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Abstract

Traffic congestion is a serious problem with large economic and environ-
mental impacts. To reduce congestion (as a city planner) or simply to avoid
congested channels (as a road user), one might like to accurately know the
flow on roads in the traffic network. This information can be obtained from
traffic sensors, devices that can be installed on roads or intersections to
measure traffic flow. The sensor location problem is the problem of efficiently
locating traffic sensors on intersections such that the flow on the entire net-
work can be extrapolated from the readings of those sensors. I build on
current research concerning the sensor location problem to develop con-
ditions on a traffic network and sensor configuration such that the flow
can be uniquely extrapolated from the sensors. Specifically, I partition the
network by a method described by Morrison and Martonosi (2010) and
establish a necessary and sufficient condition for uniquely extrapolatable
flow on a part of that network that has certain flow characteristics. I also
state a different sufficient but not necessary condition and include a novel
proof thereof. Finally, I present several results illustrating the relationship
between the inputs to a general network and the flow solution.
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Chapter 1

Introduction

Traffic congestion is a large and prevalent problem today. Individuals who
are caught in a traffic jam suffer an opportunity cost, and the environment
suffers due to the emissions of the delayed motor vehicles. The Texas Trans-
portation Institute analyzed the effects of traffic congestion in the U.S. and
found the following. Traffic congestion in America’s 439 urban areas in
2007 cost Americans an extra 4.2 billion hours in travel time and an extra
2.8 billion gallons of fuel, for a combined monetary cost of $87.2 billion.
This cost represents an increase of over 50% over the preceding decade.
For each average peak-period traveler in 2007, this cost amounted to a full
36 hours in delay and 24 gallons in fuel (three weeks of fuel for the average
U.S. resident) per year, summing to $760 in lost productivity and fuel costs.
The effects were even worse in areas with over one million people (Schrank
and Lomax, 2009).

With traffic congestion so damaging, it is not surprising that several
methods have been developed to cope with it. Management and refine-
ment of the traffic networks help considerably; capacity can be added to
observably congested channels; alternative usage patterns can be encour-
aged and adopted; provision of alternate transportation options allows net-
work users to customize their plans and potentially avoid bottlenecks; di-
verse urban-development patterns reduce the requirement for day-to-day
travel; finally, it is helpful to adopt realistic expectations of real-world traf-
fic patterns (Schrank and Lomax, 2009). I will consider the first of these
approaches, improving the operation of the current networks.

As urban planners attempt to understand and optimize a traffic net-
work, and as network users attempt to avoid congestion and minimize
their time on the network, knowing the characteristics of the traffic flow
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on the network becomes very useful. An urban planner can use the infor-
mation to prioritize his or her time and efforts and better determine the
impacts of planning decisions. A network user can—likely with the help
of a GPS receiver or similar device—pick the route that leads to his or her
destination using the least time and frustration.

One method for obtaining this information involves observation of sen-
sors that record the traffic flow directly on a road or intersection. These
readings can be used for analysis of flow on individual roads and inter-
sections of the network, and they can also be used to estimate the Ori-
gin/Destination trip matrix that is often used to analyze complete routes.
Particularly, Bianco, Confessore, and Reverberi (2001) show how to im-
prove the accuracy of Origin/Destination matrix estimation given the solu-
tion to the Sensor Location Problem, the problem of finding the minimum
configuration of sensors required to derive flow on every link in the net-
work. Bianco and colleagues (2001) provided a necessary and sufficient
condition for the verification aspect of the Sensor Location Problem; that
is, a characterization of when flow is uniquely determinable, given a net-
work and a selection of sensors. Morrison and Martonosi (2010) provided
a counterexample illustrating that the condition of Bianco and colleagues
(2001) is in fact not sufficient, and presented a stronger necessary (albeit not
generally sufficient) condition. I extend the work of Bianco and colleagues
(2001) and Morrison and Martonosi (2010) by continuing the search for a
necessary and sufficient condition concerning verification of a solution to
the Sensor Location Problem.

I begin by describing the Sensor Location Problem more thoroughly in
Chapter 2. In Chapter 3, I establish a necessary and sufficient condition for
uniquely determinable flow in a special type of network. Next, in Chap-
ter 4, I present several results concerning how the flow solution to a net-
work is affected by the network’s inputs. Finally, in Chapter 5, I conclude
by mentioning other approaches that were considered and by suggesting
directions for further research.



Chapter 2

The Sensor Location Problem

I present the Sensor Location Problem and prior work by Morrison and
Martonosi (2010). I then posit three additional assumptions to the Sensor
Location Problem in preparation for the discussion of my own results.

2.1 Formulation of the Problem

We represent a road network as a directed graph G = (V, A) where each
vertex represents an intersection, and arcs between vertices represent roads
between intersections. We require that arcs exist symmetrically; that is, for
each arc vu ∈ A there also exists an arc uv ∈ A. We call the graph with
this symmetric relationship a two-way directed graph. We represent the real-
valued flow on an arc vu ∈ A by fvu. Our network is constrained by a
system of flow-balance equations, one for each vertex v ∈ V,

∑
e∈v−

fe − ∑
e∈v+

fe + Sv = 0, (2.1)

where v− is the set of arcs incoming to v, v+ is the set of arcs outgoing from
v, and Sv is the balancing flow at vertex v. Hence Sv = 0 if flow is conserved
at v; otherwise, Sv represents the amount of flow that is produced at v. (If
Sv < 0, then −Sv is the amount of flow that is consumed.) We require that
flow be conserved in the graph as a whole. That is,

∑
v∈V

Sv = 0. (2.2)

If Sv 6= 0 then we call v a centroid. We denote by B the set of all centroids,
and we assume that this set is known (but we do not assume knowledge
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of the balancing flows). Examples of centroids in a physical network are
intersections near office buildings or apartment complexes on a weekday
morning, when many people are going to work.

At each vertex, we assume to know the fraction of flow that leaves along
each outgoing arc. For example, we might know that at the intersection of
a highway and a side road, 2

5 of the flow leaves (in each direction) along the
highway, and 1

10 of the flow leaves (in each direction) along the side road.
This information could be obtained by paying someone to stand on a street
corner and count cars for a short period of time. The information acquired
will reduce the number of sensors needed to uniquely extrapolate the flow
on the network, so it is potentially worth that cost.

More specifically, we assume knowledge of all turning ratios in the net-
work, where the turning ratio cvu ≥ 0 for an arc vu ∈ A is the ratio of the
flow on vu to the total incoming flow to vertex v. That is,

fvu = cvu ∑
e∈v−

fe. (2.3)

Note that the flow fvu on arc vu can be expressed in terms of any other
flow fvw on an arc vw outgoing from the same vertex v by taking a ratio of
turning ratios:

fvu =
cvu

cvw
fvw (2.4)

(assuming cvw > 0). Now, picking a canonical arc vw for vertex v with
cvw > 0, we can define, for any other arc vu outgoing from v, the turning
factor αvu of vu with respect to vw as

αvu =
cvu

cvw
. (2.5)

We can thus find the flow fvu with respect to the flow fvw on the canonical
arc,

fvu = αvu fvw. (2.6)

We also assume that there are sensors at some intersections (vertices). If
there is a sensor at a given intersection, we immediately know the flows on
all arcs into and out of the corresponding vertex, and we call that vertex a
monitored vertex. We denote by M the set of all monitored vertices, and we
assume M is known. We also assume knowledge of the balancing flow Sv
for every monitored vertex v ∈ M. Using turning ratios, we can deduce the
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flow on arcs between two vertices that are each adjacent to monitored ver-
tices. In this light, we call the set of vertices that are adjacent to a monitored
vertex the neighbor set and denote it by A(M). Because we know the flow
on all arcs into or out of M and we can deduce the flow on all arcs between
vertices in A(M), the flow on every arc in the subgraph of G induced by
M ∪ A(M) is known. We give these arcs a name:

Definition 2.1 (Bianco et al. (2001)). The combined cutset, CM, is the set of
arcs in the subgraph of G induced by M ∪ A(M).

We can now formally define the Sensor Location Problem:

Definition 2.2 (Bianco et al. (2001)). Given a two-way directed graph G =
(V, A), a network-flow function f , and a set of centroids B, what is the smallest
set M of monitored vertices such that knowledge of all turning ratios, the values
of f on incoming and outgoing arcs of vertices in M, and balancing flows Sv for
vertices in M uniquely determines f and the balancing flows Sv everywhere on G?

The focus of Morrison and Martonosi (2010) is in verifying that a given
set M of monitored vertices uniquely determines f and the balancing flows
Sv. I continue in this vein. However, I first state several relevant results of
Morrison and Martonosi (2010).

2.2 Previous Results

Morrison and Martonosi (2010) showed that the condition for uniquely de-
termining the flow f and the balancing flows Sv, proposed by Bianco and
colleagues (2001), is necessary but not sufficient in general. They then pro-
posed a new, stronger necessary condition, based on the following defini-
tion, and showed that this condition is also sufficient given a certain as-
sumption on G. I now summarize these results.

Definition 2.3 (Morrison and Martonosi (2010)). A B-path is a path starting
at a centroid and ending at a vertex in A(M).

The condition found by Morrison and Martonosi (2010) is as follows:

Theorem 2.1 (Morrison and Martonosi (2010)). Let G = (V, A) be a two-
way directed graph with centroid set B, and let M be a set of monitored vertices.
The flow on arcs in G and the balancing flow at the vertices in B can be uniquely
determined everywhere only if there exists a set P of |B− M| vertex disjoint B-
paths.
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In order to prove this theorem, Morrison and Martonosi (2010) trans-
lated the condition into an algebraic framework which I now summarize.
The following paragraph and five-step process are copied from Morrison
and Martonosi (2010) with minor editorial revisions:

Let E be the |V| × |A| incidence matrix of G, where the (u, e)th entry of
E is −1 if vertex u is the tail of arc e, 1 if u is the head of e, and 0 otherwise.
Let f be the |A| × 1 vector of arc flows and let S be the |V| × 1 vector of
balancing flows. Then the system of flow-balance equations is given by

Ef + S = x (2.7)

where x = 0. Observe that the the sum of the equations represented by
this system gives ∑v∈V Sv = 0, so that constraint is extraneous. Now, using
knowledge of B and the turning ratios, we reduce the system as follows:

1. For each vertex u ∈ V, we choose some arc eu outgoing from u to be
the canonical arc for u. Thus fuv = αuv feu for each arc uv outgoing
from u. This reformulation in terms of canonical flows reduces the
number of variables in the system from |A| to |V|.

2. Now the flow-balance matrix E reduces to the |V| × |V| matrix Ê,
where row u still corresponds to the flow-balance equation for vertex
u and column v now corresponds to the canonical arc ev for vertex v.
Specifically, the (u, v)th entry of Ê is

[
Ê
]

uv =


αvu if u and v are adjacent
−∑w adjacent to u αuw if u = v

0 if u and v are not adjacent.

3. We can also augment Ê with |B| columns for the unknown balancing
flows of the centroids: The column for the centroid u ∈ B has a 1 in
row u and 0’s everywhere else. Similarly, create the (|V| + |B|) × 1
vector

g =

[
f
Ŝ

]
,

where Ŝ is the |B| × 1 vector of unknown balancing flows for the cen-
troids, and augment x by |B| 0’s. Equation 2.7 then becomes

Êg = x. (2.8)

Note that Ê now has |V| rows and |V|+ |B| columns.
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4. Now, for each vertex m ∈ M, we can remove row m and column m
from Ê because we know the flow along the canonical arc em. We then
update the right-hand-side vector x by subtracting fem times that re-
moved mth column from x. That is, we subtract αmu fem from the uth

entry of x for each vertex u adjacent to m. We also remove the en-
try from g corresponding to fem , and the mth entry from x (because
we have removed the corresponding column and row, respectively).
Furthermore, if m is a centroid, we can remove the column of Ê corre-
sponding to its balancing flow, and remove the entry corresponding
to Sm from g.

5. For each vertex a ∈ A(M), the outgoing flow from a to any moni-
tored vertex m ∈ M is known, so we can deduce the flow fea on the
canonical arc of a. We thus remove column a from Ê and subtract
fea = (1/αam) fam times column a from the right-hand-side vector x.
That is, we subtract αau feu from the uth entry of x for each vertex u
adjacent to a, and we add ∑w adjacent to a αaw fea to the ath entry of x.
We also remove the entry from g corresponding to fea .

(Thus concludes the excerpt from Morrison and Martonosi (2010), with
revisions.) We call the matrix that results from this procedure the flow-
calculation matrix F, and so Equation 2.8 becomes

Fg = x. (2.9)

Note that F has |V −M| rows and |(V −M)− A(M)|+ |B−M| columns;
g has |(V − M) − A(M)| + |B − M| rows; and x has |V − M| rows. We
have now accounted for everything we know: we have reduced the |A|
flow variables to |V| variables using turning ratios; we have removed all
equations and canonical-arc–flow variables corresponding to monitored
vertices, as those are known; we have removed the flow-balance variables
of noncentroids and of monitored vertices; we have removed all canonical-
arc–flow variables for vertices in A(M), because those can be deduced from
turning ratios (the corresponding equations still carry information, because
we don’t know all flows into vertices in A(M)). So, under our assumptions,
the flow and flow balance can be determined everywhere on the graph if
and only if Equation 2.9 has a unique solution; that is, F has full column
rank.

Now return momentarily to the graph-theoretic representation of the
network. We know the balancing flows of vertices in M, and we know
the flows on all arcs in CM. Define the unmonitored subgraph G

′
of G as the
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subgraph of G where M and CM have been removed, G
′
= (V − M, A −

CM). This subgraph may or may not be connected; in general, call the ith

connected component the ith unmonitored component and denote it as G
′
i .

Denote the centroids of G
′
i as Bi and the subset of vertices from A(M) in G

′
i

as A(M)i.
If vertices u and v are in different unmonitored components G

′
i and

G
′
j, then any path from u to v in G must have passed through an arc in

CM. Because the columns corresponding to canonical arcs for vertices in
M∪ A(M) are removed in the creation of the flow-calculation matrix F, the
terms representing flows on arcs in CM are also removed. Because the rows
corresponding to the monitored vertices are also removed in the creation
of F, we can permute the rows and columns of F, arranging F in a block
form by collecting rows and columns corresponding to vertices in the same
unmonitored component. That is, if there are k distinct unmonitored com-
ponents then we can arrange F into the form

F =


F1 0 · · · 0
0 F2 · · · 0
...

...
. . .

...
0 0 · · · Fk

 ,

where Fi is the flow-calculation matrix for the unmonitored component G
′
i .

Morrison and Martonosi (2010) used this representation of the network
to rephrase Theorem 2.1 into the following formulation. This formulation
was proved, so Theorem 2.1 holds in turn.

Theorem 2.2 (Morrison and Martonosi (2010)). Let G, B, and M be as in
Theorem 2.1, with the graph partitioned into unmonitored components and the
flow-calculation matrix partitioned into blocks as described. For each unmonitored
component i, let Ci be the minimum vertex cut between (B−M)i and A(M)i. (If
(B−M)i is empty, then let Ci = ∅.) rank(Fi) = #{columns of Fi} (and hence
the flow on G

′
i is calculable) only if |Ci| = |(B−M)i|.

Incidentally, as noted by Morrison and Martonosi (2010) in their proof
of the theorem, if Ci is a minimum disconnecting set then we have |Ci| ≥
|(B−M)i| almost immediately, by application of Menger’s theorem.

The condition that |Ci| = |(B−M)i| is necessary for flow to be uniquely
determinable everywhere. Morrison and Martonosi (2010) showed that it
is also sufficient for an unmonitored component that is a tree. Specifically,



Additional Assumptions 9

1 2 3

4 5 6

7 8 9

a. A strongly connected
network.

1 2 3

4 5 6

7 8 9

b. A weakly connected
network.

1 2 3

4 5 6

7 8 9

c. A network that is not
connected.

Figure 2.1 These networks illustrate our additional assumptions to the Sensor
Location Problem. Subfigures a and b satisfy assumption 1 whereas subfigure c
does not. In subfigure a or b, if c25 = 0 then assumption 2 is not satisfied. In
subfigure b, if c32 = c36 = 0 then assumption 3 is not satisfied. (Note that
these cases are not the only ways in which the respective assumptions can be
unsatisfied in these three networks.) In these figures and in subsequent figures,
a vertex with a bold border is a centroid, a vertex with a dashed second border
is in the neighbor set A(M), and a grey vertex is a monitored vertex.

Theorem 2.3 (Morrison and Martonosi (2010)). Let G, B, and M be as in Theo-
rem 2.1, with the graph partitioned into blocks as described. For each unmonitored
component i, let Ci be the minimum vertex cut between (B−M)i and A(M)i. If
the ith component is a tree, then rank(Fi) = #{columns of Fi} (i.e., the flow on
block i is calculable) if and only if |Ci| = |(B−M)i|.

With relevant prior results in hand, now, I proceed to describe several
additional assumptions to the Sensor Location Problem.

2.3 Additional Assumptions

In order to make my results more rigorous and clear, I impose three new
assumptions:

1. G is connected, ignoring directionality of the arcs; that is, G is con-
nected but not necessarily strongly connected. (Figures 2.1a and 2.1b
depict networks that satisfy this condition. Figure 2.1c shows a net-
work that does not.)
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2. For each a ∈ A(M), there exists a monitored vertex m ∈ M such that
am ∈ A and cam > 0. (In either Figure 2.1a or Figure 2.1b, if c25 = 0
then this condition is not satisfied. Also, note that vertex 6 is not in
A(M) in Figure 2.1b or Figure 2.1c due to the removal of the arc from
6 to 5.)

3. For each vertex v ∈ V there is at least one arc e ∈ v+ such that ce > 0.
(For example, if c32 and c36 are zero in Figure 2.1b, then this condition
is not satisfied.)

Assumption 1 provides mathematical simplicity without imposing any real
constraints on the network; we can easily treat two components of a discon-
nected network as two separate networks. I impose assumption 2 to ensure
that the canonical flow of any vertex in the neighbor set can be calculated
by comparison to the known flow from that vertex to an adjacent moni-
tored vertex, which is the reason we make the distinction of the neighbor
set in the first place. If a vertex has incoming arcs from a monitored ver-
tex but no outgoing arc (with a positive turning ratio) to any monitored
vertex, we do not want to include it in the neighbor set because we cannot
determine its flow solely from its turning factors and its adjacency to one
or more monitored vertices. Without assumption 3, there would not exist a
sensible choice for the canonical arc of v, considering that the turning ratio
of the canonical arc appears in a denominator when flows on other arcs are
expressed in terms of the flow on the canonical arc.

We are now ready to proceed to the results.



Chapter 3

Flow Calculability:
Centroid-Free Components

Morrison and Martonosi (2010) proved a necessary condition for uniquely
calculable flow on an unmonitored component of a graph, and proceeded
to show that this condition is also sufficient when the component is a tree.
I provide two conditions for the general unmonitored component with no
centroids. The first condition, developed in Sections 3.1 and 3.2, is sufficient
but not necessary for uniquely determinable flow. The proof I devised for
this condition is long and unintuitive; it is listed in Appendix A. The sec-
ond condition, developed in Section 3.3, is both necessary and sufficient; it
is my main result. The first condition is included for record keeping and
as potential inspiration to future research; the second condition is clearly
stronger and is accompanied by a comparatively elegant proof.

3.1 Condition One: A Simple Case

Suppose an unmonitored component G
′
i is the complete graph Kn+1 on the

n+ 1 vertices Vi = {1, 2, . . . , n+ 1}. Suppose further that A(M)i = {n+ 1},
and that the turning factors are all the same, αuv = α > 0 for all uv ∈ Ai.
Let the arcs outgoing from vertices 1, . . . , n to vertex n + 1 be canonical.
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Then

Fi =


−1− (n− 1)α α · · · α

α −1− (n− 1)α · · · α
...

...
. . .

...
α α · · · −1− (n− 1)α
1 1 · · · 1

 .

For k ∈ {1, . . . , n}, by adding −1/α times row k to row n + 1 and then
scaling by [

1 +
1
α
(1 + (n− 1)α)

]−1

,

we can generate the kth standard basis vector eT
k of Rn as a linear combina-

tion of the rows. Hence this graph has uniquely determinable flow.
However, this situation is a far cry from the general case. In particular,

our turning factors are not necessarily all the same; moreover, they are al-
lowed to be zero (given that the assumptions in Section 2.3 are satisfied).
We also allow arbitrarily many vertices in A(M). Proof of uniquely deter-
minable flow in the general case is much more involved. I now proceed
to state conditions on a general unmonitored component such that flow is
uniquely determinable; I then develop intuition towards the meaning of
those conditions.

3.2 Condition One: Result and Illustration

Before I present the result and an illustration of its implications, I recall a
definition:

Definition 3.1. An arborescence is a directed graph in which there is a vertex v,
called the root, such that for any other vertex u there is exactly one directed path
from v to u.

A reverse arborescence is a directed graph in which there is a vertex v, called
the root, such that for any other vertex u there is exactly one directed path from u
to v.

Figure 3.1 depicts embeddings of several reverse arborescences. Note
that if these three reverse arborescences are taken to be the components of
a single graph, that graph is a forest of reverse arborescences.

I now state my result and illustrate it with an example.
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Figure 3.1 Examples of reverse arborescences.

Theorem 3.1. Let G, B, and M be as in Theorem 2.1 with the graph partitioned
into unmonitored components and the flow-calculation matrix partitioned into
blocks as described. For each unmonitored component G

′
i , define ni to be the num-

ber of columns of Fi. If (B−M)i is empty, then rank(Fi) = ni (and hence the flow
on G

′
i is calculable) if there exists a set of ni arcs, one emanating from each of the

ni vertices in Vi − A(M)i, such that the turning factors for those arcs are positive
and the subgraph of G

′
i induced on those arcs is a forest of reverse arborescences.

The proof of this theorem is too long for inclusion here; rather, it is
provided in Appendix A.

To gain insight into this result, consider the unmonitored component
G
′
i depicted in Figure 3.2. Note that there are no centroids, so (B−M)i is

empty. There are six vertices in this component, two of which are in A(M)i,
so ni = |Vi − A(M)i|+ |(B−M)i| = |{1, 2, 3, 4}|+ |∅| = 4. Thus the flow
on this component is uniquely determined if there is a set of four arcs, one
emanating from each of the four vertices in Vi − A(M)i = {1, 2, 3, 4}, such
that the turning factors for those arcs are positive and the subgraph induced
on those arcs is a forest of reverse arborescences.

Two such selections of arcs are depicted (by their induced subgraphs)
in Figure 3.3a and Figure 3.3b, respectively. We have thus found a choice
of ni arcs, one emanating from each of the vertices in Vi − A(M)i, such that
the subgraph induced on those arcs is a forest of reverse arborescences. (In-
deed, we have found two choices, and there are more.) Thus, if α12, α26, α34,
and α42 (corresponding to Figure 3.3a) are all positive, or if α12, α26, α34, and
α45 (corresponding to Figure 3.3b) are all positive, then Theorem 3.1 implies
that the flow on this unmonitored component is uniquely determined.

Figure 3.3c shows a selection of arcs whose induced subgraph is not a
forest of reverse arborescences because there is a cycle. Note that there is
at least one arc to a vertex in A(M)i in both Figure 3.3a and Figure 3.3b,
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Figure 3.2 An example unmonitored component, used to illustrate the suffi-
cient condition on centroid-free unmonitored components.
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a. A forest of reverse arbores-
cences.
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23
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b. Another forest of reverse ar-
borescences.
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c. Cyclic; not a forest of reverse ar-
borescences.

Figure 3.3 Induced subgraphs of the unmonitored component illustrating the
centroid-free sufficient condition.
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a. An undirected cycle. b. A directed cycle.

Figure 3.4 Cycles illustrating the role of A(M) in the centroid-free necessary
and sufficient condition.

whereas there is no such arc in Figure 3.3c. This is not a coincidence. If
there is no arc to any vertex in A(M)i then there must be ni arcs between
the ni vertices in Vi − A(M)i. We know that an undirected graph with ni
vertices and ni edges would necessarily contain a cycle, so the ni vertices
and (directed) arcs in our induced subgraph form a cycle if the directionality
of the arcs is ignored. However, because there is exactly one arc emanating
from each vertex, every cycle in the induced subgraph must be a directed
cycle. (To see this, consider the example undirected cycle of Figure 3.4a in
contrast to the directed cycle of Figure 3.4b. In the latter, there is one arc
emanating from each of the six vertices. In the former, there is not. In par-
ticular, there are zero or two arcs emanating from the vertices at which the
cycle “switches direction.”) Thus, because there are ni arcs between the ni
vertices in Vi − A(M)i, there is a directed cycle, and so the subgraph is not
a forest of reverse arborescences. This means that the sufficient condition
of Theorem 3.1 requires connections to A(M)i; it will never imply that an
unmonitored component disjoint from A(M) (or an unmonitored compo-
nent for which the connection to A(M) does not carry enough information,
e.g. because of insufficient positive turning factors on arcs to A(M)) has
uniquely calculable flow.

3.3 Condition Two

I now state and justify a necessary and sufficient condition for unique flow
calculability on a centroid-free unmonitored component. The proof of this
condition uses a more graph theoretical approach than the proof for Theo-
rem 3.1; it is also significantly more intuitive.
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We assume that all turning factors are positive, and we do not require
that arcs exist symmetrically, i.e. if there is an arc (u, v) ∈ A we no longer
require there to be an arc (v, u) ∈ A. Note that a turning factor of zero
in the original formulation of the Sensor Location Problem is equivalent
to removal of that arc, so the assumption that all turning factors are pos-
itive, together with the relaxation of symmetry in the arcs, yields no real
difference from the original formulation.

In order to state my condition, I first define a certain structure, which I
will call a trap, on an unmonitored component.

Definition 3.2. Consider an unmonitored component G
′
i and its neighbor set

A(M)i. The unmonitored component is a trap if its vertices can be partitioned
into two sets, VI,i and VO,i, such that the following conditions hold:

1. VI,i and A(M)i are disjoint;

2. VI,i has at least two elements; and

3. if there are any arcs between VO,i and VI,i, they must be from VO,i to VI,i.

This structure is a degenerate case of a centroid-free unmonitored com-
ponent. As I will show, it allows many solutions to the system. I now state
this result.

Theorem 3.2. Let G, B, and M be as in Theorem 2.1 with the graph partitioned
into unmonitored components G

′
i and the flow-calculation matrix partitioned into

blocks Fi as described. Assume G is connected. For each unmonitored component
G
′
i where (B−M)i is empty, the flow on G

′
i is uniquely calculable if and only if

A(M)i is nonempty and G
′
i is not a trap.

I henceforth drop the superscript (subscript) i for ease of notation. I pro-
ceed directly to the proof, in which I establish the converses of the forward
and reverse directions (in turn).

3.3.1 Converse of Forward Direction

We first assume there are two distinct flow vectors f and f′ that solve the
system of flow-balance equations, and show that either A(M) is empty or
G
′

is a trap.
Denote the component of f corresponding to the canonical flow of some

vertex v as fev . (Denote the components of f′ similarly.) Then without loss
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of generality, for some vk ∈ V, we have f ′evk
> fevk

. Note here that there
must be an incoming arc to vk, otherwise flow balance is violated at vk.

Let VI be the set of vertices v such that f ′ev
> fev , and let VO = V − VI .

Immediately, we see vk ∈ VI . Observe that A(M) ⊆ VO because the canon-
ical flow of every vertex in the neighbor set is fixed. One of the following
conditions must hold:

1. VO is empty;

2. there are no arcs between VI and VO;

3. there is at least one arc from VI to VO (and possibly arcs from VO to
VI); or

4. there is at least one arc from VO to VI but there are no arcs from VI to
VO.

These conditions are illustrated by Figures 3.5a, 3.5b, 3.5c, and 3.5d respec-
tively.

We consider conditions 2 and 3 in turn, showing that each leads to a
contradiction. We then develop the implications of conditions 1 and 4.

Suppose condition 2 holds. Because A(M) and VI are disjoint, VI must
be disconnected from the rest of the original graph G, so we immediately
have a contradiction.

Now suppose condition 3 holds. We will apply flow balance to find
that this condition leads to a contradiction. Let V+

I be the set of arcs (v, w)
where v ∈ VI and w ∈ VO, and let V−I be the set of arcs (w, v) (again, where
v ∈ VI and w ∈ VO). Because VI contains all vertices whose canonical flows
are greater in f′ than in f, no arcs from VO to VI have greater flows in f′ than
in f. In other words, f ′e ≤ fe for all arcs e ∈ V−I . So

∑
e∈V+

I

f ′e − ∑
e∈V−I

f ′e ≥ ∑
e∈V+

I

f ′e − ∑
e∈V−I

fe. (3.1)

Condition 3 implies that V+
I is nonempty. Thus, by the fact that the canon-

ical flows of all vertices in VI are greater in f′ than in f,

∑
e∈V+

I

f ′e > ∑
e∈V+

I

fe.

In particular, let (vi, vj) be an arc in V+
I , so f ′vivj

> fvivj . Then

∑
e∈V+

I

f ′e ≥ ( f ′vivj
− fvivj) + ∑

e∈V+
I

fe,
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VO = ∅

A(M)

VI

a. Condition 1: VO is empty.

VO

A(M)

VI

b. Condition 2: there are no arcs between VI and VO.

VO

A(M)

VI

c. Condition 3: there is an arc from VI to VO.

VO

A(M)

VI

d. Condition 4: there is an arc from VO to VI , but not vice
versa.

Figure 3.5 Illustrations of the four conditions used in the proof of the centroid-
free necessary and sufficient condition.
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where f ′vivj
− fvivj > 0. Plugging this into the right-hand side of Equa-

tion 3.1, we get

∑
e∈V+

I

f ′e − ∑
e∈V−I

f ′e ≥ ( f ′vivj
− fvivj) + ∑

e∈V+
I

fe − ∑
e∈V−I

fe. (3.2)

By flow balance,
∑

e∈V+
I

fe − ∑
e∈V−I

fe = 0,

so from Equation 3.2 we get

∑
e∈V+

I

f ′e − ∑
e∈V−I

f ′e ≥ ( f ′vivj
− fvivj) > 0,

violating flow balance for f′. Condition 3 therefore leads to a contradiction.
Thus if there are two distinct solutions, condition 1 or condition 4 must

hold. If condition 1 holds then VI is the entire unmonitored component.
But VI and A(M) are disjoint, so A(M) is empty.

Now suppose condition 4 holds, so V+
I is empty and V−I is nonempty.

By flow balance,
∑

e∈V+
I

fe − ∑
e∈V−I

fe = 0,

so we require fe = 0 for all arcs e ∈ V−I .
Now we will show that for any vertex v ∈ VO such that there is a path

from v to some vertex w ∈ VI , the canonical flow fev of v is zero. Let v be
such a vertex, with a path to a vertex w ∈ VI . (Recall that we have assumed
all turning factors are nonzero. In particular, the turning factors for the
arcs forming this path are nonzero.) Let the path be (v0, v1, . . . , vn) where
v = v0 and w = vn, and suppose by way of contradiction that fev > 0.
If fevj

> 0 for some j where 0 ≤ j < n − 1, then there is a nonzero flow
into vertex vj+1 (the next vertex on the path). In order for flow balance to
hold, then, there must be a nonzero flow out of vertex vj+1 as well; that
is, fevj+1

> 0. By induction, vn−1 has a nonzero canonical flow, so there is
a positive flow from vn−1 ∈ VO to w ∈ VI . We thus have a contradiction,
hence the canonical flow of any vertex v ∈ VO such that there is a path from
v to a vertex in VI must be zero.

Thus we justify that the unmonitored component is a trap: Due to con-
dition 4, there are no arcs from VI to VO, and the only arcs between V −VI
and VI are those from VO to VI (which necessarily carry zero flow). We
know VI and A(M) are disjoint. Lastly, if VI had only one element, namely
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vk, then we would immediately have a contradiction: The canonical flow
of vk would be positive, implying that vk has an outgoing arc (by assump-
tion), violating condition 4. So |VI | ≥ 2, hence the unmonitored component
is indeed a trap, with VI and VO taking the same meanings as they do in the
definition.

Because conditions 2 and 3 led to contradictions, my argument of the
converse of the forward direction is complete: If there is not a unique so-
lution to the flow-balance equations for this unmonitored component then
either A(M) is empty or the unmonitored component is a trap.

3.3.2 Converse of Reverse Direction

I now argue that the converse of the reverse direction also holds. We as-
sume that either A(M) is empty or the unmonitored component is a trap;
we will show that in either case there is not a unique solution satisfying
flow balance.

If A(M) is empty then F is square; because its rows sum to zero, we
immediately see that there is not a unique solution.

Let g be a flow solution to the flow balance system Fg = x, and let gev

represent the component of that solution for the canonical arc ev of some
vertex v. If the unmonitored component is a trap then we require

∑
v∈VI

Fvgev = 0

(where Fv is the column of F corresponding to the canonical flow of vertex
v). This requirement is a consequence of

• flow balance;

• the fact that there are no arcs from VI to A(M) or V − VI , which im-
plies that the entries of the column vector (Fg) that correspond to
vertices in VI depend on the turning factors and flows only of ver-
tices in VI ; and

• the observation that fe = 0 for all arcs e ∈ V−I (and in particular
fe = 0 for all arcs from A(M) to VI), which implies that the entries in
the right-hand side of the system Fg = x that correspond to vertices
in VI are zero.

Thus, if we define g′ as the flow vector with components

g′ev
=

{
2gev , v ∈ VI

gev , v ∈ V −VI ,
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then g′ is a distinct solution to the flow-balance equations.
I have shown that if A(M) is empty or the unmonitored component is

a trap then there is not a unique solution, as desired. This statement is the
converse of the reverse direction. Note that A(M) is empty if and only if
there were no monitored vertices in the original network or there were no
unmonitored vertices in the original network. This equivalence depends
on our assumption that the original network is connected.

Because the converses of the forward and reverse directions hold, we
conclude that Theorem 3.2 holds. That is, A(M) is nonempty and G

′
is

not a trap if and only if there is a unique solution for this centroid-free
unmonitored component. So concludes the proof and my results.

Note that a trap represents an unrealistic physical network. Travel be-
tween the two vertex sets of the network would be extremely constrained;
one could go from VO,i to VI,i but would not be able to return to VO,i. We
will also find that if the unmonitored component is centroid-free, as we
have been assuming, then flow balance requires that there is zero flow out
of VO,i; hence, there is no travel between the two vertex sets whatsoever.
In light of these observations, Theorem 3.2 suggests that a centroid-free
unmonitored component is practically guaranteed to have uniquely calcu-
lable flow.

It is my hope that my rigorous treatment of the centroid-free case will
encourage research into the more general and difficult centroid-existing
case, and advance our understanding of the Sensor Location Problem. In
the next chapter, I analyze the effects of the turning factors and known
flows of a network on the network’s flow solution. These findings illumi-
nate the general case and serve as a guide to future research.





Chapter 4

Role of Turning Factors

I have so far focused on centroid-free unmonitored components of a net-
work. I now proceed to describe several observations and results for a
general unmonitored component G

′
i which can have centroids.

4.1 Flow Uniqueness

Morrison and Martonosi (2010) proved a necessary condition for unique-
ness of the flow solution. This condition was phrased in terms of B-paths
in the unmonitored component. I now show that flow uniqueness may de-
pend not only on such structural properties of the graph, but also on the
turning factors. For example, consider Figure 4.1, a reproduction of Fig-
ure 5 from Morrison and Martonosi (2010). If the monitored flows into and
out of vertex 5 are all one and the turning factors are also all one, then
this network has more than one solution. In one solution, all flows are one
and the balancing flows for vertices 1 and 2 are zero. In another solution,
f13 = f14 = 3

2 , f23 = f24 = 1
2 , all other flows are one, and the balancing

flows are S1 = 1 and S2 = −1.
Suppose the monitored flows into and out of vertex 5 are all one and all

turning factors are one except α23 = 3 and α14 = 2. (The canonical arcs can
arbitrarily be any arcs whose turning factors are one.) Then the network
has a unique solution given by f13 = 4

5 , f14 = 8
5 , f23 = 6

5 , f24 = 2
5 , all other

flows are one, and the balancing flows are S1 = 2
5 and S2 = − 2

5 .
In fact, for this network, there is a unique solution if and only if

c24

c23
6= c14

c13
,
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1 5 2

3

4

Figure 4.1 Network illustrating the dependence of unique flow calculability on
turning factors and the possibility of negative flow solutions.

or equivalently,
α24

α23
6= α14

α13
,

where the turning factors for the canonical arcs are one. This condition can
be verified by computing the flow-calculation matrix Fi for the unmoni-
tored component depicted in Figure 4.1 and row-reducing. (It is assumed
that all turning factors are nonzero.)

Thus, in general, flow determinability of an unmonitored component
may depend on the configuration of its turning ratios. This result indicates
that a necessary and sufficient condition for unique flow determinability on
a general graph must involve a condition on the turning ratios, or equiva-
lently, the turning factors.

4.2 Flow Negativity

Now consider another set of inputs (monitored flows and turning factors)
to the unmonitored component depicted in Figure 4.1. Suppose the moni-
tored flows into and out of vertex 5 are all one and all turning factors are
one except α24 = 3 and α14 = 2. Then the network has a unique solution
given by f13 = 4, f14 = 8, f23 = −2, f24 = −6, all other flows are one, and
the balancing flows are S1 = 10 and S2 = −10. The solution is uniquely de-
terminable, but it contains negative flows, hence it is physically unrealistic.
It is not correct to interpret negative flow on an arc as flow moving in the
opposite direction because the turning factors lose their intended meaning
when the flow is negative.

The physical infeasibility of the solution thus indicates that the inputs to
the network were physically invalid. That is, the monitored flows and turn-
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ing factors we used in this example are not realistic; they would never have
emerged from accurate observations on a physical traffic network. The fact
that these inputs were perfectly valid in a strictly mathematical sense sug-
gests that our model of the traffic network is more general and lenient than
it needs to be. Accordingly, it may be easier to find a necessary and suffi-
cient condition for unique flow determinability if we assume we are given
inputs that yield a physically valid solution; that is, a solution whose flows
are strictly positive.

Logistic regression was performed on the turning factors of the network
in Figure 4.1, using the existence of a negative flow in the unique solu-
tion as the response variable, in hopes to characterize when negative flows
arose. (Turning factor configurations yielding nonunique solutions were
discarded.) This analysis did not provide much new information or insight.
The behavior of the solution largely appeared to depend on the relationship
of α24 and α13, when (2, 3) and (1, 4) were taken to be the canonical arcs for
vertices 2 and 1 (respectively). However, this observation is not altogether
surprising considering the importance of those parameters in unique flow
determinability.

4.3 Perturbation Analysis

Recall that the condition for uniquely determinable flow in the network of
Figure 4.1 was

α24

α23
6= α14

α13
.

Thus it would seem that “most” configurations of the turning factors yield
uniquely determinable flow for the network in Figure 4.1. More precisely,
if turning factors were selected at random, they would be very unlikely to
satisfy

α24

α23
=

α14

α13
.

Moreover, one might expect that real-world turning factors are “messy”
in a sense; intuitively, they would be rational numbers with long decimal
expansions and no clear relationship to one another, and they would be
unlikely to satisfy such an equality. Therefore, if other networks have a
similar condition for uniquely determinable flow to that of Figure 4.1, then
we might expect turning factor inputs from the real world to yield uniquely
determinable solutions, at least as long as the necessary condition of The-
orem 2.1 is satisfied (namely, that there are |(B − M)i| vertex-disjoint B-
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paths). In the cases where that necessary condition is satisfied but flow is
not uniquely determinable, we could force a unique solution by perturbing
the turning factors such that they do not satisfy the equality characterizing
nonunique flow.

With this idea in mind, I performed a rudimentary perturbation anal-
ysis of the turning factors for the unmonitored components depicted in
Figure 4.2. For each unmonitored component, the flow-calculation matrix
block Fi was constructed twice, the first time using turning factors of one,
and the second time using turning factors drawn from a normal distribu-
tion with mean 1 and standard deviation 0.01. (This standard deviation was
used because it is relatively small but still numerically practical.) The rank
of Fi was computed in each case to determine whether the flow solution
was unique.

When all turning factors were set to 1, the unmonitored components de-
picted in Figures 4.1, 4.2c, 4.2d, 4.2f, 4.2g, and 4.2h did not have uniquely
calculable flow; the other unmonitored components (Figures 4.2a, 4.2b, and
4.2e) did have uniquely calculable flow. However, when each turning fac-
tor was drawn from a normal distribution with mean 1 and standard devi-
ation 0.01, all of the unmonitored components depicted in Figures 4.1 and
4.2 had uniquely calculable flow. Observe that each of those unmonitored
components has |(B − M)i| vertex-disjoint B-paths; that is, it satisfies the
necessary condition of Theorem 2.1. In other words, each unmonitored
component tested satisfies that necessary condition for uniquely calculable
flow, and adding a small random perturbation to each turning factor was
sufficient to yield uniquely calculable flow (whether or not the original flow
solution, from setting all turning factors to one, was unique). I conjecture
that any unmonitored component with |(B− M)i| vertex-disjoint B-paths
has uniquely calculable flow when the turning factors are randomly per-
turbed, e.g. by a normal distribution centered at zero with small standard
deviation.

Practically, this analysis suggests that as long as the necessary condi-
tion of Theorem 2.1 is satisfied, we may be able to force a unique solution
in an unmonitored component by subtly perturbing the turning factors.
Moreover, because real-world turning factors are unlikely to satisfy neat
algebraic relationships like

α24

α23
=

α14

α13

(the condition for flow uniqueness in Figure 4.1, likely resembling a sim-
plified form of the condition for flow uniqueness on a general graph), there
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Figure 4.2 Networks analyzed in turning factor perturbation analysis.
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is hope that most inputs of real-world turning factors yield uniquely deter-
minable flow even without perturbation.

If perturbation of turning factors is to be used as a technique for forcing
a unique solution, two aspects of the method must first be more thoroughly
investigated. First, the desired result of the perturbation—namely, forcing
a uniquely determinable solution—is currently only a conjecture. It would
be helpful to rigorously prove conditions under which perturbation does
yield a uniquely determinable solution. Second, and perhaps more impor-
tant, is the issue of sensitivity. If a small perturbation in the turning factors
creates a relatively large change in the flow solution, then the usefulness
and meaning of the perturbed solution is doubtful. Based on my simu-
lations, I believe the flow solution is considerably sensitive to the turning
factors. Thus turning factor perturbation would need to be performed with
great care, if at all.



Chapter 5

Conclusion

I have reviewed results from Morrison and Martonosi (2010) and Bianco
and colleagues (2001) about flow determinability of SLP, including a nec-
essary and sufficient condition for a unique solution on unmonitored com-
ponents that are trees. I then developed a sufficient condition for uniquely
determinable flow on centroid-free unmonitored components, heavily us-
ing a modified flow-calculation matrix in my proof (listed in Appendix A).
Next I developed a necessary and sufficient condition on centroid-free un-
monitored components with a considerably more intuitive interpretation
and proof. In the last section, I presented several results illustrating the
importance of the turning factors and monitored flows in uniqueness and
positivity of the flow solution. Much remains to be done in the verification
aspect of the Sensor Location Problem; I now describe other approaches
that were considered in hopes of informing further research.

I conjecture that if the set of |B−M| vertex-disjoint B-paths (of the nec-
essary condition of Theorem 2.1) are in some sense unique, then the un-
monitored component in question has uniquely determinable flow. More
precisely, there exists a set of |B−M| vertices in A(M), call it VA, such that
there is exactly one set of vertex-disjoint B-paths between B− M and VA.
My intuition is that if an unmonitored component has two solutions and
such a unique set of B-paths, the additional flow added by a centroid in
one solution must be in “rerouted” to another centroid. If flow balance is
maintained, all of these “reroutings” of flow can be used to trace an alter-
nate set of B-paths, yielding a contradiction.

Alternatively, one could consider decomposing a graph into simpler
subgraphs. If H and K are subgraphs of G, and flow is uniquely deter-
minable on H and K (using the same monitored vertices and centroid set),
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then the subgraph of G given by a union (or intersection) of H and K may
also have uniquely determinable flow. If this conjecture, or a modification
thereof, is true, then one could potentially show uniquely determinable
flow of the general graph by constructing it as unions (or intersections) of
simpler graphs with uniquely determinable flow.

In Section 2.3, I added three assumptions to the Sensor Location Prob-
lem:

1. G is connected, ignoring directionality of the arcs; that is, G is con-
nected but not necessarily strongly connected.

2. For each a ∈ A(M), there exists a monitored vertex m ∈ M such that
am ∈ A and cam > 0.

3. For each vertex v ∈ V there is at least one arc e ∈ v+ such that ce > 0.

It may be possible to circumvent these assumptions by carefully handling
the deficiencies they address. (For example, it might be possible to refor-
mulate the case where there is no arc e ∈ v+ such that ce > 0 by eliminating
v from the graph altogether and labeling all vertices previously adjacent to
v as centroids.) This approach has not yet been attempted to any significant
extent.

The Sensor Location Problem is an interesting framework. It provides
plenty of material for mathematical analysis and exploration, and it is also
highly applicable to the real world. I have proved an equivalent condition
for unique flow determinability of a simple case, one whose physical mani-
festation would be absurd: the lack of centroids would imply a closed com-
munity of people ceaselessly driving in various circuits. I have also studied
how turning factors and monitored flows affect the flow solution. I have
revealed that the turning factors play a significant role in uniqueness of the
flow solution, and that even if there is a unique solution, it may have nega-
tive flows. Future work should therefore pay close attention to the turning
factors, and may benefit from considering the restriction of the Sensor Lo-
cation Problem to inputs that yield strictly positive flows in the solution. In
addition, I have discussed the results of a brief perturbation analysis on the
turning factors, results that shed an optimistic light on obtaining uniquely
determinable flow in real-world applications of the Sensor Location Prob-
lem. I hope that these insights will be used to inform further research on
the Sensor Location Problem, hence facilitating practical solutions to traffic
congestion.



Appendix A

Proof of Sufficient Condition
for Flow Calculability on
Centroid-Free Components

Here I describe a slight alteration of the network representation. I will use
this reformulation to justify Theorem 3.1, which establishes a sufficient con-
dition for uniquely calculable flow on a centroid-free unmonitored compo-
nent. This condition is weaker than the necessary and sufficient condition
of Theorem 3.2, and its proof is far less intuitive. The proof of Theorem 3.1
is included for record keeping and for its value as inspiration and enter-
tainment for future researchers.

A.1 Revised Formulation of the Sensor Location Prob-
lem

I focus on a centroid-free unmonitored component of a network. To prove
Theorem 3.1, I first describe a modification of the centroid-free blocks Fi

of the flow-calculation matrix F of Morrison and Martonosi (2010). Take a
block Fi representing an unmonitored component G

′
i that has no centroids.

Recall that each row of Fi corresponds to a vertex, and each column of Fi

corresponds to a canonical arc, and hence a vertex. For clarity of notation,
relabel the vertices represented by the rows of Fi as 1, 2, . . . , m and the ver-
tices represented by the columns as 1, 2, . . . , n. Note that there are at least
as many columns as rows:

n = |(V −M)i − A(M)i| ≥ |(V −M)i| = m.
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For v ∈ {1, 2, . . . , n}, define Rv = {1, 2, . . . , v− 1, v+ 1, . . . , m}. To build
intuition, assume for the time being that the unmonitored component this
block represents is a complete graph, namely Kn. That is, for each pair of
distinct vertices u, v ∈ {1, 2, . . . , n}, both arcs (v, u) and (u, v) exist. Then
the (u, v)th element of Fi is given by

[
Fi
]

uv
=

− ∑
w∈R1

αuw if u = v

αvu otherwise,

so

Fi =



− ∑
v∈R1

α1v α21 · · · αn1

α12 − ∑
v∈R2

α2v · · · αn2

...
...

. . .
...

α1n α2n · · · − ∑
v∈Rn

αnv

α1(n+1) α2(n+1) · · · αn(n+1)
...

...
...

α1m α2m · · · αnm


. (A.1)

Now return to the general case: Let Fi represent a component with no
centroids, but which is not necessarily completely connected. Define

F̂i
+ =



− ∑
v∈R1

α1v α21 · · · αn1

α12 − ∑
v∈R2

α2v · · · αn2

...
...

. . .
...

α1n α2n · · · − ∑
v∈Rn

αnv

α1(n+1) α2(n+1) · · · αn(n+1)
...

...
...

α1m α2m · · · αnm


,

with the understanding that αuv = 0 whenever uv /∈ A. Symbolically, the
definition of F̂i

+ is the same as the right-hand–side of Equation A.1; that is, it
has the same visual appearance. However, this definition represents a gen-
erally different unmonitored component. In particular, although turning
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factors representing all possible arcs are present in F̂i
+, many may be zero,

representing arcs that are not present in the actual component (or possibly
indicating arcs with turning ratios of zero). Moreover, when the numeri-
cal values for the turning factors are plugged in, we will have F̂i

+ = Fi for
this component. Thus the unmonitored component G

′
i has uniquely deter-

minable flow and flow balance if and only if F̂i
+ has full column rank.

We are now ready to proceed to the proof of Theorem 3.1.

A.2 Result and Proof

I now recall Theorem 3.1. I then proceed to lay the foundation for my proof
and provide a high-level description of the argument.

Theorem. Let G, B, and M be as in Theorem 2.1 with the graph partitioned into
unmonitored components and the flow-calculation matrix partitioned into blocks
as described. For each unmonitored component G

′
i , define ni to be the number of

columns of Fi. If (B−M)i is empty, then rank(Fi) = ni (and hence the flow on
G
′
i is calculable) if there exists a set of ni arcs, one emanating from each of the ni

vertices in Vi − A(M)i, such that the turning factors for those arcs are positive
and the subgraph of G

′
i induced on those arcs is a forest of reverse arborescences.

To prove this theorem, we consider the matrix F̂i
+ for a given unmoni-

tored component G
′
i , and henceforth drop the superscript (subscript) i for

ease of notation.
Assume that (B−M) is empty and that a = |A(M)|. So F̂+ has n + a

rows. Let the rows and columns of F̂+ be permuted such that the top n
rows correspond to the n vertices not in A(M) and such that the n columns
are arranged in the same order. Label those vertices 1, 2, . . . , n, and label the
a vertices in A(M) as n + 1, n + 2, . . . , n + a. Define F̂ as the n× n matrix
consisting of the top n rows of F̂+. Then, if we can show that F̂ is invertible,
F̂+ will have full column rank, and so the unmonitored component will
have uniquely determinable flow.

Specifically, F̂ has the form

F̂ =



− ∑
u∈R1

α1u α21 · · · αn1

α12 − ∑
u∈R2

α2u · · · αn2

...
...

. . .
...

α1n α2n · · · − ∑
u∈Rn

αnu


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1

23

4

5 6

Figure A.1 An example unmonitored component, used to illustrate the suffi-
cient condition on centroid-free unmonitored components.

(where αvu = αuv = 0 is equivalent to there being no arc between vertices
u and v).

For k1 ∈ R1, k2 ∈ R2, . . . , kn ∈ Rn, define the determinant part F̂k1···kn as F̂
except with αvu set to 0 for all pairs u, v where u 6= kv. Then

det
(
F̂
)
= ∑

k1∈R1,...,kn∈Rn

det
(
F̂k1···kn

)
. (A.2)

I justify this decomposition of det
(
F̂
)

in Section A.2.2. In Section A.2.3, I
show that the nonzero summands in the decomposition all have the same
sign. Then, in Section A.2.4, I show that at least one of the summands is
nonzero—hence the sum is nonzero, so F̂ has full row rank—if there exist
k1 ∈ R1, . . . , kn ∈ Rn such that α1k1 , . . . , αnkn are all positive and the sub-
graph of G

′
with arc set {(1, k1), . . . , (n, kn)} is a forest of reverse arbores-

cences.
In order to establish intuition, I begin with an example.

A.2.1 Example

Suppose we have the centroid-free unmonitored component depicted in
Figure A.1 (reproduced from Figure 3.2). In this section I will describe a
sketch of the proof for this graph. In subsequent sections I will lay out the
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details of the general proof. For the graph in Figure A.1,

F̂+ =



− ∑
v∈R1

α1v α21 α31 α41

α12 − ∑
v∈R2

α2v α32 α42

α13 α23 − ∑
v∈R3

α3v α43

α14 α24 α34 − ∑
v∈R4

α4v

α15 α25 α35 α45
α16 α26 α36 α46


,

so

F̂ =



− ∑
v∈R1

α1v α21 α31 α41

α12 − ∑
v∈R2

α2v α32 α42

α13 α23 − ∑
v∈R3

α3v α43

α14 α24 α34 − ∑
v∈R4

α4v


.

In F̂, if we replace the turning factors for nonexistent arcs with zeros (which
we can do because those turning factors are zero by definition), we get the
following simplified matrix:

−α12 α21 0 0
α12 −α21 − α23 − α24 − α26 α32 α42
0 α23 −α32 − α34 α43
0 α24 α34 −α42 − α43 − α45

 .

(It is more convenient in the general case to not substitute zeros for those
turning factors in F̂, but in this example we will make the substitution.)

The determinant of F̂ is given by

det
(
F̂
)
= (−α12)(−α21 − α23 − α24 − α26)(−α32 − α34)(−α42 − α43 − α45)

− (−α12)(−α21 − α23 − α24 − α26)(α34)(α43)

− (−α12)(α23)(α32)(−α42 − α43 − α45)

+ (−α12)(α23)(α34)(α42)

+ (−α12)(α24)(α32)(α43)

− (−α12)(α24)(−α32 − α34)(α42)

− (α12)(α21)(−α32 − α34)(−α42 − α43 − α45)

+ (α12)(α21)(α34)(α43)
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(using the determinant definition of Shilov (1977)—see Section A.2.2). Ex-
panding the sums of negative turning factors that came from the main di-
agonal entries and collecting terms, we get

det
(
F̂
)
= (1− 1)α12α21α32α42 + (1− 1)α12α21α32α43

+ (1− 1)α12α21α32α45 + (1− 1)α12α21α34α42

+ (2− 2)α12α21α34α43 + (1− 1)α12α21α34α45

+ (1− 1)α12α23α32α42 + (1− 1)α12α23α32α43

+ (1− 1)α12α23α32α45 + (1− 1)α12α23α34α42

+ (1− 1)α12α23α34α43 + (1− 0)α12α23α34α45

+ (1− 1)α12α24α32α42 + (1− 1)α12α24α32α43

+ (1− 0)α12α24α32α45 + (1− 1)α12α24α34α42

+ (1− 1)α12α24α34α43 + (1− 0)α12α24α34α45

+ (1− 0)α12α26α32α42 + (1− 0)α12α26α32α43

+ (1− 0)α12α26α32α45 + (1− 0)α12α26α34α42

+ (1− 1)α12α26α34α43 + (1− 0)α12α26α34α45

= α12α23α34α45 + α12α24α32α45

+ α12α24α34α45 + α12α26α32α42

+ α12α26α32α43 + α12α26α32α45

+ α12α26α34α42 + α12α26α34α45.

Because no turning factors are negative, if all four turning factors in one
of those eight terms in the previous expansion are positive then the deter-
minant of F̂ is positive, so the component has uniquely determinable flow.
But let’s investigate the coefficients of those terms. Consider, for example,
the term α12α21α34α43 with coefficient 2− 2 = 0. Note that the determinant
of the following matrix (which is F̂ with all turning factors removed except
α12, α21, α34, and α43) is zero:

−α12 α21 0 0
α12 −α21 0 0
0 0 −α34 α43
0 0 α34 −α43

 .

(This matrix is equal to F̂k1k2k3k4 where k1 = 2, k2 = 1, k3 = 4, and k4 =
3.) In particular, when we take the determinant of the matrix using the
determinant definition of Shilov (1977), we get

α12α21α34α43 + α12α21α34α43 − α12α21α34α43 − α12α21α34α43 = 0.
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Note that there are two positive terms and two negative terms. This corre-
spondence is not a coincidence. In general, the determinant of the matrix
given by F̂ with all turning factors except α1k1 , α2k2 , α3k3 , and α4k4 removed—
that is, the determinant of F̂k1k2k3k4—is equal to α1k1 α2k2 α3k3 α4k4 times its co-
efficient in the previous expansion. Hence

det
(
F̂
)
= ∑

k1,k2,k3,k4

det
(
F̂k1k2k3k4

)
.

We saw previously that each individual summand det
(
F̂k1k2k3k4

)
is ei-

ther zero or positive. This nonnegativity is not a coincidence either. Con-
sider det

(
F̂k1k2k3k4

)
for k1 = 2, k2 = 6, k3 = 4, and k4 = 2:

det



−α12 0 0 0
α12 −α26 0 α42
0 0 −α34 0
0 0 α34 −α42


 .

Observe that we can take successive Laplace expansions along columns to
quickly determine the value of the determinant:

det



−α12 0 0 0
α12 −α26 0 α42
0 0 −α34 0
0 0 α34 −α42




= (−α26)det

−α12 0 0
0 −α34 0
0 α34 −α42


= (−α26)(−α12)det

([
−α34 0
α34 −α42

])
= (−α26)(−α12)(−α42)det

([
−α34

])
= (−α26)(−α12)(−α42)(−α34)

= α26α12α42α34.

Now consider det
(
F̂k1k2k3k4

)
for some k1, k2, k3, k4. Either det

(
F̂k1k2k3k4

)
is zero or it is not; assume it is not. In this case there must be a column
j of F̂k1k2k3k4 , with 1 ≤ j ≤ 4, such that −αjk j is in the (j, j)th entry and
there are zeros in the other entries, and such that αjk j > 0. Otherwise
the rows of F̂k1k2k3k4 will sum to zero, by construction—if there are two
nonzero elements in a column, one is the negative of a turning factor (on
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the main diagonal) and the other is the same turning factor but with a pos-
itive sign. If the rows sum to zero, we have a contradiction, because we
assumed det

(
F̂k1k2k3k4

)
6= 0. So there must exist a column containing only

one nonzero entry. Take the Laplace expansion along this column to get an
equation of the form

det
(
F̂k1k2k3k4

)
= (−αjk j)det

(
F̂(1)

k1k2k3k4

)
where F̂(1)

k1k2k3k4
is a 3× 3 submatrix. Now there must exist a column con-

taining only one nonzero entry in F̂(1)
k1k2k3k4

, by the same reasoning as before.
In fact, that nonzero entry will be the negative of a turning factor because
the main diagonal entries (except for the (j, j)th entry) will not have been
removed by the Laplace expansion. Take the Laplace expansion along this
column to get

det
(
F̂k1k2k3k4

)
= (−αjk j)(−αhkh)det

(
F̂(2)

k1k2k3k4

)
for some h with αhkh > 0 and some 2 × 2 submatrix F̂(2)

k1k2k3k4
. Continue

in this manner to obtain that det
(
F̂k1k2k3k4

)
is the product of four positive

turning factors, each with a negative sign in front; hence det
(
F̂k1k2k3k4

)
is

positive. Thus, for any k1, k2, k3, k4, det
(
F̂k1k2k3k4

)
is either zero or positive.

We have now justified that det
(
F̂
)

is a sum of determinants, each of
which is either zero or positive. Now, if we can show that the condition of
Theorem 3.1 is sufficient for one of the summands to be positive, we will
have shown that flow is uniquely calculable for this example.

Consider a graph-theoretic interpretation of F̂k1k2k3k4 , for given k1, k2, k3,
and k4. Specifically, let the graph corresponding to F̂k1k2k3k4 be the graph
on the vertices V − A(M) (the original vertices, less those in the neighbor
set) with only arcs 1k1, 2k2, 3k3, and 4k4. For example, take k1 = 2, k2 = 6,
k3 = 4, and k4 = 2. Then

F̂k1k2k3k4 =


−α12 0 0 0
α12 −α26 0 α42
0 0 −α34 0
0 0 α34 −α42


and the corresponding graph is shown in Figure A.2a. (Note that the arc
from 2 to 6 is not present because vertex 6, a vertex in the neighbor set, was
removed.) This graph is clearly a reverse arborescence (trivially, a forest of
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a. k1 = 2, k2 = 6, k3 = 4, k4 = 2.

1

23

4

b. k1 = 2, k2 = 6, k3 = 4, k4 = 5.

1

23

4

c. k1 = 2, k2 = 3, k3 = 4, k4 = 2.

Figure A.2 Graphs of determinant parts used in the centroid-free sufficient
condition example.

reverse arborescences). The graph for k1 = 2, k2 = 6, k3 = 4, and k4 = 5
is given in Figure A.2b, and is also a forest of reverse arborescences (as we
expect because the corresponding summand was positive, assuming the
appropriate turning factors are positive). The graph for k1 = 2, k2 = 3, k3 =
4, and k4 = 2 is displayed in Figure A.2c. The corresponding determinant
part in this case was zero, and as we see, the graph is not a forest of reverse
arborescences (in particular, it is cyclic).

Justification of the proposed sufficient condition is as follows. I previ-
ously showed that a determinant part F̂k1k2k3k4 is nonzero if (and only if)
successive Laplace expansions reduce it to the product of the entries on its
main diagonal, and those entries (the turning factors) are nonzero. For the
determinant part corresponding to Figure A.2a, the first Laplace expansion
is along column 2. This expansion reduces the determinant to the prod-
uct of −α26 and the 3× 3 submatrix given by removal of the second row
and second column. To obtain the graph corresponding to this submatrix,
we (intuitively) remove vertex 2. The succession of Laplace expansions is
manifested in the graph as a succession of vertex removals. Note that a
vertex has out-degree zero if and only if the corresponding column in the
matrix has only one nonzero element (the negative of the turning factor on
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the main diagonal). A determinant part thus has nonzero determinant if
and only if its turning factors are positive and we can successively remove
vertices with out-degree zero until we have removed all vertices. If at any
step there are no vertices with out-degree zero then the corresponding sub-
matrix of the Laplace expansion has determinant zero, contradicting our
assumption.

If a graph is a forest of reverse arborescences, then it has at least one
root, so it has at least one vertex with out-degree zero. Moreover, when
a root is removed, the resulting graph is again a forest of reverse arbores-
cences, so it has at least one vertex with out-degree zero. Thus if the graph
corresponding to a determinant part is a forest of reverse arborescences,
and the corresponding turning factors are all positive, then the determi-
nant part is nonzero, so F̂ has nonzero determinant—implying uniquely
calculable flow.

Note, finally, that there is a bijection between the choices of four arcs,
one emanating from each of the four vertices in V − A(M), and the deter-
minant parts. Each determinant part corresponds to such a selection, and
each selection corresponds to a determinant part. Therefore if there is a set
of four arcs, one emanating from each of the four vertices in V − A(M),
such that the turning factors for those arcs are positive and the subgraph
induced on those arcs is a forest of reverse arborescences, then this compo-
nent has uniquely calculable flow as desired.

The proof sketch for the example is complete. With this sketch in mind,
I now turn to the task of proving Theorem 3.1 in the general case. I begin
by rigorously justifying the decomposition of the determinant of F̂ into the
previously described determinant parts F̂k1···kn .

A.2.2 Determinant Decomposition

Let (u1, u2, . . . , un) be a permutation of (1, 2, . . . , n) and let N(u1, u2, . . . , un)
be the number of inversions in (u1, u2, . . . , un). That is,

N(u1, u2, . . . , un) =
n−1

∑
g=1

n

∑
h=g+1

θ(uh − ug)

where θ(x) is 1 if x < 0 and 0 otherwise. Now define P as the set of all per-
mutations of (1, 2, . . . , n), define

[
F̂
]

uv to be the entry in row u and column
v of F̂, and define

[
F̂k1···kn

]
uv similarly to be the entry in row u and column v

of the determinant component F̂k1···kn . Then, by the definition of the matrix
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determinant introduced by Shilov (1977),

det
(
F̂
)
= ∑

(u1,...,un)∈P
(−1)N(u1,...,un)

n

∏
v=1

[
F̂
]

uvv. (A.3)

Likewise,

det
(
F̂k1···kn

)
= ∑

(u1,...,un)∈P
(−1)N(u1,...,un)

n

∏
v=1

[
F̂k1···kn

]
uvv. (A.4)

Now note that [F̂]uvv is −∑k∈Rv
αvk when uv = v and αvuv otherwise.

Thus, when the terms in the sum of Equation A.3 are completely expanded,
we will have

det
(
F̂
)
= ∑

k1∈R1,...,kn∈Rn

σ(k1, . . . , kn)
n

∏
v=1

αvkv (A.5)

for some function σ(k1, . . . , kn) whose codomain is the integers.
Take some k1 ∈ R1, . . . , kn ∈ Rn, and some v ∈ {1, . . . , n}. Consider

where αvkv appears in F̂. If kv > n then αvkv appears in the sum
[
F̂
]

vv =

−∑g∈Rv
αvg and nowhere else. If kv ≤ n then αvkv appears twice in F̂: once

in the sum
[
F̂
]

vv = −∑g∈Rv
αvg and once in

[
F̂
]

kvv = αvkv . With this obser-
vation in mind, define

µ(v, k) =

{
{v}, k > n
{v, k}, k ≤ n

.

Now µ(v, kv) is the set of rows such that αvkv appears in those rows in col-
umn v of F̂ (and nowhere else). Thus the sum of all ∏n

v=1 αvkv terms in
Equation A.3 is given by

∑
(u1,...,un)∈τ(k1,...,kn)

(−1)N(u1,...,un)
n

∏
v=1

αvkv (A.6)

where

τ(k1, . . . , kn) = {(u1, . . . , un) : u1 ∈ µ(1, k1), . . . , un ∈ µ(n, kn),
(u1, . . . , un) ∈ P}.

In other words τ(k1, . . . , kn) is the set of all permutations (u1, . . . , un) where
u1 ∈ µ(1, k1), . . . , un ∈ µ(n, kn). We thus find that

σ(k1, . . . , kn) = ∑
(u1,...,un)∈τ(k1,...,kn)

(−1)N(u1,...,un).
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Therefore

det
(
F̂
)
= ∑

k1∈R1,...,kn∈Rn

[
∑

(u1,...,un)∈τ(k1,...,kn)

(−1)N(u1,...,un)
n

∏
v=1

αvkv

]
.

The inner sum resembles Equation A.3. In fact,

det
(
F̂k1···kn

)
= ∑

(u1,...,un)∈τ(k1,...,kn)

(−1)N(u1,...,un)
n

∏
v=1

αvkv ,

so we have established Equation A.2.

A.2.3 Sign of the Determinant Parts

Define sign (x) as 1 if x > 0, -1 if x < 0, and 0 if x = 0. We will now show
that for given k1 ∈ R1, . . . , kn ∈ Rn, either sign

(
det

(
F̂k1···kn

))
= (−1)n or

det
(
F̂k1···kn

)
= 0.

Suppose k1 ∈ R1, . . . , kn ∈ Rn are given. Assume det
(
F̂k1···kn

)
6= 0. We

will show that, in this case, sign
(
det

(
F̂k1···kn

))
= (−1)n. To do so, we will

first show by induction on g (where 1 ≤ g < n) that

sign
(
det

(
F̂k1···kn

))
= (−1)gsign

(
det

(
F̂(g)

k1···kn

))
(A.7)

where F̂(g)
k1···kn

is a (n− g)× (n− g) submatrix of F̂k1···kn (consisting of n− g
rows and the corresponding n − g columns of F̂k1···kn ). We will find that

sign
(

det
(

F̂(n−1)
k1···kn

))
= −1 for our choice of F̂(n−1)

k1···kn
, so that

sign
(
det

(
F̂k1···kn

))
= (−1)n

as desired.
We start with the base case, g = 1. There must be some column number

v of F̂k1···kn such that n < kv ≤ n + a and
[
F̂k1···kn

]
vv = −αvkv < 0 and[

F̂k1···kn

]
uv = 0 for u 6= v. Otherwise the rows would sum to zero, giving

a zero determinant and contradicting our assumption. Taking the Laplace
expansion along column v, then, we obtain

det
(
F̂k1···kn

)
= −αvbdet

(
F̂(1)

k1···kn

)
where F̂(1)

k1···kn
is the (n− 1)× (n− 1) matrix consisting of rows and columns

1, . . . , v− 1, v+ 1, . . . , n of F̂k1···kn . Thus the induction hypothesis, expressed
by Equation A.7, is satisfied when g = 1.
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Now we assume that, for some g where 1 ≤ g < n− 1, the induction
hypothesis holds; that is,

sign
(
det

(
F̂k1···kn

))
= (−1)gsign

(
det

(
F̂(g)

k1···kn

))
.

There must be some column number v of F̂(g)
k1···kn

such that
[
F̂(g)

k1···kn

]
vv

=

−αv′kv′
< 0 (where v′ is the number of the column of F̂k1···kn corresponding

to column v in F̂(g)
k1···kn

) and
[
F̂(g)

k1···kn

]
uv

= 0 for u 6= v. Otherwise the rows
would sum to zero, giving

det
(

F̂(g)
k1···kn

)
= 0,

and, by the induction hypothesis,

det
(
F̂k1···kn

)
= 0,

which would contradict our assumption. Taking the Laplace expansion
along column v, then, we obtain

det
(

F̂(g)
k1···kn

)
= −αv′kv′

det
(

F̂(g+1)
k1···kn

)
; (A.8)

thus

sign
(
det

(
F̂k1···kn

))
= (−1)gsign

(
det

(
F̂(g)

k1···kn

))
= (−1)g+1sign

(
det

(
F̂(g+1)

k1···kn

))
as desired. By the principle of induction, then,

sign
(
det

(
F̂k1···kn

))
= (−1)n−1sign

(
det

(
F̂(n−1)

k1···kn

))
.

By Equation A.8, we can see that sign
(

det
(

F̂(n−1)
k1···kn

))
= −1. Therefore

sign
(
det

(
F̂k1···kn

))
= (−1)n.

So, for given k1 ∈ R1, . . . , kn ∈ Rn, either sign
(
det

(
F̂k1···kn

))
= (−1)n or

det
(
F̂k1···kn

)
= 0. Now, if we can show that there exist k1 ∈ R1, . . . , kn ∈ Rn

such that det
(
F̂k1···kn

)
6= 0 (that is, sign

(
det

(
F̂k1···kn

))
= (−1)n), then there

will be at least one determinant part with the same sign as (−1)n, and the
other terms will either have the same sign or be zero. Hence we will have
det

(
F̂
)
6= 0 as desired.
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A.2.4 Existence of an Invertible Determinant Part

To show that there exists an invertible determinant part if and only if there
exist k1 ∈ R1, . . . , kn ∈ Rn such that α1k1 , . . . , αnkn are nonzero and the
subgraph of G

′
with arc set {(1, k1), . . . , (n, kn)} is a forest of reverse ar-

borescences, I will develop a graph-theoretic interpretation of F̂(g)
k1···kn

and

the induction process on g. For convenience, define F̂(0)
k1···kn

= F̂k1···kn . If we
interpret the elements of F̂k1···kn as turning factors of arcs on V − A(M) in
the same way that we interpret the elements of G

′
as turning factors of arcs

on V, then F̂k1···kn represents the subgraph of G
′

in which, for each vertex
v ∈ V − A(M), we have picked the arc (v, kv) and discarded the other arcs
emanating from v (if kv > n, we have discarded all arcs emanating from v).
We interpret F̂(g)

k1···kn
similarly; it represents the subgraph F̂k1···kn minus the g

vertices corresponding to the g rows and columns that have been deleted.
First, we prove the reverse direction of the equivalence. Suppose k1 ∈

R1, . . . , kn ∈ Rn are given. Assume α1k1 , . . . , αnkn are nonzero and the sub-
graph of G

′
with arc set {(1, k1), . . . , (n, kn)} is a forest of reverse arbores-

cences. We will show by induction on g that F̂(g)
k1···kn

represents a forest of
reverse arborescences for 0 ≤ g ≤ n − 1 and that Equation A.7 holds for
1 ≤ g ≤ n− 1. Hence det

(
F̂k1···kn

)
6= 0 by the principle of induction.

We start with the base case, g = 0. We have assumed that F̂k1···kn repre-
sents a forest of reverse arborescences, so F̂(0)

k1···kn
trivially represents a forest

of reverse arborescences.
Now assume F̂(g)

k1···kn
represents a forest of reverse arborescences for an

integer g where 0 ≤ g < n− 1. Then there must exist at least one root of a
reverse arborescence, call it v′ (and let v be the column of F̂(g)

k1···kn
to which

it corresponds). Because v′ is a root, there are no arcs emanating from it, so
the column v of F̂(g)

k1···kn
contains all zeros, except that

[
F̂(g)

k1···kn

]
vv

= −αv′kv′
.

Thus Equation A.7 holds for g + 1. Because F̂(g+1)
k1···kn

is the matrix produced

by the Laplace expansion along column v of F̂(g)
k1···kn

, the graph represented

by F̂(g+1)
k1···kn

is the same except that vertex v′ has been removed (along with
every arc into or out of it). If the reverse arborescence including v′ included
more than one vertex, then the components (there may be more than one)
resulting from the deletion of v′ are also reverse arborescences. If v′ was
the only vertex remaining in its reverse arborescence, then, because F̂(g)

k1···kn
represented a forest of reverse arborescences and g < n − 1, there must
be at least one other reverse arborescence remaining in the forest (after the
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deletion of v′). Thus the graph represented by F̂(g+1)
k1···kn

is also a forest of
reverse arborescences, as desired.

By the principle of induction, then, F̂(g)
k1···kn

represents a forest of reverse
arborescences for 0 ≤ g ≤ n− 1 and Equation A.7 holds for 1 ≤ g ≤ n− 1.
Therefore det

(
F̂k1···kn

)
6= 0 as desired.

Now we prove the forward direction. Suppose k1 ∈ R1, . . . , kn ∈ Rn
are given. Assume det

(
F̂k1···kn

)
6= 0; that is, F̂k1···kn is invertible. Then

α1k1 , . . . , αnkn must be nonzero, otherwise there would be a zero column in
F̂k1···kn , contradicting our assumption that det

(
F̂k1···kn

)
6= 0. Then Equa-

tion A.7 holds for 1 ≤ g ≤ n− 1; in particular, there is a column number v
of F̂(g)

k1···kn
such that

[
F̂(g)

k1···kn

]
vv

= −αv′kv′
< 0 (where v′ is the number of the

column of F̂k1···kn corresponding to column v in F̂(g)
k1···kn

) and
[
F̂(g)

k1···kn

]
uv

= 0
for u 6= v.

Consider an induction like that of Section A.2.3, but in reverse. F̂(n−1)
k1···kn

represents a single isolated vertex, which is trivially a forest of reverse ar-
borescences. Assume F̂(g+1)

k1···kn
represents a forest of reverse arborescences,

for 0 ≤ g < n − 1. Then, to get back to F̂(g)
k1···kn

, a new vertex is added,
and arcs are added from roots of existing reverse arborescences (potentially
many, one, or zero of them) to the new root. If we started with a forest of
reverse arborescences and we added a new vertex (possibly with arcs from
previous roots to this new vertex), then F̂(g)

k1···kn
is a forest of reverse arbores-

cences as well. By induction, then, F̂k1···kn = F̂(0)
k1···kn

is a forest of reverse
arborescences as desired.

I have thus shown that there exists a determinant part that is invert-
ible. I previously showed that for each determinant part F̂k1···kn , either
det

(
F̂k1···kn

)
= 0 or sign

(
det

(
F̂k1···kn

))
= (−1)n. Putting these two results

together, we have

sign
(
det

(
F̂
))

= sign

(
∑

k1∈R1,...,kn∈Rn

det
(
F̂k1···kn

))
= (−1)n,

and, in particular, det
(
F̂
)
6= 0. Thus F̂ is invertible, so F̂+ has full column

rank, which implies the unmonitored flow has uniquely determinable flow.
So my condition on the structure of the graph—that there are n arcs, one
emanating from each vertex in V − A(M), such that the turning factors for
those arcs are positive and the subgraph induced on those arcs is a forest of
reverse arborescences—is sufficient for uniquely determinable flow. This
concludes the proof.
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