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Disorder and synchronization in a Josephson junction plaquette
A. S. Landsberg,a) Y. Braiman, and K. Wiesenfeld
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

~Received 24 April 1995; accepted for publication 24 July 1995!

We describe the effects of disorder on the coherence properties of a 232 array of Josephson
junctions ~a ‘‘plaquette’’!. The disorder is introduced through variations in the junction
characteristics. We show that the array will remain one-to-one frequency locked despite large
amounts of the disorder, and determine analytically the maximum disorder that can be tolerated
before a transition to a desynchronized state occurs. Connections with largerN3M arrays are also
drawn. © 1995 American Institute of Physics.

Josephson junctions have potential importance for de-
vice applications, where one goal is to generate high-power,
high-frequency voltage oscillations with a narrow
linewidth.1,2 A single Josephson junction can convert a dc
bias current into voltage oscillations as fast as a terahertz,3 an
extraordinarily high frequency for an electronic device; how-
ever, the power output is rather small~typically about 10
nW!. Series arrays ofN identical junctions can boost
power,1,4,5 though the coherence properties of such arrays are
sensitive to disorder~i.e., variations in the junction param-
eters!, which is inescapable in the fabrication of arrays.5–7To
overcome this difficulty, two-dimensional arrays have been
proposed.8–10 Experiments on 10310 arrays by Benz and
Burroughs7 have yielded powers as high as 0.4mW at 150
GHz, and numerical simulations by Octavio and co-workers6

on 838 arrays have revealed that although two-dimensional
arrays can also be sensitive to disorder, they are less so than
their one-dimensional counterparts.

At present though, a general theoretical understanding of
the effects of disorder on the coherence properties of two-
dimensional arrays poses a significant challenge. Our strat-
egy here is to study in detail disorder in the simplest of
two-dimensional arrays, the 232 ‘‘plaquette,’’ depicted in
Fig. 1. The individual junctions are described by the RSJ
model. The resistances of the junctions are identical, but
their critical currents are randomly distributed. A constant
current is fed in uniformly along the top row of supercon-
ducting sites, and removed uniformly along the bottom. The
dynamics of the array can be described in terms of the phase
differences (FT ,FB ,FL ,FR) across the superconducting
sites. The equations of motion are

] tFT1I T sin~FT!5D, ~1a!

] tFB1I B sin~FB!52D, ~1b!

] tFL1I L sin~FL!5I2D, ~1c!

] tFR1I R sin~FR!5I1D, ~1d!

whereI denotes the external current fed into the system, and
D ~respectively2D! is the spontaneously induced shunt cur-
rent across the top~respectively bottom! junction. The shunt
currentD is determined by the supplemental constraint rela-
tion FT1FR2FB2FL50, indicating that the sum of the

phase differences around a closed loop must vanish in the
absence of any magnetic field. From this and Eqs.~1a!-~1d!
it follows that

D5 1
4@ I T sin~FT!1I R sin~FR!2I B sin~FB!

2I L sin~FL!#.

Moreover, owing to the constraint, only three of the four
phase differences are truly independent, so that~1a!–~1d!
effectively reduces to a set of three coupled equations. In the
idealized case of identical junctions (I T5I R5I B5I L), it has
been shown in Ref. 9 that the system is attracted to an ‘‘in-
phase’’ solution, in which the two vertical junctions are
phase locked@FL(t)5FR(t)#, and the horizontal junctions
are inactive@FT(t)5FB(t)50# ~the transverse shunt cur-
rentD being zero!.

We have studied Eqs.~1a!–~1d! with disorder using a
multiple time scale expansion. The asymptotic analysis as-
sumes the plaquette is driven at high bias current (I
@I L ,I R ,I T ,I B), so that the vertical junctions are overturning
rapidly. ~In practice this condition can be relaxed signifi-
cantly, as will be described later.! It is equivalent but more
useful to treat the bias current as anO ~1! quantity and
instead let the critical currents of the junctions be small
~!1!. Thus, defininge to be a small parameter, we set11 I L
2eI L , I R→eI R , I T→e2I T , I B→e2I B in Eqs.~1a!–~1d!. For
the multiple scale analysis, we definet0[t, t1[et, t2[e2t
to be fast, slow, and superslow time scales, respectively, and
let ] t5] t01e] t11e2] t2. Lastly, we expand the dynamical
phases in~1a!–~1d! in powers ofe ~e.g.,FT5FT,01eFT,1

1e2FT,2 , etc.!.
Substituting the preceding expansions into Eqs.~1a!–

~1d!, a hierarchy of equations is constructed based on powers
of e. At each order, one solves the resulting equations with
the help of auxiliary constraints known as ‘‘nonresonance
conditions,’’ which ensure that the asymptotic expansion re-
mains uniformly valid.~See, e.g., Ref. 12 for a general de-
scription of this method.! In the absence of disorder, we re-
cover the stable, inphase solution of Ref. 9. For weak
disorder, we find that the system is attracted to a frequency-
locked state, in which the two vertical junctions overturn at
the same average rate (^ḞL&5^ḞR&Þ0). Close to the
identical-junction limit, this frequency-locked solution is
nearly in phase, but the phase shift increases with the disor-
der. The horizontal junctions meanwhile are active, but do
not overturn (̂ḞT&5^ḞB&50), indicating that they do nota!Electronic mail: ph287al@prism.gatech.edu
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pass any regular current on average, only supercurrent. See
Fig. 2. This synchronized behavior will persist as the disor-
der is increased, provided

Ua ~ I L
22I R

2 !

I T,B
minI U<1, ~2!

wherea is a numerical constant equal to316. When this con-
dition fails, an abrupt transition to a desynchronized state
occurs~Fig. 3!. Condition ~2!, describing the boundary be-
tween coherence and incoherence in the plaquette, is deter-
mined by the nonresonance condition atO (e2) in the as-
ymptotic expansion, and coincides with the destruction of the
frequency-locked state through a degenerate saddle-node bi-
furcation.~A detailed derivation will appear elsewhere.!13

This transition formula strikingly shows that the
plaquette can tolerate large amounts of disorder before syn-
chronization is lost~e.g., a 10% variation in the critical cur-
rents is not enough to destroy locking!. In Fig. 4 we plot the
critical boundary~2! separating the synchronized and desyn-
chronized states, and compare this with the results of nu-
merical simulations. It is clear that the transition criterion~2!
remains accurate even for relatively low bias currents, well
outside its domain of formal asymptotic validity. We note,
however, that the robustness of the plaquette to disorder will

not fully carry over to the general case ofN3M arrays.~We
will return to this point at the end of this letter.!

The entire synchronization-desynchronization process
can be understood from a simple intuitive argument. In the
absence of disorder, the in-phase state of the plaquette is
stable. Weak disorder will therefore merely deform this pe-
riodic solution, not destroy it; consequently, the vertical junc-
tions of the plaquette will remain frequency-locked. Physi-
cally, this frequency-locking is accomplished by the
horizontal junctions, which shunt net supercurrnet between
the vertical junctions and thereby effectively couple them.
~Replacing the horizontal junctions by inductors would pre-
sumably achieve the same purpose, which indeed seems to

FIG. 1. The Plaquette. The phase differences across the vertical and hori-
zontal junctions are denoted byFL ,FR andFT ,FB , respectively. Current
I is imposed at the top and removed at the bottom;D is the induced current
shunted across the horizontal junctions.

FIG. 2. Synchronized state at (I T50.2, I B50.3, I L51.5, I R51.0, I
52.0). Thevoltage oscillations of the vertical junctionsḞL(t),ḞR(t) show
frequency locking. Note~inset! that phasesFT(t),FB(t) oscillate with zero
average growth, signifying that no net regular current flows across the hori-
zontal junctions.

FIG. 3. Desynchronized state at (I T50.05, I B50.07, I L51.5, I R
51.0, I52.0). Thevertical voltage oscillationsḞL(t),ḞR(t) are unlocked.
The horizontal phasesFT(t),FB(t) ~inset! display linear growth on aver-
age.

FIG. 4. Transition boundary between frequency-locked and unlocked states.
The quantityT denotes the left-hand side of the transition formula~2!; the
horizontal line atT51.0 defines the theoretical threshold. For different bias
currents I, the critical currentsI R , I T , I B were randomly chosen in the
interval ~0,1!, with I L held fixed at 1.0. A statistical sampling shows that
below ~respectively, above! the numerically determined curve, most states
~>97%! are synchronized~respectively, unsynchronized!. Within the transi-
tion regime around the curve~as defined by the error bars!, states of both
types were found, depending upon the particular sample. The inset shows in
more detail the data forI52: the fraction of states that are synchronized
(rsynch) shows a sudden transition near the theoretically predicted threshold.
Note that the desynchronized states are only found for very high levels of
disorder.
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be the case10.! The amount of shunt current required for lock-
ing can be estimated as follows: ignoring any ac oscillations,
we simply replace the shunt currentD in ~1a!–~1d! by its
time averagêD&. The equations may now be integrated di-
rectly, and we find that the vertical junctionsFL , FR over-
turn with an average frequency ofA(I2^D&)22I L

2 ,
A(I1^D&)22I R

2 , respectively. Equating these two frequen-
cies yields

^D&5
I R
22I L

2

4I
. ~3!

As the disorder in the system is increased, the horizontal
junctions will simply shunt the required supercurrent~3!,
maintaining the frequency-locking. However, if the disorder
becomes too large, the required shunt current will exceed the
maximum allowable supercurrent through the horizontal
junctions, (I T,I B). At this point, the horizontal junctions will
pass regular current in addition to supercurrent, and locking
between the vertical junction is destroyed; the plaquette en-
ters a desynchronized state. The critical transition between
locked and unlocked behavior occurs whenu^D&u
5min(I T,I B). From ~3!, it follows instantly that the
plaquette will be synchronized provided a condition identical
to ~2! is satisfied, where nowa51/4. Thus, this simple
physical argument effectively reproduces the previous result
of the formal asymptotic analysis. The slight difference in
the numerical factora can be attributable to our neglect of
the ac-component of the shunt current in this latter physical
description. The physical interpretation of the transition cri-
terion ~2! is now clear:frequency locking is lost when the
average supercurrent through either of the horizontal junc-
tion nears its maximum level.

It is interesting to consider a slight variation of the basic
plaquette problem: In the preceding analysis, disorder was
introduced through variations in the critical currents only. If
the effects of variations in the junctions’ resistances are also
included, a generalized transition formula analogous to~2!
can be obtained.13 Both types of disorder are found to con-
tribute to the synchronization/desynchronization process, and
as before, we find that the plaquette is relatively robust to
disorder. The only exception occurs in the regime of very
high bias current, in which case small variations in the resis-
tances can destabilize the system. We can also consider the
effects of the plaquette’s self-magnetic field on its synchro-
nization properties by introducing a modified loop constraint:
FT1FR2FB2FL52LD, where LD is the ~nondimen-
sionalized! magnetic flux through the plaquette~see, e.g.,
Refs. 14 and 15!. We observe, however, that the earlier
physical arguments describing frequency locking in the
plaquette remain essentially unaltered, and thus although the
exact transition point between locked and unlocked behavior
may shift, the overall ability of the plaquette to withstand
large amounts of disorder will be preserved. This is borne out
by numerical simulations, although a complete analysis for
this case has not been carried out.

Finally, from our analysis of the plaquette, we can garner
insight into what can occur for larger array systems, which
can fruitfully be regarded as a collection of plaquettes. For
example, by joining several plaquettes together in a horizon-

tal row ~with bias current injected vertically!, forming a
23M array, we expect that the robust frequency-locking
identified in the single plaquette will extend across the entire
row. Mathematically, this is suggested by observation that
the inphase solution of a 23M array with zero disorder is
stable9 ~just as in the case of a single plaquette!, and thus
sufficiently weak disorder will only deform this solution, not
destroy its periodicity. The vertical junctions in the row will
therefore remain synchronized. Physically, this is accom-
plished by nonzero supercurrents shunted across the horizon-
tal junctions. Numerical simulations have confirmed this re-
sult for a 233 array. If instead we consider a vertical column
of plaquettes, forming anN32 array ~a ‘‘ladder’’!, a quite
different effect appears. This stems from the fact that the
inphase solution of anN32 identical-junction array~with
N.2! is not fully stable, owing to the presence ofN22 neu-
trally stablemodes.9,16 These neutral modes correspond to
perturbing one plaquette in the column with respect to an-
other. Consequently, when~arbitrarily small! disorder is in-
troduced, the periodicity of the inphase state is not expected
to be preserved, and the junctions in different rows will op-
erate atdifferent frequencies; the frequency-locking mecha-
nism operating within a single plaquette does not extend ver-
tically downward between different plaquettes. This is
consistent with the numerical results of Refs. 6 and 17, and
we have rigorously verified this for the caseN53 by means
of a multiple time scale analysis similar to that described
earlier. Hence, we are led to the expectation that inN3M
arrays of RS Josephson junctions with weak disorder, the
junctions within a given row will remain frequency-locked,
but those in different rows will operate with different fre-
quencies.

We gratefully acknowledge useful discussions with Sam
Benz, Peter Booi, and Dick Kautz. This work was supported
by the Office of Naval Research.
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