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Population estimation in inter-censual years has many important 

applications.  In this research, high-resolution pan-sharpened IKONOS image, 

LiDAR data, and parcel data are used to estimate small-area population in the 

eastern part of the city of Denton, Texas. Residential buildings are extracted 

through object-based classification techniques supported by shape indices and 

spectral signatures. Three population indicators –building count, building volume 

and building area at block level are derived using spatial joining and zonal 

statistics in GIS. Linear regression and geographically weighted regression 

(GWR) models generated using the three variables and the census data are 

used to estimate population at the census block level. The maximum total 

estimation accuracy that can be attained by the models is 94.21%. Accuracy 

assessments suggest that the GWR models outperformed linear regression 

models due to their better handling of spatial heterogeneity. Models generated 

from building volume and area gave better results. The models have lower 

accuracy in both densely populated census blocks and sparsely populated 

census blocks, which could be partly attributed to the lower accuracy of the 

LiDAR data used. 
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CHAPTER 1 

INTRODUCTION 

Significance of Population Estimation 

The distribution of human population has been identified as one of the key 

datasets for improved understanding of the impacts of human activities on 

economical and biological sustainability (Christopher et al., 1999).  Traditionally, 

across the world, census data provide information on population numbers and 

composition in a decennial basis which requires significant human, technological 

and fiscal resources. The decennial census of US is a depiction of national 

population on April 1 of the census year. In such rapidly growing nations, the 

population count in the decennial basis becomes unrepresentative as decade 

progresses. According to the United States Census Bureau, the city of Denton 

had a 2008 population estimate of 119,484 and was ranked in the top 25 of the 

fastest growing cities in the nation.   The city of Denton experienced an increase 

in growth from 2000 to 2008 at a rate of 48.3% compared with county and state 

rates of 47.0% and 16.7%, respectively.   

Modeling detailed small area population provides a key source for various 

applications including environmental, health and policy domain. Small area is 

defined as the subdivisions of the primary political divisions of a country. In 

United States, counties and their subdivisions are usually considered small 

areas, although some limit the term to sub county areas such as census tracts, 
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block groups and blocks and those areas that can be aggregated from these 

basic units.   

Estimating population of such small areas at various scales of space and 

time is a difficult task. Billions of dollars of federal funds are allocated to states 

and local entities based on population estimates, hence the significance of 

accurate population estimation.  

Building Extraction 

 Identifying residential buildings is considered one of the first steps in 

determining population estimates. Multispectral images provide us with spectral, 

textural information and other physical characteristics, but fail to include 

elevation information which is important for building extraction. Using high 

resolution satellite images along with digital elevation models (DEM), object 

extraction techniques were used to update the buildings of existing vector 

database by deriving three dimensional (3D) information from a pair of high 

resolution images (Koc and Turker, 2005), but it is found to be more complicated 

and recommended that the fusion with other data sources may reduce 

complexity in extraction and reconstruction of features (Suveg and Vosselman, 

2004).   

Extraction of buildings from remotely sensed data has been progressively 

developed over time especially with the increasing use of ancillary data. There 

has been a transition to 3D, object-oriented, hierarchical and multi-scale 

approaches and more attention has been given to object modeling (Baltsavias, 
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2004). Based on mathematical morphology, Vu et al. (2009) provided a multi-

scale solution to extract building features using mathematical morphology 

incorporating both elevation and multispectral data. The advanced 3D object 

extraction technique from LiDAR (light detection and ranging) data makes it 

easy to extract residential buildings from other land use types which lead to a 

better estimate of population by dwelling count method. Michaelsen et al. (2008) 

used stereo pairs of high resolution radar images for building extraction.  

Use of Ancillary Data 

 The use of elevation data alone or its fusion with other data sources has 

widely been used in feature extraction (George et al., 2008; Matei et al., 2008) 

and enhanced promising accuracies have been attained. Aerial images were 

used along with LiDAR elevation data to delineate residential buildings 

(Rottensteiner and Briese, 2003; Vosselman et al., 2005). Zeng et al. (2008) and 

Matei et al. (2008) tried to use just the LiDAR point clouds to discriminate 

building features from other features. A classification method is applied to extract 

buildings using multispectral (MS) imagery and laser altimeter data (Haala and 

Brenner, 1999). Haala and Brenner (1999) also used laser data and 2D ground 

plan information and obtained 3D reconstructions of buildings. Without using the 

ground plan information, Maas and Vosselman (1999) generated roof type 

specific building models with the help of laser altimetry data. LiDAR data is 

integrated with building footprints to visualize buildings (Alexander et al., 2009). 
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Object Based Classification 

 Object oriented classification seemed to have taken a prime position in 

the building extraction literatures published. Nearest neighbor object based 

classification is found to produce higher classification accuracy than the per pixel 

classification accuracy by 20% (Dehvari and Heck, 2009). Stow et al. (2007) 

tested two object based classification approaches, one based on spatial 

frequency characteristics of high resolution Quickbird multispectral image and 

other based on impervious soil sub objects to identify high and low socio-

economic status neighborhoods by delineating residential landuses. Gao et al. 

(2009) investigated the contribution of multi-temporal enhanced vegetation index 

(EVI) data for the improvement of object-based classification accuracy by using 

Multispectral Moderate Resolution Imaging Spectral Radiometer (MODIS) data. 

Traditional Methods for Population Estimation 

 The United States Census Bureau, in cooperation with state partners, 

provides inter-censal population estimates to support federal fund allocations.  

To comply, the Census Bureau has developed three principle methods (Hardin 

et al., 2007): 1) Ratio correlation procedures – using the ratio of symptomatic 

variable values for adjacent time periods as independent and dependent 

variables to estimate population. 2) Component-method II procedures – using 

registration data on births and deaths to estimate net migration with other 

administrative information. 3) Housing unit method – using the occupancy rate 

and average household size along with housing stock and flow derived from US 
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census of Bureau Survey of building permits and demolitions. Regardless of the 

method, Hardin et al. (2007) identified a few important factors to be considered: 

1) the purpose of population estimation, 2) the spatial scale and time period of 

the estimation location, 3) data availability and collection of any other ancillary 

data, 4) selection of appropriate regression method. 

Population Estimation using Remote Sensing and GIS 

Multispectral Image Sources 

As mentioned earlier, remotely sensed images provide alternative 

opportunities to estimate population in urban and suburban areas where 

population growth is alarming. Using remotely sensed data for estimating 

population started in the mid 1950s with the help of aerial photography. The 

dwelling units were counted from the aerial photographs in Liberia and multiplied 

by the number of occupants obtained from a ground survey (Porter, 1956). Since 

then, counting the dwelling units and estimating population based on average 

household size have been long used using large scale aerial photographs ( Lo, 

1986). This method works well for very small areas but when the model is used 

to estimate population for entire metropolitan region, it requires large number of 

aerial photographs and is very time consuming. 

After the wide availability of remotely sensed data from various platforms, 

images of various resolutions started to play a vital role in population estimation 

research. Hardin et al. (2007) summarizes four primary methods to estimate 

population using remotely sensed data 1) allometric population growth models 
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based on the measured residential area. 2) the use of dwelling unit type as a 

surrogate for family size. 3) the use of landuse type as a surrogate for the 

population density. 4) pixel based approached modeling population density as a 

function of spectral signatures and other remotely sensed parameters. High 

resolution aerial photographs are used to count the number of residential units 

and based on the household size, the population is estimated (Lo, 1986).  Using 

Geographic Information System (GIS) derived road measurements; Qiu et al. 

(2003) estimated population through regression models. From the literatures 

studied, regression analysis is found to be an applicable technique when 

employing remote sensing. Olorunfemi (1984) concluded that the functional 

relationship between population density and land type is promising and also 

examined the goodness of the regression models.  

Advanced transformed remote sensing variables including spectral, 

textural and temperature data have also been explored in estimating population 

(Li and Weng, 2005; Wu et al., 2005; Weber, 1994; Lo, 1995; Harvey, 2002a; 

Chen, 2002; Andrew et al., 2004). In addition, Harvey (2000) developed an 

innovative iterated regression procedure defined as dasymetric modeling to 

improve the predictive power of a regression model based on pixel spectral 

values. The use of light emission data as a proxy of population distribution and 

population density has also received growing attention (Briggs et al., 2006). 

Henderson et al. (1997) used Synthetic Aperture Radar (SAR) data for detecting 

settlement areas and estimating population. It is understood that so many 
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parameters obtained from remotely sensed data are used in one way or the other 

to estimate population by taking into account residential area indicators.  

 The gap identified in the pool of research works is that multiple remote 

sensing resources are not being used efficiently for population estimation. 

Although there are various research papers on using LiDAR data for 3D object 

extraction and multispectral data being used to estimate population,  integration 

of LiDAR data and high resolution satellite images for building extraction and 

population estimation remain limited (Zhou et al., 2004; Bork et al., 2007; Chen 

et al., 2008). Knowing that one research aspect may be an input to other 

research problem, this research work would attempt to use object based 

building extraction technique to support population estimation. 

Research Objectives 

The research objectives of this thesis are twofold: (1) to develop efficient 

and effective methods for building extraction from high resolution IKONOS 

images with the aid of LiDAR data and object-based classification methods; and 

(2) to evaluate accuracies of population estimation using variables derived from 

IKONOS, LiDAR, and parcel data through comparison with census 2000 data 

and generating linear regression and geographically weighted regression (GWR) 

models. 
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CHAPTER 2 

STUDY AREA AND DATA 

Study Area 

The study area is located in the eastern part of the city of Denton, Texas 

(Figure 1). According to the United States Census Bureau estimate, the 

population of Denton grew a drastic 48% in a 7 years span which named the city 

as the tenth fastest growing city in US which substantiates the importance on 

population estimation of such fast growing cities. Table 1 shows the population 

estimates of 2006 and 2007 for the 15 largest growing cities in US (US Census 

Bureau). The source substantiates that the city of Denton has a drastic growth of 

4.7% in just one year.  The area has about 8 census tracts, 30 census block 

groups and 764 census blocks covering about 132 Sq. Km.  
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Figure 1. Study area: Eastern part of the city of Denton, Texas. 
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Table 1 

Population Estimates of Growing US Cities 

Rank 
Geographic Area Population 

Estimates 
Change, 
2006 to 2007 

Place State 1-Jul-07 1-Jul-06 Number % 

1 New Orleans city Louisiana 239,124 210,198 28,926 13.8 

2 Victorville city California 107,221 97,926 9,295 9.5 

3 McKinney city Texas 115,620 107,075 8,545 8 

4 North Las Vegas city Nevada 212,114 197,573 14,541 7.4 

5 Cary town North Carolina 121,796 113,537 8,259 7.3 

6 Killeen city Texas 112,434 105,604 6,830 6.5 

7 Port St. Lucie city Florida 151,391 142,481 8,910 6.3 

8 Gilbert town Arizona 207,550 196,242 11,308 5.8 

9 Clarksville city Tennessee 119,284 113,873 5,411 4.8 

10  Denton City  Texas  115506  110304  5202  4.7  

Source: US Census Bureau 

Data 

The four datasets (shown in Figure 2) acquired for this study area are: 

(1) IKONOS images 

(2) Light detection and ranging data (LiDAR) 

(3) 2000 census and 

(4)  Parcel data 
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IKONOS 

The high resolution satellite image used in this research is IKONOS. 

Developed by Space Imaging, IKONOS was launched September 24, 1999. 

IKONOS is designed to occupy 682 km sun synchronous orbit at an inclination of 

98.1° with 98.3 minutes orbital period. IKONOS empl oys linear array technology 

and collects data in four multispectral bands including 450nm to 520nm (blue), 

510nm to 600nm (green), 630nm to 700nm (red) and 760nm to 850nm (near 

Infra Red) at a nominal resolution of 4m. It also incorporates a 1-m panchromatic 

band. The IKONOS image data for this study is acquired on January 3rd 2000, 

including a 1-m resolution panchromatic band and four 4-m resolution 

multispectral bands. 

Light Detection and Ranging (LiDAR) Data 

LiDAR is an active remote sensing technique that revolutionized the 

acquisition of digital elevation data for large scale mapping applications. A typical 

LiDAR system is operated from a plane, a helicopter or a satellite. The 

instrument rapidly transmits pulses of laser which travel to the surface, where 

they are reflected and the time of pulse return is measured. The return time for 

each pulse back to the sensor is processed to calculate the variable distances 

between the sensor and the various surfaces present on the ground (Lillesand, 

Kiefer and Chipman, 2004). LiDAR data used for this study was acquired on 

September 4th, 2001. LiDAR Data was collected during leaf-on season and was 
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post-processed to a point spacing of 3-5 meters. LiDAR data were used to create 

a DEM and a Digital Surface Model (DSM), which allows for creation of a 

Normalized Digital Surface Model (nDSM) by subtracting DEM from DSM.  

2000 Census Data and Parcel Data of Denton County 

The 2000 census data is obtained from the US Census Bureau and the 

parcel data is maintained by the Central Appraisal District of Denton County. The 

study area consists of about just over 14600 residential, commercial and other 

land use type parcels.  
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Figure 2. Datasets used in the study. a) IKONOS pansharpened b) LiDAR nDSM 
c) Parcel map d) 2000 census data. 

a) b) 

c) d) 



 

14 

 

CHAPTER 3 

METHODOLOGY 

A flowchart illustrating the methodology involved in this process is shown 

in Figure 3. The six major steps involved in the process of estimating population 

are 

(1) Preprocessing LiDAR data 

(2) Preprocessing IKONOS data 

(3) Object-based classification and extraction of residential buildings 

(4) Deriving population indicators, volume of the buildings, area of the 

buildings and the building count 

(5) Regression modeling and 

(6) Accuracy assessment. 
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Figure 3. Methodology. 

Pre-Processing LiDAR Data 

Pre-processing of LiDAR data undergoes a series of steps to derive all the 

required parameters. The steps are discussed below. 

(1) DEM is the digital representation of the ground surface topography or the 

terrain that provides a so-called bare earth model while DSM includes 

vegetation, trees, buildings, roads and other features. From the acquired 

bare earth and reflected LiDAR points, DEMs and DSMs are generated. 
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(2) The 29 tiles of LiDAR DEMs and DSMs covering the study area are 

imported to ArcGIS and a point shape file is created. Interpolation is the 

process by which elevation values of points in geographic space are used 

to estimate values of positions where elevation information is required. 

Among various interpolation techniques, Inverse Distance Weight (IDW) 

interpolation is the simple local method most commonly used (Carter, 

1988). IDW is used to interpolate the point shape file to create rasters and 

all 29 individual tile rasters are mosaiced to create respective DEM and 

DSM rasters (shown in Figure 4a and 4b). Normalized Digital Surface 

Model is calculated by subtracting DEM from DSM (Koc and Turker, 

2005). Hence, nDSM (shown in Figure 2b) represents the elevation of all 

the objects and structures present on the surface of the earth including 

trees, buildings and other man-made objects.  
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a) b) 

Figure 4. LiDAR data. a) Digital elevation model (DEM) b) Digital surface model 

(DSM). 

Pre-Processing IKONOS Data 

Efficient building extraction is possible with the availability of high spatial 

and spectral resolution images. The acquired IKONOS multispectral data has 4- 

meter spatial resolution while the panchromatic image is a single band image 

with 1 meter spatial resolution. Image fusion is a concept of combining multiple 

images into composite products, through which more information than that of 

individual input images can be revealed. Pan sharpening uses a higher-

resolution panchromatic image to fuse with a lower-resolution multiband image. 

The most popular image fusion technique in the remote sensing 

community is the Intensity Hue Saturation (IHS) method. In general, the IHS 
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fusion method converts a color image from the red, green and blue (RGB) space 

into the IHS space. The intensity band in the IHS space is replaced by a high 

resolution Pan image and then transformed back into the original RGB space. 

IHS method has been preferred over other fusion images because of its fast 

computing capability and its capability of merging massive volumes of data by 

requiring only resampled multispectral data. As a preliminary processing, 

IKONOS MS image is pan sharpened using IHS fusion technique using ESRI’s 

ArcGIS software tool to produce MS image that has the resolution of PAN image. 

Figure 5 shows the two inputs IKONOS MS and PAN image and the fused image 

resulting from IHS fusion technique. 
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Figure 5. IHS fusion. a) Input: IKONOS MS b) Input: IKONOS PAN c) Output: 
IKONOS pansharpened. 

 

a  b  

c  
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Object based Classification and Extraction of Building 

 Remotely sensed data of the Earth may be analyzed to extract useful 

thematic information. During recent years, the advancement of technology 

fosters the high availability of high resolution multispectral and hyperspectral data 

like IKONOS, QUICKBIRD, KOMPSAT, HYPERION, and so on. These datasets 

promise detailed attribute information but also challenge on methodologies in 

processing and analyzing them. The classification of land use from high 

resolution satellite imagery is generally regarded as a difficult task which requires 

a precise classification methodology.  The use of high resolution images in 

classifying the land cover types that make up the broader class of urban land use 

is much more difficult. Buildings and roads tend to get lumped together along 

with parking lots and driveways as impervious areas (Sims and Mesev, 2007).  

Traditional per pixel classification methods classifies a pixel identifying its 

spectral signature as a ground feature. The radiometric value is not related to its 

neighbor pixels. Though per pixel classifications like maximum likelihood 

classification are accurate to some degrees, they lack topological information that 

may result in pepper noise. Object based classification groups neighboring pixels 

into objects by utilizing the spectral values, topological relationships and also the 

shape of the objects that are created (Batz et al., 2004). Blaschke (2004) 

addresses the concepts of object-based image processing in his research 

considering the contextual information, shape and the spatial relations between 

the image regions. The combination of object based image classification with 
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ancillary digital line graph data is proven to improve land cover type classification 

accuracy (Sims and Mesev, 2007). Object based classification is also attempted 

on just the LiDAR data to extract features (Antonarakis et al., 2008). 

eCognition and Object based Classification 

 eCognition software from Definiens offer a similar object oriented 

classification technique by segmenting the image to meaningful objects. 

eCognition implements a new segmenting technique called multiresolution 

segmentation, a bottom up region merging approach. Darwish et al. (2003) 

tested the feasibility of this classification technique using eCognition software to 

classify urban land cover in his research. In general, buildings have higher 

elevation than the surrounding and there will be a steep slope along the edges. 

Hence, to extract buildings from multispectral image, the stable data is identified 

as the elevation data. eCognition software is employed in this study to classify 

high resolution multispectral data, IKONOS with LiDAR elevation data as an 

ancillary input. This research work aims at attaining higher classification accuracy 

thereby increasing the accuracy of population estimation model. 

In this study, the whole study area is divided into 30 tiles to process the 

data faster and also to define more specific shape indices. As the study area has 

mixed topography from low to high density residences and vast farmlands, 

specifying local height thresholds and shape index thresholds enables to extract 

buildings more accurately. Two classes, buildings and non-Buildings are 
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identified using various shape indices mentioned below and general spectral 

characteristics. 

Shape Indices 

Using multiresolution segmentation, the image is divided into meaningful 

objects. Figure 6 illustrates how image is divided into image objects by image 

segmentation in eCognition. Each object is then studied for its spectral and 

shape characteristics to distinguish between the two major classes - buildings 

and non-Buildings. Trees and other grasslands are removed by using its high 

vegetative index. Barren lands and other short shrubs are removed from its very 

low height property. Various shape indices are used to distinguish between 

building and non building features. Building objects have certain unique 

characteristics which help us define such indicator parameters. A few indicators 

and the concept behind the implementation are explained below. 

•  Area: Area of the polygon is quite useful to differentiate buildings from 

other objects. Residential buildings are comparatively smaller in size than 

the large commercial office buildings. 

•  Asymmetry: The longer a feature polygon, the more asymmetric it is. 

Residential buildings tend to be more symmetrical. It is hard to see a 

lengthier residential building. Asymmetry is a measure expressed by the 

ratio of the lengths of the minor and the major axis of this ellipse. 

•  Shape Index: It is used to describe the smoothness of the image object 

borders. Mathematically, Shape Index (SI) can be expressed as:  
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SI =
v

v

P
b

4
                                          (1) 

where bv is the perimeter of the feature polygon and Pv is the area of the 

polygon. The denominator represents the largest enclosed circle. The 

higher the shape index, the more irregular the feature. Hence objects with 

higher shape index may not be a building.  

•  Border index:  This measure is very similar to shape index other than the 

use of rectangular approximation instead of a square. The smallest 

rectangle enclosing the image object is created. The border index is then 

calculated as the ratio between the perimeter of the image object to the 

perimeter of the smallest enclosing rectangle. 

•  Compactness: Compactness of an image object is similar to Border Index, 

however instead of border based it is area based.  

•  Rectangular Fit (RF): To calculate the rectangular fit, a rectangle with the 

same area as the considered object is created by taking into consideration 

the proportion of the length to the width of the object. The area of the 

object outside the rectangle is compared with the area inside the rectangle 

which is not filled with the object. RF is defined as: 

RF = 
v

vv

P

yxPyx }1),(:),{( ≤∈ ρ
                               (2) 

where ),( yxvρ is the rectangular distance at a pixel (x,y). 
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Figure 6. Image objects and corresponding IKONOS image. 

Residential Building Polygons 

The image objects for residential buildings are extracted and exported to a 

vector shapefile. Using ESRI’s ArcGIS software, 30 different building shapefiles 

obtained from eCognition are merged to a single polygon file that has the 

residential building information for the entire study area. Since the LiDAR data is 

acquired on September 2001 which is 17 months after the 2000 census, it is 

required to remove any new developments built after 2000 from the LiDAR Data. 

Parcel Data has the information about the land type of each parcel and the 

property type. Hence, residential and commercial building parcels that are built 

before 2000 including 2000 is selected from the acquired parcel data and used 

as a mask to filter the rest of the polygons from the extracted building polygons. 
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In the parcel data, residential apartment complexes and educational residential 

buildings are identified as commercial buildings, so commercial parcels are also 

included in the mask. 

Derivation of the population indicators 

The three main population indicators in an urban city are identified as 

residential building count, residential building area and residential building 

volume. As this research aims at determining population estimates at the census 

block level, 2000 census block data is used to generate regression models. The 

nDSM generated previously and the census block boundaries are used to 

calculate the residential building area and volume at each block with the help of 

zonal statistics in ArcGIS. From the building polygons, building centroids are 

identified and joined with the census block shape file using spatial join. The result 

of spatial join will give us the building count for each block. 

Regression Modeling 

Regression analysis is a statistical tool for the investigation of 

relationships between variables. It allows us to model, examine, predict and 

explore spatial relationships and also help explain the factors behind spatial 

patterns. To perform regression analysis, 95 random blocks are selected as 

samples from the 2000 census block data These 95 sample blocks distribute 

across the study area and represent the entire study area which consists of 

heterogeneous population density and topography. The sample blocks are 

shown in Figure 7.  
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Figure 7. Sample census blocks. 

Three regression techniques - linear regression, multiple regression and 

GWR models are used in this study to better model the population. Three linear 

regression models in the following form are established to estimate population 

count: 

           IbaPE ×+=                                                             (3) 

where PE is the population estimates, a is the regression intercept, b is the slope 

and I is the population indicator (residential building area, volume and count). A 

multiple regression analysis is performed by taking residential building area and 
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volume as independent variables and population as dependant variables. The 

regression form is illustrated in the equation shown below. 

     BVcBAbaPE ×+×+= ,                                              (4) 

where PE is the population estimates, a is the regression intercept, b and c are 

the slopes of BA (building area) and BV (building volume) respectively. 

Geographically Weighted Regression  

In a normal regression model, the values a and b in the Equation (3) are 

considered constants and if there is any geographic variation in the spatial 

relationship, it will be confined to an error term that resides in the model.   GWR 

is a local version of spatial regression that generates parameters disaggregated 

by the spatial units of analysis. This allows assessment of the spatial 

heterogeneity in the estimated relationships between the independent and 

dependent variables. Hence instead of introducing an error term, GWR tends to 

include the variability within the model. GWR is increasingly being used in 

geography and other disciplines recently. Four socio economic variables – 

median household income, percentage of poverty, percentage of minority 

population, median house value and their relationships with environmental 

variables – percent of impervious surface and population density at census block 

levels are studied using GWR models and is proven that the models account for 

local effects and geographical variations (Ogneva-Himmelberger et al., 2009). 

Applying GWR analysis to remotely sensed and statistical data, regression model 
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is generated to highlight the spatial variation of the relationship between the 

percentage of land afforested and its proximate causes (Clement et al., 2009). 

GWR provides a local model of the variable or process that we are trying 

to understand by fitting a regression equation to every feature in the dataset. In 

general, GWR technique constructs a grid of regression points over the study 

area. A set of regions is then defined around each regression point which is 

defined as bandwidth. The regression model is then calculated by incorporating 

the dependent and explanatory variables of features on all the data lying within 

the region described around a regression point that is weighted by its distance 

from that regression point and the process is repeated for all regression points. 

The resulting local parameter estimates can then be mapped at the locations of 

the regression of the regression points to view possible non-stationary in the 

relationships examined. Specifying size and shape of the bandwidth is critical 

and it determines the local models. In some cases, when data are sparse, the 

local model might be calculated on very few data points, giving rise to parameter 

estimates with large standard errors and resulting surfaces will be 

undersmoothed. In the other extreme, the estimation of some parameters might 

be impossible due to insufficient variation in small samples. In order to reduce 

these problems, in this study, the spatial bandwidth is made to adapt themselves 

in size to variations in the density of the data, so that the bandwidth will be larger 

where the data is sparse and smaller where the data is dense. In this study, 

ESRI’s ArcGIS spatial modeling tool is used to determine an optimal bandwidth 
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that satisfies least cross validation (CV) score. CV score is determined by the 

difference between the observed value and the GWR calibrated using the 

bandwidth. 

Accuracy Assessment 

It is vital to substantiate the accuracy of the regression models 

quantitatively. It is also an important step in estimating population using remote 

sensing and GIS methods. Similar to Lu et al. (2006), three error measures are 

used for accuracy assessment. 

Relative Error (RE) 

  Relative error gives an indication of how good a measurement is relative 

to the actual value being measured.  

100
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−
=

g

ge

P

PP
RE ,                                                 (3) 

where  Pe  and  Pg  are  the  estimated  and  reference  population  in  

each  census  block, respectively. Values of RE can be stored in a field in the 

census block attribute table to support convenient mapping using GIS.  

Mean Relative Error (MRE) 

Additionally, mean relative error (MRE) can be used to quantify the overall 

model performance. 
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 where RE is the Relative Error and n is the total number of census blocks 

under study. 

Median Relative Error (MdRE) 

Median relative error tends to reduce the influence of extreme outlier 

values. Hence, median relative error is also calculated and verified in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

31 

 

CHAPTER 4 

RESULTS AND DISCUSSIONS 

Linear and geographically weighted regression models are generated with 

the help of 2000 Census Block data. The models are applied to the entire 764 

blocks and errors are calculated for model accuracies. The results of population 

estimates are discussed in this section. 

Linear Regression Models 

Table 2 shows the errors calibrated for linear regression models with 

population as a dependant variable and building count, building area and building 

volume as independent variables respectively. 

Table 2 

Summary of Linear Regression Model Results 

Variable R2 Total Error Mean Error Median 
Error 

Model 

Count 0.9521 -33.3138 27.11522 20.3986 y=1.9716x+3.6581 

Area 0.8214 -21.3202 26.59229 19.3676 y=0.0012x+5.6161 

Volume 0.8109 -5.7925 27.27547591 17.1896 y=0.001x+6.744 

 

The linear regression models derived from the 95 sampling blocks are 

represented in Figure 8. Scatter diagrams are generated to better understand the 

relationships between the relative population estimation errors and population 

density at each census block and is shown in Figure 9.  
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The result showing the errors calibrated for multiple regression model 

specifying population as function of building area and volume is illustrated in 

Table 3 and the scatter diagrams are illustrated in Figure 10. 

Table 3 

Summary of Multiple Regression Model 

Variable R2 Total Error Mean Error Median Error Model 
Area, 
Volume 

0.8658 -25.0271 26.1185 18.5436 y=0.0002837x2 -
0.00001302x1 
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Figure 8. Linear regression models derived from sample census blocks. 
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Figure 9. Scatter diagrams of relative population estimation error vs. population 

density for linear regression models. 
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Figure 10. Scatter diagram of relative population estimation error vs. population 

density for multiple regression model. 

Geographically Weighted regression 

 Table 4 shows the errors calculated from the population estimates when 

geographically weighted regression model is employed to the entire study area. 

Figure 11 illustrates the scatter diagrams obtained to better understand the 

relationships between relative population estimation error obtained from GWR 

models and population density. 

Table 4 

Summary of GWR Models Results 

Variable R Squared Total Error Mean Error Median 
Error 

Count Local 
Models 

-32 25.87057 18.43238 

Volume Local 
Models 

-17 26.47716 13.63282 

Area Local 
Models 

-21 36.26646 16.46232 
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Figure 11. Scatter diagram of relative population estimation error vs. population 

density for GWR model. 

A few observations of the above results are discussed in the following section. 
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1. As far as visually interpreting the image scene, the extracted 

buildings across the study scene are more accurate. Figure 12 shows a scene 

from the study area where the buildings are extracted more precisely. 

 

Figure 12. Extracted buildings (shown in red outline). 

 

2. However, in a dense residential area (an example is shown in 

Figure 9), extracting buildings amongst large trees is found to be a difficult task. 

The LiDAR data in this study were collected during leaf-on season (September 4, 

2001) which makes it difficult to separate residential buildings from tree canopies. 

This may not be a serious problem for relatively new communities where trees 

are smaller but can be a factor affecting population estimation in older 

communities with many mature trees as shown in Figure 13b. Figure 13a shows 

the standard deviation of the original image pixels shown in Figure 13b. By 

plotting the standard deviation, the slope of the image pixels can be analyzed. In 

the example figure shown, the three buildings are recognized as trees as the 

buildings are totally covered. In blocks that has a similar scenario, the number of 
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building and eventually the building area and volume are underestimated. Hence 

high resolution LiDAR data is expected to give detailed information and help us 

do a detailed evaluation for separating trees from buildings based on measures 

of slope, aspect, and 3D shape and thereby obtain more accurate small area 

population estimation. A recent study suggests that 3D shape signatures from 

high resolution LiDAR data can be used to discriminate different tree crowns 

(Dong, 2009). It is reasonable to expect that 3D shape signatures of buildings 

and trees can be different, which may help separate trees from buildings. 

a)   b)  

Figure 13. Image scene with tree-covered buildings. 

Another issue is with differentiating residential buildings from commercial 

buildings. High rise apartments contradict the general properties of individual 

houses in terms of shape and size and have high similarity with commercial 

office buildings. Also, high rise apartments accommodate more number of people 

and hence small blocks that have few high rise buildings tend to have more 

population. Such blocks remain as outliers with more relative errors. Separation 

of high-rise apartment buildings from commercial/industrial buildings using 

remote sensing remains a challenge. One such sample block is shown in Figure 

14. Further study is required to test the use of physical properties of LiDAR 
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derived buildings and other models of population estimation like kriging (Wu and 

Murray, 2005). 

 

Figure 14. Census block with high rise buildings and huge population (outlined in 

blue). 

3. Temporal component also plays a major role in the estimation 

errors. The multispectral image is acquired on January of 2000 while the census 

data is a depiction of population on April 1st 2000. Hence, in those time interval, 

many new buildings are identified in some blocks whose census population is 

zero. These buildings are identified as newly built buildings which are vacant but 

those building count, area and volume are taken into consideration in the model. 

These vacant buildings are a big problem in such building extraction studies 

which results in an overestimation of building counts and an example is shown in 

Figure 15. Block No.0214.015044 is found to have newly constructed buildings 

but with the census data population as zero.  
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Figure 15. Census block having zero population (outlined in blue). 

It is observed that the models resulted in a very high mean relative error and 

relatively low median relative error which indicates of the presence of extreme 

values as discussed in (2) and (3). 

4. The high R2 values for linear and geographically weighted 

regression models show that the population count is strongly correlated with the 

residential building count, area and volume derived from IKONOS and LiDAR 

nDSM. Although some studies show that the Housing Unit method where 

population estimation is made with the number of building counts offers a number 

of advantages over other population estimation methods (Smith and Cody, 1994; 

Smith and Lewis 1980), there is no obvious pattern to show that building count 

outperformed building area and volume in this study. Moreover, building volume 

and building area tend to give better median relative estimation errors and total 
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estimation errors when compared to the building count as shown in Table 1, 2 

and 3. 

5. Figure 9 and 10 indicates that population estimation is 

overestimated when the population density at the census block level is less than 

approximately 300 persons square kilometer, whereas population is 

underestimated when population density is greater than approximately 3500 

persons per kilometers, regardless of the independent variables used in the 

linear regression models. Similar observations have been reported by Lu et al. 

(2006) for population estimation using lower multispectral image sources. It is 

also interesting to see that Figure 10 that shows the relationship between relative 

estimation errors at block level and population density obtained from the GWR 

models also infers a very similar scenario where low population density blocks 

are overestimated and densely populated blocks are underestimated. Total 

estimation error (TE) is highly influenced by the sign and magnitude of the 

relative estimation errors. It is observed that underestimation has a larger 

magnitude because it mainly happens in census blocks with high population 

density which dominates in the study data. As a result, the total population is 

underestimated, as illustrated in Tables 1, 2 and 3 irrespective of the variables 

and models. 

6. Values of MdRE in Tables 2, 3 and 4 indicate that the GWR models 

provide more accurate estimates than the linear regression models because the 

heterogeneity can be better modeled in GWR models.  
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7. For census blocks with a low population density (for example, less 

than 100 persons per Sq. Km), relative error of population estimation in 

percentage can be highly misleading. For instance, for a census block with actual 

population of 1 and estimated population of 4, the relative error is 300%, but the 

actual error of 3 persons may be insignificant compared with the total population 

of the census tract. Hence small number problems need to be taken into account 

for population estimation at block level. 

8. Overall, the various regression models generated in this study are 

able to produce 80% to 87% accurate population estimations. The LiDAR data 

were resampled to a point spacing of 3-5, which affects the accurate 

representation of buildings. It is possible that the relatively low accuracies for 

small area population estimation were partly caused by the relative low spatial 

resolution of the LiDAR data. It would be interesting to compare area-based, 

volume-based, and count-based linear regression models and GWR models 

when high resolution LiDAR data are available. 
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CHAPTER 5 

CONCLUSION 

 IKONOS image with high spectral and spatial resolution is generated by 

fusing IKONOS Panchromatic and IKONOS multispectral images using IHS 

fusion technique. Object based classification technique is used to extract 

residential buildings from pan-sharpened IKONOS, normalized digital surface 

model and parcel map. Using 2000 census data and sample census blocks, 

linear regression models and GWR models were built from the independent 

variables of building count, building area, building volume obtained from the 

extracted buildings. The regression models were then applied to the census 

blocks in the study area and accuracy assessments were carried out. Models 

derived from building volume and building area seem to generate more accurate 

results compared with those derived from building count as area and volume 

account for living area which is an important indicator of the household size. 

Median relative errors suggest that the GWR models outperformed the linear 

regression models because spatial heterogeneity in population density is better 

handled in GWR models. The results show that the total accuracy of population 

estimation in the study area is controlled by the sign and magnitude of relative 

errors at the census block level. Since underestimation usually happens in 

census blocks with high population density, the total population count in the study  
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area is underestimated, with a minimum estimation error of about -6%. Median 

relative estimation error at block level for the regression models range from 

13.6% to 20.3%. Such accuracy is not high enough for small area population 

estimation. Possible reason behind the relatively low accuracies could be the 

lack of high resolution LiDAR data. It would be interesting to compare the results 

with those derived from high resolution LiDAR data. Alternative models such as 

kriging should be evaluated to address issues caused by small numbers and 

variations in the population density.  
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