
 

 

 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPROVED: 
 
Elias Kougianos, Major Professor 
Saraju P. Mohanty, Co-Major Professor 
Robert G. Hayes, Committee Member 
Dave Clark, Exe Consulting, Industrial 

Representative 
Nourredine Boubekri, Chair of the Department 

of Engineering Technology 
Costas Tsatsoulis, Dean of the College of 

Engineering 
Michael Monticino, Dean of the Robert B. 

Toulouse School of Graduate Studies 

A VERILOG 8051 SOFT CORE FOR FPGA APPLICATIONS 

Sakina Rangoonwala 

Thesis Prepared for the Degree of 

MASTER OF SCIENCE 

 
 

UNIVERSITY OF NORTH TEXAS 
 

August 2009 



Rangoonwala, Sakina. A Verilog 8051 Soft Core for FPGA Applications. 

Master of Science (Engineering Systems), August 2009, 78 pp., 7 tables, 42 

figures, references, 23 titles. 

The objective of this thesis was to develop an 8051 microcontroller soft 

core in the Verilog hardware description language (HDL). Each functional unit of 

the 8051 microcontroller was developed as a separate module, and tested for 

functionality using the open-source VHDL Dalton model as benchmark. These 

modules were then integrated to operate as concurrent processes in the 8051 

soft core. The Verilog 8051 soft core was then synthesized in Quartus® II 

simulation and synthesis environment (Altera Corp., San Jose, CA, 

www.altera.com) and yielded the expected behavioral response to test programs 

written in 8051 assembler residing in the v8051 ROM. The design can operate at 

speeds up to 41 MHz and used only 16% of the FPGA fabric, thus allowing 

complex systems to be designed on a single chip. Further research and 

development can be performed on v8051 to enhance performance and 

functionality. 



 

 ii 

Copyright 2009 

by 

Sakina Rangoonwala 



iii 

TABLE OF CONTENTS 

LIST OF TABLES ................................................................................................. v 

LIST OF FIGURES ...............................................................................................vi 

LIST OF ABBREVIATIONS ..................................................................................ix 

CHAPTER 1. INTRODUCTION............................................................................. 1 

CHAPTER 2. THE 8051 IP SOFT CORE APPLICATIONS................................... 5 

CHAPTER 3. 8051 VERILOG SOFT CORE ......................................................... 7 

3.1. Features of the 8051 Soft Core .............................................................. 7 

3.2. Overview ................................................................................................ 8 

CHAPTER 4. COMPONENTS OF THE 8051 SOFT CORE ............................... 11 

4.1. Controller.............................................................................................. 11 

4.1.1. Detailed Design............................................................................. 12 

4.1.2. Simulation and Testing.................................................................. 27 

4.1.3. Verification .................................................................................... 29 

4.2. ROM..................................................................................................... 30 

4.2.1. Detailed Design............................................................................. 30 

4.2.2. Simulation & Testing ..................................................................... 31 

4.2.3. Verification .................................................................................... 32 

4.3. RAM ..................................................................................................... 33 



iv 

4.3.1. Detailed Design............................................................................. 33 

4.3.2. Simulation and Testing.................................................................. 38 

4.3.3. Verification .................................................................................... 43 

4.4. External RAM ....................................................................................... 44 

4.5. Decoder................................................................................................ 44 

4.5.1. Detailed Design............................................................................. 44 

4.5.2. Simulation & Testing ..................................................................... 45 

4.5.3. Verification .................................................................................... 46 

4.6. ALU ...................................................................................................... 47 

4.6.1. Detailed Design............................................................................. 47 

4.6.2. Simulation and Testing.................................................................. 55 

4.6.3. Verification .................................................................................... 57 

CHAPTER 5. 8051 MODEL INTEGRATION....................................................... 59 

5.1. Detailed Design.................................................................................... 59 

5.2. Simulation and Testing......................................................................... 60 

CHAPTER 6. CONCLUSIONS............................................................................ 65 

APPENDIX ...................................................................................................... 67 

 ASSEMBLER LISTING OF TEST PROGRAM T_BCD_R2......................... 68 

REFERENCES................................................................................................... 75 

 



v 

LIST OF TABLES 

Table 4.1-1: Encoding Table CPU_STATES ...................................................... 12 

Table 4.1-2: Encoding Table EXE_STATES ...................................................... 13 

Table 4.5-1: Decoder Test - Instructions & Expected Results ............................ 45 

Table 4.6-1: ALU Operations.............................................................................. 48 

Table 4.6-2: ALU - Test Instructions and Expected Results ............................... 56 

Table 4.6-3: Mismatched Output Signals (Dalton & Verilog ALU Modules) and 

Their Impact on Result .................................................................. 57 

Table 5.2-1: Expected Result for Test Program t_bcd_r2................................... 63 



vi 

LIST OF FIGURES 

Figure 3.2-1: Block Diagram of the v8051 Soft Core ............................................ 9 

Figure 4.1-1: Controller Module .......................................................................... 11 

Figure 4.1-2: State Diagram CPU_STATES....................................................... 12 

Figure 4.1-3: State Diagram EXE_STATES ....................................................... 13 

Figure 4.1-4: Overview of Controller Program Flow............................................ 15 

Figure 4.1-5: Flow Diagram for Controller Reset Cycle CS_0 ............................ 16 

Figure 4.1-6 : Flow Diagram for Instruction Fetch Cycle CS_2 (ES_0 to ES_2). 19 

Figure 4.1-7: Flow Diagram for Instruction Fetch Cycle CS_2 (ES_3 to ES_4) .. 20 

Figure 4.1-8: Flow Diagram for Instruction Fetch Cycle CS_2 (ES_5 to ES_7) .. 21 

Figure 4.1-9: Flow Diagram for Instruction Execute Cycle CS_3 for Arithmetic 

ADD A, #data ................................................................................ 25 

Figure 4.1-10: Flow Diagram of Instruction Execution Cycle CS_3 for Shift Left 

RLC A ........................................................................................... 26 

Figure 4.1-11: Instruction Fetch & Decode During CS_2.................................... 28 

Figure 4.1-12: Execute Cycle CS_3 for Instruction RLC..................................... 28 

Figure 4.2-1: ROM Contents of Test Program Test1_r1.txt - 8051 Instructions.. 32 

Figure 4.2-2: Simulation Waveform for ROM Module (Verilog Model)................ 32 

Figure 4.2-3: Simulation Waveform for ROM Module (Dalton Model)................. 33 



vii 

Figure 4.3-1: Flow Diagram for RAM Module ..................................................... 35 

Figure 4.3-2: Flow Diagram for RAM - Bit Manipulation ..................................... 36 

Figure 4.3-3: Flow Diagram for RAM - Byte Read /Write.................................... 37 

Figure 4.3-4: Reset Asserted.............................................................................. 38 

Figure 4.3-5: Byte Read / Write to RAM - Functional Simulation ........................ 40 

Figure 4.3-6: Byte Read / Write to RAM - Timing Simulation.............................. 40 

Figure 4.3-7: Worst-Case Delays in Timing Simulation ...................................... 40 

Figure 4.3-8: Byte Read / Write to RAM / SFRs ................................................. 41 

Figure 4.3-9: Bit Manipulation on RAM Locations 20H to 2FH ........................... 42 

Figure 4.3-10: Bit Read from SFRs – A-Register, B-Register, Port1, & PSW..... 43 

Figure 4.5-1: Simulation of 8051 Instruction Decoding (Verilog Model).............. 46 

Figure 4.5-2: Worst–Case Delay in Timing Simulation of Decoder Functions .... 46 

Figure 4.5-3: Comparison Report of Simulation of 8051 Instruction Decoding 

(Dalton Model with Verilog model) ................................................ 47 

Figure 4.6-1: Flow Diagram for ALU Response to ADD or SUB Instruction ....... 49 

Figure 4.6-2: Flow Diagram for ALU Response to MUL or DIV Instruction......... 50 

Figure 4.6-3: Flow Diagram for ALU response to DIV instruction (cont’d) .......... 51 

Figure 4.6-4: Flow Diagram for ALU response to DA instruction ........................ 52 

Figure 4.6-5: Flow Diagram for ALU Response to Logical Instructions .............. 53 

Figure 4.6-6: Flow Diagram for ALU Response to Shift Instructions................... 54 

Figure 4.6-7: Simulation of 8051 ALU Operation for Op-Codes 0 to 9h.............. 55 



viii 

Figure 4.6-8: Simulation of 8051 ALU Operation for Op-Codes Ah to Fh ........... 56 

Figure 4.6-9: Comparison Report of Simulation of 8051 ALU Operation (Dalton 

Model with Verilog Model) for Op-Codes 0 to 9h........................... 58 

Figure 4.6-10: Comparison Report of Simulation of 8051 ALU Operation (Dalton 

Model with Verilog Model) for Op-Codes Ah to Fh ........................ 58 

Figure 5.2-1: ‘Test_Led’ Test Program in 8051 Assembly Code. ....................... 60 

Figure 5.2-2: Waveform Showing Input/ Output Ports with 8051 Soft Core 

Running ‘Test_Led’ ....................................................................... 61 

Figure 5.2-3: Simulation Results for Soft Core Running Test Program t_bcd_r2 64 

 



ix 

LIST OF ABBREVIATIONS 

ac Auxiliary carry flag 

cy Carry flag 

DPTR Data pointer register 

IP Intellectual property 

FPGA Field programmable gate array 

FSM Finite state machine 

HDL Hardware description language 

ov Overload flag 

PC Program counter register 

PSW Program status word register 

RAM Random access memory 

ROM Read only memory 

SFR Special function register 

SP Stack pointer register 

 

 



1 

CHAPTER 1.  

INTRODUCTION 

An IP (intellectual property) core is a block of logic or data that is used in 

configuring a field programmable gate array (FPGA) or application-specific 

integrated circuit (ASIC) towards a final product [1]. The growing progression on 

the use of IP cores in the electronic design automation (EDA) industry can be 

attributed to repeated use of previously designed components. Design reuse 

shortens time to develop and hence the time-to-market for a new product. An IP 

core should be entirely portable for it to be used as a building block with multiple 

vendor technologies or design methodologies.  

There are three types of IP cores: hard cores, firm cores, or soft cores [1]. 

Hard cores are physical implementations of the IP design logic and 

interconnections. These are best for plug-and-play applications, and are less 

portable and flexible than the other two types of cores. Like the hard cores, firm 

(sometimes called semi-hard) cores also hard wired but have some flexibility and 

are configurable to various applications. The most flexible of the three, soft cores 

exist either as a netlist (a list of the logic gates and associated interconnections 

making up an integrated circuit) or hardware description language (HDL ) code. 

The hard core must be designed using a particular technology, while a soft core 

has the advantage of being synthesizable in any technology as long as the 

http://searchcio-midmarket.techtarget.com/sDefinition/0,,sid183_gci530571,00.html�
http://searchcio-midmarket.techtarget.com/sDefinition/0,,sid183_gci213785,00.html�
http://whatis.techtarget.com/definition/0,289893,sid9_gci759468,00.html�
http://searchstorage.techtarget.com/sDefinition/0,,sid5_gci212809,00.html�
http://searchwinit.techtarget.com/sDefinition/0,,sid1_gci212799,00.html�
http://whatis.techtarget.com/definition/0,289893,sid9_gci213512,00.html�
http://searchcio-midmarket.techtarget.com/sDefinition/0,,sid183_gci213503,00.html�
http://searchcio-midmarket.techtarget.com/sDefinition/0,,sid183_gci213503,00.html�


2 

specific design tools and technology libraries are available. Furthermore, the 

designer can optimize the soft core for a particular use, for example by removing 

unused functions, thus reducing size and power [1]. 

Embedded controllers are special purpose computers programmed to 

perform one or a few dedicated functions. The common features that 

characterize embedded controllers are [2]:  

 Programmed to perform dedicated task. The specific program is stored in 

ROM (read-only memory) and therefore does not change.  

 Low-power devices, operating at a fraction of the power of a desktop. A 

desktop computer is plugged into a wall socket and might consume 500 

watts of electricity while a battery-operated microcontroller might consume 

only 50 milli-watts.  

 An embedded controller has a dedicated input device and may have a 

small light emitting diode (LED) or liquid crystal display (LCD) for output. A 

microcontroller also takes input from the device it is controlling and 

controls the device by sending signals to different components in the 

device.  

 Small and low cost. The components are chosen to minimize size and to 

be as inexpensive as possible.  

 It is made rugged in some way, to cater for the application.  

http://www.howstuffworks.com/rom.htm�


3 

 Highly reliable. Embedded systems often reside in machines that are 

expected to run continuously for years without error and in some cases 

automatically recover, if an error occurs.  

The portable feature of IP cores makes it easier to import the technology 

to a new system, and to build a new product pivoting on the advantages of 

intellectual property. Another important advantage of using IP cores is the 

reduction of engineering costs for the new systems. Design reuse, ease of 

reconfiguration and customization are the attributes that make use of IP cores an 

attractive methodology to build systems on a chip [3]. 

Every modern device has embedded controllers. The range of applications 

of embedded systems vary from simple portable devices such as mobile phones 

and MP3 players, to large stationary installations like traffic lights, industrial 

process controllers, or the systems controlling satellites. Complexity varies from 

low, with a single microcontroller chip, to very high with multiple units, peripherals 

and networks mounted inside a large chassis or enclosure. 

Embedded systems span all aspects of modern life. Some examples [2] of 

their use are listed below: 

Embedded controllers are extensively used in Telecommunications 

systems, from telephone switches for the network to mobile phones at the end-

user. Dedicated routers and network bridges are used in Computer networking to 

route data. Examples in consumer electronics are MP3 players,  personal digital 

assistants (PDAs), digital cameras, mobile phones, videogame consoles, DVD 

http://en.wikipedia.org/wiki/Telephone_switch�
http://en.wikipedia.org/wiki/Mobile_phone�
http://en.wikipedia.org/wiki/Router�
http://en.wikipedia.org/wiki/Network_bridge�
http://en.wikipedia.org/wiki/Consumer_electronics�
http://en.wikipedia.org/wiki/Mp3_player�
http://en.wikipedia.org/wiki/Personal_digital_assistant�
http://en.wikipedia.org/wiki/Personal_digital_assistant�
http://en.wikipedia.org/wiki/Digital_camera�
http://en.wikipedia.org/wiki/Videogame_console�
http://en.wikipedia.org/wiki/DVD_player�


4 

players, GPS receivers, printers and scanners. Household appliances have 

embedded controllers to enhance features, flexibility and efficiency in devices 

such as microwave ovens, washing machines and dishwashers. Advanced 

HVAC systems provide more accurate and efficient temperature control, 

programmable to change by time of day and season, using networked 

thermostats. Home automation uses wired- and wireless-networking that can be 

used to control lights, climate, security, and audio/visual output signals, all of 

which use embedded devices for sensing and controlling. 

Transportation systems: Airplanes use advanced avionics such as inertial 

guidance systems and GPS receivers with embedded controllers also functioning 

to meet the safety requirements. Various electric motors — brushless DC motors, 

induction motors and DC motors — are using electric/electronic motor 

controllers. 

 Automobiles, electric vehicles and hybrid vehicles are increasingly using 

embedded systems to maximize efficiency and reduce pollution. Other 

automotive safety systems such as anti-lock braking system (ABS), electronic 

stability controls (ESC/ESP), and automatic four-wheel drive use large numbers 

of embedded microcontrollers. 

Medical equipment is progressively becoming sophisticated with more 

embedded systems for vital signs monitoring, electronic thermometers, 

stethoscopes,  sound amplifiers, and various visualization techniques (PET, 

SPECT, CT, MRI, MPR) for non-invasive internal inspections.  

http://en.wikipedia.org/wiki/DVD_player�
http://en.wikipedia.org/wiki/DVD_player�
http://en.wikipedia.org/wiki/Global_Positioning_System�
http://en.wikipedia.org/wiki/Computer_printer�
http://en.wikipedia.org/wiki/Microwave_oven�
http://en.wikipedia.org/wiki/Washing_machine�
http://en.wikipedia.org/wiki/Dishwashers�
http://en.wikipedia.org/wiki/HVAC�
http://en.wikipedia.org/wiki/Season�
http://en.wikipedia.org/wiki/Thermostat�
http://en.wikipedia.org/wiki/Home_automation�
http://en.wikipedia.org/wiki/Avionics�
http://en.wikipedia.org/wiki/Inertial_guidance_system�
http://en.wikipedia.org/wiki/Inertial_guidance_system�
http://en.wikipedia.org/wiki/Global_Positioning_System�
http://en.wikipedia.org/wiki/Brushless_DC_motor�
http://en.wikipedia.org/wiki/Induction_motor�
http://en.wikipedia.org/wiki/DC_motor�
http://en.wikipedia.org/wiki/Motor_controller�
http://en.wikipedia.org/wiki/Motor_controller�
http://en.wikipedia.org/wiki/Automobile�
http://en.wikipedia.org/wiki/Electric_vehicle�
http://en.wikipedia.org/wiki/Hybrid_vehicle�
http://en.wikipedia.org/wiki/Anti-lock_braking_system�
http://en.wikipedia.org/wiki/Electronic_Stability_Control�
http://en.wikipedia.org/wiki/Electronic_Stability_Control�
http://en.wikipedia.org/wiki/Four-wheel_drive�
http://en.wikipedia.org/wiki/Medical_equipment�
http://en.wikipedia.org/wiki/Vital_signs�
http://en.wikipedia.org/wiki/Electronic_stethoscope�
http://en.wikipedia.org/wiki/Electronic_stethoscope�
http://en.wikipedia.org/wiki/Positron_emission_tomography�
http://en.wikipedia.org/wiki/Single_photon_emission_computed_tomography�
http://en.wikipedia.org/wiki/Computed_tomography�
http://en.wikipedia.org/wiki/Magnetic_resonance_imaging�


5 

CHAPTER 2.  

THE 8051 IP SOFT CORE APPLICATIONS 

The 8051 microcontroller core is suitable for building mixed-signal 

systems on a chip. It also provides an easily-programmed alternative to hard-

coded control logic in many existing applications. It is suited for low-power and 

small FPGA-based systems. 

The soft core on FPGA for system–on–chip provides a platform for 

changes to embedded design. Additional functions can be added, the chip can 

be upgraded or simple modifications implemented by reprogramming. Such 

examples are seen in the following research applications:  

1. Auto peripheral detection, hardware dynamic partial self-

reconfiguration and software dynamic driver loading implemented on 

one single FPGA [4]. 

2. An embedded implementation of the “Player” client mobile robot using 

the NIOS® II soft core (Alter Corp., San Jose, CA, www.altera.com) [5]. 

3. The integration of 8-bit 8051 processor core with a general purpose 

16-bit fixed-point digital signal processor (DSP) core using the 

Virtex™-II FPGA (Xilinx Inc., San Jose, CA, www.xilinx.com) and RAM/ 

ROM memories to generate a new processor family called the digital 

signal controller (DSC) [6].  

http://www.altera.com/�
http://www.xilinx.com/�


6 

4. Embedded On-Chip Debugging support module integrated onto 8051 

microcontroller for in-circuit emulation of embedded systems with 

debugging mechanisms such as single step, breakpoint setting and 

detection, and internal resource monitoring and modification [7].  

  



7 

CHAPTER 3.  

8051 VERILOG SOFT CORE 

3.1. Features of the 8051 Soft Core 

The objective is to develop an 8051 soft core, in the Verilog HDL, capable 

of being used as an embedded controller, and customizable for specific 

applications.  

The key features of the Verilog soft core are as follows: 

 Executes the 8051 basic instruction set. 

 Addresses up to 256 bytes of random access memory configured as 

follows to emulate the 8051 RAM.  

128 bytes of data memory (00h – 7Fh) classified as:  

 00h – 1Fh: 4 banks of 8 registers (R0 to R7) each. 

 locations 20h -2Fh bit addressable registers 

 30h – 7Fh general purpose registers 

21 defined Special function registers assigned within address space 80h 

to FFh. 

 Supports 4KB of program memory  

 Addresses up to 64KB external memory 

 Four 8-bit I/O ports with following characteristics: 



8 

Each port is bit-addressable for both input and output directions. It can be 

configured as single bit or 8-bit ports. Thus 32 I/O lines are available for 

connecting the 8051 to peripheral devices. 

 Interrupts are not implemented. Provisions exist for adding interrupt/s 

handling.  

 Data/ address lines are not tri-stated.  

The programmable parts of the soft core can be configured to achieve any 

desired function or application. That is, by writing software in 8051 assembly 

code, loading it to ROM and setting the parameters. 

3.2. Overview 

The functional units of a basic 8051 microcontroller, as shown in the Block 

diagram in  

Figure 3.2-1, were each analyzed, implemented and tested individually. 

The units were then integrated to synthesize the v8051 soft core.  

The Verilog 8051 soft core was developed with the Dalton model as the 

reference soft core. Dalton model is a working, freely available VHDL IP soft core 

[8].  

 
 
 



9 

  
Figure 3.2-1: Block Diagram of the v8051 Soft Core 

 
The Verilog 8051 soft core was developed following the method of 

ipProcess Workflow [9]. It is represented by five major workflows of IP design, as 

follows: 

Statement of Requirements- These are stated in section 3.1 above. 

Analysis and Design- Design overview is shown in Figure 3.2-1. Detailed 

design flow for each module is explained in the following chapter. 

Implementation- Design is implemented in Verilog HDL. 

TO / FROM EXTERNAL 
MEMORY  

D
A

T
A

-O
U

T
 (

8)
 

A
D

D
R

E
S

S
 (

16
)

W
R

IT
E
 

R
E

A
D

 

IS
-B

IT
-A

D
D

R
 

R
E

A
D

 

C
Y

-I
N

-1
 &

 2
 

Controller  
 

v8051_ctr 

Program 
Memory 

 

v8051 ROM

 

Data Memory 
 

v8051_RAM 

 
Decoder 

 
v8051_dec 

ALU 
 

v8051_ALU

D
E

S
  

( 
8 

) 

C
Y

-O
U

T
-1

 

C
Y

-O
U

T
-2

 

O
V

E
R

F
LO

W
 

A
D

D
R

E
S

S
 (

 1
2 

) 

D
A

T
A

 (
 8

 )
 

R
A

M
-D

A
T

A
 (

8)
 

B
IT

-D
A

T
A

 

R
E

A
D

 

W
R

IT
E

 

PORTS (P0 - P3) 

D
A

T
A

-I
N

 (
8

) 

O
P

-C
O

D
E

- 
IN

 (
 8

 )
 

O
P

-C
O

D
E

  
( 

4
 )
 

S
R

C
1 

( 
8 

) 

S
R

C
2 

( 
8 

R
A

M
A

D
D

R
E

S
S

 (
12

) 

CLK 

RST 

O
P

-C
O

D
E

- 
O

U
T

 (
 9

 

RST 

CLK_SLOW

CLKFAST 

CLK

S
R

C
_3

 (
 8

 )
 



10 

Functional Verification- These are also detailed in chapter 4. The Dalton 

model was used as benchmark to verify functionality. 

FPGA Prototyping- the FPGA on DE2 Board from ALTERA® was then 

programmed using the tools for prototyping in Quartus® II design software (Altera 

Corp., San Jose, CA, www.altera.com). 

The design, development and testing of the soft core was done using 

Quartus II version 8.0 Web edition software. The only other tool required was an 

8051 simulator, for testing the 8051 assembler code, and an assembler for the 

Soft core ROM. The freely available EdSim51™ 8051 simulator (James Roger, 

8051 simulator for teachers and students, IT Sligo, Ireland, www.edsim52.com) 

was used [10]. 

http://www.edsim52.com/�


11 

CHAPTER 4.  

COMPONENTS OF THE 8051 SOFT CORE  

4.1. Controller 

The controller, as the name implies, controls the sequence of all activities 

in the 8051. It steers the data to the proper destination, according to the 

instruction being executed. It also monitors the stage of the instruction 

processing and determines the value of the control signals. The controller 

module manages the data path for the 8051 instruction set, which consists of 49 

one-byte long, 45 two-byte long and 17 three-byte long instructions [12]. Figure 

4.1-1 shows the input and output signals for the controller.  

 

Figure 4.1-1: Controller Module 

alu_des_ac 

alu_src_ac 
alu_src_cy 

alu_src_3 (8) 

alu_src_2 (8) 

alu_src_1 (8) 

alu_op_code (4) 
dec_op_out (8) 

xrm_addr (15) 

xrm_wr 
xrm_rd 

ram_rd 
ram_wr 

xrm_data (8) 

v8051_ctr 
ram_out_bit_data 
ram_is_bit_addr 

ram_out_data (8) 
ram_addr (8) 

rom_rd 
rom_addr (12) 

alu_des_cy 

ram_in_bit 

ram_data (8) 

alu_des_ov 

rom_data (8) 

xrm_in_data (8) 

dec_op_in (8) 

alu_des_1 (8) 

alu_des_2 (8) 

clkrst



12 

4.1.1. Detailed Design 

The controller module is implemented as a FSM [13]. The functions of the 

v8051 controller are implemented in four control phases, defined as 

“CPU_STATES”. The functions of the controller and corresponding 

CPU_STATES are: Reset (CS_0), instruction fetch & decode (CS_2), and 

instruction execute (CS_3). CS_1 is reserved for future development of interrupt 

handling. Figure 4.1-2 and Figure 4.1-3 are the graphical, and Table 4.1-1 and 

Table 4.1-2 the tabular representations of the FSM for control states generated 

by the Quartus® II design software (Altera Corp., San Jose, CA, 

www.altera.com) upon compiling the controller module. 

CS_0 CS_1 CS_2 CS_3
rst

 
Figure 4.1-2: State Diagram CPU_STATES 

Table 4.1-1: Encoding Table CPU_STATES 

Name CS_0 CS_3 CS_2 CS_1 

CS_0 0 0 0 0 

CS_1 1 0 0 1 

CS_2 1 0 1 0 

CS_3 1 1 0 0 

http://www.altera.com/�


13 

In each CPU_STATE the control of the data path is executed in a 

sequence of eight EXE_STATES. For timing control each EXE_STATE is 

synchronized with, and equal to, one internal clock period. Both CPU_STATES 

and the EXE_STATES are one-hot coded.  The state diagram and the encoding 

table for execution of the control states are represented in Figure 4.1-3 and Table 

4.1-2 respectively. These diagrams are software generated upon compiling the 

controller module. 

ES_0 ES_1 ES_5 ES_6 ES_2 ES_3 ES_4 ES_7
rst

 
Figure 4.1-3: State Diagram EXE_STATES 

Table 4.1-2: Encoding Table EXE_STATES 

Names ES_0 ES_7 ES_6 ES_5 ES_4 ES_3 ES_2 ES_1 

ES_0 0 0 0 0 0 0 0 0 

ES_1 1 0 0 0 0 0 0 1 

ES_2 1 0 0 0 0 0 1 0 

ES_3 1 0 0 0 0 1 0 0 

ES_4 1 0 0 0 1 0 0 0 

ES_5 1 0 0 1 0 0 0 0 

ES_6 1 0 1 0 0 0 0 0 

ES_7 1 1 0 0 0 0 0 0 



14 

The controller maintains uniform timings for its CPU States. CS_0 is 

executed in 6 clock cycles that is in EXE_STATES ES_0 to ES_5. The CS_2 and 

CS_3 are each completed in ES_0 to ES_7 for all instructions types.  

Figure 4.1-4 is an overview of program flow of the controller module. 

The control or CPU states and the steps taken to execute each instruction 

are as follows: 

CPU_STATES: 

 CS_0: Controller reset cycle. This state is entered after reset is asserted. 

The controller is initialized in a sequence of the following EXE_STATES: 

ES_0: Initializes output Port_0 to FFh. Changes EXE_STATE to ES_1. 

ES_1: Initializes output Port_1 to FFh. Changes EXE_STATE to ES_2. 

ES_2: Initializes output Port_2 to FFh. Changes EXE_STATE to ES_3. 

ES_3: Initializes output Port_3 to FFh. Changes EXE_STATE to ES_4. 

ES_4: Initializes Stack-pointer register to 07h. Changes EXE_STATE to 

ES_5. 

ES_5: Changes EXE_STATE to ES_0 and CPU_STATE to CS_1. 

The operation is shown in Figure 4.1-5. 



15 

 

 
Figure 4.1-4: Overview of Controller Program Flow 

No 

Yes

No 

Yes

v8051_ctr

clk    ram_in_data             alu_des_1     
rst   ram_in_bit_data       alu_des_2 
   xrm_in_data             alu_ 
des_cy     
dec_op_in     rom_data                alu_des_ac    

Reset outputs from ctr  
Prog. Counter = 0000h 
Operand Reg [7:0] = 00h  
  PSW = 00h 
 
CPU_STATE = CS_0 
EXE_STATE = EX_0 
 
rom_addr = 12’b0 
rom_rd = 0 

ram_addr = 00h 
ram_out data =00h 
ram_out-bit = 0 
ram_out_bit_addr 
=0 

xrm_addr =0000h 
xrm_out_data = 00h 
xrm_rd/ wr = 0 

alu_op_code =00h 
alu_src_1 = 00h 
alu_src_2 = 00h 
alu_src_3 = 00h 
alu_src_cy = 0 
alu_src_ac = 0 

 

Is posedge? 
rst? 

Is posedge 
clk? 

CS_0

S 

CS_1

CS_3

CS_2

EXE_STATE? 

CPU_STATE? 

ES-2 ES_3 ES_4 ES_5ES_0 ES_1 ES_6 ES_7 

dec_op_out = op_reg1 

Reset memory control  
rom_addr = 12’b0 ram_addr = 00h 
rom_rd = 0  ram_out data =00h 
xrm_addr =0000h ram_out-bit = 0 
xrm_out_data = 00h ram_out_bit_addr =0
xrm_rd/ wr = 0 



16 

 
 

 
Figure 4.1-5: Flow Diagram for Controller Reset Cycle CS_0

CS_0

ES_0

ES_1

ES_2 ES_3 

ES_4

ES_5

EXE_STATE?

ram_out_ data =  FFh 
ram_wr = ‘1’ 

ram addr = R_P0 

EXE_STATE  =  
 ES_1 

ram_out_ data =  FFh
ram_wr = ‘1’ 

ram addr = R_P1 

EXE_STATE  =  
 ES_1 

ram_out_ data =  FFh
ram_wr = ‘1’ 

ram addr = R_P2 

EXE_STATE  =  
 ES_1 

ram_out_ data =  FFh
ram_wr = ‘1’ 

ram addr = R_P3 

EXE_STATE  =  
 ES_1 

ram_out_ data =  FFh
ram_wr = ‘1’ 

ram addr = R_SP 

EXE_STATE  =  
 ES_1 

 
CPU_STATE = 

CS_1 

EXE_STATE  =  
 ES_1 

dec_op_out = reg_op1 

E 

S 
Ref: Figure 4.1-4 



17 

 CS_1: This is reserved for future development of interrupt handling. The 

controller module currently just advances to CS_2.  

 CS_2: Instruction-fetch cycle. Instructions and operands are fetched and 

decoded sequentially in the following EXE_STATES: 

ES_0: Reads a ROM instruction from the address pointed by the PC. 

Increments address by enabling ALU to perform a PCUADD 

(program counter unsigned Add). It advances EXE_STATE to 

ES_1. 

ES_1: Reads the PSW register. Changes EXE_STATE to ES_2. 

ES_2:  Loads rom_data to operand 1 register. Reads value of A-register 

(accumulator) from RAM. Changes EXE_STATE to ES_3. 

ES_3:  Fetches operand(s) from ROM. Loads PSW. If decoder op code 

dec_op_in bit [7] is set, signifying the requirement of 2nd operand in 

the instruction, it increments rom_addr. The v8051_ctr manages 

this by enabling the PCUADD in the ALU and using the result from 

the ALU as the ROM address in the next state. It then changes 

EXE_STATE to ES_4.  

ES_4:  Fetches operand(s) from ROM. Loads internal register sfr-acc with 

ram_in_data. If bit [8] is set, signifying the requirement of a 3rd 

operand in the instruction, it increments rom_addr. Changes 

EXE_STATE to ES_5. 



18 

ES_5: Loads operand 2 register. Loads PC with the result of last PCUADD 

performed by ALU. Changes EXE_STATE to ES_6.  

ES_6: Loads operand3 register. Changes EXE_STATE to ES_7.   

ES_7: Reset all outputs to ALU. Changes EXE_STATE to ES_0 and 

CPU_STATE to CS_3. Fetch and decode are completed. 

In this cycle the controller module reads 3 consecutive bytes from ROM 

and stores them in internal registers. It interacts with the decoder to get the 

decoded op-code, and with the ALU to update the PC, corresponding to the 

instruction from ROM. It passes the data from its internal registers to the ALU 

again corresponding to the instruction, during the execute cycle. Refer to Figure 

4.1-9 and Figure 4.1-10. 



19 

 
Figure 4.1-6 : Flow Diagram for Instruction Fetch Cycle CS_2 (ES_0 to ES_2) 

ES_0? 

Yes 

ALU: INC PC 
alu_src_1 = pcl     
alu_src_2 = pch 
alu_ src_3 = 01h    
alu_op_code = PCUADD       

CS_1 

pch = PC [15:8]    
pcl = PC[7:0] 

ROM: Read Instruction 
rom_addr = {pch, pcl}     
rom_rd = ’1’ 

EXE_STATE = ES_1 

ES_1? 

Yes

RAM: Read PSW 
ram_addr = R_PSW     
ram_rd = ’1’ 

EXE_STATE = ES_2 

ES_2? 

Yes 

reg-op1 = rom_data    

RAM: Read A-Register 
ram_addr = R_Acc     
ram_rd = ’1’ 

EXE_STATE = ES_3 

E 

ES_3 

CS_2 

No 

No

No 

Ref: Figure 4.1-5 

Ref: Figure 4.1-7



20 

 
Figure 4.1-7: Flow Diagram for Instruction Fetch Cycle CS_2 (ES_3 to ES_4) 

 

ES_3? 

Yes 

ALU: ADD (PC + 1) 
alu_src_1 = alu_des_1     
alu_src_2 = alu_des_2 
alu_op_code = PCUADD       

ROM: Read next operand 
rom_addr = PC + 1     
rom_rd = ’1’ 

EXE_STATE = ES_4 

E 

ES 5

ES_3 

sfr_psw = ram_in_data (R_PSW)   

  dec_op_in[7] ? 

Yes 

alu_src_3 = 01h    alu_src_3 = 00h    

No 

ES_4? 

Yes 

ALU: Update PC 
alu_src_1 = alu_des_1     
alu_src_2 = alu_des_2 
alu_op_code = PCUADD       

ROM: Read next operand 
rom_addr = PC + 2     
rom_rd = ’1’ 

EXE_STATE = ES_4 

sfr_acc = ram_in_data (R_Acc)   

dec_op_in[8]? 

Yes 

alu_src_3= 01h    alu_src_3= 00h    

No 

No 

No 

Ref: Figure 4.1-5 

Ref: Figure 4.1-8 



21 

 
Figure 4.1-8: Flow Diagram for Instruction Fetch Cycle CS_2 (ES_5 to ES_7) 

 
 CS_3: Instruction-execute cycle. The controller scans dec_op_in [6:0] and 

corresponding to the decoded op-code, processes the instruction in a 

sequence of EXE_STATEs. As an example, three instructions are 

explained: 

ES_5? 

Yes 

Save to Internal Registers: 
reg_op2 = rom_data    
reg_pc = {alu_des_2, alu_des_1} 

EXE_STATE = ES_6 

ES_6? 

Yes

Save to Internal Registers: 
reg_op3 = rom_data    

EXE_STATE = ES_7 

ES_7? 

Yes 

CPU_STATE = CS_3    

ALU: Shut-down 
alu_opcode = NONE     
alu_src_1 = 00h 
alu_src_2 = 00h 
alu_src_3 = 00h 
alu_src_cy = ’0’ 
alu_src_ac = ’0’ 
alu_src_ov = ’0’ 
 

EXE_STATE = ES_0 

E 

S 

No 

No

No 

ES_5 

Ref: Figure 4.1-5 

Ref: Figure 4.1-4 



22 

I. ACALL addr11 (ACALL):  

This is a 2 byte instruction. The controller module, during its CS_2 

(instructions fetch/ decode cycle) has this data in reg-op1 & reg_op2, for 

execution cycle. The operations during the sequence of EXE_STATES are: 

ES_0:  Enable RAM read and read contents of SP. Change EXE_STATE 

to ES_1.  

ES_1:  Change EXE_STATE to ES_2.  

ES_2:  Enable ALU datapath to increment the contents of the SP register. 

Change EXE_STATE to ES_3.  

ES_3: Enable datapath to RAM. Get contents of low byte of PC. Write 

contents of PC (low byte) to memory address pointed by the SP. 

Enable ALU data path to increment contents of SP. Change 

EXE_STATE to ES_4. 

ES_4: Enable datapath to RAM. Get contents of high byte of PC. Write 

contents of PC (high byte) to memory address pointed by the SP. 

Change EXE_STATE to ES_5. 

ES_5:  Enable RAM datapath to update SFR SP. Change EXE_STATE to 

ES_6 

ES_6: Update contents of PC to go to new address. Change EXE_STATE 

to ES_7.   



23 

ES_7:  Reset all outputs to ALU. Change EXE_STATE to ES_0 and 

CPU_STATE to CS_1 to enable fetch of next instruction. Instruction 

execution completed. 

II. ADD A, #data (ADD_4) 

This is a 2 byte instruction, with op-code in first byte and data in 

second byte. The operations during the sequence of EXE_STATES 

are: 

ES_0: Enable ALU datapath to perform an addition of contents of reg_acc 

and reg_op2. Change EXE_STATE to ES_1. 

ES_1: Enable RAM datapath to result of addition obtained from ALU to 

SFR A-register and to update the internal status flags. Change 

EXE_STATE to ES_3. 

ES_2:  enable RAM datapath to update the SFR PSW. Change 

EXE_STATE to ES_3 

ES_3: Change EXE_STATE to ES_4. 

ES_4: Change EXE_STATE to ES_5 

ES_5: Change EXE_STATE to ES_6. 

ES_6: Change EXE_STATE to ES_7.  

ES_7: Reset all outputs to ALU. Change EXE_STATE to ES_0 and 

CPU_STATE to CS_1 to enable fetch of next instruction. Instruction 

execution completed. 



24 

III. RLC A:  

ES_0: Enable ALU datapath with A-register contents in source operand1 

and the contents of carry flag. Change EXE_STATE to ES_1. 

ES_1: Enable RAM datapath to update SFR A-register and the controller 

internal sfr_psw respectively, with result of rotate operation in ALU 

module. Change EXE_STATE to ES_2 

ES_2: Enable RAM datapath to update SFR PSW. Change EXE_STATE 

to ES_3. 

ES_3: Change EXE_STATE to ES_4.  

ES_4: Change EXE_STATE to ES_5. 

ES_5: Change EXE_STATE to ES_6.  

ES_6: Change EXE_STATE to ES_7.  

ES_7: Reset all outputs to ALU. Change EXE_STATE to ES_0 and 

CPU_STATE to CS_1 to enable fetch of next instruction. Instruction 

execution completed.  



25 

 
Figure 4.1-9: Flow Diagram for Instruction Execute Cycle CS_3 for Arithmetic ADD A, #data

ES_0? 

Yes 

ALU: ADD (Acc+ #data) 
alu_src_1 = sfr_acc     
alu_src_2 = reg_op2 
alu_ src_cy = ’0’    
alu_op_code = 

ALU_OPC_ADD         

CS_3 

EXE_STATE = ES_1 

ES_1? 

Yes

RAM: Write to A-reg  
ram_addr = R_Acc  
ram_out_data = alu-
des_1   

EXE_STATE = ES_2 

ES_2? 

Yes

RAM: Update PSW  
ram_addr = R_PSW     
ram_out_data = sfr_psw 
ram_wr = ‘1’

E 

ES_7

No 

No 

No

dec_op_in [6:0] 
= ADD_4? 

Yes 

No dec_op_in [6:0] = 
Instruction? 

Yes

No

sfr_psw[7] = alu_des_cy  
sfr_psw[6] = alu-des_ac   
sfr_psw[2] = alu_des_ov

EXE_STATE = ES_3 

ES_3? 

Yes 

No 

EXE_STATE = ES_4 

ES_4?

Yes

No

EXE STATE = ES 5

ES_5? 

Yes

No

EXE_STATE = ES_6

ES_6?

Yes

No

EXE STATE = ES 6

CPU_STATE = 
CS_1 

ALU: Shut down 

Ref: Figure 4.1-5



26 

 

 
Figure 4.1-10: Flow Diagram of Instruction Execution Cycle CS_3 for Shift Left RLC A 

ES_0? 

Yes 

ALU: Rotate Acc. Left thru 
‘carry’ 
alu_src_1 = sfr_acc     
alu_ src_cy = sfr_psw[7]    
alu_op_code = 

ALU_OPC_RLC         

CS_3 

EXE_STATE = ES_1 

ES_1? 

Yes

RAM: Write to A-reg  
ram_addr = R_Acc  
ram_out_data = 
alu des 1   

EXE_STATE = ES_2 

ES_2? 

Yes

RAM: Update PSW  
ram_addr = R_PSW     
ram_out_data = sfr_psw 
ram wr = ‘1’

E 

ES_7

No 

No 

No 

dec_op_in [6:0] 
= RLC? 

Yes

No
dec_op_in [6:0]
= Instruction?

Yes

No

sfr psw[7] = alu des cy 

EXE STATE = ES 3

ES_3? 

Yes 

No 

EXE_STATE = ES_4 

ES_4? 

Yes

No 

EXE STATE = ES 5

ES_5? 

Yes

No 

EXE_STATE = ES_6

ES_6? 

Yes

No 

EXE STATE = ES 6

CPU_STATE = CS_1 
EXE_STATE = ES_6 

ALU: Shut down 

Ref: Figure 4.1-5



27 

4.1.2. Simulation and Testing 

The controller FSM diagram shows that the CPU_STATES and 

EXE_STATES are sequencing as designed. The function of the controller 

module is to synchronize the control signals to / from other components of the 

8051. Therefore the controller was tested after integrating all the modules. A test 

program, Test_r1, was loaded in the ROM, a Synchronizing Clock of 12Mhz was 

started and the inter-module signals, during Controller CPU_STATEs & 

EXE_STATEs were monitored. CS_0 state is entered when reset is asserted. 

The controller resets the SFR in RAM, namely ports (p0 to p1) to FFh and the SP 

to 07h, by sequencing thru the EXE_STATES ES_0 thru ES_5. 

Figure 4.1-11 shows CS_2 the instructions fetch and decode cycles. The 

controller reads the ROM contents at the address pointed by the PC, interfaces 

with the ALU to perform a PCUADD (Program Counter Unsigned ADD) and 

increments its local pc-register; sends the instruction read from ROM to decoder; 

the decoder returns a 9-bit decoded op-code; the controller fetches the next 

location from ROM, and if bit-7 of decoder op-code is set, sends a source 

operand of value 1 to perform a PCUADD by the ALU, and updates its local pc-

register; then fetches ROM contents as pointed by pc-register, and if bit-8 of the 

decoder op-code is set sends a source operand value 1 else 0 to the ALU for 

PCUADD. The controller having collected the data updates the PC and operands 

for the instruction execution cycle. To account for the register latching delays the 



28 

controller loads its registers with data from ROM or RAM modules at the third 

EXE_STATE with respect to the corresponding ‘read’ control signal. 

 
Figure 4.1-11: Instruction Fetch & Decode During CS_2 

 

 
Figure 4.1-12: Execute Cycle CS_3 for Instruction RLC 

 



29 

Figure 4.1-12 shows details of the instruction execution cycle for the 8051 

instructions RLC A (rotate A-register left through carry) and the next instruction 

MOV P0, A (move contents of A register to output port p0). For execution of RLC 

in this example, at ES_0 the controller enables the ALU by sending control 

variable alu_opcode (‘B’ corresponding to RLC) and the A-register contents as 

source operand to perform the rotate operation. During ES-1 the controller loads 

the data lines to RAM with the result from the ALU and enables ‘RAM write’ to 

write the new value to the SFR A-Register. The carry-bit from ALU is also stored 

in its internal register. During ES_2 it sends the data to update the PSW, also an 

SFR on RAM. The controller sequences thru the next states ES_3 to ES_6 until it 

reaches ES_7 when the execution is completed by resetting all variables to ALU, 

and jumping to CS_1 and ES_0 to fetch next instruction. In this example the next 

instruction is MOV P0, A. The waveforms of  

Figure 4.1-12 show that in the fetch cycle the decoder output corresponds 

to the MOV instruction. During the execution cycle of this instruction there is no 

ALU operation. During ES_0, the contents of A-register are written to the port 

address, also an SFR in RAM. The rotated data value is seen on port0-out on the 

simulation waveform. 

4.1.3. Verification 

The results of the simulation waveforms verify that the controller module is 

operational.  



30 

4.2. ROM  

The ROM is the dedicated 4KB of program memory space on the 8051 

microcontroller. It contains the binary code with the instructions to be executed. 

The ROM module takes as input the 12 bits of the program counter PC, and 

gives as output the 8- bit data of instruction op-code and operands. 

4.2.1. Detailed Design 

Altera recommends the use of a ‘Parameterized ROM mega-function’ to 

implement all ROM functions1. This mega-function allows for a synchronous read 

only memory with clock for strobing in the address. The Quartus II ‘Mega-function 

Plug-in Manager’ tool was used to configure the LPM_ROM mega-function [14] 

named “v8051_rom_mem” for the following parameters to implement the 8051 

ROM: 

Memory size 4096 words.  

Word width 8-bits 

Address width 12- bits 

Initialize file – A hexadecimal (Intel Format) file of the program code to be 

stored in the ROM memory.  

Test programs/applications were written in 8051 assembly language. The 

assembled test runs were verified on the 8051 simulator [10]. The program code 

                                                 
1 QUARTUS II Help on LPM_ROM 



31 

in Intel hex format was stored in the module directory, was then specified as data 

file for loading the ROM at power-up/ reset.  

The memory address is enabled at the positive clock edge, requires a 

hold- time of 3 clock pulses for the memory content to become available on the 

data lines.  

The ROM module therefore requires two clock inputs, a fast clock to read 

the ROM and a slower one to synchronize the rom_data with the controller 

timings. The ROM_module instantiates the ROM mega-function 

v8051_rom_mem to read the instructions at valid rom_addr from controller and to 

latch it to the out data register in the rom_rd signal interval.   

4.2.2. Simulation & Testing 

To test the program code in ROM, this module was simulated with the 

following input conditions, and the data lines were observed: 

Clock set at 12MHz. Read asserted at 6 MHz frequency. Address lines 

incremented by 1 starting from 00H. The simulation was carried for a period of 5 

μsec.  

Result: Refer to listing of the text file ‘Test1_r1’ below. The data lines (ref 

Figure 4.2-2) read the values of the first column below which is program code. 

75 //MOV_12  
F0 
12 
74 // MOV_4 
3A 
7D //MOV_7 
04 



32 

33 //RLC  
F5 //MOV_8 
80 
C5 //XCH_2 
F0 
13 //RRC 
F5 //MOV_8 
90 
C5 //XCH_2 
F0 
DD //DJNZ_1 
F4 
80 //SJMP 
EB 
00 //NOP 
00 //NOP 

Figure 4.2-1: ROM Contents of Test Program Test1_r1.txt - 8051 Instructions 
 

 
Figure 4.2-2: Simulation Waveform for ROM Module (Verilog Model) 

4.2.3. Verification 

The same simulation conditions were applied to the ROM module of 

Dalton model. The two waveforms are similar. 



33 

 
Figure 4.2-3: Simulation Waveform for ROM Module (Dalton Model) 

4.3. RAM 

The 8051 has an internal Data Memory (internal RAM) of 256 bytes. The 

internal RAM is divided into 2 blocks: the first 128 byte block is the general 

purpose RAM, and a second part starting from address 80H, is the Special 

Function Register (SFR) area [15].   

The RAM module defines an array of 128 bytes in the address range 00h-

7Fh and 21 Special Function Registers (SFR) within the address space 80H-FFh. 

4.3.1. Detailed Design 

The detailed design of internal RAM (Data memory) of the 8051 IP soft 

core is shown in Figure 4.3-1: Flow Diagram for RAM. The RAM module 

generates a 128 byte array of write (parallel load) and read (output enable) 

memory (registers). Locations 20H to 2FH are bit addressable. It also has 21 



34 

bytes allocated to function as Special Function Registers (SFRs) of the 8051 

microcontroller. Eleven of these SFRs are bit-addressable [15].  

Verilog does not support two-dimensional array in which any cell can be 

addressed. A word in Verilog memory can be addressed directly. A cell (bit) in a 

word is addressed by first loading the word onto a buffer and then addressing the 

bit of the word [17], [18]. 

The Verilog code for bit read from bit addressable internal memory (20h- 

2Fh) was accomplished as follows: 

 begin 

 add = {4'b0010, addr [6:3]}; // address hi_nibble= 2h, lo_nibble =addr [6:3] 

 memword = iram[add];  // get contents of addressed memory  

out_bit_data = memword [cbit]; // read bit value 

 end 

 
The v8051_ram module performs the following tasks: 

Clears the memory when reset signal reset is asserted.  

Performs a synchronous read or write from / to the addressed memory 

location. 

If bit data is requested, reads or writes to the addressed bit number of the 

addressed memory location. 



35 

 
Figure 4.3-1: Flow Diagram for RAM Module 

No 

Yes 

No 

No 

Yes 

Yes 

v8051 RAM

clk  in_data 
rst is_bit_addr 
addr in_bit_data 
rd p0_in p1_in 
wr p2_in p3_in 

Reset 
SFRs = 00 
IRAM [0..127] =  00H 

Reset? 

posedge clk? 

is _bit_addr? 

Bit read/ write 

Byte read/ write 

A 

Ref: Figure 4.3-3 

Ref: Figure 4.3-2 



36 

 
Figure 4.3-2: Flow Diagram for RAM - Bit Manipulation 

 

No 

Yes 

Yes 

No 

No 

No 

Yes 

Yes 

Bit read/ 
write

Bit_to_change = addr[2:0] 
Address =  
000b concatenated to 
addr[7:3] 

Out_bit _data = 
Bit_to_change of the 
addressed SFR 

Is read true? 

Is write true? 

Is address SFR  

Address hi byte =2H 
Address lo byte = addr[6:3] 

Data = contents of 
iram[address] 

out_bit_data =  
Bit_to_change of the 
addressed Data 

Bit_to_change of the 
addressed SFR =  

 in_bit _data  

Is address SFR  

Address hi byte =2H 
Address lo byte = addr[6:3] 

Data = contents of iram[address] 
Bit_to_change of  Data =  

in_bit_data  
Contents if iram [address] = Data 

A Ref: Figure 4.3-1 



37 

 
Figure 4.3-3: Flow Diagram for RAM - Byte Read /Write 

 

No 

Yes 

No 

No 

No 

Yes 

Yes 

Byte read/ write 

Bit_to_change = addr[2:0] 
Address =  
000b concatenated to 
addr[7:3] 

out_data = 
contents of addressed SFR 

Is read true? 

Is write true? 

Yes 

Is address SFR  

out_data = contents of 
iram[address] 

 

Contents addressed SFR 
= in _data 

 

Is address SFR  

Contents of iram [address] = 
in_data 

A Ref: Figure 4.3-1 



38 

4.3.2. Simulation and Testing 

The input signals to the RAM module were defined in the vector waveform 

file. Clock frequency was set to 12 MHZ (standard 8051 clock specification) 

The RAM module was tested for the following simulated functions/ 

conditions: 

1) Reset.  

a) Test: While clock was continuously applied reset was asserted. Memory 

locations were then read to confirm response of the module. 

b) Observation:  Refer to the waveforms in Figure 4.3-4. 

While reset is asserted out_data is seen to be held at last read memory 

value, indicating read and write operations were inhibited. 

For subsequent ‘read’ pulses, out_data changed to contents of addressed 

RAM or SFR, at the positive edge of clock.  

 
Figure 4.3-4: Reset Asserted  



39 

c) Result: During reset memory is initialized and all other operations are 

inhibited. The contents of RAM and Registers are reset to 00H 

2) Byte Read /write 

For byte read /write tests, reset was asserted for approx 10 cycles, 

is_bit_address and in_bit_data (the bit addressing signals) were forced ‘lo’ 

(disabled), and address, in_data, read and write signals were varied to 

monitor the RAM module functions. 

a) Test:  

i) RAM  

 Address incremented from 00H to 0DH, each address is held for 4 clock 

cycles. 

In-data lines count from A2H, incrementing by 01h and hold the data for 2 

clock cycles. 

For each address write and then read was asserted. 

 
ii) SFRs 

Addresses E0H (A-register), F0H (B-register), 80H (Port 0) and 81H 

(SP) sequentially asserted on address lines, and each address was 

held for 4 clock cycles. Write and then read signals pulsed for each 

addressed location. 



40 

 
Figure 4.3-5: Byte Read / Write to RAM - Functional Simulation 

 

 
Figure 4.3-6: Byte Read / Write to RAM - Timing Simulation 

 

 
Figure 4.3-7: Worst-Case Delays in Timing Simulation 



41 

 
Figure 4.3-8: Byte Read / Write to RAM / SFRs 

 
b) Observations: 

i) The waveforms in Figure 4.3-5, Figure 4.3-6 and Figure 4.3-8, show 

out-data holds the contents of addressed memory location and 

switches to corresponding in-data at the consecutive read pulse 

synchronously with positive edge of clock pulse. 

ii) No switching on out_bit_data line 

iii) The timing simulation waveforms indicate the same functionality. 

Maximum achievable frequency during simulation is over 145MHz, 

refer to Figure 4.3-7. 

3) Bit Manipulation 

For bit read /write tests, a short reset was asserted, then input signals 

simulated as follows:  

a) Test 

i) RAM bit manipulation 



42 

Address incremented from 20H to 2FH, each address is held for 2 clock 

cycles. in-data lines count from A2H, incrementing by 11h and hold the 

data for 4 clock cycles. is_bit_addr  asserted in parallel with write and then 

with read signals. in_data line switched for serial data C3H, 67H. 

 
Figure 4.3-9: Bit Manipulation on RAM Locations 20H to 2FH  

 
ii) SFR bit manipulation  

Address 90H (Port 1), D0H (PSW), E0H (A-register), and F0H (B-register), 

asserted on address lines, and each address was held for 4 clock cycles.  

in-data lines switched to E6H, 2AH, F7H, and F7H each held for 4 clocks, 

write asserted. 

Then, rd and is_bit_addr asserted to read the above registers. 

 



43 

 
Figure 4.3-10: Bit Read from SFRs – A-Register, B-Register, Port1, & PSW 

b) Observation 

Referring to Figure 4.3-9 and Figure 4.3-10 

i) Waveforms show out-data holds contents of addressed memory 

location and switches to corresponding in-data at the consecutive read, 

only if is_bit_addr is not asserted. 

ii) Switching on out_bit_data line occurs when is_bit_addr and read is 

true. 

iii) Data as written to the addressed bit of the respective location during 

write was correctly read back.  

4.3.3. Verification 

The simulation waveforms indicate that the module performs the functions 

of the internal memory (128 locations + registers) of the standard 8051. Correct 

addressing as well as bit and byte read / write, as per design, was observed. 



44 

4.4. External RAM 

The External RAM is just like the RAM module but has 16 address lines 

and can have a size of up to 64KB. This memory is external to the 8051 module. 

The controller can access the external memory for read or write of 8-bit data in 

response to a MOVX instruction from ROM. 

4.5. Decoder 

The function of this module is to convert the op-code of the 8051 

instruction, as read by the controller from program memory, to a pointer for the 

controller to implement the corresponding execution cycle for that instruction. 

The decoder also generates corresponding signals if the instruction requires 

additional operands. 

4.5.1. Detailed Design 

The 8-bit op-code input from the controller is converted by checking 

against a look-up table defined in the ‘opcodelookup.txt’ file and stored in the 

project directory. The output of the decoder is a 9-bit signal composed of 7-bit 

op-code pointer, bit 8 set if instruction requires 2nd  operand, and bit 9 set if 

instruction requires a 3rd operand.  



45 

4.5.2. Simulation & Testing  

Functional simulation was carried out on the Decoder module by varying 

the input op-code signal at 10 ns for a period of 260ns. 2 types of addressing 

each for arithmetic and logical instructions were tested. Table 4.5-1 shows input 

conditions and expected results. Figure 4.5-1 shows the simulation waveforms 

correspond to the expected results.  

Table 4.5-1: Decoder Test - Instructions & Expected Results 
Type Instruction  Opcode_in    Opcode _out [bits] 

  hex binary parameter [8] [7] [6:0] 

Immediate to acc. ADD A, #xx 24 00100100 ADD-4 0 1 0000100 (04H) 

Indirect RAM to 
acc. 

ADD A, @Ri 26 0010011x ADD-3 0 0 0000011 (03H) 

Register from Acc. 
w/borrow 

SUBB A, Rn  10011xxx SUBB-1 0 0 1100000 (60H) 

Direct from Acc. 
w/borrow 

SUBB Alder 95 10010101 SUBB-2 0 1 1100001 (61H) 

Move A= (A+DPTR) 
MOVC 
A,@A+DPTR 

93 10010011 MOVC-1 0 0 1001010 (45H) 

No operation NOP 00 00000000 NOP 0 0 1001100 (4CH) 

Shift right RR A 03 00000011 RR 0 0 1011011 (5BH) 

Shift left w/carry RLC A 33 00110011 RLC 0 0 1011010 (5AH) 

Logical acc to direct 
RAM 

ANL dir, A  52 01010010 ANL-5 0 1 0001110 (0EH) 

Logical immediate 
to direct RAM 

ANL dir, #xx 53 01010011 ANL-6 1 1 0001111 (0FH) 

Logical direct RAM 
to Acc. 

XRL A, dir 65 01100101 XRL-2 0 1 1101010 (6AH) 

Logical register to 
Acc. 

XRL A, Rn  01101xxx XRL-1 0 0 1101001 (69H) 



46 

 
Figure 4.5-1: Simulation of 8051 Instruction Decoding (Verilog Model) 

 
Timing simulation for the same input conditions was carried out. Maximum 

input to output delay was approx. 18ns. Refer to Figure 4.5-2. 

 

 
Figure 4.5-2: Worst–Case Delay in Timing Simulation of Decoder Functions 

4.5.3. Verification 

The same tests were applied to the decoder module of the Dalton model. 

Quartus II “Compare waveform file” command was used to compare the 

simulation waveforms obtained from the Dalton module with that of the Verilog 

module. View of both sets of waveforms is shown in Figure 4.5-3. The waveforms 

from the simulation of both the modules are overlapped, indicating an exact 

match.  



47 

 
Figure 4.5-3: Comparison Report of Simulation of 8051 Instruction Decoding 

(Dalton Model with Verilog model) 

4.6. ALU 

The Arithmetic Logic Unit, as the name suggests, performs the arithmetic 

and logical operations on the instructions being executed. The Verilog module 

performs 16 types of functions to implement the 111 logical & arithmetic 

instructions of the 8051 microcontroller instruction set. The ALU module receives 

from the controller, three 8-bit source operands, status of carry flags, and the op-

code for instruction type. 

4.6.1. Detailed Design 

The operation of the ALU implements the following functions selected by 

the 4-bit op-code received from the controller: 

 NOP - 0000: no operation is performed, all registers retain their values.  

  Arithmetic Instructions 

ADD - 0001: The ALU module executes this instruction by performing a 4-

bit full-adder operation on two 8-bit numbers src_1 and src_2. Result is an 



48 

8-bit number des_1 which is sent back to the controller. The carry flag is 

set if there is a carry from bit 7. The overflow flag is set if there is a carry 

from either bit 7 or bit 6 but not from both. The auxiliary-carry flag is set if 

there is a carry from bit 3 (lower nibble).  

Table 4.6-1: ALU Operations 

Op-code Operation Description Flags affected 

0000 ALU_OPC_NONE No operation  

0001 ALU_OPC_ADD src_1 + src_2 c, ac, ov 

0010 ALU_OPC_SUB src_1 – src_2 c, ac, ov 

0011 ALU_OPC_MUL src_1 * src_2 ov 

0100 ALU_OPC_DIV src_1 /  src_2 ov 

0101 ALU_OPC_DA 
src_1: any nibble > 9, Adjust 
to decimal equivalent 

c, ac 

0110 ALU_OPC_NOT Compliment src_1 none 

0111 ALU_OPC_AND Bitwise src_1 AND src_2 none 

1000 ALU_OPC_XOR Bitwise src_1 XOR src_2 none 

1001 ALU_OPC_OR Bitwise src_1 OR src_2 none 

1010 ALU_OPC_RL  Rotate src_1 left: [0] → [7] none 

1011 ALU_OPC_RLC 
Rotate src_1 left thru carry: 
[0] → c 

c →[7] 

1100 ALU_OPC_RR  Rotate src_1 right: [0] ← [7] none 

1101 ALU_OPC_RRC 
Rotate src_1 left thru carry: 
[0] ← c 

c ←[7] 

1110 ALU_OPC_PCSADD 
signed {src_2,src_1} + signed 
(src_3) 

none 

1111 ALU_OPC_PCUADD {src_2,src_1} + src_3 none 

 
SUB - 0010: Subtraction is also addition. Only 2’s complement of the 2nd 

operand and carry-in bit is used. Hence execution is similar to ADD. In 

coding the Verilog HDL arithmetic operator ‘-‘ is used to execute the 

subtraction.  

MUL (Multiply)- 0011: The built-in Verilog HDL operator ‘*’ is used to 

multiply the two 8-bit numbers and store the result in the 16 bit word 



49 

formed by concatenating 8-bit outputs des_2 and des_1. If the result is 

greater than 8-bits in value, the overflow flag is set. This instruction clears 

the carry flag. 

 
Figure 4.6-1: Flow Diagram for ALU Response to ADD or SUB Instruction 

DIV (Divide) - 0100: The algorithm for division given in reference  [19] is 

used when the divisor is less than the dividend. The division is achieved 

by initializing the remainder to zero, and repeating the following steps n 

times, where n is the number of bits -1.  

 Shift dividend left one bit into remainder. 

Yes 

rst src_1 
op-code src_2 
 src_3 
 src_cy 

src ac

Add ‘hi’ nibble of  
src_1, src_2 

and carry from 
lower nibble 

Add ‘lo’ nibble of  
src_1 and src_2 

Arrange resulting 
sums, carry 

in destination 
word 

“set” Aux carry  

Carry from 
bit3 to bit 4 

“set” Overflow 

bit 6   
XOR bit 7

End 

Pull data out lines 
‘lo’ 

Reset carry flags 

Is  
Reset? 

Any input 
changed? 

Start 

Subtract lower nibbles 
of src_2 from lower 

nibble 
of src 1

Subtract bits[6,4] of  
src_2 from src_1 

Subtract sum of 
src_2[7] & src_cy from

src_1[7] 

Arrange resulting 
difference, & carry 
in destination word 

MUL 

Op-code 
ALU_ADD ?

Op-code 
ALU_SUB ?

Yes 

No 

Yes 

Yes 

Yes 

No 

No 

No 

No 

No 



50 

 Subtract divisor from remainder, placing the answer back to 

remainder. 

 If most significant bit of remainder is 1, set quotient Q0 to 0, and 

add divisor back to remainder (restore remainder). 

 Otherwise, set Q0 to 1. 

The flow diagram in Figure 4.6-2 and 4.6-3 shows the value of quotient 

and remainder as well as the status of the overflow flag in all cases of the 

value of divisor with respect to the dividend.   

 
Figure 4.6-2: Flow Diagram for ALU Response to MUL or DIV Instruction 

No 

MUL 

Product 
>255 

Set Overflow  

Reset Overflow 

Reset Carry AUX. carry 

Exit 

Quotient = ‘FF’ 
Rem = 0 

Overflow = 1 

DA 

Quotient = 1 
Rem = 0 

Overflow = 0 

Quotient = 0 
Rem = dividend 

Overflow = 0 

Is divisor = 0
Is divisor = 
dividend 

Is divisor > 
dividend 

Is divisor < 
dividend 

Op_code 
 DIV 

Op_code 
MUL 

Product [des_2, des_1] = 
src_1* src_2 

DIV  
Cont

No 

No No

No 
Yes Yes Yes 

Yes 

Yes 



51 

 
Figure 4.6-3: Flow Diagram for ALU response to DIV instruction (cont’d) 

DA (Decimal Adjust) - 0101: Converts an 8-bit number to its BCD 

equivalent. This is accomplished by adding 06h if the lower nibble is either 

greater than 9 or there is a carry from bit 3 to bit 4 (auxiliary flag is set). 

Similarly if the higher nibble is greater than 9 or the carry flag is set, the 

number is adjusted by adding 60h to the number.  

 

 

Quotient = dividend 
Rem = 0 
Count = 0 

n = 7 (# bits – 1) 

Count <= 7 

count = count +1 

Calculate rem /quotient 

Shift left 1 bit 
LSB ← 0 

rem = rem - divisor 

rem [7] = 1 

 
Reset flags: 

overload, carry and 
aux. - carry 

Exit 

Quotient [0] = 1 

RESTORE remainder 
Quotient [0] = 0 

Rem = Rem + Divisor 

DIV  
Cont’d 

Yes 

Yes 

No 

No 



52 

 
 

Figure 4.6-4: Flow Diagram for ALU response to DA instruction 

PCSADD – 1110: This function of the ALU is called upon by the controller 

for implementing the Program Control Instructions with relative 

addressing. The high and lo bytes of the PC are transferred to the ALU, as 

src_2 and src_1 respectively. These are concatenated to form the 16 bit 

PC value, and src_3 containing the relative address (signed value) is 

added to it. The resulting value is passed back to the controller to update 

the PC. 

DA 
op-code 

DA 

Reset carry_out 
Add 06H to operand 

NOT

Src_1 
(Lower nibble) 

> 9 OR 
AUX carry 

set ? 

High nibble > 9 
OR (carry in  

OR carry out) set 

Concatenate (carry out,
data out) 
Add 060H 

Overflow = 0 
AUX carry = 0 

Carry out = 0 
Des_1 = src_1 

Exit 

No 

No No 

Yes Yes 

Yes 



53 

PCUADD – 1111: This is used for updating the PC during sequential 

instruction fetching. Unsigned add is performed on the 16 bit PC value to 

increment the PC as each operand of the instruction is fetched.   

 
Figure 4.6-5: Flow Diagram for ALU Response to Logical Instructions 

 
 Logical: The module utilizes the Verilog bitwise logical operators to 

implement the following operations on two 8-bit numbers.  

NOT - 0110  

AND - 0111 

XOR - 1000 

OR – 1001 

NOT 

Exit 

Op_code 
NOT 

Op_code 
AND 

Op_code 
XOR 

Op_code 
OR 

des_1 = (src_1)’ 
des_2 = 00H 
Reset flags: 

Carry 
AUX carry 
Overflow 

des_1 = src_1 AND src_2
des_2 = 00H 
Reset flags: 

Carry 
AUX carry 
Overflow 

des_1 = src_1 xor src_2
des_2 = 00H 
Reset flags: 

Carry 
AUX carry 
Overflow 

des_1 = src_1 OR src_2 
des_2 = 00H 
Reset flags: 

Carry 
AUX carry 
Overflow 

RL 

Yes Yes Yes Yes 

No No No No 



54 

The result is an 8-bit number. The carry, auxiliary carry and overflow flags 

are reset.    

 

Figure 4.6-6: Flow Diagram for ALU Response to Shift Instructions 

 Shift: These are single byte rotate operations. The auxiliary carry and 

overflow flags are reset. 

RL - 1010: Each bit of is shifted left, the MSB is shifted to LSB. Carry flag 

is reset. 

RLC – 1011: Each bit of is shifted left, the MSB is shifted to carry flag and 

the carry flag to LSB. 

RR - 1100: Each bit of is shifted right, the LSB is shifted to MSB. Carry 

flag is reset. 

RRC - 1101: Each bit of is shifted right, the LSB is shifted to the carry flag, 

and the carry flag to MSB. 

RL 
op-code 

RL 

des_1[0] = src_1[7] 
des_1[7:1] = src [6:0] 

des_2 = 00H 
Reset flags 

op-code 
RLC 

op-code 
RRC 

op-code 
RR 

Rotate left thru carry 
des_1[0] = src_cy 

des_1[7:1] = src_1[6:0] 
carry = src_1[7] 

Reset flags: 
aux_carry; overflow 

des_1[7] = src_1[0] 
des_1[6:0] = src_1[7:1] 

des_2 = 00H 
Reset flags 

Exit

des_1[7] = src_cy 
des_1[6:0] = src_1[7:1] 

des_cy = src_1[0] 
des_2 = 00H 
Reset flags: 

aux_carry; overflow 

PCUADD
No No No No 

Yes Yes Yes Yes 



55 

In each instruction implementation, the ALU resets the unaffected flags 

and /or the 2nd output operand, as per specification of the respective instruction. 

4.6.2. Simulation and Testing 

Functional simulation for a 1us period, and sampling size of 10ns was 

carried out on the ALU module to test all 16 types of instructions implemented.  

The input signals and conditions simulated were as follows: 

Input op-code signal: Incremented from 0 to 15 to test all values in this 4-bit 

signal. Each value held for a period of 50 ns.  

Reset: Asserted for a period of 20 ns. 

Source operands src_1 & src_2: Arbitrary data (refer to Table 4.6-2) imposed for 

different periods during the simulation cycle. 

Source operand src_3: Data held at 00h. 

Flags src_ac, and src_cy: status of the flags at input reset to ‘low’.  

 
Figure 4.6-7: Simulation of 8051 ALU Operation for Op-Codes 0 to 9h 



56 

 
Figure 4.6-8: Simulation of 8051 ALU Operation for Op-Codes Ah to Fh  

Table 4.6-2: ALU - Test Instructions and Expected Results 
op-code  src_1 src_2 src_3 src_ac 

src-
cy 

src-
ov 

des_1 des_2 des_ac des_cy des_ov 

ADD 1 55 FF 00 0 0 0 54 00 1 1 0 

  AA FF 00 0 0 0 A9 00 1 1 0 

  55 50 00 0 0 0 A5 00 1 1 0 

SUB 2 AA 00 00 0 0 0 AA 00 0 0 0 

  55 50 00 0 0 0 05 00 0 0 0 

MUL 3 AA 00 00 0 0 0 00 00 0 0 0 

  AA 72 00 0 0 0 B4 4B 0 0 1 

  55 72 00 0 0 0 DA 25 0 0 1 

DIV 4 55 72 00 0 0 0 00 55 0 0 0 

  C2 72 00 0 0 0 01 50 0 0 0 

  C2 00 00 0 0 0 FF 00 0 0 1 

DA 5 C2 00 00 0 0 0 22 00 0 1 0 

NOT 6 55 50 00 0 0 0 AA 00 0 0 0 

AND 7 55 50 00 0 0 0 50 00 0 0 0 

XOR 8 55 50 00 0 0 0 51 00 0 0 0 

OR 9 55 50 00 0 0 0 55 00 0 0 0 

RL A 55 50 00 0 0 0 AA 00 0 0 0 

RLC B 55 50 00 0 0 0 AA 00 0 0 0 

RR C 55 50 00 0 0 0 AA 00 0 0 0 

RRC D 55 50 00 0 0 0 2A 00 0 0 0 

PCSADD E 55 50 B7 0 0 0 0C 50 0 0 0 

PCUADD F 55 50 B7 0 0 0 OC 51 0 0 0 



57 

4.6.3. Verification  

The same simulation tests (i8051_alu-all1.vwf) were applied to the ALU 

module of Dalton model. The Quartus II v8.0 “Compare waveform file” command 

was used to compare simulation waveforms obtained from the Dalton module 

with those of the Verilog module. View of both set of waveforms is shown in 

Figure 4.6-9 and Figure 4.6-10. The waveforms from the simulation of both 

modules are overlapped (in red). Mismatched output signal durations are shown 

in black. Signal names and the instruction being executed in duration of the 

mismatch are shown in Table 4.6-3. As per specifications [12], these signals are 

not affected by the instruction; hence the mismatch does not affect the results. 

The Dalton model assigns the value ‘--------‘ (undefined) to the unaffected 8-bit 

data word, and ‘-‘ to the unaffected data bit. The Verilog model resets them to 

00h and 0b respectively. 

Table 4.6-3: Mismatched Output Signals (Dalton & Verilog ALU Modules) and 
their Impact on Result 

Duration (of instruction) Signals not matched Impact on ALU operation 

ADD/ SUB des_2 Don’t care 

MUL / DIV des_cy, des_ac Don’t care 

Logical (NOT / AND / 

NOR/ OR) 

des_2, des_ac, des_cy, 

des_ov 
Don’t care 

Shift (RL, RLC, RR, 

RRC) 

des_2, des_ac, des_cy, 

des_ov 
Don’t care 

PCSADD/ PCUADD des_ac, des_cy, des_ov Don’t care 

 
 



58 

 
Figure 4.6-9: Comparison Report of Simulation of 8051 ALU Operation (Dalton 

Model with Verilog Model) for Op-Codes 0 to 9h 
 

 
Figure 4.6-10: Comparison Report of Simulation of 8051 ALU Operation (Dalton 

Model with Verilog Model) for Op-Codes Ah to Fh 
 

Hence, the simulation verifies that the results of ALU operation from both 

the Dalton and Verilog modules are the same.    



59 

CHAPTER 5.  

8051 MODEL INTEGRATION 

5.1. Detailed Design 

To achieve the 8051 soft core the above designed and verified functional 

units had to be interfaced. Integration was therefore achieved by instantiation of 

the component modules, namely the arithmetic logic unit (ALU), controller (CTR), 

decoder (DEC), data memory (RAM) and program memory (ROM), with correct 

mapping of the port names in a top level encapsulating module v8051_model.  

The v8051_model is driven by external clock clkfast. A slower clock clk 

which synchronizes all internal operations is derived by dividing clkfast by three. 

A 3-bit lpm_counter is used generate the internal clock. The external clock is 

used to meet the address hold- time requirements for the ROM module.

The v8051_model interacts with the external device/s through the ports p0 

thru p3. These ports are addressed as part of the special registers at addresses 

80h, 90h, A0h and B0h respectively of the 8051 microcontroller. The bi-

directional feature of the microcontroller’s I/O ports is achieved by p0_in thru 

p1_in serving as input data lines for write to, and p0_out thru p3_out serving as 

output data lines for read from the respective registers. The port addresses are 

bit- addressable, hence the soft core can be programmed to configure the 



60 

interface of the device, serial or parallel, to which these lines are connected as 

per application requirements. 

5.2. Simulation and Testing 

The functionality of the integrated system that is the 8051 soft core was 

tested by loading the ROM with Intel hex format files for test programs written in 

8051 assembly code.  

Test_led: This program residing in the ROM loads A-register and B-

register with two arbitrary values as read from input ports ‘p0_in’ and ‘p1_in’ 

respectively. Register R5 assigned to count-down, is preset to value of 04h. It 

then rotates left the A-register through carry and the result from A-register is sent 

to output port0. The contents of A & B registers are exchanged. The new value is 

rotated right through carry and the result is sent to output port1.  The A & B 

registers are again exchanged. R5 is decremented and the process of rotating 

and sending the values of the registers is repeated until R5 becomes zero. Then 

the process restarts with initial values. The assembly listing is shown in Figure 

5.2-1 

0000: INIT:  MOV A, P0   ; move ACC, dir 
0002:   MOV B, P1  ; move dir, dir 
0005:   MOV R5, #04H  ; move register, #immediate 
0007: LOOP: RLC A   ; shift left w/carry    
0008:   MOV P0, A  ; move dir, ACC 
000A:   XCH A, B  ; transfer 
000C:   RRC A   ; shift right w/carry 
000D:   MOV P1, A  ; move dir, ACC 
000F:   XCH A, B   ;  
0011:   DJNZ R5, LOOP  ; conditional jump 
0013:   JMP INIT    ; short jump 

Figure 5.2-1: ‘Test_Led’ Test Program in 8051 Assembly Code.  
 



61 

To first verify the controller function, the CPU_STATE and EXE_STATE 

were temporarily declared output ports and connected to monitoring points LEDG 

[2:0] and LEDR [6:0] of the DE2 FPGA development board, respectively. Each 

functional unit’s outputs were monitored in several runs to verify the functionality 

of the controller and its data path, with respect to the designed FSM states.   

 
Figure 5.2-2: Waveform Showing Input/ Output Ports with 8051 Soft Core 

Running ‘Test_Led’ 
 

After all errors were removed the 8051 soft core was simulated with a test 

waveform file for an external clock of 50 MHz, and the output ports were 

monitored. The resulting ‘port0_out’ and ‘port1_out’ values verified that the soft 

core was running the ROM program as desired. Seen in Figure 5.2-2 is the A-

register initial value of 12H when rotated left thru carry 4 times repeat output 



62 

values of 74h, E8h, D1h, & A2h, while Port1 repeats B-register value at 09h, 04h, 

82h, & C1h.  

Test_bcd: Another 8051 assembler program t_bcd_r2 was written to read 

input port0 if start (port2 bit 7) is set. The byte is read as a 2 digit hexadecimal 

value and converted to its binary coded decimal (BCD) equivalent. The 7 

segment code for each of the digits is then output to ‘port2_out’ (hundred), 

‘port1_out’ (tens), and ‘port0_out’ (units) so that it could be used to connect to a 

seven segment led display. The program then calls a delay subroutine. It then 

decreases the decimal value by one, sends the 7-segment code to the output 

ports, and again goes to the delay subroutine. It repeats until the value becomes 

zero. It then restarts, waiting for the next start signal to read the in port again. 

This program loads the data memory with 7-segment code, and the bit 

position value for hex to decimal conversion. The program code fetches these 

values from data memory when required.  

This program code is 188 bytes long, uses memory registers R0 thru R7, 

and registers A & B (SFRs) for addressing and data manipulation. 8051 

instructions tested can be seen in the Program listing attached in the appendix. 

The initialize file for v8051_rom_mem was defined as t_bcd_r1.hex. The 

ROM for the 8051 soft core was thus loaded with the test program t_bcd_r1.hex. 

Simulation was carried out with clkfast = 10ns, input port ‘p0_in’ value of 18H, 

and the start signals were inserted randomly. 2ms simulations of the I/O signals 

were generated in approx. 30sec. The waveforms in 



63 

Figure 5.2-3 show that the expected result of Table 5.2-1. 18H is 

converted to decimal 24. The 7-segment code for the decimal digits, as the 

number decreases is sent to the output ports. 

 This test program verifies execution of the following types of instructions: 

Arithmetic- ADD, INC, DEC, DA 

Logical – ANL, CLR, SWAP 

Data Transfer – MOV (8/15 different addressing modes), PUSH, POP 

Boolean – CLR C  

Program control – DJNZ, CJNE, JNC, JNB, SJMP, LCALL, RET 

Table 5.2-1: Expected Result for Test Program t_bcd_r2 

p0_in Decimal 
port2_out 

(digit3) 
port1_out 

(digit2) 
port0_out 

(digit1) 

18h 024 40h 24h 1Bh 
 023 40h 24h 30h 
 022 40h 24h 24h 
 021 40h 24h 79h 
 020 40h 24h 40h 
 019 40h 79h 10h 
 018 40h 79h 00h 
 017 40h 79h 78h 
 016 40h 79h 02h 
 015 40h 79h 12h 
 014 40h 79h 1Bh 
 013 40h 79h 30h 
 012 40h 79h 24h 
 011 40h 79h 79h 
 010 40h 79h 40h 
 009 40h 40h 10h 
 008 40h 40h 00h 
 007 40h 40h 78h 
 006 40h 40h 02h 
 005 40h 40h 12h 
 004 40h 40h 1Bh 
 003 40h 40h 30h 
 002 40h 40h 24h 
 001 40h 40h 79h 
 000 40h 40h 40h 



64 

 
Figure 5.2-3: Simulation Results for Soft Core Running Test Program t_bcd_r2 

 The results of the test programs verify expected results on the output 

ports. Based on the results it is verified that the integration of the modules and 

hence the 8051 soft core is functional.  



65 

CHAPTER 6.  

CONCLUSIONS 

The design of the soft core has been verified by successful execution of 

two different test programs loaded in the ROM.  22 different instructions out of 

the set of one hundred and eleven 8051-instructions [20] were executed in the 

188-byte long program code. The soft core is functionally operational as the 

controller can steer and synchronize the functions of each of the component 

modules, and also communicate with its external ports. 

The compilation report shows input Clock clkfast has internal maximum 

frequency of approx. 40 MHz between the source register 

"v8051_ctr:U_CTR|alu_src_2 {3}" and the destination register 

"v8051_ctr:U_CTR|alu_src_2 {1}" (period= 25.033 ns). Longest register to 

register delay is 24.738 ns. The soft core utilizes 16% of the total logic elements, 

4% of dedicated registers and 7% of total memory bits from the resources of the 

target Cyclone™ II - EP2C35F672C6 FPGA (Altera Corp., San Jose, CA, 

www.altera.com). The memory block corresponds to 4KB, the specification for a 

base 8051 ROM. This being 7% of available resources, memory for the soft core 

can be expanded. “The soft core implementation of a microcontroller saves 

space when there are unused resources, as these unused resources are found 



66 

to be unreachable or never used for the synthesizer and they are ripped out by 

the optimization tool” [21].  

The 8051 soft core is just a basic model concluded as functional based on 

behavioral simulation. It requires further verification of the whole instruction set. 

Also optimizations on lower RTL level and physical structure are needed. The 

netlist can then be loaded on an FPGA to measure performance in real-time 

environment. 

Future projects could develop this soft core by implementing: 

Optimization of instruction execution times based on instruction type. It is 

designed for uniform execution cycle time for all instructions. Performance 

increase (at the architectural level) can be accomplished by eliminating the idle 

EXE_states [22].  

Increasing instruction throughput of the 8051 soft core by pipelining the 

fetch-decode and execute cycles [23].  

Interrupts. Provision exists in the Controller module, where CPU_STATE 

CS_1 is reserved for handling interrupts.  

Internal Timers of 8051. The counter/ timer registers exist as special 

function registers.  

Enhanced instruction set. The op-code width (6-bit) has provision for 8 

new special instructions.  

 



67 

APPENDIX 



68 

 

ASSEMBLER LISTING OF TEST PROGRAM T_BCD_R2 

; Read P0= XXF, Convert to decimal Result =nnn, 

; Display on HEX0, HEX1, and HEX2 respectively, 

; Decrease: result =result-1 until result = 0. 

; Fetch new P0 & continue 

; Generate Lookup table for 7segment display 

  MOV R1, #050H 

  MOV @R1,#040H  ; ‘0’  

  INC R1 

  MOV @R1,#079H  ;’1’ 

  INC R1 

  MOV @R1,#024H  ;’2’ 

  INC R1 

  MOV @R1,#030H  ;’3’ 

  INC R1 

  MOV @R1,#01BH  ;’4’ 

  INC R1 

  MOV @R, #012H  ;‘5’ 

  INC R1 

  MOV @R1, #02H  ;’6’ 



69 

  INC R1 

  MOV @R1, #078H  ;’7’ 

  INC R1 

  MOV @R1, #00H  ;’8’ 

  INC R1 

  MOV @R1, #010H  ;’9’ 

; Generate lookup table for decimal equivalent bit position 

   MOV R1, #70H 

  MOV @R1, #01H  ; 2^0 =1 

  INC R1 

  MOV @R1, #02H  ; 2^1 =2 

  INC R1 

  MOV @R1, #04H  ; 2^2 =4 

  INC R1 

  MOV @R1, #08H  ; 2^3 =8 

  INC R1 

  MOV @R1, #016H  ; 2^4 =16 

  INC R1 

  MOV @R1, #032H  ; 2^5 =32 

  INC R1 

  MOV @R1, #064H  ; 2^6 =64 

  INC R1 



70 

  MOV @R1, #028H  ; 2^7 =128 

  INC R1 

  MOV @R1, #01H  

INIT:   MOV R0, #050H  

  MOV A,@R0   ; Display '000' 

  MOV P0, A   ; hex0 

  MOV P1, A   ; hex1 

  MOV P2, A   ; hex2 

; Initialize result  

  CLR A 

  MOV R1, #7AH  ; Address for storing BIN value 

  MOV @R1, A  ; Reset to 00H 

  INC R1 

  MOV @R1, A  ; RESET carry-over values 

  DEC R1   ; R1 = Address result 

  MOV R0, #070H  ; Start of Dec LUT 

CHECK: JNB P2.7, CHECK  

READ: MOV R6, P0   ; Read P0_IN 

  MOV B, R6   ; Save I/P IN B 

  MOV R3, B   ; Temporary register 

  MOV A, @R1 

  MOV R5, A 



71 

  MOV R4, #07H  ; Exp. counter 

  MOV R2, #08H  ; Bit Position 

  MOV 05AH, #00H  ; Reset Bin result 

LOOP1: CLR C   

  MOV A, R3    

  RLC A    ; C = A[7] 

  MOV R3, A   ; Save remaining Bits 

  CLR A 

  JNC NXTDIG  ; Jump IF Bit A[7] =0 

; Lookup decimal equivalent. Add, Decimal Adjust, Update sum 

DECIML: MOV R1, #07BH  ; Address for result carry 

  MOV A, @R1  ; previous carry value 

  CJNE R4, #07H, CONT 

  INC A    ; for n=8, BIN=128, 3rd dig=1 

  MOV @R1, A  ; Store 3rd Dec. Dig   

                      MOV R1, #7AH  ; Address for storing BIN 

  MOV R7, A 

CONT: MOV R0, #70H  ; Start of decimal LUT 

  MOV A, R4    ; locate decimal equivalent 

  ADD A, R0    ; start address of LUT 

  MOV R0, A   ; Address of decimal value 

  MOV A, @R0  ; decimal value 



72 

  CLR C     

  ADD A, R5   ; Update Sum 

  DA A 

  MOV R5, A   ; Store new Sum 

DECML1: JNC NXTDIG     

  MOV R1, #07BH  ; Address for result carry 

  MOV A, @R1  ; previous carry value 

  INC A    ; increment 3rd dig. 

  MOV @R1, A 

  MOV R7, A 

NXTDIG: DEC R4   ; Exp Counter 

  DJNZ R2, LOOP1  ; Bit Counter  

  INC R7    ; Counter for display  

  DEC R1   ; Address of result 

  MOV A, R5 

  MOV @R1, A  ; Store result 

DISPLAY:  NOP     

DHEX0: MOV R0, #050H  ; Start of BCD LUT 

  MOV A, R5   ; bin value 

  MOV P3, A   ; Decimal Tens/Units to P3 

UNITS: ANL A, #0FH   ; 1st dig 

  CJNE A, #0FH, OKAY 



73 

  MOV A, R5   ; Decimal > 9 

  ANL A, #0F9H  ; Units = 9 

  MOV R5, A   ; Update  

  SJMP UNITS  

OKAY: ADD A, R0 

  MOV R1, A 

  MOV A, @R1  ; fetch 7-seg  

  MOV P0, A   ; P0_out 

  MOV A, R5 

  SWAP A 

DHEX1: ANL A, #0FH   ; 2nd dig 

  ADD A, R0 

  MOV R1, A 

  MOV A, @R1  ; fetch 7-seg 

  MOV P1, A   ; P1_out   

HEX2:  MOV A, R7   

  DEC A   ; VALUE = 3rd dig 

  ADD A, R0 

  MOV R1, A  

  MOV A, @R1  ; Fetch 7-seg code 

  MOV P2, A   ; P2_out 

DELAY:  MOV R0, #10 



74 

  LCALL DEL  

LESS:  DJNZ R5, DISPLAY   

  MOV R5, #99H 

  DJNZ R7, DISPLAY 

  SJMP READ 

DEL:   PUSH 0E0H   ; Delay Subroutine   

DEL1:  MOV R1, #02H 

DEL2:  DJNZ R1, DEL2 

  DJNZ R0, DEL1 

  POP 0E0H 

  RET 



75 

REFERENCES 

[1] Information Technology Encyclopedia and Learning Center,  

http://whatis.techtarget.com/ definition/0,,sid9_gci759036,00.html, 

accessed Sep. 2008. 

[2] “Embedded Controller Applications”, 

http://en.wikipedia.org/wiki/Embedded_system, accessed Sep. 2008 

[3] M. Bashiri, S.G.M. Miremadi and M. Fazeli, “A checkpointing technique for 

rollback error recovery in embedded systems,” in ICM ’06 International 

Conference  on Microelectronics, 16-19 Dec. 2006, pp 174 – 177. Digital 

Object Identifier: 10.1109/ICM.2006.373295 

[4] Lu Yi and N. Bergmann, 2005. “Dynamic loading of peripherals on 

reconfigurable system-on-chip,” in Proceedings of IEEE International 

Conference on Field-Programmable Technology, 11-14 Dec. 2005, pp 

279 – 280. Digital Object Identifier: 10.1109/FPT.2005.1568560 

[5] D.F. Wolf, J.A. Holanda, V. Bonato, R. Peron, and E. Marques, “An FPGA-

based mobile robot controller.” in Proceedings of 3rd Southern 

Conference on Programmable Logic, 28-26 Feb. 2007, pp 119 – 124.  

Digital Object Identifier: 10.1109/SPL.2007.371734 

[6] A.J. Salim, “Integration of 8051 with DSP in Xilinx FPGA,” in Proceedings of   

IEEE International Conference on Semiconductor Electronics, 29 Oct. – 

http://en.wikipedia.org/wiki/Embedded_system�
http://libproxy.library.unt.edu:2696/xpl/RecentCon.jsp?punumber=4266544�


76 

1 Dec. 2006, pp 562-566.  

Digital Object Identifier: 10.1109/SMELEC.2006.380694  

[7] Yue-li Hu, and Ke-xin Zhang, “Design of on-chip debug module based on 

MCU,” in International Symposium on High Density packaging and 

Microsystem Integration, 26-28 Jun. 2007, pp 1 – 4. Digital Object 

Identifier:  10.1109/HDP.2007.4283633 

[8] Dalton Project, University of California, Riverside, CA, “Synthesizable VHDL 

model of 8051,”  http://www.cs.ucr.edu/~dalton/i8051/i8051syn0 

accessed Jul. 2008 

[9] Mar´ılia Lima, Andr´e Alves Aziz, Diogo Lira, Patr´ıcia Schwambach,Vitor 

and  Edna Barros, “ipPROCESS: using a process to teach IP-core 

development,” in Proceedings of IEEE International Conference on Micro 

electronics Systems Education, 12-14 Jun. 2005, pp 27 – 28.  

Digital Object Identifier 10.1109/MSE.2005.38  

[10] “EdSim51- 8051 Simulator for Teachers and Students”, on-line. 

http://www.edsim51.com/  accessed 20 Apr. 2009. 

[11] Frank Vahid, and Tony Givargis, Embedded System Design: A Unified 

Hardware/ Software Introduction, Hoboken: John Wiley and Sons, 2002.   

[12] Zdravko Karakehayov, Knud Smed Christensen, and Ole Winther, 

Embedded Systems Design with 8051 Microcontrollers – Hardware and 

Software, New York: Marcel Dekker, 1999.   

http://libproxy.library.unt.edu:2696/xpl/RecentCon.jsp?punumber=4283545�
http://libproxy.library.unt.edu:2696/xpl/RecentCon.jsp?punumber=4283545�
http://www.edsim51.com/�


77 

[13] Clifford E. Cummings, “The fundamentals of efficient synthesizable finite 

state machine design using NC-Verilog and build gates,”  Proceedings of 

International Cadence Usergroup Conference, 16-18 Sep. 2002, 

http://www.sunburst-

design.com/papers/CummingsICU2002_FSMFundamentals.pdf 

accessed Mar. 2009. 

[14] Altera Corporation, “ROM Functions—Inferring ALTSYNCRAM and 

LPM_ROM Megafunctions from HDL Code,” Quartus II Handbook 

Design and Synthesis Ver. 9.0, Vol. 1, 2009. 

[15] Milan Verle, 8051 Microcontroller Architecture: In Architecture and 

Programming of 8051 Microcontrollers. Belgrade: mikroElektronika, 

http://www,mikroe.com/en/books/8051book/ch2/ accessed Apr. 3, 2008. 

[16] Zorian Yervant, Erik Jan Marinissen and Sujit Dey, “Testing embedded-core 

based system chips,” Computer, vol. 32, no. 6, pp 52-60, June 1999. 

[17] Michael D. Ciletti, Advanced Digital Design with VERILOG HDL, 1st ed.,  

Upper Saddle River: Prentice- Hall, 2003. 

[18] Deepak Jain, 2004. “Analysis and VHDL modeling of 8051-microcontroller 

using determinant-functional object modeling (D-FOM) approach,” 

posted 10 Jul. 2004, http://www.codeproject.com/KB/architecture/DFOM-

MCU.aspx., accessed 12 Jul. 2008. 

http://www.sunburst-design.com/papers/CummingsICU2002_FSMFundamentals.pdf�
http://www.sunburst-design.com/papers/CummingsICU2002_FSMFundamentals.pdf�
http://www,mikroe.com/en/books/8051book/ch2/�
http://www.codeproject.com/script/Articles/MemberArticles.aspx?amid=947000�


78 

[19] Malek Miroslaw, “ALU (3) - division algorithms,” Lecture 12:Summer 

semester 2002, Humbolt-Universitat Zu Berlin, 

www.informatic.hu_berlin.de/rok/ca, accessed16 Dec. 2008. 

[20] Data-sheet, MC5-51: 8-bit Control Oriented Microcomputers, Intel Corp.,  

http://www.ic-on-line.cn/iol.8051AH/pdfview /186937.html, accessed 

Dec. 2008. 

[21] Daniel Francisco Gómez Prado, “Embedded Microcontrollers and FPGAs 

Soft-cores,” translated automatically from ELECTRÓNICA UNMSM 

Journals no. 18, Amherst: UNMSM, Dec. 2006. 

http://sisbib.unmsm.edu.pe/BibVirtualData/publicaciones/electronica/n18

_2006/a02.pdf, accessed Apr. 2009. 

[22] M. Schutti, M. Pfaff and R. Hagelauer, “VHDL design of embedded 

processor cores: the industry-standard microcontroller 8051 and 

68HC11,” in Eleventh Annual IEEE International ASIC Conference 

Proceedings, 13-16 Sep. 1998, pp 265 – 269. Digital Object Identifier   

10.1109/ASIC.1998.722990 

[23] Chang-Jiu Chen, Wei-Min Cheng, Ruei-Fu Tsai, Hung-Yue Tsai and Tuan-

Chieh Wang,  “A pipelined asynchronous 8051 soft-core implemented 

with Balsa,” in IEEE Asia Pacific Conference on Circuits and Systems 

Proceedings, 30 Nov. - 3 Dec. 2008, pp 976 – 979. Digital Object 

Identifier: 10.1109/APCCAS.2008.4746187 

http://www.informatic.hu_berlin.de/rok/ca�
http://www.ic-on-line.cn/iol.8051AH/pdfview /186937.html�
http://sisbib.unmsm.edu.pe/BibVirtualData/publicaciones/electronica/n18_2006/a02.pdf�
http://sisbib.unmsm.edu.pe/BibVirtualData/publicaciones/electronica/n18_2006/a02.pdf�
http://libproxy.library.unt.edu:2696/xpl/RecentCon.jsp?punumber=5864�
http://libproxy.library.unt.edu:2696/xpl/RecentCon.jsp?punumber=4723905�

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1. INTRODUCTION
	CHAPTER 2. THE 8051 IP SOFT CORE APPLICATIONS
	CHAPTER 3. 8051 VERILOG SOFT CORE
	3.1. Features of the 8051 Soft Core
	3.2. Overview

	CHAPTER 4. COMPONENTS OF THE 8051 SOFT CORE 
	4.1. Controller
	4.1.1. Detailed Design
	4.1.2. Simulation and Testing
	4.1.3. Verification

	4.2. ROM 
	4.2.1. Detailed Design
	4.2.2. Simulation & Testing
	4.2.3. Verification

	4.3. RAM
	4.3.1. Detailed Design
	4.3.2. Simulation and Testing
	4.3.3. Verification

	4.4. External RAM
	4.5. Decoder
	4.5.1. Detailed Design
	4.5.2. Simulation & Testing 
	4.5.3. Verification

	4.6. ALU
	4.6.1. Detailed Design
	4.6.2. Simulation and Testing
	4.6.3. Verification 


	CHAPTER 5. 8051 MODEL INTEGRATION
	5.1. Detailed Design
	5.2. Simulation and Testing

	CHAPTER 6. CONCLUSIONS
	APPENDIX
	REFERENCES

