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Diophantine equations

The study of solutions to Diophantine equations

is a very old subject. Suppose we have a system

of M equations

P1(X1, ..., XN) = 0

...

PM (X1, ..., XN) = 0

where P1, ..., PM are polynomials with integer

coefficients.

Question 1: Does this system have a non-trivial

integral solution?

Question 2: Assuming it does, how do we find

such a solution?

Both questions are very difficult. The famous

result of Matijasevich implies that Question 1 in

general is undecidable. We will concentrate on

Question 2.
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Search bounds

Suppose that the system above has a non-trivial

integral solution. Suppose we were able to prove

that there exists a solution x = (x1, ..., xN) ∈ ZN

with

max
1≤i≤N

|xi| ≤ B

for some explicit constant B. This means that we

can restrict the search for a non-trivial solution to

a finite set

{x ∈ ZN : max
1≤i≤N

|xi| ≤ B}.

We will refer to a constant B like this as an

explicit search bound for the polynomial system

P1, ..., PM . Hence Question 2 can be replaced by

the following.

Question 3: Assuming the polynomial system

P1, ..., PM has an integral solution, can we find an

explicit search bound?
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A general answer to this question is currently

known only for systems of linear equations and

for one quadratic equation, where the known

search bounds, as one would expect, depend on

the coefficients of polynomials.

The discussion above can be generalized to Q.

Let P1, ..., PM be polynomials with rational

coefficients such that they have a common

non-trivial rational zero. We want to find a search

bound B such that there exists a non-trivial

solution x =
(

x1

x0
, ..., xN

x0

)

∈ QN with

max
0≤i≤N

|xi| ≤ B.

Notice that the set
{(

x1

x0
, ...,

xN

x0

)

∈ QN : max
0≤i≤N

|xi| ≤ B

}

is again finite, so B is in fact a search bound.
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Height functions

Now let K be a number field, i.e. a finite

extension of Q, of degree d. Let P1, ..., PM be

polynomials with coefficients in K such that they

have a common non-trivial zero over K. How can

we define search bounds in this context? Namely,

we want to come up with a function

H : KN −→ R+

that would measure “size” or, more accurately,

“arithmetic complexity” of vectors so that for

every B ∈ R+ the set

{x ∈ KN : H(x) ≤ B}

is finite. Functions like this are called height

functions. We define an example of height.
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There are infinitely many absolute values on K:

those that extend the usual absolute value on Q

are called archimedean and those that extend

p-adic ones on Q are called non-archimedean.

We can define an equivalence relation on absolute

values: | |1 and | |2 are said to be equivalent if

there exists a real number θ such that

|a|1 = |a|θ2

for all a ∈ K. Equivalence classes of absolute

values are called places, and we write M(K) for

the set of all places of K. For each place

v ∈ M(K) we pick representatives | |v and we

write v|∞ if v is archimedean, and v - ∞

otherwise. Here is an important property.

Artin-Whaples product formula: For each

a ∈ K, a 6= 0,
∏

v∈M(K)

|a|v = 1.
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Equivalent absolute values define the same metric

topology, and so we can talk about completion

of K with respect to the metric defined by v, call

this completion Kv. We can define local norms on

each KN
v by

|x|v = max
1≤i≤N

|xi|v

for each x = (x1, ..., xN) ∈ KN
v . Then define a

global height function on KN by

H(x) =
∏

v∈M(K)

|x|v

for each x ∈ KN . This product is convergent

because only finitely many of the local norms for

each vector x ∈ KN are different from 1. Also

notice that because of the product formula, H is

well defined on the projective space PN−1(K). In

general, one can define a variety of different

height functions by selecting different local norms

while making sure that the defining product is

still convergent.
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For our purposes this height function turns out to

be convenient. It is easy to see that H(x) ≥ 1 for

all non-zero x ∈ KN . The main property, for our

purposes, that all height functions satisfy is

Northcott’s theorem: For a height function H

on KN the set

{x ∈ KN : H(x) ≤ B}

is finite for every positive real number B.

Hence we have successfully generalized the

discussion of search bounds to systems of

polynomials over a number field.

Heights can be extended to polynomials: if

F (X1, ..., XN) ∈ K[X1, ..., XN ]

we write H(F ) to mean the height of its

coefficient vector.
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We can also talk about height of subspaces of

KN . Let V ⊆ KN be a J-dimensional subspace,

and let x1, ..., xJ be a basis for V . Then

x1 ∧ ... ∧ xJ ∈ K(N

J )

under the standard embedding. Define

H(V ) = H(x1 ∧ ... ∧ xJ ).

This definition is legitimate, i.e. does not depend

on the choice of the basis. Indeed, if y1, ..., yJ is

another basis for V , then there exists

U ∈ GLJ (K) such that

Y = XU

where Y = (y1 ... yJ) and X = (x1 ... xJ) are

N × J basis matrices. Hence

y1 ∧ ... ∧ yJ = (detU) x1 ∧ ... ∧ xJ .
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Therefore

H(y1 ∧ ... ∧ yJ) = H(x1 ∧ ... ∧ xJ) ×

×
∏

v∈M(K)

| detU |v

= H(x1 ∧ ... ∧ xJ).

by the product formula. Hence we have defined a

height on points of a Grassmanian over K. It

satisfies the following important property.

Brill-Gordan duality: If V as above is the

nullspace of an (N − J) × N matrix A with row

vectors a1, ..., aN−J , then

H(V ) = H(a1 ∧ ... ∧ aN−J ).

Finally, define height on elements of GLN (K) by

viewing them as vectors in KN2

. We are now

ready to talk about known results on search

bounds for systems of polynomial equations

over K.
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Siegel’s lemma

The first case, which is well understood by now, is

the existence of search bounds for a system of

linear forms. Results on this subject are usually

referred to by the common name of Siegel’s

lemma. Here is a version of it over K.

Theorem 1 (Bombieri - Vaaler, 1983). Let A

be an M × N matrix of rank M < N with

coefficients in K. Let V be the nullspace of A.

Then the linear system

Ax = 0

has a non-trivial solution x ∈ V such that

H(x) ≤ C1H(V )
1

N−M

where the constant C1 is explicit and depends on

K and N .
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There has been a large amount of further work

done in this direction since 1983, for instance by

Aliev, Chaladus, Fukshansky, O’Leary, Roy,

Schinzel, Thunder, Vaaler, just to name a few.

Among these, I would like to mention the

following two. First a result analogous to

Theorem 1, producing a search bound for

solutions of an inhomogeneous linear system over

K, by O’Leary and Vaaler. Second, a so-called

“absolute” version of Siegel’s lemma, i.e. a

version of Theorem 1 over Q, by Roy and

Thunder; namely, they prove that there exists a

solution over Q to a homogeneous linear system

whose height is bounded above by an expression

not depending on a number field. This, however,

is not an actual search bound, since Northcott’s

theorem only applies to sets of points of bounded

height AND degree over Q.
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Quadratic forms

The only other case that is known is that of one

quadratic polynomial. Let

F (X, Y ) =
N

∑

i=1

N
∑

j=1

fijXiYj

be a symmetric bilinear form with coefficients in

K. We write

F (X) = F (X, X)

for the associated quadratic form. We say that F

is isotropic over K if there exists a non-zero

x ∈ KN such that F (x) = 0.

Theorem 2. Suppose that F is isotropic over K.

Then there exists a non-zero point x ∈ KN such

that F (x) = 0, and

H(x) ≤ C2H(F )
N−1

2

where C2 is an explicit constant that depends on

K and N .
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This theorem has first been proved over Q by

Cassels in 1955, and generalized to number fields

by S. Raghavan in 1975.

A large amount of further work in this direction

has also been done by Birch, Chalk, Davenport,

Fukshansky, Knesser, Masser, Schlickewei,

Schmidt, and Vaaler, among others.

Masser in 1998 proved an analogue of Theorem 2

for an inhomogeneous quadratic polynomial over

Q. I have extended Masser’s result to number

fields and generalized it by considering an

additional set of arithmetic conditions on point in

question.

Nothing is known about search bounds for

polynomials of higher degree, or for a system of

quadratic polynomials. Quadratic spaces have a

very rich and symmetrical structure that seems to

be lacking in higher degree. We next demonstrate

some further results on the effective structure of

quadratic spaces.
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Effective structure theorems

We start with some notation. Let F be a

symmetric bilinear form with associated quadratic

form on KN , as above. Let Z ⊆ KN be a

subspace of dimension L, 2 ≤ L ≤ N . Then Z

equipped with F is a symmetric bilinear space

over K, we write (Z, F ) to denote it. A subspace

W of Z is said to be totally isotropic if

F (W ) = {0}. All maximal totally isotropic

subspaces of (Z, F ) have the same dimension,

called Witt index of (Z, F ).

Theorem 3 (Vaaler, 1987). Let M ≥ 1 be the

Witt index of (Z, F ) over K. Then there exists a

maximal totally isotropic subspace W of (Z, F )

such that

H(W ) ≤ C3H(F )
L−M

2 H(Z)

where C3 is an explicit constant that depends on

K, L, and M .
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More generally, I have recently shown that (Z, F )

has a whole orthogonal decomposition into special

subspaces of bounded height, where

orthogonality denoted by ⊥ is always meant

with respect to the symmetric bilinear form F .

First we continue with some more notation.

A subspace U of (Z, F ) is anisotropic if

F (x) 6= 0 for all 0 6= x ∈ U . A subspace V of

(Z, F ) is called regular if for each 0 6= x ∈ U

there exists y ∈ U so that F (x, y) 6= 0. For each

subspace U of (Z, F ) we define

U⊥ = {x ∈ Z : F (x, y) = 0 ∀ y ∈ U}.

If two subspaces U1 and U2 of (Z, F ) are

orthogonal, we write U1 ⊥ U2 for their orthogonal

sum. If U is a regular subspace of (Z, F ), then

Z = U ⊥ U⊥ and U ∩ U⊥ = {0}.

Two vectors x, y ∈ Z are called a hyperbolic

pair if F (x) = F (y) = 0, F (x, y) = 1.
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The subspace

H(x, y) = spanK{x, y}

is regular and is called a hyperbolic plane. An

orthogonal sum of hyperbolic planes is called a

hyperbolic space. Every hyperbolic space is

regular.

A classical theorem of Witt states that there

exists an orthogonal decomposition of (Z, F ) of

the form

Z = Z⊥ ⊥ H1 ⊥ ... ⊥ HM ⊥ V

where Z⊥ = {x ∈ Z : F (x, z) = 0 ∀ z ∈ Z} is the

singular component, Hi are hyperbolic planes,

and V is anisotropic component.
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Theorem 4 (F., 2005). Let (Z, F ) be as above,

and let r be rank of F on Z, 1 ≤ r ≤ L. There

exists a Witt decomposition of (Z, F ) with

H(Z⊥) ≤ C4H(F )
r

2 H(Z)

and

max{H(Hi), H(V )}

≤ C5

{

H(F )
L+2M

4 H(Z)
}

(M+1)(M+2)
2

,

for each 1 ≤ i ≤ M , where the constants are

explicit and depend on K, r, N , L, and M .
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Isometry group

The classical version of Witt decomposition

theorem can be deduced from the theorem of

Cartan and Dieudonné on the representation of

isometries of a bilinear space. From here on

assume that (Z, F ) is regular. Let O(Z, F ) be the

group of all isometries of (Z, F ), i.e. O(Z, F )

consists of all σ ∈ GLN (K) such that

F (σx, σy) = F (x, y)

for all x, y ∈ Z. Let σ ∈ O(Z, F ). There exist

reflections τ1, ..., τl ∈ O(Z, F ) such that

σ = τ1...τl

where 0 ≤ l ≤ L.

The following is a slightly weaker effective version

of Cartan-Dieudonné theorem.
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Theorem 5 (F., 2004). Let (Z, F ) be a regular

symmetric bilinear space over K with Z ⊆ KN of

dimension L, 1 ≤ L ≤ N , N ≥ 2. Let

σ ∈ O(Z, F ). Then either σ is the identity, or

there exist an integer 1 ≤ l ≤ 2L − 1 and

reflections τ1, ..., τl ∈ O(Z, F ) such that

σ = τ1 ◦ · · · ◦ τl,

and for each 1 ≤ i ≤ l,

H(τi) ≤ C6

{

H(F )
L

3 H(Z)
L

2 H(σ)
}5L−1

,

where C6 is an explicit constant depending on K,

N , and L.

There are two interesting corollaries of the

method. One is a bound on the height of the

invariant subspace of an isometry. The second

is a statement about existence of a reflection of

relatively small height.
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What is next?

This last corollary is related to a much more

general recent conjecture of Masser on

small-height integral equivalences of isometric

bilinear spaces.

Namely, if bilinear spaces (KN , F ) and (KN , G)

are isometric, then there should exist an isometry

σ between them with coefficients in the ring of

algebraic integers of K so that H(σ) is effectively

bounded by a polynomial expression in

H(F ) + H(G).

This conjecture currently seems to be far out of

reach. I believe that a first step in this direction

should be an investigation of the effective

structure of bilinear lattices and their isometry

groups, analogous to the above results on bilinear

spaces.
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Bounds over Q

What about explicit search bounds for

polynomials of higher degree, or even a system of

quadratics? It does not look hopeful. If we look

for solutions over Z, Matijasevich’s result implies

that in general the question of whether a given

polynomial system has non-trivial integral

solutions is undecidable. Analogous questions

over Q, or rings of integers of number fields are

open problems.

A question like this about a polynomial system

can always be reduced to a system of quadratics.

Hence even for a system of quadratics it does not

look good.

However, if one was to relax the condition that a

non-trivial solution for a polynomial system

P1, ..., PM with coefficients in K has to lie over K,

and look over Q instead, the question becomes

easily tractable.
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It is an immediate consequence of Arithmetic

Bezout’s Theorem of Bost, Gillet, and Soulé (also

Laurent and Roy) that if P1, ..., PM are

homogeneous polynomials in N > M + 1 variables

of respective degrees J1, ...JM with coefficients in

K, then there exists non-zero x ∈ Q
N

with

degK(x) ≤ J1...JM

such that

P1(x) = ... = PM (x) = 0

and

H(x) ≤ C7

M
∏

i=1

H(Pi)
1

Ji

where the constant C7 is explicit.

This is still a search bound, since degree of x is

bounded.
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In case of just one polynomial more can be said.

Theorem 6 (F., 2003). Let P be a

homogeneous polynomial in N ≥ 2 variables of

degree J ≥ 1 over K, and let A ∈ GLN (K). Then

either there exists a non-zero point y ∈ KN such

that P (y) = 0 and

H(y) ≤ H(A−1)

or there exists x ∈ Q
N

with degK(x) ≤ J such

that P (x) = 0, Ax ∈ (Q
×

)N , and

H(x) ≤ C8H(A−1)2H(P )
1
J

where the constant C8 is explicit and depends on

N and J only.

This means that placing additional arithmetic

conditions on the zero in question does not

change the exponent in the upper bound, so

perhaps this exponent is not best possible.
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I believe that it should be possible to prove that if

P is a homogeneous polynomial in N > 2

variables of degree J ≥ 1 with coefficients in K,

then there exists a non-zero x ∈ Q
N

such that

P (x) = 0 and

H(x) ≤ C9H(P )
1

J(N−1)

for an explicit constant C9.

A bound as above may come at the expense of

degK(x) not being bounded, so it may not be an

explicit search bound any longer. Such a result

for diagonal forms follows as an immediate

consequence of the absolute Siegel’s lemma of Roy

and Thunder. I hope that further progress can be

made on this question in the near future.
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