

 APPROVED:

Parthasarathy Guturu, Major Professor
Kamesh Namuduri, Committee Member
Bill P. Buckles, Committee Member
Murali R. Varanasi, Chair of the Department of

Electrical Engineering
Costas Tsatsoulis, Dean of College of Engineering
Michael Monticino, Dean of the Robert B.

Toulouse School of Graduate Studies

STUDY OF THE EFFECTS OF BACKGROUND AND MOTION CAMERA ON THE

EFFICACY OF KALMAN AND PARTICLE FILTER ALGORITHMS

Yasuhiro Morita

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

August 2009

 Morita,Yasuhiro. Study of the effects of background and motion camera on the efficacy

of Kalman and particle filter algorithms

This study compares independent use of two known algorithms (Kalmar filter with

background subtraction and Particle Filter) that are commonly deployed in object tracking

applications.

. Master of Science (Electrical Engineering), August

2009, 56 pp., 2 tables, 10 illustrations, references, 16 titles.

Object tracking in general is very challenging; it presents numerous problems that need to

be addressed by the application in order to facilitate its successful deployment. Such problems

range from abrupt object motion, during tracking, to a change in appearance of the scene and the

object, as well as object to scene occlusions, and camera motion among others.

It is important to take into consideration some issues, such as, accounting for noise

associated with the image in question, ability to predict to an acceptable statistical accuracy, the

position of the object at a particular time given its current position.

This study tackles some of the issues raised above prior to addressing how the use of

either of the aforementioned algorithm, minimize or in some cases eliminate the negative effects.

 ii

Copyright 2009

by

Yasuhiro Morita

 iii

ACKNOWLEDGEMENT

I am very grateful to Dr. Parthasarathy Guturu, Dr. Kamesh Namuduri, and Dr.

Bill P Buckles, who formed my advisory committee. I am particular grateful to Dr.

Parthasarathy Guturu for his mentoring and guidance over the years. I have had a good

study and experience in the Department of Electrical Engineering, I am very grateful and

I appreciate the entire faculty for having taught me a lot of materials. I enjoyed having

many projects.

I am very grateful to my parents (Mr. & Mrs. Morita) for their support, both

financially and morally.

 iv

TABLE OF CONTENTS

LIST OF TABLES ... vi

LIST OF FIGURES ...vii

Chapter

 1.INTRODUCTION .. 1

 2. BASIC CONCEPT ... 2

 Continuous Random Variable

 Image Feature Extraction

 Color features

 Texture features

 Intensity Gradient features

 Feature Extraction

 Finding Similarities in Measurements

 3.KALMAN FILTER... 11

 Basic concepts of Kalman Filter

 Linear System Model

 Computation

 4. PARTICLE FILTER .. 18

 5. IMPLEMENTATION .. 22

 Implementation Overviews

 Overviews of Kalman and Particle Filters

 Kalman Filter Algorithm

 Particle Filter Algorithm

 6. SIMULATION & RESULTS ... 31

 Introduction of Simulations

 Video 1

 Video 2

 v

 Video 3

 7. CONCULUSION ... 36

APPENDIX – MATLAB CODE .. 37

 Kalman Filter Algorithm (Video 1)

 Kalman Filter Algorithm (Video 2)

 Kalman Filter Algorithm (Video 3)

 Particle Filter Algorithm (Video 1)

 Particle Filter Algorithm (Video 2)

 Particle Filter Algorithm (Video 3)

REFERENCES .. 54

 vi

LIST OF TABLES

Table 1: Pseudo code of Particle Filter ... 21

Table 2: Video Information of Simulation ... 31

 vii

LIST OF FIGURES

Figure 1 :Typical Kalman Filter Application .. 11

Figure 2 : Kalman Filter Cycle .. 15

Figure 3 : Structure of Kalman Filter Algorithm ... 24

Figure 4 : Particle Filter Algorithm ... 27

Figure 5 : Kalman Filter Algorithm for Video - 1 .. 32

Figure 6 : Particle Filter Algorithm for Video - 1 .. 32

Figure 7 : Kalman Filter Algorithm for Video - 2 .. 33

Figure 8 : Particle Filter Algorithm for Video - 2 .. 33

Figure 9 : Kalman Filter Algorithm for Video - 3 .. 35

Figure 10: Particle Filter Algorithm for Video - 3 .. 35

 1

CHAPTER 1 - INTRODUCTION

Object tracking has become a very important area in the field of computer vision.

Here are some examples of areas in which it has been deployed:

1) Automated surveillance systems: These are employed in most cases for security

purposes. The system monitors a scene to detect a change in scenery or suspicious

activities.

2) Military Systems: Employed in the surveillance of the war zone area, to help

monitor enemy troops movement. An example is the use of unmanned drones in

the current ongoing war in Afghanistan.

3) Traffic Monitoring applications

Issues encountered in tracking are numerous some of which are quite complex.

The issues of noise in the images have to be addressed if we are to get any discernable

result. What happens when the scene illumination changes? Or what happens when there

are partial or full object occlusions? How is the issue of the complexity in the shape of an

object addressed? These are some of the issues that need to be addressed.

Most tracking algorithms are predicated on some basic assumptions such as

“Object motion is at constant velocity” etc. In the cases studied, the object shape

representation employed is the primitive geometric shape. Here, the object shape is

represented by as ellipse and its motion is modeled by affine translation and projective

transformations.

 2

CHAPTER 2 - BASIC CONCEPT

Continuous Random Variable

The object tracking and motion capture in computer vision have very important

idea which is continuous random variables. A continuous random variable can be set as a

function that randomly plots all points in the sample plane to real numbers. For example

the continuous random variable X(t) plots time to position [3]. This can be explained as

follow: At any point in time t (where’t’ is the sample plane) tX would be the expected

position or value. Probability of an experience is generally managed within some space.

The probability of random variables is described as the cumulative distribution function

which is from negative infinity to current value and in which the probability is

accumulated [2]:

x),P((x)xF −∞= (1)

The average value with weighted occurrence can be used to approximate the

expected value.

N
N)x(P....N)x(PN)x(P

X nn2211 +++
=

(2)

where N is the number of samples or events. The above equation will lead to the

following equation [1 2].

∑
=

==
n

1i
ii xPE(X)XofValueExpected (3)

This is for n possible results).......XX(n1 and the matching probabilities).......PP(n1 [2]

 3

.In the case of continuous random variable, the equation of the expected value is

below:

∫
∞

∞−

== (x)dxxfE(X)XofValueExpected x

(4)

here xf is the probability density function from (x)F
dx
d

x , it is the derivative of the

cumulative distribution function.

The equations 3 and 4 above can also rewrite to the following equations:

∑
=

=
n

1i
ii)g(xPE(g(x))

(5)

∫
∞

∞−

= (x)dxg(x)fE(g(x)) x

(6)

∫
∞

∞−

= (x)dxfx)E(X x
KK

 (7)

if E(x)xg(x) −=

Therefore from above equations, the variance of X is following [2]:

]E(X))E[(XXofVariance 2−= 22 E(X))E(X −= (8)

 Variance is a good statistical tool for random value. This is because if the

variance of a signal is stable around the mean, the value of the variance is an estimate of

noise in the signal [1]. Standard deviation of X is defined as =xσ square root of the

variance of X.

In order to account for interference such as noise, we need to understand the best

mathematical representation to use.

 4

According to the central limit theorem, we can say that normal distribution is

commonly assumed for a lot of the case of random processes in real world. A normal

distribution is characterized by the following probability density function [2, 3]:

])m(x
2σ

1exp[
2π
1(x)f 2

x2X −−=
σ (9)

Where the expected value and squared Variance

∫
∞

∞−

= (x)dxxfm xx

 (10)

∫
∞

∞−

−= (x)dxf)m(xσ X
2

x
2 (11)

From above information, we can say that the variance can be used as the

measurement of noise, but not as the information in time space. For the time space, we

can use autocorrelation which is related to time and is the correlation of signal with itself.

The following is the definition of the autocorrelation of a random signal X (t), in which

the relationship between autocorrelation and time is clearly mentioned and is the function

of time, on the other hand spectral density function is accepted in the frequency domain

[2]:

212121X tand,ttimessamplefor)])X(tE[X(t)t,(tR = (12)

For white noise, the autocorrelation function is taken as a Dirac delta function

δ(τ) .

This function [3] has a value of zero everywhere except when 0=τ

Amagnitudeconstantsomefor
0else

Athen0τif
)(τR x

 =

= (13)

 5

From the above equation with condition, if we use the Fourier transforms, the

white noise can be constant in frequency domain, so spectrum density function is flat.

This describes in mathematical terms the behavior of white noise. It can be

thought that there are constant power at any frequency in the frequency domain and being

completely correlated with itself only at 0=τ . It is the reason why white noise signals are

mentioned as independent, because for any sample of the signal except for 0=τ , the

current sample is independent from other samples. [2]

Image Feature Extraction

To be able to track an image effectively, it is important to extract features of

different types from the image. These features are used for identification and tracking

purpose. There are three types of very important feature sets that are commonly used in

object tracking. They are color features, Texture features and Intensity gradient features.

Color Features

Because the color feature generally doesn’t change for rotation and scaling, it can

be used for a lot of applications. It has the following three color spaces [3, 4, 5]:

a) Red green and blue color image. Also known as RGB color image. We can get

these values directly from the image.

b) Hue-saturation-value (HSV): An important feature for human insight of color.

HSV is a representation of points in an RGB color image, which shows the

perpetual color relationships more accurately than RGB and also keeping its

 6

computational simplicity [3, 4, 5].

c) r, g, b: r, g, and b for each pixel are obtained by R divided by R+G+B, G divided

by R+G+B and B divided by R+G+B. this is normalized value. This scaling of

RGB to obtain r, g, and b values offers additional robustness against changes in

illumination [3, 4, 5].

Texture Features

Texture is a function of the pattern in pixel intensities (gray values) [13]. These

can be obtained by using several mathematical tools such as: co-occurrence matrices,

wavelet packets and Gabor filters [4].

This feature can be used as set with color feature for object tracking, object

recognition and any other topic in computer vision to achieve more accurate result.

Intensity Gradient Features

It is important to be able to differentiate between the background and foreground

images. The intensity gradient features prove capable of achieving this purpose. It can be

obtained by using sobel mask, which is used to find horizontal and vertical differential

images. For the strong edges, the gradient direction is determined, and they will go above

the certain threshold value. There are some directions for edge of image to reach the

robustness against changing level of intensity for background and foreground for the path

of the motion object [3, 4, 5]. It is important that values of this feature set are quantized

into a given number of levels, and in so doing we assumed that the gradient vectors with

 7

opposite directions are at the same quantized levels as their counterpart in the contrary

direction, as long as they have same initial value and only differ in direction prior to

quantization.

The result is such that “the edge feature set at any pixel site is has at least one

feature value corresponding to the direction of the gradient equal to one” [4]. The

condition is set such that if a pixel is not edgel, all set of edge feature values for that pixel

will equate to zero [3, 4, 5].

Features Extraction

The object region is divided into two frames (reference and target frames). They

both need to be corresponding based on chosen features. The sets of features extracted

from the images [3, 4] (reference and target) are first and foremost normalized such that

they exist in the region]1[0, .

It is important that the feature extractor chosen for extraction is capable of

extracting features that contain substantial information in order to facilitate easy

separation between background and foreground pixels [3, 4].

According to the author of [4], the method used is described below:

1) Find the covariance of the feature vectors of foreground and background of

observed pixels centered on the respective class means”. This is denoted as “SW”

[4].

2) Find “the covariance matrix of the class mean vectors centered on the overall

sample mean”. This is denoted as “SB” [4].

 8

Apply Fischer’s discrimination function which is that the main few Eigen vectors of the

matrix “e” will give the feature extractor and it is from the Eigen value equation, [4]:

ΛeAe = (14)

Where A = B
1

WSS− and Λ = Eigen value matrix of the system.

The foreground and background pixel can be now obtained from the reference and

target frame observation windows, and the foreground and background are depending on

as if they are located in the observation window or not[3, 4, 5].

The features of the equivalent pixels in the reference and target frames are used to

compute the four sample mean vectors, and “SW” is now computed by using the pattern

vector samples minus the respective class mean

The matrix “SB” is calculated from four samples as shown below [4]:

 Let u = Overall sample mean, =T
fgu Target sample mean, =R

fgu Background

Class mean, and “t” = Transpose of the column matrices.

The matrix “SB” is thus computed from follow [3, 4].

tR
bg

R
bg

tT
bg

T
bg

tR
fg

R
fg

tT
fg

T
fg

u)u)(u(u

,u)u)(u(u

,u)u)(u(u

,u)u)(u(u

−−

−−

−−

−−

 (15)

 9

Finding Similarities in Measurements

This computation is used for image matching purpose and carried out by

independently computing these similar measurements for each of the three feature vector

components in the reduced feature space. It is aggregated via a process called feature

fusion [4].

The first step is to quantize all possible aspect values in L levels of the region. L

(xi) represents a “function that maps feature value of a pixel located at “xi” to a level “L”,

where L][1,L∈ ” [4].

The discrete feature probability distribution (1........LL
L
tt (x)}{P(x)P ==) which is the

probability function inside of a bounding ellipse is defined. The region inside of ellipse is

centered at “x” and the object should be inside of it [4].

(x)P L
t is calculated as follow [3, 4]:

l)))(L(x
h

xx
(KC(x)P i

i
N

1i

L
t

R

−
−

= ∑
= (16)

where xi = Location of pixel inside of the ellipse. NR is the number of pixels inside of

ellipse. K is the Kernel function. δ is the Kronecker delta function. is Euclidean

Norm. h and C are normalization constants that make certain that the function K and the

sum respectively are identified [4].

h = 22 ba + (17)

here “a” and “b” are the major and minor axis of the ellipse divide by two.

 10

∑
=

−
=

RN

1i

i)
h

xx
K(

1C

 (18)

This is for pixels within an elliptic region centered at a point “x”. The elliptic

region is assumed to enclose the object fully.

The kernel function can be chosen by the main idea that if the pixels given by the

feature information are far from the center point of the ellipse which means the pixels are

more similar to background, these samples are less important and weights of them should

be reduced to ignore these samples. This idea gives the following kernel function [3, 4,

5]:

=
<−=

otherwise0Else
1rifr1K(r) 2

 (19)

After the feature probability distribution inside of ellipse for target and reference

frames centered at tgtX and refX is computed, the Bhattacharyya distance formula can be

used to compute the match of them [4]:

∑
=

−=−=
L

1L
ref

L
ttgt

L
trefttgrtm)(X)P(XP1)(XP),(Xρ(P1d (20)

From the above equation ρ is the sum term in the equation on the right hand side.

This term is called Bhattacharyya coefficient. It gives a measure of the similarity

between the distributions, and if ρ is close to 1, then two regions are more similar [3, 4,

5].

 11

CHAPTER 3 - KALMAN FILTER

Basic concept of Kalman Filter

A Kalman filter is the estimation tool which consists of available measurement

values and previous states of the system and also the error of the estimation is tried to be

minimized for desired variable [15]. The algorithm is recursive processing in which the

Kalman filter estimate and then correct the values to get more accurate results for every

recursive loop. Figure 1 shows the examples of the Kalman filter application [15].

Figure 1: Typical Kalman Filter Application

According to the author in [15], the three following are important information that

is required to pass on to the Kalman filter:

1) “Knowledge of the system and measurement device dynamics”.

 12

2) “Statistical description of the system noises, measurement errors and uncertainty

in the dynamic models”.

3) “Any available information about the initial conditions of the variables of

interest”.

From the Bayesian point of view, the filter should increase the conditional

probability density of the value we want, predicated on the actual data information from

the measuring tools.

),.......ZZ,Z(xf i21.Z(i)Z(2),.....Z(1),X(i) (21)

The above equation can be interpreted as the conditional probability density of the

value of “x” at any time “i”. And this means that X(i) can be obtained by information of

other samples which has probabilities (or quantities) from Z(1) through Z(i) . After a

conditional probability density can be obtained, it will lead the optimal prediction and

following ideas are led:

1) The Mean is defined as the middle point of probability quantity for

approximation.

2) The mode is defined that the probability which value is highest on the peak of

probability density function.

3) The median is defined as the point on the center of x axis.

For these ideas, A Kalman filter should be used for a linear system and white

Gaussian [15].

 13

Linear System Model

Whiteness implies no correlation of the noise in time domain and constant power

for frequency domain. Kalman filter tries to predict the intermediate state of the discrete

time system by using following equation [2, 3]:

1K1K1KK WBuAXX −−− ++= (22)

We also have a “measurement residual” [1, 2, 3] given by the following equation:

KKK VHXZ += (23)

The meaning of the above two equations are as follow:

“A” is an “n x n” matrix. It will be multiplied to the previous state ‘X” at time “ 1K − ” to

obtain the current state at time “K”.

“B” is an “n x L” matrix. It will be multiplied to the optional control vector” u lℜ∈ “.

“H” is an “m x n” matrix that will be multiplied to the current prediction for the

measurement “ Zk “

WK and VK are the random variable of the noise for the estimation and

measurement. The following are assumed concerning the WK and VK parameters [2]:

1) They are independent of each other.

2) They are white Gaussian noise:

Q)N(0,~P(w) (24)

R)N(0,~P(v) (25)

Where “Q” is covariance of the estimation noise and “R” is covariance of the

measurement residual noise with constant [1, 2].

 14

Computation

We set the n
KX̂ ℜ∈−

 as a “priori state” which is current state obtained by

previous state and The n
KX̂ ℜ∈ is a “posteriori state” which is also the current state

obtained by the measurement residual ZK. The prior estimate error is defined as:

−−≡ KKK X̂Xê (26)

The a posteriori estimate error is defined as:

KKK X̂Xe −≡ (27)

The a priori estimate error covariance is defined calculated as follow:

]eE[eP T
KKK
−−− = (28)

The a posteriori estimate error covariance is calculated as follow:

]eE[eP T
KKK = (29)

The goal is to obtain the value of posteriori that can be calculated by the addition

of the priori value and the difference of actual measurement and priori with −
KX̂H with

gain which imply the linear system [1]. The equation is shown below:

)X̂HK(ZX̂X̂ KKKK
−− −+= (30)

)X̂H(Z KK
−− is called the residual. If this difference is zero, it means priori value

is the actual estimated value [1, 2].

The name of “K” in the above equation is Kalman gain and it is an n x m matrix.

 15

It is for the minimization of a posteriori error covariance which can be obtained

by substituting equation (28), (29) in equation (30). To minimize K, the derivation of the

equation can be done with respect to K and set it to zero, and then it will be the following

result [1, 2]:

RHHP
HP

K
T

K

T
K

K +
=

−

−

 (31)

From above equation, if the error covariance R of the measurement reach to zero,

the denominator and numerator have the common terms and they can be canceled out,

then we can obtain that 1
K HK −= [1, 2, 3]. In this case, we can also say that if the R is

almost close to zero, Zk has no error which mean the measurement is more accurate, but

the estimated measurement is less [1, 2]. However if the error covariance of priori state

−
KP is close to zero which mean the priori estimation is reliable more, the gain “K” can be

calculate by zero divide by R which means “KK = 0”. From these ideas, the actual

measurement is less reliable but the predicted measurement is more trustable.

Figure 2 shows the main idea of the Kalman filter. From the above theories, the

Kalman filter has two important steps which names are predictor and corrector to

calculate priori state and posteriori respectively and [1, 2, 3]:

Figure 2: Kalman Filter Cycle

 16

 Initially the priori can be obtained by equation (22) in predictor and then

posteriori can be calculated by equation (30) in the corrector [1]. The corrector is

calculated for the purpose to achieve the more accurate estimation.

In the predictor part, by using the previous estimation result of posterior and its

covariance, the current priori can be obtained with its covariance [1, 2].

The corrector engages to update for obtaining the more accurate estimation by

using measurement to calculate the posteriori and its covariance for next estimation [1, 2,

3].

Time predictor equations are as follow:

1K1KK BuX̂AX̂ −−
− += (32)

QAAPP T
1KK += −

− (33)

where 1KP − is the result of the covariance of posteriori which is calculated in previous

step.

Measurement corrector equations are as follow:

)X̂HK(ZX̂X̂ KKKK
−− −+= (34)

 −−= KKK H)PK(1P (35)

where K is from equation (31).

 In the corrector part, initially the Kalman gain can be calculated by using equation

(31) by using prior covariance, H’ matrix and noise R. after that the measurement ZK can

be obtained by calculation or observation, and then the posteriori can be obtained by

 17

using equation (34). Finally the error covariance of posteriori can be obtained by

equation (35) for next the recursive loop. For the estimation of next point, this recursive

loop can be continued[1, 2].

 18

CHAPTER 4 - PARTICLE FILTER

Particle Filter

It is also known as sequential Monte-Carlo technique, which is a kind of

recursive Bayesian based on Monte-Carlo simulation. The state space can be allocated

into many regions and inside of the region, the particles or samples can be obtained

based on the certain probability assumption. If the probability is higher, density of the

samples will be increased and useful [10]. The posterior probability density is given by a

weighted sum of “NP” samples which is from the region based on the certain probability

distribution given by the following equation [5, 6, 8, 9, 10]:

∑
=

≡−≈
PN

1n
nn

(i)
nn

P
nn)y(XP̂)Xδ(X

N
1)yP(X (36)

where (i)
nX can be independent and identically distributed (i,i,d). They are led from “

)y(XP̂ nn ” if the number of samples or particles “NP” is enough, the priori probability

)y(XP̂ nn in the above equation can be assumed to the correct posterior “P (Xn)yn ”[10].

This approximation is used to predict the mean of a non-linear function as shown in the

equation below [7, 8, 10, 11]:

∑

∫ ∑∫

=

=

≡=

−=≈

P

P

P

N

1i
N

(i)
n

P

N

1i
n

(i)
nnn

P
nnnnn

(x)f̂)f(X
N
1

)dXX)δδ(f(X
N
1)dXy(XP̂)f(X)]E[f(X

 (37)

 19

Sampling is done from a proposal distribution“)yq(X nn ”, because sampling of a

true posteriori is impracticable. Therefore equation (37) can be rewritten as shown below

[7, 8, 10, 11]:

∫

∫ ∫

=

==

nnnnnn
n

nnn
n

nn
nnnn

nn

nn
nn

)dXy)q(X(X)Wf(X
)P(y

1

)dXyq(X
)P(y

)(XW
)f(X)dXyq(X

)yq(X
)yP(X

)f(X)]E[f(X
 (38)

where
)yq(X

))P(XXP(y
)(XW

nn

nnn
nn = (39)

Equation (38) can be written as follow [7, 8, 10, 11]:

)](X[WE

)])f(X(X[WE

)dXy)q(X(XW

)dXy)q(X(X)Wf(X

)dX)P(XXP(y

)dXy)q(X(X)Wf(X
)]E[f(X

nn)yq(X

nnn)yq(X

nnnnn

nnnnnn

nnnn

nnnnnn
n

nn

nn=

=

=

∫
∫
∫

∫

 (40)

Because of the samples }{X (i)
n from)yq(X nn which is independent and identical

distribution, now equation (40) above can be revised as follow [10]:

∑
∑

∑
=

=

=

≡=≈
P

P

P

N

1i

(i)
n

(i)
nn

N

1i
(i)
nn

P

N

1i
(i)
n

(i)
nn

P
n (X)f̂))f(X(XW~

)(XW
N
1

))f(X(XW
N
1

)]E[f(X (41)

Where
∑ =

=
PN

1j
(j)
nn

(i)
nn(i)

nn
)(XW

)(XW
)(XW~ (42)

 20

To make the simple implementation, probability related to all the previous state

)yP(X n:0n:0 cannot be considered, instead of this, we consider the current state

estimation)yP(X n:0n . If we consider that)y,Xq(X n:0
(i)

1n:0
(i)
n − is equal to

)y,Xq(X n
(i)

1n:0
(i)
n − , then the following equation can be obtained from equation (42) [4, 5,

10]:

)y,Xq(X

)X)P(XXP(y
WW

n
(i)

1n:0
(i)
n

(i)
1n

(i)
n

(i)
nn(i)

1n
(i)
n

−

−

−= (43)

Weight degeneration is very important issue, which occurred after any iteration,

and because of this, the important weights will become skewed, and a lot of the weights

of the particles will be equal to zero, so estimation will be failed. It is important to use

the sampling importance resampling to avoid the weight degeneration and obtain the

effective sampling size equation [6, 7, 8, 10, 11]:

P2

n:0)yq(.

P

n:0)yq(.

P
eff N

]))(XW~[(E
N

](XW~[Var1
N

N
n:0n:0

≤=
+

= (44)

The above equation can be obtained from:

22]E[ξ]E[ξ] Var[ξ −= , and 1]W~[E q = . But, in real world, the correct Neff is not

obtainable, thus the following equation gives its prediction [10]:

 ∑ =

=
PN

1i
2(i)

n

eff
)W~(

1N̂ (45)

 21

Re-sampling steps can be done when)N̂(eff falls less than a predetermined

threshold value)(N T . If it happens, each sample can be chosen with a minimum

probability of }N
W{1,

T

(i)
n and it will have new weights }W,max{NW (i)

nT
(j)
n = .

The following table describes a general algorithm used in SIR particle filter based

on the above equations [7, 8, 10, 11]:

For Time steps n=0, 1, 2,……….

1: Initialization: For i=1,……., PN ,

Sample)P(X~X 00 ,

P
o N

1W =

2: Importance Sampling:

For ,N1,.....,i P=

Draw samples),XP(X~X̂ (i)
1nn

(i)
n −

Set }X̂,{XX̂ (i)
n

(i)
1n:0

(i)
n:0 −=

3: Weight Update:

Calculate Importance Weights)X̂P(yW (i)
nn

(i)
n =

4: Normalize the Importance weights:
∑ =

=
PN

1j
(j)
n

(i)
n(i)

n
W

W
W~

5: Re-sampling: Generate (PN) new particles ((i)
nX) from the set }X̂{ (i)

n

according to the importance weights ((i)
nW~)

6: Repeat steps 2 to 5

Table 1: Pseudo Code of Particle Filter

 22

CHAPTER 5 - IMPLEMENTATION

In this section, I will talk about the overview of this implementation (experiment),

after that I will also roughly talk about the Kalman filter and particle filter again and then,

the details of algorithms and structures of them will be discussed. The Matlab code of

these algorithms will also be included and explained in these sections.

Implementation Overviews

To achieve the goal which is the study of the effects of the background on the

efficacy of Kalman and particle filter, I implemented the both Kalman and particle filter

algorithm by using Matlab, and I used the two methods to extract the object: background

subtraction and color histogram, respectively.

Overviews of Kalman Filter and Particle Filter

The Kalman filter is the important mathematical device to obtain the state for

stochastic process from noisy measurements, in other words, it is to predict the future

state by using the current state from the observation and estimated state from previous

states. This method has two different categories: a predictor and a corrector. In the

predictor, the current estimated state can be calculated by addition of the transition model

multiplied by previous estimated state, the control input model with

 23

control vector, and noise (equation 32). The covariance of the estimated state can be

calculated for update process. In the corrector part, the Kalman gain can be obtained and

it is multiplied by the value of the subtraction of the observation of the center point and

the estimated value in predictor. This value is added to the estimated value again to

achieve final estimation and the updated covariance is also calculated again (equation 34).

Particle filter generally has the posterior density and the observation density

which are non Gaussian. And the main idea of particle filter is that in order to estimate

the object state, the weighted samples which consist of multiplications of estimated

samples and weights will be obtained. The color feature is also important. To consider

object, background, and the occlusion, the object model is obtained by color distribution,

and they are calculated by histograms. To achieve better color distribution of the object

model means that the observed value of the image is provided. Same as Kalman filter, the

difference of observed value and estimated value can be obtained to update the final

estimated point.

Kalman Filter Algorithm

In previous section, I discussed the theoretical overview of Kalman filter and

particle filter. In this section, I will discuss the actual algorithm of Kalman filter. The

Figure 2 shows the brief idea of object tracking algorithm with Kalman filter.

 24

Figure 3: Structure of Kalman Filter Algorithm

From the videos, I tried to obtain the information of each frame and their

respective background information. Each frame image is used to estimate the center point

of the object, however, the background image are used to find the observation point.

Initially I read the several frames of videos which don’t include the target object, and

then divided the sum by the number of frames. This process gives the background

information.

 In predictor, I predict the state X which constructs the matrix [5, 10]:

]HHHyyxx[X rslvv= (46)

Where x is the x axis value of the center point of the object, vx is the x axis

velocity of the center point of the object, y is the y axis value of the center point of the

object, vy is the y axis velocity of the center point of the object, lH is the semimajor axis

value of the ellipse, sH is the semiminor axis value of the ellipse, rH is the angle velocity

of the ellipse.

 25

I set the transition matrix A as[5, 10]:

=

1000000
0100000
0010000
0001000
000dt100
0000010
00000dt1

A (47)

By using these values, I calculate the predicted state Xp [2, 16]

:)1,N(iCk:)'1,X(iAXp −×+−×= (48)

where :)1,N(iCk −× are the control vector multiplied with the process noise (see Matlab

Code in appendix).

Also the initial error covariance is as:

×=

1000000
0100000
0010000
0001000
0000100
0000010
0000001

100P (49)

The process noise covariance Q is:

 26

×=

1000000
0100000
0010000
0001000
0000100
0000010
0000001

0.01Q (50)

By using these values, I calculated the predicted state covariance.

In corrector side, once the predicted state and its covariance are obtained, I

calculate the Kalman Gain K [2]:

R)H'PP(HinvH'PPK +××××= (51)

where the observation model matrix H is:

=

0000100
0000001

H (52)

And R is the measurement noise covariance (see Matlab Code in appendix). The

measurement residual yk is obtained by:

Xp)Hcr(i)]'([cc(i),Ki),yk(: ×−×= (53)

where cr(i)][cc(i), is the observation point from background subtraction. To correct the

estimate with measurement, I calculated X and the error covariance:

PPH)K(eye(7)P
i))',yk(:(Xp:)X(i,

××−=
+=

 (54)

By using these updated values, I estimated the center point for next frame again.

 27

Particle Filter Algorithm

In the previous section, I discussed about the algorithm of Kalman Filter with

background subtraction. In this section I will mention about the algorithm of particle

filter. The Figure 4 shows the structure of object tracking algorithm with particle filter.

From Figure 4, you can see that my algorithm is based on the sampling importance

resampling (SIR).

Figure 4: Particle Filter Algorithm

Initially the video file will be read into Matlab, and first frame of video is

extracted to get color distribution. There are initially RGB (red, green, blue) components

in the image and they are converted to HSV (hue, saturation, value). From these values,

the histogram, the cumulative distribution function and edges of HSV can be obtained.

In particle filter [5, 10, 16], I set the state as Smean

]HHHyyxx[Smean rslvv= (55)

 28

where x is the x axis mean (weighted) value of the center point of the object, vx is the x

axis mean (weighted) velocity of the center point of the object, y is the y axis mean

(weighted) value of the center point of the object, vy is the y axis mean (weighted)

velocity of the center point of the object, lH is the semimajor axis mean (weighted) value

of the ellipse, sH is the semiminor axis mean (weighted) value of the ellipse, rH is the

mean (weighted) angle velocity of the ellipse. And the final goal of the algorithm is to

estimate Smean by:

States)Predicted)(ParticlesSamples(WeightedofmeanSmean ×= (56)

In the predictor, I set the transition matrix A as [14, 16]:

=

1000000
0100000
0010000
0001000
000dt100
0000010
00000dt1

A (57)

By using these values, I calculated the predicted state Sk

N)randn(d,CkSkASk ×+×= (58)

where Ck is the covariance of the noise and N)randn(d, is the random noise. These

values are similar to Kalman filter’s information, however, still there are some

differences. For example, Sk is not a vector, the value N is the number of particles and

Nx7 matrix is be constructed. The value Ck is 7x7 matrix which is calculated by the

following equations[16]:

 29

=

Re0
0Ry

Rk (59)

×=

delta2
delta00

2
delta

3
delta00

00delta2
delta

002
delta

3
delta

sigmayRy

2

23

2

23

 (60)

=
2

2

2

sigmatheta00
0sigmaHy0
00sigmaHx

Re (61)

chol(Rk)'Ck = (62)

where Rk , Ry and Re is the kinematic of the ellipsoid. And then Ck is calculated by the

Cholesky factorization of Rk . Once I predict the state Sk , I have to check the similarity

of observed and target image to update the state Sk . I obtained the color distribution Py

of an area R from following equation [5, 11]:

u])δ[h(x)
a
xy

k(fPy i
Rx

i(u)

i

−
−

= ∑
∈

 (63)

where δ is the Kronecker delta function and one of the m-bins of the histogram at ix is

allocated to)h(x i , a gives invariance against range of the area and f is the normalization

factor ensured by the condition [5, 11]:

1Pym

1u
(u) =∑ =

 (64)

 30

As I mentioned in Chapter 2, I used the Bhattacharyya coefficient [12]. Based on these

values, I found the observation probability distribution function so that I will weigh each

particle. The equation is:

Sum(W)
WW

PDFColorWW

=

×=
 (65)

From the equation [58, 65], I will calculate theSmean . However, if the following

condition is satisfied, I have to implement the resampling to avoid the degeneracy.

thresholdeff NN < (66)

 where effN is calculated by the following equation [5 10]:

∑= 2eff W
1N

(67)

 31

CHAPTER 6 - SIMULATION & RESULTS

Introduction of Simulations

To observe the effects of background on the efficacy of Kalman filter and particle

filter algorithm, I carried out the experiments for object tracking with three videos by

using Kalman filter with back-subtraction and particle filter. The first video is the one

that shows the red color ball freely falls to the floor and bounced several time, and then

stop on the floor, and the background of this video is just simply black color. The second

video is the one that shows the red car moving on the road, and the background of this is

the outside scene, which means this has more complex color histogram than that of the

first video. The third video is the one that shows a scene on the highway. Camera faced to

the backside. As initial assumption, the cameras of both first and second videos are fixed

and motionless so that I can get the stable backgrounds of video scene easily, however in

the third video the camera is unstable and moving because the camera is also on the car

and it is moving, so obtaining the background picture was difficult (see Table 2). For

these videos, applied Kalman filter and particle filter algorithms and then compared them.

Table 2: Video Information of Simulation

 Video 1 Video 2 Video 3

Object Ball Car Car

Number of Objects 1 1 2

Background Simple Complex Complex

Camera Motionless Motionless Motion

 32

Video 1

Figure 5: Kalman Filter Algorithm for Video - 1

Figure 6: Particle Filter Algorithm for Video - 1

Figure 5 shows the results of the Kalman filter algorithm for the first video. From

these pictures, it shows this algorithm is acceptable for object tracking. This is because

the motionless camera provides a clear background and the background subtraction is

very accurate, however, some errors still exist. These are caused by the actual Kalman

filter error. On the other hand, in Figure 6, the particle filter algorithm is not working

properly. The main reason why it lost track is that the speed of the falling object is not

acceptable for this algorithm. In every frame, from the estimated center point, the

particles are chosen based on the color PDF in the ellipse, however, if the object speed is

increasing dramatically, the object easily goes out of the ellipse, thus the similarity of the

 33

color PDF of target and reference no longer close. This misleads the extraction

mechanism for the object.

Video 2

The results of the Kalman filter algorithm for the second video in Figure 7 is

similar to that for the first video. The similarity of the situation gives acceptable results.

The tracking in the second video is more accurate than that in first video because the

object is not moving fast. On the other hand, the results of the particle filter algorithm for

second video in Figure 8 dramatically changes. One of the reasons is the reduced speed of

object. The second reason is that the color histogram of background is more complex

than that of first video. This means that the algorithm can receive more information for

the background.

Figure 7: Kalman Filter Algorithm for Video - 2

Figure 8: Particle Filter Algorithm for Video – 2

 34

Video 3

The results of Kalman filter algorithm of the third implementation is in Figure 9.

There are two objects in which one on them is the right side big car moving from right

side to center, and another is the normal car moving from center and to left side, and

initially the ellipse is on the big car, however, although I wanted to track first objects, I

can obtain the results coincidentally. It is because the background can be calculated just

before the first frame, and first object is bigger, so coincidentally the object is extracted,

however, the fact that the camera is moving make the error of the similarity between the

reference background and the target background increasing as time goes by. The ellipse is

moving up and down many times and loses its way.

On the other hand, in figure 10, the particle filter algorithm is different from the

Kalman filter algorithm. Instead of the background subtraction, it uses the color

histogram extraction. When the camera is moving, color histogram of the object does not

change, and this leads to accurate results. Also there is one problem about this algorithm.

I had to set the initial center point of the object manually.

 35

Figure 9: Kalman Filter Algorithm for Video - 3

Figure 10: Particle Filter Algorithm for Video - 3

The Kalman filter with background subtraction is suitable method if the camera is

motionless, and it is also fast to implement, however, because of simplicity, it is not

flexible for any situation. On the other hand, the particle filter with color feature is

complex to implement and speed is not so fast, but it still has an acceptable run time,

although I had to set the initial center point manually and sometime the noise may cause

serious error, the result can be valid, and it is adequate.

 36

CHAPTER 7 - CONCLUSION

In this thesis, two algorithms for object tracking which are Kalman filter with

background subtraction and Particle filter with color feature are compared. In order to

access the performance of both methods, three different types of videos were used. From

the first two videos, we can conclude that Kalman filter provides a better performance.

This is due to the fact that Particle filter requires a longer transition time. Moreover,

when Gaussian noise is assumed, Kalman filter is better.

 On the other hand, from the results of Kalman algorithm for all the three videos

we can say that the motionless camera does not provide the correct information for the

background subtraction method. From those points, the study of the effects of

background on the efficacy of Kalman and Particle filter algorithm are met. The

background subtraction method is best for motionless camera.

 For fast implementation with motionless camera, the background subtraction

with Kalman filter is a better algorithm. Additionally, particle filter with color feature can

be applied to any video whether the camera is moving or is motionless.

Finally, for actual implementations or applications, the Particle filter is a better

method.

 For future work, we will try to extract in addition to the object and background

based on the color feature, the texture and the shape feature in the aim of obtaining a

more accurate result. Furthermore, real time processing could be considered for

surveillance and robotics applications.

 37

APPENDIX

MATRAB CODE

 38

The codes are originally created by Alireza Kashanipour and Sebastien Paris from the

Matlab center and they are modified by me to achieve to desired results.

Kalman Filter Algorithm (Video 1)

clear,clc
% compute the background image
% Kalman filter initialization
Imzero = zeros(240,320,3);
for i = 1:5
Im{i} = double(imread(['DATA/',int2str(i),'.jpg']));
Imzero = Im{i}+Imzero;
end
Imback = Imzero/5;
[MR,MC,Dim] = size(Imback);
% Initial State covariance %
d = 7;
delta = 0.7;
sigmax1 = 60; % pixel %
sigmavx1 = 1; % pixel / frame %
sigmay1 = 60; % pixel %
sigmavy1 = 1; % pixel / frame %
sigmaHx1 = 4; % pixel %
sigmaHy1 = 4; % pixel %
sigmatheta1 = 8*(pi/180); % rad/frame %
% State Covariance %
% a) Position covariance %
sigmay = 0.35;
% b) ellipse covariance %
sigmaHx = 0.1; % pixel %
sigmaHy = 0.1; % pixel %
sigmatheta = 3.0*(pi/180); % rad/frame %
%%%%%% State Covariance %%%%%
R=[[0.2845,0.0045]',[0.0045,0.0455]']; %[[0.01,0.001]',[0.01,0.001]']
Rk = zeros(d , d);
Ry = sigmay*[delta^3/3 delta^2/2 0 0 ; delta^2/2 delta 0
0 ; 0 0 delta^3/3 delta^2/2 ; 0 0 delta^2/2 delta];
Re = [sigmaHx.^2 0 0 ; 0 sigmaHy.^2 0 ; 0 0
sigmatheta.^2];
Rk(1 : 4 , 1 : 4)= Ry;
Rk(5 : d , 5 : d) = Re;
Ck = chol(Rk)';
pos_index = [1 , 3];
ellipse_index = [5 , 6 , 7];
H=[[1,0]',[0,0]',[0,1]',[0,0]',[0,0]',[0,0]',[0,0]']
Q=0.01*eye(7);
P = 100*eye(7);
dt=1;
A=[[1,0,0,0,0,0,0]',[dt,1,0,0,0,0,0]',[0,0,1,0,0,0,0]',[0,0,dt,1,0,0,0]
',[0,0,0,0,1,0,0]',[0,0,0,0,0,1,0]',[0,0,0,0,0,0,1]'];
Bu = [0,0,0,6,0,0,0]';

 39

kfinit=0;
x=zeros(100,7);
N = randn(100,7);
Smean = zeros(1,7);
S = zeros(60,7);
yk = zeros(7,60);
distance = zeros(2,1);
error = zeros(1,60);
aaa = 0;
% loop over all images
for i = 1 : 60
 % load image
 Im = (imread(['DATA/',int2str(i), '.jpg']));
 imshow(Im)
 imshow(Im)
 Imwork = double(Im);
 %extract ball
 [cc(i),cr(i),radius,flag] = extractball(Imwork,Imback,i);
 if flag==0
 continue
 end

 % Kalman update
 if kfinit==0
 xp = [MC/2,0,MR/2,0,14,20,pi]';
 else
 xp=A*x(i-1,:)' + Ck*N(i-1,:)'; %Bu
 end
 kfinit=1;
 PP = A*P*A' + Q;
 K = PP*H'*inv(H*PP*H'+R);
 yk(:,i) = K*([cc(i),cr(i)]' - H*xp); %measurement residual
 x(i,:) = (xp + yk(:,i))';%[cc(i),0,cr(i),0,0,0,0]'
 distance = H*x(i,:)' - [cc(i),cr(i)]';
 error(1,i) = sqrt(distance(1,1)^2 + distance(2,1)^2);
 P = (eye(7)-K*H)*PP;
 Smean = x(i,:);
 S(i,:) = Smean;
 hold on
 ind_i = (1 : i);
 ykmean = Smean(pos_index);
 ekmean = Smean(ellipse_index);
 [xmean , ymean] = ellipse(ykmean' , ekmean');
 plot(xmean , ymean , 'g' , 'linewidth' , 3)
 plot(S(:,pos_index(1)) , S(:,pos_index(2)) , 'r' , 'linewidth' , 3)
 plot(xp(pos_index(1) , :) , xp(pos_index(2) , :) , 'b+');
 hold off
 pause(0.3)
 aaa = aaa + 1
end

 40

Kalman Filter Algorithm (Video 2)

clear,clc
% compute the background image
% Kalman filter initialization
Imzero = zeros(576,768,3);
for i = 1:18
Im{i} = double(imread(['DATA2/',int2str(i),'.jpg']));
Imzero = Im{i}+Imzero;
end
Imback = Imzero/18;
[MR,MC,Dim] = size(Imback);
% Initial State covariance %
d = 7;
delta = 0.7;
sigmax1 = 60; % pixel %
sigmavx1 = 1; % pixel / frame %
sigmay1 = 60; % pixel %
sigmavy1 = 1; % pixel / frame %
sigmaHx1 = 4; % pixel %
sigmaHy1 = 4; % pixel %
sigmatheta1 = 8*(pi/180); % rad/frame %
% State Covariance %
% a) Position covariance %
sigmay = 0.35;
% b) ellipse covariance %
sigmaHx = 0.1; % pixel %
sigmaHy = 0.1; % pixel %
sigmatheta = 3.0*(pi/180); % rad/frame %
%%%%%% State Covariance %%%%%
R=[[0.2845,0.0045]',[0.0045,0.0455]']; %[[0.01,0.001]',[0.01,0.001]']
Rk = zeros(d , d);
Ry = sigmay*[delta^3/3 delta^2/2 0 0 ; delta^2/2 delta 0
0 ; 0 0 delta^3/3 delta^2/2 ; 0 0 delta^2/2 delta];
Re = [sigmaHx.^2 0 0 ; 0 sigmaHy.^2 0 ; 0 0
sigmatheta.^2];
Rk(1 : 4 , 1 : 4)= Ry;
Rk(5 : d , 5 : d) = Re;
Ck = chol(Rk)';
pos_index = [1 , 3];
ellipse_index = [5 , 6 , 7];
H=[[1,0]',[0,0]',[0,1]',[0,0]',[0,0]',[0,0]',[0,0]']
Q=0.01*eye(7);
P = 100*eye(7);
dt=1;
A=[[1,0,0,0,0,0,0]',[dt,1,0,0,0,0,0]',[0,0,1,0,0,0,0]',[0,0,dt,1,0,0,0]
',[0,0,0,0,1,0,0]',[0,0,0,0,0,1,0]',[0,0,0,0,0,0,1]'];
Bu = [0,0,0,6,0,0,0]';
kfinit=0;

 41

x=zeros(100,7);
N = randn(100,7);
Smean = zeros(1,7);
S = zeros(60,7);
yk = zeros(7,60);
distance = zeros(2,1);
error = zeros(1,60);aaa = 0;
% loop over all images
for i = 1 : 102
 % load image
 Im = (imread(['DATA2/',int2str(i), '.jpg']));
 imshow(Im)
 imshow(Im)
 Imwork = double(Im);
 %extract ball
 [cc(i),cr(i),radius,flag] = extractball(Imwork,Imback,i);
 if flag==0
 continue
 end

 % Kalman update
 if kfinit==0
 xp = [MC/2,0,MR/2,0,30,30,pi]';
 else
 xp=A*x(i-1,:)' + Ck*N(i-1,:)'; %Bu
 end
 kfinit=1;
 PP = A*P*A' + Q;
 K = PP*H'*inv(H*PP*H'+R);
 yk(:,i) = K*([cc(i),cr(i)]' - H*xp); %measurement residual
 x(i,:) = (xp + yk(:,i))';%[cc(i),0,cr(i),0,0,0,0]'
 distance = H*x(i,:)' - [cc(i),cr(i)]';
 error(1,i) = sqrt(distance(1,1)^2 + distance(2,1)^2);
 P = (eye(7)-K*H)*PP;
 Smean = x(i,:);
 S(i,:) = Smean;
 hold on
 ind_i = (1 : i);
 ykmean = Smean(pos_index);
 ekmean = Smean(ellipse_index);
 [xmean , ymean] = ellipse(ykmean' , ekmean');
 plot(xmean , ymean , 'g' , 'linewidth' , 3)
 plot(S(:,pos_index(1)) , S(:,pos_index(2)) , 'r' , 'linewidth' , 3)
 plot(xp(pos_index(1) , :) , xp(pos_index(2) , :) , 'b+');
 hold off
 pause(0.3)
 aaa = aaa + 1
end

 42

Kalman Filter Algorithm (Video 3)

clear,clc
% compute the background image
% Kalman filter initialization
 = 'camera2.avi';
info = aviinfo()
%offset_frame = 80;%80
Imzero = zeros(576,768,3);
for i = 320:339
 mov = aviread(, i);
 Im{i} = double(mov.cdata);
 Imzero = Im{i}+Imzero;
end
Imback = Imzero/20;
[MR,MC,Dim] = size(Imback);
% Initial State covariance %
d = 7;
delta = 0.7;
sigmax1 = 60; % pixel %
sigmavx1 = 1; % pixel / frame %
sigmay1 = 60; % pixel %
sigmavy1 = 1; % pixel / frame %
sigmaHx1 = 4; % pixel %
sigmaHy1 = 4; % pixel %
sigmatheta1 = 8*(pi/180); % rad/frame %
% State Covariance %
% a) Position covariance %
sigmay = 0.35;
% b) ellipse covariance %
sigmaHx = 0.1; % pixel %
sigmaHy = 0.1; % pixel %
sigmatheta = 3.0*(pi/180); % rad/frame %
%%%%%% State Covariance %%%%%
R=[[0.2845,0.0045]',[0.0045,0.0455]']; %[[0.01,0.001]',[0.01,0.001]']
Rk = zeros(d , d);
Ry = sigmay*[delta^3/3 delta^2/2 0 0 ; delta^2/2 delta 0
0 ; 0 0 delta^3/3 delta^2/2 ; 0 0 delta^2/2 delta];
Re = [sigmaHx.^2 0 0 ; 0 sigmaHy.^2 0 ; 0 0
sigmatheta.^2];
Rk(1 : 4 , 1 : 4)= Ry;
Rk(5 : d , 5 : d) = Re;
Ck = chol(Rk)';
pos_index = [1 , 3];
ellipse_index = [5 , 6 , 7];
H=[[1,0]',[0,0]',[0,1]',[0,0]',[0,0]',[0,0]',[0,0]']
Q=0.01*eye(7);
P = 100*eye(7);
dt=1;

 43

A=[[1,0,0,0,0,0,0]',[dt,1,0,0,0,0,0]',[0,0,1,0,0,0,0]',[0,0,dt,1,0,0,0]
',[0,0,0,0,1,0,0]',[0,0,0,0,0,1,0]',[0,0,0,0,0,0,1]'];
Bu = [0,0,0,6,0,0,0]';
kfinit=0;
x=zeros(400,7);
N = randn(400,7);
Smean = zeros(1,7);
S = zeros(100,7);
yk = zeros(7,100);
distance = zeros(2,1);
error = zeros(1,100);
% loop over all images
aaa = 0;
xp = [300,0,350,0,100,160,pi]' %300 ; 350
for i = 340 : 400
 % load image
 mov = aviread(, i);
 Im = double(mov.cdata);
 title(sprintf('Frames = %d/%d' , i , 390));
 image(mov.cdata);
 Imwork = double(Im);
% sub = Imwork - Imback;
% imshow(sub)
 %extract ball
 [cc(i),cr(i),radius,flag] = extractball(Imwork,Imback,i);
 if flag==0
 continue
 end
 % Kalman update
 if kfinit==0
 xp = [300,0,350,0,100,160,pi]'; %480,640
 else
 xp=A*x(i-1,:)' + Ck*N(i-1,:)'; %Bu
 end
 kfinit=1;
 PP = A*P*A' + Q;
 K = PP*H'*inv(H*PP*H'+R);
 yk(:,i) = K*([cc(i),cr(i)]' - H*xp); %measurement residual
 x(i,:) = (xp + yk(:,i))';%[cc(i),0,cr(i),0,0,0,0]'
 distance = H*x(i,:)' - [cc(i),cr(i)]';
 error(1,i) = sqrt(distance(1,1)^2 + distance(2,1)^2);
 P = (eye(7)-K*H)*PP;
 Smean = x(i,:);
 S(i,:) = Smean;
 hold on
 ind_i = (1 : i);
 ykmean = Smean(pos_index);
 ekmean = Smean(ellipse_index);
 [xmean , ymean] = ellipse(ykmean' , ekmean');
 plot(xmean , ymean , 'g' , 'linewidth' , 3)
 plot(S(:,pos_index(1)) , S(:,pos_index(2)) , 'r' , 'linewidth' , 3)
 plot(xp(pos_index(1) , :) , xp(pos_index(2) , :) , 'b+');
 hold off
 pause(0.3)

 44

 aaa = aaa + 1
end

Particle Filter Algorithm (Video 1)

clear all
close all
Image = imread(['DATA/',int2str(17),'.jpg']);
[MR,MC,Dim] = size(Image);
nb_frame = 120;
dim_x = MC;
dim_y = MR;
N = 1000; % Number of particules
N_threshold = 6.*N/10; % Redistribution threshold
delta = 0.8;
%%%%% Color Cue parameters %%%%%%%%
Npdf = 800; % Number of samples to draw inside
ellipse to evaluate color histogram
Nx = 6; % Number of bins in first color
dimension (R or H)
Ny = 6; % Number of bins in second color
dimension (G or S)
Nz = 6; % Number of bins in third color
dimension (B or V)
sigma_color = 0.20; % Measurement Color noise
nb_hist = 256;
range = 1;
pos_index = [1 , 3];
ellipse_index = [5 , 6 , 7];
d = 7;
M = Nx*Ny*Nz;
vect_col = (0:range/(nb_hist - 1):range);
%%%%%% Target Localization for computing the target distribution %%%%
yq = [133.87 ; 21.79];
eq = [16 ; 16 ; pi];
%%%%%% Initialization distribution initialization %%%%
Sk = zeros(d , 1);
Sk(pos_index) = yq;
Sk(ellipse_index) = eq;
% Initial State covariance %
sigmax1 = 60; % pixel %
sigmavx1 = 2; % pixel / frame %
sigmay1 = 60; % pixel %
sigmavy1 = 2; % pixel / frame %
sigmaHx1 = 2; % pixel %
sigmaHy1 = 2; % pixel %
sigmatheta1 = 8*(pi/180); % rad/frame %
% State Covariance %
% a) Position covariance %
sigmay = 0.35;
% b) ellipse covariance %
sigmaHx = 0.1; % pixel %

 45

sigmaHy = 0.1; % pixel %
sigmatheta = 3.0*(pi/180); % rad/frame %
%%%%%%%%%%%%%%%%%%%% State transition matrix %%%%%%%%%%%%%%%%%%%%%%
A = [1 delta 0 0 0 0 0 ; 0 1 0 0 0 0 0 ; 0 0 1 delta 0
0 0; 0 0 0 1 0 0 0 ; 0 0 0 0 1 0 0 ; 0 0 0 0 0 1 0 ; 0 0 0 0 0 0 1];
By = [1 0 0 0 0 0 0 ; 0 0 1 0 0 0 0];
Be = [0 0 0 0 1 0 0 ; 0 0 0 0 0 1 1 ; 0 0 0 0 0 0 1];
%%%%%% Initial State Covariance %%%%%
R1 = diag([sigmax1 , sigmavx1 , sigmay1 , sigmavy1 ,
sigmaHx1 , sigmaHy1 , sigmatheta1].^2);
%%%%%% State Covariance %%%%%
Rk = zeros(d , d);
Ry = sigmay*[delta^3/3 delta^2/2 0 0 ; delta^2/2 delta 0
0 ; 0 0 delta^3/3 delta^2/2 ; 0 0 delta^2/2 delta];
Re = [sigmaHx.^2 0 0 ; 0 sigmaHy.^2 0 ; 0 0
sigmatheta.^2];
Rk(1 : 4 , 1 : 4)= Ry;
Rk(5 : d , 5 : d) = Re;
Ck = chol(Rk)';
%%%%%%%% Memory Allocation %%%%%%%
ON = ones(1 , N);
Od = ones(d , 1);
Smean = zeros(d , nb_frame);
Pcov = zeros(d , d , nb_frame);
N_eff = zeros(1 , nb_frame);
cte = 1/N;
cteN = cte(1 , ON);
w = cteN;
compteur = 0;
cte1_color = 1/(2*sigma_color*sigma_color);
cte2_color = (1/(sqrt(2*pi)*sigma_color));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Target Distribution %%%%%%%%%%%%%%
Image = imread(['DATA/',int2str(17),'.jpg']);
Z = double(Image);
im = rgb2hsv_mex(Z);
C1 = cumsum(histc(reshape(im(: , : , 1) , dim_x*dim_y ,
1) , vect_col))/(dim_x*dim_y);
C2 = cumsum(histc(reshape(im(: , : , 2) , dim_x*dim_y ,
1) , vect_col))/(dim_x*dim_y);
C3 = cumsum(histc(reshape(im(: , : , 3) , dim_x*dim_y ,
1) , vect_col))/(dim_x*dim_y);
i1 = sum(C1(: , ones(1 , Nx)) < repmat((0:1/(Nx - 1) :
1) , nb_hist , 1));
i2 = sum(C2(: , ones(1 , Ny)) < repmat((0:1/(Ny - 1) :
1) , nb_hist , 1));
i3 = sum(C3(: , ones(1 , Nz)) < repmat((0:1/(Nz - 1) :
1) , nb_hist , 1));
edge1 = [0 , vect_col(i1(2 : end)) , range];
edge2 = [0 , vect_col(i2(2 : end)) , range];
edge3 = [0 , vect_col(i3(2 : end)) , range];
q = pdfcolor_ellipserand(im , yq , eq , Npdf , edge1 ,
edge2 , edge3);
Q = q(: , ON);
fig1 = figure(1);

 46

imshow (Image);
aaa = 0;
%%%%%%%%%%%% Particle initialisation %%%%%%%%
Sk = Sk(: , ON) + chol(R1)'*randn(d , N);
%%%%%%%%%%%% Main Loop %%%%%%%%%%%%%%%%%%%%%%
for k = 20: nb_frame ;
 disp(sprintf('Frames = %d/%d' , k , nb_frame));
 Sk = A*Sk + Ck*randn(d , N);
 Image = imread(['DATA/',int2str(k),'.jpg']);
 %imshow(Image)
 Z = double(Image);
 im = rgb2hsv_mex(Z);
 yk = Sk(pos_index , :); %yk =
By*Sk;
 ek = Sk(ellipse_index , :); %ek =
Be*Sk;
 %%%%%%%%%% Color Likelihood %%%%%%%%%
 [py , zi , yi] = pdfcolor_ellipserand(im , yk , ek , Npdf , edge1
, edge2 , edge3);
 rho_py_q = sum(sqrt(py.*Q));
 likelihood_color = cte2_color*exp((rho_py_q - 1)*cte1_color);
 w = w.*likelihood_color;
 w = w/sum(w);
 %--------------------------- 6) MMSE estimate & covariance --------

 [Smean(: , k) , Pcov(: , : , k)] = part_moment(Sk , w);
 %--------------------------- 7) Particles redistribution ? if N_eff
< N_threshold -------------------------
 N_eff(k) = 1./sum(w.*w);
 if (N_eff(k) < N_threshold)
 compteur = compteur + 1;
 indice_resampling = particle_resampling(w);
 % Recopie des particules selon le tirage des indices précédents
 Sk = Sk(: , indice_resampling);
 w = cteN;
 end
 %%%%%%%%%%%%% Display %%%%%%%%%%%%%%%
 fig1 = figure(1);
 imshow(Image)
 title(sprintf('N = %6.3f/%6.3f, Frame = %d, Redistribution =%d' ,
N_eff(k) , N_threshold , k , compteur))
 ind_k = (1 : k);
 hold on
 ykmean = Smean(pos_index , k);
 ekmean = Smean(ellipse_index, k);
 [xmean , ymean] = ellipse(ykmean , ekmean);
 plot(xmean , ymean , 'g' , 'linewidth' , 3)
 plot(Smean(pos_index(1) , ind_k) , Smean(pos_index(2) , ind_k) ,
'r' , 'linewidth' , 2)
 plot(Sk(pos_index(1) , :) , Sk(pos_index(2) , :) , 'b+');
 hold off
 aaa = aaa + 1
end

 47

Particle Filter Algorithm (Video 2)

clear all
close all
Image = imread(['DATA2/',int2str(40),'.jpg']);
[MR,MC,Dim] = size(Image);
nb_frame = 102;
dim_x = MC;
dim_y = MR;
N = 1500; % Number of particules
N_threshold = 6.*N/10; % Redistribution threshold
delta = 0.8;
%%%%% Color Cue parameters %%%%%%%%
Npdf = 1000; % Number of samples to draw inside
ellipse to evaluate color histogram
Nx = 6; % Number of bins in first color
dimension (R or H)
Ny = 6; % Number of bins in second color
dimension (G or S)
Nz = 6; % Number of bins in third color
dimension (B or V)
sigma_color = 0.20; % Measurement Color noise
nb_hist = 256;
range = 1;
pos_index = [1 , 3];
ellipse_index = [5 , 6 , 7];
d = 7;
M = Nx*Ny*Nz;
vect_col = (0:range/(nb_hist - 1):range);
%%%%%% Target Localization for computing the target distribution %%%%
yq = [520.1592 ; 357.4856];
eq = [100 ; 50 ; -7*pi/8];
%%%%%% Initialization distribution initialization %%%%
Sk = zeros(d , 1);
Sk(pos_index) = yq;
Sk(ellipse_index) = eq;
% Initial State covariance %
sigmax1 = 60; % pixel %
sigmavx1 = 4; % pixel / frame %
sigmay1 = 60; % pixel %
sigmavy1 = 4; % pixel / frame %
sigmaHx1 = 7; % pixel %
sigmaHy1 = 7; % pixel %
sigmatheta1 = 8*(pi/180); % rad/frame %
% State Covariance %
% a) Position covariance %
sigmay = 0.35;
% b) ellipse covariance %
sigmaHx = 2; % pixel %
sigmaHy = 0.6; % pixel %
sigmatheta = 3.0*(pi/180); % rad/frame %
%%%%%%%%%%%%%%%%%%%% State transition matrix %%%%%%%%%%%%%%%%%%%%%%

 48

A = [1 delta 0 0 0 0 0 ; 0 1 0 0 0 0 0 ; 0 0 1 delta 0
0 0; 0 0 0 1 0 0 0 ; 0 0 0 0 1 0 0 ; 0 0 0 0 0 1 0 ; 0 0 0 0 0 0 1];
By = [1 0 0 0 0 0 0 ; 0 0 1 0 0 0 0];
Be = [0 0 0 0 1 0 0 ; 0 0 0 0 0 1 1 ; 0 0 0 0 0 0 1];
%%%%%% Initial State Covariance %%%%%
R1 = diag([sigmax1 , sigmavx1 , sigmay1 , sigmavy1 ,
sigmaHx1 , sigmaHy1 , sigmatheta1].^2);
%%%%%% State Covariance %%%%%
Rk = zeros(d , d);
Ry = sigmay*[delta^3/3 delta^2/2 0 0 ; delta^2/2 delta 0
0 ; 0 0 delta^3/3 delta^2/2 ; 0 0 delta^2/2 delta];
Re = [sigmaHx.^2 0 0 ; 0 sigmaHy.^2 0 ; 0 0
sigmatheta.^2];
Rk(1 : 4 , 1 : 4)= Ry;
Rk(5 : d , 5 : d) = Re;
Ck = chol(Rk)';
%%%%%%%% Memory Allocation %%%%%%%
ON = ones(1 , N);
Od = ones(d , 1);
Smean = zeros(d , nb_frame);
Pcov = zeros(d , d , nb_frame);
N_eff = zeros(1 , nb_frame);
cte = 1/N;
cteN = cte(1 , ON);
w = cteN;
compteur = 0;
cte1_color = 1/(2*sigma_color*sigma_color);
cte2_color = (1/(sqrt(2*pi)*sigma_color));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Target Distribution %%%%%%%%%%%%%%
Image = imread(['DATA2/',int2str(40),'.jpg']);
Z = double(Image);
im = rgb2hsv_mex(Z);
C1 = cumsum(histc(reshape(im(: , : , 1) , dim_x*dim_y ,
1) , vect_col))/(dim_x*dim_y);
C2 = cumsum(histc(reshape(im(: , : , 2) , dim_x*dim_y ,
1) , vect_col))/(dim_x*dim_y);
C3 = cumsum(histc(reshape(im(: , : , 3) , dim_x*dim_y ,
1) , vect_col))/(dim_x*dim_y);
i1 = sum(C1(: , ones(1 , Nx)) < repmat((0:1/(Nx - 1) :
1) , nb_hist , 1));
i2 = sum(C2(: , ones(1 , Ny)) < repmat((0:1/(Ny - 1) :
1) , nb_hist , 1));
i3 = sum(C3(: , ones(1 , Nz)) < repmat((0:1/(Nz - 1) :
1) , nb_hist , 1));
edge1 = [0 , vect_col(i1(2 : end)) , range];
edge2 = [0 , vect_col(i2(2 : end)) , range];
edge3 = [0 , vect_col(i3(2 : end)) , range];
q = pdfcolor_ellipserand(im , yq , eq , Npdf , edge1 ,
edge2 , edge3);
Q = q(: , ON);
fig1 = figure(1);
imshow (Image);
% image(mov.cdata);
%

 49

% set(gca , 'drawmode' , 'fast');
% set(gcf , 'doublebuffer','on');
%
% set(gcf , 'renderer' , 'zbuffer');
aaa = 0;
%%%%%%%%%%%% Particle initialisation %%%%%%%%
Sk = Sk(: , ON) + chol(R1)'*randn(d , N);
%%%%%%%%%%%% Main Loop %%%%%%%%%%%%%%%%%%%%%%
for k = 40: nb_frame ;
 disp(sprintf('Frames = %d/%d' , k , nb_frame));
 Sk = A*Sk + Ck*randn(d , N);
 Image = imread(['DATA2/',int2str(k),'.jpg']);
 %imshow(Image)
 Z = double(Image);
 im = rgb2hsv_mex(Z);
 yk = Sk(pos_index , :); %yk =
By*Sk;
 ek = Sk(ellipse_index , :); %ek =
Be*Sk;
 %%%%%%%%%% Color Likelihood %%%%%%%%%
 [py , zi , yi] = pdfcolor_ellipserand(im , yk , ek , Npdf , edge1
, edge2 , edge3);
 rho_py_q = sum(sqrt(py.*Q));
 likelihood_color = cte2_color*exp((rho_py_q - 1)*cte1_color);
 w = w.*likelihood_color;
 w = w/sum(w);
 %--------------------------- 6) MMSE estimate & covariance --------

 [Smean(: , k) , Pcov(: , : , k)] = part_moment(Sk , w);
 %--------------------------- 7) Particles redistribution ? if N_eff
< N_threshold -------------------------
 N_eff(k) = 1./sum(w.*w);
 if (N_eff(k) < N_threshold)
 compteur = compteur + 1;
 indice_resampling = particle_resampling(w);
 % Recopie des particules selon le tirage des indices précédents
 Sk = Sk(: , indice_resampling);
 w = cteN;
 end
 %%%%%%%%%%%%% Display %%%%%%%%%%%%%%%
 fig1 = figure(1);
 imshow(Image)
 title(sprintf('N = %6.3f/%6.3f, Frame = %d, Redistribution =%d' ,
N_eff(k) , N_threshold , k , compteur))
 ind_k = (1 : k);
 hold on
 ykmean = Smean(pos_index , k);
 ekmean = Smean(ellipse_index, k);
 [xmean , ymean] = ellipse(ykmean , ekmean);
 plot(xmean , ymean , 'g' , 'linewidth' , 3)
 plot(Smean(pos_index(1) , ind_k) , Smean(pos_index(2) , ind_k) ,
'r' , 'linewidth' , 2)
 plot(Sk(pos_index(1) , :) , Sk(pos_index(2) , :) , 'b+');
 hold off

 50

 aaa = aaa + 1
end
Particle Filter Algorithm (Video 3)

clear all
close all
 = 'camera2.avi';
info = aviinfo()
offset_frame = 339;%80
%nb_frame = info.NumFrames
%nb_frame = info.NumFrames - offset_frame -10;
nb_frame = 500;
dim_x = info.Width;
dim_y = info.Height;
N = 2000; % Number of particules
N_threshold = 6.*N/10; % Redistribution threshold
delta = 0.7;
%%%%% Color Cue parameters %%%%%%%%
Npdf = 800; % Number of samples to draw inside
ellipse to evaluate color histogram
Nx = 6; % Number of bins in first color
dimension (R or H)
Ny = 6; % Number of bins in second color
dimension (G or S)
Nz = 6; % Number of bins in third color
dimension (B or V)
sigma_color = 0.20; % Measurement Color noise
nb_hist = 256;
range = 1;
pos_index = [1 , 3];
ellipse_index = [5 , 6 , 7];
d = 7;
M = Nx*Ny*Nz;
vect_col = (0:range/(nb_hist - 1):range);
%%%%%% Target Localization for computing the target distribution %%%%
% yq = [dim_x ; dim_y/2];
yq = [300 ; 350];
% eq = [100 ; 160 ; pi/3];
eq = [30 ; 30 ; pi/3];
%%%%%% Initialization distribution initialization %%%%
Sk = zeros(d , 1);
Sk(pos_index) = yq;
Sk(ellipse_index) = eq;
% Initial State covariance %
sigmax1 = 60; % pixel %
sigmavx1 = 1; % pixel / frame %
sigmay1 = 60; % pixel %
sigmavy1 = 1; % pixel / frame %
sigmaHx1 = 40; % pixel %
sigmaHy1 = 40; % pixel %
sigmatheta1 = 30*(pi/180); % rad/frame %
% State Covariance %
% a) Position covariance %

 51

sigmay = 0.35;
% b) ellipse covariance %
sigmaHx = 0.1; % pixel %
sigmaHy = 0.1; % pixel %
sigmatheta = 3.0*(pi/180); % rad/frame %
%%%%%%%%%%%%%%%%%%%% State transition matrix %%%%%%%%%%%%%%%%%%%%%%
A = [1 delta 0 0 0 0 0 ; 0 1 0 0 0 0 0 ; 0 0 1 delta 0
0 0; 0 0 0 1 0 0 0 ; 0 0 0 0 1 0 0 ; 0 0 0 0 0 1 0 ; 0 0 0 0 0 0 1];
By = [1 0 0 0 0 0 0 ; 0 0 1 0 0 0 0];
Be = [0 0 0 0 1 0 0 ; 0 0 0 0 0 1 1 ; 0 0 0 0 0 0 1];
%%%%%% Initial State Covariance %%%%%
R1 = diag([sigmax1 , sigmavx1 , sigmay1 , sigmavy1 ,
sigmaHx1 , sigmaHy1 , sigmatheta1].^2);
%%%%%% State Covariance %%%%%
Rk = zeros(d , d);
Ry = sigmay*[delta^3/3 delta^2/2 0 0 ; delta^2/2 delta 0
0 ; 0 0 delta^3/3 delta^2/2 ; 0 0 delta^2/2 delta];
Re = [sigmaHx.^2 0 0 ; 0 sigmaHy.^2 0 ; 0 0
sigmatheta.^2];
Rk(1 : 4 , 1 : 4)= Ry;
Rk(5 : d , 5 : d) = Re;
Ck = chol(Rk)';
%%%%%%%% Memory Allocation %%%%%%%
ON = ones(1 , N);
Od = ones(d , 1);
Smean = zeros(d , nb_frame);
Pcov = zeros(d , d , nb_frame);
N_eff = zeros(1 , nb_frame);
cte = 1/N;
cteN = cte(1 , ON);
w = cteN;
compteur = 0;
cte1_color = 1/(2*sigma_color*sigma_color);
cte2_color = (1/(sqrt(2*pi)*sigma_color));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Target Distribution %%%%%%%%%%%%%%
mov = aviread(, offset_frame);
im = mov.cdata;
Z = double(im);
im = rgb2hsv_mex(Z);
C1 = cumsum(histc(reshape(im(: , : , 1) , dim_x*dim_y ,
1) , vect_col))/(dim_x*dim_y);
C2 = cumsum(histc(reshape(im(: , : , 2) , dim_x*dim_y ,
1) , vect_col))/(dim_x*dim_y);
C3 = cumsum(histc(reshape(im(: , : , 3) , dim_x*dim_y ,
1) , vect_col))/(dim_x*dim_y);
i1 = sum(C1(: , ones(1 , Nx)) < repmat((0:1/(Nx - 1) :
1) , nb_hist , 1));
i2 = sum(C2(: , ones(1 , Ny)) < repmat((0:1/(Ny - 1) :
1) , nb_hist , 1));
i3 = sum(C3(: , ones(1 , Nz)) < repmat((0:1/(Nz - 1) :
1) , nb_hist , 1));
edge1 = [0 , vect_col(i1(3 : end)) , range];
edge2 = [0 , vect_col(i2(3 : end)) , range];
edge3 = [0 , vect_col(i3(2 : end)) , range];

 52

q = pdfcolor_ellipserand(im , yq , eq , Npdf , edge1 ,
edge2 , edge3);
Q = q(: , ON);
fig1 = figure(1);
image(mov.cdata);
set(gca , 'drawmode' , 'fast');
set(gcf , 'doublebuffer','on');
set(gcf , 'renderer' , 'zbuffer');
aaa = 0;
%%%%%%%%%%%% Particle initialisation %%%%%%%%
Sk = Sk(: , ON) + chol(R1)'*randn(d , N);
%%%%%%%%%%%% Main Loop %%%%%%%%%%%%%%%%%%%%%%
for k = 340 : nb_frame ;
 disp(sprintf('Frames = %d/%d' , k , nb_frame));
 Sk = A*Sk + Ck*randn(d , N);
 mov = aviread(, k);
 im = (mov.cdata);
 Z = double(im);
 im = rgb2hsv_mex(Z);
 yk = Sk(pos_index , :); %yk =
By*Sk;
 ek = Sk(ellipse_index , :); %ek =
Be*Sk;
 %%%%%%%%%% Color Likelihood %%%%%%%%%
 [py , zi , yi] = pdfcolor_ellipserand(im , yk , ek , Npdf , edge1
, edge2 , edge3);
 rho_py_q = sum(sqrt(py.*Q));
 likelihood_color = cte2_color*exp((rho_py_q - 1)*cte1_color);
 w = w.*likelihood_color;
 w = w/sum(w);
 %--------------------------- 6) MMSE estimate & covariance --------

 [Smean(: , k) , Pcov(: , : , k)] = part_moment(Sk , w);
 %--------------------------- 7) Particles redistribution ? if N_eff
< N_threshold -------------------------
 N_eff(k) = 1./sum(w.*w);
 if (N_eff(k) < N_threshold)
 compteur = compteur + 1;
 indice_resampling = particle_resampling(w);
 % Recopie des particules selon le tirage des indices précédents
 Sk = Sk(: , indice_resampling);
 w = cteN;
 end
 %%%%%%%%%%%%% Display %%%%%%%%%%%%%%%
 fig1 = figure(1);
 image(mov.cdata);
 title(sprintf('N = %6.3f/%6.3f, Frame = %d, Redistribution =%d' ,
N_eff(k) , N_threshold , k , compteur))
 ind_k = (1 : k);
 hold on
 ykmean = Smean(pos_index , k);
 ekmean = Smean(ellipse_index, k);
 [xmean , ymean] = ellipse(ykmean , ekmean);
 plot(xmean , ymean , 'g' , 'linewidth' , 3)

 53

 plot(Smean(pos_index(1) , ind_k) , Smean(pos_index(2) , ind_k) ,
'r' , 'linewidth' , 2)
 plot(Sk(pos_index(1) , :) , Sk(pos_index(2) , :) , 'b+');
 hold off
 aaa = aaa + 1
end

 54

REFERENCES

[1] Bonnie Danette Allen, Gary Bishop, and Greg Welch. Tracking: Beyond 15

Minutes of Thought, SIGGRAPH 2001 course 11. In Computer Graphics, Annual

Conference on Computer Graphics & Interactive Techniques. ACM Press, Addison-

Wesley, Los Angeles, CA, USA (August 12–17), SIGGRAPH 2001 course pack edition,

2001.

[2] Greg Welch and Gary Bishop. An Introduction to the Kalman Filter,

SIGGRAPH 2001 course 8. In Computer Graphics, Annual Conference on Computer

Graphics & Interactive Techniques. ACM Press, Addison-Wesley, Los Angeles, CA,

USA (August 12--17), SIGGRAPH 2001 course pack edition, 2001.

[3] Yilmaz, A., Javed, O., and Shah, M. 2006. Object tracking: A survey. ACM

Comput. Surv. 38, 4, Article 13 (Dec. 2006), 45 pages. DOI = 10.1145/1177352.1177355

[4] Yao Shen, Parthasarathy Guturu, Thyagaraju Damarla, and Bill P. Buckles.

Particle Filter Based Object Tracking with discriminative Feature Extraction and

Fusion, Lecture Notes In Computer Science; Vol. 5359 Proceedings of the 4th

International Symposium on Advances in Visual Computing, Part II Las Vegas, NV

Section: Motion Pages: 246 - 256 Year of Publication: 2008

[5] Katja Nummiaro, Esther K Meier, Luc J Van Gool, Object Tracking with an

Adaptive Color – Based Particle Filter, In Proceedings of the 24th DAGM Symposium

on Pattern Recognition (2002), pp. 353-360.

 55

[6] M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp: A

Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY

2002

[7] Jaco Vermaak, Patrick P´erez, Michel Gangnet, and Andrew Blake, Towards

Improved Observation Models for Visual Tracking: Selective Adaptation, Lecture Notes

In Computer Science; Vol. 2350. Proceedings of the 7th European Conference on

Computer Vision-Part I Pages: 645 - 660

Year of Publication: 2002

[8] Emilio Maggio, Student Member, IEEE, Fabrizio Smerladi, and Andrea

Cavallaro, Member, IEEE. Adaptive Multifeature Tracking in a Particle Filtering

Framework: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR

TECHNOLOGY, VOL. 17, NO. 10, OCTOBER 2007:

[9] Changjiang Yang, Ramani Duraiswami and Larry Davis. Fast Multiple Object

Tracking via a Hierarchical Particle Filter, This paper appears in: Computer Vision,

2005. ICCV 2005. Tenth IEEE International Conference on. Publication Date: 17-21 Oct.

2005 Volume: 1, On page(s): 212- 219 Vol. 1

[10] Z. Chen, Bayesian filtering: From kalman filters to particle filters, and

beyond, McMaster University, Tech. Rep., 2003. [Online]. Available:

http://soma.crl.mcmaster.ca/~zhechen/ieee_bayes.ps

[11] Dorin Comaniciu, Visvanathan Ramesh, Peter Meer, Kernel-Based Object

Tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence Volume 25

, Issue 5 (May 2003) Pages: 564 – 575, Year of Publication: 2003

 56

[12]f. Aherne, N. Thacker and P. Rockett, The Bhattacharyya Metric as an

Absolute Similarity Measure for Frequency Coded Data, Kybernetika, pp. 1-7, Vol.

32(4), 1997

[13] M. Tuceryan and A. K. Jain, Texture Analysis, In The Handbook of Pattern

Recognition and Computer Vision (2nd Edition), by C. H. Chen, L. F. Pau, P. S. P. Wang

(eds.), pp. 207-248, World Scientific Publishing Co., 1998. (Abstract) (Book Chapter)

[14] Julier, S.J.; Uhlmann, J.K. (1997), A new extension of the Kalman filter to

nonlinear systems, Int. Symp. Aerospace/Defense Sensing, Simul. and Controls 3.

http://www.cs.unc.edu/~welch/kalman/media/pdf/Julier1997_SPIE_KF.pdf Retrieved on

2008-05-03.

[15]Peter S.MAYBECK, Stochastic models, estimation, and control vol 1

Department of electrical engineering.Air Force Institute of Technology. Wright-Patterson

Air Force Base Ohio

 [16] Mallick, M. Maskell, S. Kirubarajan, T. Gordon, N. , Littoral tracking

using particle filter, Information Fusion, 2002. Proceedings of the Fifth International

Conference on Publication Date: 2002 Volume: 2, On page(s): 935- 942 vol.2

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(mallick%20%20m.%3cIN%3eau)&valnm=Mallick%2C+M.&reqloc%20=others&history=yes�
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20maskell%20%20s.%3cIN%3eau)&valnm=+Maskell%2C+S.&reqloc%20=others&history=yes�
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20kirubarajan%20%20t.%3cIN%3eau)&valnm=+Kirubarajan%2C+T.&reqloc%20=others&history=yes�
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20gordon%20%20n.%3cIN%3eau)&valnm=+Gordon%2C+N.&reqloc%20=others&history=yes�
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7951�
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7951�
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7951�

