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1 Introduction

As an undergraduate student I found that I enjoyed many pure math courses. Specifi-
cally number theory. When I first saw van der Waerden’s theorem I was very intruiged.
Van der Waerden’s theorem can be stated in many ways, one of which is:

For any natural numbers l and k, there exists a number n(k, l) such that when
you split the set of integers {1, 2, 3, ..., n(k, l)} into k classes one of these classes will
contain an arithmetic sequence of length l.

This theorem was proved in 1928 by a young van der Waerden [5]. The idea of
this theorem was first conjectured by Baudet who said, “that if l is a given natural
number and if the set of natural numbers is divided over two classes, then at least
one of these classes contains an arithmetic progression of length l.” It is unknown as
to why Baudet conjectured this [10]. I will be covering two proofs of this theorem,
one of which is ergodic while the other is a combinatorial inductive proof.

The ergodic proof follows from the Multiple Birkhoff Recurrence theorem which
was proved just before van der Waerden gave his proof [5]. Surprisingly van der
Waerden gave a proof that did not rely on the Multiple Birkhoff Recurrence theorem.
We now see that the result that van der Waerden proved is a result that is hinted at
in many different fields. It has now been generalized by Szemeredi’s Theorem, which
was conjectured in 1936 [3], and finally proved in 1975 [9].

I was very curious as to how this theorem could be true. From my perspective it
states a result that isn’t very intuitive to me whatsoever. Luckily there was quite a
bit of literature with proofs of this theorem. I began with the ergodic proof of the
theorem. As I worked on it I found the going very difficult, so I found the inductive
combinatorial proof. After completing the combinatorial proof I returned back to
the ergodic proof and found the concepts it describes much less foreign. What is
interesting about these two proofs is that they are new proofs of an old theorem.

The first proof, being inductive, focuses on building the n(k, l) numbers. Then
once we have a method for building these numbers we can show that we can find a
n(k, l + 1) number. This proof tells us that there is an upper bound for how large a
set of the natural numbers we must use. The second proof begins by finding multiply
recurrent points and then combines this result with symbolic dynamics to show that
in any infinite string of k symbols we will find recurrent points simultaneously for l
transformations. A result that we could prove using the methods in the second proof
is that van der Waerden’s theorem can be applied to multiple dimensions. Thus we
have two proofs that bring useful results. This is a common theme in proofs of van
der Waerden’s theorem: since it can be stated in many forms, each proof yeilds a
slightly greater result.
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2 Inductive Proof of van der Waerden’s Theorem

Before we begin working on this proof I feel it necessary to give a definition and
restate the theorem.
Arithmetic Progression: An arithmetic progression is a sequence of numbers
whose successive elements are all the same distance apart. As an example the even
numbers make an arithmetic sequence with distance 2 between consecutive elements.

van der Waerden’s Theorem: Let k and l be two arbitrary natural numbers.
Then there exists a natural number n(k, l) such that, if an arbitrary segment, of length
n(k, l), of the sequence of natural numbers is divided in any manner into k classes
(some of these classes may be empty), then an arithmetic progression of length l
appears in at least one of these classes. [6]

The proof I will be following is from a book by A.Y. Khinchin. Published in 1952,
Khinchin wrote this proof originally as a letter in 1945 to a hospitalized soldier who
had been a student of his [6].

Now since we are going to do an inductive proof of the theorem we need to establish
our base case. Notice that if we let l = 2 the theorem is very trivial. We make our
number n(k, 2) = k + 1. Now we see that if we have k classes of a segment of length
k+1 of N, we will have at least one segment of more than one number and this pair of
numbers is an arithmetic progression of length 2. Now we shall induct on l to prove
the theorem. We will assume that the theorem has been proved for some l ≥ 2 and
arbitrary k values and when we show that the theorem is still valid for l+ 1 values it
will also hold for arbitrary k values. [6]

So what we ‘know’ (by our base case) is that for every k ∈ N there exists a
n(k, l) ∈ N such that if we were to take an arbitrary segment of N of length n(k, l)
and divide it into k classes then we would find an arithmetic progression of length l
in at least one of these k classes. Now we are trying to show that this assumption
holds for n(k, l+ 1). To do this we will construct a number n(k, l+ 1). We will start
by defining

q0 = 1, n0 = n(k, l)

And now if we already have qs−1 and ns−1 for some s > 0, we will say,

qs = 2ns−1qs−1, ns = n(kqs , l)(s = 1, 2, ...) (1)

We see that our numbers qs and ns are defined for arbitrary s ≥ 0. What we are
doing here is defining a number qk that is n(k, l + 1). So now we will be showing
that if we take a segment of length qk of N and divide it into k classes we can find an
arithmetic progression of length l + 1 in at least one of the classes.

I will define a term that will be useful, assume that ∆ is our segment of length qk
of N that is divided into k classes.
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Same Type: This definition can be applied to numbers and sets. Consider a
segment X of the natural numbers that is split into k classes. We will say that the
numbers x, y ∈ X are of the same type if x and y belong to the same class. We will
then write x ≈ y. Now if we have two equally long subsegments of X, call them
δ = (x, x + 1, ..., x + r) and δ′ = (y′, y′ + 1, ..., y′ + r), we say the segments δ and δ′

are of the same type if x ≈ y′, x+ 1 ≈ y′ + 1, ..., x+ r ≈ y′ + r. We then write δ ≈ δ′.
[6] So we can see that if δ and δ′ are the same type then we can find subsegments of
δ and δ′ that are also of the same type.

Example: Consider the set ∆ = {1, 2, 3, ..., 11, 12}, with k = 3. Now I will break
∆ into 3 classes, δ1 = {1, 3, 5, 7}, δ2 = {2, 4, 6, 8}, and δ3 = {9, 10, 11, 12}. We can see
that 1 and 3 are the same type because they both belong to δ1, thus 1 ≈ 3. Similarly
we can see that the subsegments (5, 6, 7) and (1, 2, 3) are the same type because 1 ≈ 5,
2 ≈ 6, and 3 ≈ 7.

Now let me point out something to keep in mind as we continue our proof, classes
and types are competely different objects. We will be dealing with types far more
than classes. It is good to try and remember the relationship between types and
classes as we go on.

Notice this too about same types, that the total number of different types for
numbers of a segment ∆ is k. You can see this because if we have k classes of ∆ then
a and b are the same type only if they are in the same class, thus we have k different
types. Now when we consider subsegments of length m of ∆, the different possible
types, of segments of length m, is km. We can see this because a type must have each
successive element from the same class, thus for each we have k classes from which
we must select m elements, which gives us km different types.

Now recall from (1) that qk = 2nk−1qk−1, with this we can call our segment ∆ (that
is of length qk) a sequence of 2nk−1 subsegments of length qk−1. Simply said we are
taking 2nk−1 successive segments of length qk−1 of N. To further clarify this important
step, we can say that ∆ is a segment of the natural number line of length qk that is
composed of (or can be broken into) 2nk−1 segments of length qk−1. Now these qk−1
subsegments of ∆ have kqk−1 different types (with respect to subsegments of qk−1 not
numbers). And the left half of ∆ contains nk−1 of these subsegments (simply because
∆ is made up of 2nk−1 of the qk−1 subsegments, thus the left half, like the right half, is
made up of nk−1 of these subsegments). And we know by (1) that nk−1 = n(kqk−1 , l),
which we know (by our assumption that van der Waerden’s theorem holds for l)
means that in the left half of ∆ there exists an arithmetic progression of l of these
subsegments of the same type,

∆1,∆2, ...,∆l (2)

of length qk−1. To recap; in the left hand side of ∆ we know that there exists an
arithmetic progression of length l in the types, of the segments of length qk−1, by
the the inductive hypothesis, which states that for a number nk−1 = n(kqk−1 , l) there
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exists an arithmetic sequence of length l in at least one of the kqk−1 classes (and these
classes are actually the total types that a segment of length qk−1 can have). So now
what we have is an arithmetic sequence of length l of partitions of ∆, and all of these
partitions are of the same type. Thus the first elements of ∆i and ∆i+1(1 ≤ i < l)
are the same distance apart, call it d1 (as are the second, third, etc elements of each
set, this follows from the fact that the sets are of the same type). Now we have
∆1,∆2, ...,∆l, that are all of length qk−1 and their first elements all belong to the
same class of ∆, and their second, third, ..., qk−1 elements all belong to the same
class as well. So we have found qk−1 arithmetic sequences of length l where d1 is the
distance between the consecutive terms.

Now we shall add another term to the end of our ∆i’s. Call this new term ∆l+1,
with. Where the first element of ∆l+1 is d1 away form the first element of ∆l. ∆l+1

may project beyond the left side of ∆ (or may be completely out of the the left
side), but is obviously contained in the entire segment ∆. We have constructed a
sequence of segments ∆1,∆2, ...,∆l,∆l+1, that contain an arithmetic progression of
length l+1 and difference d1 between the segments of length qk−1. Also we know that
∆1,∆2, ...,∆l are of the same type, but we do not know anything about the type of
∆l+1.

The next step is to select an arbitrary one of our ∆i, in the sequence of segments
that we just constructed, with 1 ≤ i ≤ l. Call this selected segment ∆i1 , we know that
this segment is of length qk−1, and by (1) we know qk−1 = 2nk−2qk−2. So the left half
of ∆i1 can be considered to be made up of nk−2 segments of length qk−2, and we know
that for subsegments of this length there is kqk−2 types possible (segment types). Also
by (1) we see that nk−2 = n(kqk−2 , l) which means that ∆i1 must contain an arithmetic
progression of l of these subsegments of the same type, ∆i1i2 , of length qk−2. Again
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these ∆i1i2 elements are the same type because by the definition of n(kqk−2 , 1) we
know that there exists an arithmetic sequence of length l of the kqk−2 types possible.
We shall call d2 the difference between the neighboring segments ∆i1i2 . And again we
shall add the l + 1 term, ∆i1l+1, that must not be totally contained in the left hand
side of ∆i1 but is contained in the whole of ∆i1 . Again we know nothing of the type
of ∆i1l+1. All we know is that the distance between the first element of ∆i1l and ∆i1l′

is d2.
Notice that when you see ∆i1 it means that we have done our construction on

∆ and now are left with a segment of length qk−1. Thus when we have a segment
described as ∆i1i2i3 we can see by pattern that it will be of length qk−3.

Also you can see that this construction that we have done on ∆i1 can be done
congruently to all the other segments ∆i1(1 ≤ i1 ≤ l + 1) of our original sequence
of subsegments of length qk−1. What is meant by this is that once we have split our
∆i1 into it’s arithmetic sequence of segments of same type we can partition all other
∆i1 segments in the exact same way. It is obvious that all of our new segments are
all of the same type because because all the ∆i1 are of the same type, so if you take
the first 5 elements of two ∆i1 those two subsegments must be the same type since
they come from the same place in two segments that are the same type. Thus we can
state that when we take two arbitrary segments whose indices do not excede l, they
are the same type:

∆i1i2 ≈ ∆i′1i
′
2
, with (1 ≤ i1, i2, i

′
1, i
′
2 ≤ l)

And it follows that we get

∆i1i2...ik ≈ ∆i′1i
′
2...i
′
k

(3)

with (1 ≤ i1, i2, ..., ik, i
′
1, i
′
2, ...i

′
k ≤ l)

We get this result by expanding on our previous finding. We know that ∆i1i2 ≈ ∆i′1i
′
2

for (1 ≤ i1, i2, i
′
1, i
′
2 ≤ l), thus when we go to ∆i1i2i3 we know that we are getting the

same construction of sets in every other ∆i′1i
′
2
. Which means that we are taking sets

in the same position with respect to the sets they belong in, which are of the same
type. This obviously implies that if any subsets of two different sets that are of the
same type, are in the same position, then they are also of the same type.

When we do our process (going from ∆, to ∆i1 , to ∆i1i2 , ...) k times the result is
an element of the form ∆i1i2...ik(1 ≤ i1, i2, ..., ik ≤ l′). Notice that the length of one
of these elements is qk−k = q0, and by (3) we know that q0 = 1. This means that
∆i1i2...ik is just one number from our original segment ∆.

Here are two facts that will be useful in finishing our proof:

1). Taking our result from (3) and if we select some 1 ≤ s < k, and if is+1, is+2, ..., ik
are arbitrary indices taken from the sequence of numbers 1, 2, ..., l, l + 1, then the
number ∆i1i2...isis+1...ik appears in the same position in the segment ∆i1...is as the
number ∆i′1i

′
2...i
′
sis+1...ik does in the segment ∆i′1...i

′
s
. This follows from the fact that we
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are doing the same steps that we have done in our original ∆i1i2... to all other ∆i′1i
′
2...

sets. Thus when we take two sets who are the same type, like ∆i1...is and ∆i′1...i
′
s
, then

do the same steps (s + 1, s + 2, ..., k) we get a number from the same place in each
segment. And if the numbers belong in the same place in two segments that are the
same type then we can write:

∆i1,i2,...,is,is+1,...,ik ≈ ∆i′1,i
′
2,,...,i

′
s,is+1,,...,ik (4)

when (1 ≤ i1, ..., is, i
′
1, ..., i

′
s ≤ l) and (1 ≤ is+1, is+2, ..., ik ≤ l + 1). See how the

is+1, ...ik values can equal l+ 1, because the first steps we’ve taken before we do these
is+1, ...ik steps ensure that we are dealing with a segment with the same type as all
the others. Thus we can perform the next steps even on its l+ 1 set because it’s l+ 1
set is the same type as all the other ∆1, ...,∆i with i ≤ l.

2). For s ≤ k, with i′s = is+1, ∆i1,...,is−1,,is and ∆i1,...,is−1,i′s are neighboring segments
in the s-th step of our construction. So if we continue our construction in both these
neighboring segments with any arbitrary is+1, ..., ik, the numbers ∆i1,...,is−1,is,is+1,,...,ik

and ∆i1,...,is−1,i′s,is+1,...,ik appear in the same position with respect to their neighboring
segments. Which means that:

∆i1,...,is−1,is,is+1,...,ik −∆i1,...,is−1,i′s,is+1,...,ik = ds (5)

since the two numbers are in the same position in the neighboring segments in the
s-th step of our construction, and everything that is in our sequence of length l during
the s-th step of our construction is distance ds apart. So (5) naturally follows.

Now after I was presented this following information the big ”Aha” moment hap-
pened and I hope you get it too. So continuing on let us consider these k+1 numbers
of the segment ∆:

a0 = ∆l+1,l+1,...,l+1

a1 = ∆1,l+1,l+1,...,l+1

a2 = ∆1,1,l+1,...,l+1

....

ak = ∆1,1,1,...,1

If you recall ∆ was split into k classes, which means that at least two of the k + 1
numbers, mentioned above, must be in the same class. And if any two of these
numbers are in the same class then it implies that at least one number that is in an
l + 1 segment in our final stage of constructing our ∆i1i2...ik belongs to an arithmetic
progression that is now of length l + 1.

Let’s assume that our two numbers, ar = ∆1,l+1,l+1,...,l+1 and as = ∆1,1,l+1,...,l+1.
This means that by (4) we know that these two numbers are in the same position of
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the segments ∆1,1 and ∆1,l+1. And we know that there is an arithmetic progression of
length l of segments of the same type, ∆1,1,∆1,2, ...,∆1,l where every number that is
in the same position in each segment belongs to an arithmetic progression of length l
with spacing d2 between each number. But now we know that there is one number in
our segment ∆1,l+1 that belongs to the same class as a number in the same position
in segment ∆1,1. Which means that since ∆1,1 ≈ ∆1,2 ≈ ... ≈ ∆1,l that all the
numbers in the same position belong to the same class, and we know that there is
another number in the same position in ∆1,l+1 that belongs to the same class as all
the numbers in the same position as it (with respect to their segments). So we see
that we have found an arithmetic progression of length l + 1 with distance d2 in one
class of our segment of N of length qk.

It is not hard to see how this is true for any ar and as that are in the same
class. Given any two we can see by our construction that it will imply an arithmetic
progression of length l + 1 where all the numbers are the same distance apart and
belong to the same class.

Thus, we can see that we have proved van der Waerden’s theorem. We have also
shown that there is an upper bound on the length the segment must be for the result
to hold. I will show that the upper bounds we have calculated are much larger than
necessary.

Example:
Now I am going to use the rules we set up from (1) to build the number n(2, 3).

We know from the base case of our inductive proof that n(k, 2) = k + 1 we will take
n0 = 2 + 1 = 3, and recall that q0 = 1. So now q1 = 2n0q0 = 2(3)(1) = 6 and thus
n1(2

6, 2) = 26 + 1. Thus q2 = 2(26 + 1)(6) = 780, and recall that we are taking qk
as our n(k, l + 1) number. Now 780 is a number that is much larger than necessary
to get an arithmetic sequence of length 3 when considering only 2 classes, but it is
large enough and recall that we constructed our qk numbers with the foresight to use
types to find our arithmetic sequences. So I will randomly partition a sequence of 780
numbers (1, 2, 3, ..., 780) into two classes then find segments of length 6 of the same
type in the left hand side of our 780 numbers. Using R I input the following line
(1 : 780,rbinom(780, 1, .5)) to place each number with equal probability into class 0
or class 1. I then searched for segments of length 6 that were the same type. Here are
three examples of segments of same type in arithmetic sequence of length 2 (simply
stated: pairs of segments of the same type):

1− {101, 111, 121, 131, 141, 151}, {541, 551, 561, 571, 581, 591}

2− {11, 20, 31, 40, 51, 60}, {821, 830, 841, 850, 861, 870}

3− {2640, 2650, 2660, 2670, 2680, 2691}, {3540, 3550, 3560, 3570, 3580, 3591}

The subscript of each number is the class that it was randomly selected to be in. The
distance between the segments of 1 is 44, for 2 it’s 81, and for 3 it’s 90. So next I
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found the l + 1 segment that was the same distance away from the segments we just
found.

1− {980, 990, 1000, 1010, 1021, 1031}

2− {1631, 1640, 1650, 1660, 1670, 1680}

3− {4440, 4450, 4561, 4570, 4481, 4490}

And we can see that we’ve found many arithmetic sequences of length 3 in the seg-
ments we’ve just found: {141, 581, 1021}, {151, 591, 1031}, {11, 821, 1631}, {20, 830, 1640},
{40, 850, 1660}, {2640, 3540, 4440}, {2650, 3550, 4450}, and {2670, 3570, 4470}. So it
seems that our construction of n(2, 3) has given us a number far too large. Fortu-
nately of the few known van der Waerden Numbers (the n(k, l) values) the value of
n(2, 3) is known to be 9 [7]. I will now provide my own proof of this fact.

One thing that we should notice before moving to prove (by construction or brute
force) that min(n(2, 3)) = 9, is the following, suppose we have an arithmetic sequence
of classes, for example S = {A,A, B,A,A, B,B,A}, where we have an arithmetic
sequence in the class A of length 3 with distance 2 between the numbers. Then
its reverse (taking the sequence of classes and reading it backwards) also contains
an arithmetic sequence in class A of length 3 with distance 2 apart, as seen Sr =
{A, B,B,A, A,B,A, A}.

Now what we shall do is construct a tree of A’s and B’s where our goal is to
make each branch as long as possible without containing an arithmetic progression
of length 3. We will show that no branch can be longer than 9. We have two cases,
depending on whether our tree begins with AA or AB. We are not considering BB
and BA because the class labels can be switched from our AA and AB cases to get
the same result. We will label each letter with a {1, 2, ..., 9} to indicate the order of
the sequence we are constructing, we will also make the last term an A, B, or A/B
when there is an arithmetic sequence of length 3. So let us begin with the AA case:
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A1

A2

A3 B3

A4

A5

A6 B6

A7 B7

A8/B8

B5

A6 B6

A7/B7

B4

B5 A5

A6

A7 B7

A8 B8

A9/B9

B6

A7

A8/B8

B7

A8/B8

So we only have one sequence of A’s and B’s that is of length 8 without an arithmetic
sequence of length 3 in it. Specifically the sequence we found when starting with
AA is {A,A,B,B,A,A,B,B,A/B}. Now let us construct a similar tree but starting
with AB:
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A1

B2

A3

A4

A5 B5

A6

A7 B7

A8/B8

B6

A7/B7

B4

A5 B5

A6

A7

A8/B8

B7

B6

B3

A4

A5

A6 B6

A7 B7

A8

A9/B9

B8

B5

A6

A7/B7

B6

A7/B7

B4

Here we also find just one sequence of length 9: {A,B,B,A,A,B,B,A,A/B}. Let
us call the sequence of length 9 from the AA tree AA, and the sequence of length 9
from the AB tree AB. Also when considering the reverse of a sequence S we shall
denote it Sr.

So now let us imagine that n(2, 3) 6= 9, so let us assume that n(2, 3) > 9. Then we
should be able to find a sequence of 9 A’s and B’s that does not have an arithmetic
sequence of length 3, such that when adding either an A or B to either end (because
of symmetry it does not matter what end we add the tenth term) we get an arithmetic
sequence of length 3. Now let us look at AA and AB more closely, we will take Ar

B in
order to get the possibility of an AA start.

AA = {A,A,B,B,A,A,B,B,A/B}

Ar
B = {A/B,A,B,B,A,A,B,B,A}

Notice that if we were to take the first and last element from both these sequences the
sequences we have left are of the same type, which is {A,B,B,A,A,B,B}. Now since
we are assuming that n(2, 3) is larger than 9 let us try to find a sequence of length
10. Now we know that if we add any two combinations of A and B to either end of
our middle sequence we will find an arithmetic sequence of length 3 in a segment of
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length 9. So we can assume that if a sequence of A’s and B’s of length 10 existed that
we could construct it by adding a combination of 3 A’s and B’s to the end of this
middle. Though notice that if we were to place this combination of 3 A’s and B’s on
the end of our middle we would get a sequence that starts with AB and we know that
the the smallest length a sequence of A’s and B’s can be with an arithmetic sequence
of length 3 in it with this beginning is 9. Similarly when we place any combination of
3 A’s and B’s on the beginning, by symmetry, we get a sequence that begins with AA
and we know that this give us n(2, 3) = 9 again. This argument can be made for any
’middle’ that does not have an arithmetic sequence of length 3 in it. You will find
that in any sequence of A’s and B’s of length 10 there will be an arithmetic sequence
of length 3 in the first or second string of 9 elements of the sequence, the element not
belonging to this string can be deleted leaving us with a sequence of length 9.
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3 Ergodic Proof of van der Waerden’s Theorem

For this proof I will be following the proof given in H. Furstenberg’s Recurrence in
Ergodic Theory and Combinatorial Number Theory [5]. I will begin in the chapter
titled van der Waerden’s Theorem and move through it giving more examples and
definitions. After completing section 2 I will illustrate the proof of why the Multiple
Birkhoff Recurrence theorem implies van der Waerden’s theorem in section 5 of the
introduction.

I will begin by stating a few definitions that once understood will let us understand
the proofs of some necessary lemmas.

Homeomorphism: A function F is a homeomorphism if it is (1) a bijection, which
means it’s both one to one and onto, (2) continuous, and (3) its inverse function, F−1

is also continuous.

Compact Metric Space: Metric Spaces are compact when every sequence in the
space converges to a point. Example: The closed unit interval, [0, 1] is a compact
metric space. Can you see why? Because all sequences in the space can converge to
the endpoints 0, 1 or inside the interval. Thus when you read ”compact metric space”
think of the unit interval.

Group: A group is a set with an operation upon it. Call the set G and the operation
be ◦ that can stand for multiplication, addition, etc. Then for (G, ◦) to be a group
they must satisfy these conditions:

(1) For all a, b ∈ G we have a ◦ b ∈ G. Known as closure.
(2) For a, b, c ∈ G w have (a ◦ b) ◦ c = a ◦ (b ◦ c). Known as associativity.
(3) There must exist an element i ∈ G such that for any a ∈ G we have a ◦ i =

i ◦ a = a. i is called the identity element.
(4) And lastly for any a ∈ G there must exist some b ∈ G such that a◦b = b◦a = i.

That is every element in G must have an inverse that takes it to the identity element
[11].

Homomorphism: A homomorphism is a continuous map φ : X → Y between two
groups X and Y (with the same group operator G) that satisfies this condition:
φ(gx) = g(φx).

Automorphism: An automorphism is a homomorphism from a group G to itself.
So an automorphism preserves all the structure of the group.

Now we are ready to prove some lemmas that will build up to the Multiple Burkhoff
Reccurence Theorem (theorem MBR). We will come across more important definitions
later and will explain them when necessary.
Lemma 1. Let T be a continuous map of a compact metric space X to itself (T :
X → X). Let A ⊂ X with the property that for every x ∈ A, and ε > 0, there exists
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a y ∈ A and a n ≥ 1 with d(T ny, x) < ε. Then for every ε > 0, there exists a point
z ∈ A and an n ≥ 1 with d(T nz, z) < ε. (To clarify when we say d(a, b) < c it can be
read; the distance between a and b is less than c).

Proof: Let ε > 0 be given. Set ε1 =
ε

2
. We begin our proof by arbitrarily choosing

a z0 ∈ A and select some z1 ∈ A with

d(T n1z1, z0) < ε1

for some n1. Now select an ε2 with 0 < ε2 ≤ ε1 such that when d(z, z1) < ε2 we have

d(T n1z, z0) < ε1.

This argument follows from the continuity of T . In the definition of continuity given
any δ > 0 there exists a η > 0 such that when we have two points x1, x2 ∈ X such
that d(x1, x2) < η we know that d(Tx1, Tx2) < δ. So our argument here is that we are
finding the ε2 such that when we take a point within ε2 of z1 we know by continuity
that it must be within ε1 of z0. Now that we have found an ε2 that satisfies this
property, we will find a z2 ∈ A and n2 ≥ 1 that gives us

d(T n2z2, z1) < ε2.

Now let select an ε3 with 0 < ε3 ≤ ε1 such that when d(z, z2) < ε3 we have

d(T n2z, z1) < ε2.

We will continue in defining z0, z1, ..., zk ∈ A, n1, n2, ..., nk ∈ N, and ε1, ε2, ..., εk ∈(
0,
ε

2

)
in this manner. So we can simplify and say

d(T nizi, zi−1) < εi, i = 1, 2, ..., k

and select an εk+1 with 0 < εk+1 ≤ ε1 such that

d(z, zk) < εk+1 ⇒ d(T nkz, zk−1) < εk

We can then determine zk+1 and nk+1 to give

d(T nk+1zk+1, zk) < εk+1.

Now let us step back and try to visualize what we have created. We began by finding
an ε2 such that when z ∈ [z1−ε2, z1+ε2], which is what it means to have d(z, z1) < ε2,
then T n1z ∈ [z0− ε1, z0 + ε1]. Continuing on we can see that we are finding segments
in A such that when we take T nk+nk−1+...+n2+n1 of some z ∈ A with d(z, zk) < εk+1 we
get T nk+nk−1+...+n2+n1z ∈ [z0 − ε1, z0 + ε1]. This result comes from the more general
statment that when i < j

d(T nj+nj−1+...+ni+1zj, zi) < εi+1 ≤ ε1 =
ε

2
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Now since A is compact and we can continue splitting A into infinitely many subseg-
ments (simply continue our process for k → ∞) we can find some pair of i, j, i < j,

for which d(zi, zj) <
ε

2
. Another way to think about this fact is imagine if we split

A into open segments of length
ε

2
, then there must be a segment that contains more

than one zi, because A is a compact metric space. You can see this fact because A
has infinitely many points in it and there are only finitely many segments covering
A, thus if all the segments did not contain more than one zi there would be infinitely
many segments, but we know that this is not possible since a compact metric space
can be covered by a finite number of open sets. Now if we combine this with our
previous general result we get

d(T nj+nj−1+...+ni+1zj, zj) <
ε

2
+
ε

2
= ε

So what we’ve shown here is that when we find two elements of A in a segment

that we’ve constructed (whose length is less than
ε

2
) we know that when we take

TN (where N = nj + ... + ni, is the difference of the iterates of two elements we’ve
found) of any element in this segment we will again be within ε1 of the zi element.
But we know that zi belongs in this segment, thus when we take TNzi it will be in
the interval (zi− ε1, zi + ε1). Notice we have open brackets because the segment that

we’re taking our elements from has length <
ε

2
. So we have proved Lemma 1.

Lemma 2: If A is a homogeneous set in the compact metric space X with repsect to
a transformation T , and for any ε > 0, we can find an x, y ∈ A and an n ≥ 1 so that
d(T ny, x) < ε then A is recurrent.

To prove this we will first have to define what we mean by homogeneous set and
a recurrent set.

Homogeneous Set: Let T be a continuous map of a compact metric space X
to itself and let A be a closed subset of X. The set A is said to be homogeneous
with respect to T if there exists a group G of homeomorphisms of X, each of which
commutes with T (as in T (g(x)) = g(T (x))) and leaves A invariant (which means
g(A) = A), and such that the dynamical system(A,G) is minimal.

A dynamical system is minimal if no closed subset of X is invariant under the
action, which in our case is G. What this means is that there is no point x inX
such that for any g ∈ G the orbit of x under g, {x, gx, g2x, g3x, ...} doesn’t come
arbitrarily close to every point in X. This previous sentence is what it means for a
set, in this case the orbit of x, to be dense in a space, which in this case is X. We
can also deduce that a system (X,G) is minimal if for every open set V ⊂ X, there
exist finitely many elements gi ∈ G with

∪ni=1g
−1
i V = X.

If our system (X,G) wan not minimal then there would be some Y ⊂ X that is
invariant under G, now if we set V = X − Y the equation above would not give us
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a point x ∈ Y , so ∪n
i=1g

−1
i V 6= X. But this cannot happen by the first definition of

minimal.
If we have a homeomorphism of X that commutes with T this homeomorphism is

an automorphism of the system (X,T ). From the definition of a homogeneous set we
can see that these automorphisms of (X,G) will take any point in the homogeneous
set A close to any other point in A.

Recurrent set: A closed subset A of a compact metric space X is said to be
recurrent for a transformation T : X → X, if for any ε > 0 and any point x ∈ A,
there exists a y ∈ A and an n ≥ 1 with d(T ny, x) < ε. Thus when a set is recurrent
we know that for any point x ∈ A and the transformation T there exists some other
point in A who has an element in its forward orbit that comes within ε of x.

Now we can prove Lemma 2. Proof: Let G be a group of homeomorphisms that
commute with T , leaving A invariant and so that the system (A,G) is minimal (here
we are just stating what is necessary for A to be a homogeneous set). So if g ∈ G
and a ∈ A we know, given T , that T (g(a)) = g(T (a)). Also we know that all the
elements of G belong to a group and thus have group structure. Let the operation on
G be function composition, it is then easy to see that G satisfies the group criteria.

Now for an ε > 0 imagine a finite covering of A, call it {Vi} and make it such that
each Vi has diameter ε. Now since we’re thinking of the unit interval as our compact
metric space think of each of these Vi to be intervals with length ε. Now for each of
these Vi we can find a finite set of elements in G, call the set {gi} (that stands for
the g ∈ G where the following property is satisfied for the Vi) such that

∪g−1i Vi = A (6)

Since g ∈ G is a homeomorphism it is known that its inverse is also continuous.
And since (A,G) is minimal we know that for any a ∈ A and g ∈ G the forward orbit
of a with respect to g is dense in A. Thus the reverse orbit of a is also dense in A
with respect to g. So it follows that for a given Vi there is a finite subset G0 ⊂ G
that satisfy (6). So we can say that for any pair x, y ∈ A:

min
g∈G0

d(gx, y) < ε

Now find a δ > 0 such that whenever d(x1, x2) < δ we have d(gx1, gx2) < ε for
all g ∈ G0. Now recall in Lemma 1 the final result was that for x, y ∈ A and n ≥ 1
we have d(T ny, x) < ε, now replace ε with δ to get d(T ny, x) < δ. Now by (6) we see
that gx gets arbitrarily to at least one other element of A for any g ∈ G0. So now
select a z ∈ A that is within ε of gx for a g ∈ G0. So we have d(gx, z) < ε. Now if
we modify the result of Lemma 2 (that we can find an x, y ∈ A and an n ≥ 1 so that
d(T ny, x) < ε) with δ, we have:

d(T ny, x) < δ
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which means
d(gT ny, gx) < ε = d(T ngy, gx) < ε

and combine this with the fact that d(z, gx) < ε we have

d(T ngy, z) < 2ε.

What we did here is used the triangle inequality to show that if d(a, b) < 2 and
d(b, c) < 4 then we must have d(a, c) < 6. Letting gy equal to the y used in the
Lemma we have proved that A is recurrent.

Now with this notion of a reccurent set we can add this condition to Lemma 2 to
get a new Lemma.

Lemma 3: Let A be a recurrent homogeneous set in X with respect to a transformation
T . Then A contains a recurrent point for (X,T ).

In the proof of this Lemma we will have to consider the function:

F (x) = inf
n≥1

d(T nx, x) (7)

Let it be known that the function F (x) is upper semicontinuous.

Upper semicontinuous: A function F (x) is upper semicontinuous if given a x0
there is a λ > F (x0), then there is a neighborhood U around x0 such that F (U) < λ.
This means that, if F is upper semicontinuous then, at all the points of discontinuity
(where we have steps or jumps in the function) the closed part of the function belongs
to the upper strand (at a point of discontinuity the filled dots will be above the empty
dots on the function).

It is also known that a semicontinuous function’s points of discontinuity lie in
the union of countably many closed nowhere dense sets ([5], 39). An example of a
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nowhere dense set is the Cantor set, where every middle third of every interval is
taken out. Since the Cantor set contains no intervals it must not have any intervals
that have limit points.

Now we are ready to prove Lemma 3.

Proof: Since we have that A is a recurrent and homogeneous set in X with respect
to T we know that Lemma 1 holds. This means that we can assume that F (x) comes
arbitrarily close to zero on A, since by Lemma 1 for every ε > 0 we can find a x ∈ A
and an n ≥ 1, such that d(T nx, x) < ε. Now since we know that (A,G) is minimal
it holds that A is dense which implies that A must have points of continuity of F (x)
because if it didn’t it would have to be a union of countably many nowhere dense
sets. So select a point of continuity x0 ∈ A.

Suppose that F (x0) > 0, then select a δ such that F (x) > δ > 0 in an open set
x0 ∈ V ⊂ A. Now since (A,G) is a minimal system we know by (6) that:

A ⊂ ∪g∈G0g
−1V,

where G0 is a finite subset of G. Now let η > 0 be such that when d(x1, x2) < η
implies that d(gx1.gx2) < δ for all g ∈ G0. We know that an η > 0 must exist for
each g ∈ G0 because g is a homoemorphism and they are continuous. The η we are
using is the smallest for all g: the η selected works for all g. Then for every x ∈ g−1V ,
we have F (x) ≥ η. This must be the case because if F (x) < η, then we could find
an n that satisfies d(T nx, x) < η which implies that d(T ngx, gx) < δ. This causes
a problem because it means that F (gx) < δ for all g ∈ G0, but this is impossible
because for some g ∈ G0 we have gx ∈ V from by definition that x ∈ g−1V . So it
must be that F (x) ≥ η throughout A. If this was the case then we could set ε = η
and then there would be no possible way to satisfy Lemma 1, which states that for
any ε > 0 there is a point z ∈ A and an n ≥ q that satisfies d(T nz, z) < ε = η. Thus
the assumption we made that F (x0) > 0 must be wrong, so F (x0) = 0, and x0 is a
recurrent point and we have proved Lemma 3. This does not state that all points in
A are recurrent, only points in A that are points of continuity, and A is not required
to be made up of only points of continuity. It should also be noted that a recurrent
point returns close to itself and is not a periodic point that returns exactly to itself,
thus the existence of recurrent points does not imply the existence of a periodic point.

Now we can put the three Lemmas that we have proved into one compact proposition:

Proposition 1: Let T be a continuous map of a compact metric space X to
itself, and let A ⊂ X be a homogeneous closed subset of X with respect to T . If for
any ε > 0, we can find an x, y,∈ A and a n ≥ 1 such that d(T ny, x) < ε, then A
contains a recurrent point for T .

Our next step is to expand on the Lemmas that we have proved to get a stronger
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result, the Multiple Birkhoff Recurrence theorem (MBR). What will bring about MBR
is taking the results we’ve proved and apply them to higher dimensions. To do this
we will assume that T1, T2, ..., Tl are continuous maps of our compact metric space X
to itself. So our goal is to show that (x, x, ..., x) ∈ X l is recurrent for T1×T2× ...×Tl.
For simplicity call T = T1 × T2 × ...× Tl and call xl = (x, x, ..., x), and when we have
Txl we get (T1x, T2x, ..., Tlx).

Proposition 2: When we have a compact metric space X and T1, T2, ..., Tl com-
muting homeomorphisms of X, then there exists a point x ∈ X and a sequence
nk →∞ with T nk

i x→ x simultaneously for i = 1, 2, ..., l.
Before we begin the proof let me introduce the notion of uniform recurrence. A

point x is said to be uniformly recurrent for the system (X, f) if for every open
neighborhood U of x the set {n ≥ 0 : fnx ∈ U} is syndetic. For a set to be syndetic
there is a natural number N such that a block of N consecutive integers intersects
the set. [1]

Proof: Let T1, T2, ..., Tl be the generators for a group of homeomorphisms of X, call
it G. For example a group generated by a, b, c is all the possible combinations of a, b, c
under the group operator. In our case we have function composition as our group
operator, thus the group G that we’ve created is infinite because we could compose
T1 with itself an infinite amount of times. Without loss of generality we will restrict
our scope to any invariant subset of X under G but will write (X,G). So we have an
invariant subset that is closed under the group of commuting homeomorphisms G, so
this dynamical system that we are writing as (X,G) fulfills the requirements for it to
be minimal. Now we will use induction to prove Proposition 2. In the l = 1 case we
know the result by a theorem that states all points from a minimal closed T1-invariant
subset is uniformly recurrent ([5] 29). I will skip the proof of this theorem because
our intuition after the first three Lemmas should lead us to believe this fact. Having
satisfied the base case we will assume that the Proposition has been satistfied for l−1
transformations, so that we have xl−1 and T ′ = T1×T2× ...×Tl−1 and T nkxl−1 → xl−1

as nk → ∞. Now consider l transformations, so T = T1 × T2 × ... × Tl and we will
be dealing with xl for any x ∈ X, notice that for l = 2 we are only dealing with
values on the line y = x since the y-axis is the space X like the x-axis. So our xl we
are interested in are on the diagonal for the l-dimensional space they belong to. Let
us call ∆(l) the subset of all diagonal l-tuples (x, x, ..., x). Now let every element in
S ∈ G be written as S × S × ...× S. Notice that since the Ti commute and generate
G we know that T and S ∈ G commute, also since Ti is a homeomorphism then any
S ∈ G is also a homeomorphism, so G is a group of homeomorphisms. And if you
recall we are calling X our invariant set under G. It is easy to see that ∆(l) ⊂ X l

and that ∆(l) is a closed subset of X l. Now we recognize that there must exist a set
of S ∈ G that leaves ∆(l) invariant. So it follows that ∆(l) is a homogeneous set.
To finish the proof let Ri = TiT

−1
l , i = 1, 2, ..., l − 1, and let y ∈ X be a point that

satisfies Rnk
i y → y for i = 1, 2, ..., l − 1 and some sequence nk →∞. Now set

x∗ = (y, y, ..., y) ∈ ∆(l)
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y∗k = (T−nkl y, T−nkl y, ..., T−nkl y) ∈ ∆(l)

Then for large k, T nky∗k = (Rnk
1 y,R

nk
2 y, ..., R

nk
l−1y, y) and this must be close to x∗. We

can draw this conclusion because by our inductive step we know that (Rnk
1 y, ..., R

nk
l−1y)→

(y, y, ..., y) ∈ ∆(l−1), thus T nky∗k → x∗ as nk → ∞. So we have fulfilled Proposition
1 for l transformations, which means there is a recurrent point and we have proved
Proposition 2.

With this result we can generalize the requirements and get a more broad result
that will be MBR.

theorem MBR: Let X be a compact metric space and T1, T2, ..., Tl be commuting
continuous maps of X to itself. Then there exists a point x ∈ X and a sequence
nk →∞ with T nk

i x→ x simultaneously for i = 1, 2, ..., l.
Notice that we have Ti continuous maps rather than homeomorphisms, thus we

cannot assume that the Ti have inverses. So the Ti do not generate a group, rather
they generate a semigroup. Now to be able to use group properties consider Zl, where
Z2 stands for only the integer points (including 0) of the space R2. In the diagram
below we then apply a copy of the space X at each of the red points.

To keep things simple consider the R2 example where on the real line at every
integer point we have a copy of our compact space (and recall that we are thinking
of the unit interval as our compact space). In this example we have T1 and T2 as
our continuous mappings and moving in the positive X direction (to the next integer
value on the real line) means we have done T1 to some x ∈ X and moving in the
positive Y direction is defined similarly. Call these moves Si rather than Ti. Now
notice that in the R2 case (S1×S2)x = (S2×S1)x since we end up at the same point
on the grid (1, 1). Thus these Si moves commute. Now all we must do to show that
Proposition 2 holds is that there are inverses for the Si.
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Here I want to introduce some new notation, let ω(n1, ..., nl) be the representation
of a point in X on grid with coordinates (n1, ..., nl). So in our two dimensional grid
above (where our l = 2) a ω(2, 1) would represent a x ∈ X on the red circle (2, 1) on
the grid. Now let us compile this notation with our Si moves. So when I write,

Siω(n1, n2, ..., ni, ..., nl) = ω(n1, n2, ..., ni+1, ..., nl)

for a certain x0 ∈ X. Going back to our simple l = 2 case if we were given a point
x ∈ X represented by ω(1, 0), then S2ω(1, 0) = ω(1, 1).

Consider a space of all infinite sequences of numbers, call this space Y . Now call
Ỹ the space of sequences that are forward orbits of points x ∈ X satisfying,

Siω(n1, ..., nl) = Ti(ω(n1, ...nl)), i = 1, ..., l

Thus given a point x0 ∈ X we have a sequence ỹ ∈ Ỹ that corresponds to the
orbit of x0. Let us go back to our R2 example, an orbit of a point can be written
{(x0, y0), (Tx0, y0), (Tx0, T y0), ...}. This orbit goes from the (0, 0) lattice point to the
(1, 0) and then to the (1, 1) lattice point. The second point in the orbit can be written
as S1ω(0, 0) with respect to the beginning point (x0, y0). Do not forget that whenever
we have the notation ω(...) it is with respect to a single point in X. From here on
whenever we say mention a point will be considering the full orbit of that point.

For any x ∈ X and for n ∈ N set

ωn(n1, ..., nl) = T n1+n
1 T n2+n

2 ...T nl+n
l x

for ni ≥ −n. This is much simpler when explained in terms of our R2 example. So
given a set (4, 7) we can set our n = {−4,−3,−2,−1,−0, 1, ...}. Let n = −3, then
we get ω−3(4, 7) = (T 4−3

1 x0, T
7−3
2 y0) = (T 1x0, T

4y0). Again recall that we are doing
this to the orbit of a point, thus essentially all we are doing is starting somewhere in
the orbit and going back n points. Notice what this allows us to do, so long as our
condition ni ≥ −n is satisfied it lets us find the inverse of a point. Let me illustrate
with an example. Consider the function

F (x) = 2x(mod1).

F (x) is continuous but not a homeomorphism. Consider the points 1
4

and 3
4
. The

orbits of these points go as follows{
1

4
,
1

2
, 0, 0, 0...

}
{

3

4
,
1

2
, 0, 0, 0...

}
.

Though notice that when considering the point
1

4
that ω−1

(
1

2

)
=

1

4
. This is so

because we are going back one iterate on the orbit of the point
1

4
not the point

3

4
.
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Now we see that we can take inverses with the operation Si. So we have shown
that the Si commute and that they are invertible (again invertible here means going
backwards in the orbit of the original point) thus these Si are homeomorphisms. So
now they satisfy the criteria for Proposition 2 and thus we have proved the theorem.

We are a few new terms away from showing you how this all applies to van der
Waerden’s theorem. I will present to you some symbolic dynamics that will prove
very useful in completing the proof. Let Λ = {a, b, ..., q} be a set of q symbols (try
to think of them as symbols rather than letters in the alphabet because we can have
more than 26 symbols). Now imagine all the infinite combinations of these q symbols,
and call the set of these sequences X̄. Now notice in one sequence x̄0 ∈ X̄ we have q
partitions of the integers (Z), you can see this by assigning one symbol to the number 0
then labeling the other symbols accordingly, then the numbers with the same symbols
belong to the same class. Call these q sets Bi, then we have ∪qi=1Bi = Z.

Next we must define a function to determine distance when considering the se-
quences in X̄. Let x̄, x̄′ ∈ X̄, then

d(x̄, x̄′) = inf

{
1

k + 1

∣∣∣∣x̄(i) = x̄′(i)for|i| ≤ k

}
What this is telling us is the size of the largest symmetrical interval around the

central symbols of the sequences. Applying this, if we were given that d(x̄, x̄′) =
1

5
,

we would know that if we went in either direction from the center symbol a distance of
4 symbols we would have identical 9 symbol intervals. Also when we have d(x̄, x̄′) =
1 we know that the two sequences have different central symbols, and if we have

d(x̄, x̄′) =
1

2
we know that only the central elements of each sequence correspond.

Our last item that we must introduce before showing how MBR implies van der
Waerden’s theorem is the shift map. Consider the sequence x̄0 = {...bda.afgl...}
where the symbols come from Λ = {a, b, c, ..., q}, and the symbol to the right of the .
represents the central symbol of the sequence. Now the shift map for a given x̄ ∈ X̄is,

T (x̄) = {..., λ(i+ 1), ...}

So the shift map on our previously mentioned, x̄ gives us

T (x̄0) = {...bd.aafgl...}

means that we are moving the center of the whole sequence one point to the right,
and then changing the integer values of all other points in the sequence accordingly.

Notice that in the example that I have given we have d(x̄, T (x̄)) =
1

2
since the central

terms of the sequence correspond. We can do the shift function multiple times to
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a sequence, where we get x̄, T (x̄), T 2(x̄), ..., T n(x̄), where T n(x̄) means that we are
shifting the integers that belong to the symbols and shifting them over n symbols.

Example: Let x̄ = {.....bdaa.cdbbadcc...} where the symbol that comes after the . is
the central symbol of the sequence. Now when we do T 3(x̄) we get {...bdaacdb.badcc...},
and if we were to do T 6(x̄) we get {...bdaacdbbad.cc...}.

What we are capable of doing now is writing van der Waerden’s theorem using
these new terms that we’ve defined. This will allow us to see how MBR can be used
to imply van der Waerden’s theorem. It is easy to see that this following assertion is
the equivalent to the theorem: For any point x̄0 ∈ X̄ and any l = 2, 3, ... there exists
m,n ∈ Z such that x̄0(m) = x̄0(m+n) = x̄0(m+ 2n) = ... = x̄0(m+ ln). You can see
how this is van der Waerden’s theorem because we get an arithmetic sequence that
has distance n between successive elements and that it is of length l. And we know
that all the numbers belong in the same class because we have x̄0(m) = x̄0(m + ln)
for l = 2, 3..., which means that they are all the same symbol, which we took to mean
class.

Now recall the distance function on our space X̄. If we are given d(x̄, x̄′) < 1
then we know that we at least have x̄(0) = x̄′(0), because the only way we can have
d(x̄, x̄′) < 1 is if there is an identical interval of symbols about their x̄(0), and x̄′(0)
points. Now notice that the shift map gives us x(n) = T n(x(0)). Again we can rewrite
van der Waerden’s theorem:
If X is a compact metric space and T : X → X is a homeomorphism, then for an
x0 ∈ X and any integer l ≥ l and a given ε > 0, there is some point y on the orbit
of x0, which means we can write y = Tmx0 for some m. And this y has the property
that for some n ≥ 1, the points y, T ny, T 2ny, ..., T lny are all within ε of each other.

This definition of van der Waerden’s theorem follows from the MBR theorem we
earlier proved. When proving this result we will use X̄ as our space and the shift map
T as our homeomorphism. To see how MBR implies this result let Y be the closure
in X̄ of the orbit of the point x̄0. This means that Y contains all the points on the
orbit of x̄0 and it also contains all the points in X̄ that the orbits of x̄0 get very close
to but never become. Another way to say this is Y must also contain all the limit
points of the orbit of x̄0. So we write:

Y = {Tmx̄0| −∞ < m <∞}.

Now let T1 = T, T2 = T 2, ..., Tl = T l. We can see that the set Y is a T invariant
compact set (where T represents all the possible combinations of the Ti, i = 1, 2, ..., l)
because we know that no matter how many times you do T to x̄0 the resulting
point must be in Y by our construction of Y . Also we must notice that the Ti are
all commuting. This is not hard to see, imagine shifting a point m spaces, then
shifting it n spaces, the result is a shift of m + n spaces, which is obviously the
same as a shift of n + m spaces. So now we have commuting homeomorphisms on
an invariant compact set Y , thus there exists a point y′ ∈ Y with some T nk

1 y′ →
y′, T nk

2 y′ → y′, ..., T nk
l y′ → y′, by the MBR theorem. We can write our result in this
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manner, y′, T ny′, T 2ny′, ..., T lny′ are all within ε of each other. Now when we select an

0 < ε < 1 we know that the distance between points can at most be
1

2
which means

that all the points belong to the same class!
So what we have discovered is that given any sequence x̄0 (which is a partition

of Z into q classes) then there is a point q(i) on this sequence that for some n ≥ 1
we have q(i), T nq(i), T 2nq(i), ..., T lnq(i) all within ε of each other. And if this ε is less
than 1 we know that all these values are the same symbol. Now since these symbols
are shifted n spaces and the symbols acutally represent integers of Z we can see that
we have found an arithmetic sequence of length l that is distance n apart and whose
elements all belong to the same class. Furthermore since we found this arithmetic
sequence for any x̄0 ∈ X̄ we know that we can find an arithmetic sequence of length
l for any partitioning of Z into q classes.

You may notice that this result is slightly weaker because we cannot find an upper
bound for how large of a set in Z we must use to ensure we find an arithmetic sequence
of length l when partitioning into q classes.

26



4 Applications of van der Waerdens theorem

Unfortunately this theorem is not the most applicable result. One major goal ever
since the theorem was proved was to find these van der Waerden numbers. The most
minimal n(k, l) that gives us an arithmetic progression of length l when splitting the
set of numbers N with 1 ≤ N ≤ n(k, l). There have been a many discoveries of lower
and upper bounds. Some examples of lower bounds for van der Waerden numbers are

n(l) > 2l−c(l log l)
1
2

where n(l) = n(2, l) [4]. Another lower bound found is, given a prime p, [7]

n(2, p+ 1) > p2p.

There have been many more lower bounds found for van der Waerden numbers.
One of the most recent discoveries with regards to van der Waerden numbers is

the generalized result of the upper bound given by Tim Gowers in 1998, [7]

n(k, l) ≤ ee
ke

el+110

.

The trouble with these lower and upper bounds is that they are imprecise. It remains
a very open problem in number theory as how to best approximate, or solve, n(k, l).

One particularly interesting application of van der Waerdens theorem has been
in finding prime numbers. Interestingly enough it was observed that 23143 + 30030l
is a prime for 1 ≤ l ≤ 11 ([4], pg. 224). The question that follows is can we find
prime numbers in arithmetic progressions. It is known that there are an infinitely
many prime triplets in arithmetic progression. It has been argued that if van der
Waerden numbers we could be more precisely estimated then we could discover if
there exists arbitrarily long strings of prime numbers that are consecutive members
in some arithmetic progression [8].

Van der Waerden’s theorem can also be relevant in explaining Bible Code. Bible
Code is the idea that you can decifer hidden messages from the Bible, the main
method in doing this is known as equidistant letter sequence method (ELS) [2]. To
do ELS simply select a starting letter and then skip n letters, going forward or
backwards, then at every n-th letter underline it (at some point you will have to
stop the sequence). Then all the underlined letters can sometimes form a new word
or sentence. As an example if I start at the t in my name Rothlisberger, and skip
two letters going forward (stopping at the first e) we get Rothlisberger. The bold
letters spell out tie, so it can be said that my last name encodes the word tie with a
forward skip of two. ELS is said to be more important when there are many encoded
words found close together in the text, these words sometimes come together to form
phrases which some believe can be predictors of the future.
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Now it seems obvious that these ELS words are explained by van der Waerden’s
theorem. When doing ELS we are simply looking for arithmetic sequences that turn
out to be words, rather than belonging to a class. So it follows that if we were to
have a book with enough words (and all the letters of the alphabet) we would be
garunteed to find many phrases, nevertheless words, by this process of ELS.

Van der Waerden’s theorem is special because it can explain the Bible Code’s
findings. I believe that despite it’s lack of mathematical applications (which is mainly
because the generalized result of Szemeredi’s theorem is more commonly used) the
ability van der Waerden’s theorem has to explain random patterns in the world makes
it a very relevant theorem. As mathematics and science move to explain the world we
live in I believe we will see more theorems, like van der Waerden’s, that will describe
the occurence of events we previously thought to be random.
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