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Oscillatory bifurcation with broken translation symmetry 

A.S. Landsberg" and E. Knobloch 
Department of Physics, University of California, 

Berkeley, California 94720 
(Received 27 December 1994; revised manuscript received 26 June 1995) 

The effect of distant end walls on the bifurcation to traveling waves is considered. Previous ap­
proaches have treated the problem by assuming that.it is a weak perturbation of the translation 
invariant problem. When the problem is formulated instead in a finite box of length L and the 
limit L --+ 00 is taken, one obtains amplitude equations that differ from the usual Ginzburg-Landau 
description by the presence of an additional nonlinear term. This formulation leads to a description 
in terms of the amplitudes of the primary box modes, which are odd and even parity standing waves. 
For large L, the equations that result take the form of a Hopf bifurcation with approximate D4 sym­
metry. These equations are able to describe, qualitatively, not only traveling and "blinking" states, 
but also asymmetrical blinking states and "repeated transients," all of which have been observed in 
binary fluid convection experiments. 

PACS number(s): 47.20.Bp, 47.20.Ky, 03.40.Kf 

I. INTRODUCTION 

This paper is devoted to the understanding of the ef­
fects of breaking translation invariance in continuum sys­
tems undergoing a bifurcation to traveling waves. We 
imagine that the translation invariance is broken by the 
presence of end walls of some container but assume that 
these are distant so that their effects might be expected, 
in some appropriate sense, to be weak. We focus on the 
effects of such endwalls near the onset of the instability. 
The two canonical examples of systems of this type are 
provided by doubly diffusive (or binary fluid) convection 
and by spiral vortices in the Taylor-Couette system with 
counter-rotating cylinders. Since a pure traveling wave 
cannot exist in a finite container it is clear that the end­
walls must be responsible for substantial modification of 
the initial instability. Experimentally one finds the fol­
lowing (e.g., [1-4]): 

1. Traveling waves. Surprisingly, propagating wave­
forms analogous to the pure traveling wave patterns 
found in unbounded systems can emerge in finite systems 
with endwalls. Within a limited portion of the container 
the appearance of these waves can resemble that of pure 
traveling waves. Both left and right propagating pat­
terns are possible, depending on initial conditions. Such 
waves, in the form of spiral vortices, are well known in 
the Taylor-Couette system, and have been extensively 
studied in the context of binary fluid mixtures [1-3]. 

2. Blinking states. The presence of endwalls can in­
duce so-called "blinking states," in which the direction 
of propagation of the wave reverses. Such reversals can 
be either periodic or irregular, depending upon system 
parameters [2-4]. Such waves were first discovered in the 
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form of "alternating" spiral vortex flow in the Taylor­
Couette system [5] and in numerical simulations of dou­
bly diffusive convection [6]. 

3. Repeated transients/collapse states. In binary mix­
ture experiments an additional phenomenon, dubbed "re­
peated transients," has also been observed [7]. In this 
state a small-amplitude traveling wave solution grows in 
amplitude (maintaining its spatial profile), and then un­
dergoes a rapid collapse back to a small-amplitude state. 
This process repeats at irregular intervals. This phe­
nomenon depends sensitively on the aspect ratio of the 
system. A similar phenomenon was observed by Jacqmin 
and Heminger in a numerical study of binary fluid con­
vection in a rectangular container [8], with the primary 
mode (apparently an even parity standing wave) grow­
ing into a large-amplitude state (dominated by a small 
number of spatial modes), and then undergoing a sud­
den, rapid collapse. This process then repeats. These 
repeated transients and collapse states are not yet un­
derstood. 

In an unbounded system with periodic boundary con­
ditions the transition from the trivial state to oscillatory 
behavior is described by the Hopf bifurcation with 0(2) 
symmetry. The normal form for this bifurcation, trun­
cated at third order, is given by [9] 

dv . 2 2 
dt = (A + zw)v + alwl v + b(lvl + IwI2)v, (la) 

~: = (A - iw)w + alvl 2w + b(lvl2 + IwI2)w, (lb) 

where v, w denote the amplitudes of left- and right­
traveling waves, and a, b are complex coefficients. So­
lutions with Ivl = Iwl are reflection symmetric and are 
hereafter called standing waves. This interpretation fol­
lows from the form of the temperature eigenfunction [10], 

iJ(x, y, t) = lR.{[v(t) + w(t)]e ik :>! f(y)} 
+ (higher-order terms) , (2) 

3579 © 1996 The American Physical Society 
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where f(y) describes its vertical structure. By con­
struction these equations are equivariant under (v, w) --+ 
eikl (v, w) (Le., under translations x --+ x + l), and 
(v,w) --+ (w,v) (Le., reflections x --+ -x). These op­
erations generate the group 0(2). An additional sym­
metry, called a normal form symmetry, is also present: 
(v,w) --+ (ei¢v,e-i¢w). Equations (la,b) have two types 
of nontrivial solutions, traveling and standing waves, at 
most one of which can be stable [9]. 

Equations (la,b) are strictly valid only when the wave 
number k is fixed at its onset value as >. increases, since, 
once the Rayleigh number is raised above its critical 
value, there is a whole band of wave numbers, all of which 
are unstable. This problem is typically resolved by allow­
ing the traveling wave amplitudes in the stream function 
(2) to be modulated on a long spatial scale X and a 
slow time scale T [v = A(X, T)eiwt , w = B(X, T)e- iwt ]. 

An asymptotic analysis then leads to a set of coupled 
complex Ginzburg-Landau equations for A and B, whose 
structure depends on the magnitude of the group velocity 
[11,12]. 

As indicated by the experimental observations above, 
the corresponding situation for large but bounded sys­
tems is more complex than the unbounded case. In the 
last few years there have been several efforts to develop 
the theoretical underpinnings needed to describe the dy­
namics of large aspect ratio systems near the onset of an 
oscillatory instability. 

Cross [13] has adopted an approach based on a multiple 
scale analysis. The result is a pair of coupled complex 
Ginzburg-Landau equations describing the slow evolution 
of the envelope functions for the traveling wave solutions, 

AT = DAxx + sAx + AA + alBI2 A 

(3a) 

BT = DBxx - sBx + AB + alAI2 B 

(3b) 

together with boundary conditions designed to take into 
account the effects of the distant endwalls: 

at X = L/2, (4a) 

at X = -L/2. (4b) 

Here A, B are the complex amplitudes of the left- and 
right-traveling waves depending on the slow spatial and 
temporal scales X, T; D is a complex diffusion coefficient, 
s a measure of the group velocity (assumed to be small), 
and A a measure of the growth rate and frequency shift of 
the modes. The boundary conditions are taken to be lin­
ear and homogeneous, on the assumption that the mode 
amplitudes A, B become small near the endwalls. The 

most general such boundary conditions depend on the 
complex reflection coefficients j.tl,2, Vl,2, and follow from 
symmetry considerations. Higher order derivatives enter 
with higher powers of (; (<< 1) and are neglected. See [11, 
13-16] for details. Numerical simulations of these equa­
tions have revealed behavior that qualitatively resembles 
some of that found in the experiments,' including travel­
ing waves and blinking states. 

A more direct approach to this problem was suggested 
Dangelmayr and Knobloch [16-18]. The basic idea is 
to model the effects of distant endwalls by introducing 
small, linear SO(2)-breaking (Le., translation-breaking) 
terms into the normal form equations describing the "per­
fect" problem [Eqs. (la) and (lb)]. The most general 
equations of this type take the form 

dv 
dt = (>. + iw)v + alwl 2v + b(lv l2 + Iw l2)v + ew, (5a) 

~~ = (>. - iw)w + alvl 2w + b(lvl2 + Iwl2)w + ev, (5b) 

where, as before, the amplitudes v, ware associated with 
left- and right-traveling wave disturbances in the system 
(analogous to the "pure" traveling wave solutions found 
in the unbounded case), and e is a (small) complex coef­
ficient. 

This system has been analyzed in considerable detail 
[18]. Owing to the symmetry-breaking terms, pure trav­
eling waves are no longer possible. Instead, the primary 
instability is to an even or an odd standing wave solution. 
Depending on the spatial eigenfunctions these standing 
waves can take the form of "chevrons," with left-traveling 
waves dominating in the left half of the container and 
right-traveling waves dominating in the right half [16]. 
See [8] for explicit calculations of such eigenfunctions. 
Two new solutions, traveling waves and modulated waves 
(corresponding to periodically reversing blinking states), 
bifurcate from the standing wave branch in secondary 
bifurcations, in remarkable qualitative agreement with 
experiment. These traveling waves are single frequency 
states traveling predominantly in one or the other direc­
tion, but are not rotating waves: there is no comoving 
frame in which these waves appear steady. The blinking 
states are quasiperiodic states born in a secondary Hopf 
bifurcation: the Hopf frequency corresponds to the re­
versal period. These states persist only for an interval of 
parameter values, and with increasing forcing give way 
to (nonreversing) traveling waves, typically via a global 
bifurcation. More recently, it has been noted that chaot­
ically reversing waves are also possible [19]. 

The advantage of this approach stems from its rela­
tive simplicity: it provides a concise way of modeling 
the effects of "weakly" breaking the translation symme­
try in a system. In fact, the resulting equations can be 
shown to describe completely the small-amplitude behav­
ior of Cross' amplitude equations [16]. The procedure 
suggested by Dangelmayr and Knobloch does not, how­
ever, address the issue of whether the addition of small, 
linear, symmetry-breaking terms suffices (a priori) for a 
complete dynamical description of the effects of distant 
endwalls. 

In this paper we pursue an alternative approach. We 
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formulate the problem in a finite container, and then ex­
amine the limit as the length of the container becomes 
large. This formulation requires the use of the stand­
ing wave solutions, since, as shown by Dangelmayr and 
Knobloch [17,18], all the primary bifurcations take this 
form, a conclusion also reached by Bestehorn, Friedrich, 
and Haken [20]. In such a formulation, as in the work of 
Dangelmayr and Knobloch, analogues of traveling waves 
will be produced through symmetry-breaking secondary 
bifurcations from such standing wave branches. How­
ever, the present approach elucidates the conditions un­
der which the presence of distant endwalls can be consid­
ered to be a weak perturbation of the unbounded prob­
lem. In particular we show that the correct amplitude 
equations in the limit of large aspect ratios are described 
by the normal form for the Hopf bifurcation with D4 
symmetry in which the D4 symmetry is weakly broken. 
We describe the origin of the D4 symmetry and show 
that Eqs. (5a,b) are a special case of our more general 
equations. 

The paper is organized as follows. In Sec. II we discuss 
properties of Hopf bifurcations in boxes. In Sec. III we 
obtain finite-dimensional amplitude equations describing 
the interaction of odd and even parity standing waves, 
and show that in long boxes these equations have an ap­
proximate D4 symmetry. In Sec. IV we analyze the re­
sulting equations and in Sec. V complement this analysis 
with numerical results. Our conclusions are summarized 
in Sec. VI. 

II. OSCILLATORY CONVECTION IN BOXES 

We begin by considering a general system, 

Mat '11 (x, y, t) = C'I1(x, y, t) + N'I1(x, y, t), (6) 

where '11 is a multi-component field depending on 
time t and spatial coordinates x E JR, y E JRn-l. 
M ( a", , ay ) , C ( a", , ay ) are linear partial differential oper­
ators, and N (a"" ay ) is a nonlinear operator (typically 
bilinear). We assume that Eqs. (6) are equivariant under 
the group operations 

x --+ x + l (translation), 

x --+ -x (reflection), 

but impose end walls on the system, 

B('I1) = 0 at x = -L/2, L/2. 

(7a) 
(7b) 

(8) 

The theory that follows requires only that these bound­
ary conditions break the translation invariance of the sys­
tem while preserving the reflection symmetry (x ---t -x), 
but is otherwise independent of their detailed form. This 
is in contrast to the corresponding theory for the onset 
of the steady state instability in a finite container where 
the results with Neumann endwall conditions differ, even 
in the large aspect ratio limit, from the generic result 
that holds for other types of boundary conditions [21]. 
This is a consequence of the so-called "hidden" symme­
tries present in the Neumann case; in the case of the Hopf 
bifurcation these symmetries are still present but do not 
introduce any restrictions on the normal form [22]. 

To understand the effects of such endwalls on the be­
havior of the system we will consider the limiting case 
where the endwalls are very far apart (L large), and com­
pare the results with the unbounded case. On the basis 
of this comparison we show below that adding distant 
endwalls to an unbounded system does not represent a 
simple "perturbation" of the system. In particular, the 
L ---t 00 and L = 00 limits will not necessarily agree, and 
fundamentally distinct behaviors will be associated with 
each. 

We denote by <h(x, y) the spatial eigenmodes of the 
system (6), linearized about the trivial [Le., 0(2) sym­
metric] equilibrium and subject to the horizontal bound­
ary conditions (8) (along with appropriate boundary con­
ditions for the other spatial directions). Each "mode" is 
characterized by a particular temporal growth rate. Ow­
ing to the boundary conditions at the endwalls, these 
modes will be quantized, and we index them with k. 
We assume that for some control parameter R below 
threshold (e.g., a heating rate), all linear modes are ex­
ponentially stable. As the control parameter is increased, 
the modes successively become unstable. This is qualita­
tively similar to what occurs in the unbounded case, but 
with two fundamental distinctions: 

1. Since the modes of the system are discrete, there 
will exist a finite gap separating the critical values of the 
parameter R at which successive modes become unstable. 
Formally this is due to the discrete nature of the spec­
trum of the linear stability problem. See Fig. 1. This is 
in contrast to the case of an unbounded system, where 
once the critical parameter threshold is crossed, a con­
tinuum of unstable modes emerges. Note that the gap 
spacing approaches zero as the system size L ---t 00; ef. 
[8]. Nonetheless, such gaps are present for any finite L. 

2. Once end walls are placed on an unbounded system, 
pure traveling wave solutions are no longer possible, re­
gardless of how distant the endwalls are; the large Land 

R 

FIG. 1. 
system. 

k 

Rayleigh number vs wave number for the bounded 
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infinite L cases are fundamentally distinct. 
These considerations underlie some of the inherent 

mathematical difficulties that arise if one attempts to 
treat distant end walls as a weak perturbation of the un­
bounded system. Instead, we begin with the finite prob­
lem, and then let the size of the system become large. 

Given the set of spatial linear modes {<Pk(X, y)} (which 
we assume forms a complete basis), the fields W(x, y, t) 
can be expanded as 

w = 2~>k(t)<Pk(X, y) + ak(t)~h(x, y), (9) 
k 

where ak(t) denotes the complex temporal amplitude of 
the kth spatial mode. Substituting into (6), a (infinite) 
set of modal amplitude equations is obtained. We are 

. interested in the case of an oscillatory bifurcation, and 
wish to derive a reduced (finite-dimensional) set of equa-
tions that characterizes the behavior of the system in the 
vicinity of this instability. 

We know that at onset (R = Rd there is a single neu­
trally stable critical mode kl corresponding to a stand­
ing wave pattern; all other modes of the system are sta­
ble since they are below their respective thresholds (at 
R 2 , R 3 , •• • ). Sufficiently near Rl this critical mode can 
be regarded as the "driving" mode of the system, with all 
other modes effectively "slaved"; a center manifold reduc­
tion could then be performed based on this single critical 
mode. However, for large aspect ratio systems, such a 
reduction procedure cannot capture the full physical be­
havior of the full system (such as the presence of traveling 
waves). For this purpose the retention of the modes kl 
and k2 (where k2 represents the first mode to become 
unstable after mode k1 ) is necessary. As explained be­
low, it is the interaction between these two standing wave 
modes that produces "traveling" wave behavior, and cap­
tures the essential physics of the problem. 

The linear spatial modes of the system (6) and (8) can 
be assumed to be eigenstates of the reflection operator, 
and hence strictly of even or odd parity. Generically, 
all such modes set in at simple Hopf bifurcations. Even 
though in the bounded system the first two (typically, op­
posite parity [8]) standing wave modes become unstable 
at slightly different parameter values, for the purposes of 
a reduction procedure valid in the large L limit, it is cru­
cial to treat these modes as emerging "simultaneously," 
as though from the degenerate L = 00 case. The result­
ing mode interaction is capable of describing mixed parity 
states, such as traveling waves and blinking states. This 
notion can be formalized by imagining that there exists a 
second parameter, such as the system length L, which can 
be freely varied. By adjusting this parameter, the first 
two modes of the bounded system can be arranged to bi­
furcate simultaneously. A formal center manifold reduc­
tion can then be carried out, yielding equations for both 
critical modes (d. [23]). Any variation of this second 
parameter away from its exact value at cocriticality can 
simply be treated as an unfolding of the bifurcation, and 
will not effect the dimensionality of the center manifold 
itself. Alternatively, the device of introducing a second 
parameter into the problem can be entirely avoided by 
employing instead a center-unstable manifold reduction 

[24] to capture the dynamical behavior of both modes 
(one mode being slightly unstable when the other is at 
criticality). In either case in the limit L -+ 00 the normal 
form coefficients will be independent of L and the result­
ing unfolding will therefore capture the whole interval of 
Rayleigh numbers within which only two modes are un­
stable. At higher Rayleigh numbers, the small-amplitude 
nonlinear dynamics is often governed by the first one or 
two modes even though additional modes may also be 
unstable; cf. [25]. Consequently the applicability of the 
resulting normal form equations may well extend beyond 
their formal range of validity. 

III. REDUCTION TO A FINITE-DIMENSIONAL 
SYSTEM 

In the following we let zt{t), Z2(t) denote the complex 
amplitudes of the first two standing wave modes to go 
unstable (i.e., the driving modes), and assume Z2 cor­
responds to the odd parity mode. A center manifold 
reduction (or center-unstable manifold reduction) of the 
full (infinite-dimensional) modal equations in the vicinity 
of the oscillatory instability will yield a system of coupled 
equations describing the interaction of these two complex 
modes. The form of these equations follows from simple 
considerations. First, since each mode is close to, but not 
precisely at a Hopf bifurcation, the linearization about 
the origin for the reduced equations must have the form 

( f-L + iw 0 ) (Zl) o f-L' + iw' Z2' 
(10) 

where f-L, f-L' are unfolding terms that vanish when a given 
mode passes through criticality. Second, the nonlin­
ear terms in these equations must be equivariant under 
(Zl' Z2) -+ (Zl' -Z2), owing to the reflection symmetry 
(x -+ -x) of the original system (6). A third considera­
tion is slightly more subtle, but crucial. The only obvious 
symmetry of the center (-unstable) manifold equations is 
the spatial reflection symmetry Z2 -+ -Z2' In fact, how­
ever, there exists an additional discrete symmetry hid­
den in the asymptotic limit: for large L, the system has 
an approximate symmetry under interchange of the two 
modes, 

(11) 

stemming from the fact that these modes are degenerate 
at L = 00. This symmetry is not exact for any finite 
L. Nonetheless, since it becomes a true symmetry in the 
large L limit, it will be vital to retain it in the normal 
form calculations. This interchange property changes the 
symmetry group of the problem from Z2 to D4 , and thus 
alters the basic structure of the equations. In particular, 
this symmetry will force certain coefficients in the nor­
mal form equations to vanish, and others to be identical. 
The fact that this symmetry is only approximate has im­
portant consequences and requires the introduction of 
interchange-breaking terms as unfolding parameters in 
the interchange-symmetric system. Together, the reflec­
tion symmetry and the (approximate) interchange sym­
metry imply that the reduced equations for Zl, Z2 have 
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the form 

dz1 . _ 2 --2 Tt = (JL + ZW)Z1 + F(Z1' Zt, Z2' Z2 Z2, Z2)' (12a) 

(12b) 

We next put the system (12a) and (12b) into normal 
form, treating the modes Zt, Z2 as bifurcating simulta­
neously, i.e., JL = JL' = o. This is necessary in order 
to avoid removing certain formally nonresonant terms; 
if this is not done the coordinate transformation that re­
moves such terms will develop a singularity in the L ---+ 00 

limit, and hence will not be acceptable. [Alternatively, 
this issue can be avoided entirely by adjusting a second 
system parameter (L) to force Z1, Z2 to become unstable 
simultaneously.] A related issue concerns the oscillation 
frequencies w, w' of the two modes. These frequencies 
also become equal in the large L limit. Hence, as above, 
to avoid coordinate singularities only those nonresonant 
terms that remain nonsingular in the W = w' limit should 
be removed. Once these normal form transformations are 
completed, the detunings that exist between JL, JL' and 
w, w' for finite L will be reintroduced. 

The normal form equations are now readily calculated. 
The linearized equations can be written as 

dz 
-=Az, 
dt 

A= (
iW 0 0 0 ) o -iw 0 0 
o 0 iw 0 
o 0 0 -iw 

(13) 

(14) 

Observe that this linearization corresponds to the case of 
a semisimple double Hopfbifurcation with 1:1 resonance. 
The nonlinear resonant components of the normal form 
vector field must commute with 

(15) 

for 7 E R [26]. An arbitrary monomial term ziziz2Z2 in 
the normal form must therefore obey the constraint 

p-q+r-s=1. (16) 

Thus, no quadratic terms will appear. The six possible 
resonant cubic terms are 

IZ112Z1' IZ212z1' Z1Z~, IZ212z2' IZ112z2' Z2Zr (17) 

Since the linear part of the vector field (13) and (14) also 
commutes with the normal form symmetry (15), the full 
normal form equations will be equivariant under this 8 1 

normal form symmetry. The approximate D4 symmetry 
in the problem restricts the way in which the resonant 
terms appear. In particular, in the L ---+ 00 limit, the 
normal form equations are 

(18a) 

(18b) 

where A, B, C are complex coefficients, and the vector 
field has been truncated at cubic order. Such a truncation 
is valid subject to appropriate nondegeneracy conditions. 
One may verify that the system (18b,b) is equivariant 
under the group D4 x 8 1 : 

D 4 : (Z1' Z2) ---+ (Z1' -Z2), 

(zt, Z2) ---+ (Z2' Z1), 

8 1 : (Z1' Z2) ---+ (e iOz1' eiOz2). 

(19a) 

(19b) 

(19c) 

These equations describe the onset of an oscillatory in­
stability in a box, in the limit that the box length L 
goes to infinity. Note that this limit, derived on the ba­
sis of symmetry considerations (i.e., the group D 4 ), dif­
fers from the normal form equations at L = 00, which is 
instead described by a Hopf bifurcation with 0(2) sym­
metry. This observation indicates that the imposition of 
distant endwalls need not constitute a mild perturbation 
to the unbounded system. 

Equations (18a,b) are identical to the equations de­
scribing a Hopf bifurcation with D4 symmetry consid­
ered by Swift [27] in the context of coupled oscillators. 
However, since our primary interest is in the large but 
finite L case (for particular scaling regimes), we are led 
to consider symmetry-breaking unfoldings of this limiting 
D4-symmetric case. 

The unfolded equations are easily found: first note that 
weakly breaking the interchange symmetry (which is only 
approximate) will not introduce any additional nonlinear 
terms into the problem. [This is actually a somewhat 
subtle issue. Only the reflection symmetry Z2 ---+ -Z2 is 
an exact symmetry of the problem, yet Eqs. (18a,b) are 
also equivariant under Z1 ---+ -Z1. This second discrete 
symmetry results from the Hopf normal form symmetry 
(in conjunction with the left/right reflection symmetry), 
and will be present regardless of whether the interchange 
symmetry is exact or not. In this study we will not 
be considering the effects of breaking such normal form 
symmetries. We also note that for physical systems that 
have a midplane reflection symmetry in addition to the 
left/right reflection symmetry, the normal form symme­
try Z1 ---+ -Z1 is exact.] The unfolded equations, through 
cubic order, are 

dZ1 ( .) I 12 I 2 - 2 Tt= JL+zwz1+AZ1 Z1+ Bz21 Z1+ CZ1Z2 

(20a) 

dZ2 (' .') A'I 12 'I 12 , - 2 Tt = JL + ZW Z2 + Z2 Z2 + B Z1 Z2 + C Z2Z1· 

(20b) 

The unfolding quantities JL, JL' , JL - JL' , W - w' , A - A' , B -
B' , C - C' are all small. The resulting equations (20a, b) 
describe the interaction of even and odd parity standing 
waves in the system and will be the main focus for the 
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remainder of this paper. These equations should be re­
garded as describing a double Hopf bifurcation with 1:1 
resonance, with the special property that they are close 
to the D4-symmetric problem owing to the large size L 
of the system. They are exact in the sense that they 
can be formally derived by the center manifold reduc­
tion procedure by requiring that the two modes ZI, Z2 
bifurcate simultaneously, and noting that the spectrum 
corresponding to all other modes remains bounded away 
from the pure imaginary axis in the complex plane for 
any finite L. We remark that Bestehorn, Friedrich, and 
Haken [20] have proposed Eqs. (20a,b) as a model for 
modulated wave behavior in finite boxes. A special case 
of these equations was studied by Nagata [28]. 

The crucial observation is that under the coordinate 
transformation ZI = v + W, Z2 = V - w (which may be 
regarded as a transformation from standing wave coordi­
nates to traveling wave coordinates), the system (20a,b) 
becomes identical to the "standard" (Ginzburg-Landau­
like) equations (5a,b) describing broken translation sym­
metry, except for the appearance of new cubic terms 
(vw 2 , wv 2 ) in (5a, b), respectively. Most significantly, the 
coefficients of these new terms remain 0(1) in magnitude 
even in the limit L --+ 00. This observation demonstrates 
that such cubic terms must be retained in addition to 
the small, linear symmetry-breaking terms in order to 
capture correctly the effects of even distant end walls. 

IV. ANALYSIS OF THE NORMAL FORM 
EQUATIONS 

A. Scaling considerations 

The asymptotic dynamical behavior of Eqs. (20a,b) is 
determined by the scaling relations that hold among the 
various unfolding parameters. These scaling relations are 
set by the following two quantities: 

(i) The departure of the control parameter R from its 
critical values at R I, R2 for modes Zl, Z2, respectively. 
This will determine the growth rates J-l, J-l' of the modes. 

(ii) The length L of the system. This will set the 
scale for the differences between the two modes (I.e., 
IJ-l- J-l'I, Iw - w'l, IA - A'l, IB - B'I, IG - G'l). At times 
it will prove useful to treat the system length L itself as 
a control parameter of the system, which can be used to 
modify the generic scaling behavior of IJ-l- J-l'I. 

We determine first the various scaling relations among 
the unfolding parameters set by the system length L. 
Let Rc(m,L) denote the critical value of the parameter 
R at which the mth mode first becomes unstable. In 
general the critical parameter values Rc will be functions 
of the quantity miL, I.e., Rc = Rc(mIL), in order that 
in the limit L --+ 00, the minimum value of Rc (over 
all possible m) should remain 0(1) in magnitude, as in 
the infinite case. [The quantity miL can be regarded 
as the dominant wave number of a mode. For large L 
systems, the modes that first go unstable generate wave 
patterns whose local length scale is similar to that of the 
unbounded case, i.e., 0(1).] Since the complex ampli­
tudes ZI, Z2 in (20a,b) represent the first two modes of the 

system to become unstable, the (integer) mode numbers 
corresponding to these modes will (usually) differ in mag­
nitude by one, and we denote them by M, M + 1. These 
two integers yield the minimum values of Rc (m I L) for all 
integers m. Letting RI = Rc(MIL), R2 = Rc[(M +1)IL] 
be the critical values for the two modes, it follows that 

(21) 

This derives from the fact that R I , R2 lie near the min­
imum of the "curve" Rc = Rc(mIL); in other words 
M,M + 1 ~ M*, where M < M* < M + 1 and the 
(noninteger) M* satisfies 

dRc(mIL) I = O. 
dm M" 

Since m and L appear as a ratio, the scaling result 
(21) follows. This difference in the critical values for 
the two modes, IRI - R21, sets the scaling behavior for 
the difference in linear growth rates IJ-l - J-l'1 in the nor­
mal form equations (20a,b). Note that by making small 
[I.e., 0(1)] adjustments in the system length L, the two 
modes M, M +1 can be made to bifurcate simultaneously, 
thereby reducing the deviation IJ-l - J-l'1 below 0(11 L2). 
This mechanism is responsible for the sensitive depen­
dence of the resulting behavior on the aspect ratio. 

We next consider how the difference in oscillation fre­
quencies between the two modes scales with L. As a 
function of m and L, the oscillation frequency of a given 
mode may be written as f! = f!(mIL). This follows from 
the requirement that the frequency of the modes M, M + 1 
should remain 0(1) as L --+ 00. Letting f!1 = f!(MIL), 
f!2 = f! [( M + 1) I L], the frequency deviation between the 
critical modes is 

1f!1 - f!21 '" O(IIL). (22) 

The quantity 1f!1-f!21 sets the scaling behavior of Iw-w'l 
in Eqs. (20a,b). Similar reasoning to that above shows 
that the quantitites IA - A'l, IB - B'I, IG - G'l also scale 
as IlL in the limit oflarge L. 

The final scaling relation in the normal form equations, 
giving the magnitude of the growth rates J-l, J-l', is deter­
mined by the deviation of the parameter R from its crit­
ical values at Rl, R2 for the two modes. More precisely, 
the average growth rate (J-l + J-l')/2 in (20a,b) scales with 
R - t:..R, where t:..R == (RI + R 2)/2. 

There is no intrinsic scaling relation between the scale­
setting parameters t:..R and L, and a variety of choices is 
available. However, only for one of these do the normal 
form equations (20a,b) provide (generically) an asymp­
totically well-defined description of the behavior in the 
original system (6). A second scaling choice, correspond­
ing to a more restrictive set of conditions, will also yield 
exact asymptotic equations, as will be described later. 

B. ASYlDptotic scaling: t:1J.R", I/L2, t:1J.w '" I/L 

This scaling of the growth rate with aspect ratio is a 
"natural" one, and it is the one assumed implicitly in 
various other reduction schemes appearing in the litera-
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ture (e.g., [13]). This derives from the fact that as R is 
raised above its minimum critical value, the number of 
spatial modes activated (Le., unstable) in the system is 

N rv .,jR - R c _
m

_ 

wave number spacing between adjacent modes 

rv £.,j/:;'R. (23) 

Thus, for the scaling /::;.R rv 1/£2, the number of active 
modes is 0(1). As /::;.R is lowered towards its critical 
value, a point is reached below which there are only two 
active modes left-these correspond to the two critical 
amplitudes Zl, Z2 in (20a,b). Hence, for this choice of 
scaling of /::;.R with £, the normal form equations have 
a well-defined limit. Evidently this two-mode analysis 
formally breaks down if /::;.R is increased too much. How­
ever, even in this case, the normal form equations (20a,b) 
might still provide a reasonable (though incomplete) de­
scription of the basic dynamics. 

To analyze this scaling limit, we rewrite equations 
(20a,b) in a slightly more useful form: 

dz 1 . 2 dt = [(p, + /::;.p,) + z(w + /::;.W)JZl + [A + /::;'A1IZll Zl 

+[B + /::;.Bllz212z1 + [C + /::;,CJZIZ~, (24a) 

dZ2 [. 2 dt = (p, - /::;.p,) + z(w - /::;.W)J Z 2 + [A - /::;.AJl z21 Z2 

(24b) 

Observe that the 0(1) frequency w can be omitted, since 
it can be pulled from the equatimls via the redefinition 
Zl --+ e iwt Zl1 Z2 --+ e iwt Z2' In what follows we assume this 
has been done. We define 10 to be our scaling parameter 
(£ rv l/E, /::;.R rv (02), setting 

p, = E2 fj" 
/::;.p, = (2/::;.fj" 
/::;.w = (/::;.w, 

Zl = EVI + E2V2' 
Z2 = (WI + E2W2' 
Bt = (Btl + (2Bt2 • 

(25) 

Substituting, and dropping the carets, the leading order 
terms in ( yield 

[Btl - i/::;.WJVl = 0, 

[Btl + i/::;.WjW1 = O. 

These equations are readily solved. We find 

(26a) 

(26b) 

(27) 

where P, Q are arbitrary functions of the slow time scale 
t 2 . At next order in ( we have 

[Btl - i/::;.WJV2 = -Bt2Vl + (p,+ /::;.P,)V1 + Al vll 2v1 

+Blwll2v1 + CVlwi, (28a) 

[Btl + i/::;.wlw2 = -Bt2Wl + (p, - /::;.p,)Wl + Alwll2wl 

+B1vr1 2wl + CWlvi. (28b) 

Substituting in from (27), the solvability conditions are 

(29a) 

(29b) 

where we have used the fact that terms that go as eiLl.w t] 

in Eq. (28a) are resonant, as are e-iLl.w t, terms in (28b). 
The amplitude equations (29a, b) provide an asymptot­

ically exact description near the onset of the oscillatory 
instability. Comparing these equations with the normal 
form equations (24a,b), it is clear that the primary effect 
of the asymptotic scaling (25) is to eliminate the terms 
ZlZ~, z2zi in (24a) and (24b), respectively. This is be­
cause the frequency difference (/::;.w) between the modes 
is much larger than the difference in growth rates (/::;.p,) , 
i.e., 1/£ versus 1/£2. Consequently the behavior of each 
mode on the "fast" time scale is dominated by its os­
cillation frequency, Le., zl rv eiLl.w t, z2 rv e - iC.w t; cf. 
(27). Looking now at the nonlinear terms in (24a,b) it is 
clear that the final term in each fluctuates rapidly com­
pared to the first two terms and hence effectively "aver­
ages out" to zero. Even in the absence of these terms, 
however, the resulting equations continue to differ from 
"standard" equations (5a,b) by the presence of additional 
cubic terms, as described previously. 

The emergence of this "fast" time scale associated with 
/::;.w can be understood rather simply, and has a natu­
ral analog in the unbounded problem. Consider the two 
spatial modes Zl and Z2' These will be characterized by 
slightly different length scales, and hence slightly differ­
ent wave numbers. The unfolding parameter /::;.w mea­
sures the variation of the standing wave oscillation fre­
quency with wave number. In the case of an unbounded 
system, it can be naturally associated with the group ve­
locity of the traveling wave solutions. Hence there exists 
a "fast" time scale in the unbounded case as well. How­
ever, in the standard derivation of the coupled complex 
Ginzburg-Landau equations for an oscillatory instability 
in an unbounded system, one demands that the time scale 
associated with the group velocity be slow, even though 
this will only be true under very special circumstances, 
e.g., near the codimension-two point. Though this prob­
lem has been recognized, the correct Ginzburg-Landau 
equations have been derived only recently [12] and only in 
the unbounded case. These new equations are integrodif­
ferential in nature, and are more complex than the stan­
dard Ginzburg-Landau equations. It is therefore rather 
remarkable that for bounded systems, this same fast time 
scale leads to a simplified set of equations (29a,b). 

As a result of this averaging over a fast time scale, the 
amplitude equations (29a,b) possess an extra phase shift 
symmetry, and are readily analyzed. Letting P = Tl eiO, , 

Q = T2ei02 yields equations of the form [29] 

drl 2 2 dt = (p, + /::;.p,)r1 + (Arr1 + Brr2)rl' (30a) 

dr2 2 2 dt = (p, - /::;.p,)r2 + (Arr2 + B r r 1)r2, (30b) 

(30c) 

(30d) 

where AT) B r , Ai, Bi denote the real and imaginary parts 
of the coefficients. We distinguish four types of solutions: 
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1. The trivial state (Tl,T2) = (0,0). This solution cor­
responds to the no motion (conducting) state of a system. 
It is stable if ° < I6.JLI < -JL, a saddle if I6.JLI > IJLI, and 
a source if ° < I6.JLI < JL. 

2. A pure mode (Tb T2) = (Tl'O). This solution 
at Tl = ...j - (6.JL + JL) / Ar corresponds to a pure (sin­
gle frequency) standing wave (SWl) in the original sys­
tem. It exists if either (1) A .. > 0, 6.JL < -JL, or (2) 
Ar < 0, 6.JL > -JL. For both cases, one eigenvalue is 
[(Ar - Br)JL - (Ar + Br)6.JL]/Arj the other eigenvalue is 
strictly positive for case (1), and strictly negative for case 
(2). 

3. A pure mode (Tl' T2) = (0, T2)' This second standing 
wave (SW2) solution at T2 = ...j(6.JL - JL)/A .. exists if 
either (1) A .. > 0, 6.JL > JL, or (2) Ar < 0, 6.JL < JL. 
For both cases, one eigenvalue is [(A .. - Br)JL + (Ar + 
Br)6.JLl/Arj the other eigenvalue is strictly positive for 
case (1), and strictly negative for case (2). 

4. Mixed mode fixed point. This fixed point in (Tb T2) 
space satisfies 

1 1 (Ar - Br)JL + (Ar + B .. )6.JL 
(

T2) T~ = B; - A~ ((A,. - Br)JL - (Ar + B r )6.JL) 

(31) 

and represents a two-frequency modulated wave (MW), 
consisting of a mixture of the even and odd parity modes 
Zl, Z2' If 

I I I I (Ar - Br) 
0< Ar < B r , JL < 0, 6.JL < (Ar + Br)JL 

or if 

I I I I (Ar - Br) ° < Ar < -Br' JL > 0, 6.JL < - (A .. + B .. )JL, 

then the modulated wave exists and is a saddle. If 

I I (Ar - Br) ° < IBrl < Ar , JL < 0, 6.JL < - (Ar + Br)JL, 

the modulated wave solution is a source. It is a sink if 

I I (Ar - Br) ° < IBrl < -Ar' JL > 0, 6.JL < (Ar + Br)JL· 

We summarize these results in the following bifurcation 
diagrams [Figs. 2(a)-2(d)] in the (JL,6.JL) plane. For each 
figure, the (JL,6.JL) plane divides into six regions. The 
boundaries are defined by the lines: ro: JL+6.JL = 0, r l : 
JL - 6.JL = 0, and the half lines: r 2 : 6.JL = ~~~:JL, r3 : 
6.JL = ~:~~ JL. Within each of the six regions is drawn the 
associated (Tl, T2)-phase portrait. (Note that, through 
rescalings and parameter symmetries, we have restricted 
to the case Ar = -1 with no loss in generality.) Observe 
that the MW solutions bifurcate from the SWl, SW2 
branches in a pitchfork bifurcation in the reduced (Tb T2) 
space. 

It is interesting to consider the temperature eigenfunc­
tion corresponding to these various solutions. Recall 
that the eigenfunction associated with modes Zl, Z2 in 
Eqs. (20a, b) is of the form 

fJ(x,y, t) '" R.{[Zl (t)Fe (x) + z2(t)Fo(x)]f(y)} 
+(higher-order terms) , (32) 

where Fe, Fo are the even and odd parity horizontal spa­
tial eigenfunctions. For illustrative purposes, we take 
[16] 

Fe(x) = { e-"Y.,+ika: + e"Y.,-ik., } cos 7 ' 
Fo(x) = {e-"Y.,+ika: - e"Y.,-ik., } cos 7, 

(33a) 

(33b) 

defined on the domain [- t, t]. Here 'Y = (0: + if3) / L 
is a complex parameter depending on the group veloc­
ity of free traveling waves, and k is their wave number. 
This choice of eigenfunctions is in excellent qualitative 
agreement with the form of the primary unstable modes 
as determined from experiments (see Kolodner [7]). For 
this reason, we will use this functional form to illustrate 
the various possible solutions to Eqs. (24a,b). For the 
pure standing wave solutions, we set (Zb Z2) = (Tleiwt , 0), 
(0, T2eiw't), while for the modulated wave, we write 
(ZbZ2) = (Tleiwt,T2eiw't). The former [Figs. 3(a),(b)] 
takes the form of a chevron pattern, consisting of waves 
propagating in opposite directions in the two halves of 
the container. Note that we refer to such patterns as 
standing waves because they are pure parity states. In 
contrast, the latter tends to be localized first in one half 
ofthe box, and at time 0 (L) later, in the other half of the 
box. This behavior is illustrated in Fig. 4. The sloshing 
back and forth of the modulated wave qualitatively re­
sembles the "blinking state" behavior observed in binary 
fluid and doubly diffusive convection experiments ([3,4]). 

It is important to note that by varying the aspect ratio 
L by a small [i.e., 0(1)] amount, different regions of the 
(JL, 6.JL) plane can be accessed. Hence, the theory predicts 
that the type of behavior found near onset will be highly 
sensitive to aspect ratio, as observed experimentally [3]. 

C. ASYlIlptotic scaling: Ll.R '" 1/ L3, Ll.w '" 1/ L3 

We next consider the original scaling relation 6.R '" 
1/ L2 and supplement it with the auxiliary condition 
6.w '" 1/ L2. A multiscale asymptotic analysis similar to 
that described above now recovers the full normal form 
equations (24a,b) (neglecting deviations in the nonlin­
ear coefficients), i.e., there is no longer any "averaging 
out" of any terms in the equations. This is because 
Eqs. (24a,b) are in fact invariant under the rescaling: 
JL -+ €2 JL, 6.JL -+ €26.JL, 6.w -+ €2W, Zl -+ €Zb Z2 -+ €Z2, 
t -+ t/€2. Hence, with this new scaling, Eqs. (24a,b) 
also provide an asymptotically well-defined description 
for the underlying system. The requirement 6.w '" 1/ L2 
implies that the difference in oscillation frequencies be­
tween the two modes is smaller than what it would be 
under generic circumstances. This can be achieved by 
adjusting a second control parameter in the system and 
is entirely analogous to the (implicit) assumption made 
in the usual derivation of the Ginzburg-Landau equations 
that the group velocity of a traveling wave is small. With 
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FIG. 2. The bifurcation diagrams for A,. = -1 and (a) B,. > 1, (b) 0 < B,. < 1, (c) -1 < B,. < 0, and (d) B,. < -1. 
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this scaling there is no longer a fast time scale in the sys­
tem and thus certain terms in the normal form equations 
no longer average to zero. 

The analysis of the normal form equations (24a,b) 
divides naturally into two parts, the Hopf bifur­
cation with D4 symmetry when the parameters 
1l./-L, 1l.w, 1l.A, 1l.B, 1l.C vanish, and the nonsymmetric 
case when they are small but nonzero. We begin by re­
viewing the D4-symmetric problem. 

t=l 

t=7/8 

t=6/8 

t=5/8 

t=4/8 

t=3/8 

t=2/8 

t=1/8 

1. The D4-symmetric case 

In the D4-symmetric case Eqs. (24a,b) have the sym­
metry 

(34) 

in addition to the S1 normal form symmetry. To study 
these equations, the following coordinate transformation 
proves useful [27]: 

t=O ~~=---~~--~-r~~---=~-----;--------~~--~+---~~--~----~ 
FIG. 3. Odd and even par­

ity states O(x,YO,t) given by 
(32) and (33a, b) as a function of 
x E (-~, ~), at a sequence of 
times separated by f:l.t = ~ 2: , 
for L = 80, w(~ Wi) = 27r, 
k = 1, a = 2.5, f3 = 2.0. 
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t=157+-----...... 

t=O 

-40 -20 

u + iv = r sin Be'</> = 2Z122, 

w = rcosB = IZ112 -lz212, 
ei,p = Z1 Z 2 . 

IZ 1z21 

o 
x 

(35a) 

(35b) 

(35c) 

In terms of the (u, v, w, 1jJ) coordinates, Eqs. (24a,b) take 
the form 

1 du 
2 dt = u(p. + Ru r ) + (Iv - Iw)vw, (36a) 

1 dv 
2 dt = v(p. + Rv r ) + (Iw - Iu)wu, (36b) 

1 dw 
2 dt = w(p. + Rw 1' ) + (Iu - Iv)uv, (36c) 

where l' = ~+~2 + w 2 > 0, along with a de­
coupled equation for the phase 1jJ. The parameters 
R u, R v , R w, Iu, Iv, Iw are defined in terms of the coeffi­
cients A, B, C. 

The symmetry of the reduced system (36a-c) is given 
by 

"-1: (u, v, w) ~ (-u, -v, w); 

"-2: (u,v,w) ~ (u,-v,-w), (37) 

constituting the group Z2 x Z2 ~ D 2 • There 
exist three symmetric fixed points of the form 
(u, 0,0), (0, v, 0), (0,0, w), which represent periodic orbits 
in the four-dimensional phase space of the D4-symmetric 
system. A nonsymmetric fixed point (u, v, w) also exists 
for certain parameter regions, and also corresponds to 
single-frequency solutions in the original system. There 
is no chaos in this system becanse the dynamics takes 
place on a two-dimensional manifold. To see this we write 
the D 4 -symmetric equations in terms of the coordinates 
(1', B, ¢) defined in (35a-c), 

20 40 

FIG. 4. A modulated wave 
shown at two successive times 
(t = 0,157.0) for w = 6.293, 
Wi = 6.273, 1'1 = 1.6, 1'2 = 1.3, 
L = 80, k = 1, a = 2.5, 
(3 = 2.0. 

d1' 
dt = 1'(2p. + r{Ar + Br + [(Ar - Br) cos2 B] 

+Cr sin2 B cos 2¢}), (38a) 

~~ = l' sin B[cos B(Br - Ar + Cr cos 2¢) - C i sin 2¢], 

(38b) 

~~ = 1'[cosB(A, - B; - Ci cos 2¢) - Cr sin2¢], 

(38c) 

where Ar, B r , Cr , Ai, B i , C i denote the real and imagi­
nary parts of the coefficients A, Ii, C, and note that the 
quantity ~: is independent of 1'. Consequently, one can 

think of pro jectillg the three-dimensional system (1', B, ¢) 
onto the two-dimensional "associated spherical system" 
(B, ¢) [27]. Under appropriate restrictions, there exists a 
one-to-one correspondence between the fixed points and 
limit cycles in the associated spherical system, and those 
in the three-dimensional system (38a-c). By analyzing 
the behavior within the two-dimensional system, Swift 
finds that when the nonsymmetric fixed points are ab­
sent and all the symmetric fixed points bifurcate super­
critically and are unstable, a stable limit cycle must be 
present. This limit cycle appears to be unique up to sym­
metry, and can take the form of either a "libration" or 
a "rotation" depending on parameters [30]. Such limit 
cycles represent two-frequency solutions in the original 
(four-dimensional) normal form equations, and are the 
analogues of the two-frequency modulated waves consid­
ered earlier. These two types of limit cycles are sep­
arated by a homo clinic orbit. Heteroclinic connections 
can be found in the special case It = Ru = Rv = Rw = 0 
when equations (36a-c) reduce to the Euler equations, 
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and when Ru = Rv' These connections are prime candi­
dates for generating chaotic dynamics once the D4 sym­
metry is broken. 

2. The nonsymmetric case 

We now consider the full normal form equations 
(24a,b), for which the D4 symmetry is only approximate, 
corresponding to a large but finite container. We be­
gin by reducing these normal form equations to a three­
dimensional system using the (u, v, w) coordinates intro­
duced in (35a-c): 

1 du 
- - = J-£U + RuTU + (Iv - Iw)vw - ~w v - ~IvTV 2& . 

+(~Rw - ~Ru)wu, (39a) 

1 dv 
- - = /LV + RvTV + (Iw - Iu)wu + ~w u + ~IuT'U 
2 dt . 

+(~Rw - ~Rv)wv, (39b) 

Here 

Ru + iIu = (A + B + C)/2, 

Rv + iIv = (A + B - C)/2, 

Rw +iIw =A, 

~Ru + i~Iu = (~A + ~B + ~C)/2, 
~Rv + i~Iv = (~A + ~B - ~C)/2, 

~Rw + it;,.Iw = t;,.A. 

(40a) 

(40b) 

(40c) 

(40d) 

(40e) 

( 40f) 

For the even parity standing wave fixed point We, the 
eigenvalue associated with the W direction is -2(J-£+~J-£). 
Hence We is stable in the W direction for Rw < ° and 
unstable for Rw > 0. Similarly, for the (odd parity) Wo 

solution, the eigenvalue is -2(J-£ - t;,.J-£), and the fixed 
point is stable in the W direction for Rw < 0, unstable 
for Rw > O. The even mode undergoes a II:l-breaking 
steady state bifurcation at 

+[a2 -3:.+ R R] (~+~J-£)2 =0 (45) 4 u v R?;, . 

The corresponding condition for the odd mode is ob­
tained by setting ~J-£ -+ -t;,.J-£, t;,.w -+ -t;,.w in (45). 
Such (pitchfork) bifurcations will give rise to nonsym­
metric fixed points, which correspond to single-frequency, 
traveling wave solutions in the original system. Except 
very close to where they first branch from the standing 

Note that these equations are equivariant under 

11:1: (u,v,w)-+(-u,-v,w); (41 ) 

The 11:2 symmetry (37) associated with the D4-symmetric 
case is no longer present. 

In the following we set 

as indicated by the present scaling. Only in cases where 
certain degenerate structures are present will it be neces­
sary to retain these terms. Moreover, through rescalings 
we may also set Iv - Iw = -~ - a, Iw - Iu = -~ + a, 
Iu - Iv = 1, while absorbing the factors of 1/2 on the 
left-hand side of (39a-c) into a redefined time scale. The 
pure modes (Zl,O) and (0,Z2) now take the form 

( J-£+t;,.J-£) (u,v,w)= O,O,-----:R:- 'f J-£ + t;,.J-£ 0 
1 - R >, 

w 

( 43a) 

(43b) 

These two solutions, which we call We, Wo for short, repre­
sent the even and odd parity standing wave modes in the 
original system. Note that the fact that Wo is invariant 
under the reflection (41) is an artifact of the coordinate 
transformation (35a-c) leading to the reduced equations 
(39a-c); in the original coordinates Wo is odd under par­
ity. 

Owing to the reflection symmetry (41) in the problem, 
the line W = const is invariant under the flow. Conse­
quently, the Jacobian determinant governing the stability 
of these fixed points factors as follows: 

( 44) 

wave solutions, these fixed points cannot be found ana­
lytically without additional scaling assumptions. We will 
therefore study these solutions and others numerically. 

V. NUMERICAL RESULTS 

We have performed a series of numerical simulations 
on the normal form equations (20a,b) and various equiva­
lent representations [e.g., Eqs. (39a-c)]. These numerical 
studies were carried out using a DSTOOL simulation pack­
age, as well as a fourth-order, variable-step Runge-Kutta 
scheme in MATHEMATICA. 

A. Standing and traveling waves 

Since Eqs. (39a-c) are a perturbation of the D 4 -

symmetric normal form, it is helpful to first provide 
a physical interpretation for the various possible fixed 
points of Eqs. (36a-c). The fixed points of the form 
(0,0, w) correspond to the primary standing wave modes 
of the system with either odd (w < 0) or even (w > 0) 
parity. Specifically, using the representation (32), (33a,b), 
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FIG. 5. (a), (b) Traveling 
wave states of the form (47) and 
(c), (d) mixed parity states of 
the form (48). The solutions 
are periodic in time. The plots 
are constructed using the nu­
merical parameter values given 
in Fig. 3. 

(46) 

These solutions are illustrated in Figs. 3(a,b). The fixed points (u, 0, 0) are either left-traveling waves localized near 
the left wall (u > 0) or right-traveling waves localized near the right wall (u < 0): 

iJ(x, y, t) = 2y'±ue 'f<>x;L cos (wt ± kx =t= PI-) cos 7: f(y)· ( 47) 

See Figs. 5(a,b). Finally, fixed points of the form (0, v, 0) represent a type of mixed parity standing wave mode: 
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~{ /L ( f3x 1f) axiL ( f3x 1f)} 1fX '!9(X,y,t)=v±2ve-ax cos wt+kx-y=F"4 +e cos wt-kx+Y±"4 cosyf(y). (48) 

See Figs. 5(c,d). Note that there is no spatiotemporal 
symmetry that relates the solution for v > 0 with that 
for v < O. This is because these two solutions are related 
by the symmetry "2, which is an interchange symmetry 
between the odd and even parity modes. The existence 
of this mixed parity state in the perturbed problem was 

I 

noted in a related context by Nagata [28]. 
The perturbed equations (39a-c) have fixed points that 

are either fixed by the remaining reflection "lor that 
break it. The symmetric fixed points continue to be of 
the form (0,0, w) and are thus standing waves of either 
odd or even parity, while the nonsymmetric fixed points 
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take the general form (u, v, w). The latter can look like 
perturbations of localized traveling waves if v, ware both 
small, or the mixed parity waves if u, w are small. More 
generally the nonsymmetric fixed points combine char­
acteristics of all three types of waves, with a gradual 
transformation of one type into another as parameters 
are varied. All of these patterns break reflection sym­
metry and hence exhibit some propagative features. We 
will therefore refer to the nonsymmetric fixed points col­
lectively as traveling waves. All are singly periodic in 
time. Numerically we find that the nonsymmetric fixed 
points emerge either by bifurcating from a standing wave 
fixed point [in a steady state (pitchfork) bifurcation], or 
through a saddle-node bifurcation. We illustrate these 
possibilities in Fig. 6. 

..y 

w 

v 

'" 1\ 

w 
1\ 

->+1 
1\ 

v 

f\ 1\ 

w u 

v 

FIG. 6. Typical fixed point structures in the reduced 
space (u, v, w) for equations (39a-c), shown for increasing val­
ues of the parameter JL. Projections in the (v,w) and (v,u) 
planes are given. Thiangles denote sinks, crosses denote sad­
dles. The standing wave solutions lie along the line u = v = o. 
Observe that the traveling wave solutions can emerge either 
through a saddle-node bifurcation, or through a steady state 
bifurcation from the standing wave branch. 

B. Modulated waves and global bifurcations 

If a symmetric or nonsymmetric fixed point (u, v, w) 
undergoes a supercritical Hopf bifurcation, a stable, 
periodic orbit emerges. In the full four-dimensional 
phase space, this solution represents a two-frequency 
(quasiperiodic) modulated wave. Modulated waves may 
be classified as symmetric or asymmetric, according to 
whether they remain invariant under the symmetry op­
eration (u,v,w) ---t (-u, -v,w) of the system (39c-c). 
We identify the symmetric modulated waves with sym­
metric blinking states, and the nonsymmetric ones with 

I~ 17fl ... ·· ... 1 wLJ uLLJ 

FIG. 7. Phase portraits for equations (39a-c) with D.JL = 

-0.0082, D.w = 0.02, Ru = -1, Rv = -3, Rw = -2, a = 
1.3, showing a series of global bifurcations for the modulated 
waves as the parameter JL is increased from 0.0225 to 0.051. 
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oscillations about a confined traveling wave. Both so­
lution types have been identified by Cross [15] in the 
Ginzburg-Landau model and are also present in the sys­
tem (5a,b) [16,19]. The symmetric solutions were also 
noted by Bestehorn, Friedrich, and Haken [20]. We have 
numerically tracked both solution types away from onset, 
and found that they can undergo an interesting assort­
ment of heteroclinic bifurcations. A representative bifur­
cation sequence is illustrated in Fig. 7 as the parameter 
J-t is varied. Projections onto the (v, w) and (v, u) planes 
are given. The sequence shows a pair of asymmetric 
(small-amplitude) modulated waves born in a Hopf bi­
furcation from an asymmetric traveling wave pair. The 
orbits grow in amplitude, and combine in a (symmetry­
increasing) gluing bifurcation to form a symmetric mod­
ulated wave solution. This symmetric orbit continues 
to grow, spending an increasing amount of time near the 
"cusps" (see the figures for J-t = 0.05). Such cusps are due 
to "ghost" fixed points. A heteroclinic connection forms 
near J-t = 0.051 as two new pairs of nonsymmetric fixed 
points (formerly the "ghost points") come into being via 
a saddle-node bifurcation. One member of each pair is 
stable (denoted by the triangle in the last set of figures), 
and these stable traveling waves attract all nearby tra­
jectories. This transition thus corresponds to the usual 
picture of frequency locking. 

It is interesting to compare the global bifurcations 
present in the normal form equations (39a-c) with those 
found in the D4-symmetric case. Recall that Swift [27] 
located heteroclinic connections involving various fixed 
points for the D 4-symmetric problem. For that case, 
it was not crucial which pairs of fixed points were in­
volved, since all pairs of points could be related via a 
parameter symmetry of the problem. However, for the 
purposes of comparing such bifurcations with those in 
our full (non-D4-symmetric) normal form equations, it is 
necessary to distinguish two cases, namely, bifurcations 
that, in the D4-symmetric case, are heteroclinic to the 
fixed points of the form (±u, 0, 0) and those heteroclinic 
to the fixed points (O,O,±w). The motivation for this 
is as follows: as noted earlier [ef. 37] the symmetry of 
the "D4-symmetric" problem in the reduced phase space 
coordinates (u, v, w) is generated by the reflections 

11:1: (u,v,w) --+ (-u, -v,w); 

11:2: (u,v,w) --+ (u,-v,-w). (49) 

The fixed points (O,O,±w) are invariant under 11:1, while 
the fixed points (±u, 0, 0) break the lI:i symmetry, be­
ing instead invariant under 11:2' The full (nonsymmetric) 
normal form equations (39a-c) (1::l.J-t, I::l.w f 0) destroy the 
11:2 symmetry of the problem but preserve the 11:1 equiv­
ariance. Hence II:l-symmetric fixed points of the form 
(0,0, ±w) continue to exist (i.e., the standing waves), 
while those that break the 11:1 symmetry are now associ­
ated with (asymmetric) traveling wave solutions. Thus, 
qualitatively different global bifurcations occur in the full 
normal form equations depending upon whether the cor­
responding heteroclinic bifurcation in the D4-symmetric 
case is to II:rsymmetric or 1I:1-breaking fixed points. [The 

remaining case of the (0, ±v, 0) fixed points is analogous 
to the (±u, 0, 0) case.] 

We begin with the global bifurcations involving the 
standing wave fixed points. In the D4-symmetric prob­
lem (1::l.J-t = I::l.w = 0) we have a pair of periodic orbits 
(Le., the modulated waves) that are invariant under 11:2' 

(The two members of the pair are related to one another 
by the symmetry 11:1') These orbits grow in amplitude as 
the parameter Ru is varied. They then join (at Ru = -2) 
in a heteroclinic connection involving the two fixed points 
(0,0, ±w) (i.e., the two opposite-parity standing waves). 
This connection then breaks, and a pair of periodic or­
bits emerges that breaks the 11:2 symmetry. This new 
pair is invariant under 11:111:2' This global bifurcation thus 
induces a 11:2 --+ 11:111:2 symmetry exchange in the modu­
lated waves, the bifurcation being mediated by a pair of 
standing wave solutions. This is illustrated in Fig. 8. All 
modulated waves considered here are stable. 

In contrast, when the D4 symmetry of the normal form 
equations is weakly broken (1::l.J-t = 0.005, I::l.w = 0.0003), 

u 

u 

[2J{Q] 
u 

u 

FIG. 8. Modulated waves for the D4-symmetric case, with 
J1. = 0.05, t::.J1. = 0, t::.w = 0, Rv = -2, Rw = -1.75, a = O. 
The sequence shows the projections onto the (u, v) and (u, w) 
planes as the parameter Ru is varied from -1.9 to -2.1. 
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the initial pair of modulated waves is no longer "'2 in­
variant, although the two waves remain related to one 
another under "'1. As Ru is varied, these solutions even­
tually merge and form a single, "'1 -symmetric orbit. This 
orbit then pinches off in an "ungluing" bifurcation involv­
ing a single homoclinic point at (0,0, -w). Following this 
homo clinic bifurcation to a standing wave, a pair of new 
periodic orbits emerges, both of which again break the 
"'1 symmetry. This is illustrated in Fig. 9. 

We next consider global bifurcations of modulated 

FIG. 9. Modulated waves for the broken-D4-symmetry 
case, with IL = 0.05, t::..1L = 0.005, t::..w = 0.0003, R" = -2, 
Rw = -1.75, Ct = 0, as R" is varied from -1.96 to -2.0233. 
Note the 11:1 -symmetric modulated wave that forms near R" = 
-2.007 (frame 3). A homo clinic connection occurs between 
Ru = -2.0231 and -2.0233 (frames 5 and 6). 

waves involving the traveling wave fixed points. In the 
D4-symmetric case we find a stable pair of periodic orbits 
that break the 1>:1 and "'2 symmetry, but that are invari­
ant under 1>:11>:2' As the parameter Rv is varied, these or­
bits eventually merge in a heteroclinic connection involv­
ing the pair of traveling wave fixed points at (±u, 0, 0). 
A new pair of 1>:1-symmetric orbits then emerges. The 
global bifurcation thus leads to a 1>:1"'2 --+ 1\:1 symmetry 
exhange. See Fig. 10. This picture is significantly modi­
fied when the D4 symmetry ofthe problem is weakly bro­
ken (Lip, = 0.001, Liw = 0.005). For the parameter values 
examined there exists, in addition to an initial pair of or­
bits (which are still related by 1\:1, but which are no longer 
1>:11\:2-symmetric), a stable I\:rsymmetric orbit. Each of 
the orbits in the pair becomes homo clinic to a (different) 
traveling wave fixed point and is destroyed. The stable 
I>:rsymmetric orbit remains. See Fig. II. 

We note also that, as for Eqs. (5a,b) [17,18], stable 
modulated waves can coexist with stable traveling waves. 
This is true despite the fact that both such solutions can 
be brought arbitrarily close to the origin (as can be seen 
by rescaling the u, v, w variables along with the unfold­
ing parameters p" Lip" Liw). We illustrate this in Fig. 12. 

FIG. 10. Modulated wave for the D4-symmetric case, with 
IL = 0.05, t::..1L = 0, t::..w = 0, Ru -1.75, Rw = -2, Ct = 1.5. 
The sequence shows the projections onto the (v, w) and (v, u) 
planes as the parameter Rv is varied from -1.90 to -2.02. 
Observe the heteroclinic connection in frame 3 (Rv = -2.0). 



3596 A. S. LANDSBERG AND E. KNOBLOCH 53 

FIG. 11. Modulated waves for the broken-D4 -symmetry 
case, with /-t = 0.05, l:i./-t = 0.001, l:i.w = 0.005, Ru = -1.75, 
Rw = -2, a = 1.5, as the parameter Rv is varied from -1.900 
to -1.939. 

Numerical simulations also show that the stable modu­
lated waves appearing in the D4-symmetric problem per­
sist even after the D4 symmetry is (weakly) broken; the 
waves merely deform, despite the apparent absence of an 
invariant sphere. 

C. Period doublings, chaos, and collapsing states 

Numerical simulations have revealed a number of other 
dynamical phenomena associated with the modulated 

w o u 

1\ /\ 

v v 

FIG. 12. A stable, "-l-symmetric modulated wave coexist­
ing with a stable traveling wave (denoted by a triangle), for 
/-t = 0.09, t::../-t = -0.01, t::..w = 0.1138, Ru = -1, Rv = -3, 
Rw = -2, a = 1.3. 

[~ ~ I l " ~ ." I ' ____ d 
I---~i 

"1_ ~ J 

~. I I ,fA l------- 1--- - I 

____ i __ J lJii __ _ 
FIG. 13. Period doubling of a modulated wave for /-t = 0.1, 

t::../-t = -0.13, l:i.w = 0.08, R" = -0.9, Rw = -1.8, a = 2.5 
[Eqs. (39a-c)J, as the parameter Ru is varied from 0.0610 to 
0.0621. The motion is projected onto the (v, u) plane (left col­
umn); blow-ups of the top portion of each figure are provided 
(right column). 

wave solutions. In particular, period-doubling sequences 
can occur for the modulated wave solutions. Since the 
modulated waves are in fact 2-tori in the full four­
dimensional phase space, such bifurcations correspond to 
torus doubling. Nonetheless, for visualization purposes, 
it is simpler to remain within the three-dimensional phase 

u 

v 

FIG. 14. A chaotic attractor for Ru = 0.0625. The at­
tractor breaks the reflection symmetry "-1 of the problem (not 
obvious from picture). 
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space (e.g., u,v,w). In Fig. 13 we illustrate a sequence of 
period doublings, through period eight, as a control pa­
rameter (R,J is varied. Note that the modulated waves 
depicted here break the reflection symmetry ""1 of the 
problem. 

As the parameter Ru is increased further such period­
doubling sequences can lead to (apparently) chaotic dy­
namics. This is depicted in Fig. 14. With increasing 
parameter values such an asymmetric attractor can grow 
and merge with its opposite parity counterpart to form 
a ,,"l-symmetric object. This process can reverse as well. 
The existence of chaotic structures has also been noted 
by Knobloch and Hirschberg in a numerical study of the 
related equations (5a,b) [19]. 

For other parameter values additional types of solu­
tions are found. Figures 15(a,b) depict large-amplitude 
periodic and apparently chaotic solutions. The presence 
of such large-amplitude solutions is particularly interest­
ing, since points on these trajectories spend a great deal 
of time near the origin, while making occasional, short­
lived, large-amplitude excursions away from it. During 
such "bursts," the amplitudes of the solutions have been 
observed to grow to over 40 times their characteristic size 
near the origin before undergoing a rapid collapse. This 
bursting behavior is qualitatively similar to the "repeated 
transients" and "collapse states" observed in experiments 
and numerical simulations of binary fluid convection [7, 
8], and offers a possible explanation for the observed be­
havior. It is useful to examine these large-amplitude or­
bits in terms of the full four-dimensional normal form 
equations (24a,b). In Figs. 16(a,b,c) IZll2 + IZ212 is plot­
ted as a function of time for both types of solutions. The 
bursting behavior is clearly seen. Observe that the col­
lapse of the spike is more rapid than its growth, as ob­
served in the experiments [7,8]. Note that this repre­
sentation for the solutions eliminates the fast oscillations 
at frequency near w, and hence describes the dynamics 
of their envelopes. Consequently, the temperature field 
19(x, y, t) corresponding to Fig. 16(a) is in fact quasiperi­
odic. As noted previously, parameter values can be found 
such that the burst peaks are significantly larger than 
those depicted here. We have observed that the ampli­
tudes of the bursts are highly sensitive to parameter value 
and integration time step, suggesting that in the physical 
system, external noise could playa prominent role. This 
behavior is reminiscent of that usually associated with 
the presence of a global bifurcation. 

It should be noted that the "large-amplitude" burst­
ing behavior considered here must really be regarded as 
small in absolute magnitude, in order for the normal form 
equations to remain valid; the significant feature of the 
solution is the large ratio of the amplitude of the bursts 
to the amplitude of the motion near the origin. The 
overall amplitude can be made small by reducing the bi­
furcation parameter and rescaling the equations. How­
ever, experimentally it is unclear whether the observed 
finite-amplitude bursting behavior would be reduced in 
amplitude if the system parameters were brought closer 
to threshold. If this is so the asymptotic description pro­
vided by the normal form equations presents a reasonable 
explanation for this particular phenomenon. However, if 
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FIG. 15. Large-amplitude attracting orbits for J.L = 0.1, 
~w = 0.08, Ru = 0.1, Rv = -0.9, Rw = -1.8, a = 2.5; (a) 
periodic attract or at ~J.L = -0.13; (b) aperiodic attract or at 
~J.L = - 0.14. Enlargements near the origin are also shown. In 
these parameter regimes the system behavior depends sensi­
tively on the time step size used in the numerical integration 
scheme. The attractors shown here were calculated with a 
fourth-order Runge-Kutta method with a step size of 10-5 . 
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FIG. 16. The amplitude 
A(= IZll2 + IZ212) vs t for the 
(a) periodic and (b) aperiodic 
"collapse" states depicted in 
Fig. 15. A close-up ofthe burst­
ing behavior [for case (a)] is 
shown in (c). 
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the experimental bursting behavior is inherently a finite­
amplitude effect, then the theory offers no such solution. 

VI. DISCUSSION AND CONCLUSIONS 

In this paper we have argued that traveling wave con­
vection in a large aspect ratio container cannot be com­
pletely described as a perturbation of the unbounded 
translation-invariant system. In particular we have 
shown that when the problem is described as the large 

7800 

aspect ratio limit of oscillatory convection in a box the 
resulting amplitude equations have an approximate D4 
symmetry. As a consequence an additional cubic nonlin­
earity with an 0(1) coefficient is present. This new term 
is intrinsic to the problem and thus does not represent a 
perturbation to the unbounded problem, where this term 
is entirely absent. Mathematically this is because in fi­
nite boxes translation invariance cannot be used to argue 
for the absence ofterms ofthe form (vw 2 , wv 2 ) in (5a,b). 
A similar observation applies to the onset of steady con-
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vection in a large container. Here too the interaction 
between even and odd parity modes is described by am­
plitude equations with approximate D4 symmetry [31] 
and the equations of [23] cannot be obtained as a small 
perturbation of the translation-invariant system. 

The above conclusion is at variance with earlier at­
tempts at treating this problem in terms of traveling 
waves using coupled complex Ginzburg-Landau equa­
tions with appropriate (linearized) boundary conditions 
for the envelope functions [15,16]. As shown in Ref. [16] 
this approach leads, near onset, to the normal form equa­
tions for the unbounded problem, perturbed by small lin­
ear terms. The predictions of the resulting theory [17,18] 
are in good qualitative agreement with the experiments 
[3, 16] and with numerical integration of the Ginzburg­
Landau equations [15]. Nonetheless, in spite of this suc­
cess, there has in fact been no quantitative tests of this 
theory, neither against experiments nor against numeri­
cal simulations ofthe full fluid equations in long but finite 
boxes. 

The present theory, as shown in this paper, also pre­
dicts states that bear a qualitative resemblence to the 
observed ones. In particular we have described not only 
the two types of standing waves and secondary bifurca­
tions to traveling and blinking states, but have also found 
in our equations asymmetric quasiperiodic states of the 
type described by Cross [15], as well as states resembling 
the "repeated transients" first observed in Ref. [7]. 

Although once again the agreement is merely quali­
tative, the amplitude equations derived here have suc­
ceeded in describing a larger variety of the observed dy­
namical behavior. Despite this success, there remain 
some problems in directly comparing these results with 
the experimental observations. A prime difficulty is that 
in experiments on doubly diffusive and binary fluid con-

FIG. 16. (Continued). 

10750 1080 

vection, the precise degree to which the system is above 
threshold (corresponding to the parameters J.l, l!!..J.l), as 
well as the scaling behavior of the system, are not eas­
ily determined. Moreover, we know that for most val­
ues of the, separation ratio the bifurcation to standing 
waves is in fact subcritical [32, 33] and this is so also 
in finite but large aspect ratio boxes [8]. However, for 
other problems, like the Taylor-Couette, the transition 
to standing waves is usually supercritical [34] and the 
potential for comparing the present theory with experi­
ments is much improved. It should be emphasized that 
because of the approximate D4 symmetry the applicabil­
ity of our equations will extend beyond the present set of 
problems. We mention just two examples, the dynamics 
of Faraday waves in a nearly square container [35] and 
the long-term dynamics of the solar sunspot cycle arising 
from the interaction of dipole and quadrupole magnetic 
fields [36]. 

In an accompanying paper [37] we compute explicitly 
the normal form coefficients A, B, C in Eqs. (24a,b) for a 
doubly diffusive system in Hele-Shaw geometry, recently 
studied in Ref. [4]. These calculations verify that all three 
coefficients remain of order one in the limit oflarge aspect 
ratio boxes and provide an independent justification of 
our approach. A related calculation by Zangeneh [38] for 
oscillatory magnetoconvection in finite containers yields 
similar conclusions. 
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