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The kinetics of solvent reorientation in hydroxylated
solvents from the exciting-wavelength dependence of
chromophore emission spectra

John G. Milton, Robert M. Purkey, and William C. Galley

Department a/Chemistry. McGill University, Montreal. Quebec, Canada H3C 2K6
(Received 21 October 1976)

The disappearance of the exciting-wavelength dependence of the phosphorescence spectra of polar,
aromatic chromophores in supercooled glycol-water mixtures is utilized to monitor the kinetics of solvent
reorientation. Reorientation times in the nanosecond to second range are obtained for (3:2 vI v)
glycerol-water and (1:1 vlv) ethylene glycol-water at I40-240 'K. The results suggest that the
process is one involving a cluster of solvent molecules and in which the chromophore plays a relatively
passive role. Steady-state data and direct measurements of phosphorescence shifts as a function of time
indicate that the solvent reorientation process is nonexponential in nature. The decay function derived
from the temperature dependence of the steady state data is consistent with the decays observed directly
as a function of time. Interpretation of this nonexponential decay in terms of a summation of rate
processes leads to a distribution dominated by two reorientation rate constants. The relative contributions
of the slow and faster reorientation rate constants in addition to their activation parameters differ for the
glycerol-water and ethylene glycol-water mixtures.

I. INTRODUCTION

While the emission spectra of aromatic molecules in
fluid solution is normally independent of the wavelength
of excitation, a shift in the spectra with exciting wave­
length has been reported for polar aromatic molecules
in solvents which are polar and rigid. 1-11 In an earlier
publtcatton' the role of solvation-site heterogeneity at
the basis of this effect was emphasized. The exciting­
wavelength dependence was envisaged as arising as a
consequence of the photoselection of molecules occupy­
ing differing solvation geometries and hence possessing
differing transition energies. Similar mechanisms have
been discussed by Rubinov and Tomin2 and Itoh and
Azumi. 3

The dynamic nature of the exciting-wavelength depen­
dence which follows quite naturally as a consequence of
a solvation-site heterogeneity was evidenced by the ob­
servation' that (1) the exciting-wavelength dependence
of emission spectra was observed to be temperature de­
pendent and vanished as the solvent became sufficiently
mobile for randomization of the solvation sites to occur,
and (2) the temperature at which emission spectra be­
came independent of exciting wavelength was found to
depend on the excited-state lifetime of the chromophore;
for a given molecule occurring at a much lower temper­
ature for phosphorescence than for fluorescence. Thus,
the exciting-wavelength dependence of emission spectra
depends on the interplay between the rate at which an
excited state population decays and the rate at which
solvent molecules reorganize. The present communi­
cation describes the quantification of the above observa­
tions to provide information on the kinetics of solvent
reorientation processes in glycol-water mixtures.

II. EXPERIMENTAL

2-Aminobenzoic acid (Eastman Organic Chem.), 2­
amino-5-bromobenzoic acid (K & K Laboratories), 2­
amino-5 -chloro-benzoic acid (Matheson, Coleman &
Bell), 2-amino-5-iodobenzoic acid (Aldrich Chem.),

5-bromoindole (K & K Laboratories), 5-chloroindole
(Aldrich Chem.), and indole (K & K Laboratories) were
recrystallized in the dark from alcohol-water before
use. Proflavin (K & K Laboratories) and 8-anilino-1­
naphthalene-sulfonic acid (Fisher) were of the highest
purity available from the manufacturer and were used
without further purification. Ethylene glycol, "Chro­
matoquality," and glycerol, "Spectrograde," obtained
from Matheson, Coleman, and Bell were checked for
emission impurities prior to use. Only solvents for
which the ratio of the signal arising from chromophore
emission to solvent emission was better than 100 were
used. Glasses were prepared from 3: 2 v/v glycerol­
water (GW) or 1: 1 v/v ethylene glycol-water (EGW)
solutions. The densities of the pure solvents were used
to calculate the appropriate weight of each solvent to be
added to give the equivalent volume to volume solution.
The final concentration of the chromophore was 3 x 10-6 M
for proflavin and 5x 10-4 M for all others. Preliminary
experiments had shown that at these concentrations the
solutions were free from solute aggregation. Solutions
were placed in 4 mm i. d. suprasil quartz tubes for ob­
servation of the emission.

Spectra were recorded on an instrument which has
been described prevtously'" and were uncorrected for
instrument sensitivity. With the exception of 2-amino­
5-bromobenzoic acid and 2-amino - 5-iodobenzoic actd,
phosphorescence lifetimes were obtained either by in­
terrupting the exciting beam and following the emission
decay on a Moseley X- Y recorder, or by recording the
phosphorescence decay on an oscilloscope following a
single exciting pulse of about 100 msec achieved by ro­
tating the phosphorescence choppers through one com­
plete dark-light-dark cycle. The lifetimes of the phos­
phorescence of 2-amino-5-bromobenzoic acid and 2­
amino-5-iodobenzoic acid which were too short to be
monitored in this manner, were measured from the de­
cay of the emission excited with a pulsed nitrogen Ia­
ser13 at 337 nm.

Phosphorescence emission shifts were measured as
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TABLE I. Transition temperature T 1/2 observed for chromophores with differing lifetimes.

:\excitation (1m.. T 1/ 2
Code Emission (nm) (nm) (K) T (sec)a

Indole 1 P 280,295 1.2 158.0 5.0

Proflavin 2 P 436,460 11. 0 159.0 1.4

Anthranilate" 3 P 358, 368 3.9 160.0 1.1

Cl-indole 4 P 283,308 1.2 160.5 0.8

Cl-santhr-antlate" 5 P 358, 368 3.5 161.0 0.35

Br-indole 6 P 290,302 0.9 164.7 0.025

Br-canthrantlate" 7 P 360,380 4.1 165.3 0.007

I-anthranHateb 8 P 360,370 1.8 169.5 0.0004

8-ANS 9 F 380,415 12.8 199.5 15 x 10-9c

Indole 10 F 280, 295 10.3 206.5 5x1o-9d

Proflavin 11 F 436,460 3.8 203.0 4.5 X 10-9·

aMeasured at T 1/ 2•
bsamples contained O.02M acetate, pH 4. O.
cLifetime reported by Anderson and Weber14 in aqueous bovine serum albumin solution.
dLifetime reported by Walker et al. 1S in water at 283 K.
"Lifetime reported by Chen et al , 16 in buffer at room temperature.

1.0

The loss in exciting wavelength dependence with in­
creasing temperature in Fig. 1 contains a nonkinetic
contribution. This is most apparent on the low temper­
ature side on the transition Where, for example, the
changes in a/a.ax for proflavin phosphorescence and for
8-ANS fluorescence are the same despite the lOS-fold

a function of temperature in Fig. 1. For each chromo­
phore the shift in the emission spectra a obtained by ex­
citing at two different wavelengths has been normalized
to the value am"" observed at 77 K. The temperature
range over which a loss of exciting-wavelength depen­
dence occurs is observed to be a function of the excited­
state lifetime of the chromophore, T. As T becomes
shorter, the decrease in a/am"" is observed at warmer
temperatures.
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the difference in either the position of the emission
maximum or the position of one -half intensity measured
on the blue edge of the emission spectrum. Fluores­
cence emission shifts were measured on the red edge
of the emission spectrum in order to avoid the exciting
beam. Phosphorescence spectra of 5-bromoindole, 2­
amino-5-bromobenzoic actd, and 2-amino-5-iodo ben­
zoic acid were measured without phosphorescence chop­
pers and the emission shifts measured as for fluores­
cence spectra. The parameters calculated in the fol­
lowing sections were independent of the measurement
used. Table I gives the exciting wavelengths used and
the shift observed at 77 K for the chromophores used.
These shifts were reproducible to within 0.1 nm, In
measuring chromophore emission shifts, the two ex­
citing wavelengths were chosen solely on the basis of
obtaining a measurable emission shift.

Sample temperatures were varied by adjusting the
flow of cold nitrogen gas through a quartz Dewar hous­
ing the sample tube. The usual rate of temperature
change was O.75± O.25 deg/min. Sample temperatures
were monitored with a copper -constantan thermocouple
placed in a second SOlvent-containing tube next to the
sample tube. Hysteresis effects were not observed;
however, in general experiments were carried out as
a function of increasing temperature only to avoid
crystallization of the solution which tended to occur with
slowly decreasing temperatures.

III. RESULTS AND DISCUSSION 110 130 150 170 190 210 230

A. The variation of the exciting-wavelength
dependence of emission spectra with
temperature and lifetime

The exciting-wavelength dependence of the emission
spectra of a number of chromophores in GW appears as

TEMPERATURE (K)

FIG. 1. Loss of exciting-wavelength dependence of emission
spectra for indole (~), 2-amino-5-bromo benzoic acid (0),
and 2-amino-5-iodo-benzoic acid (*) phosphorescence and 8­
ANS (e) and indole (t) fluorescence as a function of tempera­
ture ingIycerol-H2Q1 (3: 2 vlv).
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in which h, e, and k are Planck's constant, the base of

FIG. 2. Plot of the logarithm of the chromophore phosphores­
cence excited-state lifetime, 'T, as a function of Tj72' Numbers
refer to the chromophores listed in Table 1.

(7)

(3)cp(t, T)=exp[-k(T)t] ,

B. Comparison of the data with a model
involving a single solvent-reorientation
rate constant

The characterization of the data in Fig. 2 in terms of
an Arrhenius temperature dependence suggests that the
reorganization of solvent geometries can be described
in terms of a rate constant with the activation parame­
ters given above. This implies that distinct solvation
geometries selected at t= 0 would undergo randomiza­
tion in the form

natural logarithms, and the Boltzmann factor, respec­
tively, leads to an activation entropy of 178 cal mole "
• deg'", Exceedingly large activation entropies are
characteristic of many relaxation processes in hydrox­
ylated solvents and have been interpreted as indicating
that a group of molecules rather than a single molecule
represents the reorienting unit. 17 The cooperative na­
ture of the process involving the simultaneous reorgan­
nization of a number of molecules about the chromo­
phore is probably at the basis of the observation that
the chromophore appears to be playing a passive role.
This does not imply that chromophore-solvent inter­
actions which differ from one chromophore to the
next are not present, but only that the dynamics of
solvent reorganization involve a sufficiently large
cluster of molecules so that these variations do not
constitute sizeable perturbations.

I - E a I gAogr - 2. 3RT
1

/
2

- 0 ,

which is the relationship observed in Fig. 2.

where cp(t, T) is a function normalized at t=O which is
a measure of the difference between solvation geome­
tries and k( T) is the reorientation rate constant. In the
steady state experiments described above, the decay of
the orientation of the solvation geometries is not mea­
sured directiy as a function of time. At all instances in
time there are populations of chromophores that have
been in the excited state for varying periods of time.
The relevant function is therefore the time-averaged
value of cp(t, T), which is defined as

cpU, T) =f: f(t)cp(t, T)dT, (4)

where f(t) =exp( - tlT)IT represents the fraction of mole­
cules in the steady state population that have existed in
the excited state for a time t, Setting cp(t, T) = ulUmu.

and utilfzmg Eqs. (3) and (4), we find that the loss in
exciting wavelength dependence in a steady state experi­
ment is given by

umu.!a= 1 + kT (5)

and is now a function of T rather than time. Taking the
logarithm of Eq. (5) and incorporating an Arrhenius
temperature dependence for the reorientation rate con­
stant of the form of Eq. (1) yields

109(~ -~ = logAT-Ea/2.3RT (6)

the temperature of the midpoint of the transition
where umu.!a= 2,

(2)

(1)

646260
-1

1 X
2"

k=Aexp(-EaIRT) ,

0

-1
t-
O)
0 -2

- 3

-4

58

where A and E a are the pre-exponential factor and acti­
vation energy, respectively. The values of logA and
E a determined from this plot are 51. 7 ± 1. 3 and 38.0
± 0.3 kcal/mole, respectively.

Interpreting the pre-exponential factor in accordance
with absolute rate theory in terms of an activation en­
tropy as t from the relation

ekT
A = hexp(ASt/R)

difference in their excited state lifetimes. In that our
present concern is with the contribution arising from
dynamic processes an empirical correction was made
for this lifetime independent contribution. This cor­
rection as indicated in the Appendix had little influence
on the results. The lifetime-dependent portion was in­
terpreted in terms of the dynamics of solvent reorienta­
tion.

Transitions such as those shown in Fig. 1 can be
characterized by the temperature T1 / 2 at which a
=~ amax' Table I provides the values of T 1 / 2 deter­
mined for a number of chromophores with differing
lifetimes T, in glycerol-water (3: 2 vlv). The linear
relationship between Ti72 and T for chromophores of
quite different structure and polarity shown in Fig. 2
provides evidence that the chromophore itself cannot be
a dominating parameter in the kinetics of reorganization
of the solvent molecules about the chromophore. If T 1 / 2

is taken as the temperature at which the time for sol­
vent reorientation equals T, then the linear relationship
between Ti12 and logr suggests that the reorientation
process can be described in terms of a rate constant
with an Arrhenius temperature dependence of the form

J. Chern. Phys., Vol. 68, No. 12,15 June 1978

Downloaded 30 Oct 2008 to 134.173.131.214. Redistribution subject to AlP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



Milton, Purkey, and Galley: Chromophore emission spectra 5399

•

(9)

(8)

(10)

r~ 1
Jo !(t)F(t, T)dt = (1 + kOT)'" •

F(t, T) =exp( - kot)M(l - 0',1, kot) ,

where 0' is an adjustable parameter, 0 < 0' < 1, and ko is
a reorientation rate constant. By utilizing the graphical
analysis described in the Appendix, the data in Fig. 3
yield values of 0', 10gA, and E a of 0.45,49.2, and 35.3
kcal/mole, respectively. The solid line shown in Fig.
3 has been calculated from Eq. (8) with these parame­
ters.

The solution is obtained as the inverse Laplace trans­
form of the right hand side and is found to be1S

D. Solvent reorientation decay function

The observation that the steady state solvent reori­
entation data was consistent with a relationship of the
form of Eq. (8) rather than the simpler form of Eq. (5)
implies that the decay function for solvent reorientation
is not a simple exponential. The appropriate decay
F(t, T), can be determined as the solution of the follow­
ing integral equation:

It follows from Eq. (8) that the midpoint of the tem­
perature profile where a= tamax does not quantitatively
represent the temperature at which ko=liT. This tem­
perature now depends on 0' and occurs at the point
where a = 2-'"amax• In addition we see that a plot of 10gT
vs the reciprocal of the temperature (T ko=l IT) at which
ko=l/T will be linear with slope Ej2. 303R and inter­
cept equal to 10g(</J",·1 - 1) -logA, where </J is the value
of amaxl a at T kO=l/ T ' Thus, Eq, (8) also predicts lin­
earity of the type observed in Fig. 2.

Figure 4 shows a plot of 10gT as a function of the re­
ciprocal of T kO=l IT' From this plot (solid line) we ob­
tain values for logA of 46.7 ± 3.1 and E a of 34.2 ± 2. 3
kcal /mole . Table II gives the values of 0', logA, and
E a obtained from the evaluation of data of the type shown
in Fig. 3 for a variety of chromophores. As can be
seen, over a comparable temperature range there is
very good agreement between these values of E a and
10gA and those obtained from Fig. 4. This observation
serves to emphasize the validity of the method over
small temperature ranges. Inspection of Fig. 4 indi­
cates that over a much larger temperature interval en­
compassing temperatures at which reorientation occurs
on a nanosecond scale (fluorescence data) this plot is
nonlinear. The significance of the temperature depen­
dencies in 0', E a, and 10gA will be examined in a sepa­
rate communication. The more satisfactory fit of the
data afforded by use of Eq. (8) indicates that two param­
eters, 0' and ko, are required to characterize the sol­
vent reorientation processes in glycol-water mixtures.

C. An empirical description of solvent
reorientation in glycol-water

While the data in Fig. 3 cannot be accounted for in
terms of Eq, (5), an empirical equation can be found
which will fit the data. This equation has the form

65 66

EO. 6
EO. 8

\ , , ,
\ ,

\

\

\ ,
~

6261

- 16

It follows from Eq. (6) that for any chromophore
characterized by a lifetime T, a plot of log[(amaja) - 1]
vs T-1 should be linear and in addition yield values of A
and E a equal to those obtained by plotting the midpoints
of the transitions of a number of chromophores with
differing lifetimes as in Fig. 2. This hypothesis is
tested in Fig. 3, which shows a plot of log(ama/a - 1) vs
T -1 for proflavin phosphorescence in GW. The values
of 10gA and E a which would be obtained if a linear rela­
tionship is assumed (dotted line) are 33.5 ± 1. 7 and 24. 5
± 1. 1 kcal/mole, respectively. In view of the foregoing
discussion two inconsistencies can be seen: (1) The re­
lationship is not linear, and (2) The values of 10gA and
E a are smaller than those obtained from an evaluation of
the data given in Fig. 2 (51. 7 and 38.0 kcal/mole, re­
spectively). Thus, Eqs. (6) and (7) do not provide a
self-consistent description of the observations. Similar
observations were obtained with all chromophores ex­
amined and with pure glycerol, ethylene glycol-H20 ,
and propylene glycol-H20 solvents. It is clear that the
solvent reorientation in these liquids monitored with the
present approach cannot be described in terms of a sin­
gle reorientation time over the temperature range in­
vestigated in these experiments. Dielectric relaxation
studies on these liquids have also yielded this conclu­
sion. 22• 23

\

\
\

\

FIG. 3. Plot of log(um../u-l) vs T-1 for proflavin phosphores­
cence in gtvcerol-water (3: 2 v/vl. The experimental points
are taken from five trials. Dotted line was determined by
a linear regression analysis and solid line was calculated
from

log ("n:r"" -1) = log [(1 + T)'" - 11.

16

, ,
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I
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0
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FIG. 4. Plot of the logarithm
of the chromophore excited­
state lifetime, T, as a func­
tion of T;;~=1/T' Numbers re­
fer to the chromophores listed
in Table 1.

where M(I - a, 1, kot) is a confluent hypergeometric
function. Figure 5 illustrates the shape of F(t, T) as a
function of the parameter a. It can be seen that Eq.
(10) predicts a nonexponential decay and that the degree
of nonexponentiality is related to a. For all values of
a, the decay is slower than that of a simple exponential
with the same rate constant ko, and the more slowly de­
caying components become increasingly significant as
a becomes smaller.

E. The measurement of the time dependence
of solvent reorientation

The solvent reorientation decay function F(t, T) was
measured directly from the decay of the emission in­
tensity following an exciting pulse which populated the
triplet state of proflavin in a time which was short com­
pared to both the lifetime and the solvent reorientation
time l/ko. The experiment was performed at a temper-

TABLE II. Activation parameters associated with solvent reorganization in glycol-water
solvents obtained with variety of chromophores.

T k=1/T Eo
Chromophore Emtsston" (K) Q (kcaf/rnole) logA rtsec)"

Indole P 153.9 0,45 34.8±5.0 48.3±5.7 5.4

Proflavin P 155.0 0.45 35.3±2.9 49.2 ± 3. 0 1.4

Proflavin P 144.2 0.7(f 21. 4 ± 1. 5 32.7±1.6 1.4

2-amino-benzoic acid P 156.3 0.45 35.1 ±2. 8 48.7±3.5 1.1

5-chloro-indole P 155.8 0,45 33.6±5.1 46.9±6.8 0.8

2-amino-5-chloro- P 157.7 0.45 34.3 ± 3. 6 47.7±4.1 0.35
benzoic acid

5-bromo indole P 162.9 0.45 34.6±3.9 47.7±5.0 0.025

2-amino-5-bromo P 162.3 0.45 35.0±2.4 48.9±3.6 0.007
benzoic acid

2-amino-5-iodo- P 167.5 0.45 33.3±4.1 46.5±5.0 0.0004
benzoic acid

8-ANS F 197.2 0.80 19.2±3.0 29.0±3.2 15 x 10-9

Indole F 204.8 0.80 16.8±1.2 26.1±1.1 5 x 10-9

Proflavin F 202.0 0.80 18.2±1.5 27.9±2.0 4.5x10-9

aphosphorescence (P), fluorescence (F).
bChromophore lifetime measured at Tk~=l/T; see table 1.
cProflavin in ethylene glycol- O. 02M cacodylate, pH 7.4 (1: 1 v/v).

J. Chern. Phys., Vol. 68, No. 12,15 June 1978
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FIG. 5. Decay function for
solvent reorientation. Solid
lines are calculated from Eq ,
(10) for k = 1 sec·1 and various
values of Q. Experimental
points are for proflavin phos­
phorescence in EGW (.) at
145 K and GW (~) at 156 K.
The decay with Q = 1 is an ex­
ponential with k = 1 sec'",

o 2

TIME [sec.]
4

ature at which T'" 1/ko• Under these conditions the
emission intensity at a given wavelength decays not only
as a consequence of the decline in the excited state pop­
ulation but in addition due to the shift in the position of
the emission spectrum as a result of the solvent reori­
entation processes. 19-21 The phosphorescence decay of
proflavin in GW at 580 nm on the red side of the spec­
trum and at 535 nm on the blue side following a 100
msec pulse is shown in Fig. 6. The emission wave­
lengths were chosen on the basis of the spectra observed
as a function of temperature, and the excitation wave­
length was one which was observed to produce a "blue
spectrum" at low temperatures. The blue edge of the
proflavin phosphorescence spectrum observed when sol­
vent randomization has occurred at warmer tempera­
tures is at 535 nm. With the assumption that the spec­
tral shape does not change substantially as a function of
time the decline in emission intensity at 535 nm be­
comes a measure of the decrease in the shift of the
spectrum a, once the decay in the emission intensity due
to the lifetime of the triplet state has been taken into ac-

count. The triplet state lifetime T was estimated by in­
terpolation from measurements in the steady state at
temperatures just above and below the transition where
spectral shifting does not contribute to the decay.

In Fig. 5 the decay function F(t, T)=e t IT• P535mn(t, T),
where P535nm(t, T) represents the measured phosphores­
cence intensity at 535 nm, is shown for proflavin in GW
and EGW at a temperature which was chosen so that ko
'" 1 sec", The decay is nonexponential in both cases and
contains a larger contribution of more slowly decaying
components for GW than EGW. These features are pre­
dicted by the s.teady state analysis. The values of the
parameter a =O.45, O.6 (cf. Table II) for GW and EGW,
respectively, obtained in the steady state analysis pre­
dict that for the same value of ko, F(t, T) should decay
more rapidly for EGW than for GW. The decays pre­
dieted on the basis of Eq. (10) with ko=1 sec:", and Ci

= O.4-0.5 and 0.6 are seen in Fig. 5 to account for the
type of decays observed in the time-dependent experi­
ments.

•••

• • 535 nm
•• 580 nm

FIG. 6. Decay of the pro­
flavin emission intensity, 1,
in GW at 156 K monitored at
535 nm (e) and 580 nm (.) •
Emission intensities are nor­
malized to the intensity recorded
at t= 0, 10,

• • • •
····:: •• '11

•

AO BS.

• •• • •
•• • • ••••• ••••• • ••••••••

• •
••

• • • •

•

•

• •

•

•

•

•• •
•1.0
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o
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TIME (sec.)

3 4
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relative contributions of the more rapid and more slowly
decaying contributions. The form of F(k) suggests the
solvent reorientation in glycol-H20 solvents is dominat­
ed by contribution of molecules in clusters which occur
with a rate constant ko, and clusters which are much
more highly resistant to reorganization. The activation
parameters determined from temperature-dependent
studies then correspond to those associated with ko•
The smaller value of QI for GW than for EGW reflects
larger populations of molecular clusters or reorienting
units in the former solvent which reorganize at the much
slower rate.

The form of F(k) given in Eq. (12) must be an approx­
imation to the distribution of rate processes occurring
within the system in that it predicts a significant popula­
tion of solvent clusters which reorganize with an infi­
nitely long reorientation time. The exciting wavelength
dependence measurements both as a function of temper­
ature and time reveal that the solvent completely reor­
ganizes in a finite time. It is informative, however, to
consider the system to be dominated by two solvent re­
orientation times or rate constants. The steady state
solvent reorientation process which in general, if one
assumes a distribution of rate constants, can be written
as

o

FIG. 7. Distribution function for solvent reorientation given
by Eq, (12) as a function of Q. For the sake of comparison,
Flk) has been "normalized" to the sum of the calculatedF(k)
for each using values of k between 0.01 and 0.99. The light
line is for Q = O.3, the dashed line for Q = O.5, and the heavy
line for Q =O.7.

The observation of a nonexponential decay function for
solvent reorganization about chromophores in these gly­
col-water mixtures at low temperature is consistent
with the earlier findings of nonexponential decay func­
tions for solvent measured from dielectric relaxation
methods. 22,23

1 =t F(k)
(1 + kOT)'" h=O 1 + let

takes on the form

(13)

(12)

(11)

(14)F. Distribution of reorientation rate constants

In the previous sections it was established that sol­
vent reorientation could not be described in terms of an
exponentially decaying process. Both the steady state
temperature loss in exciting-wavelength dependence and
direct measurements of phosphorescence decays as a
function of time were consistent with the more complex
decay function given by Eq. (10). Since Eq. (8) is em­
pirical in nature the molecular basis of a decay function
of the form of Eq. (10) and the physical meaning of the
parameters 0', ko remains obscure.

If it is assumed that F(t, T) arises as a summation of
exponentially decaying processes, it follows that

fa F(k)e-ktdk = e-kotM(l - 0',1, kot) ,

where F(k) represents a distribution of exponentially
decaying processes or of reorientation rate constants.
By again applying the method of inverse Laplace trans­
forms, F(k) can be determined to be 18

F(k) = sinO'lT .!- (~-)'" k:s ko
IT k \ko - k

=0 k>ko '

F(k) is a normalized distribution function which is known
as a beta distribution function. 24 It is characterized by
two discontinuities; one at k =0 and another k= ko, where
ko represents a maximum value of k.

A plot of F(k) for various values of QI appears in Fig.
7. It is apparent that the magnitude of QI reflects the

1 a b-,-,-------,- ~ --+ ---
(1+ kOT)'" 1 + kOT 1+ kl T '

where a and b are the relative populations of solvent
clusters which reorganize with rate constants ko and kl •

Values of ko and kh a and b can be found from the time
experiments by fitting the experimental decay function
F(t, T) as the sum of only two exponentials. For pro­
flavin in glycerol-H20 for which a =0.45 the decay
function at T= 156 K can be represented as

F(t, T) = 0.50 e-hot+ 0.5 e-O.05kot (15)

in which ko=1 sec"! and k l =O. 05ko• Fitting the experi­
mental steady state temperature -dependent data as the
sum of two relaxation processes requires, however,
knowledge of the activation parameters for the popula­
tion of solvent clusters which reorganize with the
smaller rate constant. In Fig. 8 the steady state sol­
vent reorganization data from Fig. 3 for glycerol-H20
are represented as the sum of two contributions given
by Eq. (15). A reasonable fit to the experimental data
is achieved introducing the activation parameters for
ko derived from the steady state analysis, and introduc­
ing values for the activation energy and entropy for kl •

The activation energy for the slower rate process is
smaller, revealing that the population of solvent clus­
ters of this type reorganizes more slowly as a conse­
quence of a more highly unfavorable activation entropy.

Models for the structure of hydroxylic solvents have
been advanced in which the occurrence of "ordered or
structural" regions and of disordered regions has been
emphasized. 25-28 While the present data would seem
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yields aEj2. 303R, while the intercept becomes

a logAT. The temperature at which ko= 1/T is equal
to the ratio of the slope to the intercept. If ¢ denotes
the value of log(amu/a) at T.O=I / T' then a can be deter­
mined from the relation

FIG. 8. A comparison of the empirical expression uluma
= [(1 +k oT)QI-l employing the parameters found for (3: 2) gly­
cerol-water; (.), with the behavior anticipated for the sum
of only two reorientation rate constants given by Eq, (14); (0).

Activation parameters for k l which yielded the best agree­
ment were E a=20.7 kcal and logA =28.2 and were chosen by
using a least squares procedure for a =b = O. 5.

TE MPERATURE I K)

o

145 155
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"..........
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165 175

a = 3. 32¢.

It should be noted that according to Eq. (8) the slope of
the line in Fig. 4 is equal to Ej2. 303R. Thus over
temperature ranges where the plot of logr vs T';;'~I/T is
linear, a can be estimated as the ratio of the limiting
slope of a logam.J a vs T _1 plot to the slope of logr VS

Tk~~I/T plot.

Failure to make the correction for the lifetime -inde­
pendent part of transitions in a/amu with temperature
did not significantly alter the activation parameters E a

and logA for the larger rate constant, ko. The relative
contribution of the slow and faster reorientation rate
constants characterized by the parameter a were affect­
ed. In the absence of the correction the values of a
lower by 2~-3~, which had the effect of overempha­
sizing the contribution from the slow components.

consistent with that notion, they do not provide a mo­
lecular basis for the bimodal distribution of rate pro­
cesses. It should also be emphasized that nonexponen­
tial relaxation processes have been interpreted as evi­
dence for a fundamentally cooperative process23, 29, 30

rather than for a distribution of relaxation processes.
In subsequent publications the influence of perturbants
for which there is evidence of an effect of water struc­
ture are examined with a view to elucidating the molec­
ular basis for the nonexponential nature of solvent re­
organization in hydroxylated solvents.

APPENDIX

I. Correction for nonkinetic effects

Experimental values of a were plotted as a function of
temperature in the form logam.Javs T-1(K-1) . At the
cold end of the temperature scale these plots consistent­
ly showed a linear region which, unlike the principal
transition, was independent of the excited-state lifetime
of the chromophore employed. Substitution of glycerol­
DzO for glycerol-H20 also produced a marked shift in
the principal transition but was without effect on the re­
duction in a in the cold temperature region. It was as­
sumed that this nonkinetic contribution was linear
throughout the principal transition. A straight line was
drawn extrapolating from the cold end of the plot and the
values of alamu at each temperature were then renor­
malized using this as a baseline.

II. Determination of a, Ea , and A

Differentiation of Eq. (7) with respect to T -1 yields

d log(amu/a)/dr l = - aEakT/2. 303R(1 + kT),

indicating that under conditions where kT» 1, a plot of
log(amula-i) vs T-1 is linear. The limiting slope
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