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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

 Set cover is an optimization problem which serves as a model to many real world 

problems. Its application includes wireless networks, semiconductor industry, flexible 

manufacturing, scheduling, routing etc..  

 One of the major application of set cover problem is in wireless network [1,2]. 

Take an example, where a set of customer locations have been provided. Assuming unit 

disk is geometric modeling of coverage area of base stations. The aim is to find the best 

locations for placing base stations, so that all the customers are serviced. Since placing 

base station also costs money, attempt is made to minimize the number of base stations, 

ensuring all the customers are serviced by the minimum collection of base station. 

Ideally, each base station should provide service to as many customers as possible. This 

is essentially a set cover problem in geometric settings.  

 Here n customer locations correspond to n points of the plane or elements of a 

universal set. m 
2

n
 possible base station or disk placements in the plane corresponds 

to a family of m sets [1,2]. The aim is to find minimum number of disks (or sets) in 

family of possible m disks (or sets), so that all the customer locations (or all the elements 

of universal set) are covered. 
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 In the example shown in Fig-1.1, there are 22 points in the plane. The aim is to 

cover all these points with minimum number of disks. Consider applying a simple greedy 

heuristics which at each iteration selects a disk that covers maximum number of 

uncovered points. This algorithm selects the 3 disks shown in the boldface. At iteration-1, 

iteration-2 and iteration-3 it selected disks that cover 12, 6, 4 points respectively. This is 

not an optimal solution. The optimal solution is shown by two dashed disks. Each of the 

dashed disks covers 11 points each. 

                                

                                          Fig-1.1 Set Cover in Geometry 

 

 Fig-1.2 shows another application of set cover problem. Here a set of unit 

rectangles are given and the aim is to hit all the rectangles with minimum number of 

points. This problem is relevant in setting up emergency facilities so that all the potential 

customers are within the coverage area of emergency facility [2]. Unit rectangles 

represent a set of customers (or cities) which need emergency facilities. This problem is 
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known as hitting set problem which can be solved by transforming the hitting set problem 

to set cover problem and then applying any of the available algorithms for set cover 

problem. Clearly 4 such facilities should be enough for this example. 

                                          

                                        Fig-1.2 Hitting Set in Geometry 

 

1.2 Preliminaries 

 Many combinatorial optimization problems are NP-hard, i.e., it is highly unlikely 

that a polynomial-time algorithm exists for solving the problem, unless P = NP [3,4]. 

Hence when one faces solving an NP-hard problem one should focus on finding near 

optimal solution in polynomial time [3,4,5,6]. 

 Approximation algorithm is an algorithm that returns near optimal solution [3]. For 

maximization problems, the performance ratio of an approximate algorithm is the worst 

case ratio of the size of the optimal solution to the size of the approximate solution. For 

minimization problems, performance ratio is the inverse of this ratio, i.e., worst-case ratio 

of the size of the approximate solution to the size of the optimal solution.  



 

4 

 In set cover problem, a universal set and collection of subsets are provided, such 

that each element of universal set is incident to at least one of the subsets [8,9,10,11,12]. 

The aim is to find minimum number of subsets, whose union is universal set. Basically, 

attempt is to cover all the elements of the universal set. For example, a company requires 

at least a programmer, to cover its programming need of different languages, example C, 

C++, JAVA, SQL etc.. There are people who know multiple languages. The aim is to 

find minimum number of people so that for every language there is at least one person 

who knows it, i.e., find minimum number of people so that all the languages are covered.  

More precisely, 

Let U, |U| = m be a universal set and a family of subsets   2US  

A sub collection C  ( C S ) covers the universal set U, if  

                           
  C S

U C  

 

Minimum set cover is sub collection C of minimum cardinality. 

 

Example-1.1: Find the set cover for following collection of sets. 

U = {1, 2, 3, 4}  

S 1  = {1, 2} 

S 2 = {2, 3} 

S 3 = {3, 4} 

S 4 = {4, 1} 
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S 1  and S 3  form the minimum set cover of size 2. Minimum set cover is not unique as 

S 2 and S 4 , too, form the set cover of size 2.  

 Dual of set cover problem is known as hitting set problem [12]. In hitting set 

problem, a family of sets S, |S| = m are given. The aim is to create a subset H such that H 

has at least one element in each of the sets, i.e., every set has non-empty intersection with 

H. Minimum hitting set is creating a set with minimum cardinality.  

                            
  

 
s U

H S  

For collection of sets provided in Example-1.1, resulting hitting set would be: 

H = {1, 3} 

This is non-unique, as {2, 4} is another hitting set of size 2.  

 Set packing is a sub collection 'P ( 'P S ), where all the members of this sub 

collection are mutually disjoint [12]. Maximum set packing is the sub collection of 

maximum cardinality. In the above example, both S 1  and S 3 or S 2 and S 4 , form the 

maximum set packing of size 2.  

 An interesting concept related to set cover is that of an edge cover [7]. Edge cover 

of an undirected graph G = (V,E)  is a subset E '  E of edges such that every vertex of V 

is incident to some edge of E '. Minimum edge cover is one with minimum cardinality. It 

is important to note that minimum edge cover problem is special instance of the set cover 

problem, where each subset has maximum cardinality of two. In fact some of the 

algorithms surveyed in this thesis use the concept of edge cover together with greedy 

approach, to get better performance guarantee. 
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 In the Fig-1.3, edges ab and cd form the minimum edge cover, of cardinality 2, 

where G has a path length of 4.  

 

                     

Fig-1.3 Example Illustrating Edge Cover and Maximum Matching  

 

 A matching in a graph G is a set of non loop edges with no shared points [7]. 

Maximal matching is a matching which can not be extended by adding any edge. 

Maximum matching is a matching of maximum cardinality. Perfect matching covers all 

the nodes of the graph [assumption - there are even number of vertices].  

 In the Fig-1.3, edge bc form the maximal matching. If this edge is selected in the 

matching set, then no other edge can be added. But clearly this is not the maximum 

matching. Edges ab and cd, form the maximum matching of cardinality 2. Incidentally 

this is also the edge cover and therefore it also represents prefect matching.  

 Maximum matching is special instance of the set packing problem, where each 

subset has maximum cardinality of two. For a graph G with n vertices having no isolated 

vertex, minimum edge cover and maximum matching, sum to the total number of 

vertices.  

 

a 

b 

c 

d 
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 In a given undirected graph G = (V, E) a vertex cover is a subset V '  V such that 

for every edge uv  E, at least one of the end point or vertex belongs to V '. The 

minimum vertex cover is subset V ' of minimum cardinality [3].  

In the Fig-1.4, vertex a and d form the minimum vertex cover. All the edges are incident 

to these 2 vertices. 

                           

Fig-1.4 Example Illustrating Vertex Cover  

 

 Minimum vertex cover problem is a special instance of the dual set cover problem, 

where each subset has maximum cardinality of two. 
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CHAPTER 2 

APPROXIMATION ALGORITHMS BASED ON STANDARD GREEDY 

 As described earlier, in set cover problem, a universal set and collection of subsets 

are provided, such that each element of universal set is incident to at least one of the 

subsets [8,9,10,11,12]. The aim is to find minimum number of subsets, whose union is 

universal set. Basically, the attempt is to cover all the elements of the universal set. Set 

cover problem has practical applications in many areas, such as logic design, semi 

conductor industry, fault testing etc.. 

 More precisely, let U, |U| = m be the ground set (or universal set) and S be a family 

of subsets   2US . A sub collection C  (C S ) covers the universal set U, if  

                           
  C S

U C  

 

 In this chapter, several approximate solutions to set cover problem will be reviewed 

which are based on Johnson’s standard greedy algorithm. 

 

2.1 Johnson’s Standard Greedy Algorithm for Set Cover [8]  

 Greedy approximation of SC was originally presented by Johnson in his paper, 

“Approximation Algorithms for Combinatorial Problems”. The standard greedy 

algorithm for set cover works by picking a subset that covers the most number of 

remaining uncovered elements, at each stage of algorithm.  
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2.1.1 Standard Greedy Algorithm [8]  

1. Set C = , UNCOV = U.  

    SET(i) = iS , 1  i  N. 

2. If UNCOV = , halt and return C. 

3. Choose j   N such that |SET(j)| is maximized. 

4. Set C = C  {
jS }, UNCOV = UNCOV - SET(j), 

    SET(i) = SET(i) - SET(j), 1  i  N. 

5. Go to 2. 

 

Example-2.1: This example finds the set cover for following collection of sets, using 

standard greedy algorithm. 

S 1   = {1, 2, 3, 4, 5, 6} 

S 2  = {5, 6, 8, 9} 

S 3  = {1, 4, 7, 10} 

S 4  = {2, 5, 7, 8, 11} 

S 5  = {3, 6, 9, 12} 

S 6  = {10, 11} 

U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 

 

ITERATION – I: 

 C =  
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    UNCOV = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 

 UNCOV  , therefore continue 

 For j = 1, SET(1) = 6 has maximum cardinality 

 C =  {S 1 } 

             UNCOV = {7, 8, 9, 10, 11, 12} 

             S 2  = {8, 9} 

             S 3   = {7, 10} 

             S 4  = {7, 8, 11} 

             S 5  = {9, 12} 

             S 6  = {10, 11} 

ITERATION – II: 

 UNCOV  , therefore continue 

 For j = 4, SET(4) = 3 has maximum cardinality 

  C =  {S 1 , S 4 } 

       UNCOV = {9, 10, 12} 

             S 2  = {9} 

             S 3  = {10} 

             S 5  = {9, 12} 

             S 6  = {10} 
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ITERATION – III: 

 UNCOV  , therefore continue 

 For j = 5, SET(5) = 2 has maximum cardinality 

  C =  {S 1 , S 4 , S 5 } 

       UNCOV = {10} 

             S 3  = {10} 

             S 6  = {10} 

ITERATION – IV: 

 UNCOV  , therefore continue 

 For j = 3, SET(3) = 1 has maximum cardinality 

  C =  {S 1 , S 4 , S 5 , S 6 } 

           UNCOV =  

ITERATION – V: 

 UNCOV  , therefore stop. 

 C = {S 1 , S 4 , S 5 , S 6 } 

 Therefore, Johnson’s standard greedy algorithm produces a set cover {S 1 , S 4 , S 5 , 

S 6 } of size 4. This is not the optimum set cover. Careful analysis shows that optimum set 

cover is {S 3 , S 4 , S 5 }.  

 

2.1.2 Standard Greedy Algorithm’s Ratio Bound [3] 

 The complexity of standard greedy algorithm described above is of ( ).O mn  But, by 
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maintaining a priority queue, standard greedy algorithm can be implemented to run in 

time ( | |)
i

iS S
O S . 

 The standard greedy algorithm has a ratio bound of ( )H k  = 
1

1/
k

i

i , where k is the 

size of the largest set. ( )H k is also known as harmonic series.  

 

Lemma 1 [3]: Johnson’s standard greedy set cover has a ratio bound ( )H k  , where k is 

the size of the largest set. 

Proof [3]: Assign the cost to each subset selected. For unweighted set cover problem the 

cost of selecting a subset is 1. Let C denote the size of an optimal set cover ,C  C  the 

size of the set cover C  returned by the standard greedy algorithm and iS  the ith subset 

selected. When algorithm adds iS  to set cover, it incurs a cost of 1. This cost of selecting 

iS  is evenly spread among the elements covered for first time by iS .  Let uc denote the 

cost/weight allocated to element u , for each element u U . Each element is assigned a 

cost only for the first time it is covered. If u is covered for the first time by iS  then 

1 2 1

1

| ( ... ) |
u

i i

c
S S S S  

 

 The algorithm finds a set cover solution C which has a total cost | |C  as each set 

incurs a cost of 1. Since the optimal cover C also covers U . Therefore,  

| |C   = u

u U

c  
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*

u

u SS C

c                                                                             (2.1)  

Also, for any subset iS  belonging to the family of subsets S  

 ( | |)
i

u i

u S

c H S                                                                           (2.2)  

For inequalities (2.1) and (2.2), it follows 

*

| |   (| |)

i

i

S C

C H S  

        * | | (max(| |)iC H S  

        *= | | ( )C H k                                                                        (2.3)  

Here k is the size of largest set, i.e., max(|S|). 

 Ratio bound for standard greedy set cover is (1)  ln | |O k .  This is true for non-

weighted as well as weighted set cover. This can be proved using the fact that harmonic 

series has ratio bound (1)  ln | |O k . 

 The above result implies standard greedy algorithm solution is not too larger than 

optimal solution. If the maximum set size is 2 then this ratio bound is = 1 + ½ = 3/2. For 

maximum set size of 3, this ratio bound becomes 1 + 1/2 + 1/3 = 11/6.  

 

2.1.3 Analysis of the Standard Greedy Algorithm 

 Lund and Yanakakis [13] established that set cover problem cannot be 

approximated with ratio c 2log m for any c < l/4 unless all NP problems are solvable in 

log  ( )poly mDTIME m . The Lund and Yanakakis result, basically rules out any drastic 
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improvement to standard greedy algorithm. Therefore, major efforts have been made to 

apply improvements to greedy algorithm rather developing a new algorithm from scratch.  

 Even for maximum set size of 3, set cover problem is NP-hard. This can be proved 

using the fact that when the edges of a graph are covered by triangles the problem 

becomes a set cover problem [17]. Here each triangle represents a set. Covering the edges 

of a graph by triangles is NP-hard problem. For the triangle covering problem, the 

standard greedy algorithm’s performance ratio is 11/6. 

 Standard greedy set cover algorithm can be used to solve vertex cover problem for 

a graph of degree of 3 at most [3]. As mentioned above, the solution found by standard 

greedy set cover algorithm is bound by H(3) = 1 + 1/2 +1/3 = 11/6 times the optimal 

solution. This approximation ratio is better than that of approximate vertex cover. 

 

2.1.4 A Tight Analysis of the Standard Greedy Algorithm by Petr Slavik [15] 

 Johnson showed that the performance ratio for set cover standard greedy algorithm 

is ( ),H m  which lies between ln m and ln m + 1. For 20 years this remained the bound for 

standard greedy set cover algorithm. Petr Slavik in 1996 [15] proved that the performance 

ratio of standard greedy algorithm is exactly ln m – ln ln m + (1) . Here m is the size of 

ground set or universe. Also the lower and the upper bound differ only by less than 1.1. 

Slavik’s analysis was first tight analysis of standard greedy algorithm. For a function 

going to infinity with m, his analysis provided the first upper bound for standard greedy 

algorithm that lies below H(m).  

 Slavik used the hardness results shown by Feige. Feigh proved a very strong result  
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showing that for any  > 0, set cover cannot be approximated within (1 - ) ln m by any 

polynomial time algorithm, unless (log log )  [ ]O mNPTIME m . Therefore, for any polynomial 

time algorithm maximum achievable improvement on performance ratio ( ),H m  is at 

most a function f(m) = o(ln m). 

 All the approximations till this point were generally based on assumption of some 

prior knowledge of m and min .c Then various algorithms are used to obtain the bounds on 

greedyc . But Petr Slavik started with minc  and  
greedyc , and obtained bounds on m.  

Slavik’s analysis showed that for any set U with |U| = m 2  

greedyc   minc (ln m – ln minc + 1) 

Also  

greedyc   ( minc - ½) (ln m – ln minc + 1) +  minc  

Above two results give upper and lower bound for standard greedy algorithm. 

The upper bound comes as: 

min

greedyc

c
 < ln m – ln ln m + 0.78 

and 

The lower bound  

min

greedyc

c
 > ln m – ln ln m - 0.31 

 It can be clearly seen that upper and lower bound differ by only 1.11. The upper 

and lower bound provided above by Petr Slavik are tight up to a constant. 
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2.2 Hitting Set  

 Dual of set cover problem is hitting set problem. In hitting set problem, a family of  

sets S, |S| = m are given. The aim is to create a subset H such that H has at least one 

element in each of the sets, i.e., every set has non-empty intersection with H. Minimum 

hitting set is creating a set with minimum cardinality [12].  

                             
  

 
s U

H S  

 Hitting set problem can be converted into set cover problem. To achieve that, all 

the elements of U  are replaced by names of subset that contain it. Now this is set cover 

problem with roles of U  and S  reversed. 

 

2.2.1 Algorithm for Solving Hitting Set Problem 

1. Replace all the elements of U by names of subset that contain it. This forms the family      

    of subsets. 

2. Family of subsets originally provided, now form the universal set U . 

3. Apply any set cover algorithm, of new set cover problem formed by reversing  

    roles of U  and S . The set cover found is the hitting set or dual of set cover. 

 

Example-2.2: Builds hitting set, for following collection of subsets and universal set. 

S 1  = {1, 2} 

S 2 = {2, 3} 

S 3 = {3, 4} 
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S 4 = {4, 1} 

U  = {1, 2, 3, 4}  

 

Replace the elements of U  by names of subset that contain it.  

1 = {S 1 , S 4 } 

2 = {S 1 , S 2 } 

3 = {S 2 , S 3 } 

4 = {S 3 , S 4 } 

U  = {S 1 , S 2 , S 3 , S 4 } 

 Now the hitting set problem has been transformed into set cover problem. Here 1, 

2, 3 and 4 form the family of subsets and the family of subsets originally provided, form 

the universal set. Clearly 1 and 3 is the solution set for new set cover problem as they 

cover the universal set U . It can be easily verified that 1 and 3 is also the minimum 

hitting set solution, for original hitting set problem. This is non-unique as 2 and 4, too, 

form the hitting set of cardinality 2. 

 

2.3 f-Approximation Greedy Algorithm for Set Cover [16] 

 f-approximation greedy algorithm provides a solution which is bounded by the 

maximum number of sets that an element belong. If each element occurs in at most 

f sets, then this algorithm finds a solution which has a performance ratio of f. This 

algorithm is very useful in low frequency systems. 
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Let’s assume [16],  

        Universal set U  = { 1 2, ,....., mu u u }. 

         Subsets 1 2, ,....., nS S S U . 

         The cost 0jc  for each set 
jS . The cost function is 1 for unweighted set cover. 

 The aim is to find {1,...., }I n  that minimizes j
j I

c subject to j I jS U . In other 

words, the goal is to select the minimum cost collection of sets that cover the universal 

set. Frequency of an element in a set cover instance, is defined as the number of sets it is 

in, i.e., max |{ : }|i j
i

f j u S . 

 

2.3.1 Greedy Algorithm for f-Approximation [16] 

Initialize I  

While U  

       Pick iu with maximum frequency. iu U  

       { : }i jI I j u S  

      j I jU U S  

 

Example-2.3: This example finds the set cover for collection of sets in Fig-2.1, using       

f-approximation greedy algorithm. 

S 1   = {1, 2, 3, 4, 5, 6} 

S 2  = {5, 6, 8, 9} 
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S 3  = {1, 4, 7, 10} 

S 4  = {2, 5, 7, 8, 11} 

S 5  = {3, 6, 9, 12} 

S 6  = {10, 11} 

U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 

 

ITERATION – I: 

           5f  = 3 is the maximum frequency element.  

      Therefore, corresponding set in solution is S 1 . 

      Hence,  

      C = {S 1 } 

      UNCOV = {7, 8, 9, 10, 11, 12} 

            S 2  = {8, 9} 

            S 3   = {7, 10} 

            S 4  = {7, 8, 11} 

            S 5  = {9, 12} 

            S 6  = {10, 11} 

ITERATION – II: 

      8f  = 2 is the maximum frequency, in the remaining elements.  

      The corresponding set in solution is S 2 . 
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      Hence, 

      C = {S 1 , S 2 } 

      UNCOV = {7, 10, 11, 12} 

            S 3  = {7, 10} 

            S 4  = {7, 11} 

            S 5  = {12} 

            S 6  = {10, 11} 

ITERATION – III: 

      7f  = 2 is the maximum frequency, in the remaining elements.  

      The corresponding set in solution is S 3 . 

      Hence, 

      C = {S 1 , S 2 , S 3 } 

      UNCOV = {11, 12} 

            S 4  = {11} 

            S 5  = {12} 

            S 6  = {11} 

 

ITERATION – IV: 

      11f  = 1 is the maximum frequency, in the remaining elements.  

      Therefore, corresponding set in solution is S 4 . 
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      Hence, 

      C = {S 1 , S 3 , S 2 , S 4 } 

      UNCOV = {12} 

            S 5  = {12} 

ITERATION – V: 

      12 is the only uncovered element. 

      Therefore, set cover solution must include S 5 . 

      Hence, 

      C = {S 1 , S 3 , S 2 , S 4 , S 5 } 

Therefore, the final set cover is,  

C = {S 1 , S 3 , S 2 , S 4 , S 5 } 

 

2.4 Modified Greedy (MG) Algorithm by Goldschmidt et al. [17] 

 Olivier Goldschmidt, Dorit S. Hochbaum and Gang Yu proposed a solution with 

ratio bound of (ln    5 / 6)k , where k is the maximum set size. This algorithm works 

by applying the combination of more than one algorithm, approximate and exact, to 

obtain improvement over standard greedy algorithm. The final set cover solution is the 

union of the outputs for different algorithms applied. This algorithm uses the fact that 

optimal solution for set cover problem can be obtained in polynomial time, for maximum 

set size of 2. For maximum set size 2, the set cover problem reduces to edge cover 

problem. 
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 For modified greedy algorithm, Goldschmidt et al. used following terminology: 

Given a family { 1 2, ,...., nS S S } of finite sets, define J = {1,2,….,n} and 
j J jI S . 

J J  is called a cover if 
jj J

I S = I. They assumed that no set is embedded in 

another set, i.e., for all ,i j J and i j . If this assumption is not true then it requires a 

pre-processing step, to remove all the instances of sets being subsets of others. A k-set 

element is called set of size k. 
k

jS  denotes the elements still uncovered after k iteration of 

the algorithm. Index set for the first k sets added to the set cover is denoted kJ and the 

elements still uncovered after k rounds is denoted by .kI  

 The modified greedy algorithm executes the Johnson’s standard greedy algorithm, 

till the maximum set size becomes 2. Once the maximum set size becomes 2, it finds the 

optimal cover and gets the improvement over standard greedy algorithm.  

 

2.4.1 MG (Modified Greedy) Algorithm [17] 

Step 0: Set 0J  = ;
0

j jS  = S ,   j J ;
0 0

  = U ; 0.j jI S I k   

Step 1: k = k + 1. Select kj  = argmax
1| | .k

j J jS   

Step 2: If 1 3,
k

k

jS set 
1k k

kJ J j and
1 1\

k

k k k

j j jS S S , j J ,  

1 1\
k

k k k

jI I S  and go to step 1. Else, continue. 

Step 3: If ,kI  stop the output cover * kJ J , otherwise, form the undirected graph 

G(V,E) with V= j JU
k k

jS I  and : 2,k k

j jE S S j J . After that, find the matching 

of maximum cardinality on graph G. Thereafter, include sets that correspond to the 
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matching edges of G to kJ . Exclude the elements covered by the edges of the matching 

from k

jS , j J . Include the remaining single element set in kJ . End processing and 

return * kJ J  as set cover. 

 Basically, algorithm applies the standard greedy algorithm till maximum set size 

becomes 2. At maximum set size of 2, the problem is equivalent to the edge cover 

problem. Edge cover problem can be solved in polynomial time. This can be done by 

finding maximum matching. Then the algorithm adds all the isolated vertices (single 

element set) not covered by maximum matching.  

 Note: For a graph G with n vertices having no isolated vertex, minimum edge cover 

and maximum matching, sum to the total number of vertices. 

 

Lemma 2 [17]: For set size 2 or less, MG algorithm provides an optimal set cover. 

Proof [17]: If | jS |  2, j J , step 1 and 2 can be ignored and algorithm can directly 

proceed to step 3. It can be easily observed that to obtain set cover each 1-element set 

needs to be included in the output. Therefore, algorithm requires only minimum number 

of 2-element sets for covering remaining elements. Basically, the aim is to solve the set 

cover problem with exact 2 elements per set. This problem is same as solving edge cover 

problem for graph. Edge cover of an undirected graph G = (V,E)  is a subset E '  E of 

edges such that every vertex of V is incident to some edge of E '. Minimum edge cover is 

edge cover with minimum cardinality.  
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 For modified greedy, a family of finite sets { 1 2, ,...., nS S S } = E and I = V are given. 

Each set is of size 2 since the edges are formed by joining the end points. There are 

known polynomial time algorithms to find solution of edge cover problem. These 

algorithms work by finding maximum matching and set of adjacent nodes uncovered by 

matching [18].   

 Let EC denote the set of edges for optimal edge cover and M '  denote the set of 

edges in the maximum matching for the graph formed by EC, G(EC) = (V, EC). Clearly,  

|M ' |  |M|, as M is maximum matching. The graph G(EC) also satisfies following 

relationship: 

|V| = 2 |M ' | + |EC - M ' | 

 Hence |EC| = |V| - |M ' |. Edge cover EC(M), can be obtained from maximum 

matching by adding the nodes (or vertices) that are not yet covered. This cover, too, 

satisfies the relationship 

|V| = 2 |M| + |EC(M) - M| 

 Hence |EC(M)| = |V| - |M|. This implies |EC – EC(M)| = |M| - |M ' | 0, which is 

possible only if EC = EC(M), as EC is minimum edge cover. 

 The runtime of modified greedy algorithm is dominated by the time spent for 

solving the maximum matching problem. The maximum matching problem in a graph G 

= (V, E) can be solved in running time of ( | |)O E V .  In a graph of order n, maximum 

matching can be found in 
2.5( )O n [19,20,21]. 
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Lemma 3 [17]: Let J *  be a cover found by MG and let J be any other cover, i.e., 

* ' .j J j j jj J j J
S S S I    Let 

'| |,  j jn S j J , then  

'

*| |   ( ),j j

j J

J Q n                                                                   (2.4)   

where, 

1

0                      0

Q ( ) 1                       1

1/ 1/ 6     2
j

j

j j j

n

j

i

n

n n

i n

 

Proof [17]: The above can be proved by induction on largest size set. 

 When maximum set size is 1 or 2, then above holds true as step 3 of MG provides 

the optimal cover, and the right hand side of inequality (2.4) is greater than or equal to 

| 'J |. As *J  is optimal, | *J | cannot exceed the number of sets required in any cover 'J .  

 Assume that the result holds true for maximum set size = q - 1, then it needs to be 

proved that the result also holds true for q  3. Let r denote the smallest index k such that 

|
k

jS |  q, for all j, which means after r iterations of modified greedy algorithm is applied, 

there is no set that contains more than q – 2 elements. Let rU = I \ I r  denote the covered 

elements till iteration r. As U r  is covered by disjoint sets of size greater than or equal to 

q, 

|J r |  |U r | / q                                                                           (2.5)   
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 Let us now define r

jn = |
r

jS |. After r - 1 iterations of MG algorithm, uncovered 

elements \r rI I U  and unused sets \ ,r r

j jS S U 1rj J  - satisfies assumption for 

induction, as 1,  .r

jn q j J  

Hence, 

'

*

1| |   ( ),r

j j

j J

J Q n                                                                   (2.6)   

where *

1J  is defined as the index set for the remaining cover, i.e., * *

1

rJ J J . 

For all combinations of values of 
jn  and ( ),j jQ n  

( ) ( ) | \ | /r r

j j j j j jQ n Q n S S q                                                  (2.7)   

Now for any given  j, consider the possible values of 
jn  and rn , and in every scenario 

use the fact that .r

j jn n q                                                                                

Case 1jn : ( ) 1.j jQ n  If 
r

jn = 0, then ( )r

j jQ n = 0 and | \ r

j jS S | = 
r

j jn n = 1. If 
r

jn = 1, 

then ( )r

j jQ n  = 1 and | \ r

j jS S | = 0. Therefore, in both cases ( ) ( ) | \ | /r r

j j j j j jQ n Q n S S q  

is true. 

Case 2jn : ( )j jQ n = 
1

( )
6

jH n . There are 3 possible condition that correspond to the 

size of set 
r

jS , 
r

jn , after the first r iterations. 

(i) 
r

jn = 0: ( )r

j jQ n = 0 and 

( )j jQ n = 
1

( )
6

jH n  =  
1 1 1 1

1 .....
3 3 4 jn
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4

( ) ( ) /
3

r r

j j j jQ n n n q  

                                  = ( ) | \ | /r r

j j j jQ n S S q  

A strong inequality follows from ( )r

j jQ n = 0 and q .jn  

(ii)  
r

jn = 1: ( )r

j jQ n = 1 and  

( )j jQ n = 
1 1 1 1

( ) .....
3 3 4

r

j j

j

Q n
n

 

              ( ) ( 1) /r

j j j jQ n n n  

              ( ) ( ) /r r

j j j jQ n n n q                  because 
jn q  

              ( ) | \ | /r r

j j j jQ n S S q  

One thing to note here is that when q = 3, the inequality changes to equality 

(iii) 
r

jn  1: 
2

1 1
( ) ( ) 1 1/

6 3

r
jn

r r

j j j

i

Q n H n i  

2

1 1
( ) 1

3

jn

n j

i

Q n
i

 

            = 
2 1

1 1 1
1

3

r
j j

r
j

n n

i i ni i
 

            ( ) ( ) /r r

j j j jQ n n n q                      since 
1 1

jn q
 

Therefore, ( ) ( ) | \ | /r r

j j j j j jQ n Q n S S q . 

For 3q , from (i), (ii) and (iii) it follows 
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( ) ( ) | \ | /r r

j j j j j jQ n Q n S S q                                                  (2.8)   

Applying inequality (2.8) and because ''
| \ |  | \ |  = | |,r r r

j j j J j jj J
S S S S U  

following result is obtained: 

' '

( ) ( ( )  | \ | / )r r

j j j j j j

j J j J

Q n Q n S S q  

                 *

1 | | | | /rJ U q  

                 *

1 | | | |rJ J  

Lemma 3 gives a relationship between a set cover found by modified greedy algorithm 

and set cover provided by any other algorithm. If 
'

optJ J , algorithm returns the worst 

case performance ratio. 

 

Theorem [17]: The size of cover found by MG algorithm is no more than 1
6

( )H k  times 

the size of optimal cover. 

Proof [17]: The worst case performance ratio for MG algorithm is achieved, by setting 

'

optJ J , ,  j optn k j J , i.e., 

*

| |                             1

| |   1
( ( ) ) | |           2      

6

opt

opt

J k

J
H k J k

 

 Therefore, the size of cover found by modified greedy algorithm by Goldschmidt el 

al. is 1
6

( )H k  times the size of an optimal cover, where k is the maximum set size. 

Therefore, modified greedy algorithm improves the performance ratio of standard greedy 

algorithm by 1/6. The upper bound is tight for 3k . 
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 For example, bound for standard greedy algorithm for k = 3 is 11/6, where as the 

MG algorithm has a ratio bound of 10/6. Therefore, standard greedy algorithm’s bound 

for covering the edges of a graph by triangles, is 11/6. Modified greedy algorithm’s 

bound for the same problem is 10/6.   

 It can be clearly observed that modified greedy by Goldschmidt el al., is mainly 

suited to the set cover problem for small k, where k is the maximum number of elements 

per set. The improvement comes from exact solution when set size is 2 or less. Modified 

greedy algorithm is important in the field of semiconductor industry or flexible 

manufacturing.  

 

Example-2.4: Find the set cover for following collection of sets, using modified greedy 

algorithm. 

S 1  = {1, 2} 

S 2  = {1, 3} 

S 3  = {1, 4} 

S 4  = {2, 3} 

S 5  = {2, 4} 

S 6  = {3, 4} 

 

 The graph for problem, using MG algorithm is shown in Fig-2.1. The graph has 

edges: 1-2, 1-3, 1-4, 2-3, 2-4 and 3-4. 
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Fig-2.1 Graph Constructed for Example 2.4 

 

 1-2 and 3-4 form the maximum matching. This is also the perfect matching as it 

covers all the nodes of the graph. This means {S 1 , S 6 } forms the edge cover. Clearly, 

{S 1 , S 6 } is also a set cover. This is optimal solution, at the same time non-unique as well. 

{S 2 , S 5 } and {S 3 , S 4 } are other exact set cover solution for this problem. 

 

Example-2.5: Find the set cover for following collection of sets. Here maximum set size 

is greater than 2.  

S 1   = {1, 2, 3, 4, 5, 6} 

S 2  = {5, 6, 8, 9} 

S 3  = {1, 4, 7, 10} 

S 4  = {2, 5, 7, 8, 11} 

S 5  = {3, 6, 9, 12} 

S 6  = {10, 11} 
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U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 

 

STEP – I:  

Apply standard greedy algorithm, till set size becomes 2. 

      This selects S 1  and S 4 . Note: refer example 1. 

      Hence, 

      C = {S 1 , S 4 } 

      UNCOV = {9, 10, 12} 

            S 2  = {9} 

            S 3  = {10} 

            S 5  = {9, 12} 

            S 6  = {10} 

STEP – II:  

Find edge cover on remaining elements. 

      S 5  is the only edge.  

      S 3  covers the remaining isolated vertex 10. 

      Hence,  

      C = {S 1 , S 4 , S 3 , S 5 } 

 

Therefore, the final set cover is  

C = {S 1 , S 4 , S 3 , S 5 } 
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2.5 Set Cover via Local Improvement by Halldorsson [22] 

 Halldorsson proposed an old optimization technique and applied it to the 

approximation of collections of discrete items. He called this technique as local 

improvement. The approach consisted of extending a collection, by adding some items 

while removing others. Essentially, Halldorsson proposed a combination of different 

algorithms in several subinstances of the initial set cover instance.  

 Halldorsson described local search as tool to solve hard combinatorial optimization 

problems. Local search can be applied to greedy search or hill climbing, simulated 

annealing or randomized hill climbing, augmenting paths, and local changes. Local 

search technique has been successful in practical instances. But the technique fails many 

times as it doesn’t have good worst case results. In this paper, Halldorsson presented 

several positive results on the quality of locally optimal solutions. The goal of local 

improvement is to improve the best performance ratios known for various optimization 

problems. At the same time, it also highlights the effectiveness of local improvement 

heuristics as approximation algorithms.  

 Local search approach starts with a maximal/minimal collection depending on 

maximization/minimization problem, and expands/shrinks the collection until no better 

solution can be found. Using this technique, the algorithm for 3-set cover, i.e., set cover 

with maximum set size of at most 3 gives a solution of performance ratio 11/7 1.57. 

This generalizes to a 11
42

( )H k  ratio for k-set cover, where k is the size of the largest set. 
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2.5.1 The Local Improvement Framework [22]  

 Halldorsson considered the problem of maximization. A solution is maximal if the 

addition of any item destroys the feasibility of current solution. A non-maximal solution 

can be extended by just adding an item.  

 Suppose A is a feasible solution and there are sets x, y, z where x  A and y, z  A 

such that A '  = (A - {x}) U {y, z} is also a solution. Then, A '  is an extension of A, and {x, 

y, z} a 2-improvement of A. Basically, a set of items I such that A I (the union of A and 

I ) is a solution and | A I | > | A |, is an improvement of A . 

 Halldorsson used the terminology t-improvements. A t-improvement adds n new 

items and removes n-1 items, for some n  t. Basically, improvement adds one more 

item than the number of items it removes. A solution is said to be t-locally optimal if no 

t-improvements is possible. Local search tries to improve initial solution by succession of 

improvements, until no improvement exists. 

More precisely, 

t-optimal solution: 

A maximal solution. 

Repeat 

     I   n-improvement of A, where n  t. 

     A A  I (the symmetric union of A and I). 

     until no further improvement exists. 

     Return A. 
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 Minimization problem is very much like maximization problem, but t-improvement 

proceeds in opposite direction. For minimization problem, local search start with a 

minimal solution and it attempts to improve it by shrinking the solution set. Improvement 

removes one more item than the number of items it adds. A solution is said to be t-locally 

optimal if no t-improvement is possible. 

 

2.5.2 Approximate k-Set Cover Using Set Packing for (S, C, k) [22]  

 Halldorsson provided a generic algorithm using set packing. Halldorsson used s to 

denote the number of elements in the base set(or ground set or universal set or super set) 

S, A to denote the set cover output of the algorithm and B as the set cover output by any 

other algorithm. Here C is collection of sets and k is maximum size of sets in this 

collection.  

 For simplicity Halldorsson assumed that the input set collection C is monotone, i.e., 

whenever X C , so is the every subset 'X of .X  Set cover is a partition of the base set S 

into sets in C. This can be verified from the fact that replacing sets by an appropriate 

superset in the original input does not increase the size of the set cover solution, i.e., total 

number of sets. The Halldorsson’s approach can be viewed as a sequence of maximal 

solutions to set packing problems. It starts with k-set packing problem and ends with 1-

set packing problem, for which the solution is trivial. 

 Halldorsson’s ApproxSetCover algorithm uses an approximate set packing 

algorithm to produce a set cover solution. If greedy algorithm is used to solve the set 

packing problem then the resulting solution of ApproxSetCover algorithm is also greedy. 
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For a collection C to ' ,S  algorithm uses the notation '|S
C to denote restriction of C to 'S , 

be the collections of subsets of ' ,S  whose supersets are contained in C. 

 

2.5.2.1 ApproxSetCover(S, C, k) Algorithm [22] 

         If k =1 return C. 

         kC   The sets in C of size k. 

         kA   ApproxSetPacking( kC , k). 

         kS    S – (
kc A C ). 

          Return kA   ApproxSetCover( kS ,
| kSC , k-1). 

 Halldorsson compared the above algorithm to the improved bound of 1
6

( )H k  for 

k-SC obtained by modified greedy algorithm by Goldschmidt, Hochbaum and Yu. MG 

algorithm works on finding maximum matching on maximum set size of 2, which is 

essentially finding set packing solution for maximum set size of 2. Therefore, 2-opt on 2-

SP obtains the same ratio. 

 

Lemma 4 [22]: ApproxSetCover, using 2-opt on the 2- SP sub-problem, finds an 

approximate 3-set cover with at most (s + 2b)/3 sets. Here s denotes the number of 

elements in the base set S, a be the number of sets in the  set cover solution by current 

Halldorsson algorithm A and  b be the number of sets in any other cover set cover 

Solution B.  
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Proof [22]: Let iA  ( ),iC  1,2,3,  i denote the sets in  ( )A C of size i, respectively. Let iS  

denote the elements contained in sets in .iA  

 Consider the restriction 
2|SB of B  to the elements contained in 1 2A A . Let '

1B  and 

'

2B be the sets in 
2|SB with 1 and 2 elements respectively.  

This implies  

2 33 ,s s a   

so  

' '

1 2 32 3b b a s  

 

Therefore, the number of 2-sets in 
2|sB  is at least 

' ' '

2 3 1 23 ( )b s a b b  

     33 s a b   

 Since the set packing algorithm discussed is 3/2 optimal, it will find at least two-

thirds of the sets. Thus, the solution provided consists of 3a  3-set, at least 

32( 3  ) / 3s a b  2-sets, remainder being 1-set.  

Therefore, the cost of the solution will be at most 

3 3 3 3

2 4
  [ 3 ] [ 3 ( 3 )]
3 3

a s a b s a s a b  

2

3

s b
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 This implies that 3-SC problem, can be solved using 2-opt on the 2-set packing 

sub-problem. The above algorithm finds approximate set cover which is 5/3 optimal. This 

result can be extended to k-set cover whose solution is 1
6

( )H k  optimal. The assumption 

for k-set cover solution is, 2-SP problem is equivalent to maximum matching problem 

and the exact maximum matching can be found in polynomial time.  

 

2.5.3 Halldorsson’s Direct Application of Local Improvement [22]  

 Halldorsson provided the algorithm for 3-set cover problem, i.e., set cover problem 

with maximum set size of 3. He used the result of 3-SC, along with the modified greedy 

algorithm suggested by Goldschmidt et al. to get local improvements. Halldorsson 

suggested the local improvement method directly on the set cover solution. The method 

employed local shrinking of solution to achieve improvement. 

For example, say 

          Sets 1 2, , 1 1 2,, ..., A, , ..., Ck k kx x x x y y y  

          such that A – { } { }i ix y is a set cover. 

 This would replace k + 1 sets in original solution A by only k sets, while the 

resultant solution still remaining a set cover.  

 The local improvement method seeks improvements using particular type of 

shrinking. The aim is to try to merge a set with some unit size sets, producing a number 

of sets of size two. The approach seeks: 1) a set in 3A and three sets in 1A  for which there 

are three sets in 2C  who cover the same six elements, or 2) a set in 2A  and two sets in 1A   
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for which there are two sets in 2C  who cover the same four elements.  

 

2.5.3.1 Algorithm for 3-SC Problem [22] 

 Find a maximal 3-set packing (3-SP). 

 Find an optimal 2-set cover (2-SC). 

 Repeat shrinking steps until obtained set cover is locally minimum.  

 The above algorithm finds a cover with at most (2s + 5b)/7 sets. 3-SC algorithm for 

set cover with maximum set size of at most 3, has a solution of performance ratio 11/7 = 

11
42

( )H k 1.57.  

 Halldorsson proposed a method of finding a maximal collection of independent 

shirking improvement in linear time. It assumes collection of sets '

2C  in 2C  which have 

one element in 1S . Then it marks each element in 1 2S S with at most three sets in '

2C  

containing that element. Then test if for each set X in 2 3,  ,A A there can be chosen a group 

of |X| disjoint sets, one from the group of sets marked to each element. If answer is yes, 

then improvement is possible. Therefore, update '

2,  iS C  accordingly to ensure that the 

improvements will be independent. 

 Halldorsson observed that under these shrinking improvements 1A  is monotone 

decreasing. Therefore, once a maximum collection of improvements have been obtained, 

further local improvements are not possible. Therefore, the entire shrinking process runs 

in the linear time. Parallel implementation of shrinking procedure is also possible, by 

finding a maximal independent set in the graph of all possible improvements. 
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Lemma 5 [22]: 3-SC algorithm finds a cover with at most (2s +5b)/7 sets.  

Proof [22]: For two set collections ' ,  A A : 

let '  A A denote { X A : ' '

'( )  
X A

X X  } or the collection of sets in A containing 

elements in some set in 'A . 

 Partition B into 1 1 2 1 2  ,  ( )  ,B B A B B B A  and 3 1 2.B B B B  Let 1 2 3,  ,  b b b  

denote the sizes of these collections respectively. 

Using the optimality of 2-set packing algorithm 

                   1 1a b                                                               (2.9)   

                   1 2 1 2a a b b                                                 (2.10)   

 Since the solution is locally minimal. Therefore, at least one element of each set 

in 2A must belong to a set in either 2B or 3B . Each set in 2B  contains an element in 2A . 

Therefore, slots available for elements from 3A  are at most 2, in such a set.  

This implies 

                   3 2 32 3a b b                                                    (2.11)   

The total number of set in the solution is precisely s. 

                   1 2 32 3a a a s                                              (2.12)   

Now if add (2.9) twice , (2.10) three times, (2.11) once and (2.12) twice,  

                  1 2 3 1 2 3 37( )  2 5( ) 2a a a s b b b b   

                   1 2 3 1 2 3 3( )  (2 5( )) / 7 2 / 7a a a s b b b b  

which implies 3-SC algorithm finds a set cover with (2s +5b)/7 sets at most.  
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 Since 3 ,s b this implies performance ratio of 11/7 = 2b, which implies that 3-SC 

algorithm has performance ratio of 11/7.  

 

2.5.3.2 Algorithm for k-SC Problem [22] 

Execute standard greedy algorithm, until set size becomes at most 3. Let 1A  be the 

obtained SC solution. 

     On the surviving set cover instance, apply 3-SC algorithm, to get solution 2A . 

     A = 1A   U 2A   is the final SC-solution. 

The k-SC algorithm provides a solution which is 11
42

( )H k  optimal.  

 

Example 2.6: Find set cover for following collection of sets using k-SC algorithm. 

S 1   = {1, 2, 3, 4, 5, 6} 

S 2  = {5, 6, 8, 9} 

S 3  = {1, 4, 7, 10} 

S 4  = {2, 5, 7, 8, 11} 

S 5  = {3, 6, 9, 12} 

S 6  = {10, 11} 

U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 

 

STEP – I:  

Apply standard greedy algorithm, till set size becomes 3. 
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 S 1  = 6 has maximum cardinality. 

 Therefore, select S 1 . Now remaining sets have maximum set size of 3.  

 After elements of S 1  is removed from remaining sets,  

             C = {S 1 } 

                   UNCOV = {7, 8, 9, 10, 11, 12} 

                   S 2  = {8, 9} 

                   S 3   = {7, 10} 

                   S 4  = {7, 8, 11} 

                   S 5  = {9, 12} 

                   S 6  = {10, 11} 

STEP – II:  

Now find maximum set packing. 

 S 2  and S 3  form the maximum set packing. Note: this is non-unique. 

 After removing elements of S 2  and S 3  from remaining sets, 

             C = {S 1 , S 2 , S 3 } 

                   UNCOV = {11, 12} 

                   S 4  = {11} 

                   S 5  = {12} 

                   S 6  = {11} 
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STEP – III:  

Now find the minimum edge cover. But in this case, there are only isolated edges 

remaining. 

 Remaining element of S 4 and S 6  are essentially the same. Therefore, S 4 and S 5         

 complete the set cover. 

                   C = {S 1 , S 2 , S 3 , S 4 , S 5 } 

STEP – IV:  

Now apply local improvements to sets S 2 , S 3 , S 4 , S 5 . 

                   S 2  = {8, 9} 

                   S 3   = {7, 10} 

                   S 4  = {7, 8, 11} 

                   S 5  = {9, 12} 

 S 2  and S 3  form the maximum set packing. Note: this is non-unique. 

    After removing elements of S 2  and S 3  from remaining sets,  

             C = {S 1 , S 2 , S 3 } 

                   UNCOV = {11, 12} 

                   S 4  = {11} 

                   S 5  = {12} 

In this case no further local optimization is possible. Therefore, the final set cover is  

C = {S 1 , S 2 , S 3 , S 4 , S 5 } 
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2.6 Duh and Furer Algorithm Using Semi Local Optimization [23]  

 Duh and Furer offered a new approach, semi-local optimization to solve set cover 

problem. This approach is based on local optimization. However this approach is more 

powerful. The advantage of this approach comes from global changes made to 

approximate solution. This approach applies standard greedy algorithm till the maximum 

set size becomes 3. For maximum set size of 5 and maximum set size of 4 it applies 

standard greedy algorithm with some restriction. In the end, for maximum set size 3, it 

uses semi local optimization. Semi local optimization for 3-set cover has greatly 

improved performance ratio of 4/3. Based on result of 3-set cover and a restrictive phase, 

performance ratio of k-set cover problem turns out to be 1
2

( ) .H k  

 

2.6.1 3-Set Cover Using Semi Local Optimization [23] 

 In pure local optimization technique, current approximate solution gets better by 

replacing a fixed number of sets in the current set cover with a lesser number of sets to 

get a new set cover. Duh and Furer suggested following approach to solve 3-set cover 

problem and called it semi local optimization. In semi local optimization, once sets of 

size 3 has been selected for partial cover, the remaining sets with maximum set size of 2 

are covered optimally in polynomial time, by finding maximum matching. 

 A semi-local(n,t) improvement step for 3-set cover consists of inserting up to n 3-

sets and deleting up to t sets. Also, an arbitrary number of sets with maximum set size of 

2 are optimally replaced. The algorithm looks for number of sets with set size equal 3, 

instead of all the smaller subsets. It allows global changes to the sets with maximum set 
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size of 2. For quality of solution, algorithm first looks for number of sets in the set cover 

and second the number of sets with set size equal 1. Set cover with smallest size is 

preferred and among set covers of same size the one with fewer 1 element sets is 

preferred. Semi local-optimization algorithm for 3-set cover produces a set cover with 

performance ratio 4/3. 

 

2.6.2 k-Set Cover Using Semi Local Optimization Algorithm [23] 

1. The Greedy Phase:  

 For j = k, down to 6 do 

  Apply standard greedy algorithm to select maximum collection of j-sets.  

  j-sets denote the sets covering exactly j new element. 

 

2. Restricted Phase:  

 For j = 5, down to 4 do 

  Select maximal collection of j-sets with the condition that the choice of  

  these j-sets would not increase the number of 1-sets. 

 

3. Semi Local Improvement Phase for 3-Set Cover:  

 Apply semi local optimization on the elements that are still not covered. 

Semi local-optimization algorithm for k-set cover produces a set cover with a 

performance ratio of 1
2

( ) .H k  
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2.7 Modified Duh and Furer Algorithm by Asaf Levin [24]  

 In 2006, Asaf presented an improvement to Duh and Furer algorithm which has 

performance ratio 196
390

( ) .H k  This is the best known improvement for standard greedy 

algorithm. The previous best known improvement of standard greedy algorithm was Duh 

and Furer algorithm which had a performance ratio of 1
2

( ) .H k    

 

2.7.1 Asaf Levin’s Algorithm [24]  

1. The Greedy Phase:  

 For j = k, down to 6 do 

  Apply standard greedy algorithm to select maximum collection of j-sets.  

  j-sets denote the sets covering exactly j new element. 

 

2. Restricted Phase:  

 Select a maximal collection of disjoint 5-sets with the condition that 5-sets would 

 not increase the number of 1- sets.  

 

3. Restricted Local Phase:  

 (a) Select a maximal collection of disjoint 4-sets with the condition that these 4-

       sets would not increase the number of 1-sets.  

 (b) While there are 4-sets C  C (cover) and 1 2,C C  C such that  

       C ' = (C 1 2\{ }) { , }C C C is a collection of disjoint 4-sets, so that it increases  
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       the number of 1-sets, replace C by C ' . 

 

4. Semi Local Improvement Phase for 3-Set Cover:  

 Run semi local optimization on still uncovered elements. 

 Asaf Levin algorithm replaces the greedy construction for j = 4, in Duh and Furer 

algorithm by local search approach. The improvement of this algorithm, compared to 

Duh and Furer algorithm, comes from local search phase. 

 Above algorithm by Asaf Levin, for k-set cover produces a set cover with 

performance ratio 196
390

( ) .H k  This is best known improvement for standard greedy 

algorithm. The time complexity of this algorithm is 5 6( )O m n . 
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CHAPTER 3 

LINEAR PROGRAMMING TECHNIQUE FOR SET COVER PROBLEM 

3.1 Linear Programming Introduction  

 Linear programming is the problem of optimizing a linear objective function, 

subject to linear inequality constraints [3]. Basically, the aim is to achieve best outcome, 

i.e., maximize or minimize linear function.  

 In linear programming problem for maximization [3], a m  n matrix A, a m-vector 

b and a n-vector c are given. The aim is to try and achieve a vector x of n elements that 

maximizes the objective function 
1

n

i i ic x , subject to the m constraints given Ax  b. 

Feasible solution for linear programming problem is any vector x that satisfies Ax  b. 

For minimization problem, constraints are of kind “ ”. 

 Many practical problems can be very easily expressed as linear programs [3]. 

Because of this a lots of research work has been done in the area of linear programming. 

General linear programs can be solved very quickly using the simplex algorithm.  

 If a problem can be defined as polynomial sized linear programming problem [3] 

then it means that there exists a polynomial time algorithm for the problem. Also in many 

special cases faster algorithms exist for the linear programming problem. Sometimes the 

objective function is ignored and an attempt is made to find whether any feasible solution 

exists or establish that no feasible solution exists.  
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For example, given a problem [26]: 

minimize    7 1x   +  2x   + 5 3x  

subject to      1x    -   2x   + 3 3x    10 

                  5 1x    + 2 2x  -    3x      6 

                  1x , 2x , 3x  0 

 This is the standard form of minimization problem [26]. Here all the constraints are 

of kind  and all the variables are constraint to be non-negative. The importance of non-

negative is that it doesn’t reverse the direction of constraint inequality. As stated earlier, 

any solution for the variables in the linear program which satisfies all the constraint is 

known as feasible solution. Let z  represent the optimal value of this linear program and 

 be a given rational number. The question asked is if z  is at most . If answer to this 

question is yes, then it means that there is a feasible solution, whose objective function 

value is at most . This  provides the upper bound for z .  In the above example, 

consider if objective function value of at most 30, i.e., z   30. x = (2,1,3) constitutes 

one solution  as 7 * 2 + 1 + 5 * 3 = 30. Now the other objective is to find good lower 

bound on z . In the above example, one such bound can be obtained by the first 

constraint, using coefficient comparison term by term. Since the ix ’s are restricted to be 

non-negative, clearly 7 1x   +  2x   + 5 3x   1x    -   2x   + 3 3x   10. Therefore, objective 

function is at least 10 for any feasible solution. A better lower bound is obtained by 

summing up the two constraints 7 1x   +  2x   + 5 3x   ( 1x    -   2x   + 3 3x ) + (5 1x    + 2  
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2x  -    3x  ) 16. 

 A lower bound is placed to the objective function so that suitable non-negative 

multipliers can be found for the constraints so that when their sum is taken, the 

coefficient of each ix is dominated by the coefficient in the objective function [26]. 

Since ix ’s are restricted to be non-negative, right-hand side of this sum is the lower bound 

on z .  Basically, the aim is to choose the multipliers in such a way that right hand side 

of the sum is as large as possible.  

The problem of finding lower bound as linear program can be expressed as [26]: 

maximize     10 1y   + 6 2y    

subject to          1y   + 5 2y    7 

                        - 1y   + 2 2y    1 

                       3 1y   -   2y      5 

                      1y , 2y    0 

 Here 1y  and 2y are chosen to be the non negative multipliers for the first and 

second constraint, respectively.  

 First linear program is called the primal linear program and the second linear 

program is called dual linear program [26]. Dual of dual linear program is primal linear 

program itself. Here it can be observed from dual of linear program is problem 

maximization, where primal linear program is minimization problem. By constructing, 

every feasible solution to the dual program gives a lower bound on the optimum value of 

the primal. The reverse also hold true, i.e., every feasible solution on the primal program 
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provides the upper bound on the optimal value of the dual. Therefore, if the feasible 

solutions for the dual and the primal with matching value function are known, then both 

solutions must be optimal. In the example above, x  = (7/4, 0, 11/4) and y = (2,1 ), both 

achieve the objective function value of 26. Therefore, both are optimal solutions. 

L-P Duality Theorem [26]: The primal linear program has finite optimum if and only if 

its dual linear program has finite optimum. Moreover, if * * *

1( ,..... )nx x x  and 

* * *

1( ,..... )my y y  are optimal solutions for primal linear program and the dual linear 

program respectively, then  

                    
* *

1 1

n m

j j i i

j i

c x b y  

In standard form, min-max dual theorem can be stated in the following way: 

minimize     
1

n

j j

j

c x  

subject to     
1

n

ij j i

j

a x b                        i= 1,.....,m 

                     0jx                                 j= 1,.....,n 

where ija , ib and jc  are given rational numbers. 

Then the dual linear program is: 

maximize     
1

m

i i

i

b y                                j= 1,.....,n 

subject to     
1

m

ij i j

i

a y c                        i= 1,.....,m 
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Weak L-P Duality Theorem [26]: If
1( ,..... )nx x x is a feasible solution for primal linear 

program and 
1( ,..... )my y y  is a feasible solution for the dual linear program, then  

                    
1 1

n m

j j i i

j i

c x b y  

Complementary Slackness Conditions [26]: Let x  and y  denote the solution for primal 

linear program and dual linear program respectively. Then x  and y are both optimal if 

and only if each of the conditions stated below are satisfied: 

Primal complementary slackness conditions for each1 j n ; either 
jx = 0 or 

1

m

ij i ji
a y c ; and 

Dual complementary slackness conditions for each 1 i m ; either iy = 0 or 

1

n

ij j ij
a x b  

 

3.2 Set Cover Using LP 

 For solving minimization problem for an NP-hard problem, using approximation 

linear programming algorithm, key step is to establish a good lower bound at the cost of 

the optimal solution [26]. For this, set cover problem is expressed as integer 

programming(IP). The cost of an optimal solution to LP-relaxation provides the desired 

lower bound. 

The general approach for solving set cover problem using LP is [16]: 

 1. Formulate the set cover problem as an IP. 

 2. Relax IP to a LP. 
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 3. Use the LP solution to get a solution set cover for IP. 

 

3.2.1 Set Cover via Rounding [16,26] 

 In the rounding strategy, first the linear program is solved and then the solution 

obtained for linear program is transformed to integral solution. At the same time, attempt 

is made to make sure that in the process the cost of the solution does not increase much. 

The integral and fractional solutions cost is compared to obtain the performance ratio. 

This strategy is known as rounding. 

The set cover problem is defined as 

        Ground set or universe U = { 1 2, ,....., mu u u } 

         Subsets 1 2, ,....., nS S S U  

         weight 0jw  for each set 
jS . The cost function is 1 for unweighted set cover. 

 The aim is to find {1,...., }I n  that minimizes j

j I

c subject to j I jS U . 

Basically, the goal is to select the minimum weight collection of sets that cover the 

universe. 

The frequency of an element in a set cover instance is defined to be the number of sets it 

is in, i.e., 

             max |{ : }|i j
i

f j u S  

 Define a variable jx  for each subset jS , which can have the values of either 0 or 1. 

jx  will be set to 1 iff corresponding subset jS is selected in the set cover. Clearly, the 
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restriction being that, for each element iu U , where the aim is that at least one of the set 

containing it should be picked. 

For weighted SC problem the IP formulation is 

                  Min 
1

n

j j

j

w x                          

                  Subject to: 

                      
:

1                  
i j

j i

j u S

x u U
 

                      {0,1}jx  

The LP relaxation is obtained by changing the last constraint to1 0jx . Since the 

upper bound on 
jx  is redundant,  

                  Min 
1

n

j j

j

w x                          

                  Subject to: 

                          
:

1                  
i j

n

j i

j u S

x u U
 

                            
1

0
n

j

j

x  

Note: for unweighted set cover 1        1jw j n  
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 One way of converting a solution to linear program into an integer solution is to 

round up all non-zero variables to 1. This algorithm achieves the performance guarantee 

of  f.  Following is the slightly modified algorithm which picks fewer sets in general. 

Simple Rounding Algorithm for Set Cover [26]: 

1. Solve LP-relaxation to get an optimal solution *.x  

2. Pick all sets 
jS for which 

* 1
jx

f
 in this solution. 

The performance ratio achieved by rounding algorithm is f. 

Randomized Rounding Approach to Set Cover [26]: 

 Each element selected by rounding process has a constant probability. Repeating a 

process (ln )O n times set cover of high probability is obtained.  

 To get complete set cover, c ln  n  sub collections are picked independently and 

their union is computed. Here c is a constant. The probability that set cover returned by 

this approach is not a valid set cover is 1/4. With probability 1/2 this approach returns a 

set cover that has a performance ratio of 4ln(4 )n . The above procedure is repeated until 

a valid set cover is found. The expected number of repetitions required is at most 2. 

Clearly, the expected cost of algorithm is of (ln )O n optimal.  

 

3.2.2 Set Cover via LP Duality [26] 

 As already stated, any feasible solution to the dual gives a lower bound on the 

primal program. Therefore, it gives lower bound on the original integer program also. 

The algorithm presented in this section finds an integral solution to the primal and 

simultaneously a solution to the dual. The performance ratio is obtained by comparing the 
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cost of these two solutions, i.e., solution to the primal and the dual. The main advantage 

of this algorithm over rounding algorithm is that instead of having to work with an 

arbitrary optimal solution to LP-relaxation, the two solutions can be carefully picked so 

that they have nice combinatorial properties. Also since the algorithm doesn’t have to 

first solve LP-relaxation optimally, this algorithm can be made more efficient. 

 Integrality gap of a minimized integer program is defined as the maximum ratio of 

an optimal integer program and optimal fractional solution. The aim is to minimize 

integrality gap. Using the LP-duality approach, is essentially formulation of integer 

programming of the integrality gap. 

Introduce a variable iy  corresponding to each element iu U . 

Now consider the primal linear program 

                  Min 
1

m

j j

j

w x                          

                  Subject to: 

                          
:

1                  
i j

j i

j u S

x u U
 

                            0jx  

The dual linear program to the above LP-relaxation for set cover is: 

                  Max 
i

i

u U

y                          

                  Subject to: 
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:

                 
i j

i j j

i u S

y w S U
 

                            0                                  i iy u U  

Simple Low Cost Dual-LP Algorithm for Set Cover [26]: 

1. Find an optimal solution *y to dual linear program. 

2. Pick all sets 
jS for which *

: i j

i j

i u S

y w in this solution. 

The performance ratio achieved by dual LP algorithm is f. 

 

3.2.3 Primal-Dual Schema  

 LP-duality also provides a general schema for obtaining the approximation linear 

programming algorithm: the primal dual schema [16]. Primal dual schema behaves much 

like dual LP. But rather than finding the optimal dual solution, it constructs its own dual 

solution. 

Now consider the primal program written in standard form [26]: 

minimize     
1

n

j j

j

c x  

subject to     
1

n

ij j i

j

a x b                        i= 1,.....,m 

                     0jx                                 j= 1,.....,n 

where ija , ib and jc  are specified in the input. 

Then the dual program is: 
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maximize     
1

m

i i

i

b y                                 

subject to     
1

m

ij i j

i

a y c                        j= 1,.....,n 

                     0iy                                 i= 1,.....,m 

 Algorithms using primal-dual schema run by ensuring the primal complementary 

slackness conditions and relaxing the dual conditions.  

Primary Complementary Slackness Conditions [26]: 

                  For each 1 j n : either 0jx  or 
1

m

ij i ji
a y c and 

Relaxed Dual Complementary Slackness Conditions [26]: 

                  For each 1 i m : either 0iy  or 
1

m

ij j ii
a x b  

where > 1 is an constant; if  becomes 1 then it is usual condition. 

Proposition [26]: Let x and y be the primal and dual feasible solutions satisfying the 

conditions mentioned above the 

                        
1 1

n m

j j i

j i

c x b  

 

3.2.3.1 Set Cover via Primal-Dual Schema [26] 

 Primal-dual schema starts by mentioning the primal complementary slackness 

condition and then the dual conditions are relaxed appropriately. 

Primal condition can be written as  
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:

: 0
i j

j j i j

i u S

S U x y w  

 Set 
jS is called tight if 

: i j

i j

i u S

y w . Since the primal variables are integrally 

 incremented, primal complementary slackness condition can be stated as:  

Select only tight sets in the set cover. 

 To maintain the feasibility of dual, overpacking of any set is not allowed. A set is 

called overpacked if the total amount packed into its elements exceeds its cost. Primal 

and dual can be thought as covering and packing linear program respectively. 

Dual conditions are relaxed with f . 

        
:

: 0
i j

i j i j

j u S

u y y y f  

Since x has 0/1 solution, these conditions are equivalent to:  

Cover each element with non-zero dual at most f times.  

Since each element occurs in at most f sets, therefore, this condition is satisfied for all 

elements trivially.  

Using the above two conditions: 

Primal-Dual Algorithm for Set Cover [26]: 

    1. Initialize: 0; 0x y  

    2. Till all the elements are covered perform: 

Select an uncovered element, say I, and raise iy  till some tight sets are found. 

Select each tight set in the cover and update x . 

Mark each of the elements occurring in these sets as “covered”. 
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    3. Return the obtained set cover x .  

The above algorithm achieves a performance ratio of f .  

 Greedy heuristics can be used to present set cover linear programming and in that 

case approximation factor will be ( ).H k  
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CHAPTER 4 

SET COVER SOLUTION USING NETWORK FLOW APPROACH  

 Mohamed Afif, Mhand Hifi, Vangelis Th. Paschos and Vassilis Zissimopoulos 

presented the set cover solution, which was based on network flow algorithm of Ford and 

Fulkerson. This polynomial time algorithm was based on transforming set cover problem 

into a particular network flow problem and proposing a flow algorithm which was based 

on Ford and Fulkerson algorithm. 

 

4.1 Transformation of Set Cover into Flow Problem [27] 

 Mohamed et. al used the following definition for transforming set cover into a flow 

problem.  

Definition 1 [27]: A bipartite graph B = (S, C, E) is constructed from set cover problem 

definition. In this bipartite graph B = (S, C, E), vertex set S corresponds to the family of 

sets ,  vertex set C corresponds to the ground set (or base set or universal set) C, and set 

of edges { : }.i j j iE s c c S  Once bipartite graph is created, a layered network N = (X, A, 

c, b) is constructed with vertex 0 0X S C s c    where 0c  represents the source of the 

network and 0s  represents the sink of the network and s cA E E E   is the arc set of 

the network. 
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0 0{ : },  { : }s j j c i iE s s s S E c c c C  and the arcs are oriented from 0c  to 0s . The 

vectors ( ) ,  ( )a a A a b Ac c b b   represent capacities and lower bounds respectively, on 

the arcs of N.  

Therefore, 

'

'

0

1                       

1
          ,      0 0

| ( ) |

              ,   1,..,           { : ( )}
i

ci

s

a i

j

i c i j j ia
a E

a E

c a c i j
s

c a c c i m E c s s c

 

'

'

0

0                                                        

min{ : { : ( )}}       ,      1,...,

s

a

i j j i ia

a E E
b

c a c s s c a c c i m


 

where ( )x is the set of neighbors of x, | ( ) |x  and | ( ) |x  are the outer and inner 

degree of vertex x. 

Set of incoming arcs of vertex iv  are denoted by ( )iI v . Set of outgoing arcs of vertex iv  

are denoted by ( )iI v . 

Using construction implied by above definition set cover problem reduces to a minimum 

flow problem  on N. 

0 0

( ) ( )

min

          \{ , }

                      

{0,1}                        

                            

s

i i

a

a E

a a i

a I v a I v

a a a

a s

a c

v X s c

b c a A

a E

a E E 

 



 

62 

 The set cover problem can be reduced to minimum flow problem  in polynomial 

time ( ).O mn  Also the (optimal) objective function values for the solution of set cover 

and  are equal. 

 Given an instance of I of set cover it takes ( )O mn steps for the construction of 

bipartite graph B. The construction of layered network N, too, takes (| |)O E = ( )O mn  

steps. Since computation of upper and lower capacities of arc can be performed in 

constant time, therefore, the entire transformation from set cover to network flow 

problem can be performed in ( ).O mn  

 

Example 4.1:  Create the characteristic bipartite graph B and the layered network N, for 

following set cover problem.  

1 2 3 4{ , , , }S S S S   

{ , , , , }C a b c d e  

1 { , }S a b  

2 { , , }S b c d  

3 { , }S d e  

4 { , }.S a e  

 

Using Definition 1, above set cover problem can be converted into network flow 

problem. Fig-4.1 shows the characteristic bipartite graph B for this and Fig-4.2 represents 

the layered network N. 
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Fig-4.1 Bipartite Graph B for Set Cover Problem in Example 4.1  

 

 

Fig-4.2 Layered Network N for Bipartite Graph in Fig-4.1  
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4.2 Minimum Flow Algorithm for Set Cover Problem [27] 

Mohamed et. al gave following algorithm for solving set cover problem. Algorithm uses 

t(a) to denote the extremity of arc a and i(a) to denote initial extremity. 

begin 

         *S  

          repeat 

                      CONSTRUCT(N); 

                       { : }ac a A  

                        repeat 

                               stop  false; ' '

0 0( ) ; { };c X c A  

                               while ( '

0 )s X  stop do 

                                       if ' ', \ a aa xy A x X y X X b  then 

                                             
' ' '{ };  ( ) ;X X y A y a  

                                              ' '( ) min{ ( ), };  { }a by y A A a  

                                               else stop  true 

                                        end-if 

                               end-while 

                               if '

0s X  then 

                                   0( )s  

                                   else 0  

                              end-if 
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                              if 0 then 

                                   0;x s  

                                    while 0x c do  

                                               '( );  ;  ( )a aa A x x i a    

                                    end-while 

                              end-if 

                        until 0       

                        * *

0{ : arg max{ : }};i i a sS S s s s a E  

                        
0 0{ } { : ( ) } { : ( )};i i j j iA s s a t a s c c c s   

                        \ ( );  \{ }; \i iC C s S S s A A A  

          until C  

end              

 Procedure CONSTRUCT uses the definition 1 to transform either the original set 

cover problem or its surviving instance after deleting of an S-vertex and its C-

neighborhoods, on outer repeat loop. 

 The inner repeat loop gives the minimum flow algorithm. It computes a flow 

reduction and a reducing path along which the flow will be reduced by .  Algorithm 

starts with a feasible solution, it saturates all arcs of N, and tries to reduce flow from 0c  

to 0.s  The reduction step along a path 0 0[ ]j ic c s s  is defined recursively as follows: 

 0( ) ,c  for each arc a = xy A, ( ) min{ ( ), }a ay x b and finally 0( ).s  
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 Once a minimum flow has been obtained, algorithm checks if the flows on the arcs 

of sE are integral or not. If the flows are not integral and given that flows are rational 

numbers, algorithm chooses the S-vertex through which the maximum flow closest to 1 is 

sent. Algorithm then deletes this vertex and its neighbors in C. Then upper and lower 

capacities in the surviving network are re-calculated. Thus at the end of each iteration, a 

number of C-vertices of N are deleted.  

 Therefore, after a number of steps all C-vertices will be removed, which implies 

they are covered by S-neighbors. The algorithm treats every path of algorithm only once 

because the way a  and b  are computed for .a E  

 

Example 4.2: Find set cover solution, for the problem defined in Example 4.1, using 

minimum flow network algorithm. 

 

 First the flow values need to be calculated. Fig-4.3 shows the flow values, 

calculated by the network flow algorithm, for the network shown in Fig-4.2. Algorithm 

selects the vertex 2S ,  because of the maximum flow value on the arc 2 0S S , on the arcs of 

.sE   

 After selecting 2S , this vertex and all its neighbors are deleted. Fig-4.4 shows the 

surviving network after deleting vertex 2S  and its neighborhood. There after flow values 

are recalculated on the surviving network. Fig-4.5 shows recalculated flow value for 

surviving network.  
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Fig-4.3 Network Constructed for Example 4.1  

 

Fig-4.4 Surviving Network After Deleting Vertex 2S  and Its Neighbors 
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Fig-4.5 Recalculated Flow Values for Surviving Network 

 

 Therefore, during second and last iteration, algorithm selects vertex 4S  in the 

solution, because of maximum flow value on the arc 4 0S S , on the arcs of .sE . Therefore, 

*

2 4{ , }.S S S  It can be easily observed that this is the set cover. 

 

4.3 Performance Analysis of Minimum Flow Algorithm [27] 

 If every time the algorithm chooses to reduce the flow along the 0 0[ ]j ic c s s  such that 

0 jc c  has smaller lower capacity and the arc j ic s has the smaller upper capacity, then this 

algorithm produces standard greedy algorithm.  
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 On the other hand if the algorithm chooses reducing path arbitrarily, then solution 

is not always Johnson’s standard greedy algorithm. 

 For large mn values, the average execution times for the Johnson’s standard greedy 

algorithm and minimum flow algorithm of set cover heuristics become almost identical.  
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CHAPTER 5 

CONCLUSION 

 Johnson showed the performance ratio for standard greedy algorithm is ( ).H k  This 

lies between ln k and ln 1.k  The complexity of standard greedy algorithm is of ( ),O mn  

where m is the size of universal set(ground set or base set ) and n is total number of sets. 

By maintaining a priority queue standard greedy algorithm can be implemented in such a 

way that it runs in time ( | |)
i

iS S
O S . 

 For 20 years this remained the bound for standard greedy set cover algorithm.  Petr 

Slavik in 1996 [13] proved that the approximation ratio of standard greedy algorithm is 

exactly ln   –  ln  ln   (1)m m . Here m is the size of ground set or universe. Also the 

lower and upper bound differ by less than 1.1. 

For standard greedy algorithm the upper and lower bounds are: 

min

greedyc

c
 < ln   –  ln  ln    0.78m m  

min

greedyc

c
 > ln   –  ln  ln    0.31m m  

 Lund and Yanakakis have established that set covering cannot be approximated 

with ratio c 2log m for any c < l/4 unless all NP problems are solvable in 

log  ( )poly mDTIME m . Feigh proved stronger result showing that for any > 0, no 

polynomial time algorithm can approximate set cover within (1 - ) lnm , unless 
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(log log )  [ ]O mNPTIME m . The above results rule out drastic improvement of standard greedy 

algorithm. But enhancements are possible. Till now best known enhancement of standard 

greedy is Asaf Levin algorithm. It has a performance ratio of 196
390

( )H k  and the time 

complexity of 5 6( )O m n . 

 I have also implemented the three algorithms and created a software library that 

stores the code I have written.  

 Table-5.1 does the comparative study for different set cover algorithms presented. 

For set cover problem, optimal solution is possible set cover is possible for set size of 2. 

All the enhancements use this result to obtain improvement over standard greedy 

algorithm.  

 In nutshell, standard greedy algorithm is near optimal solution to set cover problem 

and Lund’s result rules out any drastic improvement of standard greedy algorithm. 
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Table-5.1 Performance Ratio for Different Set Cover Algorithms 

Name of the algorithm Performance ratio 

Johnson’s Standard Greedy algorithm ( )H k  

Goldsmidt, Hochbaum and Yu’s Modified Greedy algorithm 1
6

( )H k  

Halldorsson’s Local optimization technique 11
42

( )H k  

Dur and Furer semi local optimization 1
2

( )H k  

Asaf Levin’s improvement to Dur and Furer algorithm 196
390

( )H k  

LP simple rounding algorithm  f 

LP randomized rounding algorithm 4ln(4 )n  

LP duality  f 

LP Primal-Dual Schema   f 

Network flow technique ( )H k  

 

Note: ( )H k is the harmonic series and k is the size of the largest set. 

f  is the frequency of the most frequent element where frequency is the maximum number 

of sets that an element belongs. 

n is total number of sets. 
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