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suggest that graph isomorphism can easily be solved for many types of graphs and hence 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Motivation 

With the exponential increase in technologies, our world is characterized by 

continuous exchange of data. These data are exchanged through different mediums and 

carry in some cases very sensitive information, which in the hands of malicious persons 

can have a considerable impact in our society. Imagine for instance, the impact it will 

have on your life if a person with bad intentions knows your social security number, the 

password to your bank account, the password to your house alarm system, or more 

importantly, if a terrorist can access some critical security information.  

In fact, a common problem faced by traditional communication systems is 

impersonation. Defined as the act of imitating or copying someone’s behavior, 

impersonation occurs when an eavesdropper or an intruder, by listening to a 

communication, gains enough information allowing him to act as either one of the two 

parties involved in the exchange of information.  

The main question that arises from these situations is whether one could protect 

his/her (sensitive) information in a world where we are constantly using a password 

either to check an email, a bank account, or to log into a computer. In other words, how 

could one protect the secret key allowing access into a network?  
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There are several solutions available in the literature to serve this purpose. For 

example secret-key cryptosystems where two parties involved in an exchange of 

information have to agree on one or several secret keys prior to the actual exchange of 

data. Another approach is public-key cryptosystems where the sender and the receiver 

have a pair of cryptographic keys, one that is public and is available to everybody, while 

the other is private and kept secret.  

Despite the fact that these systems help in protecting communications, they both 

require the communicating parties to have a certain knowledge of the secret key and are 

susceptible to problems such as the man-in-the middle-attack (MITM).   

An alternative to the MITM attack and authentication problems in general is the 

use of zero-knowledge proof (ZKP) protocols. Introduced by Goldwasser, Micali and 

Rackoff, ZKP is a smart way to prove a node’s identity without disclosing any 

information about the secret of that identity [1], [2]. In fact, ZKP is an interactive 

protocol where a prover can prove the veracity of a statement to a verifier without 

disclosing any other information, which could allow an eavesdropper or the verifier to 

impersonate him. Such a statement is usually a mathematical problem with complexity in 

the order of nondeterministic polynomial (NP) or NP-complete. During a ZKP 

interaction, the prover will try for example to convince the verifier that he/she knows the 

secret password to open a door without actually giving the password to the verifier. The 

verifier throughout the interactions will ask questions in the aim of verifying that the 

prover really knows the secret password. If the answer to a question is wrong, the 

communication is immediately terminated, or the access to the network is denied. On the 



3 

other hand, because the prover could be a malicious party trying to cheat, the verifier will 

continue the interaction until he/she is convinced of the identity of the prover even if the 

answer to a question is right. As shown in Figure 1.1 below and obtained from [20], is an 

example of the ZKP protocol which is based on the description in [18].  

Here, Victor is the verifier and Peggy is the prover, who wants to prove Victor 

that she knows the secret password to open a door without disclosing any information 

about the password to Victor. A round of this interaction is summarized in the following 

three steps.  

Step 1: Victor waits outside the entrance of the cave, while Peggy goes in and randomly 

enters through path A or B.  

Step 2: Victor enters the cave and asks Peggy to come out through a path that he chooses 

randomly.  

Step 3: If Peggy really knows the secret password, she opens the door if necessary and 

returns along the path requested by Victor.  

Note that it is not necessary for Peggy to use the secret password if she enters in 

A and Victor asks her to come out through path A. Therefore, these three steps are 

repeated until Victor is completely convinced of the fact that Peggy really knows the 

secret password to open the door.  
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              (a) Step 1                                    (b) Step 2                                   (c) Step 3      

 

Figure 1.1: Example of zero-knowledge proof protocol. 

 

 

In this thesis, I am assessing the graph isomorphism based zero-knowledge proofs 

(GIZKP). The graph isomorphism problem has long been considered suitable for the 

zero-knowledge protocol [4], [5]; however, no work has been done toward the actual 

implementation of the GIZKP. Therefore, the question that I am trying to answer through 

this work is whether the graph isomorphism problem is a good choice for ZKP.  

A zero-knowledge proof is said to be perfect, when regardless of the fact that a 

verifier has access to powerful computational resources, he/she will not gain any 

knowledge other than the veracity of the proof by participating in a round of the protocol.  

Due to the fact that several practical algorithms for solving the graph 

isomorphism problem are available in the literature, I conjecture that in most cases, the 

graph isomorphism problem might not be suitable for the implementation of ZKP 

systems. 
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1.2 Organization of the Thesis 

 

The rest of this thesis is organized as follows. Chapter 2 discusses existing 

literature. In Chapter 3, I first introduce the graph isomorphism problem, then provide the 

characteristics of the graph isomorphism based zero-knowledge proofs. Subsequently, I 

discuss available approaches in the literature to solve the graph isomorphism problem. 

Finally, I describe a program called nauty. Next, Chapter 4 discusses the potential 

problems faced during the implementation of the graph isomorphism based ZKP protocol 

and introduces the notion of hard graphs. Using some of these hard graphs I present in 

Chapter 5 the results of experiments done using the nauty program. Based on these 

results, I finally summarize the work done in this thesis in Chapter 6, and discuss possible 

future work. 
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CHAPTER 2 

LITERATURE SURVEY 

Since its introduction in 1985 by Goldwasser, Micali, and Rackoff [1], zero-

knowledge proofs (ZKP) have evolved and attracted researchers. Used to convey solely 

the fact that an assertion is true, a zero-knowledge proof system has applications in 

cryptography and security protocols requiring authentication. Goldreich, Micali and 

Wigderson showed in [2] that for the implementation of interactive zero-knowledge 

proofs, the choice of the language is very important in order to avoid conveying 

additional knowledge other than the veracity of the proof. They showed also that all 

languages in NP have a zero-knowledge proof system [2].  In fact, quadratic residue, 

graph 3-colorability, prime factoring, Hamiltonian cycle for large graphs, and graph 

isomorphism are examples of problems that are considered to have a perfect zero-

knowledge proof system [1], [2], [20]. As aforementioned, my focus in this thesis is on 

the graph isomorphism based ZKP. 

The graph isomorphism problem which has been studied for several years by 

researchers in mathematics and computer science is the problem of determining if two 

dissimilar graphs are isomorphic or not.  

Due to its various applications in fields such as image processing, pattern 

recognition, DNA matching, computer graphics, and organic chemistry [10], [11], [12], 

the graph isomorphism problem has drawn so much attention that in 1977 Read and 
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Corneil published a journal article that they named “The Graph Isomorphism 

Disease” [21].  

Another factor that has drawn researchers’ attention is the computational 

complexity of the problem. In fact, the graph isomorphism problem is known to belong to 

the complexity class nondeterministic polynomial (NP) time but not known to be solvable 

in polynomial time nor NP-complete for the general case (i.e. for any pair of graphs). 

This is proved in [22], where it is shown that the graph isomorphism problem is not NP-

complete otherwise the hierarchy of the complexity classes collapses to its second level. 

Certain classes of graphs do exist that are solvable by most practical isomorphism testing 

algorithms in polynomial time [6], [7], [8], [9], [16], [19].  

Most of the works available in the literature have been focused on finding 

practical isomorphism testing algorithms that solve the general problem in polynomial 

time. As a result, algorithms such as the nauty package of Brendan McKay have been 

developed [8], [9].  It has been regarded as the fastest isomorphism testing program until 

recently, when algorithms offering a better performance such as bliss of Tommi Juntilla 

and Petteri Kashi, saucy of Martin Kutz and Pascal Schweitzer, sinauto and conauto of 

José Luis López Presa, Traces of Aldofo Piperno, have been developed [6], [16], [19], 

and [24]. Nevertheless, few of the main reasons behind the impressive performance that 

nauty has been offering are: 1) the reduction of the graph isomorphism problem to the 

problem of finding a canonical label for each of the graph being compared, 2) the use of 

automorphisms found while searching for a certificate to prune the search tree, and 3) the 

use of invariants. In fact, algorithms such as Ullman, SD, VF and VF2, which are based 
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on a depth first backtrack strategy, are not comparable to nauty for the general case of the 

problem.  

On the other hand, some researchers, including Fortin and Miyazaki, tried to find 

hard graphs for the isomorphism problem [7], [15]. Depending on the application of the 

graph isomorphism problem, one would like to find classes of graphs that make 

isomorphism testing more complex for most practical algorithms. These hard graphs 

range from the Miyazaki’s constructions to projective planes [15], [19], [24]. 
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CHAPTER 3 

GRAPH ISOMORPHISM BASED ZERO-KNOWLEDGE PROOFS  

3.1 Graph 

 

In this thesis, a graph is a set of nodes or vertices V, connected by a set of edges 

E. The sets of vertices and edges are finites. A graph with n vertices will have: V = {1, 2, 

3,..., n} and E a 2-element subsets of V. Let and  be two vertices of a graph. If 

 E, then and  are said to be adjacent or neighbors.  

A graph is represented by its adjacency matrix. For instance, a graph with n 

vertices, is represented by a  matrix , where the entry  is “1” if there 

is an edge linking the vertex i to the vertex j, and is “0” otherwise. For undirected graphs, 

the adjacency matrix is symmetric around the diagonal.  

 

3.2 Graph Isomorphism 

Two graphs G1 and G2 are said to be isomorphic, if a one-to-one permutation or 

mapping exists between the set of vertices of G1 and the set of vertices of G2, with the 

property that if two nodes of G1 are adjacent, so are their images in G2. The graph 

isomorphism problem is therefore the problem of determining whether two given graphs 

are isomorphic. In other words, it is the problem of determining if two graphs with 

different structures are the same. Figure 3.1 gives an example of isomorphic graphs, with 

their corresponding adjacency matrices. Notice that the entries of the matrices, where 

 are left blank.  
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   (a)                                                (b)                                              (c)        

 

Figure 3.1: Example of isomorphic graphs with their corresponding adjacency matrices. 

 

For instance, Graph (b) is obtained, by relabeling the vertices of Graph (a) 

according to the following permutation: (3, 5, 2, 4, 1). This means that Node 1 in Graph 

(a) becomes Node 3 in Graph (b), Node 5 becomes Node 1 and so on. Following in 

Figure 3.2 is an illustration of how the permutation is applied to Graph (a).  

 

 1 2 3 4 5 

1   1 1  

2    1 1 

3 1    1 

4 1 1    

5  1 1   

 1 2 3 4 5 

1  1   1 

2 1  1   

3  1  1  

4   1  1 

5 1   1  

 1 2 3 4 5 

1  1  1  

2 1    1 

3    1 1 

4 1  1   

5  1 1   
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Figure 3.2: Relabeling the vertices of graph (a) using the permutation (3, 5, 2, 4, 1). 

 

 

Even though it is not an easy task to devise a practical algorithm for the general 

case of isomorphism testing, there are some classes of graphs such as planar graphs and 

graphs with bounded genus for which efficient algorithms are known [13], [14]. On the 

other hand, for classes of graphs that are considered hard for the isomorphism problem, 

several practical graph isomorphism algorithms with exponential upper bound time 

complexity exist. However, the nauty package is known to be one of the most powerful 

algorithms currently available [6], [7], [8], [19]. Other algorithms, such as the ones 

presented in [6], [19], [24] that perform better than nauty for certain classes of graphs, are 

also being developed. 

 

3.3 Graph Automorphism 

 

An automorphism is an isomorphism of a graph into itself. For example nauty 

detects an automorphism, when after relabeling the vertices of a graph; two different leaf 

partitions (see definition in 3.6.2) provide the same adjacency matrix. The smallest of the 
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automorphs is used by nauty to compute the canonical label. Additionally, detecting the 

automorphs of a graph helps nauty in pruning the search tree.  

As shown in Figure 3.3, the permutation (3, 2, 1, 5, 4) on Graph (a) induces an 

automorphism.  

 

 

 

 
 

 

 

 

 

Figure 3.3: Example of automorphic graphs with their corresponding adjacency matrices. 

 

3.4 Graph Isomorphism based Zero-Knowledge Proofs 

Zero-knowledge proofs (ZKP) systems can be implemented in several ways. Yet, 

in this thesis, I am focusing on zero-knowledge proofs based on graph isomorphism, 

where the verifier is bounded to a certain number of interactions, after which he/she will 

grant or deny access to the prover.  

 1 2 3 4 5 

1   1 1  

2    1 1 

3 1    1 

4 1 1    

5  1 1   

 3 2 1 5 4 

3   1 1  

2    1 1 

1 1    1 

5 1 1    

4  1 1   
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Suppose there are two graphs G1 and G2, such that the graph G2 is generated by 

relabeling the vertices of G1 according to a secret permutation π while preserving the 

edges. The pair of graphs G1 and G2 forms the public key pair, and the permutation π 

serves as the private key. A third graph H, which is either obtained from G1 or G2 using 

another random permutation, say ρ is sent to the verifier who will in return challenge the 

prover to provide the permutation σ which can map H back to either G1 or G2.  

For instance, if H is obtained from G1 and the verifier challenges the prover to 

map H to G1, then σ = ρ
-1

. Similarly, if H is obtained from G2 and the verifier challenges 

the prover to map H to G2, then σ = ρ
-1

.  On the other hand, if H is obtained from G1 and 

the verifier challenges the prover to provide the permutation that maps H to G2, then σ = 

ρ
-1

○ π, which is a combination of ρ
-1 

and π. In fact, ρ
-1 

will be applied to H to obtain G1 

then the vertices of G1 will be modified according to the secret permutation π to get G2. 

Finally, if H is obtained from G2 and the verifier challenges the prover to map H to G1, 

then σ = ρ
-1

○ π
-1

. 

One can notice that in the first two cases, the secret permutation π is not even 

used. Therefore, a verifier could only be certain of a node’s identity after many 

interactions. Moreover, we can also observe that during the whole interaction process, no 

clue was given about the secret itself, hence the name zero-knowledge proof.  

Given G1 and G2 such that G2 = π (G1), the interactions constituting a round of the 

graph isomorphism based ZKP protocol are illustrated as follows: 

1. Prover chooses randomly   

2. Prover chooses a random permutation ρ, and generates . 
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3. Prover sends the adjacency matrix of H to the verifier. 

4. Verifier sends  to the prover and challenges for σ which maps H to Gb. 

5. If  the prover sends  to the verifier.   

6. If  and  the prover sends to the verifier. 

7. If  and  the prover sends to the verifier. 

8. Verifier checks if  and grants access to the prover accordingly. 

 

Several rounds of these interactions are needed for the verifier to be completely 

convinced of the prover’s identity, since the prover can be lucky and guess the value of b 

before sending H. However, the probability that this happens is , with n being the 

number of rounds. Therefore, with several rounds, this probability is considerably low, 

and the level of confidence that the verifier will gain about the identity of the prover 

is . For example after 10 rounds, the confidence level of the verifier is 

approximately 99.9 %. 

Additionally, as a zero-knowledge protocol, the graph isomorphism based ZKP 

protocol must present the following properties: soundness, completeness and zero-

knowledge. According to [4], a protocol is sound when the verifier follows the protocol 

and is always able to reject a proof if it is erroneous. On the other hand, a protocol is 

complete when both parties follow the protocol, and the prover is able to convince the 

verifier every time a proof is true. Finally, a protocol is zero-knowledge when the verifier 

does not learn anything but the validity of the proof provided by the prover.  
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3.5 Approaches to the Graph Isomorphism Problem 

There are different approaches to the problem of finding isomorphisms of a graph, 

however most practical algorithms available in the literature are sub-divisible into two 

different categories. In fact, according to the author in [6], the algorithms in the first 

category proceed directly by taking the two graphs to be compared for isomorphism, and 

try to find a match between them. They proceed by using a depth-first backtrack 

algorithm and by using heuristics to reduce the size of the search tree.    

On the other hand, the algorithms in the second category proceed by considering 

one graph at the time.  They take a single graph, say  G1 and compute a function C(G1) 

which returns a certificate or a canonical label of the graph, such that for two graphs that 

are being compared (G1 and G2), C(G1) = C(G2) if and only if G1 and G2 are isomorphic. 

After obtaining the canonical label for each graph the task of the algorithms is just to 

compare them. 

These two classes of algorithms, even though they differ in the way they solve the 

isomorphism problem, make use of invariants. 

 

3.5.1 Invariants 

A graph in general has two types of invariant, which are: graph invariant and 

vertex invariant. A graph invariant is a function f such that, if applied to two graphs G1 

and G2, that are isomorphic, . However,  does not 

necessarily mean that the graphs G1 and G2 are isomorphic. A graph invariant is therefore 

a necessary condition for isomorphism. Moreover, if an invariant is both necessary and 

sufficient for isomorphism, it is said to be complete [6]. Such a complete graph invariant 
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is called a certificate. Examples of graph invariants are the canonical label, the number of 

vertices, and the number of edges in a graph.  

A vertex invariant on the other hand, is a function f on a vertex , such that if 

there is an isomorphism between the vertices , and , then . A 

typical example of vertex invariant is the degree of a vertex (i.e. the number of adjacent 

vertices to that vertex). In fact, if a vertex   is isomorphic to a vertex , they must have 

the same degree. However, if two vertices have the same degree, it is not necessarily true 

that they are isomorphic.  

Furthermore, classifying the vertices of a graph is a method used by almost all 

graph isomorphism algorithms to prune the search space [8]. There are many more vertex 

invariants that have been proposed in the literature [6]. They are used either directly by 

the algorithm or in some cases, only at the request of the user. This is because some of 

the invariants require a longer computational time and using them might either increase 

or decrease the performance of the algorithm. As a matter of fact, nauty offers a number 

of invariants that can be applied, when requested by the user [9].  

 

3.5.2 Canonical Label 

 

Another way of defining a certificate for a graph is to consider its entire adjacency 

matrices, since each permutation of the n vertices of a graph defines a different adjacency 

matrix. The smallest n x n-bit number, obtained by concatenating the rows or columns of 

each possible adjacency matrix, is defined as the canonical label of the graph. However, 

computing such a certificate is known to be a NP-complete problem [6]. Therefore, in 

some cases, computing this certificate may even be harder than solving the isomorphism 
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problem. To avoid this problem, most isomorphism algorithms that use canonical 

labeling, try to generate only certain permutations, based on the structure of the graph.  

 

3.5.3 Direct Backtracking Algorithms 

 

Direct backtracking algorithms classify the nodes of the graphs according to some 

invariants, and use heuristic in order to prune the search tree. They mainly proceed, by 

exploring all the possible matching of the vertices of one graph against the vertices of the 

other graph and backtrack if a branch of the search tree does not provide a valid solution 

[6]. 

These algorithms are effective for some type of graphs but are more likely to have 

a high time complexity when the graphs being tested are highly symmetric. In fact these 

algorithms do not detect automorphisms (symmetries). Therefore, when the graphs are 

highly symmetric, they have to go around the whole search tree, exploring branches that 

are symmetrical to other branches that have already been explored, thus, increasing the 

time it takes to solve the isomorphism problem [6]. However, the advantage that they 

have is that once an isomorphism is found, they stop exploring the search tree. 

 

3.5.4 Canonical Labeling Algorithms 

 

Canonical labeling algorithms do not compare both graphs directly. Instead, they 

work independently on each graph. They generate the canonical labels of both graphs one 

at the time and then compare them directly. The most widely used of canonical labeling 

programs is nauty by Brendan McKay.  
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3.6 The nauty Program 

 

Most canonical labeling programs such as nauty (no automorphisms yes), use a 

backtracking algorithm that goes through the search tree in the aim of finding a canonical 

label, while building the automorphism group of the graph [6]. The nauty program for 

instance, starts with an initial partition, which is a classification of the vertices of the 

graph being tested based on their degree, or color for colored graphs. The initial partition, 

which is the root of the search tree, is then refined until a stable partition is reached. From 

the stable partition, which is a partition that cannot be refined further, a vertex 

individualization is done in order to generate a child partition and the refinement process 

restart. Once a discrete partition, where all the cells have size one is reached, a leaf or 

terminal coloring in the search tree is obtained. The leaf partitions induce different 

labeling of the graph, which in turn induce different candidate certificates. The smallest 

of such certificates, is the canonical label of the graph. 

The nodes of the search tree, where a vertex has been individualized, are the 

backtracking points that will be used to find paths to other leaf partitions and therefore 

obtaining other canonical labels [6]. The first leaf partition is considered as inducing the 

best candidate for canonical labeling. From this leaf partition, nauty backtracks in order 

to find other terminal nodes, which will induce new labeling of the graph.  If the new 

labeling leads to the same canonical label or the same adjacency matrix, an 

automorphism is detected and saved. This automorphism will be used later to eliminate 

part of the search tree from consideration. If the new labeling induces a smaller canonical 

label, it is chosen as the new candidate certificate. On the other hand, if a new branch is 
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known to induce a bigger certificate, it is discarded [6]. Finally, when all possible 

branches of the search tree have been fully examined or eliminated, the canonical label 

and the automorphism group are obtained. 

The main advantage of this approach is the use of discovered automorphisms to 

prune the search tree. Therefore, for graphs having a large automorphism group, these 

classes of algorithms are very fast. However, computing the whole automorphism group 

might in some cases decrease their performance.  

Several algorithms that have a better performance than nauty for certain classes of 

graphs are meanwhile being devised [6], [16], [19]. For example, the author in [6] 

devised an algorithm which is comparable to nauty in most cases and in some cases 

performs better. His algorithm uses the characteristics presented by the two classes of 

algorithms above described. 

The next section discusses some of the characteristics that make this class of 

algorithms, especially the nauty program efficient for isomorphism testing. 

Understanding how nauty proceeds to solve the problem helps in the task of determining 

which graphs are hard for isomorphism testing. 

 

3.6.1 nauty’s Invariants 

 

The nauty program, in addition to using the degree of a vertex as an invariant, 

offers different type of vertex invariants such as two-paths, distances, and adjacencies, 

which can be applied at the user’s request [8]. Two-paths are the number of vertices 

reachable along a path of length two, distances are the number of vertices reachable at 
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each distance, and adjacencies are to diminish the poor performance of nauty with 

digraphs [7], [8].  

Depending on the types of graphs being tested, these invariants are used to prune 

the search tree. However, their usage, which is left to nauty’s users, requires a thorough 

understanding of how they are applied, the types of graphs that they are used for, and the 

levels of the search tree at which they can be used, without actually decreasing the 

performance of the program [19]. 

 

3.6.2 Partitions 

 

A partition divides the vertices of a graph into non-empty 

subsets of  which are called cells. A discrete partition or leaf partition is one that has 

cells with only one vertice, namely trivial cells. 

 

3.6.3 Operations on Partitions 

 

In order to process to the refinement, nauty starts with an initial partition, where 

the vertices in each cell have the same degree. It then selects the first cell with more than 

one element namely the target cell, and computes a sequence  based on the adjacencies 

of the vertices in the target cell with the nodes in all the cells of the initial partition. Then, 

it uses the calculated sequence to split the target cell into a number of subsets, so that the 

vertices in each subset have the same value for . This is illustrated by the following 

algorithm [7]: 
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1) Let  be the initial partition, where for all vertices  we 

have . 

2) Select a  such that has more than one vertice. 

3) For each vertice , compute a sequence . 

4) Split  into a number of subsets, so that the vertices in each subset have the same 

value for . 

Another operation that nauty performs on partitions is individualization. It 

chooses the first cell, which has more than one element. Then, for each vertex  of that 

cell, it creates a child partition by splitting the chosen cell into two different cells, one 

containing only  and the other without  [7], [8]. 

 

3.6.4 Backtracking  

 

In order to find the canonical label of a graph, nauty starts with the initial 

partition, which is based on the degrees or colors of the vertices and generates a tree 

namely search tree. The initial partition or root of the search tree is considered to be at 

level 0. Now, since the canonical label is generated from the smallest of the automorphs, 

nauty performs comparison on all possible leaf partitions of the search tree. 

Starting from the initial partition, nauty determines the target cell which is most 

likely to contain the greatest number of vertices. Once such cell is selected, nauty process 

to individualization of each vertex of the cell in order to refine the partition. This is done 

until a leaf partition is reached. When a leaf partition is reached, its corresponding 

canonical label is computed and stored as a potential canonical label for the graph. The 

nauty program then backtracks to the parent of such partition at an upper level in the tree. 
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From this ancestor, another leaf partition is generated. The canonical label associated 

with the new leaf partition is computed and compared with the previous one. If the value 

is the same, an automorphism is discovered and saved. On the other hand, if this new 

value is greater than the previous, it is automatically discarded. If conversely the new 

value is better, it will substitute the old label as the new potential certificate. 

Subsequently, the automorphism found is used to prune the search tree, since 

automorphs will produce the same canonical label. The whole process, which is 

illustrated in Figure 3.4, is repeated until a canonical label is obtained for the graph.  

The example of Figure 3.4 is obtained from the nauty User’s Guide (Version 2.2) 

[9]. In this example, the target cell is underlined, and the vertex being individualized is 

marked on the edges of the tree. The target cell here, which is on the left side of the tree, 

is {4, 5, 6}. Vertex 4 of the target cell is individualized to obtain the partition ({4}, {5, 

6}, {2, 3}, {1}). The cell {5, 6} being the new target cell, Vertex 5 and Vertex 6 are 

individualized to produce two leaf partitions. 
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Figure 3.4: Example of search tree. 

 

Comparing the canonical label associated with the two leaf partitions shows that 

an automorphism: (2, 3) (5, 6) is detected. This means that it is not necessary to 

individualized Vertex 6 of the target cell {4, 5, 6}, because no additional information is 

obtained by doing so. In other word, the same canonical label is obtained by 

individualizing Vertex 5 or 6. The nauty program has in this case been able to prune out 

part of the tree. 

 Another way to look at this process is to consider the adjacency matrices 

associated with each leaf partition. If the same adjacency matrix is obtained for different 

leaf partitions, we can assert that these partitions will induce the same canonical label. 

Thus using that information, nauty will be able to prune the search tree. Note that harder 
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the graph, larger is its search tree. Hence, from a performance standpoint, been able to 

eliminate parts of the search tree is very important. As shown in Figure 3.5, we can see 

that all the three leaf partitions are equivalent and the following automorphisms: (3, 1), 

(2, 3) (5, 6) and (3, 1, 2) (4, 5) have been detected. 

 

 

      Figure 3.5: Leaf partitions and their corresponding adjacency matrices. 

 3 2 1 4 5 6 

3  1 1 1   

2 1  1  1  

1 1 1    1 

4 1      

5  1     

6   1    

 3 1 2 5 4 6 

3  1 1 1   

1 1  1  1  

2 1 1    1 

5 1      

4  1     

6   1    

 2 3 1 4 6 5 

2  1 1 1   

3 1  1  1  

1 1 1    1 

4 1      

6  1     

5   1    
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CHAPTER 4 

SUITABILITY OF GRAPH ISOMORPHISM FOR ZERO-KNOWLEDGE PROOFS 

Before processing to the actual implementation of the graph isomorphism based 

zero-knowledge proofs (GIZKP) protocol, there are a number of questions that one could 

ask. Even though the graph isomorphism problem is not known to be solvable in 

polynomial time for the general case, there are several graphs for which polynomial 

algorithms exist. Therefore, a question that one might ask is: what types of graphs are 

suitable for the implementation of the GIZKP protocol?  

On the other hand, since the GIZKP is an interactive protocol, one could be 

concerned with the problem of eavesdropping, cheating prover or verifier and the man-in-

the-middle attack. In the following subsections, I discuss some of these problems and 

their plausible solutions.  

 

4.1 Problems Faced by the GIZKP 

In the implementation of the GIZKP protocol as aforementioned, the designer is 

faced with different problems. The first problem deals with cheating prover or verifier. 

Since the graphs G1 and G2 constitute the public keys, which all the parties involved in 

the interactions must have, envisage the case where the verifier or any other party possess 

a powerful algorithm such as the one used by the nauty program. He/she will then, in a 

considerable low time, depending on the type and the size of the graph, be able to detect 

the secret permutation π which has been use to generate G2. Knowing such secret will 

allow him/her to impersonate the prover to the verifier or to a third party.  
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The second problem deals with the interception of graph H. During an interaction 

of the zero-knowledge protocol, the adjacency matrix of the randomly generated graph H 

is sent to the verifier by the prover. In the case an eavesdropper is listening to the 

conversation and is able to intercept the adjacency matrix of graph H, it would be easy 

for him to impersonate the prover if and only if, the graph used is not hard for the 

isomorphism problem or just as in the first case, he possess a powerful and practical 

algorithm. 

In the above situations, the graph isomorphism based ZKP protocol cannot be 

considered as perfect. Therefore, even though the graph isomorphism problem is not 

known to be in P, for implementing the GIZKP protocol, I am interested in finding 

graphs that are very complex for the isomorphism problem. Since nauty is known to be 

one of the fastest practical and available algorithms, my goal is then to find graphs that 

are hard for nauty and evaluate their performance for the ZKP protocol.  

Many researchers have worked on looking for efficient practical graph 

isomorphism algorithms. However, only few of them have focused their attention on 

finding hard graphs [7], [15], as this required a lot of knowledge in group theory. The 

search for hard graphs is indeed not an easy task [7], [16], but certain type of graphs such 

as trees, random graphs, planar graphs, graphs with bounded eigenvalue multiplicity, and 

graphs with bounded genus can be ruled out as finding their isomorphs is almost always 

easy [13], [14], [16]. 
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4.2 Hard Graphs for Isomorphism Testing 

A simple invariant that all practical graph isomorphism algorithms use when 

solving the isomorphism, or automorphism problem, is the degree of the vertices 

constituting the graphs. Therefore, in the search for hard graphs, one could start with 

regular graphs, which have the same degree for each of the vertices. In fact, according to 

the author in [16], [17], the performance of nauty or practical isomorphism tools in 

general starts degrading when dealing with graphs that have very few automorphisms, but 

a high degree of regularity. 

In this thesis, I am not initiating the search for families of graphs, whose 

isomorphisms are hard to break. Instead, I am considering all the benchmarks families of 

graphs provided in the literature [6], [15], [16], [24]. In fact, these families of graphs 

include all the currently known hard instances for canonical labeling algorithms [19]. 

These graphs are as follows: 

- Projective planes (PP) 

- Cai-Fürer-Immerman construction 

- Constraint satisfaction problems 

- Hadamard matrices (Had) 

- Miyazaki’s constructions (Mz) 

- Affine and projective geometries 

- Random regular graphs (Rnd) 

- Strongly regular graphs 

- Grid graphs 
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Also, unions of graphs with similar structures are known to be very complex for 

the nauty program [6]. A simple description of most of the graphs above cited is given as 

follows: 

 

4.3 Projective Planes  

 

There are several types of projective planes in the literature. A finite projective 

plane of order k is defined as a set of v = k
2 

+ k + 1 nodes with the properties that: any 

two nodes determine a line, any two lines determine a node, every node has k + 1 lines on 

it, and finally every line contains k + 1 nodes [28]. The smallest finite projective plane, 

which is of order 2 is shown in Figure 4.1 below: 

 
 

Figure 4.1: Finite projective plane of order 2. 

 

 

However, the types of projective planes of interest are the ones known to be very 

complex for isomorphism testing.  Some of these graphs, which are provided in [29] and 

used by the authors in [16] and [24], are the bipartite point-line incidence graphs of the 

known projective planes of order 16. 

Additionally, the Desarguesian projective planes in [6] which were generated 

from the point-line incidence matrices, provided by Gordon Moorhouse [30], are also 
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known to be very hard instances for nauty. Figure 4.2 shows an example of pointline 

graph of the Desarguesian projective plane [6].  

 

 
 

Figure 4.2: Point-line graph of the Desarguesian projective plane of order 2. 

 

4.4 Random Regular Graphs 

In general, according to the definition in [27], a random r-regular graph is a graph 

selected from the set  of r-regular graphs. An n vertices r-regular graph is such that 

3 ≤ r < n and nr = 2m is even. In this thesis, based on the benchmark presented in [24], 

only n vertices random 3-regular graphs constructed by rejection sampling are 

considered. 

 

4.5 Strongly Regular Graphs 

A regular graph with n vertices and degree k is said to be strongly regular if every 

two adjacent vertices have  common neighbors and every two non-adjacent vertices 

have  common neighbors. They are usually referred to as . In this thesis, I 

am only considering Paley graphs, triangular graphs, lattice graphs and Latin Square 

graphs due the fact that they are complex for most canonical labeling algorithms.  
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4.5.1Paley Graphs 

Let q be an odd prime power such that: .  A Paley graph of order q 

is an undirected strongly regular graph with parameters 

and . The vertices of a Paley graph belong to the finite field of 

order q ( ), and its edges are such that they connect pairs of vertices that differ in a 

quadratic residue. In fact, two vertices are adjacent when their difference is a square in 

the field [26]. For example the graph illustrated in Figure 4.3 is a Paley graph of order 5. 

 

 

      Figure 4.3: Paley graph (5, 2, 0, 1). 

 

4.5.2 Triangular Graphs 

A triangular graph is a strongly regular graph with parameters

 and . Triangular graphs are vertex 

transitive and have large automorphism groups [6]. Figure 4.4 represents the triangular 

graph T4. 
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Figure 4.4: Triangular graph (6, 4, 2, 4). 

 

 

4.5.3 Lattice Graphs 

A lattice graph is considered as a type Latin square graph. Its vertices are the m
2
 

elements of a Latin square of order m and there is an edge between two vertices if and 

only if they are in the same row or column [6]. Lattice graphs are strongly regular graphs 

with parameters and . They have a large 

automorphisms group, which make them complex for canonical labeling algorithms.  An 

example of lattice graph where m = 3, can be seen in Figure 4.5 below. 

 

Figure 4.5: Lattice graph (9, 4, 1, 2). 
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4.5.4 Latin Square Graphs 

As defined in [25], a Latin square of order n is an n x n matrix in which each of 

the n
2
 cells contains a symbol from an alphabet of size n, such that each symbol in the 

alphabet occurs just once in each row and once in each column. The alphabet is 

completely arbitrary, but it is often convenient to take it to be the set {1, 2, …, n}. 

 

4.6 Miyazaki’s Constructions 

In his paper “The complexity of McKay’s canonical labeling algorithm,” 

Miyazaki constructed regular graphs based on the Cai-Fürer-Innerman construction, 

which he proved to be very complex for nauty, therefore for canonical labeling 

algorithms in general. Miyazaki proved that a wrong choice of the target cell is 

responsible for the existence of intractable graphs for nauty [19]. Information on how 

these graphs are constructed can be found in [6] and [15]. Figure 4.6 shows an example 

of such graph. 

 

 

Figure 4.6: Example of Miyazaki’s graph.  
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CHAPTER 5 

EXPERIMENTS WITH SOME OF THE HARD GRAPHS 

In this section, I conduct experiments with some of the hard graphs available in 

the literature in order to access their performance for the graph isomorphism based zero-

knowledge proofs (GIZKP) protocol. Since the running time of canonical labeling of a 

graph is essentially related to the size of the associated search tree [15], [19], I present my 

results in term of the size of the search tree and the CPU time. Note that the harder the 

graph, the larger is its search tree.  

These experiments were performed on a Dell Latitude XT2 with Intel(R) Core 

(TM) 2 Duo at 1.40 GHz with 3.45 GB of memory under Ubuntu 9.4. All the tests were 

performed using nauty (Version 2.2). The undirected graphs tested were generated using 

a program provided by Miyazaki [15]. The results of experiments on Miyazaki’s Type B 

graphs are reported in Table 5.1, where we can see that up to 1000 nodes, nauty 

computed the canonical label in less than 4 seconds. However, starting from 1500 nodes 

graph, the computation time increases exponentially.  

Using different permutations of the same graph, in [6], nauty was not able to 

handle a graph of 40 nodes in 10000 seconds. In fact, applying permutations on the 

vertices of a graph generates different versions of the graph that might be complex for the 

nauty program. The author in [7] for instance suggested that in order to increase the 

computational time of nauty, it suffices to swap the endpoints of two edges selected 

randomly.
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This reduces the size of the automorphism group, therefore limiting the capability 

of nauty to prune the search tree. 

 

Table 5.1: Experiments with Miyazaki’s Type-B graphs.  

Graph size Search tree 

size 

CPU time 

(seconds) 

20 

40 

60 

80 

100 

120 

140 

160 

180 

200 

220 

240 

260 

280 

300 

320 

340 

360 

380 

400 

420 

440 

460 

1000 

1200 

1500 

8 

13 

19 

26 

34 

43 

53 

64 

76 

89 

103 

118 

134 

151 

169 

188 

208 

229 

251 

274 

298 

323 

349 

1,429 

2,074 

4,000,698 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.01 

0.01 

0.01 

0.01 

0.02 

0.03 

0.04 

0.07 

0.08 

0.09 

0.10 

3.64 

8.87 

37,135.31 

 

 

On the other hand, comparing the results in Table 5.1 with the ones obtained by 

Miyazaki in [15], where he used a former version of nauty and a less powerful machine, I 

noticed a considerable gain in performance. For example a graph of 460 vertices took 
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nauty (Version 1.7) running on a Sun SPARCstation-1 computer, 994,427.10 seconds 

with 218,104,107 nodes for the search tree. The same graph took us 0.10 seconds with a 

search tree size of 349 nodes. 

I have not conducted experiments on all the aforementioned hard graphs. 

However, results on the performance of nauty and other canonical labeling tools such as 

bliss and Traces for most of these graphs are available in [6], [16], [19], and [24].  Some 

of these results obtained in [19] are reported in Table 5.2 below. Mz-aug2 graphs are 

modified version of Miyazaki’s constructions, Rnd-3-reg are 3 regular random graphs 

and Latin-sw is a modified version of a Latin graph. 

These experiments clearly show that there are algorithms that perform better than 

nauty for some families of graphs. In fact, while in some cases, the nauty program took a 

large amount of time or has not been able to solve the problem in a predetermined 

amount of time, programs like Traces or bliss computed the automorphism group or the 

canonical label in few seconds. These results additionally prove that even for hard 

instances of isomorphism testing, there are algorithms that are capable of solving the 

problem in polynomial time. 

I know that isomorphism testing algorithms available in the literature attempt to 

solve the general case of the problem in polynomial time, which is an even harder 

problem because the algorithms have to be able to test whether any pair of graphs is 

isomorphic. They may therefore be efficient for some families of graphs, while offering a 

poor performance for others.  
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Table 5.2: Experiments with hard graphs.  

Graph Graph Size nauty(2.2) bliss(0.35) Traces 

Had-52 208 10.73 0.50 0.15 

Had-100 400 185.00 4.43 1.83 

Had-184 736 8544.87 34.96 6.11 

Had-232 928 29352.07 84.51 14.99 

Had-236 944 Timed out 23150.37 103.36 

Mz-18 360 0.20 0.01 0.64 

Mz-50 1000 >24000 0.30 24.76 

Mz-aug2-18 432 106.08 22.64 1.22 

Mz-aug2-20 480 525.01 110.14 1.50 

Mz-aug2-22 528 2500.61 439.06 2.06 

Mz-aug2-30 720 Timed out Timed out 5.47 

Mz-aug2-50 1200 Timed out Timed out 25.44 

PP-16-2 546 42288.08 1868.28 2.51 

PP-16-7 546 Timed out 4662.65 0.96 

PP-16-9 546 15598.57 825.15 0.24 

PP-16-21 546 Timed out 25871.22 2.79 

PP-(flag-6) 1514 Timed out 26665.97 40.45 

Rnd-3-reg-3000-1 3000 328.57 0.39 0.31 

Rnd-3-reg-10000-1 10000 42821.01 5.60 4.24 

Latin-sw-30-11 900 49.79 46.32 12.43 

 

 

In contrast, devising specific polynomial time algorithms that solve the problem 

for specific families of graphs is a much easier task. It is in fact possible to develop 

algorithms that will exploit characteristics, such invariants and patterns of specific 

families of graphs in order to test for isomorphism in polynomial time. 

Given these facts, and given the performances that practical algorithms are 

offering, it is evident that specific devised algorithms will perform better, which make the 

graph isomorphism not convenient for ZKP.  
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One could also argue that since the larger the graph, the longer a program will 

take to test for isomorphism, to opt for very large graphs in the implementation of the 

GIZKP protocol. This is not feasible, because in reality there is a limit on the size of the 

graphs, which is based on the capabilities of the infrastructures used. The memory 

requirement for each public key graph is for instance  bits for  vertices graph. 

However, this memory requirement is reduced to  bits if testing undirected 

graphs. The private key in general requires  bytes. 

Note also that even though these experiments were performed on average with 

graphs having only hundreds of nodes, testing graphs with thousands of vertices is 

possible in polynomial time. 
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CHAPTER 6 

CONCLUSIONS 

I have investigated the graph isomorphism based zero-knowledge proofs (ZKP) 

protocol. I surveyed the literature and reported the current methods for isomorphism 

testing. I enumerated some of the known hard graphs for the problem and tested some of 

them using one of the fastest isomorphism testing programs available, the nauty package. 

I also presented the results of tests performed by other researchers. The obtained results 

clearly show that most instances of the isomorphism problem are solvable in polynomial 

time. However, since these experiments were performed on tools devised for the general 

case of the problem, I conjecture that better results, obtainable in polynomial time for 

large graphs, are possible by using specific algorithms for specific families of graphs.  

While there are major advantages to being able to test for isomorphism in 

polynomial time, this constitutes the main problem for the implementation of the graph 

isomorphism based ZKP protocol. Therefore, since it is possible to test for isomorphism 

in polynomial time, the graph isomorphism is not perfectly suitable for the 

implementation of a ZKP protocol.  

Future works could include implementation of specific algorithms for each hard 

graph that will be able to solve the isomorphism problem in polynomial time. Another 

route to explore is to develop a timed graph isomorphism based ZKP, where the prover 

will be bound to a specific amount of time to provide the answers to the challenges of the 

verifier. 
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