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Abstract 

 Gneiss domes are structural features associated with orogens worldwide. This study 

provides a structural analysis of the domes of the Harvey Cardiff Domain, associated with the 

Grenville Orogeny. Structural data and oriented samples were collected during field work in the 

summer of 2012. These were used in combination with published and unpublished foliation and 

lineation data to analyze structural patterns and determine a mechanism of formation for the 

domes. The end member scenarios for dome formation were taken from the gneiss dome 

classification scheme devised by Yin (2004). Most of these mechanisms were eliminated based 

on a lack of necessary large scale geologic features in the region of the study area. An analysis of 

the foliation pattern of the Cheddar and Cardiff domes was most consistent with formation by 

diapirism. However, the foliation patterns of the domes differ from the expected diapiric pattern, 

and seems to represent a non-horizontal slice through a diapir, cutting through a diapir neck in the 

north and a diapir hat in the south. This pattern can also be explained by rotation of diapiric 

foliation due to strain induced by the main orogenic event. This hypothesis was tested using 

COMSOL, a finite elastic strain model, and found to be realistic. With the methods used in this 

study it is not possible to tell whether this rotation occurred after or during dome emplacement.   
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1. Introduction 

Gneiss domes are structures associated with major orogenic events worldwide. They are 

broadly defined as circular to oval-shaped metamorphic-plutonic cores overlain by a mantle of 

supracrustal rocks containing domal contact parallel layering. Early research on gneiss domes 

cited magmatism and the effects of density inversions as the driving forces behind dome 

formation and emplacement (e.g. Eskola, 1949; Fletcher, 1972; Gilbert and Merle, 1987). More 

recent studies have widened the list of possible formation mechanisms to include those associated 

with faulting. The extent of current research has lead to the development of a classification 

scheme linking the physical characteristics of domes and dome systems to their mechanism of 

formation (Yin, 2004). Domes are often formed in dynamic environments where changing stress 

and strain patterns coalesce to develop their structures. This complicates the process of making 

conclusions about strain paths from finite strain patterns recorded in dome rocks. Nonetheless, 

different processes of development do correlate with distinctive structural geometries. This study 

uses structural analyses of the gneiss domes of the Harvey Cardiff Domain of the Grenville 

Province in Eastern Ontario to assess the possible mechanisms that lead to their formation. 

Yin’s framework serves as a guide of idealized, end member cases of dome formation 

mechanisms (Fig. 1). Her characterization of individual domes begins with the broad categories 

of fault-unrelated and fault related. More specific subcategories of fault unrelated domes include 

those produced by magmatism, contrasts in mechanical rock properties, and superposition of 

multiple folding events. Fault related domes can be associated with detachment faulting, 

thrusting, strike slip shear zones, or ductile shear zones. Each of these types contains end member 

scenarios demonstrating how creation takes place. Association with large-scale geologic features, 

structural patterns, and kinematic indicators aids in distinguishing between the above 

mechanisms. This makes observations of structural features of all sizes, from map scale to 

microscale, critical in understanding dome formation.  

The spacing relationship between gneiss domes in a dome complex also provides insight into 

mechanisms of formation (Yin, 2004). A separate classification scheme presents the different 

spacing possibilities (Fig. 2). Dome systems are initially differentiated into linear and nonlinear 

arrays, and then divided further into evenly spaced and unevenly spaced. Although spacing 

pattern is not diagnostic it is helpful in confirming hypotheses of formation mechanisms formed 

during the study of individual domes. 

The Grenville Province of eastern Canada (Fig. 3) is defined by the metamorphic signature of 

the Grenville Orogeny of the late Mesoproterozoic to early Neoproterozoic (1090 to 980 Ma)  
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Figure 1: Gneiss Dome Classification Scheme. Schematic gneiss dome classification system showing 
idealized, end member cases of dome formation mechanisms. From Yin, 2004. 

 
 

Figure 2: Gneiss Dome System Classification Scheme.  (From Yin, 2004). 
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(e.g. Carr et al., 2000; Rivers, 2008). The province extends along the eastern coast of North 

America, from the United States border to Labrador. However, the orogen affected a much larger 

region where Grenvillian rocks exist mostly in the subsurface. This region includes the eastern 

and southwestern United States, Mexico, and the United Kingdom (Darabi and Piper, 2004). The 

province was amalgamated and metamorphosed in a series of accretionary and collisional events, 

culminating in the collision of Laurentia and Amazonia (Rivers, 2008; Hanmer et al. 2000). 

Within this single event, pulses of collision and extension are recorded (Rivers, 1997). After 

almost a billion years of erosion, the rock exposed at the surface today represents the mid to 

lower crustal levels of the orogeny (Cosca et al., 1995).  Although subsequent orogenies have 

occurred on the east coast of Laurentia, they did not lead to widespread recrystallization in the 

Grenville Province. Therefore, the metamorphic rocks of the province act as a record of 

Grenvillian tectonic evolution, and provide the longest continuous example of a Late 

Mesoproterozoic orogenic belt in the world (Tollo et al., 2004). 

 
Figure 3: The Grenville Province of Eastern Canada. Study area marked with a star. Dots are locations of 
gneiss dome complexes: (A) Faraday Dome, Cardiff Dome, Cheddar Dome, Anstruther Dome, and 
Burleigh Dome (B) Lemieux Dome, and Renia Dome (C) Watshishou Dome, Pontbriand Dome, and 
Jalobert Dome (D) two unnamed domes. (Modified from Carr et al., 2000). 
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Several gneiss dome complexes have been identified in the Grenville Province. Figure 3 

shows a map of the domes within the Grenville as compiled in Whitney et al. (2004). The gneiss 

domes of the Harvey Cardiff are the farthest south, and will be described in detail in subsequent 

paragraphs. There are two recognized sets of domes in Québec. Two domes, the Lemieux Dome 

and the Renia Dome, have been identified on the Gaspé Penninsula. The Lemieux Dome is 

unusual in that it is composed of uplifted sedimentary and volcanic rocks, rather than granitic 

gneiss. However, it has been included in gneiss dome literature because of the suggestion that the 

domal structure was produced by upwelling of granitic intrusions. This dome is not associated 

with the Grenville orogeny, as the warped sediments are Siluro-Devonian, significantly younger 

than the Grenville Orogen (McNeice et al., 1991).  A complex of three domes lies on the 

northeastern coast of Québec: the Watshishou Dome, the Pontbriand Dome, and the Jalobert 

Dome. These domes are cored by orthogneisses containing dated monzonite that place their 

metamorphism during the Grenville. An analysis of their structures has recently attributed their 

formation to diapirism, although older studies cite polyphase folding (Gervais et al., 2004). 

Finally, two unnamed domes are present in Labrador. They lack published work regarding their 

formation (Whitney et al., 2004). This study of the Harvey Cardiff domes will add to the scarce 

information on Grenville gneiss domes and allow comparison of orogenic conditions between the 

Harvey Cardiff and other areas with studied gneiss dome complexes.   

The southern portion of the Grenville Province can be broken down into three main 

lithotectonic masses (Fig. 4) that formed independently before their accretion (Carr et al., 2000). 

The westernmost extent of the Province is the Central Gneiss Belt (CGB), which formed the Pre-

Grenvillian margin of Laurentia. The rocks of the CGB date from before 1450 Ma and were 

strongly deformed and transported to the northwest during the orogen. The CGB is separated 

from the Central Metasedimentary Belt (CMB) to the east by the Central Metasedimentary Belt 

boundary thrust zone (CMBbtz), an upper amphibolite facies, SE dipping ductile shear zone with 

a tops to the NW sense of shear. The CMB is an amalgamated series of back arc terranes 

originally comprised of marine sedimentary rocks. The timing of the accretion of these arcs to the 

CGB is disputed; with some advocating for accretion before 1.4 Ga (Hanmer et al., 2000), and 

some arguing that the arcs joined the continent only shortly before the main orogeny took place 

around 1.1 Ga (Timmerman et al., 1997). Further east is the Frontenac-Adirondack Belt (FAB), a 

younger group of lithotectonic domains that show a distinct structural, metamorphic, and 

magmatic history. The FAB was amalgamated onto the CMB between 1170 and 1160 Ma. The 

CMB can be further divided into domains based on differences in magmatic signatures. Each one 

formed in isolation before amalgamation and accretion (Easton and Kamo, 2011).  
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Figure 4: Main Lithotectonic Masses of the Southern Grenville. The three main lithotectonic masses of the 
southern Grenville Province: The Laurentian Margin, also called the Central Gneiss Belt (CGB), Central 
Metasedimentary Belt (CMB) Frontenac-Adirondak Belt (FAB). Also pictured are the subdomains of the 
CMB: Central Metasedimentary Belt Boundary Thrust Zone (CMBbtz), Belmont Terrane (BT), Harvey 
Cardiff Domain (HC), Grimsthorpe Domain (G), Mazinaw Domain (MT), Sharbot Lake Domain (SL). The 
gneiss dome complex spans the entire Harvey Cardiff Domain (Modified from Carr et al., 2000). 

The Harvey-Cardiff Domain (Fig. 4) differs from other CMB domains due to the presence of 

several gneiss cored structural domes, which have been interpreted as gneiss domes (e.g. Bright, 

1987). Five domes have been identified within the domain (Fig. 5). They lie in a line trending 

roughly northeast-southwest. From north to south they are: the Faraday Dome, the Cardiff Dome, 

the Cheddar Dome, the Anstruther Dome, and the Burleigh Dome. Although mapped by the 

Ontario Geologic Society as a gneiss dome, the Faraday Dome does not meet the criteria of a 

circular shape with a clear core and mantle, and has thus been excluded from this study.  

This study focuses on the Cardiff and Cheddar Domes, but includes the Anstruther and 

Burleigh Domes in an analysis of the gneiss dome system. The Cardiff Dome lies to the north and 

has a less distinct core and mantle geometry than the southern three domes. Two major types of 

rock form the dome: amphibole and pyroxene rich fenite and granitic gneiss. Rather than forming 

a distinct mantle and core structure, the fenite appears entrained within the granitic gneiss body. 

The granitic gneiss dates between 1250 and 1240 Ma, and is composed of laminated 

metaluminous to marginally peraluminous alaskite and leucocratic monzogranite. Within these 
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units are highly syenitized rocks with patches and veins of alkali pyroxene and amphibole.  

Surrounding the main dome are gneissic tonalities, trondhjemites, and granodiorites along with 

medium to coarse grained calcitic marble containing 20-60% silicious impurities (Lumbers and 

Vertolli, 2003).  

The Cheddar Dome is cored by alaskite from the same pulse of magmatism as them alaskite 

of the Cardiff Dome core to the north. The core rocks have laminated structure and metamorphic 

fabrics. These are intruded by late pegmatites of the Fenite-Carbonatite Suite of 1070 to 1040 Ma. 

Pegmatites are red and pink, quartz-alkali feldspar pegmatite dikes. The most heavily sampled 

mantle rocks were amphibole rich metasedimentary rocks. Marbles are the predominant rock type 

in contact with the Cheddar core gneiss, particularly on the western side. The marbles are 

medium to coarse grained and contain 20 to 60% siliceous impurities. Skarns developed from this 

calcitic marble are also present, and contain mixtures of diopside, amphibole, epidote, titanite, 

garnet, potassium feldspar, scapolite, calcite and quartz. Micaceous sandy metasedimentary rocks 

derived from greywacke and siltstone are common in the southern mantle (Lumbers and Vertolli, 

2000a). 

The Anstruther and Burleigh Domes have a similar geologic makeup, despite differences in 

geometry. The cores are made primarily of gneissic trondhjemite and granodiorite units, dating 

between 1280 and 1270 Ma. Core units display a laminated structure and veins of coarse-grained 

quartzofeldspathic material. Also within the core are discrete units of felsic alaskite intrusives. 

They are metaluminous to slightly paraluminous with augen structures and relict igneous textures. 

The domes are mantled primarily by calcitic marble (Lumbers and Vetrolli, 2000a; Lumbers and 

Vetrolli, 2000b).   

Structural analysis of the Cardiff and Cheddar domes, as well as the entire Harvey Cardiff 

gneiss dome system, will determine possible formation mechanisms of the gneiss domes. 

Different mechanisms require distinct settings and stress states for dome growth to occur. Thus, 

by determining domal formation mechanisms, this study aims to provide insight into the stress 

state on the edge of the CMB during the time of the orogeny. Conclusions about the Harvey 

Cardiff Domes can be used in comparison with other studied gneiss domes in the Grenville, 

particularly those that have been studied thoroughly in Québec. The study also addresses the 

question of how the stress fields in an orogenic event may rotate and overprint foliations left by 

dome formation. This is a question not addressed to date in gneiss dome literature.  
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Figure 5: Geologic Map of the Harvey Cardiff Gneiss Dome Complex. (Base map from Ontario Geologic 
Survey). 
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2. Methods 

2.1 Sample and Structural Data Collection 

I collected structural data and oriented samples during a two week field session in the 

summer of 2011. I used a Brunton field compass to measure the strikes and dips of foliation and 

trends and plunges of lineation. Observed foliations are both compositional and tectonic. 

Observed lineations are aligned mineral grains, fold hinges, and boudin necks. Structural 

measurements are from sites in both the mantle and the core of the Cheddar Dome (See Appendix 

A for a full list of field measurements). I collected a suite of oriented samples to provide a 

complete picture of the range of geology of the dome (See Appendix B for full list of oriented 

samples). Twenty seven samples are from fourteen sites (Fig. 6). They represent the alaskite 

gneiss and pegmatites of the core, as well as the amphibolites and marble of the mantle. I oriented 

samples by drawing strike and dip markers in situ and recording their orientations as measured 

using a Brunton compass. Where mineral lineations were present at the site, their orientations 

were drawn directly on to the rock sample when possible. This was usually aided by the fact that 

lineations occur primarily on foliation planes, which most samples contained. 

2.2 Thin Section Analysis 

I cut thin sections from collected samples along the structural plane, perpendicular to 

foliation and parallel to lineation, where present. Thin sections are marked with a notch in the 

upper northwest corner, when possible, to ensure that the orientations of the sections were clear. 

Thin sections were made from samples with and without lineations. I analyzed the thin sections 

for three types of information: composition, fabric analysis, and shear sense indicators. I 

determined composition and performed fabric analyses using a petrographic microscope. Finally, 

I analyzed the thin sections for sense of shear indicators including quartz ribbons, core and mantle 

structures in feldspar grains, mica fish, and rigid grain rotation.  

2.3 Creation of Map 

I collected structural measurements at 16 sites during the field session and mapped them 

using ArcGIS, adding them to a compilation of field data put together by Nick Culsahw which 

included field data he collected between 1977-79, as well as data from Hewitt (1957) and 

Culshaw (1981). I scanned this data compilation a hard copy map, georeferenced it, and created a 

database of structural information by digitizing lineation and foliation measurements. For the 

purpose of this study, only tectonic foliations, compositional foliations, mineral stretching 

lineations, and c-axis orientation of quartz grain measurements are included.  
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Figure 6: Sample Sites. Sample sites around the Cheddar Dome, numbers correspond to oriented samples 
taken at each location. (Base map from Ontario Geologic Survey). 
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2.4 Consideration of Formation Mechanisms 

I considered each of the formation mechanisms mentioned in Yin (2004) in light of the 

large scale geologic setting of the Harvey-Cardiff domes. Several can be ruled out due to the 

absence of key features associated with gneiss dome production by that method. This analysis is 

described in section 3.1 below. 

2.5 Analysis of Cheddar and Cardiff Dome Structures 

I plotted foliation data on stereonets using Stereonet 32 (free software, copyright Dr. K. 

Roeller, available at http://www.ruhr-uni-bochum.de/hardrock/downloads.html) and contoured 

them in seven intervals using cosine sums as the density calculation. Foliation data for the region 

of the Cardiff and Cheddar domes show a dominant foliation trend striking 070 (Fig. 7).  In order 

to make other structural patterns apparent, I removed the foliations striking thirty degrees to 

either side of this orientation (40-100)  from data sets.  The domes were then divided into regions 

based on foliation patterns (I-VII in Figures 18 and 21). Each region is accompanied by a 

contoured stereonet plot and rose diagram of foliation dip direction. Lineations in both domes are 

also plotted on a contour stereonet and included in analysis. I compared these patterns to expected 

structural patterns from the narrowed list of possible formation mechanisms.  

 

 

Figure 7: Dominant Regional Foliation Trend. Stereonet and contour plot of poles to foliation planes in the 
Cheddar and Cardiff Dome regions. The foliation data have a maxima oriented 070/64. 

2.6 COMSOL Modeling  

I used COMSOL Multiphysics (www.comsol.com) to constrain timing of dome formation in 

relation to the major orogenic collision by analyzing how expected foliation patterns for dome 
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formation mechanisms would be altered by pure and simple shear. A rotated foliation pattern 

similar to patterns seen in the field would be consistent with dome formation prior to the major 

orogenic event and the associated pure or simple stress regimes. COMSOL is an elastic finite 

element model. Although the Harvey Cardiff system underwent ductile deformation, the elastic 

model approximates the instantaneous response of foliation to induced strain. 

The dominant regional foliation produced by the Grenville Orogeny dips 20 degrees to the 

SE. The major stress field of this event would have affected preexisting structural features. Model 

setup is described in detail in Appendix E, with a simplified version presented here to convey the 

conceptual basis of the model. A circle with radius 5 km represents the dome. It has the elastic 

properties of granite, and is within a large block representing the mantling rocks. The surrounding 

rock has the average elastic properties of the mantle rock protoliths: limestone, basalt, and 

andesite (Elastic property values from Burger et al., 2006). I created cross-sections of expected 

foliations at the ground surface for probable dome formation mechanisms. Foliations are marked 

by ellipses, which have identical elastic properties as their host rock and are thus passive strain 

markers. Figure 8 shows a simplified representation of the model space with a foliation profile 

expected for diapirism. 

  
Figure 8: Schematic of COMSOL Model Setup. The circle represents the gneiss dome, and the ellipses 
represent foliation planes that will be distorted with applied stress. The region in purple has the elastic 
properties of granite, while the grey region has the average elastic properties of limestone, basalt, and 
andesite. Lines show the ground surface, and the dip of the regional foliation. 
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 The direction of applied stress was determined by the regional foliation dip of 20 degrees 

to the southeast. In a pure shear regime, foliations form perpendicular to the maximum 

compressive stress. The southeast dipping foliation suggests that the maximum compressive 

stress during the orogeny was oriented 20 degrees clockwise of orthogonal to the ground surface. 

In a simple shear regime, foliations rotate to parallelism with the shear plane. If the foliation 

overprint was caused purely by simple shear, displacement would be along a surface rotated 20 

degrees clockwise of the horizontal. Figure 9 provides an illustration of the stresses applied to the 

model for each strain regime.  

 The results of the model show how the dome and ellipse geometries change due to the 

applied stress. I measured the new dips of the foliation ellipses and compared them to the original 

dip angles to determine whether the foliations steepened or shallowed. I also assessed whether the 

foliations of the Cheddar Dome were steeper or shallower than the corresponding expected 

foliation pattern. The Cheddar Dome was selected for this comparison because of the continuous 

section of southeast dipping foliations running northwest-southeast. Figure 10 shows a map of the 

regions of foliation that I averaged using mean directions on a stereonet and compared to the 

model foliation patterns. If patterns of shallowing and steepening are similar in the model and the 

Cheddar Dome it suggests that the hypothesis of dome formation followed by rotation due to 

orogenic stresses is a realistic interpretation of the Cheddar Dome foliations.   

 

 

Figure 9: Strain Applied to COMSOL Models. Schematic showing directions of applied pure (Left) and 
simple (Right) shear to model. 
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Figure 10: Foliations of the Cheddar for Comparison with COMSOL Model. Map showing the five zones 
of foliation that were used for comparison with the expected diapiric foliation. (Base map from Ontario 
Geologic Survey). 
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2.7 Dome System Analysis 

Yin’s classification scheme of gneiss dome systems includes two main categories, linear and 

non linear. As the Harvey Cardiff domes form a relatively straight line, only the linear category 

will be considered in this study. Two subcategories of linear arrays are presented: evenly spaced 

and unevenly spaced (Fig. 2). Although there is no strict differentiation between the two, type 

cases are cited. The Shuswap metamorphic core complex of British Columbia hosts a series of 

evenly spaced gneiss domes comparable in size to those of the Harvey Cardiff Domain (Teyssier 

and Whitney, 2002). The North Himalayan Gneiss Domes are an example of unevenly spaced 

domes (Hodges, 2000). In order to assess the periodicity of the Harvey Cardiff Domes and to 

create a quantitative basis of comparison with the two type cases, I calculated coefficients of 

variation for each system. This method has been applied to the study of periodicity of earthquakes 

(Kagan and Jackson, 1991), and is a measure of periodic variation within a system.  

For each system, I calculated the distances between dome centers and found an average 

spacing and the standard deviation. I opened a map of each system in ArcGIS and used several 

spatial analysis tools to complete dome spacing measurements. I traced dome cores to produce 

polygons of each dome. For the Harvey Cardiff Domes, dome shape was approximated from the 

granitic gneiss units. The contact of the contiguous granitic units of the Anstruther and Cheddar 

domes and the mantle rocks were traced to create polygons. While for the Burleigh and Cardiff 

domes a circular shape was approximated by cutting through or including units of amphibolites 

and marble. I calculated the geometric centroid of each dome to a precision of three decimal 

places using the calculate geometry tool in ArcGIS, and drew straight lines between the centers of 

neighboring domes. I measured the lengths of these lines using the ArcGIS ruler and calculated 

the average and standard deviation for each dome system. The standard deviation divided by 

average gives the coefficient of variation. If the number is one, than the system is randomly 

assorted, if it is less than one it displays quasiperiodicity. I compared the coefficient of variation 

for the Harvey Cardiff domes with those of the type cases to conclude whether the gneiss domes 

of the Harvey Cardiff are evenly or unevenly spaced. 

3. Results   

This section presents results from a literature review of gneiss dome formation mechanisms 

as well as structural data analysis. In the first subsection, I examine each mechanism from Yin’s 

classification scheme, along with the specific structural and metamorphic criteria that distinguish 

it from the others and assess the probability that each is responsible for the Harvey Cardiff 

Domes. The following subsections present the results of structural analysis from a variety of 

methods.  
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3.1 Possible Mechanisms of Formation 

The possible mechanisms for the formation of the Cardiff and Cheddar domes can be 

narrowed based on associated large scale geologic features. Yin’s classification scheme (see Fig. 

1) groups mechanisms into two categories, domes associated with faults and domes not associated 

with faults (2004). These are further broken down into subcategories of different fault types for 

fault related, and magmatism, diapirism, and multiple folding events for fault unrelated. I 

assessed the likelihood that each of these subcategories produced the Harvey Cardiff Gneiss 

Domes by evaluating their consistency with the large scale geologic features in the region. The 

expected structural patterns of those that are consistent are explained and will be compared with 

the structures and microstructures observed in the Cardiff and Cheddar domes.  

3.1.1 Fault-Related Domes 

The first class of domes to be considered are the fault related domes. These include 

detachment related, thrust related, and strike slip shear zone related. Yin also includes ductile 

shear zones in her classification, however she suggests these features result from regional or local 

strain fields, rather than being the initiators of dome formation. Because of this, I did not  review 

them as a possible mechanism for the formation of the Harvey Cardiff Domes. As follows from 

the name, each of these mechanisms requires a fault or shear zone large enough to produce gneiss 

domes approximately 10 km in diameter. Due to the size, such features would most likely be 

apparent in maps and recognized in the literature of the area.  

Detachment Faults: 

Mechanism 

 Detachment faults can produce gneiss dome structures when corrugated. As the 

low angle fault accommodates extension, it can be synchronously warped due to isostatic 

rebound in later stages of its development (e.g. Wernicke and Axen 1988) or extension 

orthogonal contraction (e.g. Martinez-Martinez et al., 2002). A horizontal erosion surface 

intersecting the warped fault would produce domal patterns. Figure 1 shows two end 

member cases of detachment fault associated domes, these reflect hanging wall response 

to different amounts of crustal thinning.  
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Figure 11: Features of a Detachment Fault Related Gneiss Dome. Schematic of gneiss dome formed by 
extensional detachment faulting. Note the presence of a supradetachment basin, an increase in footwall 
metamorpic grade towards the fault, and a decrease in cooling ages approaching detachment fault. (From 
Yin, 2004). 

Criteria 

If domes are formed by detachment faulting, they are associated with the 

important features of this process, namely an identified detachment fault and a 

supradetachment basin where sediments fill in the basin created by normal listric faulting. 

In the footwall metamorphic grade increases and cooling age decreases in the direction of 

the detachment fault. Recognition of a ramp cutting metamorphic grades is key in 

distinguishing detachment fault related from thrust fault related gneiss domes.  

Application to Harvey Cardiff Domes 

Because the Grenville has not been associated with deep rooted detachment 

faulting, and due to the lack of an evident fault or supradetachment basin, this 

explanation can be reasonably excluded for the formation of the Harvey Cardiff domes. 

Thrust Faults: 

Mechanism 

Two distinct processes have been identified as mechanisms for gneiss dome 

creation associated with thrust faulting. Both require bounding thrust faults that excavate 

deep crustal rocks and form the core. In the first instance, a series of thrust faults coalesce 

to expose part of the deep crust. This is entitled a thrust duplex, and is cited as the process 

leading to the development of the Kangmar Dome in Tibet (Makovsky et al., 1999). The 

second also has a passive roof fault that keeps the rocks in the subsurface (Fig. 12).   
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Figure 12: Features of a Thrust Fault Related Gneiss Dome. Schematic of gneiss dome formation 
assocaited with passive roof thrusting. Note that metamorphic grade decreases toward the thrust and 
footwall cooling ages young away from the roof fault. (From Yin, 2004). 

 Criteria 

A horizontal section of the faulted area will expose a dome of higher grade rock 

surrounded by the basal thrust. These domes can be distinguished from detachment-

related gneiss domes based on patterns of metamorphic grade. Isograds in this situation 

display a flat-over-flat geometry where the fault ramp does not cut across the 

metamorphic gradient. Metamorphic grades decrease towards the passive-roof thrust, and 

cooling ages young away from the it. 

 Application to Harvey Cardiff Domes 

No bounding thrust faults along the core-mantle contact are observed in the 

Harvey Cardiff Domes. Thus, a thrusting origin is unlikely for this dome set.  

Strike Slip Shear Zone: 

 Mechanism 

Gneiss domes can also develop as broad folds in a strike slip shear zone. This 

mechanism has been proposed for a line of domes along the Raikot fault in northern 

Pakistan. In this setting, broad dextral shearing in a transpressive region is interpreted to 

have caused a crustal scale folding system (Pêcher & Le Fort, 1999).  
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 Criteria 

This mechanism requires that the domes exist within a broad strike slip zone 

several tens of kilometers wide.  

 Application to Harvey Cardiff Domes 

The Harvey Cardiff domain is characterized by thrusting, not strike-slip motion. 

The domes are not within a broad strike slip zone, and therefore this mechanism can be 

excluded 

3.1.2 Fault-Unrelated Domes 

The second category of gneiss domes are those unrelated to faults. This includes domes 

formed by diapirism resulting from magmatism or contrasts in mechanical rock properties, and 

domes formed by superposition of multiple folding events. The former is not associated with any 

regional geologic features, and thus is a feasible mechanism for formation of the Harvey Cardiff 

domes. Polyphase folding is a widely recognized mechanism for producing gneiss domes. 

Folding patterns on a regional scale should indicate whether stress and strain patterns produced 

folding events favoring dome creationg. 

Multiple Folding Events: 

Mechanism 

In order to create domes from multiple folding events, the axial planes must be 

out of alignment with one another. The simplest case to consider is one with two 

orthogonal folding events, producing a doubly plunging anticline (Fig. 13). If the older 

beds forming the center of the anticline are composed of gneisses, this feature would be 

consistent with the definition of a gneiss dome. There is no technical distinction between 

a gneiss cored doubly plunging anticline and a gneiss dome, although gneiss domes 

require a degree of radial symmetry and thus must be circular to oval (Van Staal & 

Williams, 1983). The degree to which axial planes can diverge from orthogonal and still 

produce a gneiss dome is also not established, and depends on fold interaction within a 

three dimensional space. 

 Criteria 

  In order to produce gneiss domes from multiple folding events, the axial planes 

must have varying strikes. Below are two computer generated examples of polyphase 

folding events (created using Visible Geology Beta, available at 

http://app.visiblegeology.com/profile.html). The first is simple orthogonal folding 

creating doubly plunging anticlines. The domal geometry created is evident in map view. 

The second set shows two folding events with axial planes striking 20 degrees from one 
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another. This produces an elongate ellipse in map view, and less clearly resembles a 

dome shape. Adding variations in dip and hinge plunge further complicates the possible 

folding patterns. However, if the axial planes are close to parallelism it is unlikely that 

doming will occur (Van der Pluijm & Marshak, 2004). 

 

Figure 13: Superposition of Orthogonal Folding Events. The first folding event (Left) has axial planes 
striking north-south. The axial planes of the second event (Middle) strike east-west. The polyphase result 
(Right) produces a doubly plunging anticline, with a dome structure evident in map view. 

 
Figure 14: Superposition of Non-Orthogonal Folding Events. The first folding event (Left) has axial planes 
striking north-south. The axial planes of the second event (Middle) strike N20E. The polyphase result 
(Right) produces a visible anticline in map view that has an elongate oval geometry. 

 

 Application to Harvey Cardiff Domes 

Evidence of at least three generations of folding is documented in an area 30 km 

west of the domes (Divi & Fyson, 1973).  The axial plane of the first event is parallel to 

bedding, and has no folding effect. The axial planes of the second and third events both 

strike northeast, although F2 dips moderately to the southeast while F3 is upright and has 

a shallowly plunging hinge. Figure 15 shows the result of the combination of folding 

events in the Harvey Cardiff. No dome structures appear in map view, and therefore it is 

unlikely that these events caused the formation of the Harvey Cardiff Domes. 



24 
 

 

Figure 15: Polyphase Folding of the Harvey Cardiff. The first event is not pictured here because its axial 
plane was parallel to bedding. F2 (Left) strikes N45E and dips 60 degrees to the southeast. F3 (Middle) also 
strikes N45E but has a dip of 0 and its hinge plunges 10 degrees to the northeast. The polyphase result 
(Right) does not display dome structures. 

Diapirism: 

 Mechanism 

Diapirism is the mechanism of formation cited in the earliest studies of gneiss 

domes, and has been ascribed to domes worldwide (e.g. Brun et al., 1981; Hippertt, 1994; 

Bouhallier et al., 1995). Diapirism describes the upward travel of material through 

surrounding bedrock due to instabilities produced by contrasts in mechanical rock 

properties. Such movement can be triggered by a variety of factors including density 

inversion and instabilities due to viscosity contrasts (Yin, 2004). Density inversions cause 

the lower layer to bow-up and rise by solid state flow through the crust. This upward 

movement is aided by decompression melting and rheologic weakening of the host rock 

due to heat flux from the diapir. The density inversion may be initiated by magmatism, or 

magmatism can result from decompression melting of the rising diapir. This 

decompression is often recorded in migmatites that are found in many gneiss dome cores.  

(Amato et al. 1994).  

Density inversions can also be created during regional metamorphism that 

exposes layered rocks to high pressure and temperature conditions. During burial and 

heating, metasedimentary rocks may become as dense as, or denser than granitic 

composition basement rocks. For example, garnet and biotite bearing metapelites have a 

density of between 2.7 and 2.9 g/cm3, while biotite-plagioclase-quartz gneisses have a 

density of 2.5 to 2.7 g/cm3 (Teyssier & Whitney, 2002). Decompression allows the 

diapirs to continue to rise through the crust at near constant temperatures. A similar 

process can occur due to instabilities produced by vertical viscosity contrasts in the rock. 

Lower viscosity material underlying higher viscosity rock will rise if placed under 
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contraction, and continue to rise due to decompression melting and rheologic weakening 

of the surrounding crust (Yin, 2004).  

 Criteria 

Analog centrifuge models have been used to examine structural patterns of 

diapiric domes in cross section. Dixon (1975) performed a series of experiments using 

layers of putty with varying specific gravities and viscosities that produced diapiric 

features when centrifuged. The dome core is represented by a low specific gravity layer 

(1.40), and is overlain by a layer with a specific gravity of 1.56. Putty layers were cut into 

horizontal and vertical laminations that form undeformed square elements when 

superimposed. Deformation was recorded in the shape change of these elements from the 

original square. Models were subjected to different lengths of centrifuging to produce 

different stages of domal development. The models that could be evaluated for strain 

formed cylindrical ridges, rather than spherical diapirs. Figure 16 shows analogue models 

for both mid and late stage dome development. Initially flat layers bow-up and develop a 

domal structure. The shape and structural patterns within diapiric domes vary with stage 

of development and cross section depth, and can be applied to natural domes.  

In these experiments, as the dome develops, its top broadens after reaching the 

free surface, while the neck becomes skinnier and more pronounced. Figure 17 shows the 

maximum elongation directions at 200 points in the dome core and mantle for domes in 

both stages of development. Within the dome core, maximum elongation strain can be 

used as a proxy for lineation direction, and the formerly horizontal layers demonstrate 

foliation patterns. The overburden layers are likely to deform along any previously 

defined planar features, such as bedding planes. In this model the original mantle bedding 

planes were horizontal before gneiss dome emplacement. Lineation consistent with 

stretching direction will develop on these planes. Figure 17 also illustrates the depths of 

cross sections described in the following paragraphs. It is worth noting that foliation 

patterns at a particular depth are consistent across both the core and mantle. 

 The cross section of the less developed dome has a roughly semicircular dome 

top and shallowly sloping flanks. The first cross section considered is through the upper 

portion of this dome at line A of Figure 17. At the center of the dome foliation is 

horizontal. Moving laterally outwards in the dome the core foliation shifts to dipping 

moderately away from the dome. Lineations are also horizontal in the center of the dome 

and steepen away from the dome center. A deeper section across the lower portion of the 

dome is pictured as Line B in Figure 17. At this depth foliations in the center of the dome 
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are vertical and gradually shallow, dipping away from the dome. Lineations are vertical 

in the dome center, transitioning first to plunging towards the dome center, and then 

away. Sense of shear is top outwards in both the core and mantle of all depths.  

 In a more developed dome the upper portion of the diaper bows outwards and the 

flanks move to, or past, vertical. Line C of Figure 17 shows a transect through the upper 

portion of the diapir. Foliations in both the core and mantle are close to horizontal, but 

dip slightly towards the dome center. Lineation in the core transitions from plunging 

towards the center to plunging away. In the mantle, lineation plunges along the dip of 

foliation. The deeper transect intersects the dome at line D of Figure 17. Foliations in the 

core and inner mantle dip steeply towards the dome center. At a distance from the dome 

mantle foliation shallows and eventually dips back towards the dome center. This pattern 

is mimicked by lineation. Again, sense of shear is top outwards in all cases.   

 

 

Figure 16: Analogue Models of Diaprisim. Analogue models of dome development for less developed (left) 
and more developed (right) gneiss domes. The striping in the two middle layers are the vertical laminations 
that were superimposed upon an identical sections from the same block that had horizontal laminations and 
used to track strain. The lighter striped layer is the less dense core layer, and the darker layer covering it is 
more dense and represents the mantle (From Dixon, 1975). 
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Figure 17:Sturcutral Patterns of Analogue Diapirs. Originally horizontal layers were divided into 200 
segments and then drawn after deformation. The formerly horizontal lines represent expected foliation 
directions in both the core and mantle. The double arrows represent maximum elongation directions, which 
act as a proxy for stretching lineation direction within the dome. In the mantle, strain is expected to be 
accommodated along original bedding layers, and lineations develop within that plane. The figure 
represents two stages of diapir development: less developed (Top) and well developed (Bottom). Lettered 
lines show cross sections described in the text. Red lines along the cross section highlight the dip of 
foliation along the transect. (Modified from Dixon, 1975). 
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 Application to Harvey Cardiff Domes 

Diapirism is not associated with an large scale geologic features, and is the most 

likely explanation for the Harvey Cardiff Domes after the elimination of the mechanisms 

discussed above. Slight adaptations were made to the interpretation of the cross sections 

here to account for radial formation rather than cylindrical dome formation. The 

formation of the complex of Grenvillian gneiss domes in northern Québec has been 

attributed to this mechanism by a structural study focused on the principle stretching axes 

of conjugate flanking shear bands (Gervais et al., 2004). Thus, it is reasonable to consider 

diapirism as a mechanism for the Harvey Cardiff Domes.   

3.3 Cardiff Dome Structural Analysis 

The most prominent foliation pattern in the Cardiff Dome strikes east-northeast and dips to 

the south. This is consistent with the dominant region foliation pattern discussed above, and was 

removed from most data sets to highlight other structural patterns. Figure 18 shows the foliation 

data subdivided into seven regions. Starting at the north, twenty-four out of the twenty-six 

foliation measurements in region I fall within thirty degrees of the dominant foliation. This 

stereonet is the only one in this figure that includes measurements within this range. They dip 

towards the dome center in both the core and the marble of the mantle. In region II, foliation 

strikes predominantly east-west mostly dipping to the south. However, there is a significant 

portion of foliations in the core and mantle that dip the opposite way, towards the north. The 

foliation in region III varies greatly with dip. The northernmost portion of this region is strongly 

affected by the dominant foliation, however because this was excluded for this analysis it does 

not appear in the stereonet. Other foliations dip north or northeast away from the dome center. 

Region IV displays two maxima that reflect the curving of foliations about the dome center. Both 

dip to the southeast away from the dome. Region V foliations dip to the southwest away from the 

core. Region VI shows a wide variety orientations, dipping mainly away from the core in the 

inner radius of the dome, and away at the outer. Region VII foliations dip shallowly to the 

southeast towards the dome in both the core and mantle. 

Although it is difficult to distinguish the core and mantle in the Cardiff Dome, there is no 

evident distinction between their foliation patterns. Foliation in the northeast, south, and a portion 

of the west dip away from the dome, while those in the north and northwest more consistently dip 

towards the dome core. Lineation within Cardiff Dome plunges shallowly to moderately to the 

southeast (Fig. 13).  
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Figure 18: Foliation Orientations of the Cardiff Dome. Foliation orientations in the seven regions of the 
Cardiff Dome. Stereonets show contoured plots of poles to foliation planes within each region. Rose 
diagrams plot dip direction. Excepting region I, all plots exclude foliations striking within 30 degrees of the 
regional maxima (those with strikes of 40-100). (Base map from Ontario Geologic Survey). 

 

Figure 19: Cross Section of Cardiff Dome Perpendicular to Dominant Foliation. This cross section is 17 km 
long, and shows average foliation dips for every 1 km. In regions with no dip information there were no 
foliations dipping in the orientation of the cross section.  
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Figure 20: Lineations of the Cardiff Dome. Contoured plot of all lineations in the Cardiff Dome core and 
mantle. 

3.2 Cheddar Dome Structural Analysis 

The foliation patterns in the Cheddar Dome resemble those of the Cardiff Dome to the North. 

The Cheddar Dome also shows the dominant regional foliation orientation striking east-northeast 

and dipping moderately to the southeast. lineation shows a wider range of moderate to shallow 

plunges to both the east and west (Fig. 12).  

Figure 21 presents the foliation data subdivided into seven regions.  In some cases there is a 

significant difference in dip within these data sets, reflected in separate maxima on the contour 

plots.  The central region (region I) shows very strong concurrence with the overall foliation 

trend, with foliations dipping moderately to the south-southeast.  In Figure 21, the region I 

stereonet is the only stereonet to include foliations with dip directions between 130-190 degrees.  

Moving clockwise around the dome from the top center, region II, in the northeast, has two 

maxima.  Foliations associated with the strongest maximum dip steeply to the northeast, away 

from the dome core.  Sub-horizontal foliations make up the much smaller second maximum.  

Region III contains foliations dipping primarily away from the dome to the northeast. The two 

maxima of region IV demonstrate the curvature of the foliation around the domal contact, with 

foliations striking east-northeast, but dipping moderately to the north and south.  Region V is the 

southeast side of the dome and most foliation here dips moderately to the northwest and towards 

the dome core.  A second maximum is composed of mantle foliations of similar strike that dip 

shallowly away from the center of the dome.  The west side of the dome shows two distinct zones 

of foliation.  Region VI, on the southwest side of the dome, shows a foliation dipping moderately 

to the southwest, away from the dome.  Region VII, on the west side of the dome, shows two 
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maxima, with foliation dipping steeply to the east. Stretching and c-axis orientation lineations in 

the region trend east west.  In the mantle, lineation plunges moderately to the east (Fig. 23). 

In summary, foliations dip both towards and away from the dome center in both the core and 

mantle.  Some regions show two maxima for foliation orientation, while others show a single 

maximum.  Foliations in the northeast, east, and south (regions II, III, IV, and VI) more 

consistently show dips away from the dome core. Foliations in the north and northwest dip 

toward the core along with region V, in the southeast. 

 
Figure 21: Foliation Orientations of the Cheddar Dome. Stereonets show contoured plots of poles to 
foliation planes within each region. Rose diagrams show dip direction. Excepting region I, all plots exclude 
foliations with strikes of 40-100. (Base map from Ontario Geologic Survey). 
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Figure 22: Cross Section of Cheddar Dome Perpendicular to Dominant Foliation. This cross section is 15 
km long, and shows average foliation dips for every 1 km. In regions with no dip information there were no 
foliations dipping in the orientation of the cross section. 

 

 

Figure 23: Lineations of the Cheddar Dome. Contoured stereonets of core (Left) and mantle (Right) 
lineations of the Cheddar Dome. 

3.4 COMSOL Analysis 

 Figure 24 shows the COMSOL results of both pure and simple shear models. The 

translation of the resultant dome is due to model setup and does not affect the foliation rotations. 

The original dip of each of the twelve foliation ellipses is presented in Table 1 below along with 

the resultant dips after pure and simple shear were applied. Also included in the table are the 

average dips of comparable regions in the Cheddar Dome. Foliations in the northwest steepened 

(represented in green) or overturned (in green and bold), while those in the southeast shallowed 

(in blue), excluding element 12 which steepened slightly. This pattern is consistent with the 

foliations of the Cheddar Dome, which are overturned from the expected in the northwest and 

shallower than expected in the southeast.  

 Foliation Dip 
Model 1 2 3 4 5 6 7 8 9 10 11 12 
Original Dip 45N 65N 83N 90N 85N 80N 0 80S 87S 83S 65S 45S 
Pure Shear 47N 72N 85S 75S 80S 85N 0 58S 72S 63S 53S 47S 
Simple Shear 55N 74N 86S 81S 86S 89N 0 74S 79S 75S 61S 46S 
Field 50S 49S 35S 24S 36S 

Table 1: COMSOL Results. Each numbered column represents one foliation ellipse. Red numbers are 
foliations in the mantle, and black are in the core. Green dips indicate that the resultant foliation from the 
models or field data was steeper than that of the normal section of a diapir. Bold green dips indicate that the 
foliation has overturned. Blue dips indicate that the foliations have shallowed. 
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Figure 24: COMSOL Results. Results of pure shear (Top) and simple shear (Bottom). Original dome and 
foliation ellipses are in black, while resultant ones are in red. 

3.4 Thin Section Analysis 

I analyzed thin sections for composition, fabric analysis, and sense of shear indicators. 

Appendix C shows photomicrographs of all thin sections. The amphibolite samples were 

predominantly quartz and feldspar, with varying ratios of plagioclase to orthoclase. Some 

contained up to 40% clinopyroxene. Foliations were defined by amphibole, biotite, or a mixture 

of the two.  Some magnetite and other opaques were present. The granitic gneisses were 

composed of primarily quartz, plagioclase, and perthitic orthoclase. Two samples had clear 

foliation defined by hornblende and biotite. The marble contained calcite and diopside grains. 

The biotite schist contained quartz, small amounts of plagioclase, and a biotite foliations.      

 Although amphibolites in the dome’s mantle show strong foliation and lineation defined by 

compositional banding and orientation of amphibole and biotite grains, they lack a clear sense of 
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shear at the scale of hand samples or thin sections.  Instead, most of these rocks display triple 

junction grain boundaries (Fig. 25) and appear to have statically annealed. 

 

 

Figure 25: Triple Junction Grain Boundaries in Thin Section. A representative thin section that shows triple 
junction grain boundaries, indicative of static annealing.  

3.5 Dome System Analysis 

The calculated centroids of each dome and measured spacing values are displayed in Figure 

26. Values for the measured spacing, average, standard deviation, and coefficient of variation are 

displayed in Table 2 below. The coefficient of variation for the Harvey Cardiff Domes is 0.26, 

making them a quasiperiodic grouping. The value for the type case for the evenly spaced domes 

of the Shuswap complex in British Columia is 0.24, and the value for the type case of unevenly 

spaced North Himalaya Gneiss Domes is 0.7 (see Appendix E for calculations). Although both 

systems have coefficients of variation less than one, there is a clear distinction in numerical value 

between evenly and unevenly spaced. The Harvey Cardiff Dome system falls in the range of the 

evenly spaced domes.   

Distance from Burleigh to Anstruther 18.8 km 

Distance from Anstruther to Cheddar 16.8 km 

Distance from Cheddar to Cardiff 11.0 km 

Average Spacing 15.5 km 

Standard Deviation 4.0 

Coefficient of Variation 0.26 

Table 2: Dome Spacing Calculations. Measurements of dome spacing and calculated average standard 
deviation and coefficient of variation. 
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Figure 26: Spacing of Harvey Cardiff Domes. Outlines of domes with latitude and longitude of 
calculated centroids and calculated distances between them. 



36 
 

4. Discussion 

4.1 Dome Formation 

 Structural analysis of individual domes as well as the periodicity of the gneiss dome 

complex suggests that the domes of the Harvey Cardiff Domain formed by diapirism.  

4.1.1 Cardiff Structures 

The Cardiff Dome exhibits a mixture of outward and inward dipping foliations that are not 

radial symmetric about the dome as would be expected in the ideal diapir.  Foliations on the 

northern side of the dome (regions I, II, IV, and VII) are consistent with a deep slice through a 

well-developed diapir (slice D in Fig. 17), where foliations dip towards the dome in both the core 

and mantle. The southern portion (regions III through VI) is more consistent with a shallow slice 

(slice C in Fig. 17) where foliations dip outward in both regions. The current exposure of the 

Cardiff Dome represents an apparent non-horizontal slice through a diapir, exposing a deeper 

section to the north and a shallower one to the south.  However, the foliation patterns clearly 

relate to the typical southeast dip of foliation in the Central Metasedimentary Belt boundary thrust 

zone (CMBbtz) just to the west of the Harvey-Cardiff Arch (Hanmer 1988; Hanmer and 

McEachern 1992). This indicates that the major orogeny which formed these foliations elsewhere 

in the region interacted with purely the diapiric foliation. The Cardiff dome also shows a lineation 

trend predominately to the southeast, consistent with lineations widely reported for the CMBbtz.  

4.1.2 Cheddar Structures 

The Cheddar Dome shows foliation patterns very similar to those of the Cardiff Dome. 

Foliations are not radial symmetric about the dome, but instead dip towards the dome to the north 

and away in the south. The same scenario of a non-horizontal slice through the diapir exposing a 

deeper section to the north and a shallower one to the south is also consistent with the Cheddar 

Dome. Again, foliation patterns are dominated by the southeast dipping trend, and reflect the 

patterns seen in the CMBbtz. The Cheddar Dome does, however, show a lineation that is distinct.  

The shallowly-dipping east-trending lineation differs from the southeast-trending lineation widely 

reported for the CMBbtz.  

4.1.3 Gneiss Dome System 

Domes of the Harvey Cardiff Domain are evenly spaced. This classification is not diagnostic 

of any particular mechanism. Domes caused by buckling and rock property contrasts all tend to 

form evenly spaced domes in laterally homogeneous matter. Therefore, these results are 

consistent with the hypothesis of diapirism. However, it is also possible for the other mechanisms 

to produce evenly spaced domes. Also it must be remembered that the environments in which 
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domes form are not equivalent to those in the laboratory, and no evidence exists that the 

mechanisms mentioned above must form evenly spaced domes (Yin, 2004).    

4.2 Possibility of Overprinting 

Although the foliation pattern seen in the Cardiff and Cheddar Domes is consistent with a 

nonhorizontal slice through a diapir, this seems physically unlikely and is not discussed in gneiss 

dome literature to date. A more feasible solution is that foliations related to the diapir were 

affected by orogenic stress fields during the orogeny.  

The prominent south-southeast dipping foliation seen in the Cardiff and Cheddar Domes most 

likely resulted from the large-scale, regional strain field of the orogenic collision. The maximum 

presented in Figure 7 is within thirty degrees of the orientation of the orogeny axis in Ontario 

(Tollo et al., 2004).  This overprinting could have occurred in concurrence with, or after gneiss 

dome formation, as the regional strain field will generally be much larger than any local strain 

field associated with dome formation (Yin, 2004).  

The COMSOL modeling results demonstrate that a Harvey Cardiff Dome that began as a 

diapir with the expected radially symmetric foliation pattern would appear as a nonhoizontal slice 

when subjected to either pure or simple shear. Foliations rotated to steepen and overturn in the 

northwest, mimicking a deeper slice through a diapir; while they shallowed in the southeast, 

mimicking a shallower slice. These results show that it is structurally possible to create an 

apparent nonhorizontal slice by subjecting a normal diapiric foliation pattern to the strain of a 

major orogenic event. However, this does not exclude the possibility that dome formation was 

synorogenic.  

Lineation in the Cardiff Dome appears to have been overprinted by the main orogenic event, 

however lineations within and outside the Cheddar Dome indicate stretching in the east-west 

direction.  Looking at infinitesimal strain, both stretching lineations and foliations tend to form 

perpendicular to the maximum compressive stress.  If the region were undergoing pure shear 

from the compression of the orogeny, the maximum compressive stress remains constant, and the 

foliations and lineations should be aligned with the trend of the orogen. Thus, foliations should be 

striking at 040, approximately the same trend as mineral lineations.  If instead the system were 

formed under simple shear, the foliation and lineation direction would rotate with progressive 

amounts of strain.  In the case of the Cheddar and Cardiff Domes, the orientation of the orogen is 

more northerly than the attitude of foliation and lineation.  This suggests that there was a 

component of simple shear present during the orogeny.  

4.3 Post Metamorphic Conditions   
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The lack of shear sense indicators and the presence of triple junction grain boundaries 

suggests that the dome rocks were retained at high temperatures after deformation.  Through the 

processes of static recrystallization and grain boundary area reduction, the internal free energy of 

the system is reduced and deformed grain boundaries straighten (Passchier & Trouw, 2005).  The 

Harvey Cardiff Domes were emplaced into the mid to lower levels of the orogeny into crust that 

was most likely raised above the geothermal gradient due to the heat of continental collision 

(Cosca et al., 1995).  Thus it is probable that much textural evidence was lost during static 

recrystallization late in the orogenic cycle.   

5. Conclusion 

The domes of the Harvey Cardiff Domain have clearly been altered by the Grenvillian 

orogenic stress field. In order to assess their unique structural patterns it was necessary to 

eliminate the orogenic signature. From an analysis of regional geology alone, it is possible to 

narrow down the possible formation mechanisms of the Harvey Cardiff domes to diapirism. This 

is confirmed by foliations that appear consistent with the diapiric model. However, this 

interpretation is complicated by the fact that the domes appear to represent non horizontal slices 

through diapirs. As demonstrated by COMSOL modeling, this pattern can be explained by 

rotation of foliations subjected to pure or simple shear. Therefore, it is more likely that strain 

from the orogeny altered the expected diapiric foliation pattern. Although the model discussed in 

this study presented dome formation before the orogeny, it is also possible that the two events 

occurred simultaneously.  

Lineations appear to have been overprinted by the orogen in the Cardiff Dome, but show a 

distinct pattern in the Cheddar Dome. The lack of shear sense indicators in the rocks at the hand 

sample and microscopic levels indicates that rocks were held at high enough temperatures after 

deformation to statically anneal. 

        The process of diapirism has not been linked to any particular stress states. This makes it 

difficult to gain information about the regional stress states during formation. However, it is 

significant that the Harvey Cardiff Domain domes were formed by the same mechanism as those 

in northern Québec. This indicates that similar conditions existed in both of these locations.  
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Appendix A: Structural Measurements 
 

All averages were calculated using the mean vector calculation on Stereo32. 

Latitude Longitude 
       -78.213 44.984 
       

  
Foliation 

 
Lineation 

  
Dip Direction Dip 

  
Trend  Plunge Type 

  
124 59 

  
115 59 Mineral 

  
134 64 

  
136 61 Mineral 

  
130 53 

  
125 53 Mineral 

  
140 57 

  
138 60 Mineral 

  
118 61 

 
Average 128 59 Mineral 

  
141 58 

  
180 33 Fold Hinge 

  
Average 131 59 

  
190 40 Fold Hinge 

     
Average 185 37 Fold Hinge 

-78.157 44.993 
       

  
186 76 

  
103 25 Mineral 

  
181 65 

  
103 29 Mineral 

  
Average 184 70 

 
Average 103 27 Mineral 

      
118 46 Hinge 

      
140 56 Hinge 

      
64 86 Hinge 

     
Average 125 34 Hinge 

-78.233 44.986 
       

  
101 80 

  
120 42 Mineral 

  
114 51 

     
  

141 45 
     

  
92 52 

     
  

Average 110 56 
     -78.133 44.911 

       
  

41 81 
  

138 38 Mineral 

  
38 83 

  
125 30 Mineral 

  
48 56 

  
122 46 Mineral 

  
44 74 

  
111 44 Mineral 

  
47 76 

  
125 31 Mineral 

  
49 78 

  
127 42 Mineral 

  
39 78 

 
Average 125 39 Mineral 

  
42 70 

     
  

41 80 
     

  
42 84 

     
  

Average 43 76 
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-78.14 44.947 
       

  
173 80 

     
  

172 63 
     

  
186 52 

     
  

165 65 
     

  
187 54 

     
  

Average 176 63 
     -78.216 44.985 

       
  

127 71 
  

111 70 Mineral 

  
130 55 

  
95 55 Mineral 

  
127 71 

 
Average 101 63 Mineral 

  
118 60 

  
13 20 Boudin Neck 

  
Average 125 64 

     -78.238 44.95 
       

  
112 66 

  
65 60 Mineral 

  
103 65 

  
60 80 Mineral 

  
111 74 

 
Average 64 70 Mineral 

  
Average 109 68 

     -78.146 44.91 
       

  
122 34 

     -78.13 44.91 
       

  
150 28 

     -78.107 44.935 
       

  
22 83 

     -78.112 44.972 
       

  
290 71 

     -78.162 44.994 
       

  
166 69 

     -78.124 44.897 
       

  
140 41 

     -78.101 44.938 
       

  
100 42 

     -78.105 44.906 
       

  
136 35 

     -78.175 44.992 
       

  
152 72 

  
134 74 Mineral 

-78.104 44.937 
       

  
85 41 

  
94 44 Mineral 
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Appendix B: Sample Descriptions 
 

Images of thin sections can be found in Appendix C 

 

Sample Thin Section Rock Type Latitude Longitude 
11CS001 Y granitic gneiss 44° 54.524 -78° 9.266 

11CS002 Y amphibolite 44° 54.616 -78° 8.774 

11CS003 Y biotite schist 44° 54.755 -78° 7.496 

11CS004 Y pegmatite 44° 54.879 -78° 7.203 

11CS005 Y marble 44° 55.873 -78° 7.191 

11CS006 Y amphibolite 44° 56.089 -78° 6.418 

11CS007 Y amphibolite 44° 59.450 -78° 7.980 

11CS008 N amphibolite 44° 59.450 -78° 7.980 

11CS009 Y granitic gneiss 44° 56.872 -78° 8.407 

11CS010 Y amphibolite 44° 56.872 -78° 8.407 

11CS011 Y amphibolite 44° 56.872 -78° 8.407 

11CS012 N marble 44° 59.594 -78° 9.739 

11CS013 Y granite 44° 59.594 -78° 9.739 

11CS014 Y amphibolite 44° 59.100 -78° 12.944 

11CS015 Y amphibolite 44° 59.100 -78° 12.944 

11CS016 Y amphibolite 44° 59.100 -78° 12.944 

11CS017 Y amphibolite 44° 59.100 -78° 12.944 

11CS018 N amphibolite 44° 59.100 -78° 12.944 

11CS019 Y amphibolite 44° 57.000 -78° 14.280 

11CS020 Y amphibolite 44° 57.000 -78° 14.280 

11CS021 Y amphibolite 44° 53.808 -78° 7.395 

11CS022 N amphibolite 44° 56.198 -78° 6.190 

11CS023 Y amphibolite 44° 56.198 -78° 6.190 

11CS024 Y amphibolite 44° 59.450 -78° 7.980 

11CS025 Y amphibolite 44° 59.450 -78° 7.980 

11CS026 Y amphibolite 44° 56.268 -78° 6.056 

11CS027 Y amphibolite 44° 56.268 -78° 6.056 
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Appendix C: Thin Section Photographs 
All thin sections are 40μm thick and photographed under cross-polarized light. 

 

Figure C1: 11CS001 

 

Figure C2: 11CS002 
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Figure C3: 11CS003 

 

Figure C4: 11CS004 
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Figure C5: 11CS005 

 

Figure C6: 11CS006 
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Figure C7:11 CS007 

 

Figure C8: 11CS009 
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Figure C9: 11CS010 

 

Figure C10:11CS011 
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Figure C11: 11CS013 

 

Figure C11: 11CS014 
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Figure C12: 11CS015 

 

Figure C13: 11CS016 
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.  

Figure C14: 11CS017 

 

Figure C15: 11CS019 
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Figure C16:11CS020 

 

Figure C17: 11CS021 
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Figure C18: 11CS023 

 

Figure C19: 11CS024 
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Figure C20: 11CS025 

 

Figure C21: 11CS026 
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Figure C22: 11CS027 
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Appendix D: Dome System Analysis 
 

Shushwap Complex Gneiss Domes: Evenly Spaced 

 

Figure D1: Evenly Spaced Domes of the Shuswap Complex. Gneiss domes polygons are blue, and 
centroids are marked with black dots.  

Table D1: Spacing Calculations for Shuswap Complex 

Distance Between Centers Average (km) Standard Deviation Coefficient of Variation 
79 km 62 km 15 0.24 
54 km 

   52 km 
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North Himalaya Gneiss Domes: Unevenly Spaced 

 
Figure D2: Geologic map of the North Himalaya Gneiss Domes. Gneiss domes are mapped in yellow. 
Distances were traced between geometric centroids.  
 

          The gneiss domes in this system vary from tens to hundreds of km in length/diameter. A 

clear linear array of domes appears to the east of the high angle normal fault. To the northwest 

are a series of larger domes with a more northerly strike. The mapped dome farthest to the west 

does not fall under the criteria of circular. Below are the distances between dome centers, 

beginning on the east side of the complex. There are three sets of calculations: one including 

only those domes east of the fault, one including all domes except for the one farthest to the 

west, and one including all domes.  
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Table D2: Spacing Calculations for Northern Himalaya Gneiss Domes 

Distance Between Centers Average Standard Deviation Coefficient of Variation 
139 km 

   80 km 
   34 km 
   76 km 
   25 km 
   34 km 
   34 km 
   20 km 
   27 km 
   24 km 
   44 km 
   69 km 51 km 35 km 0.69 

37 km 
   39 km 
   15 km 
   27 km 45 km 32 km 0.70 

231 km 56 km 54 km 0.97 
 
 
 



62 
 

Appendix E: COMSOL Model Details 

This appendix describes the steps of creating the COMSOL model in full detail. The goal 

was to create a model that applied pure and shear strain orthogonal to the dip of the regional 

foliation. First, I created a rectangle of material representing the mantle rocks (see Table E3 for 

values of model construction parameters and Tables E1 and E2 for elastic parameters). For each 

model, the edges of the material block were given different allowances for movement. A circle 

representing the gneiss dome is centered within this block and has the elastic properties of 

granite. Passive ellipses representing foliation lie along a horizontal plane representing the ground 

surface. I measured the exact dip angles on each ellipse and interpolated foliation values from 

Dixon’s analogue models for comparison (1975).  

In order to create pure and simple shear in the COMSOL model space, displacement was 

applied to the top horizontal face of the rectangle. Because the goal was to apply strain 

orthogonal to the dip of regional foliation, the entire model was rotated twenty degrees counter 

clockwise (Fig. E1). In the bulk of the text, this rotation was removed for simplicity by rotating 

the model and results back to their original orientation. 

 In order to create strain within the block, I applied different constraints on the movements 

of each of the block walls (See Fig. E1 for numbering system). In the pure shear regime wall 1 

was given a prescribed displacement in the negative y direction, walls 3 and 4 were allowed to 

grow or shrink in length by applying a roller condition. I allowed wall 2 to move freely in order to 

maintain conservation of volume in the block. In the simple shear regime, I applied a prescribed 

displacement in the negative x direction to wall 1. Walls 2 and 4 were left free to compensate for 

strain, and wall 3 was fixed in place (see Table E4 for displacement and strain values). 

 
Figure E1: Schematic of COMSOL model setup. The ground surface was rotated 20 degrees in order to 
make the regional foliation plane parallel with horizontal surface 1 to which stress was being applied. The 
surfaces of the model are numbered 1-4 to simplify explanation of boundary conditions in the text. 
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Table E1: Determination of Elastic Properties of the Mantle 
 Density (km/m3) Young’s Modulus (Pa) Poisson’s Ratio 
Limestone 2.44 33.7e9 .156 
Basalt 2.74 63.0 e9 .220 
Andesite 2.57 54.0 e9 .180 
Average 2.6 52 e9 .56 
 
Table E2: Elastic Property Parameters 
Dome Density 2650 kg/m3 
Dome Young’s Modulus 40e9 Pa 
Dome Poisson’s Ratio .7 
Mantle Density 2600 km/m3 
Mantle Young’s Modulus 52e9 Pa 
Mantle Poisson’s Ratio .56 
 
Table E3: Model Construction Parameters 
Height of Block 60 km 
Width of Block (Pure Shear) 400 km 
Width of Block (Simple Shear) 2000 km 
Radium of Dome 5 km 
Short Axis of Ellipse 125 m 
Long Axis of Ellipse 500 m 
 
Table E4: Displacement Parameters 
Displacement (Pure Shear) 9000 m 
Displacement (Simple Shear) 9000 m 
Longitudinal Strain (Pure Shear) .15 
Shear Strain (Simple Shear) .15 
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