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Object tracking in general is very challenging; it presents numerous problems that need to 

be addressed by the application in order to facilitate its successful deployment. Such problems 

range from abrupt object motion, during tracking, to a change in appearance of the scene and the 

object, as well as object to scene occlusions, and camera motion among others.  

It is important to take into consideration some issues, such as, accounting for noise 

associated with the image in question, ability to predict to an acceptable statistical accuracy, the 

position of the object at a particular time given its current position.  

This study tackles some of the issues raised above prior to addressing how the use of 

either of the aforementioned algorithm, minimize or in some cases eliminate the negative effects. 
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CHAPTER 1 - INTRODUCTION 

Object tracking has become a very important area in the field of computer vision. 

Here are some examples of areas in which it has been deployed: 

1) Automated surveillance systems: These are employed in most cases for security 

purposes. The system monitors a scene to detect a change in scenery or suspicious 

activities. 

2) Military Systems: Employed in the surveillance of the war zone area, to help 

monitor enemy troops movement. An example is the use of unmanned drones in 

the current ongoing war in Afghanistan. 

3) Traffic Monitoring applications 

Issues encountered in tracking are numerous some of which are quite complex. 

The issues of noise in the images have to be addressed if we are to get any discernable 

result. What happens when the scene illumination changes? Or what happens when there 

are partial or full object occlusions? How is the issue of the complexity in the shape of an 

object addressed? These are some of the issues that need to be addressed. 

Most tracking algorithms are predicated on some basic assumptions such as 

“Object motion is at constant velocity” etc. In the cases studied, the object shape 

representation employed is the primitive geometric shape. Here, the object shape is 

represented by as ellipse and its motion is modeled by affine translation and projective 

transformations. 



 2 

CHAPTER 2 - BASIC CONCEPT 

Continuous Random Variable 

The object tracking and motion capture in computer vision have very important 

idea which is continuous random variables. A continuous random variable can be set as a 

function that randomly plots all points in the sample plane to real numbers. For example 

the continuous random variable X(t)  plots time to position [3]. This can be explained as 

follow: At any point in time t (where’t’ is the sample plane) tX would be the expected 

position or value. Probability of an experience is generally managed within some space. 

The probability of random variables is described as the cumulative distribution function 

which is from negative infinity to current value and in which the probability is 

accumulated [2]:  

x),P((x)xF −∞=      (1) 

The average value with weighted occurrence can be used to approximate the 

expected value. 

N
N)x(P....N)x(PN)x(P

X nn2211 +++
=

  
(2) 

where N is the number of samples or events. The above equation will lead to the 

following equation [1 2]. 

∑
=

==
n

1i
ii xPE(X)XofValueExpected     (3) 

This is for n possible results ).......XX( n1 and the matching probabilities ).......PP( n1  [2] 
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.In the case of continuous random variable, the equation of the expected value is 

below: 

∫
∞

∞−

== (x)dxxfE(X)XofValueExpected x

   
(4) 

here xf  is the probability density function from (x)F
dx
d

x , it is the derivative of the 

cumulative distribution function. 

The equations 3 and 4 above can also rewrite to the following equations: 

∑
=

=
n

1i
ii )g(xPE(g(x))

      
(5) 

∫
∞

∞−

= (x)dxg(x)fE(g(x)) x

     
(6) 

∫
∞

∞−

= (x)dxfx)E(X x
KK

       (7)
 

if E(x)xg(x) −=  

Therefore from above equations, the variance of X is following [2]: 

]E(X))E[(XXofVariance 2−= 22 E(X))E(X −=   (8) 

  Variance is a good statistical tool for random value. This is because if the 

variance of a signal is stable around the mean, the value of the variance is an estimate of 

noise in the signal [1].  Standard deviation of X is defined as  =xσ   square root of the 

variance of X.  

In order to account for interference such as noise, we need to understand the best 

mathematical representation to use. 
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According to the central limit theorem, we can say that normal distribution is 

commonly assumed for a lot of the case of random processes in real world. A normal 

distribution is characterized by the following probability density function [2, 3]: 

])m(x
2σ

1exp[
2π
1(x)f 2

x2X −−=
σ    (9)

 

Where the expected value and squared Variance 

∫
∞

∞−

= (x)dxxfm xx

      (10)
 

∫
∞

∞−

−= (x)dxf)m(xσ X
2

x
2       (11) 

From above information, we can say that the variance can be used as the 

measurement of noise, but not as the information in time space. For the time space, we 

can use autocorrelation which is related to time and is the correlation of signal with itself. 

The following is the definition of the autocorrelation of a random signal X (t), in which 

the relationship between autocorrelation and time is clearly mentioned and is the function 

of time, on the other hand spectral density function is accepted in the frequency domain 

[2]: 

212121X tand,ttimessamplefor)])X(tE[X(t)t,(tR =   (12) 

For white noise, the autocorrelation function is taken as a Dirac delta function

δ(τ) . 

This function [3] has a value of zero everywhere except when 0=τ  

Amagnitudeconstantsomefor
0else

Athen0τif
)(τR x



 =

=  (13) 
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From the above equation with condition, if we use the Fourier transforms, the 

white noise can be constant in frequency domain, so spectrum density function is flat. 

This describes in mathematical terms the behavior of white noise.  It can be 

thought that there are constant power at any frequency in the frequency domain and being 

completely correlated with itself only at 0=τ . It is the reason why white noise signals are 

mentioned as independent, because for any sample of the signal except for 0=τ , the 

current sample is independent from other samples. [2] 

 

Image Feature Extraction 

To be able to track an image effectively, it is important to extract features of 

different types from the image. These features are used for identification and tracking 

purpose. There are three types of very important feature sets that are commonly used in 

object tracking. They are color features, Texture features and Intensity gradient features. 

 

Color Features 

Because the color feature generally doesn’t change for rotation and scaling, it can 

be used for a lot of applications. It has the following three color spaces [3, 4, 5]: 

a) Red green and blue color image. Also known as RGB color image. We can get 

these values directly from the image.  

b) Hue-saturation-value (HSV): An important feature for human insight of color. 

HSV is a representation of points in an RGB color image, which shows the 

perpetual color relationships more accurately than RGB and also keeping its 
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computational simplicity [3, 4, 5]. 

c) r, g, b: r, g, and b for each pixel are obtained by R divided by R+G+B, G divided 

by R+G+B and B divided by R+G+B. this is normalized value. This scaling of 

RGB to obtain r, g, and b values offers additional robustness against changes in 

illumination [3, 4, 5]. 

 

Texture Features 

Texture is a function of the pattern in pixel intensities (gray values) [13]. These 

can be obtained by using several mathematical tools such as: co-occurrence matrices, 

wavelet packets and Gabor filters [4]. 

This feature can be used as set with color feature for object tracking, object 

recognition and any other topic in computer vision to achieve more accurate result. 

 

Intensity Gradient Features 

It is important to be able to differentiate between the background and foreground 

images. The intensity gradient features prove capable of achieving this purpose. It can be 

obtained by using sobel mask, which is used to find horizontal and vertical differential 

images. For the strong edges, the gradient direction is determined, and they will go above 

the certain threshold value. There are some directions for edge of image to reach the 

robustness against changing level of intensity for background and foreground for the path 

of the motion object [3, 4, 5]. It is important that values of this feature set are quantized 

into a given number of levels, and in so doing we assumed that the gradient vectors with
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opposite directions are at the same quantized levels as their counterpart in the contrary 

direction, as long as they have same initial value and only differ in direction prior to 

quantization. 

The result is such that “the edge feature set at any pixel site is has at least one 

feature value corresponding to the direction of the gradient equal to one” [4]. The 

condition is set such that if a pixel is not edgel, all set of edge feature values for that pixel 

will equate to zero [3, 4, 5].  

 

Features Extraction 

The object region is divided into two frames (reference and target frames). They 

both need to be corresponding based on chosen features. The sets of features extracted 

from the images [3, 4] (reference and target) are first and foremost normalized such that 

they exist in the region ]1[0, .  

It is important that the feature extractor chosen for extraction is capable of 

extracting features that contain substantial information in order to facilitate easy 

separation between background and foreground pixels [3, 4]. 

According to the author of [4], the method used is described below: 

1) Find the covariance of the feature vectors of foreground and background of 

observed pixels centered on the respective class means”. This is denoted as “SW” 

[4]. 

2) Find “the covariance matrix of the class mean vectors centered on the overall 

sample mean”. This is denoted as “SB” [4].
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Apply Fischer’s discrimination function which is that the main few Eigen vectors of the 

matrix “e” will give the feature extractor and it is from the Eigen value equation, [4]: 

ΛeAe =        (14) 

Where A = B
1

WSS−  and Λ = Eigen value matrix of the system. 

The foreground and background pixel can be now obtained from the reference and 

target frame observation windows, and the foreground and background are depending on 

as if they are located in the observation window  or not[3, 4, 5]. 

The features of the equivalent pixels in the reference and target frames are used to 

compute the four sample mean vectors, and “SW” is now computed by using the pattern 

vector samples minus the respective class mean   

The matrix “SB” is calculated from four samples as shown below [4]: 

 Let u = Overall sample mean,    =T
fgu Target sample mean, =R

fgu  Background 

Class mean, and “t” = Transpose of the column matrices. 

The matrix “SB” is thus computed from follow [3, 4]. 

tR
bg

R
bg

tT
bg

T
bg

tR
fg

R
fg

tT
fg

T
fg

u)u)(u(u

,u)u)(u(u

,u)u)(u(u

,u)u)(u(u

−−

−−

−−

−−

      (15)
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Finding Similarities in Measurements 

This computation is used for image matching purpose and carried out by 

independently computing these similar measurements for each of the three feature vector 

components in the reduced feature space. It is aggregated via a process called feature 

fusion [4]. 

The first step is to quantize all possible aspect values in L levels of the region. L 

(xi) represents a “function that maps feature value of a pixel located at “xi” to a level “L”, 

where L][1,L∈ ” [4].  

The discrete feature probability distribution ( 1........LL
L
tt (x)}{P(x)P == ) which is the 

probability function inside of a bounding ellipse is defined. The region inside of ellipse is 

centered at “x” and the object should be inside of it [4].  

(x)P L
t  is calculated as follow [3, 4]: 

l)))(L(x
h

xx
(KC(x)P i

i
N

1i

L
t

R

−
−

= ∑
=    (16)

 

where xi = Location of pixel inside of the ellipse. NR is the number of pixels inside of 

ellipse. K is the Kernel function. δ is the Kronecker delta function.  is Euclidean 

Norm. h and C are normalization constants that make certain that the function K and the 

sum respectively are identified [4]. 

h = 22 ba +        (17)  

here “a” and “b” are the major and minor axis of the ellipse divide by two. 
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∑
=

−
=

RN

1i

i )
h

xx
K(

1C

      (18)

 

This is for pixels within an elliptic region centered at a point “x”. The elliptic 

region is assumed to enclose the object fully.  

The kernel function can be chosen by the main idea that if the pixels given by the 

feature information are far from the center point of the ellipse which means the pixels are 

more similar to background, these samples are less important and weights of them should 

be reduced to ignore these samples. This idea gives the following kernel function [3, 4, 

5]: 





=
<−=

otherwise0Else
1rifr1K(r) 2

    (19)
 

After the feature probability distribution inside of ellipse for target and reference 

frames centered at tgtX  and refX is computed, the Bhattacharyya distance formula can be 

used to compute the match of them [4]: 

∑
=

−=−=
L

1L
ref

L
ttgt

L
trefttgrtm )(X)P(XP1)(XP),(Xρ(P1d      (20) 

From the above equation ρ is the sum term in the equation on the right hand side. 

 

This term is called Bhattacharyya coefficient. It gives a measure of the similarity 

between the distributions, and if ρ is close to 1, then two regions are more similar [3, 4, 

5]. 
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CHAPTER 3 - KALMAN FILTER 

Basic concept of Kalman Filter 

A Kalman filter is the estimation tool which consists of available measurement 

values and previous states of the system and also the error of the estimation is tried to be 

minimized for desired variable [15]. The algorithm is recursive processing in which the 

Kalman filter estimate and then correct the values to get more accurate results for every 

recursive loop. Figure 1 shows the examples of the Kalman filter application [15]. 

 

Figure 1: Typical Kalman Filter Application 

 

According to the author in [15], the three following are important information that 

is required to pass on to the Kalman filter: 

1) “Knowledge of the system and measurement device dynamics”. 
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2) “Statistical description of the system noises, measurement errors and uncertainty 

in the dynamic models”. 

 
3) “Any available information about the initial conditions of the variables of 

interest”. 

From the Bayesian point of view, the filter should increase the conditional 

probability density of the value we want, predicated on the actual data information from 

the measuring tools. 

),.......ZZ,Z(xf i21.Z(i)Z(2),.....Z(1),X(i)             (21) 
 

The above equation can be interpreted as the conditional probability density of the 

value of “x” at any time “i”. And this means that X(i)  can be obtained by information of 

other samples which has probabilities (or quantities) from Z(1) through Z(i) . After a 

conditional probability density can be obtained, it will lead the optimal prediction and 

following ideas are led: 

1) The Mean is defined as the middle point of probability quantity for 

approximation. 

2) The mode is defined that the probability which value is highest on the peak of 

probability density function.  

3) The median is defined as the point on the center of x axis. 

For these ideas, A Kalman filter should be used for a linear system and white 

Gaussian [15]. 
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Linear System Model 

Whiteness implies no correlation of the noise in time domain and constant power 

for frequency domain. Kalman filter tries to predict the intermediate state of the discrete 

time system by using following equation [2, 3]: 

1K1K1KK WBuAXX −−− ++=     (22) 

We also have a “measurement residual” [1, 2, 3] given by the following equation: 

KKK VHXZ +=      (23) 

The meaning of the above two equations are as follow: 

“A” is an “n x n” matrix. It will be multiplied to the previous state ‘X” at time “ 1K − ” to 

obtain the current state at time “K”. 

“B” is an “n x L” matrix. It will be multiplied to the optional control vector” u lℜ∈  “. 

“H” is an “m x n” matrix that will be multiplied to the current prediction for the 

measurement “ Zk “ 

WK and VK are the random variable of the noise for the estimation and 

measurement. The following are assumed concerning the WK and VK parameters [2]: 

1) They are independent of each other. 

2) They are white Gaussian noise: 

Q)N(0,~P(w)      (24) 

R)N(0,~P(v)      (25) 

Where “Q” is covariance of the estimation noise and “R” is covariance of the 

measurement residual noise with constant [1, 2]. 
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Computation 

We set the n
KX̂ ℜ∈−

 as a “priori state” which is current state obtained by 

previous state and The n
KX̂ ℜ∈ is a “posteriori state” which is also the current state 

obtained by the measurement residual ZK. The prior estimate error is defined as: 

−−≡ KKK X̂Xê      (26)                                                      

The a posteriori estimate error is defined as: 

KKK X̂Xe −≡     (27) 

The a priori estimate error covariance is defined calculated as follow: 

       ]eE[eP T
KKK
−−− =     (28) 

The a posteriori estimate error covariance is calculated as follow: 

]eE[eP T
KKK =     (29) 

The goal is to obtain the value of posteriori that can be calculated by the addition 

of the priori value and the difference of actual measurement and priori with −
KX̂H with 

gain which imply the linear system [1]. The equation is shown below: 

  )X̂HK(ZX̂X̂ KKKK
−− −+=     (30) 

)X̂H(Z KK
−−  is called the residual. If this difference is zero, it means priori value 

is the actual estimated value [1, 2]. 

The name of “K” in the above equation is Kalman gain and it is an n x m matrix.
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It is for the minimization of a posteriori error covariance which can be obtained 

by substituting equation (28), (29) in equation (30). To minimize K, the derivation of the 

equation can be done with respect to K and set it to zero, and then it will be the following 

result [1, 2]: 

RHHP
HP

K
T

K

T
K

K +
=

−

−

      (31) 

From above equation, if the error covariance R of the measurement reach to zero, 

the denominator and numerator have the common terms and they can be canceled out, 

then we can obtain that 1
K HK −= [1, 2, 3]. In this case, we can also say that if the R is 

almost close to zero, Zk has no error which mean the measurement is more accurate, but 

the estimated measurement is less [1, 2]. However if the error covariance of priori state 

−
KP  is close to zero which mean the priori estimation is reliable more, the gain “K” can be 

calculate by zero divide by R which means “KK = 0”. From these ideas, the actual 

measurement is less reliable but the predicted measurement is more trustable. 

Figure 2 shows the main idea of the Kalman filter. From the above theories, the 

Kalman filter has two important steps which names are predictor and corrector to 

calculate priori state and posteriori respectively and [1, 2, 3]: 

 

Figure 2: Kalman Filter Cycle 
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 Initially the priori can be obtained by equation (22) in predictor and then 

posteriori can be calculated by equation (30) in the corrector [1]. The corrector is 

calculated for the purpose to achieve the more accurate estimation. 

In the predictor part, by using the previous estimation result of posterior and its 

covariance, the current priori can be obtained with its covariance [1, 2]. 

The corrector engages to update for obtaining the more accurate estimation by 

using measurement to calculate the posteriori and its covariance for next estimation [1, 2, 

3]. 

Time predictor equations are as follow: 

1K1KK BuX̂AX̂ −−
− +=     (32) 

QAAPP T
1KK += −

−      (33) 

where 1KP − is the result of the covariance of posteriori which is calculated in previous 

step. 

Measurement corrector equations are as follow: 

   )X̂HK(ZX̂X̂ KKKK
−− −+=     (34) 

   −−= KKK H)PK(1P       (35) 

where K is from equation (31).  

           In the corrector part, initially the Kalman gain can be calculated by using equation 

(31) by using prior covariance, H’ matrix and noise R. after that the measurement ZK can 

be obtained by calculation or observation, and then the posteriori can be obtained by 
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using equation (34). Finally the error covariance of posteriori can be obtained by 

equation (35) for next the recursive loop. For the estimation of next point, this recursive 

loop can be continued[1, 2]. 
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CHAPTER 4 - PARTICLE FILTER 

Particle Filter 

It is also known as sequential Monte-Carlo technique, which is a kind of 

recursive Bayesian based on Monte-Carlo simulation. The state space can be allocated 

into many regions and inside of the region, the particles or samples can be obtained 

based on the certain probability assumption. If the probability is higher, density of the 

samples will be increased and useful [10]. The posterior probability density is given by a 

weighted sum of “NP” samples which is from the region based on the certain probability 

distribution given by the following equation [5, 6, 8, 9, 10]: 

   
∑
=

≡−≈
PN

1n
nn

(i)
nn

P
nn )y(XP̂)Xδ(X

N
1)yP(X    (36) 

where (i)
nX  can be independent and identically distributed (i,i,d). They are led from “

)y(XP̂ nn ” if the number of samples or particles “NP” is enough, the priori probability 

)y(XP̂ nn  in the above equation can be assumed to the correct posterior “P (Xn )yn ”[10]. 

This approximation is used to predict the mean of a non-linear function as shown in the 

equation below [7, 8, 10, 11]: 

∑

∫ ∑∫

=

=

≡=

−=≈

P

P

P

N

1i
N

(i)
n

P

N

1i
n

(i)
nnn

P
nnnnn

(x)f̂)f(X
N
1

)dXX)δδ(f(X
N
1)dXy(XP̂)f(X)]E[f(X

  (37) 
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Sampling is done from a proposal distribution“ )yq(X nn ”, because sampling of a 

true posteriori is impracticable. Therefore equation (37) can be rewritten as shown below 

[7, 8, 10, 11]: 

∫

∫ ∫

=

==

nnnnnn
n

nnn
n

nn
nnnn

nn

nn
nn

)dXy)q(X(X)Wf(X
)P(y

1

)dXyq(X
)P(y

)(XW
)f(X)dXyq(X

)yq(X
)yP(X

)f(X)]E[f(X
  (38) 

where 
)yq(X

))P(XXP(y
)(XW

nn

nnn
nn =             (39) 

Equation (38) can be written as follow [7, 8, 10, 11]: 

  

)](X[WE

)])f(X(X[WE

)dXy)q(X(XW

)dXy)q(X(X)Wf(X

)dX)P(XXP(y

)dXy)q(X(X)Wf(X
)]E[f(X

nn)yq(X

nnn)yq(X

nnnnn

nnnnnn

nnnn

nnnnnn
n

nn

nn=

=

=

∫
∫
∫

∫

    (40) 

Because of the samples }{X (i)
n  from )yq(X nn which is independent and identical 

distribution, now equation (40) above can be revised as follow [10]: 

∑
∑

∑
=

=

=

≡=≈
P

P

P

N

1i

(i)
n

(i)
nn

N

1i
(i)
nn

P

N

1i
(i)
n

(i)
nn

P
n (X)f̂))f(X(XW~

)(XW
N
1

))f(X(XW
N
1

)]E[f(X  (41) 

Where 
∑ =

=
PN

1j
(j)
nn

(i)
nn(i)

nn
)(XW

)(XW
)(XW~       (42) 
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To make the simple implementation, probability related to all the previous state

)yP(X n:0n:0  cannot be considered, instead of this, we consider the current state 

estimation )yP(X n:0n . If we consider that )y,Xq(X n:0
(i)

1n:0
(i)
n −  is equal to 

)y,Xq(X n
(i)

1n:0
(i)
n − , then the following equation can be obtained from equation (42) [4, 5, 

10]: 

   )y,Xq(X

)X)P(XXP(y
WW

n
(i)

1n:0
(i)
n

(i)
1n

(i)
n

(i)
nn(i)

1n
(i)
n

−

−

−=      (43) 

Weight degeneration is very important issue, which occurred after any iteration, 

and because of this, the important weights will become skewed, and a lot of the weights 

of the particles will be equal to zero, so estimation will be failed. It is important to use 

the sampling importance resampling to avoid the weight degeneration and obtain the 

effective sampling size equation [6, 7, 8, 10, 11]: 
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The above equation can be obtained from: 

22 ]E[ξ]E[ξ] Var[ξ −= , and 1]W~[E q = . But, in real world, the correct Neff is not 

obtainable, thus the following equation gives its prediction [10]: 
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Re-sampling steps can be done when )N̂( eff  falls less than a predetermined 

threshold value )(N T . If it happens, each sample can be chosen with a minimum 

probability of }N
W{1,

T

(i)
n  and it will have new weights }W,max{NW (i)

nT
(j)
n = . 

The following table describes a general algorithm used in SIR particle filter based 

on the above equations [7, 8, 10, 11]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For Time steps n=0, 1, 2,………. 

1: Initialization: For i=1,……., PN , 

Sample )P(X~X 00 , 

P
o N

1W =  

2: Importance Sampling: 

For ,N1,.....,i P=  

Draw samples ),XP(X~X̂ (i)
1nn

(i)
n −  

Set }X̂,{XX̂ (i)
n

(i)
1n:0

(i)
n:0 −=  

3: Weight Update: 

Calculate Importance Weights  )X̂P(yW (i)
nn

(i)
n =  

4: Normalize the Importance weights: 
∑ =

=
PN

1j
(j)
n

(i)
n(i)

n
W

W
W~  

5: Re-sampling: Generate ( PN ) new particles ( (i)
nX ) from the set }X̂{ (i)

n

according to the importance weights ( (i)
nW~ ) 

6: Repeat steps 2 to 5 

Table 1: Pseudo Code of Particle Filter 
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CHAPTER 5 - IMPLEMENTATION 

In this section, I will talk about the overview of this implementation (experiment), 

after that I will also roughly talk about the Kalman filter and particle filter again and then, 

the details of algorithms and structures of them will be discussed.  The Matlab code of 

these algorithms will also be included and explained in these sections.  

 

Implementation Overviews 

To achieve the goal which is the study of the effects of the background on the 

efficacy of Kalman and particle filter, I implemented the both Kalman and particle filter 

algorithm by using Matlab, and I used the two methods to extract the object: background 

subtraction and color histogram, respectively.  

 

Overviews of Kalman Filter and Particle Filter 

The Kalman filter is the important mathematical device to obtain the state for 

stochastic process from noisy measurements, in other words, it is to predict the future 

state by using the current state from the observation and estimated state from previous 

states. This method has two different categories: a predictor and a corrector.  In the 

predictor, the current estimated state can be calculated by addition of the transition model 

multiplied by previous estimated state, the control input model with 
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control vector, and noise (equation 32).  The covariance of the estimated state can be 

calculated for update process. In the corrector part, the Kalman gain can be obtained and 

it is multiplied by the value of the subtraction of the observation of the center point and 

the estimated value in predictor. This value is added to the estimated value again to 

achieve final estimation and the updated covariance is also calculated again (equation 34).  

Particle filter generally has the posterior density and the observation density 

which are non Gaussian. And the main idea of particle filter is that in order to estimate 

the object state, the weighted samples which consist of multiplications of estimated 

samples and weights will be obtained. The color feature is also important. To consider 

object, background, and the occlusion, the object model is obtained by color distribution, 

and they are calculated by histograms. To achieve better color distribution of the object 

model means that the observed value of the image is provided. Same as Kalman filter, the 

difference of observed value and estimated value can be obtained to update the final 

estimated point. 

 

Kalman Filter Algorithm 

In previous section, I discussed the theoretical overview of Kalman filter and 

particle filter. In this section, I will discuss the actual algorithm of Kalman filter. The 

Figure 2 shows the brief idea of object tracking algorithm with Kalman filter.  
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Figure 3: Structure of Kalman Filter Algorithm 

From the videos, I tried to obtain the information of each frame and their 

respective background information. Each frame image is used to estimate the center point 

of the object, however, the background image are used to find the observation point. 

Initially I read the several frames of videos which don’t include the target object, and 

then divided the sum by the number of frames. This process gives the background 

information. 

 In predictor, I predict the state X which constructs the matrix [5, 10]:  

]HHHyyxx[X rslvv=    (46) 

Where x is the x axis value of the center point of the object, vx is the x axis 

velocity of the center point of the object, y is the y axis value of the center point of the 

object, vy is the y axis velocity of the center point of the object, lH is the semimajor axis 

value of the ellipse, sH is the semiminor axis value of the ellipse, rH is the angle velocity 

of the ellipse.  
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I set the transition matrix A as[5, 10]: 





























=

1000000
0100000
0010000
0001000
000dt100
0000010
00000dt1

A   (47) 

By using these values, I calculate the predicted state Xp [2, 16] 

:)1,N(iCk:)'1,X(iAXp −×+−×=    (48) 

where :)1,N(iCk −× are the control vector multiplied with the process noise (see Matlab 

Code in appendix).  

Also the initial error covariance is as: 





























×=

1000000
0100000
0010000
0001000
0000100
0000010
0000001

100P   (49) 

The process noise covariance Q  is: 



 26 





























×=

1000000
0100000
0010000
0001000
0000100
0000010
0000001

0.01Q   (50) 

By using these values, I calculated the predicted state covariance. 

In corrector side, once the predicted state and its covariance are obtained, I 

calculate the Kalman Gain K  [2]: 

R)H'PP(HinvH'PPK +××××=    (51) 

where the observation model matrix H is: 









=

0000100
0000001

H    (52) 

And R  is the measurement noise covariance (see Matlab Code in appendix). The 

measurement residual yk is obtained by: 

Xp)Hcr(i)]'([cc(i),Ki),yk(: ×−×=   (53) 

where cr(i)][cc(i), is the observation point from background subtraction. To correct the 

estimate with measurement, I calculated X and the error covariance: 

PPH)K(eye(7)P
i))',yk(:(Xp:)X(i,

××−=
+=

    (54) 

By using these updated values, I estimated the center point for next frame again. 
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Particle Filter Algorithm 

In the previous section, I discussed about the algorithm of Kalman Filter with 

background subtraction. In this section I will mention about the algorithm of particle 

filter. The Figure 4 shows the structure of object tracking algorithm with particle filter. 

From Figure 4, you can see that my algorithm is based on the sampling importance 

resampling (SIR). 

 

Figure 4: Particle Filter Algorithm 

Initially the video file will be read into Matlab, and first frame of video is 

extracted to get color distribution. There are initially RGB (red, green, blue) components 

in the image and they are converted to HSV (hue, saturation, value). From these values, 

the histogram, the cumulative distribution function and edges of HSV can be obtained. 

In particle filter [5, 10, 16], I set the state as Smean  

]HHHyyxx[Smean rslvv=    (55) 
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where x is the x axis mean (weighted) value of the center point of the object, vx is the x 

axis mean (weighted) velocity of the center point of the object, y is the y axis mean 

(weighted) value of the center point of the object, vy is the y axis mean (weighted) 

velocity of the center point of the object, lH is the semimajor axis mean (weighted) value 

of the ellipse, sH is the semiminor axis mean (weighted) value of the ellipse, rH is the 

mean (weighted) angle velocity of the ellipse. And the final goal of the algorithm is to 

estimate Smean  by: 

States)Predicted)(ParticlesSamples(WeightedofmeanSmean ×=  (56) 

In the predictor, I set the transition matrix A as [14, 16]: 





























=

1000000
0100000
0010000
0001000
000dt100
0000010
00000dt1

A   (57) 

By using these values, I calculated the predicted state Sk  

N)randn(d,CkSkASk ×+×=    (58) 

where Ck is the covariance of the noise and N)randn(d, is the random noise. These 

values are similar to Kalman filter’s information, however, still there are some 

differences. For example, Sk  is not a vector, the value N is the number of particles and 

Nx7 matrix is be constructed. The value Ck is 7x7 matrix which is calculated by the 

following equations[16]: 
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chol(Rk)'Ck =     (62) 

where Rk , Ry and Re is the kinematic of the ellipsoid. And then Ck is calculated by the 

Cholesky factorization of Rk . Once I predict the state Sk , I have to check the similarity 

of observed and target image to update the state Sk . I obtained the color distribution Py  

of an area R from following equation [5, 11]: 

u])δ[h(x)
a
xy

k(fPy i
Rx

i(u)

i

−
−

= ∑
∈

   (63) 

where δ is the Kronecker delta function and  one of the m-bins of the histogram at ix  is 

allocated to )h(x i , a gives invariance against range of the area and f is the normalization 

factor ensured by the condition [5, 11]:  

1Pym

1u
(u) =∑ =

     (64) 
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As I mentioned in Chapter 2, I used the Bhattacharyya coefficient [12]. Based on these 

values, I found the observation probability distribution function so that I will weigh each 

particle. The equation is: 

Sum(W)
WW

PDFColorWW

=

×=
    (65) 

From the equation [58, 65], I will calculate theSmean . However, if the following 

condition is satisfied, I have to implement the resampling to avoid the degeneracy. 

thresholdeff NN <     (66) 

 where effN is calculated by the following equation [5 10]: 

∑= 2eff W
1N

    
(67) 
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CHAPTER 6 - SIMULATION & RESULTS 

Introduction of Simulations 

To observe the effects of background on the efficacy of Kalman filter and particle 

filter algorithm, I carried out the experiments for object tracking with three videos by 

using Kalman filter with back-subtraction and particle filter. The first video is the one 

that shows the red color ball freely falls to the floor and bounced several time, and then 

stop on the floor, and the background of this video is just simply black color. The second 

video is the one that shows the red car moving on the road, and the background of this is 

the outside scene, which means this has more complex color histogram than that of the 

first video. The third video is the one that shows a scene on the highway. Camera faced to 

the backside. As initial assumption, the cameras of both first and second videos are fixed 

and motionless so that I can get the stable backgrounds of video scene easily, however in 

the third video the camera is unstable and moving because the camera is also on the car 

and it is moving, so obtaining the background picture was difficult (see Table 2). For 

these videos, applied Kalman filter and particle filter algorithms and then compared them.  

Table 2: Video Information of Simulation 

 Video 1 Video 2 Video 3 

Object Ball Car Car 

Number of Objects 1 1 2 

Background Simple Complex Complex 

Camera Motionless Motionless Motion 
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Video 1 

 

Figure 5: Kalman Filter Algorithm for Video - 1  

 

Figure 6: Particle Filter Algorithm for Video - 1 

Figure 5 shows the results of the Kalman filter algorithm for the first video. From 

these pictures, it shows this algorithm is acceptable for object tracking. This is because 

the motionless camera provides a clear background and the background subtraction is 

very accurate, however, some errors still exist. These are caused by the actual Kalman 

filter error. On the other hand, in Figure 6, the particle filter algorithm is not working 

properly. The main reason why it lost track is that the speed of the falling object is not 

acceptable for this algorithm. In every frame, from the estimated center point, the 

particles are chosen based on the color PDF in the ellipse, however, if the object speed is 

increasing dramatically, the object easily goes out of the ellipse, thus the similarity of the 
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color PDF of target and reference no longer close. This misleads the extraction 

mechanism for the object.  

Video 2 

The results of the Kalman filter algorithm for the second video in Figure 7 is 

similar to that for the first video. The similarity of the situation gives acceptable results. 

The tracking in the second video is more accurate than that in first video because the 

object is not moving fast. On the other hand, the results of the particle filter algorithm for 

second video in Figure 8 dramatically changes. One of the reasons is the reduced speed of 

object. The second reason is that the color histogram of background is more complex 

than that of first video. This means that the algorithm can receive more information for 

the background. 

 

Figure 7: Kalman Filter Algorithm for Video - 2 

 

Figure 8: Particle Filter Algorithm for Video – 2 
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Video 3 

The results of Kalman filter algorithm of the third implementation is in Figure 9. 

There are two objects in which one on them is the right side big car moving from right 

side to center, and another is the normal car moving from center and to left side, and 

initially the ellipse is on the big car, however, although I wanted to track first objects, I 

can obtain the results coincidentally. It is because the background can be calculated just 

before the first frame, and first object is bigger, so coincidentally the object is extracted, 

however, the fact that the camera is moving make the error of the similarity between the 

reference background and the target background increasing as time goes by. The ellipse is 

moving up and down many times and loses its way.  

On the other hand, in figure 10, the particle filter algorithm is different from the 

Kalman filter algorithm. Instead of the background subtraction, it uses the color 

histogram extraction. When the camera is moving, color histogram of the object does not 

change, and this leads to accurate results. Also there is one problem about this algorithm. 

I had to set the initial center point of the object manually.  
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Figure 9: Kalman Filter Algorithm for Video - 3 

 
Figure 10: Particle Filter Algorithm for Video - 3 

The Kalman filter with background subtraction is suitable method if the camera is 

motionless, and it is also fast to implement, however, because of simplicity, it is not 

flexible for any situation. On the other hand, the particle filter with color feature is 

complex to implement and speed is not so fast, but it still has an acceptable run time, 

although I had to set the initial center point manually and sometime the noise may cause 

serious error, the result can be valid, and it is adequate. 
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CHAPTER 7 - CONCLUSION 

In this thesis, two algorithms for object tracking which are Kalman filter with 

background subtraction and Particle filter with color feature are compared. In order to 

access the performance of both methods, three different types of videos were used. From 

the first two videos, we can conclude that Kalman filter provides a better performance. 

This is due to the fact that Particle filter requires a longer transition time. Moreover, 

when Gaussian noise is assumed, Kalman filter is better. 

 On the other hand, from the results of Kalman algorithm for all the three videos 

we can say that the motionless camera does not provide the correct information for the 

background subtraction method. From those points, the study of the effects of 

background on the efficacy of Kalman and Particle filter algorithm are met. The 

background subtraction method is best for motionless camera. 

 For fast implementation with motionless camera, the background subtraction 

with Kalman filter is a better algorithm. Additionally, particle filter with color feature can 

be applied to any video whether the camera is moving or is motionless.  

Finally, for actual implementations or applications, the Particle filter is a better 

method. 

 For future work, we will try to extract in addition to the object and background 

based on the color feature, the texture and the shape feature in the aim of obtaining a 

more accurate result. Furthermore, real time processing could be considered for 

surveillance and robotics applications. 
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APPENDIX 

MATRAB CODE 
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The codes are originally created by Alireza Kashanipour and Sebastien Paris from the 

Matlab center and they are modified by me to achieve to desired results. 

Kalman Filter Algorithm (Video 1) 

clear,clc 
% compute the background image 
% Kalman filter initialization 
Imzero = zeros(240,320,3); 
for i = 1:5 
Im{i} = double(imread(['DATA/',int2str(i),'.jpg'])); 
Imzero = Im{i}+Imzero; 
end 
Imback = Imzero/5; 
[MR,MC,Dim] = size(Imback); 
% Initial State covariance % 
d = 7; 
delta             = 0.7;  
sigmax1           = 60;      % pixel % 
sigmavx1          = 1;      % pixel / frame % 
sigmay1           = 60;      % pixel  % 
sigmavy1          = 1;      % pixel / frame % 
sigmaHx1          = 4;    % pixel % 
sigmaHy1          = 4;    % pixel % 
sigmatheta1       = 8*(pi/180); % rad/frame % 
% State Covariance % 
% a) Position covariance % 
sigmay            = 0.35; 
% b) ellipse covariance % 
sigmaHx           = 0.1;                % pixel % 
sigmaHy           = 0.1;                % pixel % 
sigmatheta        = 3.0*(pi/180);       % rad/frame % 
%%%%%% State Covariance %%%%% 
R=[[0.2845,0.0045]',[0.0045,0.0455]']; %[[0.01,0.001]',[0.01,0.001]'] 
Rk                = zeros(d , d); 
Ry                = sigmay*[delta^3/3 delta^2/2 0 0 ; delta^2/2 delta 0 
0 ; 0 0 delta^3/3 delta^2/2 ; 0 0 delta^2/2 delta]; 
Re                = [sigmaHx.^2 0 0 ; 0 sigmaHy.^2 0 ; 0 0 
sigmatheta.^2]; 
Rk(1 : 4  , 1 : 4)= Ry; 
Rk(5 : d , 5 : d) = Re; 
Ck                = chol(Rk)'; 
pos_index         = [1 , 3]; 
ellipse_index     = [5 , 6 , 7]; 
H=[[1,0]',[0,0]',[0,1]',[0,0]',[0,0]',[0,0]',[0,0]'] 
Q=0.01*eye(7); 
P = 100*eye(7); 
dt=1; 
A=[[1,0,0,0,0,0,0]',[dt,1,0,0,0,0,0]',[0,0,1,0,0,0,0]',[0,0,dt,1,0,0,0]
',[0,0,0,0,1,0,0]',[0,0,0,0,0,1,0]',[0,0,0,0,0,0,1]']; 
Bu = [0,0,0,6,0,0,0]'; 
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kfinit=0; 
x=zeros(100,7); 
N = randn(100,7); 
Smean = zeros(1,7); 
S = zeros(60,7); 
yk = zeros(7,60); 
distance = zeros(2,1); 
error = zeros(1,60); 
aaa = 0; 
% loop over all images 
for i = 1 : 60 
  % load image 
  Im = (imread(['DATA/',int2str(i), '.jpg']));  
  imshow(Im) 
  imshow(Im) 
  Imwork = double(Im); 
  %extract ball 
  [cc(i),cr(i),radius,flag] = extractball(Imwork,Imback,i); 
  if flag==0 
    continue 
  end 
  
  % Kalman update 
  if kfinit==0 
    xp = [MC/2,0,MR/2,0,14,20,pi]'; 
  else 
    xp=A*x(i-1,:)' + Ck*N(i-1,:)'; %Bu 
  end 
  kfinit=1; 
  PP = A*P*A' + Q; 
  K = PP*H'*inv(H*PP*H'+R); 
  yk(:,i) = K*([cc(i),cr(i)]' - H*xp); %measurement residual 
  x(i,:) = (xp + yk(:,i))';%[cc(i),0,cr(i),0,0,0,0]' 
  distance = H*x(i,:)' - [cc(i),cr(i)]'; 
  error(1,i) = sqrt(distance(1,1)^2 + distance(2,1)^2); 
  P = (eye(7)-K*H)*PP; 
  Smean = x(i,:); 
  S(i,:) = Smean; 
  hold on 
  ind_i             = (1 : i); 
    ykmean            = Smean(pos_index); 
    ekmean            = Smean(ellipse_index); 
    [xmean , ymean]   = ellipse(ykmean' , ekmean'); 
    plot(xmean , ymean , 'g' , 'linewidth' , 3) 
    plot(S(:,pos_index(1)) , S(:,pos_index(2)) , 'r' , 'linewidth' , 3) 
    plot(xp(pos_index(1) , :) , xp(pos_index(2) , :) , 'b+'); 
    hold off 
    pause(0.3) 
    aaa =  aaa + 1 
end 
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Kalman Filter Algorithm (Video 2) 

clear,clc 
% compute the background image 
% Kalman filter initialization 
Imzero = zeros(576,768,3); 
for i = 1:18 
Im{i} = double(imread(['DATA2/',int2str(i),'.jpg'])); 
Imzero = Im{i}+Imzero; 
end 
Imback = Imzero/18; 
[MR,MC,Dim] = size(Imback); 
% Initial State covariance % 
d = 7; 
delta             = 0.7; 
sigmax1           = 60;      % pixel % 
sigmavx1          = 1;      % pixel / frame % 
sigmay1           = 60;      % pixel  % 
sigmavy1          = 1;      % pixel / frame % 
sigmaHx1          = 4;    % pixel % 
sigmaHy1          = 4;    % pixel % 
sigmatheta1       = 8*(pi/180); % rad/frame % 
% State Covariance % 
% a) Position covariance % 
sigmay            = 0.35; 
% b) ellipse covariance % 
sigmaHx           = 0.1;                % pixel % 
sigmaHy           = 0.1;                % pixel % 
sigmatheta        = 3.0*(pi/180);       % rad/frame % 
%%%%%% State Covariance %%%%% 
R=[[0.2845,0.0045]',[0.0045,0.0455]']; %[[0.01,0.001]',[0.01,0.001]'] 
Rk                = zeros(d , d); 
Ry                = sigmay*[delta^3/3 delta^2/2 0 0 ; delta^2/2 delta 0 
0 ; 0 0 delta^3/3 delta^2/2 ; 0 0 delta^2/2 delta]; 
Re                = [sigmaHx.^2 0 0 ; 0 sigmaHy.^2 0 ; 0 0 
sigmatheta.^2]; 
Rk(1 : 4  , 1 : 4)= Ry; 
Rk(5 : d , 5 : d) = Re; 
Ck                = chol(Rk)'; 
pos_index         = [1 , 3]; 
ellipse_index     = [5 , 6 , 7]; 
H=[[1,0]',[0,0]',[0,1]',[0,0]',[0,0]',[0,0]',[0,0]'] 
Q=0.01*eye(7); 
P = 100*eye(7); 
dt=1; 
A=[[1,0,0,0,0,0,0]',[dt,1,0,0,0,0,0]',[0,0,1,0,0,0,0]',[0,0,dt,1,0,0,0]
',[0,0,0,0,1,0,0]',[0,0,0,0,0,1,0]',[0,0,0,0,0,0,1]']; 
Bu = [0,0,0,6,0,0,0]'; 
kfinit=0; 
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x=zeros(100,7); 
N = randn(100,7); 
Smean = zeros(1,7); 
S = zeros(60,7); 
yk = zeros(7,60); 
distance = zeros(2,1); 
error = zeros(1,60);aaa = 0; 
% loop over all images 
for i = 1 : 102 
  % load image 
  Im = (imread(['DATA2/',int2str(i), '.jpg']));  
  imshow(Im) 
  imshow(Im) 
  Imwork = double(Im); 
  %extract ball 
  [cc(i),cr(i),radius,flag] = extractball(Imwork,Imback,i); 
  if flag==0 
    continue 
  end 
  
  % Kalman update 
  if kfinit==0 
    xp = [MC/2,0,MR/2,0,30,30,pi]'; 
  else 
    xp=A*x(i-1,:)' + Ck*N(i-1,:)'; %Bu 
  end 
  kfinit=1; 
  PP = A*P*A' + Q; 
  K = PP*H'*inv(H*PP*H'+R); 
  yk(:,i) = K*([cc(i),cr(i)]' - H*xp); %measurement residual 
  x(i,:) = (xp + yk(:,i))';%[cc(i),0,cr(i),0,0,0,0]' 
  distance = H*x(i,:)' - [cc(i),cr(i)]'; 
  error(1,i) = sqrt(distance(1,1)^2 + distance(2,1)^2); 
  P = (eye(7)-K*H)*PP; 
  Smean = x(i,:); 
  S(i,:) = Smean; 
  hold on 
  ind_i             = (1 : i); 
    ykmean            = Smean(pos_index); 
    ekmean            = Smean(ellipse_index); 
    [xmean , ymean]   = ellipse(ykmean' , ekmean'); 
    plot(xmean , ymean , 'g' , 'linewidth' , 3)  
    plot(S(:,pos_index(1)) , S(:,pos_index(2)) , 'r' , 'linewidth' , 3)  
    plot(xp(pos_index(1) , :) , xp(pos_index(2) , :) , 'b+'); 
    hold off 
    pause(0.3) 
    aaa =  aaa + 1 
end 
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Kalman Filter Algorithm (Video 3) 

clear,clc 
% compute the background image 
% Kalman filter initialization 
             = 'camera2.avi'; 
info              = aviinfo() 
%offset_frame      = 80;%80 
Imzero = zeros(576,768,3); 
for i = 320:339 
    mov              = aviread( , i); 
    Im{i}              = double(mov.cdata); 
    Imzero = Im{i}+Imzero; 
end 
Imback = Imzero/20; 
[MR,MC,Dim] = size(Imback); 
% Initial State covariance % 
d = 7; 
delta             = 0.7; 
sigmax1           = 60;      % pixel % 
sigmavx1          = 1;      % pixel / frame % 
sigmay1           = 60;      % pixel  % 
sigmavy1          = 1;      % pixel / frame % 
sigmaHx1          = 4;    % pixel % 
sigmaHy1          = 4;    % pixel % 
sigmatheta1       = 8*(pi/180); % rad/frame % 
% State Covariance % 
% a) Position covariance % 
sigmay            = 0.35; 
% b) ellipse covariance % 
sigmaHx           = 0.1;                % pixel % 
sigmaHy           = 0.1;                % pixel % 
sigmatheta        = 3.0*(pi/180);       % rad/frame % 
%%%%%% State Covariance %%%%% 
R=[[0.2845,0.0045]',[0.0045,0.0455]']; %[[0.01,0.001]',[0.01,0.001]'] 
Rk                = zeros(d , d); 
Ry                = sigmay*[delta^3/3 delta^2/2 0 0 ; delta^2/2 delta 0 
0 ; 0 0 delta^3/3 delta^2/2 ; 0 0 delta^2/2 delta]; 
Re                = [sigmaHx.^2 0 0 ; 0 sigmaHy.^2 0 ; 0 0 
sigmatheta.^2]; 
Rk(1 : 4  , 1 : 4)= Ry; 
Rk(5 : d , 5 : d) = Re; 
Ck                = chol(Rk)'; 
pos_index         = [1 , 3]; 
ellipse_index     = [5 , 6 , 7]; 
H=[[1,0]',[0,0]',[0,1]',[0,0]',[0,0]',[0,0]',[0,0]'] 
Q=0.01*eye(7); 
P = 100*eye(7); 
dt=1; 
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A=[[1,0,0,0,0,0,0]',[dt,1,0,0,0,0,0]',[0,0,1,0,0,0,0]',[0,0,dt,1,0,0,0]
',[0,0,0,0,1,0,0]',[0,0,0,0,0,1,0]',[0,0,0,0,0,0,1]']; 
Bu = [0,0,0,6,0,0,0]'; 
kfinit=0; 
x=zeros(400,7); 
N = randn(400,7); 
Smean = zeros(1,7); 
S = zeros(100,7); 
yk = zeros(7,100); 
distance = zeros(2,1); 
error = zeros(1,100); 
% loop over all images 
aaa = 0; 
xp = [300,0,350,0,100,160,pi]' %300 ; 350 
for i = 340 : 400 
  % load image 
  mov              = aviread( , i); 
  Im              = double(mov.cdata); 
  title(sprintf('Frames = %d/%d' , i , 390 )); 
  image(mov.cdata); 
  Imwork = double(Im); 
%   sub = Imwork - Imback; 
%   imshow(sub) 
  %extract ball 
  [cc(i),cr(i),radius,flag] = extractball(Imwork,Imback,i); 
  if flag==0 
    continue 
  end  
  % Kalman update 
  if kfinit==0 
    xp = [300,0,350,0,100,160,pi]'; %480,640 
  else 
    xp=A*x(i-1,:)' + Ck*N(i-1,:)'; %Bu 
  end 
  kfinit=1; 
  PP = A*P*A' + Q; 
  K = PP*H'*inv(H*PP*H'+R); 
  yk(:,i) = K*([cc(i),cr(i)]' - H*xp); %measurement residual 
  x(i,:) = (xp + yk(:,i))';%[cc(i),0,cr(i),0,0,0,0]' 
  distance = H*x(i,:)' - [cc(i),cr(i)]'; 
  error(1,i) = sqrt(distance(1,1)^2 + distance(2,1)^2); 
  P = (eye(7)-K*H)*PP; 
  Smean = x(i,:); 
  S(i,:) = Smean; 
  hold on 
  ind_i             = (1 : i); 
    ykmean            = Smean(pos_index); 
    ekmean            = Smean(ellipse_index); 
    [xmean , ymean]   = ellipse(ykmean' , ekmean'); 
    plot(xmean , ymean , 'g' , 'linewidth' , 3)  
    plot(S(:,pos_index(1)) , S(:,pos_index(2)) , 'r' , 'linewidth' , 3)  
    plot(xp(pos_index(1) , :) , xp(pos_index(2) , :) , 'b+');     
    hold off 
    pause(0.3) 
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     aaa =  aaa + 1 
end 
 
 
Particle Filter Algorithm (Video 1) 

clear all 
close all 
Image = imread(['DATA/',int2str(17),'.jpg']); 
[MR,MC,Dim] = size(Image); 
nb_frame          = 120; 
dim_x             = MC; 
dim_y             = MR; 
N                 = 1000;        % Number of particules 
N_threshold       = 6.*N/10;    % Redistribution threshold 
delta             = 0.8; 
%%%%% Color Cue parameters %%%%%%%% 
Npdf              = 800;       % Number of samples to draw inside 
ellipse to evaluate color histogram 
Nx                = 6;         % Number of bins in first color 
dimension (R or H) 
Ny                = 6;         % Number of bins in second color 
dimension (G or S) 
Nz                = 6;         % Number of bins in third color 
dimension (B or V) 
sigma_color       = 0.20;      % Measurement Color noise 
nb_hist           = 256; 
range             = 1; 
pos_index         = [1 , 3]; 
ellipse_index     = [5 , 6 , 7]; 
d                 = 7; 
M                 = Nx*Ny*Nz; 
vect_col          = (0:range/(nb_hist - 1):range); 
%%%%%% Target Localization for computing the target distribution %%%% 
yq                = [133.87 ; 21.79]; 
eq                = [16 ; 16 ; pi]; 
%%%%%% Initialization distribution initialization %%%% 
Sk                = zeros(d , 1); 
Sk(pos_index)     = yq; 
Sk(ellipse_index) = eq; 
% Initial State covariance % 
sigmax1           = 60;      % pixel % 
sigmavx1          = 2;      % pixel / frame % 
sigmay1           = 60;      % pixel  % 
sigmavy1          = 2;      % pixel / frame % 
sigmaHx1          = 2;    % pixel % 
sigmaHy1          = 2;    % pixel % 
sigmatheta1       = 8*(pi/180); % rad/frame % 
% State Covariance % 
% a) Position covariance % 
sigmay            = 0.35; 
% b) ellipse covariance % 
sigmaHx           = 0.1;                % pixel % 
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sigmaHy           = 0.1;                % pixel % 
sigmatheta        = 3.0*(pi/180);       % rad/frame % 
%%%%%%%%%%%%%%%%%%%% State transition matrix %%%%%%%%%%%%%%%%%%%%%% 
A                 = [1 delta 0 0 0 0 0 ; 0 1 0 0 0 0 0 ; 0 0 1 delta 0 
0 0; 0 0 0 1 0 0 0 ; 0 0 0 0 1 0 0 ; 0 0 0 0 0 1 0 ; 0 0 0 0 0 0 1]; 
By                = [1 0 0 0 0 0 0 ; 0 0 1 0 0 0 0]; 
Be                = [0 0 0 0 1 0 0 ; 0 0 0 0 0 1 1 ; 0 0 0 0 0 0 1 ]; 
%%%%%% Initial State Covariance %%%%% 
R1                = diag([sigmax1 , sigmavx1 , sigmay1 , sigmavy1 , 
sigmaHx1 , sigmaHy1 , sigmatheta1].^2); 
%%%%%% State Covariance %%%%% 
Rk                = zeros(d , d); 
Ry                = sigmay*[delta^3/3 delta^2/2 0 0 ; delta^2/2 delta 0 
0 ; 0 0 delta^3/3 delta^2/2 ; 0 0 delta^2/2 delta]; 
Re                = [sigmaHx.^2 0 0 ; 0 sigmaHy.^2 0 ; 0 0 
sigmatheta.^2]; 
Rk(1 : 4  , 1 : 4)= Ry; 
Rk(5 : d , 5 : d) = Re; 
Ck                = chol(Rk)'; 
%%%%%%%% Memory Allocation %%%%%%% 
ON                = ones(1 , N); 
Od                = ones(d , 1); 
Smean             = zeros(d , nb_frame); 
Pcov              = zeros(d , d , nb_frame); 
N_eff             = zeros(1 , nb_frame); 
cte               = 1/N; 
cteN              = cte(1 , ON); 
w                 = cteN; 
compteur          = 0; 
cte1_color        = 1/(2*sigma_color*sigma_color); 
cte2_color        = (1/(sqrt(2*pi)*sigma_color)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Target Distribution %%%%%%%%%%%%%% 
Image = imread(['DATA/',int2str(17),'.jpg']); 
Z                 = double(Image); 
im                = rgb2hsv_mex(Z); 
C1                = cumsum(histc(reshape(im(: , : , 1) , dim_x*dim_y , 
1) , vect_col))/(dim_x*dim_y); 
C2                = cumsum(histc(reshape(im(: , : , 2) , dim_x*dim_y , 
1) , vect_col))/(dim_x*dim_y); 
C3                = cumsum(histc(reshape(im(: , : , 3) , dim_x*dim_y , 
1) , vect_col))/(dim_x*dim_y); 
i1                = sum(C1(: , ones(1 , Nx)) < repmat((0:1/(Nx - 1) : 
1) , nb_hist  , 1)); 
i2                = sum(C2(: , ones(1 , Ny)) < repmat((0:1/(Ny - 1) : 
1) , nb_hist  , 1)); 
i3                = sum(C3(: , ones(1 , Nz)) < repmat((0:1/(Nz - 1) : 
1) , nb_hist  , 1)); 
edge1             = [0 , vect_col(i1(2 : end)) , range]; 
edge2             = [0 , vect_col(i2(2 : end)) , range]; 
edge3             = [0 , vect_col(i3(2 : end)) , range]; 
q                 = pdfcolor_ellipserand(im , yq , eq , Npdf , edge1 , 
edge2 , edge3); 
Q                 = q(: , ON); 
fig1              = figure(1); 
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imshow (Image); 
aaa = 0; 
%%%%%%%%%%%% Particle initialisation %%%%%%%% 
Sk                = Sk(: , ON) + chol(R1)'*randn(d , N); 
%%%%%%%%%%%% Main Loop %%%%%%%%%%%%%%%%%%%%%%  
for k = 20: nb_frame ; 
    disp(sprintf('Frames = %d/%d' , k , nb_frame ));  
    Sk               = A*Sk + Ck*randn(d , N); 
    Image = imread(['DATA/',int2str(k),'.jpg']); 
    %imshow(Image) 
    Z                = double(Image);  
    im               = rgb2hsv_mex(Z); 
    yk               = Sk(pos_index , :);     %yk                = 
By*Sk;  
    ek               = Sk(ellipse_index , :); %ek                = 
Be*Sk; 
    %%%%%%%%%%  Color Likelihood %%%%%%%%% 
    [py , zi , yi]   = pdfcolor_ellipserand(im , yk , ek , Npdf , edge1 
, edge2 , edge3); 
    rho_py_q         = sum(sqrt(py.*Q)); 
    likelihood_color = cte2_color*exp((rho_py_q - 1)*cte1_color); 
    w                = w.*likelihood_color; 
    w                = w/sum(w); 
    %--------------------------- 6) MMSE estimate & covariance --------
----------------- 
    [Smean(: , k) , Pcov(: , : , k)] = part_moment(Sk , w); 
    %--------------------------- 7) Particles redistribution ? if N_eff 
< N_threshold ------------------------- 
    N_eff(k)                         = 1./sum(w.*w); 
    if (N_eff(k) < N_threshold) 
        compteur              = compteur + 1; 
        indice_resampling     = particle_resampling(w); 
        % Recopie des particules selon le tirage des indices précédents 
        Sk                    = Sk(: , indice_resampling); 
        w                     = cteN; 
    end 
    %%%%%%%%%%%%% Display %%%%%%%%%%%%%%% 
    fig1              = figure(1); 
    imshow(Image) 
    title(sprintf('N = %6.3f/%6.3f, Frame = %d, Redistribution =%d' ,         
N_eff(k) , N_threshold , k , compteur)) 
    ind_k             = (1 : k); 
    hold on 
    ykmean            = Smean(pos_index , k); 
    ekmean            = Smean(ellipse_index, k); 
    [xmean , ymean]   = ellipse(ykmean , ekmean); 
    plot(xmean , ymean , 'g' , 'linewidth' , 3) 
    plot(Smean(pos_index(1) , ind_k) , Smean(pos_index(2) , ind_k) , 
'r' , 'linewidth' , 2) 
    plot(Sk(pos_index(1) , :) , Sk(pos_index(2) , :) , 'b+'); 
    hold off 
    aaa =  aaa + 1 
end 
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Particle Filter Algorithm (Video 2) 

clear all 
close all 
Image = imread(['DATA2/',int2str(40),'.jpg']); 
[MR,MC,Dim] = size(Image); 
nb_frame          = 102; 
dim_x             = MC; 
dim_y             = MR; 
N                 = 1500;        % Number of particules 
N_threshold       = 6.*N/10;    % Redistribution threshold 
delta             = 0.8; 
%%%%% Color Cue parameters %%%%%%%% 
Npdf              = 1000;       % Number of samples to draw inside 
ellipse to evaluate color histogram 
Nx                = 6;         % Number of bins in first color 
dimension (R or H) 
Ny                = 6;         % Number of bins in second color 
dimension (G or S) 
Nz                = 6;         % Number of bins in third color 
dimension (B or V) 
sigma_color       = 0.20;      % Measurement Color noise 
nb_hist           = 256; 
range             = 1; 
pos_index         = [1 , 3]; 
ellipse_index     = [5 , 6 , 7]; 
d                 = 7; 
M                 = Nx*Ny*Nz; 
vect_col          = (0:range/(nb_hist - 1):range); 
%%%%%% Target Localization for computing the target distribution %%%% 
yq                = [520.1592 ; 357.4856]; 
eq                = [100 ; 50 ; -7*pi/8]; 
%%%%%% Initialization distribution initialization %%%% 
Sk                = zeros(d , 1); 
Sk(pos_index)     = yq; 
Sk(ellipse_index) = eq; 
% Initial State covariance % 
sigmax1           = 60;      % pixel % 
sigmavx1          = 4;      % pixel / frame % 
sigmay1           = 60;      % pixel  % 
sigmavy1          = 4;      % pixel / frame % 
sigmaHx1          = 7;    % pixel % 
sigmaHy1          = 7;    % pixel % 
sigmatheta1       = 8*(pi/180); % rad/frame % 
% State Covariance % 
% a) Position covariance % 
sigmay            = 0.35; 
% b) ellipse covariance % 
sigmaHx           = 2;                % pixel % 
sigmaHy           = 0.6;                % pixel % 
sigmatheta        = 3.0*(pi/180);       % rad/frame % 
%%%%%%%%%%%%%%%%%%%% State transition matrix %%%%%%%%%%%%%%%%%%%%%% 
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A                 = [1 delta 0 0 0 0 0 ; 0 1 0 0 0 0 0 ; 0 0 1 delta 0 
0 0; 0 0 0 1 0 0 0 ; 0 0 0 0 1 0 0 ; 0 0 0 0 0 1 0 ; 0 0 0 0 0 0 1]; 
By                = [1 0 0 0 0 0 0 ; 0 0 1 0 0 0 0]; 
Be                = [0 0 0 0 1 0 0 ; 0 0 0 0 0 1 1 ; 0 0 0 0 0 0 1 ]; 
%%%%%% Initial State Covariance %%%%% 
R1                = diag([sigmax1 , sigmavx1 , sigmay1 , sigmavy1 , 
sigmaHx1 , sigmaHy1 , sigmatheta1].^2); 
%%%%%% State Covariance %%%%% 
Rk                = zeros(d , d); 
Ry                = sigmay*[delta^3/3 delta^2/2 0 0 ; delta^2/2 delta 0 
0 ; 0 0 delta^3/3 delta^2/2 ; 0 0 delta^2/2 delta]; 
Re                = [sigmaHx.^2 0 0 ; 0 sigmaHy.^2 0 ; 0 0 
sigmatheta.^2]; 
Rk(1 : 4  , 1 : 4)= Ry; 
Rk(5 : d , 5 : d) = Re; 
Ck                = chol(Rk)'; 
%%%%%%%% Memory Allocation %%%%%%% 
ON                = ones(1 , N); 
Od                = ones(d , 1); 
Smean             = zeros(d , nb_frame); 
Pcov              = zeros(d , d , nb_frame); 
N_eff             = zeros(1 , nb_frame); 
cte               = 1/N; 
cteN              = cte(1 , ON); 
w                 = cteN; 
compteur          = 0; 
cte1_color        = 1/(2*sigma_color*sigma_color); 
cte2_color        = (1/(sqrt(2*pi)*sigma_color)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Target Distribution %%%%%%%%%%%%%% 
Image = imread(['DATA2/',int2str(40),'.jpg']); 
Z                 = double(Image); 
im                = rgb2hsv_mex(Z); 
C1                = cumsum(histc(reshape(im(: , : , 1) , dim_x*dim_y , 
1) , vect_col))/(dim_x*dim_y); 
C2                = cumsum(histc(reshape(im(: , : , 2) , dim_x*dim_y , 
1) , vect_col))/(dim_x*dim_y); 
C3                = cumsum(histc(reshape(im(: , : , 3) , dim_x*dim_y , 
1) , vect_col))/(dim_x*dim_y); 
i1                = sum(C1(: , ones(1 , Nx)) < repmat((0:1/(Nx - 1) : 
1) , nb_hist  , 1)); 
i2                = sum(C2(: , ones(1 , Ny)) < repmat((0:1/(Ny - 1) : 
1) , nb_hist  , 1)); 
i3                = sum(C3(: , ones(1 , Nz)) < repmat((0:1/(Nz - 1) : 
1) , nb_hist  , 1)); 
edge1             = [0 , vect_col(i1(2 : end)) , range]; 
edge2             = [0 , vect_col(i2(2 : end)) , range]; 
edge3             = [0 , vect_col(i3(2 : end)) , range]; 
q                 = pdfcolor_ellipserand(im , yq , eq , Npdf , edge1 , 
edge2 , edge3); 
Q                 = q(: , ON); 
fig1              = figure(1); 
imshow (Image); 
% image(mov.cdata); 
%  
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% set(gca , 'drawmode' , 'fast'); 
% set(gcf , 'doublebuffer','on'); 
%  
% set(gcf , 'renderer' , 'zbuffer'); 
aaa = 0; 
%%%%%%%%%%%% Particle initialisation %%%%%%%% 
Sk                = Sk(: , ON) + chol(R1)'*randn(d , N); 
%%%%%%%%%%%% Main Loop %%%%%%%%%%%%%%%%%%%%%% 
for k = 40: nb_frame ; 
    disp(sprintf('Frames = %d/%d' , k , nb_frame )); 
    Sk               = A*Sk + Ck*randn(d , N); 
    Image = imread(['DATA2/',int2str(k),'.jpg']); 
    %imshow(Image) 
    Z                = double(Image); 
    im               = rgb2hsv_mex(Z); 
    yk               = Sk(pos_index , :);     %yk                = 
By*Sk; 
    ek               = Sk(ellipse_index , :); %ek                = 
Be*Sk; 
    %%%%%%%%%%  Color Likelihood %%%%%%%%% 
    [py , zi , yi]   = pdfcolor_ellipserand(im , yk , ek , Npdf , edge1 
, edge2 , edge3); 
    rho_py_q         = sum(sqrt(py.*Q)); 
    likelihood_color = cte2_color*exp((rho_py_q - 1)*cte1_color); 
    w                = w.*likelihood_color; 
    w                = w/sum(w); 
    %--------------------------- 6) MMSE estimate & covariance --------
----------------- 
    [Smean(: , k) , Pcov(: , : , k)] = part_moment(Sk , w); 
    %--------------------------- 7) Particles redistribution ? if N_eff 
< N_threshold ------------------------- 
    N_eff(k)                         = 1./sum(w.*w); 
    if (N_eff(k) < N_threshold) 
        compteur              = compteur + 1; 
        indice_resampling     = particle_resampling(w); 
        % Recopie des particules selon le tirage des indices précédents 
        Sk                    = Sk(: , indice_resampling); 
        w                     = cteN; 
    end 
    %%%%%%%%%%%%% Display %%%%%%%%%%%%%%% 
    fig1              = figure(1); 
    imshow(Image)    
    title(sprintf('N = %6.3f/%6.3f, Frame = %d, Redistribution =%d' , 
N_eff(k) , N_threshold , k , compteur)) 
    ind_k             = (1 : k); 
    hold on 
    ykmean            = Smean(pos_index , k); 
    ekmean            = Smean(ellipse_index, k); 
    [xmean , ymean]   = ellipse(ykmean , ekmean); 
    plot(xmean , ymean , 'g' , 'linewidth' , 3) 
    plot(Smean(pos_index(1) , ind_k) , Smean(pos_index(2) , ind_k) , 
'r' , 'linewidth' , 2) 
    plot(Sk(pos_index(1) , :) , Sk(pos_index(2) , :) , 'b+'); 
    hold off 
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    aaa =  aaa + 1 
end 
Particle Filter Algorithm (Video 3) 

clear all 
close all 
             = 'camera2.avi'; 
info              = aviinfo() 
offset_frame      = 339;%80 
%nb_frame          = info.NumFrames 
%nb_frame          = info.NumFrames - offset_frame -10; 
nb_frame          = 500; 
dim_x             = info.Width; 
dim_y             = info.Height; 
N                 = 2000;        % Number of particules 
N_threshold       = 6.*N/10;    % Redistribution threshold 
delta             = 0.7; 
%%%%% Color Cue parameters %%%%%%%% 
Npdf              = 800;       % Number of samples to draw inside 
ellipse to evaluate color histogram 
Nx                = 6;         % Number of bins in first color 
dimension (R or H) 
Ny                = 6;         % Number of bins in second color 
dimension (G or S) 
Nz                = 6;         % Number of bins in third color 
dimension (B or V) 
sigma_color       = 0.20;      % Measurement Color noise 
nb_hist           = 256; 
range             = 1; 
pos_index         = [1 , 3]; 
ellipse_index     = [5 , 6 , 7]; 
d                 = 7; 
M                 = Nx*Ny*Nz; 
vect_col          = (0:range/(nb_hist - 1):range); 
%%%%%% Target Localization for computing the target distribution %%%% 
% yq                = [dim_x ; dim_y/2]; 
yq                = [300 ; 350]; 
% eq                = [100 ; 160 ; pi/3]; 
eq                = [30 ; 30 ; pi/3]; 
%%%%%% Initialization distribution initialization %%%% 
Sk                = zeros(d , 1); 
Sk(pos_index)     = yq; 
Sk(ellipse_index) = eq; 
% Initial State covariance % 
sigmax1           = 60;      % pixel % 
sigmavx1          = 1;      % pixel / frame % 
sigmay1           = 60;      % pixel  % 
sigmavy1          = 1;      % pixel / frame % 
sigmaHx1          = 40;    % pixel % 
sigmaHy1          = 40;    % pixel % 
sigmatheta1       = 30*(pi/180); % rad/frame % 
% State Covariance % 
% a) Position covariance % 
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sigmay            = 0.35; 
% b) ellipse covariance % 
sigmaHx           = 0.1;                % pixel % 
sigmaHy           = 0.1;                % pixel % 
sigmatheta        = 3.0*(pi/180);       % rad/frame % 
%%%%%%%%%%%%%%%%%%%% State transition matrix %%%%%%%%%%%%%%%%%%%%%% 
A                 = [1 delta 0 0 0 0 0 ; 0 1 0 0 0 0 0 ; 0 0 1 delta 0 
0 0; 0 0 0 1 0 0 0 ; 0 0 0 0 1 0 0 ; 0 0 0 0 0 1 0 ; 0 0 0 0 0 0 1]; 
By                = [1 0 0 0 0 0 0 ; 0 0 1 0 0 0 0]; 
Be                = [0 0 0 0 1 0 0 ; 0 0 0 0 0 1 1 ; 0 0 0 0 0 0 1 ]; 
%%%%%% Initial State Covariance %%%%% 
R1                = diag([sigmax1 , sigmavx1 , sigmay1 , sigmavy1 , 
sigmaHx1 , sigmaHy1 , sigmatheta1].^2); 
%%%%%% State Covariance %%%%% 
Rk                = zeros(d , d); 
Ry                = sigmay*[delta^3/3 delta^2/2 0 0 ; delta^2/2 delta 0 
0 ; 0 0 delta^3/3 delta^2/2 ; 0 0 delta^2/2 delta]; 
Re                = [sigmaHx.^2 0 0 ; 0 sigmaHy.^2 0 ; 0 0 
sigmatheta.^2]; 
Rk(1 : 4  , 1 : 4)= Ry; 
Rk(5 : d , 5 : d) = Re; 
Ck                = chol(Rk)'; 
%%%%%%%% Memory Allocation %%%%%%% 
ON                = ones(1 , N); 
Od                = ones(d , 1); 
Smean             = zeros(d , nb_frame); 
Pcov              = zeros(d , d , nb_frame); 
N_eff             = zeros(1 , nb_frame); 
cte               = 1/N; 
cteN              = cte(1 , ON); 
w                 = cteN; 
compteur          = 0; 
cte1_color        = 1/(2*sigma_color*sigma_color); 
cte2_color        = (1/(sqrt(2*pi)*sigma_color)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Target Distribution %%%%%%%%%%%%%% 
mov               = aviread( , offset_frame ); 
im                = mov.cdata; 
Z                 = double(im); 
im                = rgb2hsv_mex(Z); 
C1                = cumsum(histc(reshape(im(: , : , 1) , dim_x*dim_y , 
1) , vect_col))/(dim_x*dim_y); 
C2                = cumsum(histc(reshape(im(: , : , 2) , dim_x*dim_y , 
1) , vect_col))/(dim_x*dim_y); 
C3                = cumsum(histc(reshape(im(: , : , 3) , dim_x*dim_y , 
1) , vect_col))/(dim_x*dim_y); 
i1                = sum(C1(: , ones(1 , Nx)) < repmat((0:1/(Nx - 1) : 
1) , nb_hist  , 1)); 
i2                = sum(C2(: , ones(1 , Ny)) < repmat((0:1/(Ny - 1) : 
1) , nb_hist  , 1)); 
i3                = sum(C3(: , ones(1 , Nz)) < repmat((0:1/(Nz - 1) : 
1) , nb_hist  , 1)); 
edge1             = [0 , vect_col(i1(3 : end)) , range]; 
edge2             = [0 , vect_col(i2(3 : end)) , range]; 
edge3             = [0 , vect_col(i3(2 : end)) , range]; 
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q                 = pdfcolor_ellipserand(im , yq , eq , Npdf , edge1 , 
edge2 , edge3); 
Q                 = q(: , ON); 
fig1              = figure(1); 
image(mov.cdata); 
set(gca , 'drawmode' , 'fast'); 
set(gcf , 'doublebuffer','on'); 
set(gcf , 'renderer' , 'zbuffer'); 
aaa = 0; 
%%%%%%%%%%%% Particle initialisation %%%%%%%% 
Sk                = Sk(: , ON) + chol(R1)'*randn(d , N); 
%%%%%%%%%%%% Main Loop %%%%%%%%%%%%%%%%%%%%%%  
for k = 340 : nb_frame ;  
    disp(sprintf('Frames = %d/%d' , k , nb_frame ));  
    Sk               = A*Sk + Ck*randn(d , N); 
    mov              = aviread( , k); 
    im               = (mov.cdata);  
    Z                = double(im); 
    im               = rgb2hsv_mex(Z); 
    yk               = Sk(pos_index , :);     %yk                = 
By*Sk; 
    ek               = Sk(ellipse_index , :); %ek                = 
Be*Sk; 
    %%%%%%%%%%  Color Likelihood %%%%%%%%% 
    [py , zi , yi]   = pdfcolor_ellipserand(im , yk , ek , Npdf , edge1 
, edge2 , edge3); 
    rho_py_q         = sum(sqrt(py.*Q));  
    likelihood_color = cte2_color*exp((rho_py_q - 1)*cte1_color); 
    w                = w.*likelihood_color; 
    w                = w/sum(w); 
    %--------------------------- 6) MMSE estimate & covariance --------
----------------- 
    [Smean(: , k) , Pcov(: , : , k)] = part_moment(Sk , w); 
    %--------------------------- 7) Particles redistribution ? if N_eff 
< N_threshold ------------------------- 
    N_eff(k)                         = 1./sum(w.*w); 
    if (N_eff(k) < N_threshold) 
        compteur              = compteur + 1; 
        indice_resampling     = particle_resampling(w);  
        % Recopie des particules selon le tirage des indices précédents 
        Sk                    = Sk(: , indice_resampling); 
        w                     = cteN; 
    end 
    %%%%%%%%%%%%% Display %%%%%%%%%%%%%%% 
    fig1              = figure(1);  
    image(mov.cdata);  
    title(sprintf('N = %6.3f/%6.3f, Frame = %d, Redistribution =%d' , 
N_eff(k) , N_threshold , k , compteur)) 
    ind_k             = (1 : k);  
    hold on 
    ykmean            = Smean(pos_index , k);  
    ekmean            = Smean(ellipse_index, k); 
    [xmean , ymean]   = ellipse(ykmean , ekmean); 
    plot(xmean , ymean , 'g' , 'linewidth' , 3)  
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    plot(Smean(pos_index(1) , ind_k) , Smean(pos_index(2) , ind_k) , 
'r' , 'linewidth' , 2) 
    plot(Sk(pos_index(1) , :) , Sk(pos_index(2) , :) , 'b+'); 
    hold off 
     aaa =  aaa + 1 
end 
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