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A center manifold reduction and numerical calculations are used to demonstrate the presence of
limit cycles, two-tori, and multistability in the damped harmonic oscillator with delayed negative
feedback. This model is the prototype of a mechanical system operating with delayed feedback.
Complex dynamics are thus seen to arise in very plausible and commonly occurring mechanical and
neuromechanical feedback systems. ©1995 American Institute of Physics.

I. INTRODUCTION

Time delays are intrinsic and important features of many
physical and biological control systems.1–4 The time delays
most commonly occur as a consequence of finite conduction
and production times. Here we study the dynamics of differ-
ential delay equations that arise in the delayed feedback con-
trol of mechanical systems.1,5–7 Considerations of Newton’s
laws of motion lead to second-order delay-differential equa-
tions of which the prototype is the damped harmonic oscil-
lator with a delayed restoring force~Fig. 1!,

ẍ1bẋ1ax5 f ~xt! ~1!

wherea,b are constants,t is the time delay,x,xt are the
displacement at timest,t2t, respectively, and the function,
f , describes the feedback. Equation~1! also arises as an ap-
proximation to second-order systems acting under the influ-
ence of feedback, which is a function of displacement and
velocity: a functiong(x,ẋ) is replaced byg$x(t),[x(t)2x(t
2t)]/ t%[p[x(t),x(t2t)]. Applications of ~1! include the
neuromuscular regulation of movement and posture,4

acousto-optical bistability,8 metal cutting,9,10 the cascade
control of fluid level devices,11,12 and the electronically
‘‘clamped’’ pupil light reflex.13,14

Complex oscillations, including chaos and two-tori, have
been shown to occur in~1! when f is a nonmonotone
function.11,12Recently, it has been demonstrated analytically
by performing a center manifold reduction that two-tori can
also be produced by~1! when f is simple monotone negative
feedback,15 i.e.

f ~xt!5
un

un1xt
n 1k, ~2!

wheren, u, andk are positive constants. Negative feedback
control arises far more commonly in practical applications
than nonmonotone types of feedback do. Thus, the observa-
tion that complex dynamics can arise from generic second-
order differential delay equations with monotone negative
feedback is of great interest.

Here we integrate~1! with negative feedback, i.e.~2!,
numerically and determine the nature of the bifurcations of
the two-tori. The local stability analysis of~1! is outlined in
Sec. II and the center manifold reduction is discussed in Sec.
III. Numerical studies demonstrate that in certain parameter
ranges there is a coexistence of stable two-tori and two quali-
tatively different limit cycles. In Sec. V it is shown that this
multistability can be explained by the inclusion of higher-
order terms~i.e., fifth order! into the center manifold analy-
sis.

II. LOCAL STABILITY ANALYSIS

Here we briefly discuss the local stability analysis of~1!.
More details can be found in Refs. 7 and 15–19.

The steady-state value ofx, x* , is obtained as a solution
of

ax*5 f ~x* !,

and linearization of~1! aboutx* leads to

ü1bu̇1au5dut ,

whereu5x2x* andd5 f 8(x* ). We make the usual ansatz
u5exp(lt), wherel is a complex number, and obtain the
characteristic equation,a!To whom, correspondence should be addressed.
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l21bl1a2d exp~2lt!50. ~3!

Stability changes ofx* can only occur forl5iv: sub-
stituting the latter into~3! and rearranging, we obtain

a2v2

d
1 i S vb

d D5exp~2 ivt!. ~4!

Equation ~4! can be solved graphically~Fig. 2!: the
right-hand side of~4! describes the unit circle in the complex
plane. We only consider systems that are stable for smallt,
i.e.a.0, andd,0 for negative feedback. Thus, the left-hand
side of ~4! starts at the pointa/d,0 whenv50 and asv
increases describes a parabola that traverses the complex
plane from left to right. The solutions of~4!, denotedv1 , are
the positive solutions~in v! of the equation

v41~b222a!v21~a22d2!50. ~5!

The values of the delay,tj ,1 , at which a potential change in
stability occurs must have one of the values

t j ,15
1

v1
F tan21S v1b

v1
2 2aD 12 jpG ,

j50,61,62,... . ~6!

The ratioa/d can be identified with the gain,G, of the
feedback, i.e.

G5S adD
21

,

and plays an important role in the local stability analysis. If
a/d.21, then it is always possible to destabilize the steady
state by increasingt. On the other hand, ifa/d,21, then
increases int may or may not result in destabilization. In
particular, there will be two positive roots of~5! if
A2a22Aa22d2 > b . 0 and no positive roots otherwise.
Thus it is necessary to estimate the magnitude ofa/d.

Two-dimensional tori arise from mode interactions be-
tween two pairs of complex eigenvalues, the real parts of
which become positive simultaneously. Since each solution,
v1 , of ~5! is associated with a pair of complex eigenvalues,
this condition for the existence of a two-tori requires that
there be two solutionsv1 of ~5!, and hence thata/d,21.

Under this last restriction, the stability of the steady state
of ~1! depends on the values of the damping coefficient,b,
and the time delayt ~Figs. 2 and 3!. When

d

Aa
>b.0, Region I, ~7!

it can be shown that there is only a single change of stability
ast increases@Fig. 3~a!#. This follows from the fact~shown

FIG. 1. Schematic diagram of a damped harmonic oscillator with a delayed
restoring force.

FIG. 2. Graphical method of the solution of Eq.~4!.

FIG. 3. Stability diagrams in the~b,t! plane for~a! d521.05 ~n53.5!, ~b!
d520.63~n52.1!, ~c! d520.525~n51.75!, and~d! d520.225~n50.75!.
In all casesa51, c51, k5

1
3, and u5

5
6. Parameter values for which the

equilibrium is stable are to the right of the solid lines, i.e. toward largerb.
The vertical scale is the same for all graphs, but note differences in hori-
zontal scale.
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in Ref. 16! that no tangency of the roots can take place on
the imaginary axis, and that stability is indeed lost when
l5iv. As b is increased further to

A2a22Aa22d2>b.
d

Aa
, Region II, ~8!

there can be a switching of stability ast increases.15 This
behavior gives rise to the characteristic ‘‘Christmas tree’’ sta-
bility diagram.17 Depending on the exact values of the pa-
rameters, a variety of Christmas tree stability diagrams can
arise, some of which have one or more disjoint branches
@Figs. 3~b!–3~d!#. Finally, for

b.A2a22Aa22d2, Region III, ~9!

the steady state of~1! is stable for allt.
It should be noted that if the control mechanism is over-

damped, thenb . A4a and hence the stationary solutionx*
is stable for allt whena/d,21. Thus, if limit cycles and
two-tori are to be generated by~1!, then the control mecha-
nism must be underdamped, i.e.b , A4a.

III. CENTER MANIFOLD REDUCTION

When one branch of the stability boundary shown in Fig.
3 is crossed, the steady state destabilizes as a pair of complex
conjugate eigenvalues passes through the imaginary axis.
This is the signature of a Hopf bifurcation, and we might
expect a stable limit cycle to appear. This Hopf bifurcation
can be either supercritical or subcritical, and thus the limit
cycle may be stable or unstable, depending on the values of
the parameters.15 This situation should be contrasted to that
of a first-order differential equation with delayed negative
feedback@with function ~2!# in which the Hopf bifurcation is
always supercritical.13

Here, we concentrate on the situation where two
branches of the stability boundary intersect@see the box in
Fig. 3~b!#. At such points there are two values ofv satisfying
~4! for the same value oft andb and thus, correspondingly,
there are two pairs of pure imaginary eigenvalues6iv1,
6iv2. These points are called double Hopf bifurcation
points. The behavior of a system of ordinary or delay differ-
ential equations having eigenvalues with zero real parts can
be determined by using the techniques of center manifold
reduction20,21 and normal form analysis.22 In our case there
are four such eigenvalues, and thus it is possible to construct
a four-dimensional manifold. The flow on this manifold rep-
resents the long term behavior of the full system in the
neighborhood of the bifurcation point. This algebraically
daunting task~for a discussion see Ref. 15! has recently been
facilitated with the use of symbolic manipulation computer
software.23

The emphasis in this study is on the dynamics of~1! in
the neighborhood of the double Hopf bifurcation point~i.e.,
along the linea→b→c→d in Fig. 4!. In this section we
briefly summarize the results of the center manifold reduc-
tion carried out to terms of third order. A detailed derivation
and analysis can be found in Ref. 15.

At the first intersection point in the bifurcation set of
Fig. 3~b! ~see the box!, we find thatd520.63 and the coor-

dinates of the intersection point areb50.0705bint and
t55.0435tint , which corresponds tov150.6095v1int on the
first branch andv251.2745v2int on the second branch. At
this point the flow on the center manifold is described by the
following system of four ordinary differential equations~af-
ter a reduction to normal form and transformation to polar
coordinates!,

ṙ 1520.0247r 1
320.194r 1r 2

2,

ṙ 250.0437r 1
2r 210.0068r 2

3,
~10!

u̇15v1int ,

u̇25v2int .

For parameter values close to this double bifurcation point
the dynamics of the system can be described by the unfold-
ing

r 15m1r 120.0247r 1
320.194r 1r 2

2,

ṙ 25m2r 210.04371
2r 210.0068r 2

3,
~11!

u̇15v1int ,

u̇25v2int ,

where the parametersm1 andm2, respectively, represent di-
rections in parameter space perpendicular to the second and
first Hopf bifurcation curves of Fig. 3~b!. Locally, we may
represent these curves as straight lines and thus expressm1,
m2 in terms ofb, t, viz.:

m15a1~t2t int!1b1~b2bint!

520.470~t2t int!20.883~b2bint!,
~12!

m25a2~t2t int!1b2~b2bint!

50.470~t2t int!20.883~b2bint!.

Note that in~11! the equations forr 1 ,r 2 do not depend on
the variablesu1,u2. Thus, by employing the substitution~12!
we need only consider the following two equations to com-
pletely determine the dynamics of the system:

FIG. 4. Bifurcation set near the first intersection point~t55.04,b50.07! at
a51, d520.63 @the box in Fig. 3~b!#. Filled circles represent fixed points
~periodic solutions! predicted by the theory, open circles represent fixed
points not predicted by theory but observed numerically. The letters~a!–~d!
indicate the parameter values for the simulations of Figs. 5 and 6.
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ṙ 15~2.43220.470t20.883b!r 120.0247r 1
3

20.194r 1r 2
2,

~13!
ṙ 25~22.30810.470t20.883b!r 210.0437r 1

2r 2

10.0068r 2
3.

The correspondence between solutions of~11! and of
~13! is shown in Table I. Equation~13! with generalcoeffi-
cients has been studied by Guckenheimer and Holmes.20 The
parameter values considered here correspond to the Case VIa
of Ref. 20.~Other cases can also be observed.15!

The relationship between these solutions is summarized
in Fig. 4, which shows the bifurcation set for~13! in b, t
parameter space. The intersection point of all the bifurcation
lines represents the first intersection point of Fig. 3~b!. The
lines H1 ,H2 are the curves of loss of stability of Fig. 3~b!
~which appear as straight lines at this scale!. These are su-
percritical and subcritical Hopf bifurcations that give rise,
respectively, to periodic solutions with frequenciesv1int and
v2int. The other lines indicate secondary Hopf bifurcations
(SH1 ,SH2), giving rise to quasiperiodic solutions with two
frequencies and a tertiary Hopf bifurcation (TH) giving rise
to quasiperiodic solution with three frequencies. It is likely
that this three-torus is destroyed via a homoclinic
bifurcation.20 However, the exact location of this bifurcation
cannot be computed from~13!, we have thus represented it
by a dashed line in Fig. 4. The small pictures illustrate~in the
r 1 ,r 2 plane! the existence and stability of solutions to~13! at
parameter values in each region.

IV. MULTISTABILITY

For comparison with the analysis of Sec. III, we per-
formed numerical simulations of the original equation~1!
using a fourth-order Runge–Kutta scheme adapted for delay
equations. The result of each simulation is displayed in two
formats: time histories@x(t) vs t# in Fig. 5 and pseudophase
space@ẋ(t) vs x(t) vs x(t2t)# in Fig. 6. The simulations
were performed at parameter values in a neighborhood of the
double bifurcation point depicted in Fig. 4. Further, we fixed
the value oft 55.03 and variedb as our bifurcation param-
eter. The values used forb are indicated by the sequence of
letters in Fig. 4, which correspond to the labels in Figs. 5 and
6.

The first two simulations confirm our analysis. That is, at
~a! there is a limit cycle with frequency'v1int/2p50.097,

and as we cross the lineSH1 to ~b!, a two-torus appears.
However, the other two simulations yield more surprising
results.

On crossing the lineTH to ~c!, the analysis of Sec. III
predicts that the two-torus should be unstable. However, we
see a more complicated phase portrait. Although somewhat
confusing, this phase portrait appears to represent a two-

TABLE I. Solution correspondence.

Solution in Eqs.~13! Solution in ~11!

Fixed point at origin Fixed point at origin
Fixed point~r̂ 1,0! Periodic solution with period 2p/v1int

Fixed point~0,r̂ 2! Periodic solution with period 2p/v2int

Fixed point (r̂ 1 , r̂ 2) Two-torus~quasiperiodic solution with two
frequencies!

Periodic solution Three-torus~quasiperiodic solution with three
frequencies!

FIG. 5. Numerical simulation of~1! at t55.03 for ~a! b50.073, ~b!
b50.071,~c! b50.069, and~d! b50.067. Parameter values are the same as
used in Fig. 3. Initial functionf5x2 cos~v2s! with v251.274,x250.1, and
sP@2t,0#.

FIG. 6. Phase plane diagrams corresponding to the time histories of Fig. 5.
Coordinates arex(t2t) vs x(t) vs ẋ(t).
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torus in which the amplitudes of the two frequencies are just
about equal.@Figure 6~c! is comparable to a plot ofx(t) vs
ẋ(t) vs x(t2t), where x(t)50.833310.038 sin~v1t!
10.038 sin~v2t!, and thevj are the values of the frequencies
of the two Hopf bifurcations ~v150.609 47 and
v251.274 21!.# We shall address the apparent contradiction
between our analysis and this numerical result in the next
section.

Finally, at ~d! we see the appearance of a new periodic
solution with frequency'v2int/2p50.202 and with a consid-
erably larger amplitude@note the difference in vertical scale
between Figs. 5~a!–5~c! and 5~d!#. The analysis in Sec. III
predicts that no stable solution should exist at this point. We
shall address the origin of this limit cycle, and how it raises
the possibility of multistability at other parameter values, in
the next section.

To explore this multistability we carried out numerical
simulations with various initial conditions@i.e., f(s)
5x1 cos~v1s!1y1 sin~v1s!1x2 cos~v2s!1y2 sin~v2s! with
v150.609,v251.274,s P@2t,0#, and variousxj ,yj # on a
diverse set of parameters, including those used to generate
Figs. 5 and 6. In particular, at the parameter values of Fig.
5~c!, we found both the large-amplitude limit cycle@Fig.
7~a!# and an even larger-amplitude period two limit cycle
@Fig. 7~b!# coexisting with the two-torus.

The limit cycle is observed numerically in other regions
of parameter space as well: these are indicated in Fig. 4 by
an open circle. Of particular interest is its existence in the
region of stability of the fixed point. We note that the ampli-
tude of the limit cycle in Fig. 7~a! is not particularly ‘‘large’’
in comparison with the amplitude of the coexistent two-
torus. This would indicate that the limit cycle is near to an-
nihilation in a saddle node bifurcation~see Sec. V!. In fact, it
is not observed in simulations carried out farther from theH2
Hopf bifurcation curve@at the parameter values of Figs. 5~a!
and 5~b!, for example#.

The period two limit cycle was found to coexist with the
other solution~s! for a large set of parameter values, almost
everywhere that we carried out simulations.

V. HIGHER-ORDER TERMS

In order to understand the origin of the multistability
discussed in Sec. IV, we included higher-order terms~up to

the fifth order! into the center manifold reduction of~1! near
its stationary solution. This yields the following system:

ṙ 15~2.43220.470t20.883b!r 120.0247r 1
3

20.194r 1r 2
220.1388r 1

5,
~14!

ṙ 25~22.30810.470t20.883b!r 21.0437r 1
2r 2

10.0068r 2
310.1370r 1

2r 2
320.0618r 2

5.

Consider first the effect due to the coefficient of ther 2
5

term in ~14!. Since it is negative while the termr 2
3 has a

positive coefficient that is smaller in magnitude, one expects
to find a region in parameter space where two fixed points of
the form ~0,r̂ 2! of ~14! exist. Thus, we would expect to ob-
serve two limit cycles in this region for the original system:
a small-amplitude, unstable one~created by the Hopf bifur-
cation H2! and a large-amplitude, stable one. These two
cycles annihilate each other in a saddle-node bifurcation.
Note that the large-amplitude stable cycle exists on both
sides of theH2 Hopf bifurcation curve. More details on this
degenerate~codimension 2! Hopf bifurcation can be found in
Ref. 24.

In principle, ~14! can also be used to estimate the loca-
tion of the homoclinic bifurcation and hence to determine the
stability of the three-torus referred to previously. This mainly
numerical~albeit careful! work is left for a future investiga-
tion. However, numerical simulations performed on the nor-
mal form ~14! itself, indicate that this three-torus should be
stable.

We can further use~14! to refine the bifurcation curves
of Fig. 4. The main result is that the three-torus is predicted
to occur in some ‘‘curved wedge’’ between two parabolas
that emanate from the double Hopf point. Since some of the
coefficients of the third-order terms of the normal form are
quite small, this refined wedge agrees with the previous one
only when themj are also small. This indicates that the third-
order analysis is only valid for parameter values very close to
the double Hopf point. Our simulations were not within this
small region. Thus, not all of our numerical results can be
predicted by the third-order analysis.

VI. DISCUSSION

We have shown that limit cycles, two-tori, multistability,
and other more complex dynamics can be generated by a
generic second-order differential-delay equation with mono-
tone negative feedback. Equations of this form arise in con-
siderations of mechanical, or neuromechanical, systems op-
erating under the influence of a delayed restoring force. The
necessary conditions for these complex dynamics to occur,
i.e. an underdamped control system (b,A4a) with low gain
~G,21! are easily satisfied by many mechanical systems.
For example, we estimate from published data on a human
postural control system~Fig. 49, p. 359, Ref. 25! thatb54.1
s21 anda51044.5 s22 ~i.e.,b , Aa!.

Typically numerical methods form the mainstay of tech-
niques for exploring the behavior of nonlinear dynamical
systems. Our studies emphasize the necessity of analytical
work to guide these numerical experiments. Indeed, the ex-

FIG. 7. Numerical simulations of~1! showing bistability. Parameter values
are as in Fig. 6~c! ~t55.03 andb50.69! with different initial conditions~f
as in Fig. 5 with, respectively,x250.2 andx250.5!. ~a! Limit cycle, ~b!
period two limit cycle.
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istence of two-tori for~1! can readily be overlooked if refer-
ence is not made to the center manifold reduction in choos-
ing the appropriate parameter values. A case in point
concerns the location of the predicted three-torus, which we
have been unable to locate numerically.

An unusual feature of~1! is that limit cycles may arise
via either a supercritical or a subcritical Hopf bifurcation.
The subcritical Hopf bifurcation can give rise to higher-
amplitude limit cycles that coexist with the stable fixed
point. This is an important phenomenon from a practical
standpoint. It means that, depending on the initial conditions,
one may observe oscillatory behavior in the ‘‘region of sta-
bility’’ of the equilibrium. The origin of the higher-amplitude
limit cycles becomes clear when higher-order terms are
added to the center manifold analysis. The presence of period
two limit cycles in the system is not surprising, considering
the possible homoclinic bifurcation described above. How-
ever, considering the amplitude of the period two limit cycles
and their ubiquity in parameter space, we cannot rule out the
possibility that they are linked to some other global bifurca-
tion. Solutions similar to our period two limit cycles have
been reported previously in a model of a delayed laser.26

The dynamic signature of a two-torus is the simulta-
neous presence of two frequencies in a time series. Time
series of this type have indeed been observed for a number of
physiological variables. Examples include finger position,27

pupil area in drowsy subjects,28 and insulin levels in healthy
individuals.29 Since time delays are thought to be important
features of the control mechanisms for these processes, it is
tempting to speculate that these time series might reflect two-
tori generated by the control mechanism. However, it is not
presently possible to eliminate the alternate possibility that
the two frequencies represent the interaction of two distinct
control mechanisms.

In first-order delay-differential equations, the appearance
of complex dynamics is associated with nonmonotone types
of feedback, such as ‘‘mixed’’ feedback.30 Although such
feedback arises in specially constructed experimental para-
digms, see, for example Ref. 31, it is uncertain whether it is
widespread naturally. One way in which nonmonotone feed-
back can arise is via the interaction of two or more feedback
mechanisms.32 Here we have shown that complex dynamics
arise in the generic second-order delay differential equations
which arise in the delayed feedback control of mechanical
systems. In contrast to first-order delay-differential equa-
tions, only monotone~negative! feedback is required. Thus
complex dynamics can arise in very plausible and commonly
occurring dynamical systems.
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