
Claremont Colleges
Scholarship @ Claremont

Scripps Senior Theses Scripps Student Scholarship

2012

Exploring the On-line Partitioning of Posets
Problem
Leah F. Rosenbaum
Scripps College

This Open Access Senior Thesis is brought to you for free and open access by the Scripps Student Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in Scripps Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Rosenbaum, Leah F., "Exploring the On-line Partitioning of Posets Problem" (2012). Scripps Senior Theses. Paper 53.
http://scholarship.claremont.edu/scripps_theses/53

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Scholarship@Claremont

https://core.ac.uk/display/70970036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarship.claremont.edu
http://scholarship.claremont.edu/scripps_theses
http://scholarship.claremont.edu/scripps_student
mailto:scholarship@cuc.claremont.edu

Exploring the On-line Partitioning of Posets
Problem

by
Leah Rosenbaum

Submitted to Scripps College in partial fulfillment of the degree of
bachelor of arts

Professor Shahriari

Professor Chaderjian

March 9, 2012

Contents

1 Introduction 5
1.1 Terminology . 5
1.2 On-line Partitioning . 6

2 Background 9

3 Lower Bound on val(2) 13
3.1 Notation . 13
3.2 Winning Strategies for the Spoiler . 15
3.3 Forcing a Winning Position . 18
3.4 Completing the Proof . 20
3.5 Examples . 21

4 Exact Value for val(2) 25
4.1 The Algorithm . 26
4.2 Example Posets . 28
4.3 Performance Against Specific Spoilers 32

5 On-Line Partitioning using the Greedy Algorithm 35
5.1 Forcing the Use of Infinite Colors on a Width-2 Poset 35
5.2 Upper Bound for (t+ t)-Free Posets 38

6 Tight Bound on Incomparabilities in Graded, (t+t)-free Posets 49

3

Chapter 1

Introduction

1.1 Terminology

48

BBBBBBBB

24

BBBBBBBB 16

12

BBBBBBBB 8

6

BBBBBBBBB 4

3

BBBBBBBBB 2

1

The above graph represents a partially ordered set, or poset. Here the set is the
divisors of 48, and the partial ordering is division. The edges connect elements that
are comparable under the partial ordering. The transitivity and reflexivity of this
comparability are assumed, so 48 is comparable to 2 even though they are not di-
rectly connected.

Definition: A chain is a subset of the poset in which every element is compara-
ble to one another, that is, every element can be reached by traveling the edges up.
The subset {1, 4, 8, 24} is a chain.

Definition: An anti-chain is a subset of the poset in which every element is in-
comparable to one another, that is, cannot be reached by traveling the edges up. The
subset {3, 4} is an anti-chain. Note that {3, 4, 8} is not an anti-chain because, while
3 is incomparable to both 4 and 8, 4 and 8 are comparable to one another.

Definition: The width of a poset is the number of elements in the largest anti-chain.
The example poset above has width 2. Much of this thesis focuses on posets of width 2.

5

Definition: A poset is said to be (t + t)-free if it does not contain two chains of
t points in which all pairs of points, one from each chain, are incomparable. The
example from above contains a (2 + 2) (the chains 3, 6 and 4, 8) but does not contain
a (3 + 3), so it is (3 + 3)-free.

The example poset is also graded, meaning that the journey from the bottom
element, here 1, to the top element, here 48, always contains the same number of
points no matter the specific path traveled.

1.2 On-line Partitioning

One problem related to posets is that of partitioning. To partition a poset, we divide
the poset’s elements into chains, usually seeking to use the fewest number of chains.

Dilworth’s Theorem (1950): Let (P,≤) be a finite poset. Then width of P is the
minimum number of chains needed to partition P (not in a on-line fashion). The
example poset has width 2, as mentioned above, and it can clearly be partitioned
into the chains {1, 2, 4, 8, 16} and {3, 6, 12, 24, 48}.

The term on-line describes a situation in which the elements of an unknown poset
are not presented all at once, as in the example poset above, but are instead presented
one at a time according to some predetermined order.

On-line partitioning of posets is often described as a game between two opponents:
the Spoiler and the Algorithm. The Spoiler gives the Algorithm one element of the
poset at a time (the on-line part) along with that element’s comparability to all
previously given elements. Without knowledge of any further points to come, the
Algorithm must then irrevocably assign that element to some chain of the previously
given elements or start a new chain with that new element, always aiming to use the
fewest number of chains to partition the poset. Assignments are also discussed in the
language of coloring, where all elements with the same color must form a chain.

We define val(w) = k to be the minimum number k such that there exists a
strategy for an Algorithm to partition a poset of width less than or equal to w into k
chains. In other words, there exists an Algorithm that can partition a poset of width
at most w into exactly k chains.

1.2.1 On-line partitioning of width 2 posets

Establishing a specific value for val(2) occurred in a few stages. First, lower and
upper bounds were found for val(2), specifically that 5 ≤ val(2) ≤ 6, though this
paper will focus only on the lower bound [3]. It is important to note, this lower
bound was established regardless of the Algorithm used, that is, the proof develops a
Spoiler than can force any Algorithm to use at least 5 chains in an on-line partitioning
of a width 2 poset.

Next, an Algorithm was developed to on-line partition any width 2 poset into no
more than 5 chains [2]. This development, together with the previously established
bounds, conclusively set val(2) = 5.

6

Other work explored bounds on partitions using Algorithms other than the optimal
one developed in [2]. Work with the Greedy Algorithm proved that, with the proper
Spoiler, the Greedy Algorithm could be forced to use an infinite number of chains to
partition a width 2 poset [1].

1.2.2 Finite width, (t+ t)-free posets

While the Greedy Algorithm could be forced to use an infinite number of chains to
partition a general width 2 poset, researchers sought conditions on the poset under
which there does exist a bound on the number of chains the Greedy Algorithm would
use [1].

It was found that for finite width, (t + t)-free posets, there does exist an upper
bound on the number of chains the Greedy Algorithm will use [1].

Though not explicitly related to on-line partitioning, the final chapter of this thesis
develops a tight upper bound on the number of incomparabilities a given point can
have in a finite width, (t+ t)-free, graded poset.

7

Chapter 2

Background

Definition: Let P be a set and ∼ a relation on the elements of P . Then ∼ is called
a partial order if for all x, y, z in P ,

• x ∼ x (reflexive)

• if x ∼ y and y ∼ z, then x ∼ z (transitive)

• if x ∼ y and y ∼ x, then x = y (anti-symmetric)

When ∼ fulfills these criteria, ≤ is used instead of ∼.

The set P together with its partial ordering ≤ is called a partially ordered set or
poset.

For a poset (P,≤) and any elements x, y in P , it could be that x ≤ y, y ≤ x, or
neither. If either x ≤ y or y ≤ x, then x and y are comparable. Otherwise, they are
incomparable. Incomparability is often denoted x|y.

If every element in a poset is comparable to every other element, that poset is
called a total order or a linear order. A totally ordered subset of any poset is called a
chain, and if a subset of a poset contains only pairwise incomparable elements, that
subset is called an anti-chain.

For a poset (P,≤) with x, y in P and x ≤ y, we say that y covers x or x is covered
by y if there is no z in P such that x ≤ z ≤ y.

For a poset (P,≤), its Hasse diagram is a graph with:

• vertices are the elements of P

• for x, y in P , an edge connects x and y if and only if y covers x

• if x ≤ y, then x is drawn lower than y

The Hasse diagram of the poset of subsets of {1, 2, 3} with the inclusion partial
ordering is:

9

{1, 2, 3}

{1, 2}

ttttttttt
{1, 3} {2, 3}

JJJJJJJJJ

{1}

tttttttttt
{2}

JJJJJJJJJJ

tttttttttt
{3}

JJJJJJJJJJ

{}

JJJJJJJJJJJ

ttttttttttt

or simply

•

•

~~~~~~~
• •

@@@@@@@

•

~~~~~~~
•

@@@@@@@

~~~~~~~
•

@@@@@@@

•

@@@@@@@

~~~~~~~

where {}, {1}, {1, 2, 3} is a chain, {1}, {2}, {3} is an anti-chain, and {2}, {1, 2} is
a covering.

For a poset (P,≤), the chain (or anti-chain)

x1 ≤ x2 ≤ . . . xk

has size k and length k−1. We can think of the length as the number of links needed
to make the chain (or anti-chain), the number of edges in the Hasse diagram of that
chain (or anti-chain).

Note that in the Hasse diagram above, all maximal chains have length 3. Addi-
tionally, any chain from ∅ to a fixed subset A has length |A|. If all maximal chains
of a poset have the same length, that poset is called graded :

•

•

oooooooooooooo •

OOOOOOOOOOOOOO

• •

@@@@@@@
•

~~~~~~~
•

•

OOOOOOOOOOOOOO

@@@@@@@

~~~~~~~

oooooooooooooo

A poset that is not graded is called not graded :

10

•

•

OOOOOOOOOOOOOO

•

~~~~~~~~~~~~~~~~~
•

��������������
•

~~~~~~~
•

•

OOOOOOOOOOOOOO

@@@@@@@

~~~~~~~

oooooooooooooo

If a poset is graded, each element can be assigned a rank according to the number
of links from the lowest element. Elements of the same rank form levels, which
partition the poset. The poset rank is the rank of the maximal elements. The number
of elements in the kth-level of P is the kth rank number of P . In the diagram of the
subset of {1, 2, 3}, there are four levels with rank numbers 1,3,3,1.

Some examples of finite graded posets are:

• subset of a finite set with the inclusion ordering

• divisors of a positive integer with the divisibility ordering

For a finite poset (P,≤), we can define the height of P as the size of the longest
chain in P (height(P ) = rank(P ) + 1) and the width of P as the size of the longest
anti-chain in P . So the poset of subsets from {1, 2, 3} has height 4 and width 3.

11





Chapter 3

Lower Bound on val(2)

Theorem: val(2) ≥ 5 [3].
Equivalently, the Spoiler can force the Algorithm to use at least 5 colors in on-line

partitioning a width-2 poset. It is important to note that the proof of this theorem
does not aim to identify one specific width-2 poset that cannot be partitioned into 4
chains. Rather, it illustrates how the Spoiler can respond to the Algorithm’s coloring
choices and build a poset that requires 5 colors. Here, the Algorithm is static, and
the Spoiler is adaptable.

3.1 Notation

The proof as presented in [3] is heavily based on diagrams. Is these diagrams, points
are connected with an edge if the left point is comparable to the right point under the
relation∗. The open circles or loops indicate possibly empty chains. A letter names
each point, while a number indicates the color that the Algorithm assigned to that
point.

So the uncolored poset

a

2222222 b c

DDDDDDDDDD d e f

g h i

zzzzzzzzzz
j

yyyyyyyyyy
k l

could be represented as

a

2222222
d c

DDDDDDDDDD d e f

g h d
zzzzzzzzzz

j

yyyyyyyyyy
k d l

where b, d, i were put into loops, and the bottom right loop is empty. With respect to
the points shown in the second diagram, the comparability relations are maintained
from the first diagram.

∗While convention for Hasse diagrams is bottom to top comparability, this left to right scheme
is better suited to the size of these diagrams

13



Before beginning the proof, consider some helpful plays for the Spoiler, that is,
useful comparability relations that the Spoiler can build. Introducing a point with
these comparability relationships would help The Spoiler force the Algorithm to use
5 colors on the poset.

A(p) indicates introducing point p with comparability relationships

• d • d •

p•

oooooooo

OOOOOOOO

•

���������
•

.........

relative to the points around it.
B(q) indicates introducing point q with comparability

• d • d •

q•
oooooooo

OOOOOOOO

•

���������
•

.........

relative to the points around it.
C(r) indicates introducing point r with comparability

• d • d •

r•
nnnnnnnn

nnnnnnnn

•

��������
•

////////

relative to the points around it.
D(s) indicates introducing point s with comparability

• d • d •

s•

PPPPPPPP

PPPPPPPP

•

��������
•

////////

relative to the points around it.
Units of points are referred to as blocks, identified by the points sticking down.

The following group of points

• d • d •

2•

�������
3•

3333333

would be called a 2, 3 block. Concatenated blocks are called strings.
Depending on the moves played, the most recently introduced points may or may

not be comparable to one another. For example, if A(p) and B(q) are played in
successive blocks, then p|q

14



• d • d • d • d • d •

p

NNNNNNNN

pppppppp q•
oooooooo

OOOOOOOO

•

���������
•

.........
•

���������
•

.........

but if C(r) and D(s) are played in successive blocks, then r ≤ s by transitivity.

• d • d • d • d • d •

r

oooooooo

oooooooo s•

PPPPPPPP

PPPPPPPP

•

��������
•

////////
•

��������
•

////////

The linear order on the top of each diagram is (arbitrarily) colored with color
1. Any introduced element cannot be colored 1 because it is incomparable to the
1-colored element directly above it in the diagram.

3.2 Winning Strategies for the Spoiler

Newly introduced elements will be denoted pn where n indicates the order of intro-
duction (p1 is the first point introduced, p2 the second, etc.). After the Algorithm
assigns a color, that color will appear as a superscript on the point. For example, p43
indicates that the third element introduced was assigned color 4.

Lemma: If a 232323 string is formed during the course of an on-line partitioning
game on a width-2 poset, then the Spoiler can force the Algorithm to use 5 colors [3].

Proof: A 232323 string looks like:

1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1

2

�������
3

-------

�������
2

-------

�������
3

-------

�������
2

-------

�������
3

-------

First, the Spoiler plays B(p1) at the third block. While the Algorithm could color
p1 any color of 2, 3, 4, suppose the Algorithm chooses 2. We will consider the other
cases later.

1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1

p21

vvvvvvv
HHHHHHH

2

����������
3

**********

����������
2

**********

����������
3

**********

����������
2

**********

����������
3

**********

Next, the Spoiler plays D(p2) at the fourth block. Since p2 is not comparable to
p1, it cannot be colored 2. p2 is also not comparable to the 1-colored element above
it or to the 3-colored element to its left, so it must be colored 4.

15



1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1

p21

vvvvvvv
HHHHHHH p42

HHHHHHH

HHHHHHH

2

����������
3

**********

����������
2

**********

����������
3

**********

����������
2

**********

����������
3

**********

Finally, the Spoiler plays A(p3) at the fifth block.

1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1

p21

vvvvvvv
HHHHHHH p42

HHHHHHH

HHHHHHH p3

HHHHHHH
vvvvvvv

2

����������
3

**********

����������
2

**********

����������
3

**********

����������
2

**********

����������
3

**********

Since p3 is incomparable to the adjacent 2- and 3-colored elements, it cannot
receive either of those colors. p3 is also incomparable to the element of the linear
order above it and to p2, so it cannot be colored 1 or 4; the Spoiler has forced the
Algorithm to use a fifth color for p3.

We did assume, though, that the Algorithm colored the first point, p1, with color
2. We must consider the outcomes if the Algorithm has assigned either colors 3 or
4. If the Algorithm had colored p31, then the Spoiler would play C(p2) at the second
block, resulting in

1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1

p42

vvvvvvv

vvvvvvv
p31

vvvvvvv
HHHHHHH

2

����������
3

**********

����������
2

**********

����������
3

**********

����������
2

**********

����������
3

**********

where the Algorithm had to assign color 4 to p2 because p2 is incomparable to the
2-colored element adjacent to it, the 1-colored element above it, and to p31.

To win, the Spoiler plays A(p3) at the first block.

1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1

p3

HHHHHHH
vvvvvvv

p42

vvvvvvv

vvvvvvv
p31

vvvvvvv
HHHHHHH

2

����������
3

**********

����������
2

**********

����������
3

**********

����������
2

**********

����������
3

**********

Since p3 is incomparable to the 1-colored element above it, the adjacent 2- and
3-colored elements, and p42, the Algorithm needs a fifth color for p3. Notice the
symmetry of these last two strategies; this symmetry is based on the 232323 pattern
of the string.

16



Finally, if the Algorithm had colored p1 with color 4, the Spoiler could win by
playing A(p2) at the second block.

1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1

p2

HHHHHHH
vvvvvvv

p41

vvvvvvv
HHHHHHH

2

����������
3

**********

����������
2

**********

����������
3

**********

����������
2

**********

����������
3

**********

Lemma: If a 2232 string is formed during the course of an on-line partitioning game
on a width-2 poset, then the Spoiler can force the Algorithm to use 5 colors [3].

Proof: Consider the following series of plays and colorings. The Spoiler begins by
playing D(p1) at the first block. The Algorithm can color p1 either 3 or 4. If the
Algorithm chooses color 4 for p1, the Spoiler can win by playing A(p2) at the second
block.

1 d 1 d 1 d 1 d 1 d 1 d 1

p41

HHHHHHH

HHHHHHH p2

HHHHHHH
vvvvvvv

2

����������
2

**********

����������
3

**********

����������
2

**********

If the Algorithm chooses color 3 for p1, the Spoiler can win by playing D(p2) at
the second block followed by A(p3) at the third block.

1 d 1 d 1 d 1 d 1 d 1 d 1

p31

HHHHHHH

HHHHHHH p42

HHHHHHH

HHHHHHH p3

HHHHHHH
vvvvvvv

2

����������
2

**********

����������
3

**********

����������
2

**********

Lemma: If a 222 string in which the last loop contains a chain of size at least 4
is formed during the course of an on-line partitioning game on a width-2 poset, then
the Spoiler can force the Algorithm to use 5 colors [3].

Proof: The condition of the size-4 chain translates to four 1-colored elements and
looks like

1 d 1 d 1 d 1 d [1 d 1 d 1 d 1] d 1

2

��������
2

,,,,,,,,

��������
2

,,,,,,,,

where the four 1-colored elements are bracketed for emphasis. The Spoiler begins by
playing p1 as indicated below.

17



1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1

2

��������
2

,,,,,,,,

��������
p21

.......

�������

2

,,,,,,,,

If the Algorithm were to color p1 with either 3 or 4, the result would be a 2232 or
2242 string, which we just proved is a winning position for the Spoiler. The Algorithm
must assign color 2 to p1. From here, there are a few possible paths the game could
take.

When the Spoiler plays D(p2) at the first block, the Algorithm must assign either
3 or 4 to p2. This choice is not significant, as the following steps would symmetrically
reflect the assigned color. Suppose the Algorithm assigns p32. When the Spoiler plays
D(p3) at the p1, 2 block, the Algorithm must again assign either color 3 or 4. This
choice is significant. If the Algorithm chooses color 4, then the Spoiler plays D(p4)
at the second block to win.

1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1

p32

HHHHHHH

FFFFFFF p4

HHHHHHH

WWWWWWWWWWWWWWWWWWWWW p43

JJJJJJJ

FFFFFFF

2

����������
2

))))))))))

����������
p21

++++++++++

����������

2

))))))))))

If the Algorithm assigns color 3 to p3, then the Spoiler plays p4 as indicated below.
To avoid a 2232 or 2242 string, the Algorithm must color p4 with color 2. At the
second block, the Spoiler then plays D(p5), which the Algorithm must color 4 by the
incomparabilities. The Spoiler wins by playing D(p6) in the block after p4.

1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1

p32

HHHHHHH

FFFFFFF p45

HHHHHHH

HHHHHHH p6

JJJJJJJ

HHHHHHH p33

JJJJJJJ

FFFFFFF

2

����������
2

))))))))))

����������
p24

++++++++++

����������
p21

++++++++++

����������

2

))))))))))

More generally, any string of the form xxx, xxyx, or xyxyxy where x, y are in
{2, 3, 4} is a winning string for the Spoiler.

3.3 Forcing a Winning Position

Up to this point, we assumed that the game proceeded via one of the strings we have
examined. We must also prove that the Spoiler can introduce points in such a way
as to force the appearance of such a string in the on-line partitioning of any width-2
poset.

Lemma: In an on-line partitioning game on a width-2 poset, the Spoiler can force the
appearance of either an xxx, an xxyx, or an xyxyxy string where x, y are in {2, 3, 4}
[3].

18



Proof: consider the following diagram.

4 4
4 4 4
4 3 3

p a 3 3 3
p 3 3 p 4
2 2 p 4 p

2 2 2 2 4
2 2 2

2
2 2 see a
p 2 3

p 3
3 2 2 2

2 4 4 4
4 2 2 2
p p b 4 4

3 3 p 2
3 p

2 see a 3 3
4 3
3
3

2 2

4 4 see b
p 2
4 4
3 3

Each vertical, continuous string represents the situation given to the Algorithm
where p is the newly introduced element that needs coloring. The assumption is
that the Algorithm assigns colors so as to avoid an xxx, xxyx, or xyxyxy pattern
for as long as possible. This diagram is read from left to right with the different
branches representing the different color assignments the Algorithm might make. All
assignment possibilities, up to a permutation of the colors, are presented in the above
diagram.

The line segments running through a and b represent situations in which the
Algorithm can effectively stall. In a, the Spoiler will keep introducing points above
the lowest 3-colored element. The Algorithm can assign color 4 to two of those points,
but it must assign color 3 to the third (assigning color 2 would result in a 2232, and
assigning color 4 would give a 444). At b, the Spoiler will again introduce elements
above the bottom 3-colored element. The Algorithm can stall by assigning color 3 to

19



the first of these introduced elements, but the Algorithm must color the next element
there 4 in order to avoid a 333 or 2242.

To understand this diagram better, follow its bottom-most branch. First the
Spoiler introduces an element, which the Algorithm colors 2†. The Spoiler introduces
a new element below the first element (though it could also be above, by symmetry).
The Algorithm colors the new element 3 or essentially not the same color as the
first element. The Spoiler introduces a new element between 2 and 3, which the
Algorithm colors 4 (essentially, the Algorithm chooses a color not yet used). The
Spoiler introduces the new element below 4 and above 3. At this point, each color
assignment leads to a different path. Suppose the Algorithm assigns the color 4 to
the new point. The Spoiler plays between the two 4-colored points. The Algorithm
cannot color this new point 4, so it must choose either 2 or 3, a symmetric choice
in this case. The result becomes (a permutation) of the situation after point b. The
Spoiler plays above the two bottom 3-colored elements. To avoid a 333 or a 4424,
the Algorithm colors the new point 2. When the Spoiler again plays above the two
bottom 3-colored elements, the Algorithm is stuck. Coloring the new point 4 results
in a 242424; coloring the new point 3 results in a 333; and coloring the new point 2
results in a 2242. The Spoiler has achieved a winning position.

This diagram addresses, up to a permutation of colors, all possible assignments
that the Algorithm could make given the Spoiler’s introductions. As all those assign-
ments lead to a winning position for the Spoiler, we can conclude that the Spoiler
can always force the game in to a winning position for itself.

3.4 Completing the Proof

Theorem: val(2) ≥ 5 [3].

Proof: The Spoiler begins the game by introducing a linear order of 4(6×29−1)−3 =
12, 281 elements. No matter its coloring scheme, the Algorithm will color at least
6×29−1 of these the same color, say 1. Let L be the set of those 6×29−1 elements.
The Spoiler’s 12, 281 + i move for 0 < i ≤ 9 will consist of choosing an element ai in
L and then introducing a new element, bi, that is incomparable to ai but comparable
to every other previously introduced element. These ai will be chosen so that there
are at least 6 × 29−i − 1 elements of L above and below ai and separating ai from
any previous aj. This requirement ensures the condition of the lemma that xxx is
a winning position, namely, that there are always at least four 1-colored elements in
any loop of the linear order.

The Algorithm must color the bi with the colors 2,3,4. By the previous lemma,
the Spoiler can force the game into a xxx, xxyx, or xyxyxy string. Thus the Spoiler
can always win the game, forcing the Algorithm to use at least 5 colors.

†If the Algorithm had chosen a different starting color, the colors in the diagram would simply
be permuted.

20



3.5 Examples

To better understand this proof, consider some specific algorithms.

3.5.1 The “Stupid” Algorithm

The “stupid” algorithm uses as many of the four colors as possible, always using
whichever color has been used the least. As the Spoiler introduces the 12,281 elements
of the linear order, the stupid algorithm will color them in such a way that the
resulting coloring can be divided into adjacent segments of size 4 where each segment
contains each of the four colors exactly once. It might look something like:

αβδγ|δαγβ|γβαδ| . . .

Since 12, 281 = 4(6 ∗ 29− 1)− 3, one of the colors has been used more than the other
three. Call that color 1. That color has been used exactly 6 ∗ 29− 1 times, and there
are between 0 and 6 non-1-colored elements separating the 1-colored elements from
each other. Consider just the 6 ∗ 29 − 1 elements of color 1. Since the algorithm uses
a new color whenever possible, the Spoiler can set up the game through one of the
bottom routes. Consider the route through b.

The poset would look like

d a2 d a5 d a8 d a7 d a6 d a4 d a3 d a1

b32



1111111

b35



1111111

b8



11111111

b27



1111111

b46

1111111


b24



1111111

b43



1111111

b21

1111111

with the assigned colors indicated ‡.

For b8, the stupid algorithm will use either 3 or 4 (2 has been used three times
while 3 and 4 have only been used twice). For this case, suppose the algorithm assigns
color 4, resulting in a 424242 pattern.

a8 (11) a7 (23) a6 (47) a4 (191) a3 (383) a1 (1535)

b48

��������
b27

��������

66666666

b46

66666666

��������
b24

��������

66666666

b43

��������

88888888

b21

88888888

The numbers in parenthesis indicate the minimum number of 1-colored elements that
each loop must contain according to the rules for selecting the ai. Clearly, all of these
numbers are greater than 1, so we can view the diagram as

‡These relationships are generated by following the path through b. The “stupid” algorithm
would not always produce this coloring; it is simply an illustrative example.

21



a8 d 1 d a7 d 1 d a6 d 1 d a4 d 1 d a3 d 1 d a1

b48

�������
b27

�������

///////

b46

///////

�������
b24

�������

///////

b43

�������

///////

b21

///////

Following the steps in the lemma that xyxyxy is a winning position for the Spoiler,
the Spoiler will first play B(p1) at the third block. Since 2 and 4 have been used three
times, but 3 has only been used twice, the stupid algorithm will assign color 3 to p1
(note that p1 is comparable by transitivity to the 3-colored b2 and b5 which have been
omitted from this view). The Spoiler can then play A(p2) at the second block to win.

a8 d 1 d a7 d 1 d a6 d 1 d a4 d 1 d a3 d 1 d a1

p2

KKKKKKK
sssssss

p31

uuuuuuu

IIIIIII

b48

����������
b27

����������

++++++++++

b46

++++++++++

����������
b24

����������

++++++++++

b43

����������

++++++++++

b21

++++++++++

By considering the incomparabilities in this final diagram, we can roughly con-
struct the poset that the Spoiler used to force the stupid algorithm to use at least 5
colors. The incomparabilities are:

a8 a7 p2 p2 a6 a6 a4 a4 a3 a1

b8 b7 b7 b6 b6 p1 p1 b4 b3 b1

where each element is incomparable to the element directly above or below it. Using
this list of incomparabilities and the comparabilities evident in the diagram above,
we can construct the poset

a8

2222222
d a7

5555555 p2 a6

GGGGGGGGGG
d a4

2222222
d a3

2222222
d a1

b8

������ d b7

ooooooooooooooo d b6 p1 b4

������ d b3

������ d b1

where the loops indicated here cannot be empty.

3.5.2 The Greedy Algorithm

When the Algorithm is the greedy algorithm, it will color all 12,281 elements of the
linear order with one color, say 1. When the Spoiler chooses a1 and plays b1, the
greedy algorithm assigns color 2 to b1. When the Spoiler chooses a2, a3 and plays
b2, b3, the greedy algorithm with also color these b2, b3 with color 2, creating a 222
scenario.

22



a3 (383) a2 (767) a1

b23

~~~~~~~~~
b22

~~~~~~~~~

@@@@@@@@@

b21

@@@@@@@@@

Since there are certainly more than four 1-colored elements in the final loop, we
can view the diagram as follows

a3 d 1 d a2 d 1 d 1 d 1 d 1 d 1 d a1

b23


b22



11111111

b21

11111111

and follow the moves that the Spoiler plays to win. The Spoiler plays p1, which the
Algorithm will still color 2. Then the Spoiler plays D(p2) at the first block, making
p2|b23, so p2 is 3-colored. Next, the Spoiler plays D(p3) at the p1 block. Since p3|p21,
the Algorithm will assign color 3 to p3. The Spoiler plays p4 as indicated, and the
Algorithm will color it 2. Then the Spoiler plays D(p5) at the second block, making
p5|b22 and p5|p32, leading the Algorithm to assign color 4 to p5. To win, the Spoiler
plays D(p6) at the p4 block.

a3 d 1 d a2 d 1 d 1 d 1 d 1 d 1 d a1

p32

NNNNNNNN

LLLLLLLLL p45

NNNNNNNN

LLLLLLLLL p6

NNNNNNNNN

LLLLLLLLL p33

NNNNNNNNN

LLLLLLLLL

b23

����������
b22

����������

----------

p24

----------

����������
p21

----------

����������
b21

----------

Again, we can consider the incomparabilities and construct the poset. The in-
comparabilities, where each element is incomparable to the one below or above it,
are:

a3 p2 p2 b2 b2 p6 p6 p6 a1 a1 p1 p1

b3 b3 a2 a2 p5 p5 p4 p3 p3 b1 p3 p4

so the poset looks like:

b3 d a2

6666666 p5 p4 d p3 b1

a3

�������
p2 b2 d p6 p1 d

�������
a1

To further explore this Spoiler on the greedy algorithm, consider how large a poset
is needed to force the greedy algorithm to use 5 colors.

The greedy algorithm will color b1, b2, b3 with the same color, so the Spoiler only
needs to introduce three points to get to a winning position. Loosen the restriction

23



on the placement of a1, a2, a3 to require that there are 6 ∗ 23−i − 1 elements of L,
the linear order, on either side of ai and between ai and any previous aj. Using this
restriction

(11) a2 (11) a1 (5) a3 (17)

b22

���������
b21

���������

>>>>>>>>>

b23

<<<<<<<<<

where there need to be at least 23 elements on either side of a1, we see that the linear
order must have size at least 47. With the strategy above, we also needed the three bi
and the six additional points p1 to p6, so the Spoiler could force the greedy algorithm
to use 5 colors on the poset containing 56 elements.

Taking the spacing requirement even more loosely, since the algorithm is greedy
and the xxx strategy can be easily employed, eliminate the left 11 elements, 10 of the
11 between a2 and a1, and the right 17 elements. The Spoiler could force the greedy
algorithm to use 5 colors on a poset containing 18 elements.

24



Chapter 4

Exact Value for val(2)

Knowing that val(2) ≥ 5, we can consider an Algorithm that partitions any width-
2 poset into exactly 5 chains [2]. For a poset (P,≤), consider the following series
decomposition of P :

• This decomposition must be the finest decomposition such that any pair of
incomparable elements of P belong to the same unit of the decomposition, the
same block.

• Any block that contains more than 1 element is called rigid. Non-rigid blocks
are called singletons.

• Any rigid block will have 2 maximal and 2 minimal elements. These at most 4
elements are called the corners.

To understand this decomposition, consider the following poset:

e

d f

MMMMMMMMMMMMM

c g

b h

a

qqqqqqqqqqqqq
i

MMMMMMMMMMMMM

j

LLLLLLLLLLLLL

The elements e and j are comparable to every other element, so each can be in
its own component without violating the rule that a pair of incomparable elements
must belong to the same component. So there are e, j singletons. a is incomparable

25



to i, but both a and i are comparable to every other element in the poset. Thus a, i
form a rigid component where a and i are both top and bottom corners. Then there
is an interior series of incomparabilities:

b|h, h|c, c|g, g|d, d|f

Since all pairs of incomparable elements must be in the same component, we get a
big rigid component with bottom corners b, h, top corners d, f , and c, g in the middle.
Thus the decomposition looks like

{e}{j}{a, i}


d f
c g
b h


4.1 The Algorithm

Consider an on-line partitioning Algorithm is based on the above partitioning process.
When on-line partitioning poset (P,≤), there are 5 possible actions that the new point
p could induce [2].

1. p could form a new block on its own. That is, p is comparable to all of the
previously introduced points. To be in a preexisting block, the newly introduced
element must be incomparable to some element in that block.

2. p, together with two rigid blocks and possibly several singletons, could form
a new rigid block. That is, p could be incomparable to elements that are
comparable to each other.

3. p, together with some singletons, could form a new rigid block. Again, p could
be incomparable to elements that are comparable to each other.

4. p and 1 rigid block and possibly some singletons could form a new rigid block
with p as a corner. p could be smaller or larger than all the elements to which
it is incomparable.

5. p could extend an existing rigid block but is not a corner. That is, p could
be incomparable to some point in block R but would not be a maximum or
minimum element for that block.

To assign the chains that partition P , the Algorithm assigns a color from
{1, 2, 3, 4, g} to each point as it is introduced. This coloring must not violate the
following three properties:

A) If y is a corner of a rigid block, then y has an associated set of virtual colors,
vc(y) from {1, 2, 3, 4}.

B) Every color class forms a chain, that is, {z : color(z) = γ or γ ∈ vc(z)} is a
chain for γ = 1, 2, 3, 4, g.

26



C) The sets of virtual colors for the top corners of a rigid block R and for the bottom
corners of the next rigid block above R are different. Specifically, if t is a top
corner of R and b is a bottom corner of the next block, then |vc(t)∩ vc(b)| = 1.

Preserving these three properties, the Algorithm assigns a color to each new point
p according to the action it induces [2].

Case 1) If p induces action 1, the Algorithm assigns color g to p. p does not yet have a
set of virtual colors.

Case 2) If p induces action 2, then it joins two rigid blocks. Let {t1, t2} be the top corners
of the lower block and {b1, b2} be the bottom corners of the higher block of the
two blocks combined by p. To avoid an anti-chain of size 3, p is comparable
with exactly one t, say t1, and exactly one b, say b1. The Algorithm assigns to
p the unique color of vc(t1)∩ vc(b1). p does not yet have a set of virtual colors.

Case 3) If p induces action 3 (it generates a new block from singletons), then there
may be a chain of x1, . . . , xh of g-colored points incomparable to p. Up
to a permutation of colors, vc(b1, b2 from block above p ) = {1, 2}, {3, 4} and
vc(t1, t2 from block below p ) = {1, 3}, {2, 4}. Defining vc(p) = {1, 4} and
vc(x1) = . . . = vc(xh) = {2, 3} maintains the invariance of the three above
properties. The Algorithm assigns a color to p from vc(p).

Case 4) p becomes a new corner of block R. By duality, is it sufficient to consider the
case of p as a new bottom corner. Let b1, b2 be the old bottom corners and
x, y be the new bottom corners. Assume p ≤ b1 and p|b2. Since y|p, y must
be comparable to b2 to avoid a size 3 anti-chain. We can define vc(p) = vc(b1),
vc(y) = vc(b2), and give p a color from vc(p).

Before considering Case 5, consider the following lemma.

Lemma: let R be a rigid block, and let C1, C2 be a chain partition of R. If p is
a point extending R, then either C1 + p or C2 + p is a chain [2].

Proof: The incomparability graph of a rigid block is a connected bipartite graph.
R and R + p are rigid, so the unique bipartition of the incomparability graph of
R + p is obtained from the unique bipartition of the incomparability graph of R by
extending one of the sides with p.

Case 5) p falls into the interior of R. Assume that C1 + p, C2 is the chain partition of
R+ p. Let y be the first element below p in C1 that was ever a bottom corner,
and let z be the first element above p in C1 that was ever a top corner. y, z
must exist since C1 is bounded by the corners of R. Applying lemma 1, C1 + p
is a chain, so vc(y) ∩ cv(z) is non-empty. Let vc(p) = vc(y) ∩ cv(z) and assign
p a color from vc(p).

Theorem: An on-line order of width 2 can be partitioned on-line into 5 chains [2].

Proof: applying the above cases and colorings produces no more than 5 colored chains
that partition the on-line order.

27



4.2 Example Posets

To better understand this partitioning Algorithm, try it out on some example posets.
First, consider the poset

d b

i f

k j

e

������������������
h

::::::::::::::::::

a c

where the Spoiler introduces the points in alphabetical order.

First, the Spoiler introduces a. Since it is the first element, a it is trivially com-
parable to all other introduced elements, so it falls under case 1. The coloring rule
for case 1 dictates that a receives color g.

Next, the Spoiler introduces b. Since b is comparable to a (through e and f in the
diagram above), it also falls under case 1 and is colored g. At this point we have two
singletons {a}, {b}, each colored g and having the comparability

bg

ag

ppppppppppppp

Now the Spoiler introduces c. Element c is comparable to b (via h, i, f), but it
is not comparable to a. By the rules of the decomposition, c must be put into the
same block as a. Element c becomes the second element in a’s block, transforming a
singleton into a rigid block under case 3. Closely follow the language of case 3 in terms
of this poset. “If (in our case) c induces action 3, then there may be a chain x1, . . . , xh
of g-colored points incomparable to c.” Here, that chain of g-colored points is just a.
“Up to a permutation of colors, vc(b1, b2 from component above c ) = {1, 2}, {3, 4}
and vc(t1, t2 from component below c ) = {1, 3}, {2, 4}.” At this point, there is no
component below c. Also, the component above c contains only b, which has a color
but not a set of virtual colors. So continue with the rule. “Defining vc(c) = {1, 4} and
vc(x1) = . . . = vc(xh) = {2, 3} maintains the invariance of the three above properties.
The Algorithm assigns a color to c from vc(c).” In this case, define vc(c) = {1, 4},
vc(a) = {2, 3}, so the Algorithm can assign color 1 to c. The decomposition has the
{a, c} rigid block and the {b} singleton

28



bg

{2, 3}ag

lllllllllllllll
c1{1, 4}

Check that the invariance is obeyed. In adherence to rule A, a, c are corners of a rigid
block and have an associated set of virtual colors. Element b does not have a set of
virtual colors, but since it is only a singleton, it does not violate rule A. Certainly
every color class forms a chain, satisfying rule B. There is only one rigid block so far,
so rule C is trivially satisfied.

The Spoiler introduces d. Element d is comparable to a and c, but not to b.
Thus d must be in the same block as b, expanding a singleton to a rigid block as
in case 3. Recall the coloring rule for case 3 in terms of this poset and the newly
introduced point d. Element d “induces action 3”, and here the “chain of x1, . . . , xh
of g-colored points incomparable to d” is simply element b. There is no block above
d, but vc(a, c from component below d ) = {2, 3}, {1, 4}. Defining vc(d) = {2, 4} and
vc(b) = {1, 3} maintains the invariance of the three above properties. The Algorithm
can assign a color to d from vc(d), say 2. Now the decomposition is the {a, c} rigid
block and the {d, b} rigid block.

Again check that the invariance is obeyed. Each of the four introduced elements
is a corner of a rigid block, and each has a set of virtual colors, satisfying A. The
introduced elements are comparable as

{2, 4}d2 bg{1, 3}

{2, 3}ag

mmmmmmmmmmmmm
c1{1, 4}

QQQQQQQQQQQQQ

and inspection shows that each class of colors or virtual colors forms a chain, satisfying
B. Inspection also reveals that the corners of adjacent blocks share exactly 1 virtual
color, satisfying rule C.

Now the Spoiler introduces e. Element e is comparable to a, b, d and is incompa-
rable to c, so by action 4, e forms a top corner of the rigid {a, c, e} block. As this is
a new case for this poset, carefully consider the rule’s language. “e is a new corner
of component {a, c, e}. By duality, is it sufficient to consider the case of e as a top
corner. Let a, c be the old top corners and e, c be the new top corners. Assume e ≤ a
and e|c. Since a|c, a ≤ a to avoid a size 3 anti-chain. Define vc(e) = vc(a) = {2, 3}
and vc(c) = vc(c) and give e a color from vc(e),” say 2. Now the decomposition
consists of the rigid {a, c, e} and {d, b} blocks, and the comparability is

{2, 4}d2 bg{1, 3}

{2, 3}e2

mmmmmmmmmmmmm

{2, 3}ag c1{1, 4}

DDDDDDDDDDDDDDDDDDDDD

29



It is left to the reader to check that the invariance is obeyed.

The Spoiler introduces f . Element f falls under case 4, as e did, except that
it forms a new bottom corner of the {d, b, f} block. Elements d, b were the old
bottom corners and f ≤ b, so by the coloring rules for case 4, the Algorithm will let
vc(f) = vc(b) = {1, 3} and assign a color from vc(f), say 1. Then the decomposition
is the rigid {a, c, e} and {d, b, f} blocks, and the comparability is

{2, 4}d2 gb{1, 3}

{2, 3}e2

mmmmmmmmmmmmm
f 1{1, 3}

{2, 3}ag 1c{1, 4}

DDDDDDDDDDDDDDDDDDDDD

Element h, like element e, forms a new top corner of the rigid {a, c, e, h} block
under case 4. Since h is comparable to c, the old top corner, vc(h) = vc(c) = {1, 4}
and the Algorithm can assign color 1 to h. The decomposition is the rigid blocks
{a, c, e, h} and {d, b, f} and the comparability is

{2, 4}d2 bg{1, 3}

f{1, 3}f 1

{2, 3}d2

lllllllllllll
h1{1, 4}

EEEEEEEEEEEEEEEEEEEEE

{2, 3}ag c1{1, 4}

Element i acts like element h under case 4, except that it forms a new bottom
corner of rigid block {d, b, f, i} instead of a new top corner of {a, c, e, h}. Since i is
comparable to older bottom corner d, the Algorithm will let vc(i) = vc(d) = {2, 4} and
assign color 2 to i. The decomposition is {a, c, e, h} and {d, b, f, i} with comparability

{2, 4}d2 bg{1, 3}

{2, 4}i2 f 1{1, 3}

{2, 3}e2

mmmmmmmmmmmmm
h1{1, 4}

QQQQQQQQQQQQQ

{2, 3}ag c1{1, 4}

30



Now the Spoiler introduces j. Element j is incomparable to a, e, i, d and compa-
rable to c, h, f, b. Since pairs of incomparable elements must be in the same block,
j unites the two preexisting blocks and goes somewhere in the middle of the newly
formed block, falling under case 2. Again, read this new case slowly. “If j induces
action 2, then let {t1, t2} be the top corners of the lower block and {b1, b2} be the
bottom corners of the higher block of the two blocks combined by j.” Here, those top
corners are {e, h} and the bottom corners are {i, f}. “To avoid an anti-chain of size 3,
j is comparable with exactly one t, say t1, and exactly one b, say b1.” j is comparable
to h and f . “Then color(j) = the unique color of vc(t1) ∩ vc(b1).” By rule C, there
must be 1 color in the intersection of the virtual color sets of h and f . That color is 1,
so the Algorithm assigns color 1 to j. j does not receive a set of virtual colors. Note
that rule A is not broken, as j is not a corner of a rigid block. The decomposition is
now one big rigid block with connectivity

{2, 4}d2 bg{1, 3}

{2, 4}i2 f 1{1, 3}

j1

{2, 3}e2

zzzzzzzzzzzzzzzzzzzzz
h1{1, 4}

DDDDDDDDDDDDDDDDDDDDD

{2, 3}ag c1{1, 4}

Finally, the Spoiler introduces k. Element k is incomparable to c, h, j, f, b, so it
must be put into their block. As k does not form a corner, it falls under case 5.
Again, this a new case, so read the rules closely. “Assume that C1 +k, C2 is the chain
partition of {a, b, c, d, e, f, h, i, j} + k. Let y be the first element below k in C1 that
was ever a bottom corner, and let z be the first element above k in C1 that was ever a
top corner.” For this poset, eand i take on these respective roles. Applying lemma 1,
C1 + k is a chain, so vc(e) ∩ cv(i) = {2} is non-empty, and the Algorithm can assign
color 2 to k. The final comparability and color assignment is

31



{2, 4}d2 bg{1, 3}

{2, 4}i2 f 1{1, 3}

k2 j1

{2, 3}e2

zzzzzzzzzzzzzzzzzzzzz
h1{1, 4}

DDDDDDDDDDDDDDDDDDDDD

{2, 3}ag c1{1, 4}

For this poset, a greedy approach∗ to this Algorithm used 3 colors: 1,2, and g.
Inspection of the diagram reveals that the Algorithm could have used any of the colors
from the virtual color sets and used no more than five colors.

4.3 Performance Against Specific Spoilers

Now consider how this Algorithm would perform against the Spoiler developed in the
previous chapter, the Spoiler intended to force the use of at least 5 colors.

The Spoiler begins the game by introducing a linear order of 4(6× 29 − 1)− 3 =
12, 281 elements. Because they form a linear order, each of the 12,281 elements forms a
singleton, which the Algorithm colors g. It is perhaps easiest to follow the interaction
of Spoiler and Algorithm as a series of actions and responses.

1) Spoiler: choose a1 and introduce b1.

Algorithm: a1|b1 but b1 is comparable to every other element in the linear order,
so b1 forms a rigid block with a1 where b1 is a corner (Case 4). The Algorithm
assigns virtual color sets vc(a1) = {1, 2} and vc(b1) = {3, 4} up to a permutation
of these colors. Without loss of generality, assume the Algorithm assigns color
3 to b1.

2) Spoiler: choose a2 below a1 and introduce b2.

Algorithm: a2|b2 but b2 is comparable to all other elements in the linear order
and to b1. Under case 4, b2 forms a rigid block with a2, and the Algorithm
assigns virtual color sets vc(a2) = {1, 3} and vc(b2) = {2, 4}. The Algorithm
assigns b22.

3) Spoiler: choose a3 above a2 and below a1 and introduce b3.

Algorithm: a3|b3 but b3 is comparable to all other elements in the linear order
and to b1 and b2. Under case 4, b3 forms a rigid block with a3, and the Algorithm

∗This was a greedy approach in that, when given a choice of colors from an element’s virtual
color set, the Algorithm only used colors that were already used, whenever possible.

32



assigns virtual color sets vc(a3) = {1, 4} and vc(b3) = {2, 3}. The Algorithm
assigns b23.

4) Spoiler: choose a4 above a1 and introduce b3.

Algorithm: As in previous moves, b4 induces a case 4, forming a rigid block with
a4. The Algorithm assigns virtual color sets vc(a4) = {1, 4} and vc(b4) = {2, 3}.
The Algorithm assigns b34.

5) Spoiler: choose a5 above a3 and below a1 and introduce b5.

Algorithm: As before, b5 induces a case 4, forming a rigid block with a5. The
Algorithm assigns virtual color sets vc(a5) = {1, 3} and vc(b5) = {2, 4}. If the
Algorithm assigns b25, the Spoiler wins by the 222 formed. Assume Algorithm
assigns b45.

6) Spoiler: choose a6 above a5 and below a1 and introduce b6.

Algorithm: b6 forms a rigid block with a6. The Algorithm assigns virtual colors
sets vc(a6) = {1, 4} and vc(b6) = {2, 3}. No matter the assignment, either a
333 or a 2242 will be formed; the Spoiler wins.

Using this Algorithm, is it easier for the Spoiler to force a winning position because
the color choices are limited to 2 colors (instead of 4) by the set of virtual colors. That
said, this Algorithm cannot be forced to use more than 5 colors on any poset.

d
ag4 b34{2, 3}

PPPPPPP

nnnnnnnd
ag1 b31{3, 4}

PPPPPPP

nnnnnnnd
ag6 b6{2, 3}

PPPPPPP

nnnnnnnd
ag5 b45{2, 4}

PPPPPPP

nnnnnnnd
ag3 b23{2, 3}

PPPPPPP

nnnnnnnd
ag2 b22{2, 4}

PPPPPPP

nnnnnnnd
33





Chapter 5

On-Line Partitioning using the
Greedy Algorithm

5.1 Forcing the Use of Infinite Colors on a Width-

2 Poset

Theorem: There exists a poset (P,≤) and a presentation of P such that the Greedy
Algorithm uses infinitely many chains in a on-line partition of P [1].

Proof: First we will describe the poset and give the Spoiler’s on-line order for it.
Then we will show that the Greedy Algorithm uses infinitely many chains to parti-
tion it.

Let P be composed of two disjoint chains, α0 and α1. To start, let α1 = x1 and let
α0 = ∅. For each m in N, Gm is a linear order of m points. If m is odd, every element
of Gm is comparable to every element of α1, and the elements of Gm are referred to as
xm, xm−1, . . . , x1. If m is even, every element of Gm is comparable to every element
of α0, and the elements of Gm are referred to as ym, ym−1, . . . , y1. While the following
holds for both even and odd m, assume for the sake of illustration that m is even.
The points of Gm are presented ym, ym−1, . . . , y1 and satisfy the following conditions:

• yk > G1 ∪ . . . ∪Gm−2 ∪ {xm−1, xm−2, . . . , xk} ∪ {ym, ym−1, . . . , yk+1}

• yk||xk−1, xk−2, . . . , x1

To understand this presentation, follow the introduction of a few Gm. The Spoiler
starts by introducing G1 = {x1}

x1

Then the Spoiler introduces the elements of G2 = {y2, y1} one at a time, first y2, then
y1. Because y2|x1, the poset looks like

x1 y2

Then the Spoiler introduces y1, which is comparable to y2 and x1 (since yk > xk).
The poset is

35



y1

||||||||

x1 y2

Next the Spoiler introduces the elements of G3 = {x3, x2, x1} one at a time.

x1

11111111111111

x2

111111111111111 x2

111111111111111

x3 y1

||||||||
x3 y1

||||||||
x3 y1

||||||||

x1 y2 x1 y2 x1 y2

Finally, the Spoiler introduces the elements of G4 = {y4, y3, y2, y1} one at a time.

y1

��������������

y2

��������������
y2

��������������

x1

00000000000000 x1

00000000000000 y3

��������������
x1

00000000000000 y3

��������������
x1

00000000000000 y3

��������������

x2

00000000000000 y4 x2

00000000000000 y4 x2

00000000000000 y4 x2

00000000000000 y4

x3 y1

||||||||
x3 y1

||||||||
x3 y1

||||||||
x3 y1

||||||||

x1 y2 x1 y2 x1 y2 x1 y2

Now go back and consider the colors that the Greedy Algorithm would assign
when P is presented in this way.

When the Spoiler introduces G1 = {x1}, the Greedy Algorithm will assign color
1 to x1.

x11

When the Spoiler introduces G2 = {y2, y1}, the Greedy Algorithm will assign color 2
to y2 because it is incomparable to x11.

x11 y22

When the Spoiler introduces y1, the Greedy Algorithm will color it 1. While y1 is
comparable to y22 and x11, 1 is the lower of the available colors.

36



y11

�������

x11 y22

When the Spoiler introduces the elements of G3 = {x3, x2, x1}, the Greedy Algorithm
will assign 3 to x3 because it is incomparable to y22 and y11. The algorithm will color
x22 and x11.

x11

///////////////

x22

///////////////
x22

///////////////

x33 y11

�������
x33 y11

�������
x33 y11

�������

x11 y22 x11 y22 x11 y22

Finally, the Spoiler introduces the elements of G4 = {y4, y3, y2, y1}, which the Greedy
Algorithm colors as y44, y

3
3, y

2
2, y

1
1.

y11

���������������

y22

���������������
y22

���������������

x11

///////////////
x11

///////////////
y33

���������������
x11

///////////////
y33

���������������
x11

///////////////
y33

���������������

x22

///////////////
y44 x22

///////////////
y44 x22

///////////////
y44 x22

///////////////
y44

x33 y11

�������
x33 y11

~~~~~~~~
x33 y11

�������
x33 y11

�������

x11 y22 x11 y22b x11 y22 x11 y22

Stated more formally, the inverse numbering in eachGm, that (gm ≤ gm−1 ≤ . . . ≤ g1),
is intended to force the following behavior of the Greedy Algorithm:

c(gk) = k for k = 1 to m

where c(gk) is the color of the gk. So the Greedy Algorithm will assign color m to
the mth element of Gm, the behavior exhibited above. This can be proved in the

37

general case by inducting on m. Certainly for G1, c(x1) = 1. Assume the behavior
holds up to Gm−1. Then for Gm consisting of ym < . . . < y1 and Gm−1 consisting of
xm−1 < . . . < x1, the fact that yk is incomparable to x1, x2, . . . , xk−1 together with
the behavior c(gk) = k for k = 1 . . .m − 1 means that the colors 1, 2, . . . , k − 1 are
unavailable to point yk. However, since yk is comparable to G1 ∪ G2 ∪ . . . ∪ Gm−2 ∪
(Gm−1−{x1, x2, . . . , xk−1}), color k is available to yk. Since the Algorithm is greedy,
c(yk) = k.

5.2 Upper Bound for (t + t)-Free Posets

Theorem: For a (t+t)-free poset (P,≤) with finite width, there exists an upper bound
on the number of colors that the Spoiler can force the Greedy Algorithm to use in
on-line coloring poset P [1].

Proof: The proof of this theorem involves new notation and a lemma. The proof
of the lemma is more involved that the proof of the theorem, so we will first explore
the notation and lemma, discuss it with examples, and use it to prove the theorem.
Later, the proof of the lemma will be presented using a specific poset.

For any x, y ∈ P ,

(x, y] = {z ∈ P : x < z ≤ y}
[x, y] = {z ∈ P : x ≤ z ≤ y}
[x, y) = {z ∈ P : x ≤ z < y}
(x, y) = {z ∈ P : x < z < y}

and for a chain C in P and points x, y ∈ C,

distC(x, y) = |[x, y] ∩ C|

the number of points between and including x, y in C.

The Lemma

Lemma: Let the poset (P ≤) be (t + t)-free and of width w. Then there exists a
partition of P into sets∗ P = Pw−1 ∪ Pw−2 ∪ . . . ∪ P0 such that for each x ∈ Pl,

|inc(x, Pl ∪ Pl−1 ∪ . . . ∪ P0)| ≤ (4t− 2)(w − 1)− 2tl.

That is, the number of points incomparable to x in the sets including and above x’s
set is bounded above by (4t− 2)(w − 1)− 2tl [1].

With that upper bound, the number of points incomparable to x decreases as x is
of Pl with increasing l. Equivalently, those elements that are compared to more sets
have fewer elements incomparable to them that those elements compared to a fewer
number of sets. So likely the Pl for low l contain mostly points incomparable to one

∗This partition is into sets not chains.

38

another or points incomparable to a high number of elements in the whole poset. As
l increases, the sets Pl become increasingly chain-like.

Consider the following poset of width 2 and (2 + 2)-free.

e f

wwwwwww

d
HHHHHH g

c h

vvvvvvv

b

GGGGGGG i

a j

By the lemma, there exists a partition of the poset into sets P0 and P1 such that,

|inc(x, P0)| ≤ (4t− 2)(w − 1)− 2tl = (8− 2)(1)− 2× 2× 0 = 6 for x ∈ P0

|inc(x, P1 ∪ P0)| ≤ (4t− 2)(w − 1)− 2tl = (8− 2)(1)− 2× 2× 1 = 2 for x ∈ P1.

A simple way to create this partition is to place any elements incomparable to more
than two other elements into P0 and all other elements into P1. The incomparabilities

point a b c d e f g h i j

|inc(x, P)| 2 1 3 1 2 1 3 1 3 1

could lead to the partition P0 = {c, g, i} and P1 = {a, b, d, e, f, h, j}. In fact, any
partition that has c, g, i in P0 will meet the lemma’s conclusions.

Consider also this example of a width 2, (3 + 3)-free poset.

g

HHHHHHH h

f i

vvvvvvv

e j

d

IIIIIII k

c l

uuuuuuu

b m

a n

For this poset, the partition is the sets P0, P1 with the incomparability require-
ments

|inc(x, P0)| ≤ (4t− 2)(w − 1)− 2tl = (12− 2)(1)− 2× 3× 0 = 10 for x ∈ P0

|inc(x, P1 ∪ P0)| ≤ (4t− 2)(w − 1)− 2tl = (12− 2)(1)− 2× 3× 1 = 4 for x ∈ P1.

39

Based on the incomparabilities within the poset

point a b c d e f g h i j k l m n

|inc(x, P)| 2 2 5 2 2 4 1 2 1 4 4 1 3 3

any partition that has c in P0 would meet the lemma’s conclusions.
To better understand the lemma, explore the condition that the poset be (t+ t)-

free. If a poset is not (t + t)-free, why is the lemma’s conclusion not met? Consider
the poset and its presentation used above to prove that the Spoiler can force the
Greedy Algorithm to use infinitely many colors on a width 2 poset. In order to defy
the lemma’s conclusion, there must not exist a partition of P into sets P1, P0 such
that

|inc(x, P0)| ≤ (4× t− 2)(2− 1)− 2× 2× 0 = 4t for x ∈ P0

|inc(x, P)| ≤ (4× t− 2)(2− 1)− 2× 2× 1 = 4t− 4 for x ∈ P1

First try introducing G1, G2, G3, G4.

y11

���������������

y22

���������������

x11

///////////////
y33

���������������

x22

///////////////
y44

���������������

x33 y11

�������

x11 y22

Here there is a (2+2) between x3, x2, y1, y4, but looking at the list of incomparabilities

point x1 x3 x2 x1 y2 y1 y4 y3 y2 y1

|inc(x, P)| 1 3 3 3 2 2 3 2 1 0

there are not enough incomparabilities to violate the lemma’s conclusion. Since all
points are incomparable to fewer than 6 other points, they could all be put in P0.
To counter the lemma’s conclusion, we need at least 1 element incomparable to 7 or
more other elements.

40

Notice that the elements of G1, G2, G3 above are incomparable to 1,2, and 3 el-
ements, respectively; the elements of G4 are incomparable to 3,2,1 other elements.
This trend holds generally. That is, when the groups G1 to Gm are introduced, the
elements of Gk for 1 ≤ k ≤ m − 1 are incomparable to k elements. The elements gi
for 1 ≤ i ≤ m of Gm are incomparable to i− 1 elements.

To get elements incomparable to 7 or more other elements, we must introduce
groups at least up to G8 (introducing only G7 would give elements incomparable to
6 others in G6 and elements with incomparabilities 6,5,4,3,2,1,0 in G7). For the sake
of space, G1 −G8 will be presented horizontally.

x1

444444 x3

GGGGGGGGG x2

GGGGGGGGG x1

GGGGGGGGG x5

OOOOOOOOOOOOO x4

OOOOOOOOOOOOO x3

OOOOOOOOOOOOO x2

OOOOOOOOOOOOO x1

OOOOOOOOOOOOO x7

SSSSSSSSSSSSSSSSSS x6

SSSSSSSSSSSSSSSSSS x5

SSSSSSSSSSSSSSSSSS x4

SSSSSSSSSSSSSSSSSS x3

SSSSSSSSSSSSSSSSS x2

SSSSSSSSSSSSSSSSS x1

RRRRRRRRRRRRRRRRR

y2

wwwwwwwww
y1

wwwwwwwww
y4

ooooooooooooo y3

ooooooooooooo y2

ooooooooooooo y1

ooooooooooooo y6

kkkkkkkkkkkkkkkkkk y5

kkkkkkkkkkkkkkkkkk y4

kkkkkkkkkkkkkkkkkk y3

kkkkkkkkkkkkkkkkkk y2

kkkkkkkkkkkkkkkkkk y1

kkkkkkkkkkkkkkkkkk y8 y7 y6 y5 y4 y3 y2 y1

Notice that y8 and the elements of G7 are all incomparable to 7 elements. Specif-
ically, y8 is incomparable to every element in G7. At most, y8 and 6 of the elements
of G7 could be put in P0. The seventh element would have to be put in P1 and would
be incomparable to 7 elements in P , violating the lemma’s conclusion. If all seven of
the G7 elements were put in P0, then y8 would have to go in P1, where is would still
be incomparable to 7 elements in P .

Using the presentation of the Gm groups of a width 2 poset, the Spoiler would
need to introduce G1 to GN where N = 4t to ensure that the conclusion of the lemma
cannot be met.

The Theorem

Theorem: The Greedy Algorithm uses at most (3t−2)(w−1)w+w chains in a on-line
partition of a (t+ t)-free poset of width w [1].

Proof: Partition the poset according to the lemma and induct on s for x ∈ Pw−s.
Let M(w − s) = (4t − 2)(w − 1) − 2t(w − s), so M gives the number of points in-
comparable to a point in Pw−s as determined by the lemma. For s = 1, x ∈ Pw−1
so

|inc(x, P)| ≤M(w − 1) = (4t− 2)(w − 1)− 2t(w − 1)

by the lemma. In order for a color to be unavailable to x, it must have already been
assigned to a point to which x is incomparable. Since x is incomparable to at most
M(w− 1) points, there must exist a color in [1,M(w− 1) + 1] that has not been used
to color a point incomparable to x, so the Greedy Algorithm assigns to x a color no
greater than M(w − 1) + 1.

Assume that the Greedy Algorithm used fewer than

(M(w − 1) + 1) + (M(w − 2) + 1) + . . .+ (M(w − (s− 1)) + 1)

41

colors to color the points in Pw−1 ∪ Pw−2 ∪ . . . ∪ Pw−(s−1). Then for x ∈ Pw−s, the
colors forbidden to it must have been used to color those points incomparable to x in
Pw−1 ∪ Pw−2 ∪ . . . ∪ Pw−(s−1).

By induction, the Greedy Algorithm used no more than

[1, (M(w − 1) + 1) + (M(w − 2) + 1) + . . .+ (M(w − (s− 1)) + 1)]

colors in coloring those points. And by the lemma, there are no more than M(w− s)
points incomparable to x in Pw−s ∪ Pw−s−1 ∪ . . . ∪ P0.

Therefore, the Greedy Algorithm assigns to x a color no greater than

(M(w − 1) + 1) + (M(w − 2) + 1) + . . .+ (M(w − (s− 1)) + 1) + (M(w − s) + 1).

To color all points in P , the Greedy Algorithm uses no more than

(M(w − 1) + 1) + . . .+ (M(0) + 1) =
w−1∑
l=0

((4t− 2)(w − 1)− 2tl + 1)

= w(4t− 2)(w − 1)− 2t
w−1∑
l=0

(l) + w(1)

= (4t− 2)(w − 1)w − 2t
(w − 1)w

2
+ w

= (3t− 2)(w − 1)w + w

colors.

Returning to the Lemma: Proof

Lemma: Let the poset (P ≤) be (t + t)-free and of width w. Then there exists a
partition of P into sets P = Pw−1 ∪ Pw−2 ∪ . . . ∪ P0 such that for each x ∈ Pl,

|inc(x, Pl ∪ Pl−1 ∪ . . . ∪ P0)| ≤ (4t− 2)(w − 1)− 2tl.

The proof of this lemma is fairly involved, requiring the proof of 5 claims. We will
cover the general proofs for each claim as presented in [1] and show how each claim
can be applied to an example poset and hopefully better understood.

Consider the poset P =

42

x5 y5 z5

x4

nnnnnnnnnnnnnnn y4

}}}}}}}}

BBBBBBBB
z4

x3

||||||||

nnnnnnnnnnnnnnn y3 z3

AAAAAAAA

x2 y2

}}}}}}}}

BBBBBBBB
z2

PPPPPPPPPPPPPPP

x1

||||||||
y1 z1

PPPPPPPPPPPPPPP

AAAAAAAA

P has width 3 and is (2 + 2)-free. Define P ∗ to be

u21

EEEEEEEE

RRRRRRRRRRRRRRRR u22

EEEEEEEE u23

yyyyyyyy

llllllllllllllll

u11

yyyyyyyy

EEEEEEEE

RRRRRRRRRRRRRRRR u12

yyyyyyyy

EEEEEEEE u13

yyyyyyyy

llllllllllllllll

x5 y5 z5

x4

lllllllllllllllll y4

yyyyyyyy

EEEEEEEE
z4

x3

yyyyyyyy

lllllllllllllllll y3 z3

EEEEEEEE

x2 y2

yyyyyyyy

EEEEEEEE
z2

RRRRRRRRRRRRRRRRR

x1

yyyyyyyy
y1 z1

RRRRRRRRRRRRRRRRR

EEEEEEEE

d11

zzzzzzzz

CCCCCCCC

mmmmmmmmmmmmmmmm
d12

DDDDDDDD

CCCCCCCC

zzzzzzzz
d13

DDDDDDDD

QQQQQQQQQQQQQQQQ

d21

{{{{{{{{

mmmmmmmmmmmmmmmm
d22

{{{{{{{{

{{{{{{{{
d23

CCCCCCCC

QQQQQQQQQQQQQQQQ

C1 C2 C3

.

where the anti-chains U1, U2, D1, D2 were added so that D2 < D1 < P < U1 < U2.
By Dilworth’s theorem, there exists a partition of P ∗ into three chains, C1, C2, C3.

For x ∈ Ck, define x, x ∈ Ck and xi, xi ∈ Ci for i 6= k as:

• dist(x, x) = dist(x, s) = t

• xi is the lowest point in Ci that is above x

43

• xi is the highest point in Ci that is below x

So for z4 ∈ C3,

z = z5 z1 = x4 z2 = y4

z = z3 z1 = x5 z2 = y4

Note that xi, xi need not exist in P , but U1, U2, D1, D2 were introduced so that xi, xi
do exist in P ∗.

We say that x ∈ Ck has a cross on Ci for i 6= k if and only if xi < xi. In the
example poset, z4 ∈ C3 has a cross on C1 but not on C3 (z2 = z2, and the cross
requires a strict <).

z1

FFFFFFFFF
... z

yyyyyyyyyy

lllllllllllllllllllll

z1 z2 = z2 z4

...
...

z

FFFFFFFFFF

Claim: If we partition P ∗ according to the rule,

put x ∈ Ck in set Pl if the set {i : x has a cross on Ci, 1 ≤ i ≤ w, i 6= k} has
exactly l elements

then this partition satisfies the lemma [1].

In the example P ∗, the following elements have crosses:

element x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 z1 z2 z3 z4 z5

has a cross on C2 C3 C2, C3 C3 C2 ∅ C1, C3 ∅ C1, C3 ∅ C1, C2 C1 C2 C1 C1, C2

So P0 = {y1, y3, y5}, P1 = {x1, x2, x4, x5, z2, z3, z4}, P2 = {x3, y2, y4, z1, z5}. This par-
tition is such that

|inc(x, P0)| = 0 for x ∈ P0

|inc(x, (P1 ∪ P0)| ≤ 3 for x ∈ P1

|inc(x, (P2 ∪ P1 ∪ P0)| ≤ 2 for x ∈ P2

These counts meet the those of the lemma, which sets incomparability maxima of
12,8,4 respectively.

Proof: For a general poset, this lemma is proved by proving five subclaims, ABCDE.

44

Claim A: For any x ∈ Ck and y ∈ Ci with i 6= k, if xi < y and dist(xi, y) ≥ t + 1,
then x < y [1].

Example: In our poset, consider x1 ∈ C1. x = x2 and x2 = d12. Points y2, y3, y4, y5
(and u12, u22) satisfy dist(x2, y) ≥ t+ 1 = 3. Indeed x < y holds for all these y (also
for u12, u22, but U1, U2 added so that P < U1 < U2).

Proof: It is sufficient to show that x < y for any y ∈ Ci such that dist(xi, y) = t+ 1.
First assume that x > y. Then, in order to preserve the definition of xi as the highest
point in Ci below x, xi > y. This contradicts dist(xi, y) = t+ 1.

Next, assume that x is incomparable to y. Define z1 ∈ ([x, x] ∩ Ck) and z2 ∈
([xi, y] ∩ Ci), and consider the pair (z1, z2). If z1 > z2, xi is no longer the highest
point in Ci below x. If z1 < z2, then x < y, so both cases lead to contradiction.

Both assumptions are invalid, so x < y for any y ∈ Ci with xi < y.

Claim B : For any x ∈ Ck and y ∈ Ci with i 6= k, if y < xi and dist(y, xi) ≥ t + 1,
then y < x [1].

Example: In our poset, consider y5 ∈ C2. Then y = y4 and y
1

= x3. x1 < x3
and dist(x1, x3) = 3. We can see that x1 < y5.

Proof: The proof of Claim B is symmetric to that of Claim A.

Claim C : If x ∈ Ck has a cross on Ci, then

|inc(x,Ci)| ≤ 2(t− 1)[1]

Example: Consider x2 ∈ C1. Overall, x2 is incomparable to five elements
{y1, y2, y3, z2, z3}. x2 has a cross on C3 and, indeed, is incomparable to only two
elements in C3.

Proof: Define z1 ∈ Ci as the lowest element incomparable to x and z2 ∈ Ci as
the highest element incomparable to x (see diagram).

45

...

•
... z2

x

<<<<<<<<<<<<<<<<<<<
...

...
xi

x

������������������������

666666666666666666666666
...

... xi

x

��������������������
...

... z1

•
...

Ck Ci

Since x has a cross on Ci, z1 < xi < xi < z2. Yet z1|x and x|z2, so by Claims A and
B, dist(z1, xi) and dist(xi, z2) are less than t+ 1. Therefore, the sets [z1, xi)∩Ci and
(xi, z2] ∩ Ci each have at most t− 1 elements. Also, note that

[z1, z2] ∩ Ci = {[z1, xi) ∪ (xi, z2]} ∩ Ci = {[z1, xi) ∩ Ci} ∪ {(xi, z2]) ∩ Ci}

since xi < xi (x has a cross on Ci). Since the elements in Ci incomparable to x are
contained within [z1, z2], the above equalities give

|inc(x,Ci)| = |{[z1, xi) ∩ Ci} ∪ {(xi, z2]) ∩ Ci}| ≤ 2(t− 1).

Claim D : If x ∈ Ck does not have a cross on Ci for i 6= k, then for any y such that
dist(z1, y) > 2t− 1 and dist(y, z2) > 2t− 1,

1) if x has a cross of Cj for j 6= k and j 6= i, then y has a cross on Cj.

2) y has a cross on Ck. [1]

Example: Consider x1 ∈ C1. x1 does not have a cross on C3. z1 looks to be in the
appropriate position, and z1 has a cross on C1.

Proof: Define z1 and z2 as in Claim C. Note that, since z2|x and z2 > xi,
dist(xi, z2) < t + 1 by Claim A. Also, since z1|x and xi > z1, dist(z1, xi) < t + 1
by Claim B. Since y was chosen to be at least 2t elements away from z1 and z2, the

46

points y, y (the points t away from y) follow y ≤ xi and xi ≤ y.

D1). Assume that y does not have a cross on Cj, that is, y
j
≤ yj. By transitiv-

ity (x > xi ≥ y > yj and x < xi ≤ y < y
j
), x > yj and x < y

j
. Since xj and xj are

defined to be the highest (lowest) points in Cj below (above) x and x, it follows that
xj ≥ yj and xj ≤ y

j
. Therefore, xj ≤ y

j
< yj ≤ xj, indicating that xj < xj. This

contradicts the given that x has a cross on Cj, so y must also have a cross on Cj.

D2). Note that y and y are within [z1, z2], so y|x and y|x. These relations indi-
cate that yk < x and x < y

k
. Therefore, yk < y

k
, and y has a cross on Ck.

Claim E : If x ∈ Pl does not have a cross on Ci, then

|inc(x, (Pl ∪ . . . ∪ P0) ∩ Ci)| ≤ 4t− 2[1]

Example: x1 ∈ P1 does not have a cross on C3. (P1 ∪ P0) ∩ C3 = {z2, z3, z4}. Of
these points, x1 is incomparable only to z2, certainly fewer than 4(2)−2 = 6 elements.

Proof: x ∈ Pl and does not have a cross on Ci, so by the claims D1 and D2, any
point y in Ci further than 2t− 1 from both z1 and z2 will have at least l + 1 crosses.
By D1, y has as many crosses as x, and by D2, y has at least one more cross than x
in that y has a cross on x’s chain. Thus any such y lies in Pl+1 ∪ . . . ∪ Pw−1. So the
points in Ci incomparable to x from Pl ∪ . . . ∪ P0 fall within 2t− 1 of either z1 or z2.
There are 4t− 2 such points.

Now we can put all these claims together to prove the lemma.

Lemma: Let the poset (P ≤) be (t + t)-free and of width w. Then there exists
a partition of P into sets P = Pw−1 ∪ Pw−2 ∪ . . . ∪ P0 such that for each x ∈ Pl,

|inc(x, Pl ∪ Pl−1 ∪ . . . ∪ P0)| ≤ (4t− 2)(w − 1)− 2tl[1]

Proof: Consider x in Pl and in Ck. Let i1 = k. Then x has a cross on Cij if and only
if 2 ≤ j ≤ l+ 1. Since x ∈ Pl, it must have a cross on exactly l chains, and it cannot
have a cross on its own chain. Then

|inc(x, Pl ∪ . . . P0)| ≤ |inc(x, (Pl ∪ . . . P0) ∩ (Ci2 ∪ . . . ∪ Cil+1
))|

+ |inc(x, (Pl ∪ . . . P0) ∩ (Cil+2
∪ . . . ∪ Ciw))| (the triangle inequality)

The first term counts the incomparabilities in the chains on which x has a cross.
By Claim C,

|inc(x,Ci)| ≤ 2(t− 1)

when x has a cross on Ci, and since there are l such Ci,

|inc(x, (Pl ∪ . . . P0) ∩ (Ci2 ∪ . . . ∪ Cil+1
))| ≤ 2(t− 1)l

47

The second term counts the incomparabilities in the chains on which x does not
have a cross. By Claim E,

|inc(x,Ci)| ≤ 4t− 2

when x does not have a cross on Ci, and since there are w − l − 1 of these Ci,

|inc(x, (Pl ∪ . . . P0) ∩ (Cil+2
∪ . . . ∪ Ciw))| ≤ (4t− 2)(w − l − 1)

Substituting these two values back into the inequality above yields

|inc(x, Pl ∪ . . . P0)| ≤ 2(t− 1)l + (4t− 2)(w − l − 1)

= (4t− 2)(w − 1)− 2tl

48

Chapter 6

Tight Bound on Incomparabilities
in Graded, (t+t)-free Posets

Notice that in exploring the previous lemma, none of the example posets contained
a point with the maximum number of incomparabilities. No point had exactly the
maximum incomparabilities allowed for a point in P0. How many incomparabilities
could a point have in a poset with a finite width and (t+ t)-free?

It is important to establish that, within a given chain, the set of points incompa-
rable to given point, x0, must appear in a continuous interval. If x0 < y for any y,
then x0 is comparable to all points above y by transitivity. Similarly if z < x0 for
any z, then x0 is comparable to all points below z by transitivity. Thus the points
to which x0 is incomparable must form continuous intervals within their respective
chains.

A trivial way of allowing a point be incomparable to arbitrarily many points is to
build a non-graded poset. The poset below is width 2, (2 + 2)-free, and x2 can be
incomparable to n elements for any n in N.

yn+1

x2

yyyyyyyy
yn

yn−1

...

y2

x1

yyyyyyyy
y1

So to ask a better question, what is the largest number of points that can be
incomparable to any given point in a graded poset of width 2 and (t+ t)-free? Start

49

with a graded poset of width 2 and (2 + 2)-free. In the poset below, points c, g, i
are incomparable to 3 points. Can a point be incomparable to 4 points while still
maintaining the poset as (2 + 2)-free?

e f

wwwwwww

d
HHHHHH g

c h

vvvvvvv

b

GGGGGGG i

a j

Suppose a point, x0, is incomparable to 4 other points, y1 to y4. Certainly the
point directly across from x0 is one of those points. Suppose all the other y are below
the level of x0, so the points to consider are

x+1

x0 y1

x−1 y2

y3

y4

where x+1, x−1 are the points directly above and below x0 in its chain. For x0 to remain
incomparable to y4, x−1 cannot be comparable to y3 or y4. If x−1 is comparable to
any of the y, it must only be comparable to y1.

x+1 •

x0 y1

x−1

iiiiiiiiiiiii y2

• y3

• y4

This set of comparabilities induces a (2 + 2) between y3, y2 and x−1, x0, no matter
the comparability of x+1 to any of the y’s. Other possible arrangements for the four
y are

50

x+1 y1 • y1 • y1

x0 y2 x+1

UUUUUUUUUUUUU y2 • y2

x−1

iiiiiiiiiiiii y3 x0 y3 x+1

UUUUUUUUUUUUU y3

• y4 x−1 y4 x0 y4

• • • • x−1 •

where, for the second and third in this group, x+1 cannot be comparable to y1 or y2.

There are always at least two y either below or above the level of x0. If below,
x−1 is incomparable to at least two of the y, creating a (2 + 2) with x0, x−1 and those
two y. If above, x+1 is incomparable to at least two of the y, creating a (2 + 2)
with x0, x+1 and those two y. No matter the orientation, there cannot be a graded,
width-2, (2 + 2)-free poset containing an element incomparable to 4 elements. The
maximum number of incomparabilities is 3.

Now consider a graded, width 2, (3 + 3)-free poset and evaluate the comparability
relationships of x−2, x−1 and x+1, x+2. To minimize the number of y incomparable to
the x−’s and x+’s, the points should lay roughly symmetrically around x0.

• y1 • y1

x+2

UUUUUUUUUUUUU y2 x+2

UUUUUUUUUUUUU y2

x+1

UUUUUUUUUUUUU y3 x+1

UUUUUUUUUUUUU y3

x0 y4 x0 y4

x−1

iiiiiiiiiiiii y5 x−1

iiiiiiiiiiiii y5

x−2

iiiiiiiiiiiii y6 x−2

iiiiiiiiiiiii y6

• • • y7

By the above diagrams, 6 and 7 are allowable incomparability numbers.

51

• y1

x+2

UUUUUUUUUUUUU y2

x+1

UUUUUUUUUUUUU y3

x0 y4

x−1

iiiiiiiiiiiii y5

x−2

iiiiiiiiiiiii y6

• y7

• y8

However when x0 is incomparable to 8 points, a (3 + 3) arises from x−2, x−1, x0
and y8, y7, y6. Notice that, had this 8th incomparable element been placed above y1, a
(3 + 3) would have arisen between x0, x+1x+2 and y2, y1, y8. So the maximum allowed
number of incomparabilities to a single element in a graded, width 2, (3 + 3)-free
poset is 7.

On a graded, width 2, (4 + 4)-free poset, 11 incomparabilities are allowed but not
12. With 12 points incomparable to x0, a (4 + 4) arises between x−3, x−2, x−1, x0 and
y12, y11, y10, y9.

• y1 • y1

• y2 • y2

x+3

UUUUUUUUUUUUU y3 x+3

UUUUUUUUUUUUU y3

x+2 y4 x+2 y4

x+1

UUUUUUUUUUUUU y5 x+1

UUUUUUUUUUUUU y5

x0 y6 x0 y6

x−1

iiiiiiiiiiiii y7 x−1

iiiiiiiiiiiii y7

x−2 y8 x−2 y8

x−3

iiiiiiiiiiiii y9 x−3

iiiiiiiiiiiii y9

• y10 • y10

• y11 • y11

• y12

This bound can be established generally.

52

Theorem: Let (P,≤) be a graded, (t + t)-free poset of finite width w. Then for
all x0 in P ,

|inc(x0, P)| ≤ (4t− 5)(w − 1)

where inc(x, p) is the set of points in P incomparable to x0.

Proof: Induct on the width, w, of the poset.

Case: Let P1 be any graded, (t + t)-free poset of width w = 1. Since the width
is one, this poset is a linear order. Since every point x0 in P1 is comparable to every
other point,

|inc(x0, P)| = 0 ≤ (4t− 5)(1− 1) = 0

for all x0 in P1.

Case: Let P2 be any graded, (t+ t)-free poset of width w = 2.

Claim: In P2, a given point x0 cannot be incomparable to 4t − 4 or more elements.
That is, x0 cannot be incomparable to y+(2t−2) or y−(2t−2).

Proof: Assume x0 is incomparable to y+(2t−2), that is, the point 2t − 2 levels above
the level of x0.

53

y+(2t−2)

y+(2t−3)

...

y+t

x+(t−1) y+(t−1)

x+(t−2) y+(t−2)

...
...

x+2 y+2

x+1 y+1

x0 y0

x−1 y−1

x−2 y−2

...
...

x−(t−2) y−(t−2)

x−(t−1) y−(t−1)

y−(t)

...

y−(2t−3)

y−(2t−2)

In order to keep x0 incomparable to all y above the level of x0, none of the x+
can be comparable to any y between its own level and y+(2t−1). That is, they can’t
be comparable up. This restriction induces a (t+ t) between the size t chains y+(t−1)
to y+(2t−2) and x0 to x+(t−1).

Similarly, x0 could not be incomparable to y−(2t−2) without inducing a (t+ t) be-
tween the size t chains y−(t−1) to y−(2t−2) and x0 to x−(t−1).

Claim: In P2, a given point x0 can be incomparable to 4t− 5 elements.

54

y+(2t−3)

...

yt

x+(t−1)

QQQQQQQQ
y+(t−1)

x+(t−2) y+(t−2)

...
...

x+2 y+2

x+1

QQQQQQQQQQ y+1

x0 y0

x−1

mmmmmmmmmm
y−1

x−2 y−2

...
...

x−(t−2) y−(t−2)

x−(t−1)

mmmmmmmm
y−(t−1)

y−(t)

...

y−(2t−3)

Proof: Consider the above poset. Clearly, this poset is still width 2. Because x−(t−1) <
y−(t−2), there does not exist a (t+ t) between the bottom t y’s and the bottom t x’s.
In fact, since x−(t−1) < yj for all j ≥ −(t− 1), and since a (t+ t) requires at least one
y at or above the −(t− 2) level, x−(t−1) could never be used in a (t+ t).

An interval of t x’s must include at least one x at or above the level of x+1. Yet
all x+k for k ≥ 1 are comparable to y0 and all y−k, so a (t + t) could not include y0
or y−k. All t of the y’s must come from y+k. Yet all x−k are comparable to y0 and
all y+k, so a (t + t) could not include any x−k in the (t + t). Thus all t of the x’s
must be x0 to x+(t−1). Notice, however, that all y+m for m ≤ (t− 2) are comparable
to x+(t−1), so none of those y could be included in the (t + t). There are only t − 1

55

remaining y from y+(t−1) to y+(2t−3), not enough to build a (t+ t) on this poset.
Thus x0 can be incomparable to 4t − 5 elements, the y from y−(2t−3) to y+(2t−3),

which include y0.

Inductive Hypothesis: Let Pw−1 be any graded, (t + t)-free poset of width w − 1.
Assume the upper bound holds for Pw−1, that is

|inc(x0, Pw−1)| ≤ (4t− 5)(w − 2)

for all x0 in Pw−1.

Let Pw be any graded, (t + t)-free poset of width w. Want to show that for any
x0 in Pw, the upper bound

|inc(x0, Pw)| ≤ (4t− 5)(w − 1)

is obeyed.

Proof: By Dilworth’s Theorem, Pw can be partitioned into w distinct chains. Arbi-
trarily select w−1 of those chains. They form a Pw−1, so by the inductive hypothesis,
any point x0 in the w − 1 chains is incomparable to at most (4t − 5)(w − 2) other
points in those w − 1 chains. Now consider the incomparabilities between any x0 in
the w − 1 chains and the wth chain of the partition. The chain containing x0 forms
a P2 with the wth chain. By the case above, x0 is incomparable to at most 4t − 5
points in this P2. In Pw, then, x0 from the w − 1 chains is incomparable to at most
(4t− 5)(w − 2) + 4t− 5 = (4t− 5)(w − 1) points.

For any x0 in the wth chain, consider the w−1 P2’s formed between the wth chain
and the w− 1 chains selected from the partition. Since x0 in a P2 is incomparable to
at most (4t−5) points, x0 in the wth chain is incomparable to at most (4t−5)(w−1)
points in Pw.

Then, for any x0 in Pw, x0 is incomparable to at most (4t−5)(w−1) other points.

56

Bibliography

[1] Bartlomiej Bosek, Tomasz Krawczyk, and Edward Szczypka, First-fit algorithm
for the on-line chain partitioning problem. SIAM J. Discrete Math, Vol. 23, No.
4, pp. 1992-1999, 2010.

[2] Stefan Felsner, On-line chain partitions of orders. Theoretical Computer Science,
Vol. 175 pp. 283-292, 1997.

[3] Henry A. Kierstead, An effective version of Dilworth’s theorem. Transactions of
the American Mathematical Society, Vol. 268 No. 1 pp. 63-77, 1981.

57

	Claremont Colleges
	Scholarship @ Claremont
	2012

	Exploring the On-line Partitioning of Posets Problem
	Leah F. Rosenbaum
	Recommended Citation

