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ASUMMARYOFRESULTSONORDER~AUCHY 

COMPLETIONS OF RINGS AND VECTOR 

LATTICES OF CONTINUOUS FUNCTIONS 

M. Henriksen 

This paper is a summary of joint research by F. Dashiell, 

A. Hager and the present author. Proofs are largely omitted. 

A complete version will appear in the Canadian Journal of 

Mathematics. It is devoted to a study of sequential order-Cauchy 

convergence and the associated completion in vector lattices 

of continuous functions. Such a completion for lattices 

C(X) is related to certain topological properties of the 

space X and to ring properties of C(X). The appropriate 

topological condition on the space X equivalent to this type 

of completeness for the lattice C(X) was first identified 

for compact spaces X in [D]. This condition is that every 

dense cozero set S in X should be C*-embedded in X (that is, 

all bounded continuous functions on S extend to X). We call 

Tychonoff spaces X with this property quasi-F spaces (since 

they generalize the F-spaces of [GH]). 

In Section 1, the notion of a completion with respect 

to sequential order convergence is first described in the 

setting of a commutative lattice group G. A sequence {gn} 

in G is said to be o-Cauchy if there exists a decreasing 

sequence {un} with Au 0 in G and Ign - gn+pl < u for 
n - n 

all n,p. If there exist such a sequence {un} and a g E G 

with Ig - gl < u then {gn} o-converges to g. G is 
n n' 

o-Cauchy complete if each o-Cauchy sequence o-converges to 
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some g E G. We give an abstract characterization 

of this completion and show how it applies to vector 

lattices and to certain lattice-ordered rings (including 

function rings) which satisfy a mild continuity condition 

for the multiplication. 

In Section 2, the discussion of Section 1 is specialized 

to the lattice-ordered algebra C(X) of all continuous real­

valued functions on a Tychonoff space X. In Theorem 2.1, 

the o-Cauchy completion of C(X) is described as the algebra 

of all bounded continuous functions defined on some 

countable intersection of dense cozero sets in aX (the domain 

depending on the function). 

In Section 3, the description of the o-Cauchy completion 

of C(X) and of the sUbalgeb~a C*(X) of bounded functions is 

made more explicit. It is described in terms of the uniform 

completion of certain algebras of functions defined on dense 

cozero subsets of X or of aX (see Corollary 3.5). It is 

shown in Theorem 3.7 that for any Tychonoff space X, C(X) 

is a-Cauchy complete if and only if X is a quasi-F space (as 

defined above). For every space X, the o-Cauchy completion 

of C*(X) takes the form C(K(X» for a certain compact space 

K(X) (which is necessarily a quasi-F-space). We show how to 

construct K(X) as the inverse limit space of {SS: S is a 

dense cozero set in xl, as well as two other equivalent in­

verse limit constructions. An example is given of a C(X) 

whose o-Cauchy completion is not a C(Y). 

In Section 4, the above mentioned space K(X), for com­

pact X, is characterized by the property of being a quasi-F 
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space admitting a continuous irreducible surjection onto X 

which is minimal in a certain natural sense. Accordingly, 

we call K(X) the minimal quasi-F cover of X. This is simi­

lar to the description of Gleason's minimal projective cover 

G(X) for a compact X[G~] as being the only extremally dis­

connected space admitting a continuous irreducible surjec­

tion onto X. We show that, for an arbitrary X, the o-Cauchy 

completion of C(X) coincides with the Dedekind completion if 

and only if K(X) = G(BX), and this is true whenever every 

dense open subset of X contains dense cozero set. 

In Section 5, we study quasi-F spaces per se and charac­

terize them in terms of the ring C(X). If BX is zero-dimen­

sional, then X is a quasi-F space if and only if every non­

divisor of zero in C(X) is a multiple of its absolute value, 

but the sUfficiency can fail if X is not strongly zero­

dimensional. A a-compact space is a quasi-F-space if and 

only if each of its dense Baire sets is C*-embedded. First 

countable quasi-F spaces are discrete. Every Tychonoff 

space is a closed subspace of some quasi-F space. We con­

clude with some results on products of quasi-F spaces. 

1. Order-Cauchy Completions of R, -Groups 

The term II~-group" will be used to denote a conunutative 

lattice-ordered group G(+, v, A), where, as usual a vb, 

respectively, a A b denote the least upper bound and the 

greatest lower bound of a and b. We let a+ = a v 0, a 

(-a) v 0 and lal = a+ + a . We will write gn i- if the sequence 

{gn} is decreasing; if in addition Agn = g, we will write 

i- g. Increasing sequences are handled similarly. Angn 
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embedding G e-> H of G into an £-group H is called a-regular 

if it preserves all existing countable suprema and infima in 

G; that is if gn ~ 0 in G implies gn + 0 in H. 

1.1. Definitions. Suppose G is an Q-group, {gn} is a 

sequence in G~ and g E G. 

(a)	 The sequence {gn} order-converges (or a-converges) 

to g, written gn ~> or a-lim gn = g, if 

Ig - gl < u , for n = 1,2,3, ••• , for some u ~ 0 n - n n 

in G. (Such limits are unique.) 

(b)	 The sequence {gn} is order-Cauchy (or a-Cauchy) if, 

for some u + 0 in G, Ig - g + I < u for all n,p.n n n p n 

(c)	 G is called order-Cauchy complete (or a-Cauchy 

complete) if each a-Cauchy sequence in Go-converges 

to a limit in G. 

We are interested in constructing a minimal "completion" 

of £-groups G with respect to a-Cauchy sequences. Our appli ­

cations to follow are concerned with richer structure (i.e., 

G = C(X», and it is pertinent to ascertain what algebraic 

structure is preserved by this completion process. Accord­

ingly, we take the following as our definition of completion. 

1.2. Definition. Let L denote any subcategory of 

£ -groups (e. g., £ -groups, vector lattices, £ -rings, £ -alge­

bras). For G in L, an a -Cauchy completion of G (in L) is 

an H in L together with an L-ernbedding G e:-> H satisfying: 

(a)	 H is a-Cauchy complete; 

(b)	 G is a -regular in Hi and 

(c)	 for each h E H there exist sequences {gn}' {un} in 
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G with un + 0 and Ig ~ hi < u , n 1,2, •••. 
n - n 

Such an H is called essentiaZZy unique (in L) if, for 

every H' which is an o-Cauchy completion of G in L, there 

is an L-isomorphism from H onto H' which restricts to the 

identity on G. 

We record below (1.3 and 1.5) two lemmas due to Papangelou 

which are used in the construction of a completion, in the 

proof of its uniqueness, and in subsequent material. 

1.3. Lemma. [P, 2.10]. A sequenae {gn} in an R.-g1'OUP 

G is o-Cauahy if and onZy if there exist sequenaes {un}' 

{v } in G suah that un ~ gn < v for aZZ n, {un} is ina1'eas­n n 

ing, {v } is dea1'easing, and A(V - un) = 0 in G. n n 
The following is immediate. " 

1.4. C01'oZZa1'y. The R.-g1'OUp G is o-Cauahy aompZete 

if and onZy if for every ina1'easing sequenae {u } in G sitting
n 

beZowa dea1'easing sequenae {v } with A(V - un) = 0, there n n 

exists g E G with un ~ g ~ vn for aZZ n (and henae g = vUn 
AV ) • 

n 

Given ~-groups G and H and an ~-group embedding 

G ~ H, let G~ consist of all h E H for which there exist 

sequences {gn}' {un} in G such that un + 0 in G and 

Ign - hi ~ un' 

1.5. Lemma. [P, 3.3]. Suppose G is a-1'eguZa1' in H 

and {v } is a dea1'easing sequenae in 
. 

G
H
l with v + v for some n n 

v E H. Then there exists a dea1'easing sequenae {un} in G 

with un > v for aZZ n and un + v. The a01'1'espondingn 
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statement for increasing sequences also holds. 

By "i-ring" we mean an i-group G with a multiplication 

making G into a ring satisfying xy > 0 whenever x > 0 and 

y ~ 0 in G (see [F] or [BKW]). In order to construct an 

o-Cauchy completion for l-rings G, it seems necessary to 

assume some kind of order continuity for the multiplication 

in G, for example: 

(*) If un ~ 0 in G and h > 0 then hUn ~ 0 and unh ~ o. 

1.6. Lemma. Suppose G is an l-ring satisfying (*). 

0(a) If ~ g and h ~ then ~ gh.gn n h" gnhn 

(b) If H is an i-ring and G is embedded as a a-regular 

H .sub-l-ring of H" then G 1,S a a-regular sub-l-ringl 
H 

of H" and G satisfies (*) •
1 

We can now state the main theorem of this section. 

1.7. Theorem. Suppose G is an i-group (resp. vector 

lattice" i-ring satisfying (*)" i-algebra satisfying (*)). 

Then G has an essentially unique o-Cauchy completion H among 

i-groups (resp. vector lattices" i-rings" i-algebras). More­

over" H is minimal in the sense that if HI is an o-Cauchy 

complete l-group and $: G ~ HI is a a-regular l-group 

embedding" then there is a unique order-preserving $: H ~ HI 

- HI ­extending $" and $(H) = $(G)l. The map $ is ne~essarily an 

i-group embedding" and if in addition $: G --> H is an em­

bedding of vector lattices (i-rings" i-algebras)" then so is 

An l-ring is called an f-ring if g A h o and f > 0 
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imply fg A h = gh A h = 0, or equivalently if it is a sub­

direct sum of totally ordered rings [F]. The following is 

due independently to Bernau [B, p. 622] and Johnson [J]. 

1.8. Lemma. Every Arohimedean f-ring G satisfies 

property (*). 

1.9. Corollary. Every lattioe-ordered ring (respeo­

tively~ lattioe-ordered-algebra) of real-valued functions on 

some set (with pointwise operations) has an essentiaZly 

unique o-Cauohy oompletion in i-rings (respeotiveZy~ in 

i-algebras). 

We close this section with two remarks. 

(i) It can be shown if G = Bal [0,1] and H = Ba [0,1]
2 

denote, respectively, the functions of Baire class 

1 and 2 on [0,1], then each of G and Hare o-Cauchy complete, 

and the natural embedding of G into H is a-regular. Hence 

condition defin tion (c) of Definition 1.2 cannot be replaced 

by the requirement that each h in H be the o-limit in H of 

a sequence in G. 

(ii) Condition (*) is not always necessary for the 

existence of an order-Cauchy completion of an ~-ring. For 

example if G = R[x] is the ring of polynomials with real 

coefficients lexicographically ordered by terms of highest 

degree, then G is o-Cauchy complete but fails to satisfy 

(*) • 

We do not know of any necessary and sufficient condition 

on an i-ring to guarantee that multiplication is preserved 

under the embedding described in Theorem 1.7. 



246 Henriksen 

2. The o-Cauchy Completion of C(X) 

We now specialize the discussion of §l to the i-algebra 

C(X) of all continuous real-valued functions on the Tychonoff 

space X (equipped with pointwise operations). The sub-i­

algebra of bounded functions is denoted C*(X). In this 

section and the next we describe the o-Cauchy completion of 

C(X) (see 1.9) in several ways as i-algebras of functions, 

and for compact X we obtain in fact a C(K) for a certain 

compact space K. 

Some terminology: For f: X ~ R, the aozero set of f 

is coz f = {xlf(x) +O} and the zeroset is Z(f) = X - coz f. 

In a topological space X, a aozero set is a set coz f for 

some f E C(X). For X compact Hausdorff (or just normal), 

the cozero sets are exactly the open Fa'S. aX will denote 

the Stone-eech compactification of X. For its properties, 

see [GJ, Chapter 6]. 

The method of construction employed here is quite simi­

lar to the method of [FGL, §2.4 and §4.l]. We first recall 

the generalities. Suppose J is a filter base of dense sub­

sets of a topological space X, i.e., J is a family of dense, 

nonempty subsets of X closed under finite intersections. 

Consider the set of all functions f E C(S) for some S E J, 

and identify f E C(S) with g E C(T) if and only if f = g 

on S n T. Denote the set of all equivalence classes by 

C[J], and let C*[J] denote all the equivalence classes con­

taining bounded functions. Alternatively, observe that 

{C(S): S E J} or {C*(S): S E J} form directed systems, 

where S ~ T in J yields the bonding homomorphism f -7 fiT 

for f E C(S) (or f E C*(S)). Then C[J] and C*[J] are the 
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direct limits lim {C(S): S E J} and lim {C*(S): S E J}. 

One easily checks that C[J] and C*[J] are 1-algebras under 

the operations canonically induced by the C(S). Further­

more, each C(S) or C*(S) for S E J is isomorphically embedded 

as an 1-algebra into C[J] or C*[J], since each S is dense. 

In particular, if X E J, then C(X) and C*(X) are sub-1­

algebras of C[J] and C*[J]. 

As a notational convenience, we shall write f E C[J] if 

f E C(S) for some S E J, thus ignoring the distinction be­

tween equivalence classes and representatives. In this 

case, we write S = dom f. 

If J is a filter base of dense sets in SX and J con­

tains all the dense cozero sets of SX, then there is a 

natural embedding of C(X) into C[J], as follows. Each 

f E C(X) has a unique Stone-Cech extension Sf: SX --+ R U 

{oo} (the one-point compactification of R), and if fin(f) 

(Sf) -1 (R) then fin (f) E J and (Sf) Ifin (f) E C (fin (f) ) • 

This provides the canonical 1-algebra embedding C(X) --+ 

C[J]. Moreover, this embedding induces an embedding 

C* (X) ---;> C* [J] • 

If J is a filter base of dense sets in aX containing 

all the dense cozero sets in aX, there is an 1-algebra 

intermediate between C*U] and C[J] which is central to our 

subject. This is defined to be 

C# [J, Xl = {h E C [J]: Ih I < f for some £' E C (X) }, 

where we have assumed C(X) c C[J] by the above canonical 

embedding. Thus, C*[J] C C#[J,X] c C[J], and in case X is 

compact, then C*[J] = C#[J,X]. In the following, the de­

pendence of C*[J,Xl on the space X will be implicitly 
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understood, and we shall for convenience suppress explicit 

mention of X and write simply C#[J]. 

The results of [FGL] deal primarily with the case where 

J is taken to be either the f~mily of dense open sets or the 

family of dense Go sets in X (for the latter, X is assumed 

compact, and closure,under finite intersections follows from 

the Baire category theorem). It turns out that the struc­

ture required for the present purposes is obtained by taking 

for J either the family of dense cozero sets or the family 

of countable intersections of dense cozero set.s. These 

families are denoted [(X) and [o(X), respectively. Some of 

the results here are exactly analogous to the corresponding 

results in [FGL] , but the proofs are different, apparently 

of necessity. 

The main result of this section now follows. It is 

analogous to the representation of the Dedekind MacNeille 

completion (by cuts) of C(X) as C#[~o]' where ~o is the 

class of all dense Go-sets in SX (see [FGL] , 4.11 and 4.6]). 

2.1. Theorem. The a-Cauchy completion of C(X} (as an 

i-algebra) is C#[Co(SX)]. 

Some'preliminary facts are needed to outline the proof. 

Recall that a subgroup G of an i-group H is called order­

convex if 0 < h < gand g E G imply h E G. 

2.2. Lemma. Any order-convex sub-i-group G of an 

o-Cauchy complete i-group H is itself o~Cauchy complete. 

2.3'. A subspace S of a space X is called z-embedded 

if whenever Z is a zero-set "in S, then Z = z' n S for some 
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zero-set Z' in X. Since every S E Co(SX) is a Baire set in 

SX and is therefore Lindelof [CN, p. 77], and a Lindelof sub­

space is always z-embedded [CN, p. 79], each S E Co(ex) is 

z-embedded in every superspace. 

The following approximation property characterizes 

z-embedded subspaces. See [H] or [BH] for a proof. 

2.4. Lemma. S is z-embedded in X if and onZy if given 

h E C(S) and £ > 0 there exist a cozero set T in X with 

S c: T and g E C (T) such that Ih (x) - g (x) I < £ for xES. 

By using 2.4, we can establish: 

2.5. Lemma. Suppose S is z-embedded in X, h E C(S), 

and there exists f E C (X) such that Ih (x) I 2. f (x) for a ZZ 

xES. Then there exist sequences {un} and {v } in C(X)n 

such that u l 2. u 2 2. ••• 2. v 2 2. vI' and for each xES 

hex) = sup un(x) = inf vn(x). 

Proof of 2.1. (Outline) We need to show that the 

i-algebras G = C (X) and H = C#[Co(6X)] satisfy the three 

conditions of Definition 1.2. 

To prove conditions (a) and (b) of Definition 1.2, we 

show first the following: 

(t) If S E Co(BX), w ~ 0 in C(S), and T {x E S: n 

w (x) ~ O}, then T E Co (eX) • n 

To show (a) that H is o-Cauchy complete, it suffices by 

Lemma 2.2 to show that C[[o(BX)] is a-Cauchy complete with 

the aid of Corollary 1.4 and (t). To show (b), we use (t) 

again, and to obtain (b), use is made of Lemma 2.5. 
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2.6. Corollary. The o-Cauchy completion of C*(X) is 

C*[Co(BX)]. In particular, for compact X, the o-Cauchy com­

pletion of C(X) is C[Co(X)]. 

3. More on the o-Cauchy Completion of C(X) 

In order to amplify the description of the o-Cauchy 

completion of C(X) given in 2.1, we need to study the rela­

tionship between the ~-algebra C[J] for various filter-bases 

] of dense sets in X or in ax. We will be specifically con­

cerned with [(X), [(BX), and [o(BX). 

Observe first that C[[(BX)] is enwedded as a sub-t­

algebra of C[[(X)] by restriction: if S E [(BX) and 

f E C (S) then S n X E [(X) and f I (S n X) E C [[ (X) ]. By 

abuse of notation we write C[[(BX)] c C[[(X)]. This rela­

tion is in fact an equality, as the following lemma will 

show. The essence of this result is contained in [FGL, 3.8]. 

Recall that a subspace S of X is C*-embedded if every 

f E C*(S) extends to some f E C*(X). 

3.1. Lemma. Let X be a C*-embedded subspace of a 

Tychonoff space Y. Every continuous function on a cozero 

subset of X extends continuously to a cozero subset of Y. 

3.2. Corollary. C[[(BX)] = C[[(X)]. 

C#[[(BX)] C#[[(X)]. 

C*[[(BX)] C*[[(X)]. 

If J is a filter base of dense sets in X, C[J] has a 

natural metric topology: the topology of uniform convergence, 

in which a sequence {f } converges to f if and only if for n 
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each £ > 0, eventually If - fl < £ • 1 in the lattice 
n 

C [J] • 

The following lemma is [FGL, 4.5]. 

3.3. Lemma. If J is closed under countable intersec·· 

tions then C[J] is uniformly complete. 

3.4. Proposition. C[[(SX)] is uniformly dense in 

C[[ o(SX)], so that C[[o(SX)] is the uniform completion of 

C[[(X)] (or of C[[(SX)]). 

3.5. Corollary. The o-Cauchy completion of C(X) (i.e., 

C#[[o<SX»)) is the uniform aompZetion of C#[[<X)] 

C#[[(SX)]. The o-Cauchy completion of C*(X) li.e., 

C*[[o(SX)]) is the uniform completion of C*[[(X)] = 
C* [[(SX)]. 

The analogues of 3.2 and 3.4 for dense open sets are 

proved in [FGL]. 

Recall that X is an F-space if each of its cozero sets 

is C*-embedded (See [GJ, 14.25]). 

3.6. Definition. A Tychonoff space is called a quasi-

F-space if each dense cozero set is C*-embedded. 

The following result was originally proved in [0] for 

the case of compact X by a rather more direct argument. An 

extensive description of quasi-F spaces is given in Section 

5. 

3.7. Theorem. For an arbitrary Tychonoff space X, 

C(X) is o-Cauchy complete if and only if X is a quasi-F space. 
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We recall some generalities about direct and inverse 

limits. Let {K } be any inverse system of compact Hausdorff a 

spaces with respect to surjections TI~: Kb -7 Ka for a < b. 

Then {C(K )} is·a direct system of i-algebras with respecta 

to the embeddings f -4 f b = f TI
b

, a < b. The inverse0 a a a ­

limit space K = lima K is a compact Hausdorff space and a 

the direct limit A = lima C(K ) is an i-algebra.a 

3.8. Theorem. [FGL, 6.8]. The i-algebra A = lima C(K )a 

is isomorphic with a uniformly dense sub-i-algebra of C(K), 

where K = lima K , and K is the maximal ideal space of A. a 

For a Tychonoff space X, we consider the directed sys­

tems [(X) of dense cozero sets in X and [8(SX) of dense 

countable interesections of cozero sets in SX. The system 

{SS: S E [(X)} is an inverse system of compact spaces with 

respect to the surjections TI~: SS --> ST which extend the 

inclusions SeT. Similarly, {SS: S E Co(SX)} is an inverse 

system of compact spaces. We now define the inverse limit 

spaces 

K(X) lim {SS: S E [(X)} 

and 

Ko(X) = lim {SS: S E Co(SX)}. 

Since K(X) is a certain subset of TT{SS: S E [(X)}, 

there exists a natural, continuous surjection and projection 

TI X: K(X) --> SX. This induces a natural embedding of C(SX) 

into C(K(X)) by f --> f TI Since C*(X) is isomorphic0 x. 

with C(SX), C*(X) is naturally embedded as a sub-Z-algebra 

of C (K (X) ) • 
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3.9. Theorem. (aJ The spaces K(X)3 K(SX)3 and K (X)
8 

are all homeomorphic and are quasi-F spaces. 

(bJ The natural embedding C*(X) --> C(K(X)) is a reali­

zation of the o-Cauchy completion of C*(X) as the space 

C (K (X)). 

In contrast to 3.9, if X fails to be compact, the 

o-Cauchy completion of C(X) need not be a C(Y). Such an 

example may be constructed with the aid of Proposition 4.6 

below (which gives a sufficient condition for K(X) to coin­

cide with the Gleason cover) and enables us to modify an 

example given in [MJ] of a space X such that the Dedekind­

MacNeille completion of C(X) is not a C(Y) . 

4. The QU8si-F Cover 

Next, we examine some of the properties of the pair 

(K(X), TI x), which we shall call the minimal quasi-F cover 

of X, where TI : K(X) --> X is the canonical projection (seex
4.3) • 

Recall that a map TI: X --> Y is irreducible if X is 

the only closed subspace of X whose image under n is all of 

Y. A subset G of an ~-group H is order-dense if for each 

nonzero h > 0 in H there exists a nonzero g E G with 0 < g 

< h. The following lemma appears in [We, p. 17]. 

4.1. Lemma. If X and Yare compact then a map 

TI: X ~ Y is irreducible if and only if the dual embedding 

nO: C(Y) ~ C(X) has an order-dense image in C(X). 

4.2. Definition. A minimal quasi-F cover for a com­

pact space X is a pair (K,n) such that: 
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(a) K is a compact quasi-F space; 

(b) TI: K ~ X is a continuous irreducible surjection; 

(c) if (Kl,n ) is a pair satisfying (a) and (b) then
l 

there exists a continuous surjection T: K ~ K
l 

such that n noT.l 

4.3. Theorem. If X is compaat~ then (K(X) ,nx) is a 

minimal	 quasi-F-cover ~hich is unique in the sense that if 

(K,n) is a minimal quasi-F-cover~ then there exists a unique 

homeomorphism T: K ~ K(X) such that n = n 0 T.
X 

4.4. Remarks. As continuous surjection n: K ~ X 

is called strongly irreducible if for every cozero set V C K, 

-1
there is a cozero set W C X such that n [W] is dense in V. 

F. Dashiell has shown that the projection map n: K(X) ~ X 

is strongly irreducible if X is compact and that a strongly 

irreducible map of a compact space onto a quasi-F-space is 

a homeomorphism. 

In as yet unpublished work, Charles Neville has deter­

mined some classes of mappings for which quasi-F-spaces 

become projective in the sense of [Gi]. 

For any i-group G, the a-Cauchy completion and the 

Dedekind-MacNeille completion by cuts are the same if and 

only if the o-Cauchy completion (as given in Theorem 1.7) is 

Dedekind complete. 

4.5. Proposition. Let X be a Tychonoff space. The 

follo~ing are equivalent: 

(1) The o-Cauchy completion of C(X) is Dedekind complete. 

(2) The o-Cauchy completion of C*(X) is Dedekind complete. 
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(3)	 K(X) is extremally disconnected. 

(4)	 The minimal quasi-F cover of BX is the same as 

Gleason's minimal projective cover of BX. 

4.6. Proposition. If X is a Tychonoff space and 

every dense open set of X contains a dense cozero set of 

X, then K(X) is extremally disconnected, and the o-Cauchy 

completion of C(X) is Dedekind complete. 

Recall from [CHN] that a space X is called weakly 

Lindelof if each of its open covers contain a countable 

subfamily whose union is dense in X. 

4.7. Corollary. If X satisfies anyone of the condi­

tions: 

(1)	 X is perfectly normal (in particular if X is metriza­

ble); 

(2)	 X has the countable chain condition; 

(3) every dense (open) subset of X is weakly Lindelof; 

then K(X) is extremally disconnected and the o-Cauchy com­

pletion of C(X) is the Dedekind-MacNeille completion. 

Note that (2) implies (3). 

4.8. Corollary. If X is a quasi-F space in which 

every dense open subset contains a dense cozero set (in 

particular, if any of the conditions of 4.7 hold), then X 

is extpemalZy disconnected. 

4.8 also follows immediately from the definition of 

quasi-F-sapces, since X is extremally disconnected whenever 

every dense open set is C*-embedded. 
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5. Characterizations of Quasi-F-Spaces 

In this section, quasi-F-spaces are characterized in a 

number of ways both topologically and in terms of the ring 

of continuous real-valued functions on the space. These 

characterizations are used in a number of ways; in particular 

to study when a finite product of quasi-F-spaces is a quasi­

F-space. 

Recall that an element r of a commutative ring A is 

called regular if ra = 0 for a E A implies that a = O. An 

ideal of A is called regular if it contains a regular ele­

ment. Note that an r E C(X) is regular if and only if coz(r) 

is dense in X. 

If A and A' are lattice-ordered and ¢: A --> A' is a 

ring homomorphism that preserves the partial ordering on A, 

then we call the kernel of ¢ an order-convex ideal of A. If 

¢ also preserves the lattice operations of A, we call its 

kernel an ~-ideal of A. It is well-known that a ring ideal 

I is order-convex [resp. an ~-ideal] if and only if a < a < b 

[resp. lal ~ Ibl and bEl imply that a E I [F]. (In [GJ] 

our order-convex ideals are called convex ideals, and our 

~-ideals are called absolutely convex ideals.) 

5.1. Theorem. If X is a Tychonoff space, then the 

following	 are equivalent. 

(aJ X is a quasi-F space. 

(bJ Every dense z-embedded subspace of X is C*-embedded. 

(c)	 Whenever f and r are elements of C(X) such that 

If I ~ Irl and r is regular~ then f is a multiple 

of r. 
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(d)	 Every regular ideal of C(X) is order-convex. 

(e)	 Every regular ideal of C(X) is an t-ideal. 

(f)	 Every finitely generated regular ideal of C(X) 

(with generators fl,···,f ) is principal (withn 

generator IfII + ••• + Ifni). 

(f') Every regular ideal of C(X) with two nonnegative 

generators is principal. 

(g)	 C(X) is o-Cauchy complete as a vector lattice. 

(h)	 ex is a quasi-F-space. 

Furthermore, an equivalent condition is obtained if 

C(X) is replaced by C*(X) in any of the preceding conditions. 

Suppose X is a topological space. The members of the 

a-field of subsets of X generated by the cozero sets of X 

are called Baire sets. 

5.2. Corollary. Consider the following properties of 

a Tychonoff space X. 

(a)	 Every dense Baire set in X is C*-embedded. 

(b)	 X is a quasi-F-space. 

(c) Every dense Lindelof subspace of X is C*-embedded. 

Then (a) impZies (b), (b) impZies (0), and if X is 

a-compact then (a), (b), and (c) are equivalent. 

We call a space X strongly zero-dimensional if eX has 

a base for its topology consisting of sets that are closed 

(and open). In [He], L. Heider showed that X is strongly 

zero-dimensional if and only if each of its zero sets is a 

countable intersection of open and closed sets. 

5.3. Lemma. Suppose X is strongly zero-dimensional. 
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(a)	 Every z-embedded subspaae of X is strongly zero­

dimensional. 

(b)	 If Zl and Z2 are disjoint zerosets of X, then 

there is open and aZosed set U in X suah that 

Z1 c: U and Z2 c: X'U. 

Next, some known properties of F-spaces are generalized. 

5.4. Theorem. Consider the following aonditions of a 

Tyahonoff spaae X. 

(a)	 X is a quasi-F-spaae. 

(b)	 If f E C (X) is regular, then there is a k E C (X) 

suah that f = kl f I. 
(a)	 If f E C (X) is regular, then pos f and neg fare 

aompletely separated. 

Then (a) implies (b), (b) and (a) are equivalent, and 

if X is strongly zero-dimensional, then (a), (b), and (a) 

are equivalent. 

5.5. Proposition. If X is a quasi-F-spaae, and x E X 

has a aountable base of neighborhoods, then x is an isolated 

point. In partiaular, any quasi-F-spaae satisfying the first 

axiom of aountability is disarete. 

Next we give an example to show that neither the assump­

tion that X is strongly zero-dimensional in Theorem 5.4 nor 

the assumption of a-compactness in Corollary 5.2 can be 

deleted. First we describe a'way of constructing certain 

kinds of topological spaces. 

Let D denote an uncountable discrete space and let 

aD D U {oo} denote its one-point compactification. Suppose 
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Y is a subspace of a Tychonoff space X, let ~ = ~(Y,X) = 

(X x aD)'{(p,q): p ~ Y and q ~ oo}, and refine the product 

topology on ~ by letting any point whose second coordinate 

is not be isolated. Then ~ is said to be the space ob­00 

tained by attaching a copy of aD to each point of Y. 

5.6. ExampZe. A Tychonoff space satisfying (c) of 

Theorem 5.4 that is not a quasi-F-space. 

~l ~([O,l), [0,1]), the space obtained by attaching 

a copy of aD to the closed unit interval [0,1] at each point 

of [0,1) is such a space. 

Note also that ~l contains no dense Linde18f subspace, 

so the implication (c) implies (b) of Corollary 5.2 need not 

hold if the hypothesis of a-compactness is deleted. 

Recall from [GJ, Chapter 14] that a Tychonoff space X 

is called a P-space if every zeroset of X is open and from 

[L], that X is called an aZmost-P-space if each of its zero­

sets has a nonempty interior. Clearly every almost-P-space 

is a quasi-F-space. If X is any noncompact realcompact 

sapce, then ~(X,BX) is a quasi-F-space that is not an almost­

P-space. A space with this latter property is called a 

proper quasi-F-space. 

A closed subspace of a quasi-F-space need not be a 

quasi-F-space. In fact, since X is a closed subspace of 

~(X,X) we have: 

5.7. Proposition. Every Tychonoff space X is homeo­

morphic to a cZosed subspace of an aZmost-P-space. 

X is called an F'-space if for every f E C(X), pos f 
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and neg f have disjoint closures. Every normal F'-space is 

an F-space, but there are F'-spaces that are not F-spaces 

[GH, 8.14] and [CHN]. In [CRN, Theorem 1.1] it is shown that

X is an F'-space if and only if every cozero set in X is 

C*-embedded in its closure. 

5.8. Proposition. Consider the following properties 

of a Tyahonoff spaae X. 

(a)	 X is an F'-space. 

(b)	 The closure of any aozepo set of X is a quasi-F­

spaae. 

(a)	 X is an F-spaae. 

(d)	 Every closed subset of X is a quasi-F-spaae. 

Properties (a) and (b) are equivalent. If X is normal,

then (a), (b), (a), and (d) are equivalent. 

In [K, Example 3], Carl Kohls gives an example of an 

(extremally disconnected) F-space X with a closed subspace 

y that is not an F'-sapcei indeed, Y is not a quasi-F-space.

Next we consider conditions under which the property 

of being a quasi-F-space is preserved under finite products.

(a)	 Xl x X2 is an almost-P-spaae if and only if both 

Xl and X2 are almost-P-spaaes. 

(b)	 If Xl x X2 is a quasi-F-spaae, then so are Xl and

X2 • 

(a)	 If Xl and X2 are strongly zero-dimensional and 

Xl x X2 is a quasi-F-space, then Xl or X2 is an 
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almost P-space. 

rdJ If Xl x X2 is a quasi-F-space and X2 is a compact 

proper quasi-F-space~ then Xl is a P-space. 

5.10. Corollary. Th~ product. of two infinite compact 

spaces is never a proper quasi-F-space. 

We do not know if the requirements that Xl and X be2
 

strongly zero-dimensional in the statement of Proposition
 

5.9(c), or th~ requirement that X2 be ~ompact in the state­

ment of Proposition 5.9(d) are necessary. 

In [N, Theorem 6.5], S. Negrepontis shows that X is 

a P-space if and only if X x BX is an F-space. An analog 

of this result~follows. 

5.11. Corollary. For any Tychonoff space X~ X x aX 

is a quasi-F-space if and only if X is a P-space or ex is 

an almost-P-space. 

In [G], an example of an extremally disconnected and 

a P-space whose product is not an F-space is given. By 

modifying Gillman's argument, it can be shown that this 

latter product is not even a quasi-F-space. 

The problem of determining exactly when a product of 

two spaces is a quasi-F-space seems to be at least as com­

plicated as the corresponding one for F-spaces. See [CHN]. 
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