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Role of beat noise in limiting the sensitivity of
optical coherence tomography

Richard C. Haskell, David Liao, Adam E. Pivonka, Tera L. Bell, Brendan R. Haberle,
Barbara M. Hoeling, and Daniel C. Petersen

Department of Physics, Harvey Mudd College, Claremont, California 91711

Received June 10, 2005; revised May 25, 2006; accepted May 26, 2006; posted July 5, 2006 (Doc. ID 62688)

The sensitivity and dynamic range of optical coherence tomography (OCT) are calculated for instruments uti-
lizing two common interferometer configurations and detection schemes. Previous researchers recognized that
the performance of dual-balanced OCT instruments is severely limited by beat noise, which is generated by
incoherent light backscattered from the sample. However, beat noise has been ignored in previous calculations
of Michelson OCT performance. Our measurements of instrument noise confirm the presence of beat noise
even in a simple Michelson interferometer configuration with a single photodetector. Including this noise, we
calculate the dynamic range as a function of OCT light source power, and find that instruments employing
balanced interferometers and balanced detectors can achieve a sensitivity up to six times greater than those
based on a simple Michelson interferometer, thereby boosting image acquisition speed by the same factor for
equal image quality. However, this advantage of balanced systems is degraded for source powers greater than
a few milliwatts. We trace the concept of beat noise back to an earlier paper [J. Opt. Soc. Am. 52, 1335 (1962)].
© 2006 Optical Society of America

OCIS codes: 030.4280, 110.4280, 120.3180, 170.4500.

1. INTRODUCTION
The sensitivity of an optical coherence tomography (OCT)
instrument is the critical factor in determining the trade-
off between image quality and image acquisition speed.
OCT sensitivity is a measure of the smallest sample re-
flectivity or backscattering cross section that can be re-
solved, and is typically defined to be the variance of the
instrument noise. Early OCT researchers1–3 found it con-
venient to measure instrument noise with respect to a
standard OCT signal and chose the signal returned from
a perfectly reflecting mirror, the maximum achievable sig-
nal, as the standard. They defined the signal-to-noise ra-
tio (SNR) as

SNR =
mean-square fringe amplitude from a mirror

variance of photon and detector noise
,

�1�

where the denominator is small when the sensitivity of
the instrument is high. The SNR as defined in Eq. (1) is
also the square of the dynamic range (DR). We prefer to
work with the DR parameter, although the SNR as de-
fined in Eq. (1) can and has been used to discuss the sen-
sitivity of OCT.

Often the noise in the denominator of Eq. (1) is mea-
sured without a sample, so that the noise is due to photon
noise in the reference beam and thermal noise in the de-
tector. Unfortunately this practice ignores the contribu-
tion of beat noise, which arises from incoherent light
backscattered from the sample, i.e., light backscattered
from outside the OCT coherence volume. During the im-
aging of typical biological tissue, the incoherent power
backscattered from tissue can be as much as 2–3 orders of
magnitude greater than the coherent power. (See Appen-

dix A for a justification of this statement.) The theoretical
results presented in Sections 2 and 4 show that this inco-
herent light and the associated beat noise severely limit
the DR at source powers above 10 mW. Our results con-
firm earlier reports4–6 that beat noise plays a critical role
in limiting the DR of OCT instruments utilizing balanced
interferometers and balanced detection. In Section 3 we
report the first—to our knowledge—experimental confir-
mation of the presence of beat noise in a simple Michelson
interferometer-based OCT instrument utilizing a single
photodetector. We conclude that an accurate measure of
OCT sensitivity must include all sources of noise present
under normal OCT imaging conditions, including beat
noise.

One of the goals of OCT instrument design has been to
achieve shot-noise-limited detection in the expression for
the SNR in Eq. (1); i.e., the noise in the denominator of
Eq. (1) should be dominated by fundamental photon shot
noise.1 In this case, photon bunching, sometimes referred
to as excess photon noise, would be less than or equal to
shot noise. When light source powers greater than 1 mW
are used, Bose–Einstein photon bunching typically domi-
nates photon noise. At these higher source powers, Sorin
and Baney1 suggested attenuating the reference beam to
reduce photon bunching, leaving primarily shot noise.

Unfortunately, attenuating the reference beam is
wasteful of photons, and the use of balanced interferom-
eters and balanced detection has become a popular alter-
native. Rollins et al.7 used balanced detectors to cancel
photon bunching and other fluctuations in light source in-
tensity, sometimes referred to collectively as relative in-
tensity noise. However, Takada4 has shown that some
photon bunching, referred to as beat noise, is not elimi-
nated by balanced detection. Yoshino et al.8 have demon-
strated that the beating of different frequencies within
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the source spectrum generates the usual photon bunch-
ing, and that interference between the partially coherent
beams returned from the two arms of a Michelson inter-
ferometer results in an additional beat noise term and
hence additional photon bunching. It is this additional
beat noise term that is not eliminated by balanced detec-
tion. Our results presented in Section 4 indicate that the
effectiveness of balanced detection is substantially re-
duced by this additional beat noise term for source powers
above a few milliwatts.

Several research groups5,6,9 have studied improve-
ments in OCT sensitivity achieved with balanced interfer-
ometer configurations. For example, a balanced Mach–
Zehnder interferometer can be used instead of an
unbalanced Michelson interferometer so that photons
from the OCT broadband light source are used more
efficiently.9 Rollins et al.7 employed both a balanced inter-
ferometer configuration and balanced detectors in a so-
called dual-balanced OCT instrument for use in real-time
endoscopic OCT imaging of the gastrointestinal tract. Our
theoretical study reported in Sections 2 and 4 suggests
that dual-balanced design, with typical values for instru-
ment parameters, can achieve at most a factor of 6 im-
provement in image acquisition speed while holding im-
age quality constant. However, the presence of beat noise
degrades this improvement factor when light source pow-
ers exceed a few milliwatts.

The recent development of Fourier-domain (or
frequency-domain) OCT (FD-OCT),10,11 sometimes re-
ferred to as spectral-domain OCT,12 has provided an ad-
ditional boost in sensitivity over conventional time-
domain OCT (TD-OCT). Two different implementations of
FD-OCT are emerging as most popular.11 In the first, a
broadband light source illuminates the interferometer in-
put, and a spectrometer with a detector array is placed at
the output. The light source power returned from the
sample and reference arms is distributed over a large
number of detectors operating in parallel in the array, re-
ducing the power on each detector and allowing it to op-
erate in the Poisson shot-noise regime. In this case, both
the usual Bose–Einstein photon bunching and the addi-
tional beat noise are negligible. In the second implemen-
tation, a narrowband laser illuminates the interferom-
eter, and the laser wavelength is swept quickly through a
broad spectral range. The fringes at the interferometer
output are recorded by a single detector. While the laser
output power may be substantial, the laser is a coherent
source, not a thermal source, and hence its output beam
does not exhibit photon-bunching fluctuations. The laser
pumping mechanism may impart relative intensity noise,
but this can be eliminated with balanced detectors. Both
implementations of FD-OCT can be free of photon bunch-
ing and hence escape the limitations described in the
present paper. However, FD-OCT cannot accommodate fo-
cus tracking because all sample depths are probed simul-
taneously. When good lateral resolution is required
throughout the depth of the sample, and when real-time
acquisition rates are not essential, the TD-OCT method of
en face scanning optical coherence microscopy may be the
technique of choice. In these cases, the effects of photon
bunching and beat noise on sensitivity become important
for optimal image acquisition.

2. DYNAMIC RANGE
The DR of an OCT instrument can be defined as the ratio
of the fringe amplitude originating from the surface of a
mirror to the rms noise at the output of the instrument
under typical imaging conditions. The DR is the square
root of the SNR defined in Eq. (1):

DR = �SNR =
rms fringe amplitude from a mirror

rms detector and photon noise

=
F�h�PrefPcoh

rms noise
. �2�

The fringe amplitude in the numerator of Eq. (2) is pro-
portional to the square root of the product of the reference
power Pref and the power coherently reflected from the
mirror Pcoh. The heterodyne efficiency �h and the signal
analysis factor F are each approximately equal to 1.13 The
rms noise in the denominator of Eq. (2) should be repre-
sentative of instrument noise during imaging of tissue.

We shall evaluate the rms noise of an OCT instrument
for balanced and unbalanced configurations, and then cal-
culate the DR for each configuration with the help of Eq.
(2). Our results are obtained for optimized OCT instru-
ments, which means that, for Michelson interferometers,
the reference beam power is attenuated to maximize the
DR for a given light source power.1,13 Similarly in bal-
anced systems, the cross efficiency (splitting ratio) of the
primary fiber coupler is adjusted to maximize the DR for
a given light source power.

A. Michelson Interferometer
Figure 1 is a schematic of the most common example of an
unbalanced OCT system. The variance of the noise in this
system is given by

�3�

The first term on the right side of Eq. (3) is the thermal
noise of the photodetector. NEP is the noise-equivalent
power of the detector in W/Hz1/2, and BW is the band-
width of the analog and digital signal-processing path-

Fig. 1. Schematic of an unbalanced Michelson interferometer
configuration. A single 2�2 fiber coupler is used with a splitting
ratio of �M (chosen equal to 1

2 for optimized performance). A
single photodetector samples the interference fringes.
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way. The second term is the photon Poisson shot
noise,14–16 where e is the electron charge and R is the re-
sponsivity of the detector in A/W; Pincoh is the power re-
turned from the sample arm that is incoherent with the
reference beam, e.g., light backscattered from tissue (or
the sample fiber tip) outside the coherence volume. (Actu-
ally, the Pincoh and Pref beams are partially coherent, in
the sense that narrow bands of wavelengths in the two
beams can interfere, although the sum of these interfer-
ence terms over all wavelengths goes nearly to zero.)
When typical biological tissue is imaged, Pincoh is much
greater than Pcoh (see Appendix A); therefore we have ne-
glected Pcoh with respect to Pincoh and Pref in Eq. (3). The
third term is the Bose–Einstein photon-bunching
term,14–16 sometimes called excess photon noise, where
�coh is the coherence time of the OCT light source. The fac-
tor �1+Pol2� accounts for the state of polarization of the
OCT light source; Pol=0 corresponds to unpolarized light,
and Pol=1 indicates plane-polarized light. The fourth
term is the additional beat noise first derived by Mandel
in 1962.17 The beat noise term is equal in magnitude but
distinct from the cross term in the usual photon-bunching
term, the third term in Eq. (3). Beat noise arises because
two partially coherent beams (Pref and Pincoh), rather than
a single thermal field, are incident upon the detector. In a
recent detailed derivation using classical waves, Yoshino
et al.8 demonstrate that this beat noise term is due to the
changes in the total optical spectrum incident upon the
photodetector resulting from the interference of the two
partially coherent beams.

The beam powers in Eqs. (2) and (3) can be written in
terms of the light source power Ps and the cross efficiency
�M of the fiber splitter of the Michelson interferometer:

Pref = Ps�M�1 − �M�Rref, Pcoh = Ps�M�1 − �M�Rcoh,

Pincoh = Ps�M�1 − �M�Rincoh, �4�

where Rref is the effective reflectivity of the reference mir-
ror (including perhaps a neutral-density filter), Rcoh is the
cumulative reflectivity of scatterers in the coherence vol-
ume (the surface of a mirror for our present studies), and
Rincoh is the cumulative reflectivity of scatterers outside
the coherence volume. The dynamic range of the Michel-
son configuration is optimized by choosing �M=1/2. We
also reduce the value of Rref to maximize the DR for a
given light source power.1,13

B. Balanced Configuration
We now examine the noise of the balanced system shown
in Fig. 2. This system is similar to the balanced system
denoted as “Ai” by Rollins and Izatt,5 but our balanced
system employs two optical circulators for conceptual sim-
plicity. The design of Fig. 2 utilizes a balanced interferom-
eter and balanced detection. The noise variance of this
system can be expressed as4–6

�5�

In Eq. (5), Pref and Pincoh are the sum of the reference and
incoherent powers, respectively, which are incident upon
the two detectors. Here, NEPdual is �2 times NEP in Eq.
(3). The first term in Eq. (5) is the thermal detector noise,
the second is the photon Poisson shot noise, and the last
term is the beat noise. The Bose–Einstein photon-
bunching term in Eq. (3) has been eliminated by the bal-
anced detection circuitry included in Fig. 2, but the addi-
tional beat noise term survives.4

The beam powers in Eqs. (2) and (5) can be written in
terms of the source power Ps and the cross efficiency �bal
of the fiber splitter of the balanced configuration:

Pref = Ps�balTcirc
2 Rref, Pcoh = Ps�1 − �bal�Tcirc

2 Rcoh,

Pincoh = Ps�1 − �bal�Tcirc
2 Rincoh. �6�

Here, Tcirc is the coupling efficiency (typically �0.85, see
also Ref. 5) between successive ports of an optical circula-
tor. Equations (6) are analogous to Eqs. (4) for the Mich-
elson configuration.

The advantage of the balanced configuration is that the
coupling efficiency of the fiber splitter can be varied to di-
rect more light to the sample while keeping the reference
reflectivity at its maximum (optimum) value, thus maxi-
mizing the DR.4–6

3. BEAT NOISE IN A MICHELSON
INTERFEROMETER
Equation (3) describes the noise in the simple OCT in-
strument shown in Fig. 1. The last term in Eq. (3), the
beat noise term, appears in a form that has been simpli-
fied considerably from Eq. (19) of Mandel’s 1962 paper.17

In Appendix B of this paper, we outline the derivation of
our Eq. (3) starting with Mandel’s Eq. (19), focusing par-
ticular attention on the beat noise term, the last term in
our Eq. (3). It is reassuring that the expression derived
recently by Yoshino et al.8 for beat noise at the output of a

Fig. 2. Schematic of a dual-balanced OCT configuration. Two
2�2 fiber couplers are used; the primary coupler has a splitting
ratio of �bal while the second coupler sends 50% to each detector.
Two optical circulators (OC) are employed, one in the sample arm
and one in the reference arm. Typically light is coupled from port
1 to port 2 or from port 2 to port 3 with �85% efficiency. The out-
puts of two balanced detectors are subtracted to reject common-
mode intensity noise.
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Michelson interferometer reduces, in the limit of large
path difference, to our Eq. (3). However, some
treatments5,6 of the noise in a simple Michelson-based
OCT instrument have omitted this beat noise term en-
tirely. Given these discrepancies in the literature, we
thought it important to verify experimentally the form of
Eq. (3).

In this experiment, an en-face scanning, three-
dimensional, optical coherence microscope (OCM) operat-
ing at 850 nm was used to image a mirror surface. The
OCM instrument is based on a simple Michelson interfer-
ometer with a single photodetector, as depicted schemati-
cally in Fig. 1. The details of the instrument have been
described previously.13,18,19 The equal-path-length posi-
tion in the sample arm was kept 3 mm above the surface
of the mirror, so that all light returned from the sample
arm came from outside the coherence volume. (We show
in Appendix C of this paper that the expected noise is the
same regardless of whether the backscattered light in the
sample arm comes from a single mirror surface or from
multiple scatterers outside the coherence volume.) The
position of the focused waist of the sample beam was var-
ied from 100 to 200 �m above the mirror surface so that
the incoherent power Pincoh decreased correspondingly

due to the confocal rejection ratio of the OCM instrument.
A series of neutral-density filters were inserted into the
reference arm retroreflector to vary the reference arm
power Pref.

The beat noise term predicted by Eq. (3) can be as much
as one third of the total noise variance when Pincoh�Pref
and both are sufficiently large that the photon shot noise
and the thermal detector noise are negligible. The noise
variance was measured for several different values of Pref
and Pincoh that satisfied these conditions. A composite plot
of the data is presented in Fig. 3. The data are fit to the
form of Eq. (3):

A + B�Pref + Pincoh� + C�Pref + Pincoh�2 + CDPrefPincoh.

�7�

The fitted values for A, B, C, and D are listed in Table 1,
and the fitted curves appear in Fig. 3 as the solid curves.
The reduced chi square associated with the fit is 0.60
(77% chance of exceeding). Consistent values of A, B, and
C are obtained when the subset of data with Pref=0 is fit-
ted and when the subset with Pincoh=0 is fitted. The fitted
value of D=2.04±0.10 is consistent with the integer 2 in
the beat noise term of Eq. (3). The dashed curves in Fig. 3
represent the best fit to the form of Eq. (3) but without the
beat noise term and yield a reduced chi square of 113.
Clearly the beat noise term is needed to describe the data
adequately.

4. SIMULATION RESULTS
We have calculated the DR of the Michelson and balanced
configurations by inserting the square root of Eqs. (3) and

Table 1. Results of Fitting the Data in Fig. 3 to the
Functional Form of Expression (7)

Fitting
Parameter

Expression
from Eq. (3) Fitted Value

A �NEP�2�BW� �38.0±0.4��10−3 �nW�2

B 2�BW�e /R �14.4±0.3��10−3 �nW�2 /�W
C �BW��coh�1+Pol2� �3.77±0.07��10−3 �nW�2 / ��W�2

D 2 2.04±0.10

Fig. 3. (Color online) Measured noise variance at the output of
an OCM as a function of Pref and Pincoh. The OCM instrument is
based on a simple Michelson interferometer design, as illustrated
in Fig. 1. The 12 data points (black squares, with error bars ap-
proximately the size of the squares) are fitted to the form of ex-
pression (7): A+B�Pref+Pincoh�+C�Pref+Pincoh�2+CDPrefPincoh. The
solid curves are the fitted curves yielding a reduced chi square of
0.60 (77% chance of exceeding). The fitted value of D
=2.04±0.10 is consistent with the integer 2 in the last term of
Eq. (3). The dashed curves are the best fit to the form of expres-
sion (7) without the beat noise term (the last term) and yield a
reduced chi square of 113. The beat noise term is clearly needed
to describe the data adequately.

Fig. 4. (Color online) Dynamic range (DR) plotted as a function
of source power: The upper curves are values calculated for the
balanced Ai configuration, and the lower curves are values for
the unbalanced Michelson configuration. The solid curves are
values calculated assuming no incoherent light backscattered
from the sample path �Rincoh=0�, while the dashed curves are for
Rincoh=3.5�10−4, a typical value for tissue. The dashed–dotted
curves are calculated assuming Rincoh=3.5�10−4, but with the
beat noise terms omitted from Eqs. (3) and (5). (The Ai dashed–
dotted and solid curves are superposed and are barely distin-
guishable.) Note that the beat noise term accounts for essentially
all of the reduction in the DR of the Ai system as Rincoh changes
from 0 to 3.5�10−4, while approximately one third of the reduc-
tion in the Michelson is due to beat noise. Typical values for
source powers range from 1 to 20 mW.
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(5), respectively, into the denominator of Eq. (2). The re-
sults for the DR are plotted in Fig. 4 as a function of light
source power Ps. Typical values for the source power
range from 1 to 20 mW.

For each value of the light source power, the value for
Rref in the Michelson configuration has been optimized to
maximize the DR. Similarly, for each value of the source
power, the cross efficiency �bal of the primary fiber coupler
in the balanced configuration of Fig. 2 has been optimized
to maximize the DR. These optimal values for Rref and
�bal are plotted in Fig. 5 as a function of source power. The
values of the parameters used to calculate the DR are
listed in Table 2. These are typical values for an OCT in-
strument operating at 1300 nm.

For the solid curves in Fig. 4, the power backscattered
by tissue outside the coherence volume is neglected
�Rincoh=0�. Notice that in this unrealistic situation the DR
for both designs rises without limit (solid curves) and that
the asymptotic slopes are equal. This results in an
asymptotic improvement factor of �3.1 for the balanced
Ai configuration over the Michelson interferometer. Note
also that the Michelson configuration is apparently supe-
rior in the limit of very low source powers where the ther-
mal detector noise in Eqs. (3) and (5) dominates. This is
simply due to the fact that the Ai configuration employs
two detectors as opposed to the Michelson’s single detec-
tor. As a result, the total variance of thermal detector
noise in the Ai dual-detector system is twice the thermal
noise variance in the Michelson single detector. For the
same reason, the NEP of the balanced Ai detectors is �2
times greater than the NEP for the single Michelson de-
tector (see Table 2). Hence the Ai noise is greater when
detector noise dominates, so at low source powers in Fig.
4, the curve for the Ai DR lies below that for the Michel-
son DR.

For the dashed curves in Fig. 4, Rincoh is assigned the
value 3.5�10−4 that is typical for the imaging of biologi-
cal tissue. The resulting power backscattered by the
sample increases photon bunching and generates beat
noise, leading to a leveling off of the DR for both balanced
and unbalanced configurations. This effect has been re-
ported previously, especially for balanced
configurations.4,6 The dashed–dotted curves in Fig. 4 are
calculated with Rincoh=3.5�10−4 but without the beat
noise terms in Eqs. (3) and (5). The dashed–dotted curve
for the balanced Ai configuration lies on top of and is
barely distinguishable from the solid curve �Rincoh=0�, but
differs slightly due to a small additional contribution from
the backscattered sample light in the Poisson shot-noise
term. Nearly all of the reduction in DR for the Ai configu-
ration in going from the solid curve �Rincoh=0� to the
dashed curve (Rincoh=3.5�10−4, including beat noise) is
due to beat noise. In contrast, the dashed–dotted curve for
the Michelson system is clearly visible in Fig. 4, and indi-
cates that approximately one third of the reduction in DR
is due to beat noise (source power Ps�10 mW), while ap-
proximately two thirds is due to additional photon bunch-
ing from the backscattered sample light.

The ratio of the DR for the balanced Ai configuration to
that for the Michelson interferometer is plotted in Fig. 6
as a function of source power. The solid curve is calculated
with Rincoh=0, i.e., neglecting incoherent light backscat-
tered from the sample. The dashed curve is calculated
with Rincoh=3.5�10−4, a typical value for tissue, and
shows the advantage of the balanced system to peak with
a ratio of �2.5 at a source power of 3 mW. At this source
power, the improvement in SNR is �2.5�2�6, enabling an
image acquisition speed six times faster for the same im-
age quality. At a higher source power of 30 mW, the ad-
vantage of the balanced system has fallen to a factor of
2.0 in DR or 4.0 in SNR.

The dashed–dotted curve in Fig. 6 illustrates the addi-
tional DR degradation introduced into the Michelson sys-
tem by beat noise. In constructing the dashed–dotted
curve, the DR values for the Ai configuration include the
beat noise term in Eq. (5), but the DR values for the Mich-

Table 2. Values for Parameters Used to Calculate
the Data for Figs. 4–6

Parameter Symbol and Value

Signal-processing factor F=1.175
Heterodyne efficiency �h=1.0
Noise-equivalent power NEP=1.4 pW/Hz1/2

Noise-equivalent power of dual detectors NEPdual=2.0 pW/Hz1/2

Bandwidth of filter BW=30 kHz
Detector responsivity R=0.95 A/W
Source coherence time �coh=76 fs
Sample mirror reflectivitya Rcoh=0.35
Incoherent reflectivity Rincoh=0 or 3.5�10−4

Reference mirror reflectivitya,b Rref=0.38
Michelson splitting ratio �M=1/2
Circulator efficiency Tcirc=0.85
Polarization of light Pol=0

aEffective mirror reflectivity includes losses coupling back into the optical fiber.
bBalanced system only. For the Michelson system, Rref is varied to maximize the

DR.

Fig. 5. (Color online) Values for the optimal reference reflectiv-
ity in Michelson configurations and values for the optimal fiber–
splitter ratio in balanced Ai configurations, plotted as a function
of source power. With higher source powers in Michelson sys-
tems, lower reference reflectivities are used to reduce Bose–
Einstein photon bunching and optimize the DR. With higher
source powers in balanced Ai configurations, more power is di-
verted from the reference arm (lower �bal) to the sample arm to
optimize the DR. Note that for very low source powers, the Mich-
elson DR is maximized with the maximum reference reflectivity
�Rref=1�.
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elson system omit the beat noise term in Eq. (3). Re-
searchers that have not included beat noise in their
analysis of Michelson systems5,6,20,21 have overstated the
performance of these Michelson systems.

5. CONCLUSIONS
The phenomenon of beat noise was first discussed in con-
nection with the Alford and Gold effect in 1962.17 Mandel
described it as an intensity correlation effect. Indeed, the
origin of beat noise is fundamentally the same as that of
Bose–Einstein photon bunching, and the approximate ex-
pression for beat noise, the last term in Eq. (3), is the
same as the cross term in the photon-bunching expres-
sion, the third term in Eq. (3).

The most striking effect of beat noise in OCT is its con-
tribution to the upper limit on the DR at high source pow-
ers. The curves in Fig. 4 begin to bend over and flatten out
at source powers as low as 10 mW. This flattening is al-
most entirely due to beat noise in the case of the balanced
Ai system, as noted by previous researchers.4,6,22 In Mich-
elson systems the flattening stems mostly from photon
bunching, with a significant contribution (30%–40%) from
beat noise. (Beat noise accounts for 40% of the reduction
in DR at a source power of 1 mW and for 31% at a source
power of 20 mW.)

It is interesting to note that the improvement factor in
DR for the balanced Ai system over a Michelson interfer-
ometer is affected only modestly by photon bunching and
beat noise due to backscattered sample light. For ex-
ample, the DR improvement ratio is roughly 2.7 with
Rincoh=0 and a source power of 3 mW, and is reduced
slightly to 2.5 with Rincoh=3.5�10−4. However, it should
be noted that this predicted improvement in DR assumes

ideal behavior of fiber splitters and balanced detectors.
Rosa and Podoleanu22 show that the dependence on wave-
length of the fiber–splitter ratio can lead to a significant
reduction in the DR of dual-balanced systems when
broadband light source ����100 nm� are used.

It is clear that an ideal dual-balanced OCT configura-
tion can provide a factor of up to 6 increase in image ac-
quisition speed. Balanced detectors and optical circula-
tors add complexity and expense to the instrument, but
the importance of real-time or video-rate imaging may
well justify the extra effort.

APPENDIX A
During the imaging of typical biological tissue, the inco-
herent power backscattered from tissue can be as much as
2–3 orders of magnitude greater than the coherent power.
This assertion follows from OCT single-scattering theory,
and we present in this appendix the logical arguments
that lead to this conclusion.

The coherent power backscattered from a depth z in the
sample is attenuated by the product of two factors: (1) the
attenuation of the incident beam as it travels down to
depth z and (2) the attenuation of the backscattered light
as it travels back up to the surface of the sample.

Pcoh � P0 exp�− �attnz��back�coh exp�− �attnz�, �A1�

where �attn=1/�attn is the attenuation coefficient of the
tissue and is equal to the reciprocal of the attenuation
length. The backscattering coefficient �back is a function
of depth z and also has units of inverse length. The coher-
ence length of the OCT light source is �coh.

The incoherent power backscatterd from the sample is
the backscattered power integrated over all depths in the
sample outside the coherence volume. If we assume �back
is constant throughout the tissue sample, we can calcu-
late the incoherent power as

Pincoh ��
0

	

P0 exp�− 2�attnz��backdz = P0�back�attn/2.

�A2�

In approximation (A2) we have included the light back-
scattered from all sample depths, including those depths
that lie in the coherence volume. In Pincoh this error in-
cludes the backscattered power that comprises Pcoh. As we
shall see, this is not a significant error.

The ratio of incoherent-to-coherent power is therefore

Pincoh

Pcoh
�

�attn

2�coh
exp�2�attnz�. �A3�

A typical attenuation coefficient for tissue is 5/mm, yield-
ing an attenuation length of 200 �m. A typical coherence
length for an OCT light source is 10 �m. If we consider a
typical imaging depth of two attenuation lengths, we find
for the ratio of incoherent-to-coherent power backscat-
tered from the sample:

Fig. 6. (Color online) Improvement in the DR of the balanced Ai
design over that of the Michelson configuration is plotted as a
function of source power. The solid curve is calculated neglecting
the incoherent light backscattered from the sample �Rincoh=0�,
while the dashed curve assumes Rincoh=3.5�10−4, a typical value
for tissue. The dashed curve peaks at a value of 2.5 for approxi-
mately 3 mW of source power. The dashed–dotted curve is calcu-
lated with Rincoh=3.5�10−4 but without the beat noise term in
Eq. (3). The dashed curve (with beat noise in the Michelson) falls
above the dashed–dotted curve (no beat noise in the Michelson)
because beat noise degrades the performance of the Michelson
configuration.
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Pincoh

Pcoh
�

200 �m

20 �m
exp�4� = 546. �A4�

Of course if the coherence volume were positioned at a
depth of three attenuation lengths, the ratio in approxi-
mation (A3) would be 4030. On the other hand, if the co-
herence volume were positioned at the tissue surface �z
=0�, the ratio in approximation (A3) would be 10. More-
over the strong specular reflection from the air–tissue in-
terface would enhance Pcoh, and so the ratio would cer-
tainly be lower than 10. With such a strong fringe signal,
our OCT noise analysis is not needed—the SNR when im-
aging the tissue surface is quite high. Our OCT noise
analysis is most useful when the OCT fringe signal is
weak, so we have taken an imaging depth of two attenu-
ation lengths to be typical. Hence the ratio Pincoh/Pcoh is of
the order of 100–1000.

APPENDIX B
Equation (3) in Subsection 2.A describes the variance of
the noise at the output of the Michelson OCT system de-
picted in Fig. 1. The form of this equation follows from Eq.
(19) of Mandel’s 1962 paper on the Alford and Gold
effect.17 In this appendix, we outline the derivation of our
Eq. (3) starting with Mandel’s Eq. (19), focusing particu-
lar attention on the beat noise term, the last term in our
Eq. (3).

Figure 1 in Mandel’s paper17 depicts two polarized, par-
tially coherent beams incident upon a photodetector. The
beams can be considered to be produced by the beam
splitter in a Michelson interferometer with a path-length
difference given by cT, where T is the time delay between
the two beams. It is assumed that T�
�1, where �
 is
the spectral width of both beams, so that the beams are
nearly incoherent. A narrowband electrical filter follows
the photodetector and is centered at frequency 
1 with a
width of �
. It is also assumed that T�
�1. (Typical val-
ues are �
�103–106 Hz and �
�1013–1015 Hz.) The
mean-square signal S2

2 at the output of the electrical filter
is given by Mandel’s Eq. (19):

S2
2 = ̄�Ī1 + Ī2��

−	

	

�B�
��2d
�1 + ̄�Ī1 + Ī2��44
I �
1�

�	1 +
2Ī1Ī2

�Ī1 + Ī2�2
�12

2 �0�cos�2�
1T�
� . �B1�

In Eq. (B1) [Mandel’s Eq. (19)], the mean-square signal S2
2

is also the variance of the detector–filter output because
the electrical filter blocks the dc component of the detec-
tor output. Hence S2

2 is the variance of the noise current,
while our Eq. (3) describes the variance of the detector
output in terms of equivalent optical power.

The parameter ̄ in Eq. (B1) is the mean quantum sen-
sitivity of the detector averaged over the incident light
spectrum, and Ī1 and Ī2 are the mean intensities of the
two partially coherent beams incident upon the photode-
tector. B�
� is the complex frequency response of the elec-
trical filter, and �−	

	 �B�
��2d
=2�
=2BW, where �
 is the

bandwidth of the filter and is written as BW in our Eq.
(3). �44

I �
1���44
I �0� is a measure of the coherence time of

each beam [see Mandel’s Eq. (12) and the text following],
which we call �coh in our Eq. (3). The parameter �12�0� is
the degree of coherence of the two beams (at zero time de-
lay), which we call the heterodyne efficiency and assign a
value of approximately 1.

Expanding the parentheses in Eq. (B1), and substitut-
ing cos�2�
1T��1 as well as the other approximations
and identities discussed above, we can write Eq. (B1) as

Var�S2� = 2BW�̄Ī1 + ̄Ī2� + 2BW�coh�̄Ī1 + ̄Ī2�2

+ 2BW�coh2̄Ī1̄Ī2. �B2�

Mandel has chosen units of photoelectrons per photon for
the quantum sensitivity ̄ and units of photons per second
for Ī, so that ̄Ī is the number of electrons per second and
hence has units of 1/s. Both sides of Eq. (B2) therefore
have units of 1/s2. To convert to the units of effective op-
tical power as in our Eq. (3), we must multiply ̄Ī by e /R,
where e is the electron charge in coulombs and R is the
detector responsivity in A/W. Multiplying both sides of Eq.
(B2) by �e /R�2, and associating �e /R�̄Ī1 with Pref and
�e /R�̄Ī2 with Pincoh,

��PMichelson�2� = 2BW�e/R��Pref + Pincoh� + 2BW�coh

��Pref + Pincoh�2 + 2BW�coh2PrefPincoh.

�B3�

It is important to note that Mandel considered two po-
larized beams falling on the detector. Therefore the lead-
ing factor of 2 in the second and third terms on the right-
hand side of Eq. (B3) can be written as �1+Pol2�, where
Pol=1 corresponds to plane-polarized beams, and P=0
corresponds to unpolarized beams, the case we consider in
this paper.13 Thermal detector noise must be added to Eq.
(B3), so that we finally have

��PMichelson�2� = �NEP�2�BW� + 2BW�e/R��Pref + Pincoh�

+ BW�coh�1 + Pol2��Pref + Pincoh�2

+ BW�coh�1 + Pol2�2PrefPincoh, �B4�

which is identical to Eq. (3).

APPENDIX C
In Section 3 we reported measurements of detector noise
at the output of an OCM interferometer. In performing
those measurements, we placed a mirror surface in the
sample arm more than 100 coherence lengths away from
the equal-path-length position (coherence volume) of the
interferometer. Light backscattered from the mirror sur-
face was incoherent with the beam reflected from the ref-
erence mirror, and hence no interference fringes were vis-
ible at the output of the interferometer. When imaging
biological tissue, the incoherent light returning from the
sample arm will presumably arise from a large number of
randomly positioned scatterers, most of them located far
outside the coherence volume. It is important to ask
whether the data presented in Section 3 are relevant to
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OCM imaging of tissue. Can Eq. (3) describe the detector
noise variance measured from both types of samples? In
addition, can Eq. (3) describe the detector noise variance
measured with scatterers present in the coherence vol-
ume? In our discussion of Eq. (3) in Subsection 2.A, we
mentioned our assumption that Pcoh can be neglected
with respect to Pincoh and Pref when imaging tissue.

These questions can be answered with the help of re-
sults reported recently by Yoshino et al.8 The contribution
of spontaneous emission to the noise variance at the out-
put of a Michelson interferometer is given by Yoshino’s
Eq. (22):

�SE-SE
2 � �3 + sinc2��B0�� + 4 sinc��B0��cos��0���.

�C1�

[Note: there is a misplaced square bracket “]” at the end of
Yoshino’s Eq. (22), as becomes evident in reading the dis-
cussion immediately following Eq. (22).] In relation (C1),
B0 is the optical spectral width, �0 is the optical angular
frequency, and � is the delay time between the beams in
the two arms of the Michelson interferometer. Our place-
ment of a mirror surface many coherence lengths outside
the coherence volume corresponds to taking the limit
B0��1, so that the square bracket in relation (C1) re-
duces to 3. We have explored the limit of B0��1 in the full
form of Yoshino’s Eq. (22), adding thermal detector noise
and Poisson (shot) photon noise, and have found that the
results of Yoshino et al. are in agreement with our Eq. (3),
which is valid for large path-length differences.

The form of relation (C1) allows us to treat the situa-
tion in which the reflectivity of the mirror surface is in-
stead distributed among many scatterers that are located
randomly outside the coherence volume. Provided that all
scatterers are far from the coherence volume, the square
brackets in relation (C1) reduce to approximately 3 for
each scatterer, and the sum over all scatterers yields the
same result as long as the cumulative reflectivity of the
ensemble of scatterers is the same as the reflectivity of
the single mirror surface; i.e., Pincoh is the same for both
sample systems.

We can also treat the situation in which scatterers are
randomly distributed throughout the sample, including
near to and inside the coherence volume. Let us assume
that the average density of scatterers is uniform, but that
the scatterers are positioned randomly throughout the
sample: far from, near to, and inside the coherence vol-
ume. Summing the contributions of scatterers at all
depths in the sample requires that we sum relation (C1)
over many random values of �, weighting each contribu-
tion by the intensity of the coherent incident beam at the
depth of the scatterer. Typically there is one dominant
scatterer per coherence volume; if not, speckle becomes a
real issue. It is possible, then, that a scatterer could be lo-
cated in the center of the coherence volume (at �=0) so
that the expression in square brackets in relation (C1)
reaches its maximum value of 8. It is also possible that
the scatterer could be located a quarter-wavelength away
from the center of the coherence volume and yield a value
of zero for the expression in square brackets. Yoshino et
al.8 point out that this latter result is sensible because
when destructive interference yields zero signal at the

output of the interferometer, one would expect the vari-
ance of the output to be close to zero.

In summing relation (C1) over many random values of
�, it is clear that the third term in the square brackets
will yield zero contribution. On the other hand, because
�−	

+	sinc2�x�dx=�, the second term in the square brackets
will increase the expression in the square brackets
roughly by a factor of 2. In other words, the presence of
scatterers in the coherence volume will increase the pre-
dicted noise variance. In particular, if the coherence vol-
ume resides on the air–tissue interface, the coherent
backscattered power and the resulting fringe signal will
be strong, and the noise variance will be increased signifi-
cantly. However, when the fringe signal is strong, there is
not much interest in the noise variance because the SNR
is very high. When imaging tissue, it is more typical for
the coherence volume to be located deep within the tissue,
yielding a very weak fringe signal, in which case the noise
variance is important. The scatterers in the coherence
volume deep in the tissue will now be illuminated with a
very attenuated incident beam, and their contributions to
the sum over relation (C1) will be weighted very weakly.
Thus, for conditions realized when imaging tissue, the
presence of scatterers in the coherence volume does not
alter significantly the expression for the noise variance
described in Eq. (3). In summary, replacing the localized
mirror surface with distributed scatterers makes little
difference, as long as the scatterers inside the coherence
volume do not dominate the backscattered light.
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