
signal with the complex conjugate of the current n values
of another. In the run shown, n =20 was specified, and 50
windows were computed concurrently. Runs with other
parameters had a similar behavior.

Simulations also help quantify the locality effect by
computing the distribution of inter-Xputer message dis-

Figure 12. Speedup in two applications programs.

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on November 19, 2008 at 17:51 from IEEE Xplore. Restrictions apply.

79

tances for data and APPLY packets. Figure 13 illustrates
the average distances for the factorial and signal process-
ing examples. We assume 10-ps-per-processor reduction
operation and 40M-bps switch throughput, roughly what
would be provided by a microprocessor with a customized
switch. The indication of locality in the above examples is
that the average distance a packet travels is considerably
less than the worst-case distance. Another measured in-
dication produced by the distinction between migrable and
local functions is that typically only five to 20 percent of
data references are nonlocal to an Xputer.

Future work

Due to resource limitations, we have not been able to
consider all problems thoroughly but have shifted our at-
tention from the evaluation model to load-distribution
techniques, performance measurement, and language
issues. We are preparing further optimizations of the
evaluation model—in particular, the consumption of
memory by the current graph-reduction evaluator.
Simulator memory has limited the size of problems we
have been able to explore. We thus believe the current
Rediflow evaluator, which is an interpreter, can compete
with a sequential processor only if the degree of concur-
rency in the application is very high. Some other good
possibilities for improvement include replacing the inter-
preter with compiled native code.

In addition to continuing our evaluation and improve-
ment of the basic Rediflow system, we are widening the in-
vestigation of application areas. For example, there is
ongoing work on logic programs evaluation. 36:37 We also
intend to engage in reliability studies.

An added feature of the mathematical model underlying
functional evaluation is that data is never destroyed until
its inaccessibility is established, which suggests that such a
model might be a natural candidate for expressing the
mechanization of recovery. '2:3® This possibility and our

Figure 13. Packet transmission distances in two applications.

80

contention that the preferred configuration supports
graceful degradation make Rediflow an attractive can-
didate for a reliability investigation.

Related work

Rediflow is a outgrowth of earlier work on the Appli-
cative Multiprocessing System at the University of Utah.20
It differs from AMPS in its topology and its approach to
load-balancing. Rediflow rejects the hierarchical ap-
proach in favor of a scheme with the potential for useful
work in every physical node of the system. The retention
of von Neumann processes is also new and reflects our
oelief that, for subprograms with a strong sequential
orientation, the von Neumann architecture is still the
fastest execution model. Finally, the Rediflow storage
allocation and reclamation techniques are quite different
from those of AMPS.

A number of other researchers have pursued goals
similar to those of Rediflow. The Alice proposal, 3 for in-
stance, is probably the closest in its evaluation model. It
uses graph reduction, but since no distinction is made
regarding fine-grain local operations and coarser grain
migrable ones, it does not exploit these locality-enhancing
aspects. A second difference is in the mechanics of node
linkage during graph reduction.?’ Certain aspects of
Hewitt’s Apiary network “° also seem similar in goals and
mechanization to those of Rediflow. Rediflow also shares
the use of pointers for establishing system-wide data struc-
tures with the much finer grained MIT ‘‘connection’’
machine ¥

Dataflow machines also present comparable ef-
forts.16:17.42 They attempt to exploit concurrency of a finer
granularity than Rediflow. Two observations are in order:

(1) The packets within a Rediflow Xputer can be pro-
cessed concurrently or in an order-independent fashion.
Dataflow architecture can likely enhance the performance
within an Xputer node. Conversely, the load-balancing
concepts we have outlined might provide an effective se-
cond level for managing work in a dataflow-oriented
system.

(2) With the need to handle data structures, several lines
of dataflow research seem to recognize that reduction
models and demand-driven execution have something
valuable to offer.434 The reduction concept also
underlies the conception of I-structures,4> which are
essentially demand-driven tuples or arrays. 4

Among the language-oriented efforts, there are the
Prolog-related approaches, such as Shapiro’s Bagel.4’
The Concurrent Prolog language,*® suggested for Bagel
has roughly the capability of a functional language with
unification pattern matching and indeterminate primitives
in the form of guarded expressions.4® Shapiro has sug-
gested that programmers should explicitly specify the sites
on which functions are executed in systolic-array fashion.
Such specifications are an option to Rediflow, but we are
encouraged by simulation results that do not require them.
Other proposals intended to support full Prolog are being
tested. 50 Since they involve an even more complex sequen-
tial model, it remains to be seen whether they will be effec-

COMPUTER

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on November 19, 2008 at 17:51 from IEEE Xplore. Restrictions apply.

tive for a wide range of problems or whether they will be
relegated to a ‘‘back-end’’ role in a more general-purpose
processor.

Finally, work is being done on general-purpose multi-
processors that are not language-driven.’! Their
performance-evaluation results add significantly to the in-
formation base and should provide valuable benchmarks
for comparison against the more language-driven ap-
proaches, which are intended, after all, to simplify the use
of multiprocessors.

The Rediflow multiprocessor system employs a packet-
switching network to implement higher level program-
ming abstractions. The intended applications exploit
medium-grained or function-level concurrency and permit
load-balancing in what is essentially a distributed system.
Preliminary performance results show that the Rediflow
architectural approach is promising. %

Acknowledgments

We wish to thank our colleagues at Utah—Gary Lind-
strom, Elliott Organick, Tom Henderson, P.A. Subrah-
manyam, and Richard Fujimoto—for their comments and
continued encouragement. We also thank Peter Benson
and Jiro Tanaka for programming assistance. Joe Fasel,
Allan Gottlieb, Bert Halstead, Carl Hewitt, Paul Hudak,
Dick Kieburtz, and Ronan Sleep made technical com-
ments that contributed to our work. Finally, we thank
Doug deGroot, Jan Galkowski, and Peter Kogge at IBM
for their support and confidence.

This work has been supported at the University of Utah
by grants from the IBM Corporation, National Science
Foundation (MCS-8106177), and Defense Advanced Re-
search Projects Agency of the US Department of Defense
(Contract No. MDA903-81-C-0414), and during Keller’s
leave, at Lawrence Livermore National Laboratory by the
US Department of Energy (Contract No. W-7405-
ENG-48).

References

1. D. E. Muller and W. S. Bartky, ““A Theory of Asyn-
chronous Circuits,” Proc. Int’l Svinp. Theory Switching,
1959, pp. 204-243.

2. R. M. Karp and R. E. Miller, “‘Properties of a Model for
Parallel Computations: Determinacy, Termination, Queue-
ing,” SIAM J. Appl. Math, Vol. 14, No. 6, Nov. 1966, pp.
1390-1411.

3. R.M.KarpandR.E. Miller, “Parallel Program Schemata,”
J. Computing and Systems Sciences, Vol. 3, No. 2, May
1969, pp. 147-195.

4. D. A. Adams, A Computation Model With Data Flow
sequencing, Stanford University, Computer Science Dept.,
tech. report CS117, 1968.

5. S. Patil, “‘Closure Properties of Interconnections of Deter-

minate Systems,”’ Proc. Project MAC Conf. Concurrent
Systems and Parallel Computation, June 1970, pp. 107-116.

6. R. M. Keller, ‘A Fundamental Theorem of Asynchronous
Parallel Computation,”” T-y. Feng, ed., Parallel Processing,
Springer-Verlag, New York, 1975, pp. 102-112.

July 1984

W. H. Burge, Recursive Programming Techniques,
Addison-Wesley, Reading, Mass., 1975.

P. Henderson, Functional Programming, Prentice-Hall,
Englewood Cliffs, N.J., 1980.

D. A. Turner, “The Semantic Elegance of Applicative
Languages,”” Functional Programming Languages and
Computer Architecture, Oct. 1981, pp. 85-93.

G. Kahn, ““The Semantics of a Simple Language for Parallel
Programming,” [Information Processing, 1FIP, North
Holland, 1974, pp. 471-475.

R. M. Keller, “‘Denotational Models for Parallel Programs
with Indeterminate Operators,” Formal Description of Pro-
gramming Language Concepts, E. Newhold, ed., Elsevier,
North-Holland, 1978, pp. 337-366.

R. M. Keller and G. Lindstrom, Toward Function-Based
Distributed Database Systems, University of Utah Com-
puter Science Dept., tech. report UUCS-82-100, Jan. 1982.

M. Conway, “*A Multiprocessor System Design,” AFIPS
Conference Proc., 1963, pp. 139-148.

G. R. Andrews and F. B. Schneider, “Concepts and Nota-
tions for Concurrent Programming,” Computing Surveys,
Vol. 15, No. 1, Mar. 1983, pp. 3-44.

D. M. Ritchie and K. Thompson, ‘“The Unix Time-Sharing
System,”” Comm. ACM, Vol. 17, No. 7, July 1974, pp.
365-381.

J. B. Dennis, **Data Flow Supercomputers,” Computer,
Vol. 13, No. 11, Nov. 1980, pp. 48-56.

I. Watson and J. Gurd, ‘A Practical Data Flow
Computer,” Computer, Vol. 15, No. 2, Feb. 1982, pp.
S1-57.

D. P. Friedman and D. S. Wise, “CONS Should Not
Evaluate Its Arguments,” Michaelson and Milner, eds.,
Automata, Languages, and Programming, Edinburgh
University Press, Edinburgh, Scotland, 1976, pp. 257-284.

SOFTWARE PROFESSIONALS
NEW ENGLAND/NATIONAL
OPPORTUNITIES

Are you thinking of career advancement? Are you
concerned that the person who represents you be as
professional and informed in their field as you are in
yours? Let E.P. Reardon Associates put their 20 years
of successful placement counselling to work for you.
Our Counsellors are knowledgeable professionals, in
daily contact with companies around New England
and, through our N.P.C. network, across the U.S.

If the challenge is gone or your career path is block-
ed in your present position, we have requirements for
experienced professionals in the following areas:
Operating Systems Design Scientific

Computer Architecture Applications
Interactive Graphics Compiler Design
Peripherals Interfaces Office Automation
CAD/CAM Artificial

Networking Intelligence

To learn more about these and other openings callor,
if you prefer, forward your resume to either address
listed below. All inquiries will be answered within 48
hours and will be treated in complete confidence.

P.O. Box 228
Dedham, MA 02026
617-329-2660

P.O.Box 1038
Burlington, MA 01803
617-273-5964

E@ &P Roardon Assockiates

Clients are EOE. Members of NPC.

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on November 19, 2008 at 17:51 from IEEE Xplore. Restrictions apply.

20.

21

22

23,

24.

28

26.

27,

28.

25

30.

3L

328

33.

34.

35;

36.

37.

38.

39,

82

. C. P. Wadsworth, Semantics and Pragmatics of the

Lambda-Calculus, Oxford University, PhD thesis, 1971.

R. M. Keller, G. Lindstrom, and S. Patil, ““A Loosely-
Coupled Applicative Multi-Processing System,”’ AFIPS
Conf. Proc. Vol. 24, June 1979, pp. 613-622.

A. L. Davis and R. M. Keller, ‘‘Dataflow Program
Graphs,”” Computer, Vol. 15, No. 2, Feb. 1982, pp. 26-41.

Arvind and K. P. Gostelow, ‘“The U-interpreter,”” Com-
puter, Vol. 15, No. 2, Feb. 1982, pp. 42-49.

J. Tanaka, Optimized Concurrent Execution of an Ap-
plicative Language, University of Utah, PhD thesis, Mar.
1984.

R. Keller, F.C.H. Lin, and J. Tanaka, ‘‘Rediflow
Multiprocessing,”” Proc. Compcon Spring 84, Feb. 1984,
pp. 410-417.

M. DuBois and F. A. Briggs, ‘‘Effects of Cache Coherency
in Multiprocessors,” IEEE Trans. Computers, C-31, No.
11, Nov. 1982, pp. 1083-1099.

C. V. Ravishankar and J. R. Goodman, ‘‘Cache Implemen-
tation for Multiple Microprocessors,”” Proc. Compcon Spr-
ing 83, Mar. 1983, pp. 346-350.

G. C. Fox, “Concurrent Processing for Scientific Calcula-
tions,”” Proc. Compcon Spring 84, Feb. 1984, pp. 70-73.

E. G. Coffman and P. J. Denning, Operating Systems
Theory, Prentice-Hall, Englewood Cliffs, N.J., 1973.

A. Gottlieb et al., ‘““The NYU Ultracomputer—Designing
an MIMD Shared Memory Parallel Computer,” IEEE
Trans. Computers, C-32, No. 2, Feb. 1983, pp. 175-189.

I. Baron et al., ‘“Transputer Does 10 or More MIPS Even
When Not Used in Parallel,”’” Electronics, Nov. 1983, pp.
109-115.

F. W. Burton and M. R. Sleep, ‘‘Executing Functional Pro-
grams on a Virtual Tree of Processors,”’ Proc. ACM Symp.
Functional Programming Languages and Computer Ar-
chitecture, Oct. 1981, pp. 187-195.

P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins,
‘‘Data-Driven and Demand-Driven Computer Architecture,”’
Computing Surveys, Vol. 14, No. 1, Mar. 1982, pp. 93-143.

R. M. Keller and G. Lindstrom, ‘‘Applications of a Feed-
back in Functional Programming,”” Conf. Functional
Languages and Computer Architecture, Oct. 1981 pp.
123-130.

H. G. Baker, Jr., ‘‘List Processing in Real Time on a Serial
Computer,”” Comm. ACM, Vol. 21, No. 4, Apr. 1978, pp.
280-293.

P. Hudak and R. M. Keller, ‘‘Garbage Collection and Task
Deletion in Distributed Applicative Processing Systems,’’
Proc. ACM Symp. Lisp and Functional Programming,
1982, pp. 168-178.

G. Lindstrom and P. Panangaden, ‘‘Stream-Based Execu-
tion of Logic Programs,’’ Proc. 1984 Int’l Symp. Logic Pro-
gramming, Feb. 1984, pp. 168-176.

U. S. Reddy, ‘“Transforming Logic Programs into Func-
tional Programs,”” Proc. 1984 Int’l Symp. Logic Program-
ming, Feb. 1984, pp. 187-196.

F. C. H. Lin, ““A Distributed Load Balancing Mechanism
for Applicative Systems,”” Department of Computer
Science, University of Utah, PhD thesis proposal, Dec.
1983.

J. Darlington and M. Reeve, ‘‘A Multi-Processor Reduction
Machine for the Parallel Evaluation of Applicative
Languages,”” Symp. Functional Programming Languages
and Computer Architecture, Oct. 1981, pp. 65-77.

C. Hewitt and H. Lieberman, ‘‘Design Issues in Parallel Ar-
chitectures for Artificial Intelligence,”” Proc. Compcon Spr-
ing 84, Feb. 1984, pp. 418-423.

41. W. D. Hillis, The Connection Machine, Massachusetts In-
stitute of Technology Al Laboratory, tech. report 646, Sept.
1981.

42. K. P. Gostelow and R. E. Thomas, ‘‘Performance of a
Simulated Dataflow Computer,”’ IEEE Trans. Computers,
C-29, No. 10, Oct. 1980, pp. 905-919.

43. E. A. Ashcroft, unpublished presentation on a Lucid
machine, Lawrence Livermore National Laboratories, Oct.
1983.

44. 1. Watson, unpublished paper on dataflow research.
Lawrence Livermore National Laboratories, Oct. 1983.

45. Arvind and R. E. Thomas, I-structures: An Efficient Data
Type for Functional Languages, MIT Laboratory for Com-
puter Science, tech. report MIT-LCS-TM-178, Sept. 1980.

46. R. M. Keller, “Divide and CONCer: Data Structuring for
Applicative Multiprocessing,”” Proc. 1980 Lisp Conference,
Aug. 1980, pp. 196-202.

47. E.Y. Shapiro, Presentation on Bagel and Concurrent Pro-
log, ACM Symp. Prin. Programming Languages, Jan.
1984.

48. E.Y. Shapiro, A Subset of Concurrent Prolog and Its Inter-
preter, Institute for New Generation Computer Tech-
nology, tech. report TR-003, Jan. 1983.

49. E. W. Dijkstra, ‘‘Guarded Commands, Non-Determinacy,
and a Calculus for the Derivation of Programs,’”’ Comm.
ACM, Vol. 18, No. 8, Aug. 1975, pp. 453-457.

50. D. deGroot, ed., IEEE Int’l Logic Programming Symp.,
1984, entire publication.

51. E. F. Gehringer, A. K. Jones, and Z. Z. Segall, ‘““The Cm*
Testbed,”” Computer, Vol. 15, No. 10, Oct. 1982, pp. 40-49.

Robert M. Keller is a professor of computer
science at the University of Utah. From
1970-1976 he was an assistant professor of
electrical engineering at Princeton Universi-
ty. He has held visiting appointments at
Stanford University and Lawrence Liver-
more National Laboratory. His primary in-
terest is in highly concurrent and distributed
models for evaluation of high-level lan-
¢ guage programs.

Keller received the MSEE from Washington University and the
PhD from the University of California, Berkeley.

Frank C. H. Lin is currently working on his
PhD degree in computer science at the
University of Utah. He received a BSEE
degree from the National Taiwan Universi-
ty in 1973 and a MSEE from Utah State
University in 1978.
He was an engineer at Calcomp Elec-
tronics, Inc., 1976-1977. Since 1978 he has
hod held various positions with the Computer
A System Division of Sperry Corporation in
Salt Lake City, Utah. His research interests are computer ar-
chitecture, networking, and applicative systems and fault-tolerant
computing.
Questions about this article can be addressed to either author,
Dept. of Computer Sciences, University of Utah, Salt Lake City,
UT 84112.

COMPUTER

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on November 19, 2008 at 17:51 from IEEE Xplore. Restrictions apply.

	Claremont Colleges
	Scholarship @ Claremont
	7-1-1984

	Simulated Performance of a Reduction-Based Multiprocessing System
	Robert M. Keller
	Frank C. H. Lin
	Recommended Citation

	tmp.1318372926.pdf.xl79A

