
Claremont Colleges
Scholarship @ Claremont

Pomona Senior Theses Pomona Student Scholarship

1999

The Open Source Revolution: Transforming the
Software Industry with Help from the Government
Mitchell L. Stoltz
Pomona College

This Open Access Senior Thesis is brought to you for free and open access by the Pomona Student Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in Pomona Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Stoltz, Mitchell L., "The Open Source Revolution: Transforming the Software Industry with Help from the Government" (1999).
Pomona Senior Theses. Paper 7.
http://scholarship.claremont.edu/pomona_theses/7

http://scholarship.claremont.edu
http://scholarship.claremont.edu/pomona_theses
http://scholarship.claremont.edu/pomona_student
mailto:scholarship@cuc.claremont.edu

The Open Source Revolution:�
Transforming the Software Industry�

with Help from Government�

Senior Thesis�
Submitted to�

Professors Richard Worthington�
and Michael Erlinger�

April 30, 1999�

by Mitchell L. Stoltz�
Computer Science/Public Policy Analysis�

Pomona College�

Abstract

A new method for making software is stealthily gaining ground in the computer

industry, offering a promise of better, cheaper software and the empowerment of the user.

The open source movement could revolutionize the software industry...if it succeeds.

Open source means software that you are allowed to copy, modify, and give to friends.

Source code , the lists of instructions which tell computers how to run, is readily available,

allowing you to look inside the workings of a program and change it to suit your needs. A

group of programmers, companies, users, and activists have gathered in support of this

empowering technology , seeking to persuade businesses and users that open source is the

way to go.

However, open source faces stiff challenges. The economic basis for the software

industry is to charge users by the copy when they buy software. Copying and modification

are illegal. The industry and its customers are so mired in this worldview that the idea of

giving out a program's "recipe," along with a license to change or copy it at will, seems

preposterous. Powerful players in the software industry, such as Microsoft, see open

source as a threat to their bottom line, and have devoted their energies to discrediting and

marginalizing the movement.

Beginning from the assumption that cheap, reliable software that empowers the user is

a good thing, this thesis looks at the claims made by advocates about the benefits of open

source. I explore how the advocates make their case to the business world, the public, and

government. I also look at ways in which the government could help bring about an open

source revolution, using the policy tools of procurement, research funding, standards

enforcement, and antitrust law. I conclude that programmers and public interest lobbyists

must join forces to carry this revolution forward, and that the time for action is now, while

Microsoft is on trial.

Acknowledgments

lowe many thanks to Professor Rick Worthington for his patience, advice, and

encouraging words. I also extend my gratitude to Audrie Krause and Nathan Newman of

NetAction for helping to keep the open source issue alive and me in the loop, and for

answering a lot of random late night questions.

Finally, my everlasting thanks to Janne, for being here and seeing me through a lot of

long weekends in front of the computer. I couldn't have done it without you.

Table of Contents

1. Introduction: A Software Revolution 1

Thesis Roadmap 3

The Decline and Rebirth of Open Source 8

2.	 What's So Good About Open Source? 13

Software Licenses 13

Intellectual Property versus Efficiency and Standardization 15

The Monopoly Problem 19

The Software Crisis and How Open Source Solves It 23

The Downside: Problems with Open Source 33

Conclusions 35

3.	 Who Promotes Open Source? 36

The Hackers 36

Software Companies 41

Public Interest Groups 44

Conclusions 48

4.	 Getting Open Source on the Agenda 50

Political Representation of Problems 50

Problem Characterizations That Work 52

Political Characterization of Open Source: The Economic Argument 55

Associating Open Source with Antitrust 60

An Aid to Universal Access 62

Conclusions 65

5.	 Policy Tools: What the Government Can Do 68

Procurement Policy and the case of Solar Cells 69

Lessons from the Internet: R&D Funding and Standards 76

Other Policy Tools 79

Conclusions 82

6.	 Where Is Open Source Headed? 83

Government is Needed 84

Cooperation is Vital 85

The Trial is a Window of Opportunity- 86

A Final Word 87

Sources _---==-=-- 88

Appendix: Figures 93

List of Tables

1. Open Source Companies 12

2. Open Source Advocacy Groups 49

3. Factors in the Success of a Problem Characterization 55

4. Political Characterization of Open Source 65

5. Policy Tools for Open Source 81

Chapter 1
Introduction: A Software Revolution

"The paradox of the electronic frontier is that in spite of its vast potential,
we have never figured out what it means, or what it should mean, to buy ,
sell, and own goods that can be copied and transported so readily."

-Brad Cox , Superdistribution:
Objects as Property on the Electronic Frontier, p. 19

The high technology industries have repeatedly proven that there are few technical

problems that can't be solved . Computers and the Internet have made advances at a

dizzying rate, influencing every aspect of life, and as with all major technological advances

of the past, people are finding that basic assumptions about the economic and social

ordering of society are challenged by the new technology. Leaping technical hurdles is easy

compared to solving the social and economic problems created by the new technology.

Knowledgeable consumers begin to ask questions: Is information technology too expensive

to benefit everyone in society? Has power in the software industry been concentrated into

the hands of monopolists? Must we accept the inevitability of bugs in even the most

advanced software? Is it really logical to pay by the copy for the collection of intangible bits

that comprises a program, and if not, how will its creators be compensated for their efforts?

A group of programmers, computer enthusiasts, companies, and public interest groups

has proposed an alternative business model for software development that seeks to answer

these questions. Based on the belief that making the most of new technologies requires new

organizational structures, new economic ideas , and even new value systems, this group has

called for a radical change in the way software is produced and sold . Their system is called

open source software 1.

The essence of open source software is that all software should be distributed with the

explicit right to disassemble, modify, and redistribute the software that one has purchased,

without paying royalties or other fees to the original creator. The term 'open source' refers

to the fact that modifying software is next to impossible without access to its source code,

1 It is also referred to 3;Sfree software otfreeware , see (Free Software Foundation 1998;1).

1

2

the lists of instructions in a programming language that comprise the recipe for the

software. Thus, granting the right to modify is meaningless unless source code is readily

available. In contrast, proprietary software, comprising the majority of software in use

today, is distributed with a restrictive license that prohibits copying, resale, disassembly or

modification . Proprietary software developers consider their source code to be a trade

secret; most do not release it any more than Coca-Cola gives out its formula.

Open source software can be explained in many ways: it is a new development

methodology in that it allows widely distributed and loosely organized individuals to

contribute to a software product. It is an alternative business model because allowing free

redistribution means that new mechanisms for compensation and profit must be created. It

also defines a group of people, those who create open source software and champion it as a

cause. Open source can be compared to an industrial revolution , as it represents a

significant change in the structure of production. It can also be thought of as a grassroots

political movement, in that it focuses on changing the opinions of individuals and building

support from the ground up.

To those of us who were born and raised adhering to the traditional method of software

development and the market structure that distributes it, open source seems like a radical

idea. What incentive will programmers have to create software that will be given away for

free? The idea seems almost ludicrous from within the proprietary worldview. Yet it seems

to work-a handful of companies have made significant profits under the open source

system, producing very reliable, professional quality software-. Loosely organized groups

of programmers, spread around the world, have used this method of organization to

produce important and widely used software, including some of the programs that make the

Internet work.

2 The most well known are Netscape Communications, which in 1998 released its popular Web browser as
open-source, IBM, which now sells technical support for the open-source Apache Web server, and several
companies which market the open-source operating system Linux.

Open source supporters claim their method produces better software and provides a

competitive advantage. Many of them consider open source to be more equitable, to give

more choice and autonomy to the consumer, and to reward producers in a fairer way, more

in proportion to their efforts . They also consider open source a beneficial social innovation,

as it could lower the price of computer systems for underprivileged groups in society.

Supporters belong to three different groups: the international community of programming

enthusiasts who call themselves hackers>, those companies that have adopted the open

source business model, and a small group of nonprofit public interest organizations that

deal with issues of technological equity. All of these groups publicize open source through

the media, raising awareness of the issue. In the past year, major U.S . and British

newspapers have printed a total of 71 articles on open source , with even more appearing in

computer industry magazines'[.

The idea of open source has created controversy in the software industry, as it asks

companies to give up what they see as their primary means of profit-the licensing of their

intellectual property. The success of open source to date has also created cont1ict among its

supporters, over how to market the idea, and more fundamentally, why to market the idea:

for its economic advantage or for its social benefits .

Thesis Roadmap

From a policy point of view, open source can be seen as an attempt at social and

economic change. Based on the significant early successes of the idea, and the controversy

it has ignited, it seems inevitable that open source will have some long-term impact on the

software industry. A study of the idea, the changes it may cause, and how these changes

3 Though the press often uses the word hacker to refer to someone who breaks into computer systems
maliciously, this is a distortion ofits original meaning of 'clever programmer.' Members of the hacker
community refer to the malicious sort as crackers.

4 This statistic comes from a search of the Lexis-Nexis Company News database on the term "open source"
over the period from April 23, 1998 to April 23, 1999.

4

might be achieved will shed light on the future of the software industry and the way people

use computers.

A potential participant in any industry conflict is the government, which gets involved

in issues that affect the public and don 't seem solvable by private means. The need for

government involvement in the open source issue is another point of cont1iet within the

open source movement. In this thesis, I will look at the need for government involvement,

how to bring about government action on the matter, and what that action might be.

In summary, this thesis will address the following questions:

I.	 What changes would widespread adoption of the open source idea

cause , economically, politically , and socially? Who would benefit?

What are the potential downsides?

2.	 Which groups could most effectively initiate government

action to bring about these changes?

3.	 Which policy instruments would be most effective?

The first half of this paper will look at open source from a variety of viewpoints, to

serve as a basis for my analysis of government options, and additionally to synthesize

different opinions about open source and the details of its current situation to create a

starting point for future research on the issue. The first viewpoint is a legal one , looking at

software licenses, where the "openness" of software is legally codified in terms of

intellectual property rights. These licenses can be seen as occupying points on a scale of

"openness," with purely proprietary software on one end and strictly open source on the

other. Open source is not a black-and-white issue, as this section will show; openness

comes in degrees. Closely related to intellectual property is a second issue of vital

importance to the open source movement: standards, and who controls them. Open

standards and open source go hand in hand, and policy that affects one naturally affects the

other. Thirdly, the recent emergence of open source as a public phenomenon is seen by

many as a reaction to Microsoft's monopoly in the software industry.

5

All of these factors, intellectual property, standards, and monopoly, interrelate in

various ways: Strong intellectual property protection through software licenses allows

control over the standards by which software products interact, which can allow for the

creation of a monopoly. Open source licenses, on the other hand, strengthen adherence to

open standards and prevent monopolies from forming. The information in this section

comes mainly from open source license agreements and their explanatory materials, and

from some essays on standards, monopoly, and copyright. I use basic economics in this

section to frame the debate and explain the theories of monopoly formation which are

relevant to the case, but this thesis is not meant to be an in-depth economic analysis of open

source and monopoly. Hopefully, however, it will encourage others to conduct such an

analysis.

Another focus of this paper, comprising the latter half of Chapter 2, is on the open

source business model and the problems it claims to solve. Large proprietary software

products suffer from a crisis of complexity in which the inefficiencies caused by adding

additional programmers to a project cancel the added productivity of those programmers.

Open source avoids this conundrum by tapping the resources of the Internet community in

identifying and fixing flaws . At the level of individuals, it is based on voluntarism as well

as on a desire for profit. For companies, alternative means of profit exist, such as selling

technical support for the open source software they create. The result is a very different sort

of software business that is potentially more responsive to individual customers' needs.

Open source is a more socially responsible business model, leading to greater equity

between producers and consumers, capital and labor, rich and poor.

An aspect of the open source phenomenon that I intentionally overlook is its

international implications. Open source developers live all over the world, especially in

Europe, and foreign countries also comprise much of the market for this software.

However, comparing the policy options which are in use or proposed in different countries

6

is beyond the scope of this paper. The focu s of this thesis is how the U.S. government

could address the issue.

Open source does have disadvantages, and these must be addressed in order to paint a

complete picture of the phenomenon. It suffers from a general lack of confidence, owing to

the belief that software created outside of formal corporate hierarchies could not be

trustworthy. Additionally, most open source software is written by programmers for

programmers and other computer experts, and so emphasizes flexibility and power over

ease of use. Most open source software does not have the user-friendliness of graphical

operating systems like Windows and Macintosh, putting it out of reach of many potential

users.

The second part, Chapters 3 through 5, layout my analysis of open source activists'

political organizing and lobbying efforts, what they have done so far. and what they could

yet do in terms of enlisting the aid of government. The three major activist groups involved

in promoting open source are the worldwide hacker community, represented by two small

groups of open source evangelists, corporations which have adopted the method, and

nonprofit public interest groups, notably the groups NetAction and the Consumer Project

on Technology. Information on these groups comes mainly from their web sites, essays,

and other publicity materials, as well as interviews with two key activists: Eric Raymond of

the Open Source Initiative and Audrie Krause of NetAction. The idea I focus on in this

section is that all of these groups have unique talents and motivations to bring to the cause,

and any successful attempt to change public policy must include cooperation between all

three groups.

The first step in any policy effort is convincing government, and the public, that a

problem exists and is worthy of action . Activists use techniques of political characterization

to define an abstract phenomenon as a specific problem to be solved. Some

characterizations work better than others, and the most important key to success is not the

popularity of an issue, but its degree of compatibility with existing policies and areas of

7

concern. Specific criteria for successful problem characterizations I derive from the works

of public policy theorists, especially William Browne, B. Guy Peters, and Deborah Stone.

The best issue with which to associate open source, I argue in Chapter 4, is monopoly,

since the Department of Justice's antitrust lawsuit against the Microsoft Corporation has a

firm place in the media and in the public consciousness at this time. Other characterizations

include universal access-policies to ensure access to telecommunications for historically

disadvantaged groups-and the economic argument that open source makes companies

more competitive and profitable. Though making these associations may help the cause,

they are not as powerful as monopoly, at least in the short term.

Finally, I look at the different policy tools that could be used by the government to

promote open source and encourage more companies to adopt it. Since none of these

policies have been enacted yet for this particular issue, there is no data available on which

one would work best in this case. To make up for this, I compare potential open source

policies to past uses of these policy tools for other causes. I will focus on two in particular.

Procurement, or the use of government purchasing to affect the price and availability of a

good, is potentially the most powerful tool for promoting open source with a minimum of

political strife. To evaluate the effectiveness of procurement, and the pitfalls that such a

policy could encounter, I compare a potential open source procurement policy with the case

of solar cells in the late 1970's, in which procurement was mandated to lower the cost, but

the program was cut before it could be effective. The other policy tool I focus on is actually

a group of closely related policies: research grants, education, and standards maintenance,

all policies inspired by the government's role in the creation of the Internet. The Internet

makes an interesting policy situation: a government-initiated project, privatized in stages

over twenty years, which became a powerful economic force. As open source software and

the Internet have a common origin, the policies used for one may work for the other.

The paper will conclude with some thoughts on where the open source movement is

heading, and my recommendations for action.

The Decline and Rebirth of Open Source

Although the term 'open source software' was coined rather recently, the idea has

existed for many years. It originated in university computer science departments of the

1960's, especially the Artificial Intelligence Lab at the Massachusetts Institute of

Technology. The idea of distributing source code freely was a natural offshoot of standard

research practice. Researchers share results. Sharing of source code was essential for

collaborative research, and so taken for granted that it was not given a name during this

period . Later , when the programmers of this era began to call themselves hackers , sharing

of code became known as the "hacker ethic."

In the 1970' sand 80' s, the commercialization of software and the rise of large

commercial software companies like IBM and later Microsoft led to a dichotomy between

academic "computer science" and for-profit "software engineering." The commercial

software makers followed a different paradigm than the researchers: instead of distributing

their work as an academic would, they took their example from the publishing and music

industries, where individual copies of a work are sold with the stipulation that they must

not be copied. The proprietary model began to dominate the commercial software industry:

A brief history of these early eras of software development is given in (Raymond 1998;1).

Since the decline of the original software-sharing communities, open source has existed

mainly on the fringes of the computing world, outside of the commercial mainstream. As

Microsoft, Apple, Novell, Lotus, and other companies began to dominate the newly created

personal computer market, and a great deal of business computing, software that was

written to be shared was relegated to niches in the industry, primarily networking software

and the Unix operating system.

Since its invention in the early 1970's, Unix, in one of its many varieties, has always

been an operating system of choice for hackers. Its original writers, Ken Thompson and

Dennis Ritchie of AT&T's Bell Labs, gave away both the source code and troubleshooting

advice for their operating system freely because AT&T, which was at the time the U.S.

telephone monopoly , was prevented by antitrust laws from selling software. The

University of California at Berkeley made numerous improvements to Unix, and they too

released the source code liberally, at least to other academic institutions. Unix quickly

became the primary operating system of computer science researchers, and thus of open

source programmers as well.

Following the breakup of AT&T in 1985, Unix too was largely commercialized and

split into multiple incompatible versions by companies seeking to gain a competitive

advantage by adding unique features to the operating system. Sun Microsysterns, Hewlett

Packard, IBM, and AT&T itself all released their own versions of Unix. However, open

versions have always been available, especially through UC Berkeley and its BSD

(Berkeley Software Distribution) corporate spinoff. Although Berkeley Unix was not

"open source" according to the more rigid definition in use today, since using it for

commercial gain required its owners' permission, Unix has nonetheless been the only

major operating system for which complete source code was consistently available. Thus, it

is a natural choice for open source programmers. With access to the operating system

source code, they can write software that takes advantage of all of the operating system's

features without depending on the creators to explain (or withhold) the details of those

features.

It was the relative openness of Unix that led former MIT researcher Richard Stallman to

choose that operating system as a basis for his GNU Project. Seeking to revive the "hacker

ethic" in the days of proprietary software, Stallman founded the project in 1984 to create a

complete set of "free software" utilities and programming tools (it was not then called open

source) . The GNU Project, which is the programming arm of the Free Software

Foundation, created some of the most widely used pieces of Unix software, including the

1 U

Emacs text editor, the Gee compiler>, and the GDB debugging program. These programs

were adapted to run on nearly every version of Unix, further cementing Unix as the

operating system of open source programmers. The history of Unix is recounted in

(McKusick, 1998) and (Hall and Barry , 1990). Stallman (1998) describes the activities of

the GNU Project in more detail.

The other area in which the idea of open source flourished in the era of proprietary

dominance was in the creation and development of the Internet. The Internet Engineering

Task Force, which designed, and continues to design, most of the important

communications standards that make the Internet possible , operates using open source

methods. "The IETF supported the concept of open sources long before the Open Source

movement was formed ," wrote Scott Bradner, one of the leaders of the IETF. "There is an

intrinsic partnership between open standards processes, open documentation, and open

sources. This partnership produced the Internet and will produce additional wonders in the

future" (Bradner 1998, p. 52).

Many of the programs that operate in the background of all Internet activity are open

source, and are so successful as to have no significant competition. These include the bind

program, which translates names like "www.pornona.edu" into numerical Internet

addresses (this must occur before almost every Internet communication), and the Apache

web server, which serves over 50% of all Web pages. The Internet is thus closely related to

the concept of open source .

The driving force behind the re-emergence of open source into the mainstream of

commercial software development was a reaction to what many people perceived as a

dangerous monopoly situation. Microsoft's steadily increasing market share in operating

systems, application programs, and Internet software prompted many companies to look

for a way to change the rules of competition by finding a new software development and

S A compiler is a program which turns source code into object code , finished software which can be run on
a computer. GCC compiled source code in the C language, and later its successor, C++, two of the most
popular programming languages in everyday use.

1 1

marketing technique. Yoffie and Cusumano (1999) call this idea "judo strategy:" redefining

the field of competition, shifting into uncontested markets, and avoiding direct competition

with more powerful players. Open source presented such a solution. At the same time,

seeing the threats to their software-sharing community presented by Microsoft and its

interference with open standardsv, a group of hackers called the Open Source Initiative was

founded to promote open source as a viable business model, rather than just a

programmers' hobby.

The rallying point for the rebirth of open source was a Unix-like open source operating

system called Linux. Created by a Finnish college student in the early 1990' s, Linux is

now a mature product with approximately 7.5 million users, according to Red Hat

Software's estimate, putting it among the top five operating systems in use worldwide. A

large community of developers from almost every continent, as well as several commercial

companies, maintain and update Linux. Its success as an operating system for business has

given respect and credibility to the open source method. Most open source development

today uses Linux, and supporters believe that Linux will eventually overtake Microsoft's

line of operating systems because of its superior reliability.

Open source has made some inroads into for-profit software businesses. In March of

1998, Netscape Communications, makers of a popular Internet browser software, shocked

the software world by announcing that it would release the source code to its browser and

begin to accept changes and improvements from the Internet community through the

Mozilla.org group. This decision arguably made Netscape the first well-known, mass

marketable piece of software to embrace the open source model. Other corporate

participants include IBM, which offers support for the open source web server Apache,

and several companies that sell Linux. Some companies participate in the open source

model without selling software, such as O'Reilly and Associates, which publishes books

6 This technique is explained in Chapter 2.

I 2

about open source technologies. Table One gives a partial list of companies involved in the

movement.

Table One: Open Source Companies

Company Name Open Source Product Product Type
Apple Computer Mac OS X Server operating system
C2Net Software Stronghold web server
Caldera Systems Linux operating system
Cygnus Solutions GNUPro Toolkit compiler
IBM Apache web server
Netscape Communications/

Mozilla.org? Mozilla web browser
O'Reilly and Associates Nutshell Series how-to books
Red Hat Software Linux operating system
S.u .S .E. Linux operat~ng system
SSC Incorporated Linux Journal magazine

Open source has emerged from the realm of hobbyists, researchers, and specialized

applications into profitable software businesses and the public spotlight. The continuance

of this trend will depend both on the commercial success of these companies and on the

efforts of open source advocates in promoting their cause to businesses, the public, and

government.

7 Mozila.org was created by Netscape as an independent entity to oversee the development of an open
source web browser, called Mozilla, based on Netscape technology. Netscape continues to develop its
proprietary web browser, Netscape Communicator, based in part on input from the Mozilla project.

Chapter 2
What's So Good About Open Source?

"The software industrial revolution is a paradigm shift, a change in belief as
to which exemplar is 'best' for thinking about a problem."

(Cox 1996, p. 53)

The direct goal of the Open Source movement is nothing short of a revolution in the

software industry, a change in the way software is developed and the way its developers

can profit. The scenario this paper will analyze is the catching on of the open source idea,

much as the Internet or mass production caught on as economic and social forces.

However, this is only a procedural goal. What problems would be solved by open source,

and what new problems created? Each group of open source advocates defines its

substantive goals in a different way. While most policy analyses start with a problem to be

solved, this one starts with a solution-open source software-which has the potential to

address several different problems, both economic and social. This chapter looks at how

open source is defined and the problems it might solve.

Software Licenses
The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change free software--to
make sure the software is free for all its users...When we speak of free
software, we are referring to freedom, not price.
-Richard Stallman, "Preamble to the GNU General Public License

Fundamentally, open source is an issue of intellectual property. The legal playing field

for the open source debate is copyright law, the aspect of intellectual property that assigns

to authors and other creators (including programmers) the exclusive rights to copy,

distribute, modify, perform, and publicly display their work.

When a user purchases software, some of the developer's rights are transferred. This

transferal is specified in a license agreement, typically a page of small print included in a

1 3

14

software package or displayed on the computer screen. The issue facing a software

developer is which rights to license, and under what conditions.

Software licenses occupy various points on the scale from open to proprietary, based

on how many rights are granted to the purchaser rather than reserved to the creator. The

software called open source occupies the region of fewer rights reserved to the creator, but

even within this group there is a great deal of variation. A good general definition of open

source software is given in the Open Source Initiative 's "Open Source Definition" (Open

Source Initiative 1997). These terms include :

•	 Allowing free redistribution of the software without royalties or other
fees to the author.

•	 Requiring that source code be distributed with the software or otherwise
made available for no more than the cost of distribution.

•	 Allowing anyone to modify the software or derive other software from
it, arid to redistribute the modified software under the same terms .

Within these guidelines, many different licenses exist. Among these, the most

significant difference arises over whether modifications and derivations of a program must

be distributed under the original license terms. The Open Source Definition states merely

that redistribution of modified works under the same terms must be allowed. Some

licenses, such as the BSD license and the MPL8, allow a programmer to modify the

software and release the modified version under new license terms, including making it

proprietary. (Perens 1998, p. 184)

In contrast, the Free Software Foundation's "GNU General Public License" (Free

Software Foundation 1998;2) which covers most of that organization's products and many

others as well, requires any redistribution to take place under the same terms. The GPL, a

cleverly written document, uses copyright law for a very different purpose than the law

was intended: preserving the openness of all copies and derivatives of a software program.

Permission for a user to copy or modify software is granted only if they promise to apply

the GPL to all copies and derivatives. The license states, "you must cause any work that

8 The license agreements for Berkeley Unix and Netscape's Mozilla web browser, respectively.

1 5

you distribute or publish, that in whole or in part contains or is derived from the Program

or any palt thereof, to be licensed as a whole at no charge to all third parties under the terms

of this License." The FSF's name for this clause is "copyleft," and it prevents any future

versions of an open-source program from being "captured" by a company and redistributed

as proprietary. It also prevents any code licensed under the GPL to be included in another

software project, unless that entire project also has the GPL applied to it. Thus, no GPL

code can ever be used as part of a proprietary software project.

The alternative to open source software, which includes the vast majority of commercial

software available today, is proprietary software. A proprietary license prohibits

modification, copying, or redistribution without the company's permission. It ensures that

only one entity-the company or individual that created the software-has the right to make

changes or even see the software's internal structure. Proprietary software is based on a

tradition of strong intellectual property protection which originated in publishing, and uses

copyright law to prosecute illegal copying. As a typical example, the license agreement for

Microsoft Internet Explorer contains the following terms:

•	 You may not reverse engineer, decompile, or disassemble the software
product.

•	 You may not distribute copies of the software product to third parties .
•	 You may not rent, lease or lend the software product.

"End User License Agreement," (Microsoft Corporation)

Intellectual Property versus Efficient Diffusion and Standardization

Economists view intellectual property policy as a tradeoff (isn't
everything?)-a tradeoff between the goal of rewarding and thus
encouraging innovators, and the goal of "efficient diffusion" embodied in
marginal-cost pricing.

(Farrell 1995, p. 368)

To proprietary software developers, strong intellectual property protection as provided

by licenses like Microsoft's is "seen as necessary in creating sufficient incentives for firms

to engage in innovation" (Shurmer and Lea 1995, p. 378). Conflict arises over whether too

much intellectual property protection creates economic inefficiency by inhibiting the

I 6

widespread adoption of technologies and limiting their usefulness. If a software developer,

or any other type of inventor or engineer, designs a product that increases efficiency, saves

energy, promotes well-being, et cetera, then the value of the innovation to society increases

with the number of people using it, and with the number of different ways they can use it.

It is thus in society's best interest for the innovation to be distributed as widely as possible,

with fewer restrictions on accepted uses . On the other hand, fewer restrictions mean that

the innovator is less able to realize a profit from each use of the innovation, and if the

innovator is not rewarded according to the value derived from his innovation, he or she will

have no incentive to continue innovating.

Clearly, some balance between efficient diffusion and intellectual property protection is

necessary, but different participants in the debate disagree as to where the optimal point is.

Mainstream economic thinking favors stronger intellectual property protection rather than

promoting diffusion directly, with the assumption that beneficial technology will reach its

potential beneficiaries as long as its creators are given a strong monetary incentive to create.

According to Farrell (1995), "many economists believe that encouraging innovation is more

important in general than encouraging efficient diffusion , suggesting that the balance

should tilt somewhat towards protection and encouragement of innovation rather than

towards encouraging low prices for existing innovation." Many software companies view

the licensing of intellectual property as their primary business. In the words of an IBM

employee, software companies "live or die based on their innovation. So we take very

seriously threats to our intellectual property rights" (Ellis 1995). Open source activists put

more emphasis on efficient diffusion, for various economic and ideological reasons which

I'll discuss later, and they downplay the absolute importance of intellectual property as a

means of securing compensation for software developers.

The dilemma of assigning 'ownership' to software is due to its intangibility. In

Superdistribution: Objects as Property on the Electronic Frontier (1996), Brad Cox points

out that for tangible goods, the law of conservation of mass guarantees compensation for

1 7

the people at every stage of production. The example he uses is a pencil: When someone

buys a pencil, the loggers in Oregon, the graphite miners in Sri Lanka, and everyone else

involved in creating and assembling the components of a pencil will be compensated,

because no one else can do their job. Software, on the other hand, can be copied and

transported around the world almost instantaneously, and there is no technological way to

track or account for such copying. Copyright law creates a legal deterrent to copying, but

this law is trivial to sidestep. The physical basis for our entire economic system, the

impossibility of duplicating a good ; is nonexistent in the software world, and the result is a

"software crisis" born of the inability of our basic economic structure to distribute software

(ibid. , p. 31). Cox's crisis is a problem of social and economic organization, not a lack of

technology.

A closely related concept is technical standards. "Standards processes," says essayist

Lewis Branscomb (1995) , "attempt to minimize redundancy, waste , and transaction costs

by articulating a common public approach to technology and market development." For

computers, standards are vital if any two products are to interact. Nearly every possible

relationship (often called interface specifications and protocols) between two pieces of

software is determined by a standard. Examples are the interaction of an application

program with its operating system, the format of a data file to be read on different types of

computers, and the ordering of bits on a wire carrying data through the Internet. In the

computer industry, widely used standards contribute to the efficient diffusion of

technological innovations. If more products interoperate with each other through standards,

consumers have a wider choice of products to perform a given task, and more flexibility in

combining products.

Most of the important standards in the computing world are created by agreements

between companies or by independent standards-setting bodies such as the Internet

Engineering Task Force (IETF) or the International Standards Organization (ISO) . Some

are created by government, and some, like the Microsoft Windows operating system and its

1 ~

associated interfaces, become de facto industry standards through market forces . An

organization that controls standards, whether through legal or economic means, gains a

degree of power over all technologies that use the standard to interoperate with other

technol ogies . An organization's control over a particular standard is aided by intellectual

property rights and secrecy.

Once again, opinions on the optimal balance vary between organizations. On the more

restrictive end are those companies who have become successful through strict control over

their intellectual property, including the standards their technologies define and use. One of

these is Microsoft, whose Windows operating system is arguably the most powerful

'standard' in the personal computing world . Microsoft prefers that interface specifications

be proprietary and not disclosed freely , and it favors the licensing of those specifications

for the creation of compatible but not competing products. For example, Microsoft would

license a specification allowing the creation of application programs which are compatible

with Windows, but not for the creation of a competing operating system (Band 1995).

Other companies and organizations take a position in the center. Sun Microsystems, a

Microsoft competitor, argues that interface specifications should not be protected by patent

or copyright, and furthermore should be published, although the implementation or source

code of programs should remain proprietary (ibid.). Unlike Microsoft, whose core

business is selling operating systems for individual computers, Sun built its business

selling networked computer systems, which are more dependent on standards.

Open source inherently allows for open interfaces, as it allows both interface

specifications and the underlying source code (in short, the entire product) to be shared

between companies and other groups. Since anyone can read the source code to a program,

the interfaces and protocols by which it interacts with other software and hardware are

plainly revealed. Thus, anyone can write either a compatible or a competing product

without obtaining a license from the creator.

1 l)

The Monopoly Problem

One of the hottest issues in the computing world today is the ongoing accusations of

monopoly abuses by the Microsoft Corporation, including the Justice Department's lawsuit

against that company, which alleges "a pattern of anticompetitive practices designed to

thwart [web] browser competition on the merits , to deprive customers of a choice between

alternative browsers, and to exclude Microsoft's Internet browser competitors"

(Department of Justice 1998). The Justice Department and consumer rights organizations

allege that Microsoft has used its proprietary control over de facto software standards to

(illegally) leverage its operating system monopoly? in order to gain monopoly control in

other markets. Microsoft, the world's largest producer of software for personal computers,

is the most successful example of traditional proprietary software development and

marketing. Because of this, the open source movement is often characterized as a

confrontation with Microsoft. The Washington Post, for example, termed the movement

'The Spreading Grass-Roots Threat to Microsoft" (Leibovich 1998).

The economic basis for their argument is the theory of network externalities, which

argues in favor of more standardization and less intellectual property protection, or in other

words, for the open-source end of the spectrum. Network effects exist when the value of a

good to each consumer is higher the more people are using it. For most goods this is not

the case : the number of people who buy a particular food , for instance, does not make that

food any more useful to a particular customer. Network effects occur when products

interact, as is often the case in high tech. For example, a telephone is more useful the more

people own telephones; if only one person in the world owned a telephone, it would be

worthless. When network effects are present, a technology that is more widely used than

its competitors is more valuable to each user, so more customers will choose that

technology over others. This, in tum, increases its value even more, leading to a positive

9 In 1997, Micro soft Windows was installed on 94.1% of all personal computers, according to Nathan
Newman (1997 , ch. 2),

2U

spiral of increasing market share. "Businesses train employees in one technology and are

reluctant to abandon that investment in training," writes Nathan Newman (1997, ch . 3) ,"

while the existence of a pool of people trained in that technology encourages other

businesses to adopt that technology." Thus, technologies with a small initial advantage

(what Farrell calls the first-mover advantage), tend to retain an advantage over later entrants

to the market.

In the computer and telecommunications industries, network effects encompass a large

number of product interactions. Instead of the single interaction between telephones and the

telephone network, the computer industry depends on the interactions between applications

and operating systems, between Internet clients and servers, and between software and

auxiliary services such as training, to name just a few .

Many economists (and more importantly, many policymakers) believe that network

effects can lead to undesirable outcomes that will not be corrected by market forces, such as

an industry standardizing around an inferior product. Network effects, they argue, can be

used to maintain and extend monopolies in high-tech industries. If this is so, then "even

small amounts of abusive market behavior, if it gives advantage in market share, is

magnified in its returns to the abuser due to network effects" (Newman, 3). Failures of the

market system are called are called externalities by economists, hence, network

extemalities.

According to antimonopoly advocates, Microsoft has made extensive use of network

effects in building its corporate empire. Its core monopoly and chief source of network

leverage is the Windows operating system. NetAction, a nonprofit group that monitors

Microsoft, claims that it was the company's original operating system monopoly which

allowed it to extend control into other sub-industries, as predicted by the network effects

theory. By "bundling" its word processor and spreadsheet programs with Windows,

Microsoft was able to capture monopoly shares of those markets as well. When the Internet

exploded into mass-market prominence in the early 1990's, Microsoft overcame an initial

21

disadvantage in the Internet browser market by leveraging its monopoly position and steady

operating system profits. Microsoft's browser, Internet Explorer, overtook the former

market leader, Netscape, because Microsoft gave their software away for free and

eventually integrated it directly into Windows.

Using network effects to extend monopoly power from one market to another relies on

strong intellectual property protection. Because only Microsoft has access to and control

over the software interface through which application programs interact with Windows, it

would be nearly impossible for any other company to design an operating system which

could run programs designed for Windows. This ensures that no company but Microsoft

can take advantage of the network effects of the Windows monopoly.

If the network effect theory is valid, then Microsoft can use its monopoly power to

compete unfairly against open source projects. An internal Microsoft memo on open source

(Valloppillil 1998) describes methods for doing just this. The author of the memo

recognizes that open source software has a strong connection to simple, open Internet

communications standards. "Linux [as an example of an ass program] can win as long as

services/protocols are commodities," he writes. The suggested counter-strategy is to "de

cornmoditize" these protocols, which means to add proprietary modifications in order to

create incompatibilities between the true standard and the modified one, and then use

monopoly power to force Windows users and developers to use the modified protocol.

This would leave open source software unable to interoperate with the majority of the

world's computers.

Although open source software suffers from the effects of monopoly (and from the

direct competitive attention of Microsoft, according to the memo mentioned above), open

source also represents a possible remedy for the monopoly problem. In the world of open

source software, at the other end of the intellectual property spectrum from Microsoft,

excluding competition by manipulating standards is impossible. Since anyone can distribute

Linux, for example, or write another operating system which can run Linux application

22

programs, open source application developers have no need to favor a particular operating

system manufacturer, and the cycle of network effects does not exist. Even if Linux

captured a majority of the market for operating systems, no single company would be able

to erect barriers to competition. Open source has the added benefit of being self-enforcing:

as long as source code is publicly available , no company can recapture a program by

declaring ownership and making it proprietary.

Farrell (1995) theorizes that in industries with strong network effects, a lower level of

intellectual property protection is the better economic choice . Since a small initial advantage

can lead to market dominance and the exclusion of competitors, imparting such an

advantage through patents and copyrights may contribute to the formation of monopolies.

Open source, a business model in which most intellectual property rights are waived,

prevents this.

The negative implications of network effects in the software industry, and the existence

of Microsoft's monopoly power, are not universally accepted. Conservative economists,

such as Liebowitz and Margolis (1995;2), do not believe that network effects contribute to

monopoly. Furthermore, they argue that network effects are not evidence of market failure.

"Any network externality that is 'market mediated," they write, "meaning that the size of

the network (the number of users) influences the price of inputs to a firm, or goods and

services to a consumer," creates no imbalances that cannot be solved by the equalizing

actions of the free market. These economists claim that the evidence of market failure from

networks consists of "anecdotes and casual characterizations of technology" rather than

solid empirical evidence. Behind their theories is an ideological position of resistance to

government intervention.

In these instances, we are told, we might be better off relying on the
government, in its wisdom, to pick for us the products that will provide us
the greatest value. Al Gore, for example, as the current administration's
leader on matters of technology, might be relied upon to have a clearer
vision of the course of technological change than would private-market
actors such as Bill Gates.

(Liebowitz and Margolis 1995;2)

23

Microsoft, for its part, vehemently denies that it holds monopoly power or stifles

competition, and it cites a number of economists and politicians in its press releases who

agree . "I think that the government would have a very hard time trying to make a case that

Microsoft is actually charging a monopoly price for its products," said Liebowitz in a

Microsoft press release. Microsoft calls on its supporters to defend its "freedom to

innovate" unhindered by lawsuits or regulation (Microsoft Corporation 1998).

Network effects, and their application to Microsoft, are clearly not a universally

accepted theory. However, for the purposes of this study, what is important is that this

theory is accepted by and guides the actions of key government officials, pro-consumer

activist groups like NetAction, and open source developers, the groups I will consider as

possible policy initiators.

Intellectual property rights, efficient distribution of technology, open standards, and

monopoly all affect one another. Figure One, in the Appendix, sums up these relationships.

The Software Crisis and How Open Source Solves It

Efficiency is thus not a goal in itself. It is not something we want for its
own sake , but rather because it helps us attain more of the things we value .

(Stone 1997, p. 61)

Another issue that the open source movement claims to address is an efficiency issue.

Open source enthusiasts claim that their method produces higher-quality software for a

given investment of money and programmer time. If this is true , the widespread use of

open source software would benefit both individuals, in terms of lower cost, and the

economy as a whole, in terms of less waste of resources.

As background to the efficiency argument, I return to the "software crisis" described by

Brad Cox. "The software crisis," he says," is not about the majority of programs, since the

majority of programs are small. There is no shortage of small software, but of individuals

capable of writing more...large programs are rare, expensive, and far more difficult to

24

produce than the small ones " (Cox 1996, p. 80) . Cox compares the creation of large

software products (in proprietary software companies) to a plumber who must mine ore ,

refine and mold metals to make pipes, as well as assembling them in a home. (ibid. , p. 52)

In other words , large software projects do not have access to a good collection of smaller

software components which could be combined for more functionality, like assembling

pieces of pipe, but must instead recreate all of these subcomponents for each project.

The reason for this lack of subcomponents is the intangibility problem mentioned

earlier: it is difficult to charge software users per copy if copies can be made and distributed

instantaneously. The most common solution to this problem within the paradigm of

proprietary software is to attempt to tie software to tangible media, which is much harder to

duplicate than abstract bits.

Microsoft, for example, has demonstrated complete mastery of one such
solution: attaching their electronic property to paper, cellophane, and plastic
[the box, disks, manuals, and paper license agreements accompanying
store-bought software]. This simple expedient allows their goods to be
bought and sold exactly like cornflakes and detergent.

(Cox 1996, p. 32)

Other solutions exist as well, such as hardware keys which must be attached to a

computer for software to run, or passwords obtained from the vendor. The problem with

these methods is that they only work for large-scale software. Requiring shrink-wrap

packaging, hardware keys, or other such means for each of the hundreds of subroutines or

component parts that make up a typical large program would be impractical. Thus, creators

of small program subcomponents have no means of ensuring compensation for their work,

and no incentive to produce such components for others. Creators of large programs must

rewrite these subcomponents for each project. At best, they may reuse them within a single

company, but there is no practical means of selling them to others.

Large software projects, says Cox, are the only projects that have commercial value

under the proprietary system. However, large projects suffer from a crisis of complexity.

Open source evangelist Eric Raymond describes these projects as being "built like

25

cathedrals, carefully crafted by individual wizards or small bands of mages working in

splendid isolation" (Raymond 1997, ch. 1). Frederick Brooks, a former IBM engineer

whose 1975 book Th e Mythical Man-Month is still highly regarded as a series of

observations about the field of software engineering, identifies a paradox in large projects.

On one hand , he claims, only small teams of programmers, "the small sharp team, which

by consensus shouldn 't exceed 10 people," are truly effective at producing any

autonomous software component. This is because "the sheer number of minds to be

coordinated affects the cost of the effort, for a major part of the cost is communication and

correcting the ill effects of miscommunication" (Brooks 1975, pp. 30-31). The added cost

of communication, he observes, quickly becomes greater than the added productivity of an

additional programmer.

On the other hand, groups of only ten programmers cannot reasonably be expected to

produce a very large piece of software in a reasonable time frame. Production cycles in the

proprietary software industry are fanatically rapid , with new versions often released every

six to nine months, and each version of a large program can contain millions of lines of

code , far too much for a small team to handle.10 "For efficiency and conceptual integrity,"

Brooks writes, "one prefers a few good minds doing design and construction. Yet for large

systems one wants a way to bring considerable manpower to bear, so that the product can

make a timely appearance. How can these two needs be reconciled?" (ibid., p. 31).

The conclusion of these authors is the existence of a fundamental limitation in the

proprietary software model. Only large, complex software can easily be sold for profit, but

large software faces exponential complexity leading either to very slow turnaround times or

dramatic sacrifices in quality. While this claim is contestable and difficult to measure, there

is a general feeling among computer users that software has too many "bugs," and that

10 Mozilla, the open source version of the Netscape web browser, has 1.5 million lines of code . A
complete distribution of the linux operating system, with all its auxiliary utilities, has about 10 million
lines, and the forthcoming Microsoft Windows 2000 release is reported by Raymond to have as many as 60
million lines.

26

software users are forced to accept a much lower level of quality than is expected from

other manufactured goods. A joke found on the Internet points out this dual standard:

If Microsoft Built Cars
• New seats would require everyone to be the same size.
• The oil, alternator, gas, and engine warning lights would be replaced by a

single "General Protection Car Fault" warning light.
• You would constantly be pressured to upgrade your car.
• Occasionally, your car would just die for no reason, and you'd have to

restart it. For some strange reason, you would just accept this as
normal.

• Every time the lines on the road were repainted, you'd have to buy a new
car.
(Anonymous, 1999)

Even the military is content to install software it knows to be t1awed and error-prone. In

September 1997, the Navy missile cruiser USS Yorktown, the site of an attempt to save on

labor costs by computerizing many ship functions , went dead in the water for over two

hours when the Windows NT operating system that was controlling the ship's propulsion

attempted to divide by zero and crashed (Slabodkin 1998).

All of the authors mentioned in this section have proposed solutions to the dilemma.

Each attacks different parts of the problem, and some are more radical than others. Brooks

(1975, p. 32) proposes a partial solution within the confines of the proprietary model. This

solution, which he attributes to IBM engineer Harlan Mills, is to treat software engineering

like a surgical team: the head programmer, like a surgeon, has complete responsibility for

designing and writing all code. A staff of assistants handles administrative matters,

maintaining the computer system, testing code, editing documentation, et cetera. This

model reduces the complexity of a programming task. The communication overhead

between the "surgeon" programmers of, say , five ten-person programming teams is much

less than what would occur among fifty individual programmers. However, the underlying

problem still exists, and this solution does not address the inability to market small ,

reusable software components.

Cox's (1996) innovative solution, which he calls "superdistribution," involves having

users pay software developers for each time they use a piece of software, rather than each

27

time it is copied. The makers of software at all levels of complexity, from simple

subroutines to application programs and operating systems, would add a line of code to

their programs, saying in effect, "bill the user one tenth of a cent (or some other price) each

time this code is invoked." A complete, large-scale application program, such as a word

processor, would contain many such statements, one from each subcomponent from which

the program is built. These billing requests would be stored in a secure "accounting chip"

on a user 's system and periodically sent to a bank or other trusted institution, which would

debit the user's account. This solves the crisis of complexity on the economic front by

allowing small-component vendors to receive compensation for their work based on the

number of times it is used. Software could be freely distributed (in compiled, object code

form only) as widely as possible, with no restrictions on distribution.

Open source advocates would undoubtedly object to Cox 's solution on ideological

grounds. Cox 's "superdistribution" keeps most power and flexibility in the hands of the

software producer rather than the user, and it is antithetical to the distribution of source

code , which open source advocates see as vital . While it may solve the economic problem

of the software crisis, Cox 's solution causes no beneficial social change such as some open

source advocates desire.

Open source software is perhaps the most radical solution to the software crisis, as it

does not fundamentally address the question of how software makers are to be

compensated. Open source starts with the notion that software and the source code from

which it is created should be distributed for free. Advocates insist there is profit to be made

using their model, but the specifics of profit are not their primary concern11.

Open source development projects are organized very differently from proprietary

projects. An open source project, explains Eric Raymond, often starts by "scratching a

developer's personal itch," that is, a programmer sets out to solve a problem she finds

11 Many open source advocates are concerned with increased economic efficiency, more consumer choice,
and access for the poor, Generating the profits necessary to sustain these benefits is a lesser concern.

interesting. (Raymond 1997, ch. 2) As the programmer progresses, she makes the source

code available, generally over the Internet. Other users, often those with some

programming knowledge of their own , download and use the software. As t1aws appear

(bugs, security holes, et cetera), users, often motivated by an interest in the subject and a

desire to participate, send in reports of the problem or fix it themselves and return the fix to

the original author. They may also add new features to the program and return these to the

author. In a large project, like the Linux operating system, different people take

responsibility for different sections. Development projects are loosely centralized, generally

with a few people writing new code and a large group of people using and actively

reviewing it. The Internet is developers' primary mode of communication, allowing wide

geographic distribution of participants. For example, the Linux kernel, or central operating

program, was written collaboratively by developers on three continents.

Membership in an open source project is open to anyone with interest and some

requisite degree of ability. The result is a kind of "organized chaos," or in Raymond's

words, "a great babbling bazaar of differing agendas and approaches" (Raymond 1997, ch.

I) . His fundamental observation about the development of Linux, and open source

software in general, is that while programming is inefficient above a certain number of

participants, debugging and editing of code is not. On the contrary, the more people use

and test a piece of software, the more bugs will be found, and this effect is intensified if the

users are programmers and can fix the bugs themselves. This is because while debugging

requires communication between debuggers and the head programmer or coordinator, it

does not require any significant communication between debuggers. Open source developer

Paul Vixie points out that the best way to find bugs in software is to subject it to real-world

use by as many users as possible, each with their own methods and idiosyncrasies of use

that may bring bugs to light. (Vixie 1998) A large number of participants allows a wide

diversity of approach, increasing the chances that someone will find a bug and that

someone will readily be able to propose a solution. These two need not be the same person.

2Y

Distributing the debugging process avoids the crisis of complexity in the debugging

step, one of the most resource-consuming phases of software engineering. In Raymond's

words, "Given a large enough beta-tester and co-developer base, almost every problem will

be characterized quickly and the fix obvious to someone. Or, less formally, 'Given enough

eyeballs, all bugs are shallow.'" (Raymond 1997 , ch. 4) Vixie calls this debugging process

"the best system-level testing in the industry" (Vixie 1998).

Several factors complicate this basic model of an open source project. Participants may

be individual programming enthusiasts or members of corporations; the motivations of each

will be discussed below. Additionally, the distinction between a coordinator and a

debugger or fixer as described above is arbitrary in many cases. Participants contribute

varying amounts of effort, from finding bugs to writing large sections of code. Status and

decision-making authority in the group are defined mainly by an individual's level of

participation. In different projects, the central code-writing group may be of different size

and may assume more or less of the code-writing and other tasks of the project.

Authority over which code to include in the software is also handled differently

between projects. In the Mozilla web browser project, the core group of programmers

consist mainly of engineers at Netscape Corporation, from which the Mozilla code

originated. Being the authority figures for both Mozilla and Netscape' s proprietary browser

versions, they decide which contributions of code and new features will be included, and

their decision is undoubtedly based in part on Netscape's business objectives. For the

Linux operating system, final authority over changes is exercised by the original creator,

Linus Torvalds, known as the "benevolent dictator" of the Linux project. As a final

example, the Apache web server's central authority is a self-selecting committee known as

the Apache Group, which has formal rules of consensus and voting to determine what code

is to be included (Apache Group 1999). Figure Two, in the Appendix, illustrates an open

source project.

3U

One explanation for why open source development is more efficient is that it is based

on voluntary participation, drawing on programmers ' sense of enjoyment and

accomplishment. These factors are generally not considered in the standard economic

definition of efficiency. "Often, people derive happiness from doing or experiencing

something, rather than from the value they obtain in an exchange," writes Deborah Stone.

"A society conceived only as a network of exchanges fails to capture what are perhaps the

most important sources of human happiness and well-being" (Stone 1997, p. 75). Non

economic motivations are especially apparent among hackers, who founded the open

source movement. Hackers are motivated by a desire to solve interesting problems and to

learn from the effort. Many see themselves as members of a close-knit community; writing

code and sharing it with others are the primary means of participating in that community.

There is an economic explanation for the willingness of hackers to contribute to an open

source project, even if there is no money involved. The currency of the hackers, according

to Raymond, is reputation, and reputation is achieved by contributing code, and other

volunteer work for an open source project.

The "utility function" Linux hackers are maximizing is not classically
economic, but is the intangible of their own ego satisfaction and reputation
among other hackers. (One may call their motivation "altruistic", but this
ignores the fact that altruism is itself a form of ego satisfaction for the
altruist) [The culture utilizes] "egoboo" (the enhancement of one's
reputation among other fans) as the basic drive behind volunteer activity.

(Raymond 1997, ch. 10)

Raymond suggests that hackers derive more ego satisfaction from contributing to a

larger software project, with more participants, and it is this fact that keeps software

projects from splitting into multiple incompatible versions. Another pseudo-economic

explanation for hackers' participation is that while open source software is free, hackers

"pay" for use of the software by finding and fixing bugs as they use it, and returning those

corrections to the community.

Raymond acknowledges that programmers have to eat, and that a majority of hackers

have proprietary software jobs or other sources of income that allow them time to enjoy

:3 1

their hobby of hacking. Raymond himself derives income from consulting and lecturing on

open source. Other hackers write and sell textbooks on the software they create, or are

involved in the other business aspects of open source, which I discuss below .

While the success of open source depends in part on tapping hackers' desire to

contribute, that is not the whole picture. Corporations which adopt the open source strategy

are faced with the same question with which this paper began : how are they to realize a

profit? Who would pay for software that can be given away for free? The primary means of

profit for open-source companies lies in selling support for their products. Technical

support, including phone hotlines, help with installation and configuration, the writing of

manuals, and training, is a lucrative business that often brings in more revenue than the

software purchase itself. Software, in a sense, can serve as advertisement for the technical

support to be coupled with it.

Along with technical support, companies can build intangible assets by creating a

trusted brand name. The most successful example of this is Red Hat Software, which sells

a boxed Linux distribution with an installer, manuals, extra software, and support services,

all for about $50. Although it seems counterintuitive that users would pay $50 for software

that can be downloaded for free on the Internet from Red Hat itself, the company prospers.

Red Hat has successfully created a perception of trust and "officialness" surrounding its

boxed Linux distribution, such that users feel they are acquiring software from a reliable

source, rather than an ephemeral mob of programmers. This sense of security is invaluable

for corporate managers and inexperienced users. Red Hat "sells" a friendly, coherent

looking interface between the chaotic open-source development process and users who

need assurances of support and reliability.

Open source is often used in combination with proprietary software as a business

strategy. Netscape, for example, released its web browser as open source to gain market

share for its proprietary server products, which interact with the browser. Open source

software can act as an advertisement for proprietary software. In addition, under most open

32

source licenses the company is free to use ideas and suggestions contributed to its open

source project in a proprietary project.

Other means of profit exist as well. In Release 2.1, Esther Dyson (1998, ch. 6) lists

alternate economic models for profiting from digital creations. Her work is focused on

textual material such as magazine content rather than software, but some of the same

principles apply. Dyson suggests that companies sell intellectual process rather than

intellectual property, meaning the sale of technical skill and talent, rather than the product of

that talent. In the case of software, this could apply to technical support as mentioned

above, but additionally it could apply to writing software custom-made for a particular

organization's needs, or adding specific features on request. In these situations, users pay

for services rendered over time, rather than for use of the software.

An illustrative example of a company that profits from "intellectual process" is Cygnus

Solutions, which makes a healthy profit by porting 12 the Free Software Foundation's

GNU C and C++ compilers to new operating systems. What Cygnus sells is not the ported

software, but their labor and expertise in porting it. Once created, the ported software is

posted on the Internet and made available to everyone.

The potential benefits to the consumer from this approach are considerable. Ultimately,

what customers want, what they pay for, is not software but a solution to their computing

needs, a tool that can do what they need done . By paying for the expertise in customizing

and adapting software to their needs, rather than for the general solution, often inadequate

for particular needs, that is offered by proprietary software. Most of software's value to the

customer could derive from this customization step, rather than the basic software, and

paying for the service that adds the most value leads to more economic efficiency.

The long-term viability of open source as a business model has yet to be proven, but its

use by several well-established companies seems to be a vote of confidence. If its

supporters are correct, open source may benefit both individuals and the economy by

12 Porting means rewriting software to run on differend computer types and operating systems .

creating better software for less initial investment, and by allowing unlimited distribution of

beneficial software technology.

The Downside: Problems with Open Source

This section will describe some of the shortcomings of open source. In the short run,

these are factors that keep open source out of the mainstream of commercial software. In

the long run, they may be fundamental flaws in the idea. Policies to promote open source

must of course take its possible ill effects into consideration.

Despite its successes in some areas, open source has not yet been accepted by most of

the business world because of a lingering doubt about the quality and trustworthiness of

this type of software. Although Raymond and his associates argue otherwise, the belief

persists that a loosely organized group of volunteers cannot produce quality software. One

of the specific concerns of the business world is that software for open source operating

systems is scarce. While this is changing, with companies like WordPerfect and Corel

releasing software for Linux, the number of well-known, trusted software vendors who

have demonstrated some commitment to open source is relatively small. "The skeptics

believe that only fools rush in to a bet-your-business relationship with [software] that is

still primarily controlled and supported by its user community-no matter how skilled and

committed that community is-instead of going with a brand-name vendor with a proven

track record" (McNamara 1998).

Another issue is the availability of technical support. Proprietary software packages

generally offer a phone line that users can call to receive technical help. Although business

like Red Hat and Cygnus provide "one-stop," comprehensive technical support, this is not

available for most open source software. Technical help is available for most open source

by seeking out the creators of the program over the Internet, or others with an intimate

knowledge of the program, and asking their advice. While this arguably leads to more

knowledgeable support providers, it is not a "one-stop" source of advice, nor are the

34

potential providers obligated to provide advice-as with the software design itself, support

happens on a volunteer basis. "No business in this country is going to wait for a l Z-year

old beatnik to [answer its newsgroup post and] fix its problem," said a software consultant

(ibid .).

The largest obstacle to the growth of open source is its lack of user-friendliness; open

source is considered to be more difficult for the average user to install and run. In the early

days of open source, software was written by hackers for hackers. The intended users of

the software, being themselves programmers, valued innovation, speed, and technical

creativity over ease of use or friendly user interface. In addition, the traditional focus of

attention for open source developers has been "back-end" types of programs that do

important work out of sight of the user, such as operating systems, networking, servers,

and mail transport programs, rather than programs such as word processors with which a

user interacts directly. Thus, a great variety of open source "desktop" applications has yet

to be written .

"Linux is still a geeks' operating system," said a network manager, "one that takes a

fair amount of knowledge to configure and maintain" (ibid.). Open source software offers a

great deal of t1exibility to the user, but that t1exibility comes at the price of increased

complexity. In a corporate setting, this complexity means that employees may require

additional training. For a home user accustomed to "friendlier" graphical interfaces such as

those in the Windows and Macintosh operating systems, this complexity may be especially

daunting. Market pressures may force software innovators to overcome these problems,

but in the meantime, open source is gaining a negative reputation among potential buyers.

Raymond claims that market demand for the service will force more companies to

design friendlier user interfaces for open source programs. Specifically, he pointed out Red

Hat's significant investment in user interface research (Raymond, interview). However, it

remains to be seen whether this market demand will create a significant change.

35

Co 11clu S io I1S

Open source software is developed through loose collaborations over the Internet to

which any interested party can contribute, and the resulting software is made available for

free , along with its source code. Open source may make better use of programmer time and

other resources by producing more error-free programs in less time. The fact that unlimited

distribution and copying of open source programs is allowed and encouraged further

increases its greater economic benefit. Policies that promote open source may be effective

in counteracting monopolies based on the control of proprietary standards, since the

openness of source code prevents a company from excluding competition through secrecy

and copyright. Additionally, because of the low cost of obtaining copies, open source may

promote more equitable access to technology for education and other uses.

The disadvantages of open source, at least in the short run, are primarily its lack of

user-friendliness and a lack of public confidence in the idea. Originally written by hackers

for hackers, to date open source software has seen little incentive for ease of use on the

level needed by a home or small business user. In many cases, a lack of centralized

technical support for a product makes businesses unwilling to trust it. Whether these

problems can be overcome remains to be seen.

Chapter 3
Who Promotes Open Source?

The preceding chapter explored the potential effects of a switch to open source as the

standard way of producing and distributing software. This chapter considers the question

of which interest groups would be most effective at initiating action through government to

achieve this goal. For the purposes of this study, I will group open source advocates into

three categories: nonprofit public interest groups, the community of programming

enthusiasts, or hackers, and software companies. Of these groups, I will show that public

interest groups are best suited and most willing to bring the open source case to the

attention of government, although the organizational, financial , and political limitations of

the relevant interest groups will necessitate some cooperation between all three of the

aforementioned categories.

The Hackers

The open source method evolved within the loosely organized international

collaboration of programming enthusiasts, or hackers. Eric Raymond, as well as other

members of the group , define hackers as a unique culture or tribe, a "continuous and self-

conscious technical culture of enthusiast programmers, people who built and played with

software for fun " (Raymond 1998 ;1). Hackers, then, are not just any computer

programmer, but one who interacts with and contributes to this culture.

Although the term 'open source' has been coined only recently , the methods it

describes have been developing in the hacker community for decades. The majority of open

source software is written by members of this community, and it is their work, much of it

undertaken for fun and challenge rather than for profit, which continually tests and refines

methods for efficient open source development.

The hacker culture began in the computer science departments of a handful of

universities in the 1960s and '70s, and to this day maintains some of the character of an

36

'37

academic research effort. "Science," writes Chris DiBona, "is ultimately an Open Source

enterprise" (DiBona, Ockman, and Stone 1998, introduction). Like many scientists,

hackers believe in unlimited distribution for their ideas, in the need for reproducibility of

results, and in peer review of each others' work .

Most of the original hackers drew researchers' salaries and did not depend on the

commercial success of their software to make a living. Today, their sources of funding are

more eclectic: some still work in universities, but many are either full-time employees at

software companies or self-employed contractors doing programming work, or have other

sources of income. Obviously, the need to profit from one's creations affects what kind of

software is made, and what sorts of political associations hackers form.

Raymond's essay on "How To Become A Hacker" (1999) lists some norms of belief

among the group that illustrate its character and motivations:

1. The world is full of fascinating problems waiting to be solved.
2. Nobody should ever have to solve a problem twice.
3. Boredom and drudgery are evil.
4. Freedom is good.
5. Attitude is no substitute for competence.

Note that point two is an exhortation to share the results of programming work, which

is what defines open source. The fourth point is also especially significant, as it refers to

the libertarian political beliefs that Raymond ascribes to hackers. "Hackers are naturally

anti-authoritarian," he writes. "Anyone who can give you orders can stop you from solving

whatever problem you're being fascinated by...So to behave like a hacker, you have to

develop an instinctive hostility to censorship, secrecy, and the use of force or deception to

compel responsible adults" (ibid.).

As a result of these beliefs, Raymond, and probably many other hackers, oppose

almost any government involvement in the open source issue. "If someone is to get

involved in fixing this problem, I don't want it to be the government," said Raymond in a

phone interview, "Giving the government power to intervene in this way will create more

harm than good. Consumers should make the choice, not have it made for them." It is

unlikely that the hackers, as a group , will seek any assistance through government. Many

believe that open source 's inherent strengths of reliability and efficiency will allow for its

success in the marketplace without policy assistance. "The closed-source world," says

Raymond, "cannot win an evolutionary arms race with open-source communities that can

put orders of magnitude more skilled time into a problem" (Raymond 1997, ch. 10). Of

course, there must be enough programmers willing to give of their "skilled time" in order

for this business model to work .

Although they avoid involvement with government, hackers are involved in public

policy in the sense that they seek to spread their ideas, especially in the business world . If

we define interest groups, as Hrebenar and Scott (1982) do, as groups that "make certain

claims upon other groups or organizations in the society," then hackers certainly fit the bill.

Two groups within the hacker community, Eric Raymond's Open Source Initiative and

Richard Stallman's Free Software Foundation have lobbying, or influencing others'

opinions, as a major goal. These two organizations also serve to exemplify two very

different outreach methods employed by the hackers.

The Open Source Initiative was formed in February of 1998 by Eric Raymond, Bruce

Perens, and other open source enthusiasts. Some of those involved, notably Tim O'Reilly,

the owner of a publishing company that specializes in how-to books for open source

software, had direct ties to the Silicon Valley business world. The OS!' s mission is a

"marketing campaign" to convince the corporate world of the benefits of open source.

Part of OS!'s motivation in evangelizing the open source method as a tool for the

software industry is to legitimize their methods and ideas. Programmers derive happiness

and satisfaction from programming, and the widespread adoption of open source would

assure that they can program and tinker, free from the restraints of copyright. Open source

is what hackers do anyway; the more the idea is put into use, the more the hackers' ideals

are validated.

Additionally, although Raymond believes that open source will inevitably become the

dominant paradigm in software development, he acknowledges that large proprietary

software companies, especially Microsoft, have the power to delay the success of open

source through the manipulation of standards. This fear is another motivation for the

hackers' lobbying efforts.

Targeting the news media is often a powerful method of affecting public opinion.

Considering television, the Internet, and other technologies that increase the ability of the

medi a to reach citizens, William Browne calls media lobbying "one of the most

evolutionary aspects of lobbying" (Browne 1998, p. 101). The efforts of interest groups

such as the Open Source Initiative are considered good news material by reporters,

providing the issue has some public appeal. The Open Source Initiative set its sights on

large companies (the Fortune 500) as targets of its lobbying, partially because of the

prestigious and well-read newspapers and magazines that shape opinion in those companies

(Raymond 1998;2). Developing these relationships with the media have paid off, at least in

the short run : newspapers like the New York Times, the Wall Street Journal, the Boston

Globe, and the London Times, have each run several articles which speak enthusiastically

about Linux and open source, often quoting Raymond.

While the Open Source Initiative seeks to promote open source for its own sake, or for

its economic and anti-monopoly benefits, others in the hacker community have different

motivations. The Free Software Foundation, led by Richard Stallman, works to spread the

idea that proprietary software is morally wrong, and that programmers have a moral duty to

share their source code with others. Stallman describes proprietary software as a "promise

not to help your neighbor."

A cooperating community was forbidden . The rule made by the owners of
proprietary software was, "If you share with your neighbor, you are a
pirate. If you want any changes, beg us to make them." The idea that the
proprietary software social system...is antisocial, that it is unethical, that it
is simply wrong, may come as a surprise to some readers. But what else
could we say about a system based on dividing the public and keeping users
helpless?

(Stallman 1998)

4U

To Stallman and his compatriots. the necessity of mutual aid and sharing. and of

empowering users rather than producers, is the reason for creating open source software.

They are not opposed to programmers obtaining compensation for their efforts, as long as

that compensation is not secured by the use of proprietary licensing, which restricts the

legal uses to which software can be put. The FSF programmers themselves receive

donations from users , both individual and corporate, which sustains their activities. The

reason why companies support the FSF, despite its policies that make cooperation with the

business world difficult (these are described below), is that FSF software, especially the

Gee compiler tools. are so useful as to be vital to many businesses. The quality and

popularity of their software provides FSF with a means of income, despite its open nature .

The FSF's lobbying efforts are directed specifically towards the ideological goal of

promoting software sharing. Their primary means of influence is a novel one, as it involves

the software licensing procedure itself. Most of the FSF's software, and a great deal of

other software. is covered by Stallman's GNU General Public License, which requires that

all modifications to a program be distributed under the GPL. This clause essentially

prevents proprietary software companies from using any code released under the GPL,

because any program in which GPL code is included must become open source. The effect

of the GPL is thus to disadvantage proprietary software makers and favor open source

developers by allowing them to use GPL code, which includes the source code of Linux,

the popular Gee compiler, and many other widely used programs.

Stallman and the FSF are uncompromising in their moral goals, believing that any

dilution of their message of sharing, or of the GPL, for the purpose of gaining wider

acceptance, is harmful to their cause. Stallman's rhetoric is often vehement. For example,

he refers to proprietary software makers as "software hoarders." This extreme position has

at times created tension in the hacker community. "Like anyone utterly devoted to a cause,

Stallman has stirred controversy in the community he is a part of' (DiBona, Ockman, and

4 1

Stone 1998) . Specifically, cont1ict arose between the Open Source Initiative and the FSF

over OSI's outreach to the corporate world and its non-insistence on the GPL. The very

term, "open source," was coined to distance the movement from Stallman's extremism.

It seemed clear to us in retrospect that the term "free software" had done our
movement tremendous damage over the years ...Most of it came from ...the
strong association of the term "free software" with hostility to intellectual
property rights, communism, and other ideas hardly likely to endear
themselves to a [corporate] manager...FSF's actual position didn't matter.
Only the fact that its evangelism had backfired ...actually mattered.

(Raymond 1998;2)

In return, Stallman (1998) accused Raymond and his associates of "setting aside the

spirit of principle...to appeal instead to executives and business users, many of whom held

an ideology that places profit above freedom, above community, above principle. "

Because of its libertarian beliefs , the hacker community in general will not be the group

to initiate any government policy on behalf of open source. On the other hand, hackers are

the driving force behind the open source movement, so that any policy solution must take

them into account and not alienate them.

Software Companies

Another important force in the open source issue is the companies that have embraced

the idea, using open source as a business strategy through sales of support and expertise.

For companies like Red Hat, IBM, Netscape, Cygnus, and others, forging a partnership

with hackers in designing a business model around open source has proven effective.

Although companies can be powerful forces in public policy, their political positions

are overwhelmingly dominated by the drive for profit. The bottom line, for a corporation,

is what counts. Companies thus have very little leeway for taking moral stands on issues,

or even expressing opinions on matters of market regulation, if such a choice does not lead

to higher profits. "Any idealization of the market," says Browne, "takes a back seat unless

that view merges enough with daily reality to secure profits" (Browne 1998, p. 33). Jamie

Zawinski , the former head of the Mozilla project, pointed out that "for a publicly-traded

42

company, if a CEO makes a decision because it's the right thing rather than because it's the

most profitable thing for the shareholders, he will lose his job, and possibly be sued into

oblivion" (Zawinski 1999).

Any political support for open source by companies will thus occur only to the degree

that such support benefits the company. This will definitely be the case for those companies

that have staked their future to the open source movement, most notably Cygnus and Red

Hat, and to a lesser degree Netscape. However, these companies necessarily lack the

ideological commitment to open source, especially to the degree of Stallman and the FSF .

For example, companies will combine open source with proprietary projects, or use one to

sell the other, techniques which Stallman sees as violating the spirit of sharing and

cooperation. Cygnus Solutions found itself disqualifying "managers who could not accept

creating a closed-source component to our business. Open source was a business strategy,

not a philosophy, and we did not want to hire managers who were not flexible enough...to

meet overall company objectives" (Tiemann 1998).

Browne dismisses the myth that companies are completely adverse to regulation, for the

simple reason that regulation can also help them out. It is not the presence of regulation, he

says, but the degree to which it favors a company, that determines the company's lobbying

efforts. Of course, taking a stand on particular government policies requires a greater

amount of involvement in the process.

As scholars have long noted, corporations do far more than just fight
government regulation, which often, in the face of media and public
attention, is a futile act. Businesses have learned reluctantly for years to
accept regulation and work to make its inevitable presence as favorable to
corporate ledgers as possible.

(Browne 1998, p. 34)

Browne points out that corporate lobbying is not new; rather, it has gone on for most of

this century, ever since the government abandoned its laissez-faire approach to businesses

and began regulating their activities extensively. He estimates that as of the early 1980's,

one-third of all lobbyists in Washington represented corporations (ibid., pp. 35-36).

43

The high-tech industries, on the other hand, have only recently begun this sort of

involvement in public policy. Being a new industry, software existed without regulation for

its first decades. As the Internet exploded into popular culture, and Silicon Valley became a

major force in the U.S. economy, policymakers inevitably took notice, and the early

confrontations between the software industry and government were not positive.

Restrictions on the export of encryption software, once of interest only to spies, have in

recent years been made the subject of bitter debate between the software industry and the

federal government, with software makers saying the regulations hurt their competitiveness

in foreign markets for this valuable technology. Another unpopular regulation was the 1996

Communications Decency Act, an ill-conceived anti-pornography statute for the Internet,

which was eventually struck down by the Supreme Court as unconstitutional censorship.

These controversial policies led the computer industry to believe that it could no longer

remain aloof from the political game. "We can't afford as an industry to step back and say,

'Ah, politics, we 're purists. We only do great software," said a Silicon Valley executive

(Gruenwald 1998). As a result, campaign contributions by software firms in 1997 and

1998 have doubled, to $5.4 million, since the last midterm election cycle in 1994. As

Browne predicted, software firms including Microsoft and Yahoo, a web search engine,

are opening offices in Washington to monitor policies which may affect them.

In spite of this trend for more policy involvement, one additional factor prevents

companies from commitment to a single issue. In the high-tech industries, new product

innovations are born, and the fortunes of companies rise and fall, in a matter of months at a

time. In Washington, on the other hand, generating policy from an initial idea to the

passage of laws and regulations can take much longer. A company may not be willing to

commit resources for promoting a specific policy, only to have it tabled or stuck in

committee, when their need for the policy may be out of date in a matter of months due to

changes in technology.

44

Software companies are clearly more involved in the policy process then they were just

four years ago. Some of them have developed expertise in policy matters which could be

helpful to the open source effort, and their Washington offices are certainly good sources

of policy information. Large corporate interests with demonstrated economic power are

good allies in the policy process, as their voices are heeded by a pro-business Congress.

However, companies are not the group to lead a pro-open-source policy initiative. As

explained above, the changing realities of business makes long-term commitment to a

specific policy goal impossible for a company; if open source no longer generates profit for

a company, it will have no reason to support the effort. If, however, open source becomes

the dominant paradigm in the industry , companies will lobby to protect it.

Public Interest Groups

The most likely organizations to initiate public policy action to promote open source

may be nonprofit public interest groups committed to open source for its social benefits.

Currently, the only groups of this sort which have taken an interest in open source are

NetAction and its partner organization, the Ralph Nader-affiliated Consumer Project on

Technology. Groups like these are distinct from organizations such as the Open Source

Initiative, which is also incorporated as a nonprofit, in that NetAction seeks to benefit the

public at large, while OSI focuses on a limited constituency, the hackers. Hrebenar and

Scott (1982. p. 5) describe these two categories as "public interest" and "self-oriented,"

respectively. Like corporations, nonprofits lobby for open source with an ulterior goal,

although for nonprofits the goal is social change rather than material gain. Fortunately for

the purposes of this study, the majority of research into lobbying and its effects deals with

the lobbying of social change groups.

One of NetAction' s stated goals is to "ensure the accessibility and affordability of

information technology and the Internet." Its major project since its founding in 1996 has

been the "Consumer Choice Campaign," an attempt to educate policymakers and the public

4S

about Microsoft's monopoly abuses and to suggest ways of counteracting the monopoly

(NetAction 1996;1 and 1996;2) .

In the summer of 1998, in the wake of Netscape' s open source release and other news

coverage, NetAction board member Judi Clark, a web site designer who is also a board

member of Computer Professionals for Social Responsibility and the Conferences on

Computers, Freedom, and Privacy, began forming relationships with Raymond and other

open source advocates, with the recognition that the movement was in line with

NetAction 's goal. In addition to being a Microsoft alternative, Clark noticed that open

source could contribute to the goal of universal access, the "accessibility and affordability"

of NetAction's mission statement, by lowering the cost of a basic computer system.

William Munn defines universal access as the belief that "all people should have

affordable access to the national information infrastructure." It has long been a goal of

public interest groups, beginning notably in the 1960's when church groups and other

concerned organizations campaigned for more access to radio and television broadcasting to

increase their usefulness as forms of public expression, and for lower telephone rates for

the poor. More recently, both the Clinton Administration and many public interest groups

have spoken enthusiastically about the need to insure universal access to the Internet and

other emerging forms of high-speed telecommunication, collectively called the National

Information Infrastructure. The NIl, said some interest groups, "must be inclusive and

generous in spirit, ensuring that all segments of our pluralistic society have meaningful

access to the telecommunication system" (Munn 1999, pp. 61-72). Although numerous

groups are now involved in lobbying on this issue, Clark's outreach to the hacker

community made NetAction the first organization to consider open source software as a

vehicle for universal access.

Unlike the hacker community, NetAction believes strongly in seeking solutions through

government policy. The belief that the policy process is the proper arena for addressing

these particular social problems can be considered a defining characteristic of NetAction.

46

The organization' s web site argues that government support and funding are what allowed

both the Internet and open source development to flourish, and furthermore that the

withdrawal of government support in the early 1990 's is what has allowed Microsoft to

corner the operating system market and undermine open standards.

NetAction lobbies both policymakers and the public. It distributes two newsletters,

"NetAction Notes" and "The Micro$oft Monitor," by email, in addition to writing detailed

position papers with the goal of persuading Congress to take notice of their cause. Another

tactic, a distinctive feature of NetAction, is their program of "trainjing] activists to use the

Internet as a tool for grassroots organizing, outreach, and advocacy" (NetAction 1996; 1).

The group maintains a Web-based training course for just this purpose, partially in the hope

that other activists can support NetAction's cause by learning to use the Internet more

effectively.

NetAction 's most serious limitations are its size and lack of resources. Funding is

extremely limited; only a small amount of income is generated by membership dues. The

only significant revenue received by NetAction was a large grant from an anonymous

corporate donor, with the requirement that it be used for the anti-monopoly campaign .

Repeated rejection for foundation grants has proven to be a major source of frustration for

NetAction. Clark believes this is because the foundation world has not yet realized the

potential benefits to nonprofits of Internet utilization (Clark, interview). The number of

active participants in the organization is also quite small. Director Audrie Krause, board

member Judi Clark, and Nathan Newman, who runs the Consumer Choice Campaign, do

the majority of all the organization's work . NetAction has an advisory board that, although

it is expected to give the organization ideas and direction, has no official responsibilities.

The board is potentially one of NetAction's greatest assets, as it contains people from

widely diverse fields: a labor organizer, several attorneys, a television producer, a

telecommunications policy specialist, and a journalism professor, among others (sixteen in

all) . However, only four or five of the board members actually provide advice or assistance

47

on a regular basis. With no employees and an ever-changing volunteer base, NetAction's

activities are constrained as much by who is willing to work on each project as by how they

are funded.

Fortunately for NetAction, size and funding are not the only determinants of an

organization's success. Hrebenar and Scott (1982, p. 31) note that '''Big is powerful' is

not an automatic law for lobbying success," implying that the converse is also true. They

point to geographic distribution of membership as a potential asset, one that NetAction

enjoys. As a "virtual grassroots," NetAction has no central office. Its activities are

conducted primarily over the Internet, and its participants live all across the United States,

rarely meeting in person . Hrebenar and Scott also mention the wealth, prestige, and

education of members as a potential asset, and here too, NetAction is strong (ibid., p. 32).

Its board, as described above, contains powerful and well-connected people, potentially

increasing NetAction's influence.

Perhaps the most important factor mitigating NetAction's small size is the availability of

the Internet as an outreach tool. Storage space for NetAction' s website is donated by

Clark's firm, ManyMedia. All mailings, including the two regular newsletters, "NetAction

Notes" and "the Micro$oft Monitor," are sent by email only. All of the organization's

reports and action materials are posted on the Web site as a primary means of distribution.

This communication takes place practically for free. If distributing the organization's

communications had required printing, photocopying, and postage, NetAction simply

could not have existed on its present budget. Browne (1998, p. 91) notes that it is the

Internet and other new communication technologies which have made lobbying the public

so much more effective.

Finally, NetAction overcomes its size limitations by forming coalitions with other like

minded interest groups. Its relationship to these groups is two-way: generally, one group

will take primary responsibility for some policy or educational initiative, and others will

provide support and resources with little regard to the distinctions between organizations.

4~

Thus, when a group called the Domain Name Rights Coalition began a campaign for a

fairer process of assigning Internet domain names, NetAction helped distribute petitions

and organized a letter-writing campaign. In these relationships, NetAction often acts as a

"lightning rod," identifying new issues such as open source and publicizing them , so that

other organizations can then devote more extensive resources. This was the case with the

Consumer Choice Campaign, and to a lesser extent the open source campaign, which were

taken up by the Consumer Project on Technology following NetAction' s initial

identification of the problem. "A coalition with powerful partners may command respect

and thus enhance the lobbying usage of the less powerful participants," note Hrebenar and

Scott (1982, p. 119). Associating itself with respected lobbyist Ralph Nader has , in this

way, helped NetAction get its message through.

To date, NetAction's efforts have resulted in small but not insignificant successes. The

Justice Department quoted NetAction's early studies of Microsoft in its opening arguments

for the antitrust trial. Thanks to NetAction's having put it, if only peripherally, on the

policy agenda , there is talk of using open source as part of the judicial remedy in that trial.

Conclusions

Of the three categories discussed in this chapter, it is clear that nonprofit public interest

groups, especially NetAction, will be both the most willing and the most capable groups to

seek public policy solutions for the open source issue. These groups see involvement in

open source as a means of furthering their goals of universal, equitable access to

technology, and to oppose monopoly power. However, because of its resource limitations,

NetAction must involve other groups in the process.

Hackers, although generally opposed to government interference, are the prime movers

of the open source phenomenon, being those who write software, initiate open source

collaboration, and refine techniques. In addition, hackers are increasingly politically aware

and willing to lobby for their own ends: persuading businesses to adopt open source

4Y

methods. The process of forming open source policy must include the hacker constituency

and take their needs into account ; if this is done, they can be a valuable resource.

Finally, commercial companies that have begun to oversee or contribute to open source

projects see it as a useful business model, rather than as an ideology. Large corporations

command prestige and political clout, especially towards a pro-business Congress, such

that having these companies as part of a pro-open-source coalition, even if only in name ,

could increase its effectiveness. However, corporations cannot be counted on for long-term

SUpp0I1, as any support they may have for open source is determined only by profit motive

and the vagaries of the software market. The characteristics of these three groups are

displayed in Table Two.

Table Two: Open Source Advocate Groups

Group Goal Assets Liabilities
Hackers Corporate adoption Programming Libertarianism

of open source, skill
continuation of
their culture

Companies Profit, Financial Constrained by
serving customers resources, profit motive

respect from
Congress

Public Interest Eliminate monopoly, Lobbying Limited
Groups universal access Skills resources

Browne argues that the most important determinant of the success of an interest group

is not its organizational characteristics, or even its size, but the viability and practicality of

the issues it lobbies about. The next chapter will focus on ways of characterizing the open

source issue for maximum effectiveness.

Chapter 4
Getting Open Source On The Agenda

Problem definition is never simply a matter of defining goals and measuring
our distance from them. It is rather the strategic representation of situations.

(Stone 1997, p. 133)

A necessary first step in any public policy initiative is convincing policymakers and

other influential people that government can and should be involved in the issue at hand.

Obviously, Congress will not pass a law, nor will the bureaucratic agencies issue

regulations, unless the relevant decision makers can be convinced that a problem exists,

that a remedy is needed, and that government should implement that remedy. However, the

existence of specific problems, and the exact nature of problems, are not universally

verifiable truths.

Modem public policy theorists argue that the definition and characterization of problems

is itself a political act, and an integral part of every step in the policymaking process.

Depending on the way a problem is characterized, it may seem more or less relevant, more

or less urgent, to policymakers and the public. This chapter looks at the ways in which

open source, and the various public problems it addresses, could be politically

characterized for maximum effectiveness.

Political Representation of Problems

An oft-repeated idea among public policy theorists is that public problems cannot be

defined and conceptualized by a single rational standard of measurement. Opinions will

always differ about whether a problem exists, how severe it is, and whether it is public in

nature. Deborah Stone (1997, p. xi) warns against giving public problems "privileged

status as universal truths." These authors draw a distinction between abstract social

conditions and the concrete public problems which comprise the day-to-day business of

government. Public problems are created by describing social conditions in a way that

people identify with, filtering the idea through a body of cultural knowledge and

50

5 1

perceptions. "Onto any social condition ideas, beliefs, values, and interests may be

mapped which construct the condition as a problem and, more specifically, a particular kind

of problem" (Munn 1999, pp. 16-17).

The language and symbols used to tum a condition into a problem have a direct effect

on the way the problem is perceived. An example given by Stone is the issue of welfare

spending: When asked about their opinion on government spending for "welfare," 48 % of

Americans were opposed. However, about the same percent favored "spending on

programs for poor children" (Stone 1997, p. 3). Although these two statements describe

the same program, the choice of words made the difference in whether it was perceived

favorably . It is clear from this example that the way a problem is characterized has

everything to do with how people respond to it, both in government and among the public.

"Social problems do not come to government fully conceptualized with the labels already

attached," says Peters (1996, p. 47). "Policy problems need to have names attached to

them if government is to deal with them, and that is in itself a political process ."

The way a problem is characterized is a determining factor in which problems are

addressed by government and which overlooked. It also affects the number and strength of

the acti vists who get involved in lobbying on an issue. Thus, characterizing a problem is a

fundamental tool of activists and policymakers. "Problem definition is strategic because

groups, individuals, and government agencies deliberately and consciously fashion

portrayals so as to promote their favored course of action" (Stone 1997, p. 133). Different

groups may be on the producing and the consuming end of problem characterization at

different times. Both public interest groups and individuals within government take part in

defining and characterizing issues, and the actions of both are affected by existing

characterizations.

Unfortunately for the policy analyst, the strategic use of problem definition makes

policy issues all the more difficult to analyze. Since all public problems are filtered through

52

political characterization and cultural perceptions, an unbiased perspective is impossible.

The policy analyst becomes "less a technician and more a politician" (Peters 1996, p. 58).

Problem Characterizations That Work

Various authors have identified those aspects of problem characterization that make an

issue more or less likely to result in policy action. These factors can be used by activists

and officials to either promote or inhibit a policy action.

Public policy theorists differ in their identification of factors. According to Peters, the

perceived severity of a problem is among the most important factors in the creation of

policy, and geographic concentration of the people affected by a problem adds to its

perceived severity. Those industries which are geographically concentrated, including the

software industry, are given all the more attention by government because their problems

are more visible (ibid., p. 53). In general, the easier it is to identify the groups or

individuals affected by a problem or a potential policy; if "real, identifiable people are the

beneficiaries," the issue is more likely to be noticed (Browne 1998, p. 174).

Arguing from a rationalist perspective, Peters writes that problems which cannot be

solved through market forces (what economists call public goods and externalities) ought to

be addressed by government, but that only strong proof of market failure will overcome

government's prevailing reluctance to interfere in the market. Included in Peters's definition

of market failure are activities which the private sector avoids because of high risk (Peters

1996, pp. 56-57). An example of this is the funding of basic research, often considered a

high-risk investment by corporations since marketable results are uncertain. A perceived

lack of basic research by the private sector could precipitate increased government funding

of such activities, such as through the National Science Foundation. The concept of market

failure as a policy argument is particularly important to open source, as open source both

affects and is affected by monopoly, a type of market failure .

53

A final criterion addressed by Peters is the availability of a solution. Clearly, a problem

is more likely to be addressed by government if the means and technology for solving the

problem already exist, making it easier to believe that the problem can actually be solved

(ibid. , 58). Open source fits this criterion, since it is a solution technology for several

different problems.

In contrast to Peters's emphasis on the visibility of problems, Browne (1998)

concentrates on their compatibility with existing political conditions. According to Browne,

the most important factor determining whether a problem is placed on the policy agenda is

not subjective popularity or even severity , but whether the problem fits the political climate

and existing public policies at the time it is introduced .

If something fits what's been done before, that issue is easy to integrate into
existing institutions. "Modify a policy," say the legal gatekeepers. If
something hasn't been done before, and doesn 't mess up those public
policies that do exist, it's easily added as new policy ...Both types make for
good issues....If something hasn 't been done, and it does threaten to mess
with existing directions and funding of public policy, what happens?
Generally nothing.

(Browne 1998, p. 170)

Problems, and policy proposals. are more successful when they are perceived as

benefiting a group or issue on which the government is already focusing attention. A

perennial example is the business sector: what is good for business is perceived as being

good for the economy and national prosperity (ibid., p. 172). If a policy can be

characterized as "good for business," it should enjoy support in government. Peters calls

this "making a new issue look more like an old issue" (Peters 1996, p. 54). Open source is

a business model, and it must be portrayed as a way to increase productivity if it is to

benefit from this factor.

If an issue fits the existing political conditions, it is seen by lobbyists as being more

likely to pass. Seeking to share in the victory, more lobbyists will be encouraged to join in

the advocacy effort. This creates a positive feedback in which politically expedient issues

attract more and better lobbyists, which in turn increases the viability of the issue. "The

S4

highly subjective quality of an issue and the otherwise quite observable depth of the

lobbying effort reinforce one another" (Browne 1998, p. 168).

On the other hand, issues that aren't compatible with the political climate are doomed to

marginality, at best. As with successful issues, Browne believes that what determines a

poor issue is not popularity, but degree of compatibility. "These issues aren't necessarily

disliked," he writes. "They aren't illogical. They're simply seen as irrelevant at best and

politically threatening at worst, but probably both" (ibid., p. 192). Another negative factor

for a policy is attempting to interfere in a problem which a certain group already claims to

handle best (ibid., p. 207). Excessive interference in business is the classic example of a

poor policy by this criterion.

Incompatible policies are not completely eliminated from public discourse, but they are

handled on a very limited basis. Key government officials, whom Browne calls

gatekeepers, act as filters to keep inexpedient issues out of the policy mainstream. These

issues may be handled superficially by policymakers, who may perhaps give a rousing

message of support or pass a meaningless resolution which claims to promote the cause.

This allows them to placate lobbyists and to represent themselves as " truly open to

anything" (ibid., p. 194) .

Opponents of a particular policy can use the same tools of problem characterization to

portray a problem as ill-fitting, disruptive, and inexpedient. They may try to convince

policymakers and the public that the problem as stated does not exist, that it is less severe

than is commonly believed, or that it is best handled through private means. Table Three

sums up the positive and negative factors I've discussed so far.

55

Table Three: Factors in the Success of a Problem
Characterization

Positive Factors Negative Factors
Rationalist Visibility of problem Unpopular

Concentration Obscure
Identifiable victims Difficult to identify victims
Market failure Can be handled in the market
Solution Availability No obvious solution

Political Compatible with Doesn't fit existing policies
political conditions

Doesn't take something Takes away something that
away a group is used to having

Beneficiaries already
targeted by Congress Interferes with the free market

Makes Congressmen
look good

It is important to note that the theories of these authors identify many of the reasons for

the success or failure of a policy as being external conditions. Although a policy may be

popular, necessary, and have a high potential for effectiveness, it can be stymied by

external political factors.

Political Characterization of Open Source: The Economic Argument

Supporters of open source consider it a solution to several different social problems: as

a counter-agent to monopoly in the software industry, an aid to education, a vehicle for

universal access to technology, and a more sensible economic model for software that will

increase companies ' productivity. Opponents, mainly Microsoft and its political allies,

attempt to portray open source as economically infeasible, of inferior quality, less

dependable, and not viable in the long term.

While many of the supporters' claims seem to meet Peters's rationalist criteria for

problem justification, including severity, concentration, availability of a solution, et cetera,

the same claims may not be compatible with existing politics and policy, and thus will

require extensive lobbying efforts to be successful. Associating open source with the

monopoly issue may be the most successful tactic in the short term, as this issue is popular

56

with the public and Congress. The other issues of economic benefit, improved education,

and universal access, are not as powerful politically, but nonetheless may provide avenues

for future lobbying efforts.

As discussed in Chapter 2, open source is fundamentally about redefining the business

model for software, and a major aspect of this change in business model is a new definition

of how much intellectual property protection should be retained by software creators.

Underlying all of the political claims made by both sides in the debate is both an

assumption and a persuasive message about which business model is best, and what

distribution of intellectual property rights is proper.

Problem characterization involves the use of metaphors and implicit stories. "On the

surface," writes Stone (1997, p. 148), "[metaphors] simply draw a comparison between

one thing and another, but in a more subtle way they usually imply a whole narrative story

and a prescription for action." Characterizations are designed to appeal to emotion as well

as to intellect. They tap basic human ideas of good and evil. Most problem

characterizations-the rhetorical material of lobbying-contain an implicit story of some

kind . "They are stories with a beginning, a middle, and an end, involving some change or

transformation. They have heroes and villains and innocent victims" (ibid., p. 138).

Open source advocates and opponents use stories like these to further their cause. One

story archetype used by both hackers, such as Richard Stallman, and public interest groups

like NetAction is the story of decline, which goes something like this: "In the beginning,

things were pretty good . But they got worse . In fact, right now, they are nearly intolerable.

Something must be done" (Stone 1997, p. 138). Stories like this imply a call to action to

reverse the decline.

This particular story begins in the computer science research labs of the 1960's and

70' s, the period when "things were good." Stallman describes the "software-sharing

community that had existed for many years ," a group for which source code sharing, like

any sort of researcher publishing their results, was taken for granted. This group ultimately

57

gave rise to all of the companies and basic technologies that make up the computer industry

today. The decline of this community, and with it the ideals of openness and collaboration,

are attributed by Stallman to the obsolescence of the computers used in these original labs,

the growth of proprietary software companies, and the hiring away of many members of

the community by these companies in the early 1980's (Stallman 1998, p. 53).

Nathan Newman, writing for NetAction, places the period of decline ten years later, in

the early 1990's, when Microsoft rose to industry dominance. His descriptions of "the

good old days" include the creation of the Internet through open-source means, and the

Unix operating system's rise to prominence. Newman, however, looks to government as

both the creator of the original open source community and the architect of its demise.

"Open source software, largely funded by government, was the wellspring of...the whole

computer industry," writes Newman, and "lies at the heart of how the Internet came into

being" (Newman 1999, ch. 1). He points out that most of the original hacker community

described by Stallman existed because of government funding, especially through grants

from the Department of Defense Advanced Research Projects Agency and through

government enforcement of common software standards, such as Unix (ibid., ch . 2).

Newman then blames the decline of this community on the waves of deregulation that

occurred in the late 1980's and early 90' s: "It was the weakening of this government

supervised network of standards in the 1990's that allowed commercial competition over

standards to undermine open computing" (ibid., ch. 6). By invoking a story of decline in

their publicity materials, Stallman and NetAction are attempting to stir people to action to

prevent further decline.

The difference in these two authors' approaches is how they assign responsibility for

the decline. Stallman's rhetoric is technologically determinist: the inevitability of progress

led to the obsolescence of the university hackers' technology, and ultimately the decline of

their community and ideals. Newman, on the other hand, blames government for initiating

the decline. The difference is that Stallman assigns responsibility to the impersonal,

inhuman, and immutable forces of technological change, while Newman blames human

actors and conscious decisions. The latter argument is more powerful, because it implies

that the problem can be corrected by conscious human decision in the form of a policy

change. Stallman believes that relief can only come through technological advance

combined with the right moral attitudes, and while this has worked for the Free Software

Foundation , it is a less compelling argument for non-programmers. In Stallman's

worldview, only hackers can solve the crisis, since its cause is technological, and thus he

precludes the possibility of cooperation with non-programmer organizations.

The other sym bolic story used by open source advocates is one of empowerment and

control. This is utilized especially by the Open Source Initiative. The OSI, which was

created by a group of hackers to promote open source in the commercial software world,

uses a message of improved economic competitiveness in its lobbying efforts . The message

they use appears at first to be a simple jump-on-the-bandwagon approach: "Open-source

software is an idea whose time has finally come...it's breaking out into the commercial

world...Are you ready?" (Open Source Initiative 1998; 1). The message implied in the

active phrase "breaking out" is that companies should catch on to the movement before it

leaves them behind,

This lobbying message could be defined as a story of empowerment and control. Stone

describes this type of political message like this : "The situation is bad. We have always

believed the situation is out of our control, something we had to accept but could not

int1uence. Now, however, let me show you that we can in fact control things" (Stone

1997, p. 142). In this case, what can be controlled is the business model under which

software is developed. The OS!' s materials give the message that companies have a choice

of business models, that they are not forced to compete on equal terms with powerhouses

like Microsoft, that in fact they have the power to change the rules of business to their

advantage. This type of story is heartening, because it speaks of increased autonomy and

control over one's situation.

51)

Interestingly, Eric Raymond, the author of most of OSI's publicity materials, is quite

aware of the necessity for characterizing an issue in a way which the intended targets will

agree with. As Raymond thinks in economic rather than policy terms, and because his

targets are com panies rather than government, he calls this process "marketing" rather than

"lobbying," and refers to "positioning" rather than "political characterization." However,

the techniques are the same . Characterizing open source in a way which is compatible with

business interests was the primary motivation for the creation of the Open Source Initiative.

This characterization is the source of contention between OSI and the more idealist Free

Software Foundation.

We have a winning product, but our positioning, in the past, has been
awful. The term "free software" has a load of fatal baggage ; to a
businessperson, it's too redolent of fanaticism and flakiness and strident
anti-commercialism...In marketing appearance is reality .

(Open Source Initiative 1998;2)

Businesses, as discussed earlier, cannot let moral or ideological beliefs interfere with

the bottom line. A lobbying message directed at companies should avoid a strong moral

stance and stress economic value. The OSI's message does just that: "We think the

economic self-interest arguments for Open Source are strong enough that nobody needs to

go on any moral crusades about it" (ibid.).

Basing their argument solely on economic and competitive grounds has been a

reasonably successful strategy for the OSI, with several prominent companies working

open source methods into their businesses. Although part of the hackers' motivation for the

OSI campaign is ideological, based on the belief that the open source business model is

more equitable, this fact is not explicit in their lobbying materials.

These two symbolic stories, decline and control, form two facets of the current open

source lobbying effort. As Stone points out, they are highly interrelated.

Stories of control offer hope, just as stories of decline foster anxiety and
despair. The two stories are often woven together, with the story of decline
serving as the stage setting and the impetus for the story of control. The
story of decline is meant to warn us of suffering and motivate us to seize
control.

(Stone ~997, p. 144)

6U

Although it has proven successful , on a limited basis, in the corporate world , the

message that businesses can be made more competitive using open source will not be a

persuasive issue when directed towards Congress, as it attacks two cornerstones of

American thought: that companies should make their own decisions about how to operate,

and that wealth is generated through well-defined ownership of the goods one creates. The

proprietary software model has historical precedent, as it arises from ideas of intellectual

property formed in the publishing and music industries. To corporate managers and

Congress , the proprietary model is the software industry's reason for existence and its

economic foundation. Asking policymakers' help in changing that model would seem to

them like a plan to corrupt the industry and ruin its profitability, and this will hardly be

popular. In addition, if Congress were to design policy based solely on the "superior

business model" characterization, they would seem to be telling the software industry how

to conduct its day-to-day business, and this too is a political mistake.

Associating Open Source with Antitrust

The one circumstance under which government will occasionally leave behind its

laissez-faire position towards business is strong evidence of market failure, such as a

monopoly. Although the free market is a beloved tenet of American political and economic

thought, the antitrust laws, which are often perceived as government's heroic struggle

against heartless monopolists, hold a position almost as hallowed. "Antitrust law has

become an icon in our society," says Philip Areeda (1992, p. 32).

For a number of reasons, associating open source with antitrust policy may be the most

effective characterization of the issue in the short term. First of all, the issue is very visible

right now , with extensive coverage of the Department of Justice's antitrust lawsuit against

Microsoft. With help from the media, the question of anticompetitive practices on the part

of the giant software company has gained a firm place in the public consciousness over the

past several years. Newspapers regularly proclaim how "Microsoft has been clearly shown

61

to exercise monopoly power in operating-systems software for personal computers in ways

that coerce competitors and clients, depriving consumers of choices" (New York Times

1999). In a representative two-week period, January 1st through January 15th of 1999 ,

major U.S. and European newspapers mentioned Microsoft in 515 articles, and of these,

72, or 14% of the articles, called Microsoft a monopolyl '.

As a result of this media attention, Microsoft has become strongly associated with

monopoly. It has become the company we love to hate. Websites like "the Anti-Microsoft

Association" and "The Microsoft Boycott Campaign"14 proliferate on the Internet. One

indexing site , "The International Anti-Microsoft Network 15 ," lists 256 such sites.

NetAction director Audrie Krause calls Microsoft CEO Bill Gates "the modem-day

equivalent of a Robber Baron (NetAction 1996;2)," attempting to create associations with

turn-of-the century monopolists such as Andrew Carnegie who prompted the creation of

antitrust laws. Congress itself has not been immune to this popular sentiment. Senate

Judiciary Committee Chairman Orrin Hatch, Republican of Utah, has vociferously accused

Microsoft of "excl uding competitors [and] stifling innovation" (Wilke 1998). The

Department of Justice and the federal court system have obviously placed the software

antitrust issue on their policy agendas, committing resources to a high-profile lawsuit

against Microsoft. Monopoly is clearly an important issue for the public, the media,

Congress, and the judiciary.

Associating open source with the popular issue of antitrust should help put it on the

policy agenda. To a degree, this association has already taken place. The way the media,

and presumably many interested citizens, define open source is specifically as an

opposition to Microsoft and its monopoly. The San Francisco Chronicle, for example,

predicted that "the biggest challenge facing Microsoft may not be coming from the Justice

13 These statistics were obtained from a search on the Lexis-Nexis Company News database, comparing
the results of a search for "microsoft" with one for "microsoft and monopoly."

14 http://users.aoI.com/machcu/amsa.html
hup.z/rnsbc.simplenet.com/

15 http://www.webring.org/cgi-bin/webring?ring=antims&list

62

Department or Sun Microsystems. Rather, it's in the form of a free operating system called

Linux" (Einstein 1998). Out of 73 articles in major newspapers in 1998 and 1999 that dealt

with open source, 31 of them mentioned Microsoft, and 11 referred to monopoly or

antitrustlv. Continued efforts by NetAction and other open source advocates to portray

open source as a tool of antitrust policy should increase the likelihood of policy that

supports open source.

Tying open source to the monopoly issue could benefit policymakers, since open

source could serve as an effective antitrust policy. This association fits Browne's criterion

that "good issues can be seen as good for government" (Browne 1998, p. 172).

Policymakers support issues that make them look successful.

An Aid to Universal Access

A third area of public policy with which open source could be associated is the

"universal access to telecommunications" agenda, although to date this association has not

been made explicitly. Although perhaps not as powerful an issue as antitrust, ensuring

access to communication technology by the poor, remote, and underprivileged is a stated

goal of the Clinton Administration's telecommunications policy and a major goal of many

public interest groups. As part of the lobbying message, showing how open source could

be used to further the goal of universal access is another political characterization which

could be helpful to the cause.

The ideological basis of universal access is that communication and access to

information are fundamental to human progress and self-improvement, and that a lack of

access to modern communication technology would limit political participation and

economic potential.

Access represented the key to unlocking the benefits and promises of the
information infrastructure....A lack of access for the individual...would

16 Lexis-Nexis search, see note 13. The search criteria compared were "open source," "open source and
microsoft," and "open s!Jurce and (monopoly or antitrust)"

63

create a serious handicap to full participation and maneuverability in daily
economic and social life. On a societal level gaps in access were understood
as leading to a digitally divided nation. One with a weakened fabric and
democratic foundation.

(Munn 1999, p. 33)

In the context of the recent 'information revolution,' it is believed that much of the give

and take of information which constitutes political discourse, as well as economic

information such as job listings, will move to the Internet and other high-tech forms of

communication. If the basic means of self-expression and political participation are too

expensive for a large percentage of Americans, their well-being will suffer. Discussion of

"information haves and have-nets" is common among universal access interests.

Presumably, universal access campaigns have existed since the invention of the printing

press. In recent years, interests have shifted from citizen access to broadcasting in the

1960' s, to cable TV rate regulation in the 1970's, to media accuracy watchdogs and anti-

television-violence groups in the 1980's. Over the past ten years, telecommunications has

become a more important issue for public interest groups. The immediate motivation for

this interest was the break-up of the AT&T monopoly and waves of deregulation, which

activists feared would lead to telephone rate increases (ibid ., p. 66-68). Most recently, the

growth and increasing importance of the Internet has caused numerous groups to take up

the access issue . William Munn' s dissertation on universal access focused on twenty such

groups, among which are the Alliance for Community Media, the American Association of

Retired Persons, the American Library Association, the Electronic Frontier Foundation,

and the United States Catholic Conference (ibid., p. 9).

The actions of these groups were undoubtedly part of the impetus for the federal

programs Lifeline Assistance and Link-Up America, that lower the cost of telephone

service for the poor (ibid., p. 69). They also played a role in shaping President Clinton's

telecommunications policy in the early 1990's. A statement of policy released in 1993,

"The National Information Infrastructure: An Agenda For Action," mentioned "universal

service" as one of the Administration's goals:

64

A major objective in developing the NIl will be to extend the Universal
Service concept to the information needs of the American people in the 21st
Century. As a matter of fundamental fairness, this nation cannot accept a
division of our people among telecommunications or information "haves"
and "have- nots ." The Administration is committed to developing a broad,
modern concept of Universal Service -- one that would emphasize giving all
Americans who desire it easy, affordable access to advanced
communications and information services, regardless of income, disability,
or location.

(U.S. Department of Commerce 1993, ch. 1)

Using open source as part of a universal access lobbying effort is an obvious choice,

because it lowers the cost of a computer system. Universal access is typically characterized

by interest groups as a problem of physical access to communication networks, asking the

question . "do people have a phone and do the wires reach their house?" Furthermore, a

study conducted in the mid-1980's showed that the primary reason why people cannot

afford telephone service is the startup costs of equipment and installation, not the monthly

service costs (Munn 1999, p. 69). Presuming that the same condition is true for access to

the Internet, open source, which would allow for the purchase of a functioning computer

system with almost no software costs, could have a dramatic impact on the number of

lower-income households who could be connected to the Internet from their home, school,

or library.

An advantage of associating open source with universal access is the broad interest

group support that the latter issue receives. Writes Munn, "one of the more interesting

aspects of the access debate was the extent to which organizations with interests typically

not related to communications policy enter into the policy arena to press their claims (ibid.,

p. 77). If open source can be portrayed as a powerful way of promoting universal access,

diverse and widespread public interest groups may be convinced to lend their support to the

open source movement.

Although universal access appears prominently on statements of Administration policy ,

little concrete government action has occurred. One policy, called the e-rate, provides

discounts on Internet access of up to 90% to libraries and schools. Hailed as a positive and

needed initiative, the e-rate attracted 30,000 applicant schools and libraries in 1997, and

65

32,000 in 1998, some $2 billion in aid based on the program's rules of entitlement.

However, only $1.2 billion was ultimately allocated, meaning that many institutions

received no funding (EdLiNC, 1999).

Aside from halfhearted universal access policies like the e-rate, the results of

government policy have been mainly to tum over control of information infrastructure, and

its social responsibilities, to private industries. Thus, universal access may not be the most

politically opportune issue with which to associate open source at the current time.

However, universal access is tenacious: it has been part of government policy since the

Communications Act of 1934 and has withstood periods of inactivity in the past. It is likely

to reappear as a viable issue sometime in the future, as more information about the social

and political effects of the information revolution comes to light. If open source advocates

have combined forces with universal access groups by that time, both will benefit.

The different political characterizations of open source are summarized in Table Four.

Table Four: Political Characterizations

Idea Pros Cons
Open Source Congress is Interfering with

helps businesses pro-business fundamental
succeed. business model

Open source Lots of public attention Hasn't been proven
eliminates monopoly

Open Source Many potential Low Congressional
promotes interest group allies attention to issue
universal access

Conclusions

This chapter has looked at several tactics that are or could be used to characterize open

source as a political and economic issue. The Open Source Initiative's campaign to "sell"

open source to business based on its economic merits and NetAction's linking of open

source with the monopoly debate attack the problem from both ends by increasing the use

of open source and potentially decreasing the ability of certain companies to oppose it.

66

These characterizations, though they come from two very different political world views,

are not incompatible. On the contrary , the combining of economic and social arguments for

open source strengthens the overall lobbying message. These two arguments are more

persuasive when they are integrated, and this integration can only be accomplished through

coalition-building between hackers and public interest groups.

Chapter 5
Policy Tools: What the Government Can Do

Effective maintenance of a community or pursuit of common goals cannot
possibly be accomplished by governing every action or decision of
individuals and organizations. Societies rely instead on broad structures and
rules that will have a "multiplier effect," shaping people ' s behavior without
continuous and specific directions.

(Stone 1997, p. 260)

Having discussed methods for bringing open source to the government's attention, I

now turn to my final point of inquiry, the question of what the government's role should

be. Which of the numerous powers of government should be applied to the task of

increasing the production and use of open source software, while satisfying all of the

groups involved and not causing the movement to bog down in political wrangling? The

answer lies in ~hoosing policy instruments which are compatible with existing political

conditions, which benefit policymakers as well as the affected groups, and which don't

take anything away from any politically significant group that they're used to having .

The most basic-and most naive-s-policy tool is direct regulation of the software

industry. For example, mandating that all software companies, or some companies, or all

makers of a particular type of software, release their product under an open source license.

If open source is a good move, if it has economic and social benefits, then why shouldn't

everyone be using it? Perhaps all operating systems should be open source, so that anyone

can write completely compatible application programs? The first obvious problem with this

approach is that Congress would never enact such a policy . Although the government often

tells companies to change their ways, for example by mandating fair treatment of

employees or outlawing unfair pricing policies, it is only under the most extreme of

conditions that government will force companies to change their fundamental business

model, the terms of the transaction from which they generate revenue-and extreme

conditions are extremely hard to prove . Requiring companies to shift their revenue source

from copyrighted software to software-related services is too radical an intervention in the

industry to be seriously considered by policymakers.

67

The second problem is that even if Congress did pass such a decree, it could destroy open

source rather than promoting it. The hacker community that creates most open source

software today is primarily libertarian and would not look kindly on direct government

regulation. According to Linux Journal editor Phil Hughes, "they participate because no

one' s telling them to" (Hughes, interview). If laws or regulations mandated where and how

open source software was to be created, as would surely happen in any attempt to force

open source licensing on the industry, the majority of current open source programmers

would simply pack up and go home, leaving the movement without its productive core.

"Don' t mandate [open source]," said Hughes, "just make it economical and then watch

what happens."

Hughes's point is an important one : companies are motivated by profit. "If they 're not

opening their code, it's because they have economic reasons not to ." A successful policy,

rather than mandating or directing the use of open source, would make open source fit

companies' economic interests, and make them want to switch over. There are numerous

possible ways of doing this, including government purchasing, research and development

spending, education programs, financial or tax incentives, and competitive regulation.

This chapter will focus on two of these policy areas in depth: government purchasing

policy, or procurement, and federal involvement in information technology through

research grants, standards maintenance, and education. The idea behind procurement policy

is that the federal government, being a very large, wealthy organization with large

equipment needs, can have a powerful effect on the price and availability of products, and

on the behavior of producers, by strategic use of purchasing (in this case, information

technology purchases). Research and development funding shapes an industry's long-term

course by selecting the areas in which basic research is conducted, and by supporting

certain groups, social structures, and ideologies within the research community. Standards,

the common languages of computer hardware and software, are vital to the health of the

industry.

6Y

The rationale for these areas of focus was to identify particularly illustrative examples

of policy tools that (a) are politically feasible. (b) complement past and present lobbying

efforts. and (c) provide useful illustrations of possible implementation pitfalls. That said .

the choice of policy tools was also influenced by the availability of data and the interests of

the researcher. The conclusion of this chapter will show how the principles of policy

implementation discussed with regards to procurement and R&D policy can be generalized

to other policy tools .

The other policy options that I will look at in less depth are financial incentives. such as

tax breaks for open source businesses. and protection from competition. including possible

judicial orders handed down in the Microsoft case.

The analytical method used in this chapter is to compare potential open source-related

policies to similar policies enacted in the past. Since open source as a political phenomenon

is new and untested. no direct data on the effectiveness of potential policy tools is available.

By examining the successes and failures of similar policies. and then identifying their

similarities and differences with regards to open source. I will draw some conclusions

about the potential effectiveness of these policy tools.

Procurement Policy and the case of solar cells

Procurement is the use of government purchasing contracts to affect the market for a

good. It is potentially a very powerful policy: the federal government is the largest

consumer of computers and software in the world. so its purchasing choices are bound to

have a great effect on the price and availability of products. The government as a whole has

apparently neglected the policy implications of its software purchasing, and the result is a

certain aggregate hypocrisy: while the Justice Department and the courts pour resources

into a lawsuit of Microsoft on antitrust grounds, the executive branch agencies primarily

run their computers using Microsoft's Windows NT operating system, giving considerable

7U

financial support to the same monopoly that other agencies are committed to restraining. A

procurement policy for open source would rectify this contradiction.

The related case which I will use to illustrate the potential and pitfalls of procurement

policy is a 1976 plan by the Federal Energy Administration to promote photoelectric solar

cells as a means of renewable energy production 17. This program came in the context of

the national energy crisis of the mid-1970's. President Jimmy Carter's first major

presidential initiative was to propose a plan for reduced dependence on foreign oil.

However, this plan focused mainly on energy conservation, and did very little to attack the

underlying problem: the depletion of nonrenewable energy sources like oil. This omission

led some Congressmen to begin looking into alternative energy sources, resulting in the

passage of the Energy Conservation and Production Act in August of 1976, which

mandated the development of strategies for "widespread commercialization of solar energy"

and created a "Task Force on Solar Energy Commercialization."

The innovative idea of this task force was to depart from the standard method of

technological development, in which a technology is researched, prototyped, tested, and

demonstrated, and finally given over to the market for production. In this model , economic

aspects of the technology are only considered once it has been built. The FEA task force

took the opposite approach: concentrating first on the market for solar power. The

technology was already available: photovoltaic cells, thin silicon wafers that produce

electricity when struck by sunlight, had already been developed for the space program.

However, they were far too expensive to compete with the coal and nuclear power that

gives light to people's homes. According to the old way of thinking, what was needed was

a technical breakthrough that would reduce the cost of solar cells. What the task force did

instead was set out to reduce the price through the use of economies of scale rather than a

technological leap.

17 The description of the solar cell commercialization plan, except where otherwise noted, is taken from
(Commoner 1979, pp..33-38)

7 I

Economies of scale presented a "chicken and egg" problem for technologies like solar

cells : only large demand would give manufacturers the incentive to expand their plants and

production facilities to a more efficient point, thereby reducing the unit cost of solar cells,

yet this demand was not forthcoming because of the existing high prices. What was

needed, decided the task force, was for government to make a series of investments in solar

cells , allowing production to expand and economies of scale to take effect.

This "administrative ploy" had been used successfully by the Defense Department

between 1965 and 1975 to lower the cost of integrated circuits, the "computer chips" that

are found today in almost every electronic device. In this ten year period, integrated circuits

fell in price by a factor of 100 and their performance increased by the same amount (Federal

Energy Administration 1974, p. VII-22) .

The key to the plan for solar cells was to phase the technology in, first installing the

cells in areas where power was expensive and solar cells were already economical, then , as

the price fell, introducing them into more and more markets. The catalyst for this process

would be a government purchase, but once started, it would happen through the market,

without intervention. Solar cells would be installed to replace gasoline generators at military

installations, then gas generators in rural towns, then street lighting, then airport emergency

lighting, and finally, after about five years , the price would be low enough to compete for

the lighting of homes.

The economic rationale is compelling: if government makes the initial investment, it will

trigger a series of industry expansions and price reductions, until the technology is

ubiquitous . Unfortunately, the solar cell plan did not work as expected. The Carter

Administration dragged its heels, opposing legislation for a purchase plan. The plan that

was eventually passed into law allocated $98 million for solar cell purchases rather than the

$400 million requested by the task force. This drastic reduction would have doubled the

time in which the price of solar cells could be expected to fall to competitive levels. Even

this reduced plan was never carried out, however, because President Ronald Reagan took a

72

vocal and unapologetic stand against all renewable energy funding , giving his advisors a

"license to kill" nearly all solar energy programs in favor of coal and nuclear power

(Hempel 1982, p. 209) .

The story of the solar cell commercialization plan and its demise contains lessons for

open source and a possible procurement policy. In many ways, the circumstances are

similar. For one thing, both policies are responses to a crisis situation. While the "software

crisis" is neither as severe nor as visible as the energy crisis of the 1970's, it is nonetheless

a pressing problem in both government and the private sector. The Year 2000 problem has

brought a sense of increased urgency to this situation. Another similarity, and a necessary

precondition to this procurement policy, is that the technology is already available and

avenues for further improvement are visible. Open source provides a pre-existing solution

to widespread reliability problems, and it has the potential for even more reliability,

security, and interoperability if a policy such as procurement raises interest in the method.

As with solar cells in the mid-1970's, "there do not appear to be any critical technical

problems associated with the application...(Federal Energy Administration 1974, p. VII

16)"

The social aspects of solar energy and open source are similar as well. Both are

decentralizing technologies, under the control of users rather than producers. Along with

this decentralized nature comes more accountability to individuals and communities, a focus

on individual needs rather than mass solutions, and an emphasis on labor rather than capital

(Worthington 1984). Like solar energy, open source can be produced closer to its intended

recipients, at least in the logical sense of focusing on the needs of a particular individual or

group .

The most notable difference between open source and solar cells is that open source is a

business model, not a specific product or technology. The difference is that for open

source, economies of scale have more to do with gaining consumer confidence than with

lowering price. Open source is already more affordable (in terms of total cost of

7'3

ownership) that proprietary software in most areas, but what it lacks is a wider pool of

users and producers and the consumer confidence that comes with widespread use. The

designers of the solar cell plan acknowledged this issue:

Although the conditions may become propitious for such business ventures,
the uncertainty of market projections may delay these venture-decisions.
This would cause a serious deterrent to the participation of many
competent...manufacturers. hence, an important decision should be made
early in the program to encourage companies to enter the field.

(Federal Energy Administration 1974, p. VII-48)

For open source this is not only part of the issue, it is the entire issue. The phases of a

government procurement plan for open source, rather than beginning in areas of high cost,

would begin in areas of high consumer confidence: Web servers, file servers, and other

"back office" applications where open source is already widely used and trusted. As more

open source software is installed for these uses, the companies that make them will grow,

and other companies will be encouraged to go open-source as well, applying their brand

names and support services to improving the public perception of open source. Eventually,

consumer confidence would rise enough for open source to break into more desktop

computing applications in business, and ultimately in homes.

The catalyst for this progression could be a policy like this: "All operating systems

purchased by Federal agencies must conform to the OS!'s Open Source Definition." There

is historical precedent for such a policy. In 1986, seeking to cut costs by reducing the

inefficiency of heterogeneous networks and incompatible computer systems, the

government required any computer company that bid on federal contracts to install the Unix

operating system on their machines (Hall and Barry 1990, p. 105).

Unlike solar cells, for which the government itself had only a limited need, every

branch and division of government uses information technology, making them all potential

buyers of open source. This should make a procurement policy more amenable to

Congress. While buying solar cells at high cost for a small number of military facilities may

have seemed wasteful to policymakers, a change in purchasing policy for something that all

sectors of govern~ent are buying anyway-computers and software-should be much

74

easier to justify. Furthermore, while the solar cell plan involved government purchases of

the techn ology while the cost was still high, open source will provide from the outset a

substantial cost savings for government. In the absence of restrictions on copying, a

government agency could buy a single copy of some necessary software and install it on

every computer in the office. It is clear that this policy would benefit the government

directly, as well as achieving the desired effect on the economy, and such "win-win"

policies are popular with Congress.

Ripley and Franklin divide all policies into four types . Open source procurement would

be classified as a distributive policy, the easiest type to implement (Ripley and Franklin

1986, p. 73). This type of policy generally sees a low level of conflict and little direct

attention from Congress unless a complaint is raised (ibid ., p. 84). The only groups from

which this policy takes something away are proprietary software companies that are

unwilling to switch to open source. These companies will undoubtedly oppose a policy like

this. Microsoft is particularly likely to protest such a policy, though being on trial under

antitrust law should serve to delegitimize their complaints. All other groups, government,

open source producers, and ultimately the public, have something to gain from this policy,

so it is reasonable to believe they would support it. The hacker community sees

procurement as the sort of government policy it is comfortable with; Eric Raymond in

particular endorsed this course of action (Raymond, interview).

A potential problem with the procurement policy is the political strife that would

undoubtedly come over how open source is to be defined. Different groups define open

source very differently. While the OSI's Open Source Definition seems like a good general

framework that covers a variety of software licenses, wrangling over its individual points

will be inevitable if they are given the support of government policy. A way to avoid this

would be to set the terms of government purchasing by some more objective standard, such

as reliability. All government offices want their software to be reliable and fault-tolerant, so

a possible policy would require software to pass certain quality control tests, or perhaps, to

75

crash less than a certain number of times per week under normal usage. If open source

does in fact produce more reliable software, this policy should favor open source. Other

criteria are possible as well in which open source has an advantage, including security,

compatibility with other products, conformance to Internet and other standards, and the

most obvious criterion, lowest cost, which is almost always a popular policy choice.

The advantage of this approach is that it doesn't explicitly favor open source, so it

should meet with less resistance from proprietary software companies. It does not imply

any sort of ideological commitment to open source on the part of Congress or the executive

branch, making it less politically charged. The political position it implies is pro

competition rather than competition-restraining. The downside is that it is entirely possible

for proprietary software companies to fit these criteria as well, if their software is up to the

task, in which case the goal of increasing open source production would not be achieved.

The biggest lesson to be learned from the solar cell example is that, while the

economics of procurement policy are powerful, once such a policy is proposed it must be

followed through completely to achieve the desired results. Half-measures and inadequate

funding won't push open source over the threshold of widespread acceptance. The initial

push created by policy must occur quickly, and both producers and potential consumers

outside of government must be encouraged to get involved early on, in order for the

economic effects begun by the policy to become self-sustaining quickly. This will insulate

the plan from changes in political conditions, such as what happened when Reagan

replaced Carter. If these issues can be worked out, procurement could prove to be the most

effective type of policy for open source, as the economics are compelling and all involved

parties stand to gain.

76

Lessons from the Internet: R&D Funding and Standards 18

Both the Internet and open source software have their origins in the government-funded

laboratories of universities and defense contractors. The history of government patronage

of the Internet sheds light on the ways in which government research spending affects the

course of industry, and suggests several policy tools that could be created or modified to

promote open source both as a business model and as a philosophy. The government,

especially the Defense Department's Advanced Research Projects Agency and the National

Science Foundation, used a combination of grants, organizational structures, education,

collaboration with industry, and standards maintenance to shape the Internet into a

powerful tool for both commerce and democracy. These agencies, for the most part, struck

an optimal balance between government oversight and educational and industry autonomy,

a model that could benefit open source as well.

The Internet began life in 1970 as ARPANET, the Advanced Research Projects

Agency's network which linked universities and defense contractors across the country. Its

initial purpose was to aid collaboration among the top computer science researchers of the

day, allowing them to share results and avoid duplicated work. The character of ARPA was

shaped by its founder, President Eisenhower, who distrusted the military but liked the

scientific community. "He found scientists inspiring-their ideas, their culture, their

values, and their value to the country" (Hafner and Lyon 1996, p. 15). Eisenhower wanted

the government's research dollars put into a community that valued flexibility,

inventiveness, and sharing over regimentation, centralized authority, and cozy relationships

with business. He hired ARPA directors who shared this view, creating an organizational

culture that was "freewheeling, open to high risk, agile," and the agency's "relatively small

size allowed the personality of its director to permeate the organization" (ibid., p. 22). The

values articulated by Eisenhower and the early ARPA directors led directly to the

18 The history of the Internet in this section is derived from (Kahn 1994), and (Hafner and Lyon 1996)

77

democratic nature of the Internet. Research and development funding is not impartial-it

can be used to favor those researchers who hold certain values.

The Clinton Administration has recently renewed its commitment to funding

information technology research. As part of the "Information Technology 2" initiative, the

administration announced a 6% increase in funding for this research through the National

Science Foundation, with 60% of this funding to be directed to universities . Along with the

actual funding, a policy that would help open source would be to promote the values of

code sharing and open development processes among research grantees. As these values

are already common to universities, targeting them for funding is a powerful move.

Funding universities while encouraging open source methods has the added bonus of

empowering the next generation of open source programmers---computer science students.

Access to source code and participation in open software development projects is the best

hands-on computer science education there is, so with no extra investment, this type of

policy improves education and extends the pool of potential open source developers.

The other major role that the government played in the evolution of the Internet was in

the maintenance of standards. The most successful strategy, and the one that led directly to

the current set of universal Internet protocols has been to encourage the development of

standards by industry consensus, and help to maintain those standards arrived at by

industry.

The first central coordinating body for what was then the ARPANET was called the

Internet Configuration Control Board. Although it was a government-created entity, the

board was staffed with members of the research community that ARPA supported. The

government also contracted groups to assign names and numerical addresses to computers

on the network and maintain a database of those addresses. Over time , these organizations

lost their government affiliation. The ICCB became the Internet Activities Board, which

changed to the Internet Architecture Board in 1992 and became part of the nonprofit

Internet Society (Kahn 1994). Throughout this time period , and despite its plans to give up

7't3

control of the network, the government instilled in these organizations the philosophy that

open standards, created by consensus in a public, inclusive process, were the key to

industry success.

Open source and open standards go hand in hand 19. Open source developers benefit

from the availability of published standards to which other software and hardware makers

adhere, and once a standard is written into an open source program, the standard is plainly

revealed in that program's source code. Renewed interest by government in maintaining

open computing and communications standards favors the open source model.

The difficulty in this type of policy is setting the best level of government control. On

one hand, standards set directly by the government don't work well in the computer

industry. The best example of this is the International Standards Organization, a U.S.

government-controlled body, and its Open Systems Interconnect protocol series. Created

on paper without a working software implementation, the OS12o protocols were declared

official government standards in both the U.S. and Europe. However, they failed to

compete with the TCP/IP protocols, still in use today on the Internet, which had been

developed by the Internet Activities Board with government funding, rather than

government fiat.

The other extreme is also undesirable: proprietary protocols such as those favored by

Microsoft. If a single company controls the rules by which computers interact, that

company has the power to exclude others from the market, possibly preventing innovation

by other firms. A complete absence of government enforcement of standards allows this

situation to occur. It is for this reason that Robert Kahn argues for a continued government

interest in the Internet governing bodies:

A further concern is the viability of any entity that has no individual or
organization with overall responsibility for its evolution...history has
shown that a government role was necessary to make it happen in the first
place . What guarantees are there that the same degree of vitality in its future

19 See Figure 2. in the Appendix

20 Not to be confused with the Open Source Initiative

71)

evolution will take place if market forces alone determine what new
capabilities are added to the Internet?

(Kahn 1994)

This concern applies to open source as well. As with procurement policy, the challenge

in standards enforcement is to reward openness and conscientious compliance without

favoring some standards over others or overly politicizing the process. The optimal policy

may be to maintain a government interest, rather than government control, in standards-

setting bodies such as the lAB. Encouraging companies to label their products with the

standards with which they comply, and threatening sanctions against those who advertise

compliance falsely, would be an effective and relatively neutral way for the government to

use its influence to support open standards.

This type of policy would be characterized as protective regulatory policy by Ripley and

Franklin. This type of policy "is designed to protect the public by setting the conditions

under which various private actives can occur" (Ripley and Franklin 1986, p. 76).

Protective regulatory policy is usually more difficult to implement than distributive policies

such as the procurement policy mentioned in the last section, but easier than redistributive

policies that take away from some groups and give to others. The difficulty in protective

regulatory policy is that its beneficiaries-the public-are vague and hard to define, while

the groups it restricts-large companies-are powerful (ibid., p. 88). Although not as

politically facile as procurement policy, standards oversight is compatible with the

government's earlier policies towards Internet standards, and the wildly successful result of

those policies provides evidence of their effectiveness.

Other Policy Tools

A third area of policy solutions which I will mention only briefly is financial incentives

such as tax relief. In this case, the government could offer tax credits for companies

developing open source. Considering the network effects theory, a little financial help of

this sort could give key open source products a "first-mover advantage" in the market,

leading to long-term dominance. Unfortunately, this is subject to many of the same political

pitfalls mentioned above, concerning how open source is to be defined for the purpose of

giving out the tax credits. Any such definition would be seen by open source producers as

excessive government interference in the open source process, which will discourage many

programmers. Hackers, with their belief that open source is economically superior, would

likely be offended by financial incentives, as they carry an implied message that open

source is weak and needs artificial help to survive in the market. "I don't think Linux and

open-source should get preferential treatment, just fair treatment," said Phil Hughes

(Hughes, interview).

A final policy tool which is extremely relevant right now is the sanctions to be handed

down in the Microsoft antitrust trial. Whether agreed upon in a settlement or handed down

unilaterally by the judge, some sort of penalties are likely to be imposed against Microsoft

for its anticompetitive behavior, and that penalty could serve as a pro-open-source policy if

it is carefully considered. Potential penalties may include breaking up Microsoft into

smaller companies, either vertically, creating mini-Microsofts with competing product

lines, or horizontally, by separating the operating system and application divisions into

separate companies. At the very least, the penalty will address the concerns that prompted

the lawsuit: forcing Microsoft to desist from unfair terms in its licensing of software to

computer manufacturers, preventing predatory pricing of Web browsers and other

software, and preventing the "bundling" of Web browser software with the operating

system. Any curtailment of Microsoft's monopoly tactics creates more market potential for

all of Microsoft's competitors, including open source competitors. However, the judicial

sanction could be more proactive than this. Restraining Microsoft would create a void in the

industry but would not dictate the best way to fill it. NetAction's Newman points out that

many critics of the Microsoft suit raise reasonable concerns that a purely
negative, restrictive approach to punishing Microsoft might inhibit
innovation at the company without necessarily creating a viable competitor.
Promoting open source software is the positive policy option that the
government should employ.

(Newman 1999, ch . 10)

--

~ 1

Proactive policies set down by the judge could include any of the policy options

discussed in this chapter, especially the increased enforcement of industry standards.

Richard Stallman, of the Free Software Foundation, has allegedly suggested that Microsoft

be forced to release the Windows source code . However, this policy is doomed to failure

for the reasons outlined at the beginning of this chapter-mandated open source will be

useless at achieving beneficial social changes. Judge-made policy has the additional bonus

of being perceived as more legitimate and apolitical than congressional policy. This is

because the public perceives judges as being more trustworthy than legislators (Areeda

1992, p. 33). In any case , the window of opportunity for open source activists to affect the

trial outcome is quite small, so this form of policy requires immediate action. Table Five

shows the policy tools I've discussed in this chapter.

Table Five: Policy Tools

Policy Pros Cons
Mandated open source Cuts to the heart of Wouldn't pass Congress

the issue Wouldn't produce results
Direct interference in the
economy

Procurement Inexpensive Defining open source
sound economic may create conflict

reasoning
pro-competition
something government

needs anyway

R&D Funding Allows giving support Could be expensive
to a group or ideology

Improves education
as well as the economy

Priority for Clinton
Administration

Standards Successful in the case May create conflict
Enforcement of the Internet over who sets standards

Preserves industry
autonomy

Judicial Remedy Carries judicial May interfere in free market
legitimacy too much

Fast Choice of policy up to
the judge

~2

COil clu S io IlS

The recurring theme of this chapter is that any policy solution chosen must be one that

all parties concerned can live with, because anyone of the involved parties could block the

policy 's implementation at some stage. A policy that says "this is how to do open source,

this is how it's defined," will alienate programmers, stripping the movement of its

productive core. On the other hand , purely economic policies that divorce open source from

its social values of consumer empowerment and universal access would leave public

interest groups-the movement's political lobbying experts-with no motivation to

participate. Even proprietary software companies, although the antitrust trial may put a limit

on the effectiveness of their complaints, must be kept satisfied, mainly by the government's

agreeing not to meddle with their fundamental business model.

Another lesson to be learned from exploring policy options is that since relatively

"easy" policies are available, those which give tangible benefits to all parties concerned,

don't take away what groups are used to having, and appeal to Congress, there is no

reason to waste resources pursuing policies which, no matter how beneficial, are not

politically expedient.

Chapter 6
Where is Open Source Headed? Conclusions and Recommendations

What does "programmer" mean? Do we mean only those who build
modules in languages like C, C++, or Pascal? Or does a Unix shell
programmer qualify? How about a Macintosh user who chooses and
assembles off-the-shelf objects like word processors and spreadsheets to
build a custom solution to personal computing needs?
(Cox 1996, p. 79)

Whether or not open source is a commercial success, its message is both compelling

and a little frightening . The message of open source is this: "Software isn 't magic, and

we'll show you its inner workings to prove it. You can write software yourself, or hire a

friend to write some for you. Your choices are in fact unlimited and should be dictated by

your precise needs ." Open source allows anyone to be a "programmer," and redefines the

term to make this statement true.

Open source allows the understanding that all of these levels of abstraction are

fundamentally the same. It blurs the distinction between programmer and user. Open

source brings to light the fundamental notion that computers are tools , and that ultimately

what users need and want is not software, but tools to accomplish the work they need done

in the most efficient way. This is a subtle distinction, but an important one. Proprietary

software, since it is written to be used by many people in more or less the same way, is

software, which may fit a particular user's needs, tastes, and style to varying degrees; it is

one-size-fits-all. Open source, once the infrastructure is in place to allow users to obtain a

system of carefully chosen, linked software components built from standardized parts but

modified and assembled specifically for that person, becomes a tool, allowing the user to

forget more completely about the computer and concentrate on the task. Open source

challenges our assumptions about computers: that the only way for software to be produced

is for the producers to retain all rights in their products, and that "the only important thing

about software is what jobs it allows you to do" (Stallman 1999, p. 54).

The other assumption that open source challenges is that technology is inherently

dehumanizing, a centralizing force , amenable to control of large, powerful organizations.

83

~4

On the contrary, technology can empower the individual , provide choice and control, and

be no less advanced or relevant. This is similar to the social message of decentralized

renewable energy, economically productive conservation and recycling, and other "green"

technologies. Empowering technologies could have tremendous political impact. "Stories

of control are always gripping because they speak to the fundamental problem of liberty

to what extent do we control our own life conditions and destinies?" (Stone 1997, p. 142).

Challenging our assumptions is a frightening proposition. The business world is built

on these assumptions, and business is what generates wealth and economic vitality. Open

source is based upon a different set of values; academic values. These appeal to us as well.

Sharing is good, duplication of work is wasteful. Two heads are better than one , and if

organized properly, one hundred heads are considerably better than one. This study has

brought to light some ways in which these two sets of values can be reconciled.

Government is Needed

This study began with the assumption that government action would be necessary if

open source is to succeed in the short term. After considering the evidence uncovered in the

course of this project, I still believe this to be true. The main reason for this is inertia, a

factor that I believe open source evangelists like Eric Raymond overlook. The proprietary

model has twenty years of inertia as the dominant way of doing business; it has come to be

taken for granted by both companies and consumers. Linux, and open source in general,

has thirty years of inertia towards being designed for programmers and other savvy users,

emphasizing power and flexibility over aesthetics and ease of use . Clearly, both of these

are changing: businesses are increasingly willing to toss away the proprietary paradigm in

the name of flexibility, and open source developers have redoubled their efforts to create

friendly graphical interfaces for Linux on which to run other open source software.

Yet inertia will continue to be a problem for a long time. The above-mentioned

assumptions are ingrained in the organizational structures of companies, in the distribution

infrastructure of software retail and mail-order firms, in the minds of users, and most

importantly, in the huge pool of existing software installed in millions of computers around

the world. Software does not wear out the way a physical object does; it needs replacement

only when users perceive that it is no longer useful. The tendency of users to stick with

what they have-that which is familiar and suits their needs, however imperfectly-rather

than install an entirely new suite of software tools, is perhaps the most formidable obstacle

facing open source.

This inertia may doom open source perpetually to the fringes of the software industry,

or at least make its acceptance an extremely slow process If activists want the change to

occur sooner-if the social benefits of open source are worth having now-then

government has a role to play. This role is not to shape the future direction of the

movement, nor to codify open source methods into law or channel them to particular

purposes, but to give the movement a running start, blast through some of the inertia, and

level the playing field for fair competition against proprietary software.

Cooperation is Vital

Another fact that became apparent over the course of this research is that, since the help

of government is needed in the short term, no organization can effect the change all by

itself. Coalitions will be vital to any multifaceted open source lobbying effort. Hackers

provide the technical expertise, the ideological zeal, and proof of the method's

effectiveness. Public interest groups bring expert skill in government lobbying, a widely

distributed base of support, access to a network of like-minded and active social change

organizations, and a commitment to the social benefits of open source, beyond its economic

benefit. Finally, companies provide financial resources, marketing apparatus, and support

from a pro-business Congress. All of these resources will be necessary for successful

public policy action.

What these various groups do not seem to realize is that no matter who their targets are ,

whether they seek to persuade the business sector, government, or the public, whether they

call it "marketing" or "grassroots organizing" or "lobbying," the techniques are similar, and

thus they have a lot to learn from each other. With this learning comes the potential for

presenting a united persuasive front, sending complimentary messages to all relevant

targets. For all of them , the key is characterization: stating an idea in a way which makes

people respond positively, matching it to things they approve of and things they already do.

This coalition will not be easy to create or maintain, because it must contain such

radically different viewpoints. Staunchly libertarian hackers, who believe in assigning to

government as small a role as possible in all areas of life, must ally with Ralph Nader

affiliates whose efforts at using government as a tool to correct societal ills have made

headlines for decades . Conflicts will undoubtedly arise and details squabbled over.

Fortunately, some of these differences are in fact superficial: although hackers may object

in principle to government involvement in the economy, the policies they are in fact willing

to live with (procurement, and probably research grants, according to Eric Raymond) are

the very ones that seem to have the best chance of succeeding. Open source has the

potential to address a number of problems, both economic and social. If the interested

groups can work together, each can achieve the solution it is looking for , and in a shorter

time frame.

The Trial is a Window of Opportunity

The lawsuit against Microsoft presents open source with a significant period of

opportunity. To quote William Browne, "The stars are aligned in the policy heavens."

Thanks to extensive media coverage of the trial , public and congressional discourse about

monopoly, antitrust, and alternative solutions are at their highest point in years. Now,

while policymakers are willing to listen, is the time to present alternative remedies,

including open source. It was growing resentment about Microsoft's practices that spurred

't)7

the re-emergence of open source as a mainstream idea , and advocates should use their

image as heroes battling the evil Microsoft, as David confronting Goliath, to the fullest

advantage. Having an identifiable enemy gives one's message a certain legitimacy. Even

although open source is more than just an anti-monopoly policy, making use of that

characterization is a good move right now.

A Final Word

As Cox points out, the only solution to the software industry's complexity crisis is a

paradigm shift, and paradigm shifts are never easy (Cox 1996, p. 50) . Open source is

undoubtedly such a paradigm shift, because it challenges fundamental beliefs and value

systems. These phenomena, wams Cox , are chaotic, disruptive, and perceived by many as

unnecessary. They are slow, and invariably cause some to lose profits in the short run.

They tend to overthrow entrenched establishments. He uses the example of Copernicus

destroying an entire world view by placing the sun at the center of the universe rather than

the earth. To this I add my own analogy: suppose Copernicus could have convinced the

church to help promote his views? The social upheaval could have been mitigated.

Although the paradigm shift of the open source revolution will not be easy , government can

ease the transition.

Sources

Books and Articles
Areeda, Phillip (1992). "Antitrust Law as Industrial Policy: Should Judges and Juries

Make It?" in Antirtust, Innovation, and Competitiveness, Thomas M. Jorde and

David 1. Teece, eds. New York: Oxford University Press. pp. 47-81.

Band, Jonathan. (1995). "Competing definitions of 'openness' on the NIl." in Standards
Policy for Information Infrastructure. Brian Kahin and Janet Abbate, eds.
Cambridge: MIT Press. p. 351.

Bradner, Scott. (1998). "The Internet Engineering Task Force." in Open Sources: Voices
from the Open Source Revolution. Chris DiBona, Sam Ockman, and Mark Stone,
eds . Sebastopol, CA: O'Reilly & Associates. pp. 47-52.

Branscomb, Lewis, and Brian Kahin (1995). "Standards Processes and Objectives for the
National Infonnatuion Infrastructure." in Standards Policy for Information
Infrastructure . Brian Kahin and Janet Abbate, eds. Cambridge: MIT Press.
pp. 3-31.

Brooks, Frederick P. (1975). The Mythical Man-Month: Essays on Software Engineering.
Reading, MA: Addison-Wesley.

Browne, William P. (1998). Groups, Interests, and U.S. Public Policy, Washington:
Georgetown University Press.

Cassidy, John. (1998). "The Force of an Idea." The New Yorker. January 12, 1998.
p.32.

Commoner, Barry. (1979). The Politics ofEnergy. New York: Alfred A. Knopf.

Cox, Brad. (1996) . Superdistribution: Objects as Property on the Electronic Frontier.
Reading, MA : Addison-Wesley.

DiBona, Chris, Sam Ockman, and Mark Stone. (1998). Introduction and conclusion to
Open Sources: Voices from the Open Source Revolution.. Sebastopol, CA:
O'Reilly & Associates.

Dyson, Esther. (1998) . Release 2.1: A Design for Living in the Digital Age. New York:
Broadway Books.

Einstein, David. (1998). "The Penguin That Roared." The San Francisco Chronicle.
September 8, 1998. p. B3 .

Ellis, William. (1995). "Intellectual Property Rights and High Technology Standards." in
Standards Policy for Information Infrastructure. Brian Kahin and Janet Abbate,
eds. Cambridge: MIT Press. p. 450.

Farrell, Joseph. (1995). "Arguments for Weaker Intellectual Property Protection in
Network Industries." in Standards Policy for Information Infrastructure. Brian
Kahin and Janet Abbate, eds. Cambridge: MIT Press. pp. 368-377.

Federal Energy Administration. (1974). Project Independence Blueprint Final Task Force
Report: Solar Energy. Government Document FE 1.18:So 4. ch. VII.

Gruenwald, Juliana. (1998). "Hoping to Fend Off Regulation, High-Tech Industry Steps
Up Its Campaign Contributions." CQ Weekly . October 31, 1998. pp. 2958-2959.

Hafner, Katie, and Matthew Lyon. (1996). Where Wizards Stay Up Late: The Origins of

the Internet. New York: Simon & Shuster.

Hall, Mark, and John Barry. (1990). Sunburst: The Ascent ofSun Microsystems.
Chicago: Contemporary Books. pp. 103-105.

Hempel, Lamont. (1982). The Politics ofSunshine: An Inquiry Into the Origin , Growth.
and Ideological Character of the Solar Movement in America. doctoral dissertation.
Claremont, CA : Claremont Graduate School.

Hrebenar, Ronald, and Ruth K. Scott. (1982). Interest Group Politics in America..
Englewood Cliffs, NJ: Prentice-Hall.

Kahn, Robert E. (1994). "The Role of Government in the Evolution of the Internet. "
Communications of the ACM. Vol. 37 No.8. August 1994. pp. 15-19.

Leibovich, Mark. (1998) . "The Spreading Grass-Roots Threat to Microsoft." The
Washington Post. December 3,1998. pp. A16-17 .

Munn, William G. (1999). Constructing the Problem ofAccess to Information
Technolog y. doctoral dissertation. Claremont, CA: Claremont Graduate University.

New York Times Editorial. (1999). "Settling the Microsoft Case." The New York Times.
April 4, Section 4; Page 10; Column 1.

Perens , Bruce. (1998). "The Open Source Definition. " inOpen Sources: Voices from the
Open Source Revolution. Chris DiBona, Sam Ockman, and Mark Stone, eds.
Sebastopol, CA: O'Reilly & Associates. pp.171-188.

Peters, B. Guy. (1996). American Public Policy.' Promise and Performance. Chatham, NJ:
Chatham House.

Raymond, Eric. (1998 ;1). "A Brief History of Hackerdom." in Open Sources.' Voices from
the Open Source Revolution. Chris DiBona, Sam Ockman, and Mark Stone, eds.
Sebastopol, CA: O'Reilly & Associates. pp.19-29.

Raymond, Eric. (1998;2). "The Revenge of the Hackers." in Open Sources.' Voices from
the Open Source Revolution.. Chris DiBona, Sam Ockman, and Mark Stone, eds.
Sebastopol, CA: O'Reilly & Associates. pp.207-219.

Ripley , Randall, and Grace Franklin. (1986). Policy Implementation and Bureaucracy.
Chicago: Dorsey Press. pp. 71-89.

Stallman, Richard. (1998). "The GNU Operating System and the Free Software
Movement." from Open Sources.' Voices from the Open Source Revolution. Chris
DiBona, Sam Ockrnan, and Mark Stone, editors. Sebastopol, CA: O'Reilly &
Associates. pp.53-70.

Shurmer, Mark. and Gary Lea. (1995). "Telecommunications Standardization and
Intellectual Property Rights: A Fundamental Dilemma?" in Standards Policy for
Information Infrastructure. Brian Kahin and Janet Abbate, eds. Cambridge: MIT
Press. p.378.

Stone, Deborah. (1997). Policy Paradox: The Art ofPolitical Decision Making. New York:
W.W. Norton.

Tiemann, Michael. (1998) . Future of Cygnus Solutions. from Open Sources: Voices from
the Open Source Revolution. Chris DiBona, Sam Ockman, and Mark Stone,
editors. O'Reilly & Associates. pp.71-89.

Vixie, Paul. (1998). "Software Engineering." from Open Sources: Voices from the Open
Source Revolution. Chris DiBona, Sam Ockman, and Mark Stone, editors.
O'Reilly & Associates. p.98.

Wilke, John R. (1998) . "Sen. Hatch Issues Warning Microsoft May Be Building
'Proprietary Internet. '" TheWall Street Journal. February 6, 1998. Section B, Page
15, Column 1.

Worthington, Richard . (1984). "Renewable Energy and Politics: The Case of the Windfal
Profits Tax." Policy Studies Journal. December 1984. pp. 365-375.

Yoffie, David B., and Michael A. Cusumano. (1999). "Judo Strategy: the Competitive
Dynamics of Internet Time." Harvard Business Review. January-February 1999.
pp.71-81.

Electronic Sources
All Internet addresses mentioned in this section are current as ofApril 30, 1999. Dates,
where given, refer to the document's date ofpublishing or oflast modification.

Anonymous. (1999). "If Microsoft Built Cars ." Stokely Consulting web site.
<http://www.stokely.com/lighter.side/ms.cars.html>

Apache Group. (1999). "About the Apache HTTP Server Project." Apache web site.
February 1999. <http://www.apache.org/ABOUT_APACHE.html>

EdLiNC. (1999). "About the E-Rate." Education and Library Networks Coalition web site.
April 27, 1999. <http://198.5.6.209/erate/>

Free Software Foundation. (1998; 1). "Categories of Free and Non-Free Software."
GNU's Not Unix-the GNU Project and the Free Software Foundation. December
17, 1998. <http://www.fsf.org/phi1osophy/categories.html>

Free Software Foundation. (1998;2). "The GNU General Public License." GNU's Not
Unix-the GNU Project and the Free Software Foundation. Version 2. February
16, 1998. <http://www.fsf.orglcopyleftlgpl.html>

Liebowitz, S. 1., and Stephen E. Margolis. (1995;1). "Are Network Externalities A New
Source Of Market Failure?" Research in Law and Economics. Vol 17. pp. 1-22.
Available: <http://wwwpub.utdallas.edu/-liebowitlnetwextn.html>

Y 1

Liebowitz, S. 1., and Stephen E. Margolis. (1995;2). "Chicken Little Comes Home to
Roost: A Misplaced and Flawed Economic Theory Bedevils Microsoft." Upside
Magazine. September 1995. Available:
<http://wwwpub.utdallas.edu/-liebowit/upside.html>

McNamara, Paul. (1998). "Linux cynics." NWFusion Magazine. November 6,1998.
<http://www.nwfusion.com/news/11091inux.html>

Microsoft Corporation. (1995). "Microsoft End User License Agreement, Internet
Explorer." file included in Internet Explorer software package.

Microsoft Corporation. (1998). "Economic Experts Challenge Underlying Assumptions in
Government's Case." Microsoft press release. October 16, 1998.
<http://www.microsoft.com/presspass/features/1998/10-16econ.htm>

National Science Foundation. (1999) . "President Asks Almost $4 Billion for NSF's Fiscal
Year 2000 Budget." NSF News. February 1, 1999.
<http ://www.nsf.gov/search97cgi/vtopic?action=View&VdkVgw Key=http%3A%2
F%2Fwww%2Ensf%2Egov%2Fod%2Flpa%2Fnews%2Fpress%2F99%2Fpr995
%2Ehtm&DocOffset=4&DocsFound=5&QueryZip=IT2&Collection=NSFweb&Se
archUrl=,>

NetAction. (1996; 1). "Welcome to NetAction." NetAction web site. <www.netaction.org>

NetAction. (1996 ;2). "Don't Be Soft On Microsoft." NetAction web site.
<http://www.netaction.org/msoft/index.html>

Newman. Nathan. (1997). "From Microsoft Word to Microsoft World: How Microsoft is
Building a Global Monopoly." NetAction web site.
<http://www.netaction.org/msoft/world/»

Newman, Nathan. (1999). "The Origins and Future of Open Source Software." NetAction
web site. <http://www.netaction.org/opensrc/future/>

Open Source Initiative. (1997) . "The Open Source Definition." Open Source Initiative web
site. June, 1997. <www.opensource.org/osd.html>

Open Source Initiative. (1998;1). Home page. Open Source Initiative web site. Version
1.4. February 24, 1998. <www.opensource.org>

Open Source Initiative. (1998;2). "The Case for Open Source: Hackers' Version." Open
Source Initiative web site. <http ://www.opensource.org/for-hackers.htrnl>

Raymond, Eric. (1997). "The Cathedral and the Bazaar." Eric Raymond web site. June
1997. <http://www.tuxedo.org/-esr/writings/cathedral-bazaar/cathedral
bazaar.htrnl>

Raymond, Eric. (1999). "How To Become a Hacker." Eric Raymond web site. March
1999. <http://www.tuxedo.org/-esr/faqs/hacker-howto.html>

Slabodkin, Gregory. (1998). "Software glitches leave Navy Smart Ship dead in the water."
Government News. July 13, 1998. Available:
<http://www.gcn.com/gcn/1998/July13/cov2.htm>

~2

U.S. Department of Commerce. (1993).	 "The National Information Infrastructure: An
Agenda For Action." <http://metalab.unc.edu/nii/toc.html>

U.S. Department of Justice. (1998). "United States of America v. Microsoft Corporation,
Civil Action No. 98-1232 (Antitrust) COMPLAINT." Department ofJustice web
site. May 14, 1998. <http://www.usdoj.gov/atr/cases/f17001l763.htm>

Valloppillil, Vinod. (1998). "Open source: a New(?) Development Methodology."
Available at the Open Source Initiative web site as "Halloween I" with annotations
by Eric Raymond. v1.00. August 11, 1998.
<http://www.opensource.org/halloweenl.html>

Zawinski, Jamie. (1999). "Netscape and aol ." Jamie Zawinski web site. March 31, 1999.
<http://www.jwz.org/gruntle/aol.html>

Primary Sources
Clark, Judi . Personal interview. October 9, 1998. San Francisco, CA.

Hughes, Phil. Telephone conversation. October 29, 1998.

Krause, Audrie. Personal interview. October 9, 1998. San Francisco, CA.

Raymond, Eric. Telephone conversation. November 17,1998.

Appendix
Figures

Figure One:

Relationships between Legal and Economic Factors

Goal: Efficient Diffusion.
Maximum. benefit to
society from a new

technology.

Key:

Beneficial Effect

Detrimental Effect cc:coo,,~.

---r J£f.,-7 Ij;"ure-su ms--up - th e--reTatlon sh ljls- iHscussi J-Tn--Chap t er 2-:-T he
rectangular box represents the overall goal of the software industry and the
circles represent economic and social factors that contribute to or inhibit this
goal. Note that although strong intellectual propertyprotection can lead to
monopoly, it is also an incentive for proprietary firms to produce more
software. Note also that all of the arrows pointing to open source are two
way: open source both affects and is affected by the other factors.

~4

Figure Two:�
The Open Source Process�

t "Boxed"Bug fixes,

t software with suggestions,
Source code manuals and and new code

technical
support

Finished
program In

source code Development Coordinator Value-Adding
(Individual, Group, or Company) Company-=+

This figure depicts the open source process. The arrows on the left-hand
side represent the development part of the process, in which some
coordinating group makes its work-in-progress available to outside
programmers, who contribute bug fixes and new code back to the
coordinator. The final product, in source code form, is made available on
the Internet for anyone to download. A value-adding company, if one
exists, takes this source code and creates a "boxed" distribution with
manuals and technical support. In reality, the boundaries between the
groups are not as well-defined as this figure depicts them. Contributing
programmers may move in and out of the coordinating group, users may
become contributors, and the coordinator and value-adding company may
be one and the same.

	Claremont Colleges
	Scholarship @ Claremont
	1999

	The Open Source Revolution: Transforming the Software Industry with Help from the Government
	Mitchell L. Stoltz
	Recommended Citation

