
Claremont Colleges
Scholarship @ Claremont

Scripps Senior Theses Scripps Student Scholarship

2012

An ERP Study of Responses to Emotional Facial
Expressions: Morphing Effects on Early-Latency
Valence Processing
Zoe Ravich
Scripps College

This Open Access Senior Thesis is brought to you for free and open access by the Scripps Student Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in Scripps Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Ravich, Zoe, "An ERP Study of Responses to Emotional Facial Expressions: Morphing Effects on Early-Latency Valence Processing"
(2012). Scripps Senior Theses. Paper 119.
http://scholarship.claremont.edu/scripps_theses/119

http://scholarship.claremont.edu
http://scholarship.claremont.edu/scripps_theses
http://scholarship.claremont.edu/scripps_student
mailto:scholarship@cuc.claremont.edu


Running Head: MORPHING EFFECTS ON EARLY-LATENCY VALENCE PROCESSING    1 

 

 

 

AN ERP STUDY OF RESPONSES TO EMOTIONAL FACIAL EXPRESSIONS:  

MORPHING EFFECTS ON EARLY-LATENCY VALENCE PROCESSING 

 

 

 

by 

ZOE RAVICH 

 

 

 

SUBMITTED TO SCRIPPS COLLEGE IN PARTIAL FULFILLMENT OF THE 

DEGREE OF BACHELOR OF ARTS 

 

 

 

PROFESSOR ALAN HARTLEY 

PROFESSOR STACEY WOOD 

 

 

 

December 9, 2011 



MORPHING EFFECTS ON EARLY-LATENCY VALENCE PROCESSING                           2 

Abstract 

Early-latency theories of emotional processing state that at least coarse monitoring of the emotional 

valence (a pleasure-displeasure continuum) of facial expressions should be both rapid and highly 

automated (LeDoux, 1995; Russell, 1980).  Research has largely substantiated early-latency 

differential processing of emotional versus non-emotional facial expressions; however, the effect of 

valence on early-latency processing of emotional facial expression remains unclear.  In an effort to 

delineate the effects of valence on early-latency emotional facial expression processing, the current 

investigation compared ERP responses to positive (happy and surprise), neutral, and negative (afraid 

and sad) basic facial expression photographs as well as to positive (happy-surprise), neutral (afraid-

surprise, happy-afraid, happy-sad, sad-surprise), and negative (sad-afraid) morph facial expression 

photographs during a valence-rating task.  Morphing manipulations have been shown to decrease 

the familiarity of facial patterns and thus preclude any overlearned responses to specific facial codes.  

Accordingly, it was proposed that morph stimuli would disrupt more detailed emotional 

identification to reveal a valence response independent of a specific identifiable emotion (Balconi & 

Lucchiari, 2005; Schweinberger, Burton & Kelly, 1999).  ERP results revealed early-latency 

differentiation between positive, neutral, and negative morph facial expressions approximately 108 

milliseconds post-stimulus (P1) within the right electrode cluster; negative morph facial expressions 

continued to elicit significantly smaller ERP amplitudes than other valence categories approximately 

164 milliseconds post-stimulus (N170).  Consistent with previous imaging research on emotional 

facial expression processing, source localization revealed substantial dipole activation within regions 

of the mesolimbic dopamine system.  Thus, these findings confirm rapid valence processing of facial 

expressions and suggest that negative valence processing may continue to modulate subsequent 

structural facial processing. 

Key words: valence processing, emotional facial expressions, P1, N170
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An ERP Study of Responses to Emotional Facial Expressions: 

Morphing Effects on Early-Latency Valence Processing 

Adaptive behavior relies on the prompt discovery of emotionally salient environmental cues.  

Emotional facial expressions are particularly salient stimuli for conveying critical nonverbal messages 

to other individuals and thus serve as a critical, socially available index of affect (Adolphs, 2002b; 

Ashley, Vuilleumier & Swick, 2003; Batty & Taylor, 2003; Darwin, 1872).  Hence, early-latency 

theories of emotional processing posit that at least coarse monitoring of the emotional valence (a 

pleasure-displeasure continuum) of facial expressions should be both rapid and highly automated 

(LeDoux, 1995; Russell, 1980). 

Emotional Processing of Facial Expressions 

Spatial Findings.  Recent magnetic resonance imaging (MRI) studies have revealed a complex, 

interconnected neural network associated with emotional processing of facial expressions.  This 

network encompasses face-processing regions of the inferior occipital cortices linked to initial 

perceptual analysis of faces, the middle fusiform gyri linked to structural processing of faces, and the 

superior temporal sulci linked to processing of dynamic aspects of faces along with the emotion-

processing paralimbic and higher-cortical areas linked to conscious representations of emotional 

states (Adolphs, 2003; Allison, Puce & McCarthy, 2000; Haxby, Hoffman & Gobbini, 2000; Jehna et 

al., 2011; Kanwisher, McDermott & Chunn, 1997; Lane et al., 1997).  Perceptual representation and 

classification of emotional facial expressions has specifically been linked to the mesolimbic 

dopamine system (Posner, Russell & Peterson, 2005), which is composed of the amygdala, occipital 

cortices, orbitofrontal cortex (the orbital and rectal gyri), basal ganglia, and right parietal areas 

(Adolphs, 2002a; Adolphs, 2003; Adolphs, Damasio, Tranel & Damasio, 1996; Jehna et al., 2011; 

Lane et al., 1997; Whalen, Rauch, Etcoff, McInerney, Lee & Jenike, 1998).  Furthermore, imaging 

studies on emotional facial expression processing have determined that neural correlates of positive 
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and negative facial expressions overlap considerably but are nonetheless distinguishable.  For 

example, Adolphs, Damasio, Tranel and Damasio (1996) determined that lesions of the right inferior 

parietal cortex and anterior infracalcarine cortex impair recognition of negative facial expressions but 

not positive facial expressions.  In sum, imaging and lesion evidence has established a set of brain 

regions consistently associated with the emotional processing of facial expressions along with 

subsets of brain regions that differentiate between positive and negative valence. 

Temporal Findings.  Whereas imaging evidence has identified neural systems underlying 

emotional processing of facial expression, spatial imaging methods sacrifice temporal resolution for 

spatial precision.  As a result, scalp recordings of stimulus-driven brain electrical activity (e.g., event-

related potentials, ERPs) have been used to determine the temporal aspects of emotional facial 

expression processing with a time resolution of milliseconds.  According to LeDoux’s (1995) dual 

facial processing model, more rudimentary differentiation of facial expression valence and arousal 

should occur before structural encoding (i.e., at an early latency) while fine-grained categorization of 

basic emotions should follow the encoding of structural facial components (i.e., at a later latency). 

ERP findings have supported both early- and late-latency effects of emotion on facial expression 

processing.  In support of early-latency emotional effects, Eimer and Holmes (2002) found 

significant differences between emotional and neutral facial expressions approximately 120 

milliseconds after stimulus onset (other studies have similarly established early-latency differentiation 

between emotional and non-emotional facial expressions: Batty and Taylor (2003) found effects 

approximately 90 milliseconds post-stimulus, and Halgren, Raij, Marinkovic, Jousmaeki and Hari 

(2000) found effects 110 milliseconds post-stimulus).  These early-latency ERP studies have 

demonstrated an influence of emotional versus neutral facial expressions on the P1 ERP, which has 

been established as a marker of affect processing (Keil, Bradley, Hauk, Rockstroh, Elbert & Lang, 

2002).  Facial processing studies have thus demonstrated the early onset of emotional facial 
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expression processing but have not yet addressed potential effects of valence on such processing.  

For instance, Eimer and Holmes (2002) used only fearful and neutral facial expressions in their 

study, precluding a more thorough exploration of positive, neutral, and negative valence effects on 

facial expression processing.  In support of late-latency emotional effects, Ashley, Vuilleumier and 

Swick (2004) found enhanced ERP positivity for emotional as compared to neutral faces beginning 

approximately 180 milliseconds after stimulus onset; the P200 amplitude also distinguished between 

happy and fearful facial expressions, and an N300 amplitude later distinguished disgusted facial 

expressions from happy and fearful facial expressions (other studies have similarly established late-

latency effects of emotional processing: Balconi and Lucchiari (2007), Balconi and Pozzoli (2008), 

Carretié and Iglesias (1995), Eimer, Holmes and McGlone (2003), and Krolak-Salmon, Fischer, 

Vighetto and Mauguière (2001) discovered differentiation between emotional and non-emotional 

facial expressions ranging from 220 to 250 milliseconds post-stimulus; Balconi and Pozzoli (2003) 

found differentiation between high-arousal facial expressions and low-arousal facial expressions 

approximately 230 milliseconds post-stimulus).  Collectively, these findings point to early-latency 

neuronal processes that distinguish between broad emotional and non-emotional categories (with 

potential valence effects remaining purely speculative) and late-latency neuronal processing that 

distinguish among more refined emotional categories (Blau, Maurer, Tottenham & McCandliss, 

2007). 

Valence Processing of Emotional Facial Expressions 

Research has largely substantiated the overarching existence of early- and late-latency emotional 

facial expression processing and has also demonstrated the fine-grained categorization of basic 

emotions at later latencies.  However, the effect of valence on early-latency processing of emotional 

facial expression remains unclear.  Only one study has specifically explored the effect of emotional 

valence on early-latency facial expression processing: Herrmann et al. (2002) used an indirect task in 



MORPHING EFFECTS ON EARLY-LATENCY VALENCE PROCESSING                           6 

which participants were asked to silently classify slides as a face (i.e., happy, neutral, and sad facial 

expression stimuli) or as a building; ERP amplitude and latency values for the three different valence 

facial expressions did not differ significantly.  These null findings likely reflect critical 

methodological oversights, which appear prevalently throughout emotional processing research as 

well (Ashley, Vuilleumier & Swick, 2004; Balconi & Pozzoli, 2003; Herrmann et al., 2002; Pizzagalli, 

Lehmann, Hendrick, Regard, Pascual-Marqui & Davidson, 2002; Pizzagalli, Regard & Lehmann, 

1999).  A common denominator in the null findings of emotional facial expression processing 

research has been task type, particularly the use of indirect tasks (i.e., a task requiring explicit 

processing of non-emotional information or requiring the passive viewing of facial stimuli) as 

compared to direct tasks (i.e., a task requiring explicit processing of emotion).  Holmes, Vuilleumier 

and Eimer (2003) found that when emotional information for face stimuli was directly attended, 

emotional effects were present.  However, these emotional effects were completely eliminated on 

trials where face stimuli were presented but participants were not required to attend to the emotional 

information.  Habel et al. (2007) also determined that bilateral amygdala activation was severely 

reduced when participants were required to discern age (indirect task) as opposed to emotion (direct 

task) (Batty & Taylor, 2003; Calder, Lawrence & Young, 2001).  Thus, only tasks in which 

participants directly judged emotional expression reliably reveal early-latency effects of emotional 

processing (Eimer, Holmes & McGlone, 2003).  These findings illustrate the importance of an 

explicit valence-processing task in studies exploring the effects of valence on facial expression 

processing and explain the absence of significant early-latency effects of valence in Herrmann et al.’s 

(2002) study.  Other methodological limitations include the use of only a few facial expression 

photographs, shown repeatedly to subjects, without considering the effects of habituation (e.g., 

Herrmann et al.’s (2002) study only used 12 stimulus photographs); the use of a limited number of 

EEG channels during ERP recording, which restricts analysis to waveforms at select locations that 
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are reference-dependent and of limited sensitivity (e.g., Herrmann et al.’s (2002) study looked only at 

the Cz electrode); and the use of a narrow range of emotional facial expressions, which fails to 

exhaustively examine the emotional content of faces and its effect on ERPs (e.g., the facial 

expression photographs for Herrmann et al.’s (2002) study only depicted happy, sad, and neutral 

facial expressions).  Accordingly, the effects of valence on emotional facial expression processing 

remain uncertain due to the paucity of research in this field as well as, in large part, to 

methodological limitations. 

Objectives 

In an effort to delineate the effects of valence on early-latency emotional facial expression 

processing, the current investigation compared behavioral and ERP responses to positive, neutral, 

and negative basic facial expression photographs (i.e., afraid, happy, neutral, sad, and surprise facial 

expressions) as well as to positive, neutral, and negative morph facial expression photographs (i.e., 

computer-generated morphs of the four prototypical facial expressions: afraid-surprise, happy-afraid, 

happy-sad, happy-surprise, sad-afraid and sad-surprise) during an explicit valence-rating task.  The 

following section details the three primary objectives of the current study. 

First Objective.  This study attempted to establish and clarify the early-latency valence 

processing of emotional facial expressions through the use of a direct, valence-rating task and an 

emotional morphing manipulation.  As noted, previous null findings of emotional facial expression 

processing studies have been linked to the use of indirect tasks to investigate particular components 

of facial expression processing (Balconi & Lucchiari, 2007; Hess, Philippot & Blairy, 1998; Krolak-

Salmon, Fischer, Vighetto & Mauguière, 2001).  In order to ensure that emotional information was 

attended, particularly valence, the current investigation employed a direct task in which participants 

were asked to provide valence ratings (from very negative to very positive) for the displayed facial 

expression photographs.  As concerns the use of emotional morphing manipulations, previous 
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studies have used stimulus manipulation (e.g., facial inversion or morphing) in an effort to disturb 

and thus modulate the processing effects of facial identification as well as emotion recognition 

(Eimer & Holmes, 2007).  Balconi and Lucchiari (2005) used morph structural facial expressions in 

order to disrupt facial patterns and to influence the structural processing of facial stimuli.  Findings 

revealed that morph structural facial expressions elicited increased N170 peak amplitude compared 

to basic facial expressions.  As the N170 ERP has largely been associated with the structural 

processing of facial expressions, the enhanced ERP for morph facial expressions may have reflected 

the increased difficulty in structural processing of unfamiliar or abstract structural patterns (Eimer & 

Holmes, 2007).  Within the present investigation, emotional morph facial expressions were used in 

an effort to decrease the familiarity of the emotional patterns and thus preclude any overlearned 

responses to specific basic emotions.  By disrupting more detailed emotional identification, it was 

proposed that morph stimuli would elicit a valence response independent of specific identifiable 

emotion, which has been absent in previous investigations of basic emotional facial expressions.  In 

order to explore the potential valence-enhancing effects of morphing manipulations, amplitude 

values of the affect-sensitive P1 ERP were investigated with respect to valence category and stimulus 

manipulation. 

Second Objective.  Bruce and Young (1986, 1998) suggest that there are functional 

components called codes that underlie seven distinct types of facial information (i.e., pictorial, 

structural, semantic, identity, name, expression, and facial speech).  The authors further propose that 

each facial code is processed independently, such that different brain regions involved in the distinct 

aspects of face processing should be topographically separated.  In line with this model of face 

processing, previous ERP findings have established that structural and emotional features of the face 

are subserved by dissociable neural substrates (Balconi & Lucchiari, 2005; Bruce & Young, 1986; 

Cauquil, Edmonds & Taylor, 2000; Eimer & Holmes, 2002; Eimer, Holmes & McGlone, 2003; 
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Holmes, Vuilleumier & Eimer, 2003).  In an effort to validate the functional model proposed by 

Bruce and Young (1998), the current study investigated N170, face-sensitive ERP amplitude values, 

which have primarily been associated with structural processing of facial expressions, as a function 

of valence category and morphing manipulations (Balconi & Lucchiari, 2005; Bruce & Young, 1986; 

Cauquil, Edmonds & Taylor, 2000; Eimer & Holmes, 2002; Eimer, Holmes & McGlone, 2003; 

Holmes, Vuilleumier & Eimer, 2003). 

Third Objective.  Dense-array ERP recordings provide both high temporal and spatial 

resolution, allowing for identification of the time course as well as the regions activated during early-

latency, valence-dependent facial expression processing.  Accordingly, following evaluation of peak 

ERP amplitude and latency for components associated with emotional processing (P1 ERP; 85-135 

milliseconds post-stimulus) and facial expression processing (N170 ERP; 145-190 milliseconds post-

stimulus), the current study used source localization to identify active gyri within these time points.  

Source localization employs an inversion formula in order to retroactively calculate dipole 

activations in the cortex (i.e., the sources of the ERP activity).  Based on previous imaging research, 

the P1 and N170 activation intensities (nA) for the amygdala, fusiform gyri, inferior occipital gyri, 

lingual gyri, orbital gyri, parahippocampal gyri, posterior cingulate cortex, rectal gyri, subcallosal gyri, 

and uncus were extracted and analyzed (Blau, Maurer, Tottenham & McCandliss, 2007; Pizzagalli, 

Regard & Lehmann, 1999; Posner, Russell & Peterson, 2005).  The left- and right-hemisphere dipole 

strength values for each of these regions were also analyzed as imaging studies have found greater 

right-hemisphere activation during processing of emotional facial expressions (Adolphs, Damasio, 

Tranel & Damasio, 1996; Kesler/West et al., 2001).  

Hypotheses 

Valence Ratings and Response Times.  The valence-rating task was used to validate the 

presumed valence categories of facial expression stimuli within the study.  Accordingly, it was 
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hypothesized that positive, neutral, and negative facial expression stimuli would receive high (i.e., 

positive), moderate (i.e., neutral), and low (i.e., negative) valence ratings, respectively.  Additionally, 

valence ratings and response times were used to confirm that morphing manipulations reduced the 

familiarity of the morph facial expression stimuli while maintaining the valence properties of their 

basic facial expression components.  In order to confirm the morphing manipulation effect on 

familiarity, it was hypothesized that response times (RTs) for morph facial expressions would be 

slower than those for basic facial expressions; this prediction was in keeping with Schweinberger, 

Burton and Kelly’s (1999) finding that emotion classification speed was slowed for ambiguous 

stimuli.  In order to confirm that morphing manipulations did not alter valence properties, it was 

hypothesized that positive, neutral, and negative morph facial expression stimuli would receive 

identical valence ratings to the corresponding positive, neutral, and negative basic facial expression 

stimuli. 

P1 ERP.  Previous research on affective, non-facial images has established effects of valence 

approximately 90 to 120 milliseconds post-stimulus tied to the P1 ERP.  It was hypothesized that 

valence processing of facial expression would influence this P1, affect-sensitive ERP too (Eger, 

Jedynk, Iwaki and Skrandies, 2003; Eimer & Holmes, 2002; Halgren, Raij, Marinkovic, Jousmaeki & 

Hari, 2000).  Specifically, as morphing manipulations were used to modulate valence processing, it 

was predicted that effects of early-latency valence processing on peak amplitude would be more 

apparent in morph emotional facial expressions than basic emotional facial expressions (Batty & 

Taylor, 2003; Eger, Jedynak, Iwaki & Skrandies, 2003; Eimer & Holmes, 2007).  Furthermore, as 

Dufey, Hurtado, Fernanádez, Manes and Ibáñez (2010) determined that negative image stimuli 

presented a greater posterior P1 amplitude, followed closely by neutral image stimuli, and finally by 

the positive image stimuli with the lowest amplitude, a similar effect of valence on P1 amplitude was 

hypothesized within the current study (i.e., with negative morph facial expression photographs 
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eliciting the greatest P1 ERP activity, followed by neutral morph facial expressions, and then 

positive morph facial expressions).  Based on previous imaging findings for emotional processing of 

facial expressions, it was predicted that neuronal activation during valence processing would occur 

primarily within the mesolimbic dopamine system (Adolphs, 2002a; Adolphs, 2003; Batty & Taylor, 

2003; Lane et al., 1997; Whalen, Rauch, Etcoff, McInerney, Lee & Jenike, 1998).  However, imaging 

research has yet to establish which brain regions elicit more or less activity in response to positive 

and negative facial expression stimuli; thus, no specific predictions were advanced as to whether 

positive or negative facial expressions would elicit stronger activity within the regions of interest. 

N170 ERP.  Based on previous theories and findings that structural and semantic features of 

the face are processed independently, it was hypothesized that facial structure and facial emotion 

would be processed separately and that valence processing of facial expressions would not influence 

the N170, face-sensitive ERP (Balconi & Lucchiari, 2005; Bruce & Young, 1986; Cauquil, Edmonds 

& Taylor, 2000; Eimer & Holmes, 2002; Eimer, Holmes & McGlone, 2003; Holmes, Vuilleumier & 

Eimer, 2003).  This electrophysiological component reflects the encoding of facial structures and is 

not affected by face familiarity, facial expressions, or other identity factors (Eimer & Holmes, 2007).  

As the morphing procedure maintained basic structural properties of the valence of facial 

expressions, it was predicted that both basic and morphed emotional facial expressions would elicit 

similar N170 ERP responses across valence categories. 

In sum, the purpose of the present study was to contribute to the understanding of temporal 

and spatial aspects of valence effects on early-latency emotional facial expression processing (the P1 

ERP) and subsequent structural facial processing (the N170 ERP).  In order to do so, ERP and 

source localization analyses were explored across the valence categories (positive, negative, and 

neutral) of both basic and morph facial expression photograph stimuli.  
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Method 

Participants 

Undergraduate student volunteers were recruited through an Introduction to Psychology course 

and through personal contacts.  All participants gave informed consent and were compensated with 

extra course credit or a candy bar for their time. The sample comprised nineteen female participants 

between 18 to 22 years of age (mean: 19.16 years; SD 1.34 years).  Out of nineteen initial 

participants, one was excluded due to technical problems that resulted in poor ERP data quality.  

Participation was entirely voluntary and in accordance with the Scripps College Institutional Review 

Board ethical guidelines. 

Materials 

Facial image stimuli were presented on a 27 cm x 34 cm Dell desktop computer monitor 

approximately 60 cm from the participant.  A PC running E-Prime v2.0 (Psychology Software Tools, 

Inc., Sharpsburg, PA) experimental software controlled the presentation of the stimuli as well as the 

recording of behavioral responses.  Electroencephalographic signals were recorded from 256 scalp 

sites using the Geodesic EEG Net Station v4.4.2 (Electrical Geodesics, Inc., Eugene, OR) and the 

256-channel HydroCel Geodesic Sensor Net. 

Affectively neutral, positive (happy and surprise), and negative (sad and afraid) facial expression 

stimuli were selected from the Karolinska Directed Emotional Faces inventory (KDEF; Lundqvist, 

Flykt, Öhman, 1998).  The set contains 70 individuals, each displaying seven different emotional 

facial expressions, with each expression being color-photographed twice from five different angles.  

Of these, ten individuals with the most positive ‘surprise’ facial expression were selected on the basis 

of quantitative valence ratings from a pilot study (see Figure 1a).  This was to ensure that the 

‘surprise’ facial expression stimuli were positive and not negative in valence.  Whereas happy, sad, 

and afraid belong to discrete valence categories, surprise can be positive or negative (Adolphs, 
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2002b; Kim, Somerville, Johnstone, Alexander & Whalen, 2003).  Accordingly, within a preliminary 

study, the ‘surprise’ facial expressions were rated on a seven-point scale (1 = very negative, 2 = 

negative, 3 = slightly negative, 4 = neutral, 5 = slightly positive, 6 = positive, 7 = very positive).  

The photographs selected for the present study possessed a ‘surprise’ facial expression that fell 

between a positive and very positive valence rating (mean: 6.62; SD: 1.55), which ensured that 

‘surprise’ facial expression stimuli were positive in valence.  Originally, both male and female 

photographs were going to be included within this investigation.  However, most of the ‘surprise’ 

facial expression photographs rated as being positive were of women, so men were excluded in 

order to preserve the positive valence of the surprise facial expression photographs.  This should not 

have influenced results as Ito and Urland (2005) have demonstrated that the N170 component, 

which falls within the time segment of interest in this study, is not affected by gender of 

photographed faces. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  a) The ‘surprise’ facial expression photographs of ten female KDEF photograph sets selected as stimuli 
within this study; b) A single set of basic facial expressions (top row; happy, surprise, neutral, afraid, and sad) and morph 
facial expressions (bottom row; happy-surprise, happy-afraid, happy-sad, sad-surprise, sad-afraid, and afraid-surprise). 
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In addition to five basic facial expressions (afraid, happy, neutral, sad and surprise), six morph 

facial expressions (afraid-surprise, happy-afraid, happy-sad, happy-surprise, sad-afraid and sad-

surprise) were used in this study (see Figure 1b).  The morphs were formed using a three part 

process of delineation, shape interpolation, and warping in Morpheus (Morpheus Software, LLC, 

Santa Barbara, CA) to blend between pairs of the afraid, happy, sad and surprise facial expression 

stimuli for each individual in a 50:50 proportion (i.e., halfway between a happy facial expression and 

a sad facial expression) (Young, Rowland, Calder, Etcoff, Seth & Perrett, 1996).  All facial 

expression photographs were placed behind a black mask with an oval opening with hair, neck and 

background information occluded. 

Behavioral Design and Procedure 

Research was conducted in a single session lasting approximately 45 minutes to one hour.  After 

written consent was obtained to participate in an experimental protocol approved by Scripps 

College, participants were prepared for ERP recording and given instructions on the valence-rating 

task.  This task phase of the study comprised 275 trials, with each of the 11 emotion conditions 

(afraid, happy, sad, surprise, neutral, afraid-surprise, happy-afraid, happy-sad, happy-surprise, sad-

afraid, and sad-surprise) presented exactly five times within each of five blocks; the photographed 

individual displaying the emotion was chosen at random on each trial from a set of 10 models.  In 

each trial, a fixation cross appeared for 50 milliseconds, followed by a randomly selected facial 

expression photograph measuring 16 cm x 11 cm.  This photograph remained on the screen until 

the participant had rated the valence of the facial expression on a visual seven-point scale (from left 

to right: very negative, negative, slightly negative, neutral, slightly positive, positive, very positive) 

(see Figure 2).  Participant ratings were used after the fact to validate the presumed valence 

categories of facial expression stimuli within the study (e.g., happy facial expressions were 

categorized as having positive valence and, accordingly, should have received high valence ratings); 
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additionally, ratings and response times were used to confirm that morphing manipulations reduced 

the familiarity of the morph facial expression stimuli (e.g., participants should have responded more 

slowly to morph facial expressions than to basic facial expressions) while maintaining the structural 

and valence properties of their basic facial expression components (e.g., happy-surprise facial 

expressions should also have received high valence ratings because the morph is composed of two 

positive facial expressions). 

Electrophysiological Procedure and Analysis 

The EEG activity was sampled at 250 Hz with the vertex electrode as the online reference. Gain 

calibration was performed prior to the start of every recording and impedances for all channels were 

kept below 100 kΩ. 

 

Figure 2.  a) The seven-point visual valence scale (from left to right: very negative, negative, slightly negative, neutral, 
slightly positive, positive, very positive); b) In each trial, a fixation point appeared for 50 milliseconds, followed by a 
randomly chosen photograph, which remained on the screen until the participant had rated the valence of the emotional 
facial expression. 
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Initial off-line processing of the EEG data was performed using Net Station software v4.4.2 

(Electrical Geodesics, Inc., Eugene, OR).  A 40 Hz low pass filter and a 0.3 Hz high pass filter were 

applied in order to remove noise related to peripheral electrical equipment and the DC amplifier.  

Stimulus-locked ERP intervals were computed using a 600-millisecond epoch (200 milliseconds pre-

stimulus and 400 milliseconds post-stimulus).  Eleven event categories were used to segment the 

continuous data and compute single-subject averages: afraid, happy, sad, surprise, neutral, afraid-

surprise, happy-afraid, happy-sad, happy-surprise, sad-afraid, and sad-surprise facial expression 

conditions.   

Artifact detection criteria were defined with respect to the segment zero point, which included 

the entirety of the 600-millisecond epoch.  A recording segment was marked for rejection if it 

contained more than 10 bad channels; channels were marked for rejection that contained more than 

20% bad segments across the entire recording.  A channel was marked bad when the differential 

average amplitude exceeded 200 µV, when the channel showed an eye blink (>140 µV in electrodes 

above and below the eyes), or when the channel showed an eye movement (55 µV in electrodes 

lateral to the eyes).  Data in bad channels were interpolated using spherical spline interpolation 

including all channels on the surface of the head, and ocular artifact removal (OAR) was applied in 

order to separate eye blinks from eye movements so that the proper correction factors could be 

applied.  Following OAR, bad channel replacement was reapplied. ERP data were then averaged, 

corrected for a 200-millisecond baseline, and re-referenced to an average of all 256 electrodes.   

Mean ERPs were computed for each subject.  The emotion categories were then collapsed to 

form six categories: positive basic valence (happy and surprise); neutral basic valence; negative basic 

valence (sad and afraid); positive morph valence (happy-surprise morph); neutral morph valence 

(afraid-surprise, happy-afraid, happy-sad, and sad-surprise morphs); and negative morph valence 
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(sad-afraid morph).  The ERPs for each valence and stimulus manipulation type were visualized 

topographically in Net Station.   

Similar to prior facial expression research, extraction of peak amplitude measures was centered 

on the P1 maximum (84-134 milliseconds post-stimulus) as well as the N170 minimum (144-189 

milliseconds post-stimulus).  Average ERPs for each participant were extracted from both an 

electrode cluster close to the P3 site in the International 10-20 system (electrodes numbered 76, 77, 

85, 86, 87, 97, 98) and an electrode cluster close to the P4 site (electrodes numbered 152, 153, 161, 

162, 163, 171, 172).  ERPs for parietal electrodes, particularly the P3 and P4 electrodes, have 

revealed early-latency valence processing effects in previous studies (Balconi & Pozzoli, 2003; 

Pizzagalli, Regard & Lehmann, 1999).  Examination of grand averages indicated that they also did so 

here.  Three-way, repeated measures Analysis of Variance (ANOVA) was carried out on the P1 and 

N170 peak amplitude values as a function of the within-subjects variables of valence (positive, 

neutral, and negative), stimulus manipulation (basic and morph), and side (left and right). 

Source Localization Analysis 

Source localization was performed on the pre-processed EEG data using GeoSource software, 

v2.0 (Electrical Geodesics, Inc., Eugene, OR).  A standard, coregistered set of electrode positions 

was applied to a finite difference head model.  Sources were then calculated under the sLORETA 

constraint with a Tikhonov regularization of 1 x 10-2 using a distributed inverse solving solution, 

which possesses a lower false error rate than minimum norm estimation (MNE).  The source space 

was restricted to 2,447 cortical voxels that were each assigned to a gyrus on the basis of the Montreal 

Neurological Institute (MNI) probabilistic atlas.  Based on previous findings, the P1 and N170 

activation intensities (nA) for the amygdala, fusiform gyri, inferior occipital gyri, lingual gyri, orbital 

gyri, parahippocampal gyri, posterior cingulate cortex, rectal gyri, subcallosal gyri, and uncus were 

extracted (Blau, Maurer, Tottenham & McCandliss, 2007; Pizzagalli, Regard & Lehmann, 1999; 
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Posner, Russell & Peterson, 2005).  Three-way, repeated measures ANOVA was carried out on the 

activation values of these regions as a function of the within-subjects variables of valence (positive, 

negative, and neutral), stimulus manipulation (basic and morph), and hemisphere (left and right). 

Results 

Subjective Valence Ratings and Response Times 

ANOVA was carried out on participant’s mean valence ratings as a function of the within-

subjects variable of valence, which was computed by collapsing the eleven emotion facial expression 

categories into the six valence categories.  There were significant differences in valence ratings 

among the six collapsed categories, F(5,80) = 284.00, MSE = 0.12, p < .01 (see Figure 3).  

Consistent with the research hypothesis, positive basic facial expressions (M = 5.44, SD = 0.53) and 

positive morph facial expressions (M = 5.36, SD = 0.65) did not differ significantly in their valence 

ratings, t(16) = -1.15, p = .269, and were rated as significantly more positive than other valence 

categories of facial expressions; neutral basic facial expressions (M = 3.70, SD = 0.32) and neutral 

morph facial expressions (M = 3.6, SD = 0.52) did not differ significantly in their valence ratings, 

t(16) = 0.93, p = 0.37, and were rated a significantly less positive than positive valence facial 

expressions but more positive than negative valence facial expressions; and both negative basic facial 

expressions (M = 2.2, SD = 0.30) and negative morph facial expressions (M = 2.39, SD = 0.32) were 

rated as significantly more negative than the other valence categories of facial expressions (df = 16, p 

< .01 for all t-tests).  Though negative morph facial expressions were rated more positively than 

negative basic facial expressions, t(16) = -3.60, p = .002, the difference in ratings was very small (~ 

0.19) and the ratings for both valence categories still fell within the “slightly negative” to “negative” 

range. 

A paired-samples t-test was carried out on participant’s mean response times for basic and 

morph facial expression stimuli.  Consistent with the hypothesis, there was a significant difference in 
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response times as a function of stimulus manipulation, t(1,17) = -3.315, p = .004, such that 

participants responded more slowly to morph facial expressions (M = 2066.81 milliseconds, SD = 

751.35 milliseconds) than to basic facial expressions (M = 1875.41, SD = 653.56). 

 
Figure 3.  Mean valence ratings 
based on a seven-point scale (1 = 
very negative; 7 = very positive) 
for both basic facial expressions 
(blue dotted line) and morph facial 
expressions (green solid line) as a 
function of valence category 
(positive, neutral, and negative).  
Positive basic and positive morph 
(positive-positive) facial 
expressions received more positive 
ratings than the other valence 
categories; neutral basic and 
neutral morph (positive-negative) 
facial expressions received more 
negative ratings than positive 
valence categories and more 
positive ratings than negative 
valence categories; negative basic 
and negative morph (negative-
negative) facial expressions 
received more negative ratings 
than the other valence categories. 

 

 

 
Event-Related Potential Difference Waves 

Three-way, repeated measures ANOVA was carried out on the P1 peak amplitude values (see 

Table 1) and N170 peak amplitude values (see Table 2) as a function of the within-subjects variables 

of valence (positive x neutral x negative), stimulus manipulation (basic x morph), and side (left x 

right).  In order to rule out extraneous effects on peak amplitude values, three-way, repeated 

measures ANOVA was also carried out on P1 and N170 peak latencies. 

 P1 Amplitude.  Consistent with the hypothesis that the P1 ERP reflects early-latency valence 

processing, there was a significant main effect of valence on P1 peak amplitude values, F(2,34) = 

5.81, MSE = 0.96, p = .007, such that negative valence stimuli (M = 1.35 µV, SD = 0.70 µV) elicited 
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significantly higher peak amplitude values than positive valence stimuli (M = 0.90 µV, SD = 0.74 

µV), t(17) = -2.74, p = .014.  Additionally, neutral valence stimuli (M = 1.13 µV, SD = 0.67 µV) 

elicited marginally lower peak amplitude values than negative valence stimuli, t(17) = -1.93, p = .070, 

and marginally higher peak amplitude values than positive valence stimuli, t(17) = -1.84, p = .083. 

Peak P1 amplitude values revealed no other significant main effects or two-way interactions between 

within-subjects variables. 

Consistent with the hypothesis that morphing manipulations would influence valence 

processing, the three-way interaction between valence, stimulus manipulation, and side was 

significant as well, F(2,34) = 4.92, MSE = 1.40, p = .013.  Follow-up ANOVAs for left- and right-

side P1 amplitude values as a function of valence and stimulus manipulation revealed no significant 

effects within the left electrode cluster and no significant main effect of stimulus manipulation 

within the right electrode cluster.  In keeping with the significant main effect of valence on P1 peak 

amplitude values though, a follow-up ANOVA for right-side P1 amplitude values again revealed a 

significant effect of valence, F(2,34) = 4.89, MSE = 1.18, p = .014, such that negative valence stimuli 

(M = 1.50 µV, SD = 1.29 µV) elicited significantly higher peak amplitude values than positive 

valence stimuli (M = 1.02 µV, SD = 1.29 µV), t(17) = -2.25, p = .038.  Neutral valence stimuli (M = 

1.27 µV, SD = 1.18 µV), however, elicited peak amplitude values that did not differ from positive or 

negative peak amplitude values.  There was also a significant interaction between valence and 

stimulus manipulation, F = (2,34) = 4.60, MSE = 1.80, p = .017 (see Figure 4).  Post-hoc t-tests for 

the interaction effect revealed that positive morph facial expressions elicited significantly lower peak 

amplitude values than all other valence categories and that negative morph facial expressions elicited 

significantly higher peak amplitude values than the other two morph valence facial expressions.  

Accordingly, negative morph facial expressions elicited the highest right-side P1 peak amplitude 

values, followed by neutral morph facial expressions, and then by positive morph facial expressions.  
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While valence effects on P1 peak amplitude values appeared between morph facial expressions (as 

well as between basic and morph facial expressions), no valence effects appeared between basic 

facial expressions.  The three-way interaction thus primarily reflected significant valence effects on 

the right-side P1 peak amplitude values for morph facial expressions. 

Table 1 
Mean P1 Amplitude Values (in µV) as a Function of Valence Category 

 Left Side Right Side Both Sides 

Valence Category Mean SD Mean SD Mean SD 

Positive Basic 0.62 0.68 1.31 1.28 0.96 0.70 

Positive Morph 1.08 0.96 0.44 1.75 0.76 0.99 

Neutral Basic 0.93 0.96 1.69 1.72 1.31 1.07 

Neutral Morph 1.01 0.69 1.16 1.19 1.09 0.68 

Negative Basic 1.24 0.72 1.19 1.26 1.22 0.73 

Negative Morph 1.10 0.97 2.12 2.27 1.61 1.16 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Averaged right-side P1 peak amplitude values for both basic facial expressions (blue dotted line) and morph 
facial expressions (green solid line) as a function of valence category (positive, neutral, and negative).  The interaction 
between valence, stimulus manipulation, and side largely reflects significant valence effects on the right-side P1 peak 
amplitude values for morph facial expressions. 
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 P1 Latency.  Consistent with the findings from Balconi and Lucchiari’s (2005) study on 

structural morphing of facial expressions, there were no significant main effects or interaction 

effects of valence, stimulus manipulation, and side on P1 latency values.  The clustering of peak P1 

latency values at approximately 108 milliseconds post-stimulus indicates that early-latency processing 

of emotional facial expressions follows a similar timeline across valence categories. 

 N170 Amplitude.  Consistent with Bruce and Young’s (1986, 1998) model of facial processing, 

there were no significant main effects (valence: F(2,34) = 1.62, MSE = 1.26, p = .212; stimulus 

manipulation: F(1,17) = 0.21, MSE = 1.30, p = .652; side: F(1,17) = 0.31, MSE = 7.44, p = .582) and 

no two-way interactions of valence and stimulus manipulation, F(2,34) = 0.38, MSE = 0.89, p = 

.689, or stimulus manipulation and side, F(1,17) = 2.16, MSE = 0.45, p = .160, on N170 peak 

amplitude values.  There was a significant interaction between valence and side, F(2,34) = 3.80, MSE 

= .924, p = .032, but post-hoc t-tests revealed no significant effect of side on valence conditions; the 

absence of simple effects suggests that any differences resulting in an interaction were negligible.  

Inconsistent with the hypothesis that valence and structural processing are independent processes, 

though, the three-way interaction between valence, stimulus manipulation, and side was significant, 

F(2,34) = 3.68, MSE = 1.16, p = .036.  Follow-up ANOVAs for left-side N170 amplitude values as 

a function of valence and stimulus manipulation revealed no significant main or interaction effects.  

For right-side N170 amplitude values, there also was no significant effect of stimulus manipulation 

and no significant interaction effect between valence and stimulus manipulation.  A follow-up 

ANOVA for right-side N170 amplitude values, though, revealed a marginally significant effect of 

valence, F(2,34) = 3.28, MSE = 1.64, p = .050 (see Figure 5).  Post-hoc t-tests for right-side N170 

peak amplitude values showed that negative morph facial expressions elicited significantly lower 

peak amplitude values than all other valence categories.  Similar to the valence, stimulus 

manipulation, and side interaction found for P1 peak amplitude values, the N170 interaction 
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predominantly reflected significant valence effects on the right-side peak amplitude values; however, 

whereas P1 valence effects were found for positive, neutral, and negative morph facial expressions, 

N170 valence effects were only found for negative morph facial expressions. 

Table 2 
Mean N170 Amplitude Values (in µV) as a Function of Valence Category 

 Left Side Right Side Both Sides 

Valence Category Mean SD Mean SD Mean SD 

Positive Basic -2.08 1.65 -2.08 1.72 -2.08 1.39 

Positive Morph -1.68 2.03 -2.49 2.11 -2.08 1.67 

Neutral Basic -1.64 1.78 -2.41 2.13 -2.03 1.46 

Neutral Morph -1.91 1.75 -2.17 1.59 -2.02 1.45 

Negative Basic -1.76 1.40 -2.01 1.64 -1.88 1.33 

Negative Morph -2.08 2.28 -1.23 1.98 -1.65 1.97 

 

 

Figure 5.  Averaged right-side N170 peak amplitude values for both basic facial expressions (blue dotted line) and 
morph facial expressions (green solid line) as a function of valence category (positive, neutral, and negative).  The 
interaction between valence, stimulus manipulation, and side largely reflects significant valence effects on the right-side 
N170 peak amplitude values for negative morph facial expressions. 
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 N170 Latency.  Consistent with previous research, there were no significant main effects or 

interaction effects of valence, stimulus manipulation, and side on N170 latency values (Balconi and 

Lucchiari, 2005).  The clustering of peak N170 latency values at approximately 164 milliseconds 

post-stimulus again demonstrates that processing of emotional facial expressions follows a similar 

timeline regardless of stimulus valence. 

Source Localization 

In order to localize the source of P1 and N170 activity, the average dipole strength was 

determined for all cortical gyri.  Substantial gyral activation occurred within reported structural and 

emotional face processing neural networks.  For both the P1 ERP at 108 milliseconds post-stimulus 

and the N170 ERP at 164 milliseconds post-stimulus, source localization revealed the greatest dipole 

activation within the limbic lobes (amygdala, parahippocampal gyri, posterior cingulate, and uncus), 

the frontal lobes (orbital gyri, rectal gyri, and subcallosal area), the occipital lobes (inferior occipital 

gyri and lingual gyri), and the fusiform gyri.  Previous research has emphasized the role of the 

amygdala, fusiform gyri, inferior occipital gyri, orbital gyri, parahippocampal gyri, posterior cingulate, 

and uncus in emotional facial expression processing (Adolphs, 2002a; Adolphs, 2003; Adolphs, 

Damasio, Tranel & Damasio, 1996; Jehna et al., 2011; Lane et al., 1997; Whalen, Rauch, Etcoff, 

McInerney, Lee & Jenike, 1998).  Subsequent analysis accordingly evaluated the P1 and N170 dipole 

strength values within these seven regions as a function of valence (positive, neutral, and negative), 

stimulus manipulation (basic and morph), and hemisphere (left and right). 

P1 Regions of Activation.  Consistent with evidence that the amygdala, fusiform gyri, 

parahippocampal gyri, and uncus are involved in processing of emotional facial expressions, dipole 

strength values within these regions revealed a significant main effect of valence approximately 108 

milliseconds post-stimulus (amygdala: F(2,34) = 3.67, MSE = 22.68, p = .036; fusiform gyri: F(2,34) 

= 4.09, MSE = 13.17, p = .026; parahippocampal gyri: F(2,34) = 4.42, MSE = 17.21, p = .020; 
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uncus: F(2,34) = 3.74, MSE = 27.16, p = .034).  Consistent with evidence that the amygdala and 

uncus are involved in the processing of fear, amygdala and uncus dipole strength values for negative 

facial expressions were significantly greater than those for positive facial expressions, t(17) = -2.81, p 

= .012 and t(17) = -2.52, p = .022, respectively.  Similarly, dipole strength values within the fusiform 

gyri for negative facial expressions were significantly greater than those for positive facial 

expressions, t(17) = 2.58, p = .019.  Dipole strength values for neutral facial expressions fell between 

did not differ from those for positive or negative facial expressions within the amygdala, fusiform 

gyri, and uncus, though.  Within the parahippocampal gyri, dipole strength values for positive facial 

expressions were significantly lower than those for neutral facial expressions and negative facial 

expressions, t(17) = -2.18, p = .044 and t(17) = -2.91, p = .010, respectively.  No other significant 

main effects or two-way interactions between valence, stimulus manipulation, and hemisphere were 

found within these regions. 

Dipole strength values within the fusiform gyri and uncus did reveal three-way interactions 

between valence, stimulus manipulation, and hemisphere (fusiform gyri: F(2,34) = 3.52, MSE = 

4.85, p = .041; uncus: F(2,34) = 8.20, MSE = 9.81, p = .001).  Follow-up ANOVAs for left-and 

right-hemisphere dipole values as a function of valence and stimulus manipulation revealed a left-

hemisphere main effect of valence within the fusiform gyri and uncus (fusiform gyri: F(2,34) = 5.99, 

MSE = 6.23, p = .006; uncus: F(2,34) = 3.54, MSE = 20.21, p = .040), such that dipole strength 

values for negative facial expressions were significantly greater than those for positive facial 

expressions, t(17) = -3.62, p = .002 and t(17) = 2.40, p = .028 respectively.  Additionally, there was a 

significant right-hemisphere interaction between valence and stimulus manipulation within the 

uncus, F(2,34) = 1.06, MSE = 17.85, p = .358, such that dipole strength values were greatest for 

negative morph facial expressions, followed by positive morph facial expressions, and then neutral 
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morph facial expressions.  There were no other significant main effects or interaction effects within 

the left- and right-hemispheres of the fusiform gyri and uncus.   

The inferior occipital gyri, orbital gyri, and posterior cingulate revealed a significant main effect 

of hemisphere approximately 108 milliseconds post-stimulus (inferior occipital gyri: F(1,17) = 4.54, 

MSE = 12.48, p = .048; orbital gyri: F(1,17) = 35.66, MSE = 6.32, p < .001; posterior cingulate: 

F(1,17) = 4.51, MSE = 7.13, p = .049).  Consistent with evidence that facial expression processing 

primarily occurs within the right hemisphere, post-hoc t-tests revealed greater dipole strengths 

within the right hemisphere as compared to the left hemisphere (inferior occipital gyri: t(17) = -2.13, 

p = .048; orbital gyri: t(17) = -5.98, p < .001; posterior cingulate: t(17) = -2.12, p = .049).  No other 

significant main effects or interactions between valence, stimulus manipulation, and hemisphere 

were found within these regions. 

N170 Regions of Activation.  Consistent with the Bruce and Young’s (1986, 1998) model of 

facial processing, there were no significant main effects or interaction effects of valence, stimulus 

manipulation, and hemisphere on the N170 dipole strength values within the amygdala, fusiform 

gyri, posterior cingulate, and uncus approximately 164 milliseconds post-stimulus.  Consistent with 

evidence that facial expression processing primarily occurs within the right hemisphere, the inferior 

occipital gyri and orbital gyri revealed a significant main effect of hemisphere (inferior occipital gyri: 

F(1,17) = 11.56, MSE = 8.06, p = .003; orbital gyri: F(1,17) = 6.12, MSE = 0.02, p = .024), such that 

dipole strength was greater in the right hemisphere than in the left hemisphere for both regions, 

t(17) = -3.40, p = .003 and t(17) = -2.48, p = .024 respectively.  There was also a significant main 

effect of stimulus manipulation within the parahippocampal gyri, F(1,17) = 5.09, MSE = 11.09, p = 

.038, such that dipole strength values were greater for morph facial expressions (M = 5.48 nA, SD = 

1.98 nA) than for basic facial expressions (M = 4.46 nA, SD = 1.72 nA), t(17) = -2.25, p = .038.  As 

N170 peak amplitude values revealed an effect of negative morph facial expressions that was 
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conspicuously absent within the current source localization results, an additional analysis was 

conducted in order to compare activation of the mesolimbic dopamine system with surrounding 

gyri.  Dipole strength was significantly greater within mesolimbic dopamine system (i.e., amygdala, 

cingulate gyri, fusiform gyri, hippocampal gyri, orbitofrontal gyri, parahippocampal gyri; M = 3.30 

nAmp meters, SD = 0.82 nAmp meters) than the surrounding gyri (i.e., angular gyri, cuneus, inferior 

frontal gyri, temporal and parietal gyri, lingual gyri; M = 1.73 nAmp meters, SD = 0.58 nAmp 

meters), t(17) = 11.90, p < .001. 

Discussion 

Methodological Findings 

The present study’s morphing manipulations appear to have disrupted overlearned, automatic 

responses to specific basic emotions while retaining more general processing of facial expression 

valence (Balconi & Lucchiari, 2005).  Schweinberger, Burton and Kelly (1999) have established that 

emotion classification speed is slowed for ambiguous stimuli morphed midway between basic 

emotional categories supports this theory.  As similar morphing manipulations were used in the 

present investigation, the slowed behavioral response times for morph facial expression stimuli 

compared to basic facial expression stimuli may reflect increased difficulty in processing the 

unfamiliar emotion patterns of the morph stimuli.  At the same time, the similar P1 and N170 ERP 

latencies across valence categories suggest that morphing manipulations did not disrupt more 

general early-latency valence processing (i.e., valence and structural processing approximately 108 to 

164 milliseconds post-stimulus) of morph facial expression stimuli as compared with basic facial 

expression stimuli.  Thus, valence processing appears to have been maintained and discrete 

processing of emotions disrupted within morph emotional facial expression stimuli. 

The morph facial expressions also appear to have successfully retained the structure and valence 

properties of basic facial expression stimuli.  Basic and morph emotional facial expressions did not 
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differ in terms of valence ratings: positive basic and morph facial expressions were rated more 

positively than other valence categories; negative basic and morph facial expressions were rated 

more negatively than other valence categories; and neutral basic and morph facial expressions 

received valence ratings that fell between those for positive and negative facial stimuli.  As concerns 

structural properties of the morph stimuli, coherence between the salient structures of basic and 

morph facial expression stimuli was established through digital editing of the morph emotional facial 

expression stimuli.  Further, N170 ERP amplitude values, which have been associated with the 

structural processing of facial expressions, did not vary between basic and morph facial expression 

stimuli.  An effect of stimulus manipulation was found for the N170 dipole strength values within 

the parahippocampal gyri, which are primarily associated with familiarity-based memory 

discrimination (Yonelinas et al., 2002).  Thus, the effect of stimulus manipulation within this region 

likely reflects differential familiarity processing of basic and morph facial expressions and not 

differential structural processing.  Taken collectively, these findings suggest that basic and morph 

facial expressions retained similar structural and valence properties but that morphing manipulations 

altered or delayed processing of discrete emotions (Balconi & Lucchiari, 2005; Balconi & Pozzoli, 

2003). 

ERP Findings 

The familiarity of basic emotional facial expressions allows individuals to rapidly identify discrete 

emotions and categorize affect (LeDoux, 1995; Russell, 1980).  Because morphing facial expressions 

renders them unfamiliar to participants, it was hypothesized that morph emotional stimuli would 

disrupt overlearned emotional identification to reveal a valence response independent of specific 

identifiable emotions for the affect-sensitive P1 ERP but not for the structural-sensitive N170 ERP. 

Effects of Morphing and Valence on P1 Peak Amplitude.  Consistent with this hypothesis, 

ERP findings within the current study revealed the presence of early-latency valence effects on 
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emotional facial expression processing (i.e., the P1 ERP) for morph stimuli but not for basic stimuli.  

Scalp-recorded ERPs approximately 108 milliseconds post-stimulus revealed a significant main 

effect of valence, such that negative valence stimuli elicited significantly higher P1 peak amplitude 

values than positive valence stimuli (see Figure 6).  Findings further revealed significantly higher 

right-side peak amplitude values for negative morph facial expressions than other morph facial 

expressions as well as significantly lower right-side peak amplitude values for positive morph facial 

expressions than other morph facial expressions (see Figure 7; top row).  As there were no simple 

main effects for basic facial expression stimuli, the significant main effect of valence and three-way 

interaction between valence, stimulus manipulation, and side likely reflect valence effects for the 

processing of morph emotional facial expressions.  Thus, the processing of valence categories for 

morph but not basic facial expressions preceded previously established latencies for processing of 

other facial expression codes (i.e., the N170 ERP; Adolphs, 2002b).  These results establish the 

early-latency processing of valence in emotional facial expressions as well as the valence-modulating 

effects of morphing manipulations. 

 

Figure 6.  Topographic maps of basic emotional facial expression (top row) and morph emotional facial expression 
(bottom row) P1 ERPs for the three valence categories (from left to right: positive, neutral, and negative).  Colors at the 
low end of the spectrum (i.e., purple and blue) represent low voltage values; colors at the high end of the spectrum (i.e., 
red, orange, and yellow) represent high voltage values; corresponding colors within the spectrum (i.e., green) represent 
intermediate values. 
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Emotional Modulation of N170 Peak Amplitude.  Valence effects appear to have modulated 

subsequent processing of other facial expression codes as well.  According to the two-stage model of 

face processing, the face-sensitive N170 ERP component reflects solely the structural encoding of 

facial expressions (Eimer, 2000; Eimer & Holmes, 2002; Liu, Harris & Kanwisher, 2002).  

Inconsistent with this model, scalp-recorded ERPs approximately 164 milliseconds post-stimulus 

revealed significantly lower right-side peak amplitude values for negative morph facial expressions 

than other morph facial expressions (see Figure 7).  In keeping with the current finding, though, 

more recent evidence has suggested that the N170 may be modulated by emotional facial 

expressions (Batty & Taylor, 2003).  For instance, Blau, Maurer, Tottenham and McCandliss (2007) 

found that N170 peak amplitude values for fear facial expressions significantly differed from peak 

amplitude values for neutral facial expressions.  The present findings thus refute theories for discrete 

processing systems of facial codes and instead suggest a continuation of the negative valence effects 

from the P1 processing stage. 

 

 

Figure 7.  Topographic maps of basic emotional facial expression (top row) and morph emotional facial expression 
(bottom row) N170 ERPs for the three valence categories (from left to right: positive, neutral, and negative).  Colors at 
the low end of the spectrum (i.e., purple and blue) represent low voltage values; colors at the high end of the spectrum 
(i.e., red, orange, and yellow) represent high voltage values; corresponding colors within the spectrum (i.e., green) 
represent intermediate values. 
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ERP Patterns for Basic Emotional Facial Expressions.  Within the current study, the P1 

and N170 ERPs revealed non-significant effects of valence for positive, neutral, and negative basic 

facial expressions.  Inconsistent with these findings, recent ERP research has established early-

latency differences between emotional and non-emotional facial expressions.  These divergent 

results may have stemmed from methodological differences between the current investigation and 

past emotional facial expression processing studies.  For instance, Eimer and Holmes (2002) 

determined that emotional facial expressions elicited greater P1 peak amplitude values than non-

emotional facial expressions using two facial expressions (i.e., afraid and neutral).  Accordingly, the 

absence of such an effect within the present investigation may have resulted from the use of several 

types of basic emotional facial expressions, which ranged in valence and arousal.  The use of only 

one emotional facial expression in Eimer and Holmes’s (2002) study may have resulted in 

sensitization to the discrete emotional properties of the fear stimuli.  More specifically, sensitization 

may have reduced the processing of basic emotional facial expressions to produce an enhanced 

response to the negative valence of fear facial expressions.  Within the current study, the inclusion 

of several types of basic emotional facial expressions may have prevented sensitization to specific 

basic emotional expressions, resulting in null valence effects.  Previously collected ERP responses to 

discrete basic facial expressions should be further explored to test this hypothesis. 

Enhanced Responses to Negative Morph Stimuli.  Enhanced processing of negative stimuli 

has appeared consistently through the emotional processing literature (Ashley, Vuilleumier & Swick, 

2003; Balconi & Pozzoli, 2003; Blau, Maurer, Tottenham & McCandliss, 2007; Batty & Taylor, 2003; 

Eimer & Holmes, 2002).  It has been theorized that such an automatic and rapid response to 

emotionally salient, negative stimuli acts as a human safeguard, facilitating the survival of the human 

species through immediate and appropriate reaction to potential threats (Ellsworth & Scherer, 2003).  

The enhanced processing of negative morph facial expressions for both P1 and N170 ERPs within 
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the current study supports this theory that negative stimuli provoke adaptive and automatic 

responses.  Further, the P1 response revealed a progressive decrease in right-side P1 peak amplitude 

values when shifting from negative to positive valence (i.e., negative morph facial expression stimuli 

elicited higher right-side P1 peak amplitude values than neutral morph facial expression stimuli, 

which elicited higher right-side P1 peak amplitude values than positive morph facial expression 

stimuli).  Thus, the current P1 and N170 ERP results illustrate early-latency valence effects on 

emotional facial expression processing, particularly as concerns negative morph facial expressions, 

that modulate subsequent processing of other facial codes. 

Source Localization Findings 

Previous research has linked facial processing to the inferior occipital cortices and fusiform gyri 

and has linked emotional processing to the mesolimbic dopamine system (Adolphs, 2002a; Adolphs, 

2003; Allison, Puce & McCarthy, 2000; Haxby, Hoffman & Gobbini, 2000; Jehna et al., 2011; 

Kanwisher, McDermott & Chunn, 1997; Lane et al., 1997; Posner, Russell & Peterson, 2005; 

Whalen, Rauch, Etcoff, McInerney, Lee & Jenike, 1998).  In keeping with these findings, substantial 

gyral activation occurred within the limbic lobes (amygdala, posterior cingulate cortex, 

parahippocampal gyri, and uncus), the frontal lobes (orbital gyri, rectal gyri, and subcallosal area), the 

occipital lobes (inferior occipital gyri and lingual gyri) and the fusiform gyri between 100-200 

milliseconds post-stimulus presentation.  Accordingly, activation of regions within the mesolimbic 

dopamine during this early-latency time frame were taken to illustrate that emotional properties of 

the facial expression stimuli were being encoded. 

P1 Regions Involved in Valence Processing. Of the active P1 regions, the amygdala, fusiform 

gyri, parahippocampal gyri, and uncus revealed significant valence effects (see Figure 8).  Specifically, 

dipole strength within the amygdala, parahippocampal gyri and uncus was significantly greater in 

response to negative facial expressions than positive facial expressions.  Additionally, dipole strength 
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within the parahippocampal gyri was significantly greater in response to neutral facial expressions 

than positive facial expressions.  These findings are consistent with the valence effects found for P1 

peak amplitude values, which significantly distinguished between negative and positive valence 

stimuli and marginally distinguished between neutral and positive valence stimuli.  Further, the 

amygdala as well as the adjacent parahippocampal gyri and uncus have been implicated in emotional 

facial expression processing, particularly in the recognition of threat-related stimuli and acquisition 

of fear-conditioned responses (Adolphs, 2002b; Anderson, Christoff, Panitz, De Rosa & Gabrieli, 

2003; Armony & LeDoux, 2000; Morris, Ohman & Dolan, 1998; Morris, deBonis & Dolan, 2002; 

LeDoux, 1992; Vuilleumier, Armony, Driver & Dolan, 2001).  Thus, the established roles of these 

three regions in processing threat-related stimuli correspond to the present activation patterns of 

valence processing within these three brain regions.   

The fusiform gyri also revealed greater activation in response to negative facial expressions than 

positive facial expressions.  Breiter et al. (1996) found that emotional expressions elicited increased 

fusiform activation in comparison with neutral faces, suggesting that fusiform activation may result 

from increased attention to emotional aspects of the stimuli via back projections from other regions, 

such as the amygdala and portions of the temporal lobe (Kesler/West et al., 2001).  Similarly, within 

the current study, fusiform activation coincided temporally with activation of the amygdala and 

parahippocampal gyri, implicating the fusiform gyri in a nearly simultaneous feedback circuit with 

other valence processing regions. Further, dipole strength within the fusiform face area was greater 

for negative and positive morph facial expressions than for neutral facial expressions.  The finding 

that emotional morphs elicited greater fusiform activity than neutral morphs is consistent with 

Breiter et al.’s (1996) proposal that activity within the fusiform gyri reflects increased attention to 

emotional aspects of the stimuli; these findings are also consistent with theories and evidence of 

enhanced processing for negative stimuli, as negative stimuli was consistently elicited greater activity 
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within the left and right fusiform gyri (Ashley, Vuilleumier & Swick, 2003; Balconi & Pozzoli, 2003; 

Blau, Maurer, Tottenham & McCandliss, 2007; Batty & Taylor, 2003; Eimer & Holmes, 2002).  

Accordingly, the amygdala, fusiform gyri, parahippocampal gyri, and uncus – all found within the 

medial temporal lobe – were associated with rapid valence processing of emotional facial 

expressions, especially expressions of negative valence. 

Dispersed N170 Activity.  By contrast, source localization of the N170 ERPs revealed no 

effect of valence.  The presence of a valence effect on N170 ERPs and the absence of such an effect 

with source localization suggests that the significant ERP findings reflected a widespread, enhanced 

response to negative facial expression stimuli that was dispersed throughout the mesolimbic 

dopamine system and fusiform gyri – as opposed to the P1 response, which was largely concentrated 

within the amygdala, fusiform gyri, and parahippocampal gyri.  The enhanced dipole strength values 

for regions of the mesolimbic dopamine system as compared with gyral regions directly surrounding 

the mesolimbic dopamine system confirmed this widespread effect. 

Right Hemisphere Lateralization.  Hemispheric effects were found for P1 and N170 dipole 

strength values within the inferior occipital gyri, orbital gyri, and posterior cingulate. Consistent with 

previous ERP and imaging research, these regions elicited significantly greater activation in response 

to negative facial expressions as compared to positive facial expressions (Adolphs, Damasio, Tranel 

& Damasio, 1996; Batty & Taylor, 2003; Balconi & Lucchiari, 2007; Kesler/West et al., 2001; 

Pizzagalli, Regard & Lehmann, 1999).  Thus, these lateralization findings add to evidence of a right-

hemisphere advantage in the processing of facial expressions and, further, establish an early-latency 

right-hemisphere advantage during the valence processing of emotional facial expressions. 

Source Localization Overview.  In sum, source localization results converged with current 

ERP findings and previous imaging research.  Early-latency processing peaking approximately 108 

milliseconds post-stimulus within the amygdala, fusiform gyri, parahippocampal gyri, and uncus 
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appeared highly involved in valence processing.  Those effects of early-latency valence processing 

then carried through and dispersed in subsequent processing of the facial expression stimuli 

throughout the mesolimbic dopamine system and fusiform gyri at approximately 164 milliseconds 

post-stimulus. 

Conclusion 

This investigation has demonstrated that early-latency processing of emotional facial expressions 

distinguishes between valence categories of morph facial expression stimuli but not between valence 

categories of basic facial expression stimuli.  In particular, the valence effect is reflected in an early 

modulation of the P1 ERP, such that negative morph facial expressions enhance valence processing 

as compared to neutral and positive morph facial expressions.  Additionally, contrary to the two-

stage model of face processing, valence processing of negative morph facial expressions continued 

to modulate the later N170 ERP, which has previously been exclusively linked to structural 

processing of facial expressions.  These findings are consistent with accounts that a rapid encoding 

system sensitive to the valence of emotional facial expressions modulates facial processing; and 

further, that this cannot be seen when the stimulus is a familiar specific emotion (i.e., a basic 

emotional facial expression).  

Future Research 

While the current investigation established early-latency effects of valence on emotional facial 

expression processing, future facial processing research should investigate early-latency emotional 

processing with respect to the ‘functional model’ (Smith & Lazarus, 1990), which includes the 

previously explored valence dimension as well as an arousal dimension.  This model provides a more 

comprehensive picture of early-latency emotional processing of facial expressions because, within 

this model, “each emotional expression represents a subject’s response to a particular kind of 

significant event – a particular kind of harm or benefit – that motivates coping activity” (Balconi & 



MORPHING EFFECTS ON EARLY-LATENCY VALENCE PROCESSING                           36 

Pozzoli, 2003, p. 69).  While the valence dimension explains appetitive and aversive responses to 

positive and negative facial expressions, the dimension of arousal better explains the immediacy of 

viewers’ responses to particularly alarming stimuli.  For instance, negative high-arousal emotions 

(i.e., anger and fear) are expressions of a threatening situation requiring an active response, whereas 

negative low-arousal emotions (e.g., sadness) are expressions of a negative situation but do not 

require an active response.  Accordingly, the hedonic value (valence) and power (arousal) of 

emotional facial expressions should influence both physiological and psychological early-latency 

emotional responses.  The challenge in separating valence and arousal, though, will lie in finding 

positive facial expression stimuli that generate as much arousal as the strongest negative facial 

expression stimuli.
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Figure 8.  Clusters of substantial P1 activations (yellow > orange > red) for the following valence conditions (with 
dipole strength intensity and MNI coordinates): a) positive basic facial expressions revealed greatest activation within the 
left uncus (5.67 nA at -24x3x-34), b) positive morph facial expressions revealed greatest activation within the right 
middle temporal gyrus (5.00 nA at 39x3x-41), c) neutral basic facial expressions revealed greatest activation within the 
right fusiform gyrus (5.13 nA at 39x-39x-27), d) neutral morph facial expressions revealed greatest activation within the 
left uncus (8.17 nA at -24x3x-34), e) negative basic facial expressions revealed greatest activation within the right middle 
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temporal gyrus (8.46 nA at 39x3x-41), and f) negative morph facial expressions revealed greatest activation within the 
right fusiform gyrus (10.66 nA at 32x-53x-20). 
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