

APPROVED:

Stephen R. Tate, Major Professor
Ian Parberry, Committee Member
Armin R. Mikler, Committee Member
Ram Dantu, Committee Member
Krishna Kavi, Chair of the Department of

Computer Science and Engineering
Costas Tsatsoulis, Dean of the College of

Engineering
Sandra L. Terrell, Dean of the Robert B. Toulouse

School of Graduate Studies

DIRECT ONLINE/OFFLINE DIGITAL SIGNATURE SCHEMES

Ping Yu, M.S.

Dissertation Prepared for the Degree of

DOCTOR OF PHILOSOPHY

UNIVERSITY OF NORTH TEXAS

December 2008

Yu, Ping. Direct Online/Offline Digital Signature Schemes. Doctor of Philosophy

(Computer Science), December 2008, 119 pp., 11 tables, 7 figures, references, 45 titles.

Online/offline signature schemes are useful in many situations, and two such scenarios

are considered in this dissertation: bursty server authentication and embedded device

authentication. In this dissertation, new techniques for online/offline signing are introduced,

those are applied in a variety of ways for creating online/offline signature schemes, and five

different online/offline signature schemes that are proved secure under a variety of models and

assumptions are proposed. Two of the proposed five schemes have the best offline or best online

performance of any currently known technique, and are particularly well-suited for the scenarios

that are considered in this dissertation. To determine if the proposed schemes provide the

expected practical improvements, a series of experiments were conducted comparing the

proposed schemes with each other and with other state-of-the-art schemes in this area, both on a

desktop class computer, and under AVR Studio, a simulation platform for an 8-bit processor that

is popular for embedded systems. Under AVR Studio, the proposed SGE scheme using a typical

key size for the embedded device authentication scenario, can complete the offline phase in

about 24 seconds and then produce a signature (the online phase) in 15 milliseconds, which is the

best offline performance of any known signature scheme that has been proven secure in the

standard model. In the tests on a desktop class computer, the proposed SGS scheme, which has

the best online performance and is designed for the bursty server authentication scenario,

generated 469,109 signatures per second, and the Schnorr scheme (the next best scheme in terms

of online performance) generated only 223,548 signatures. The experimental results demonstrate

that the SGE and SGS schemes are the most efficient techniques for embedded device

authentication and bursty server authentication, respectively.

 ii

Copyright 2008

by

Ping Yu

 iii

ACKNOWLEDGEMENTS

This dissertation would not have been finished without my advisor, Dr. Stephen Tate. I

would like to thank him for his continuous encouragement, patience, kindness, and support

during my work on the dissertation. I would also like to thank Dr. Ram Dantu, Dr. Armin Mikler

and Dr. Ian Parberry for being on my committee and their encouragement.

I also thank my family and friends for their understanding and encouragement throughout

these years. It would be impossible for me to finish this dissertation without their tremendous

support.

Last but not least, I would like to thank the Department of Computer Science and

Engineering and the College of Engineering for their financial support in the past few years.

 iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS... iii

LIST OF TABLES... vi

LIST OF FIGURES .. vii

Chapters

1. INTRODUCTION ...1

1.1 Digital Signature and Online/Offline Signing ...1

1.2 Motivation for the Dissertation..4

1.3 Modern Cryptography Basics ..7

1.4 Previous Work ...11

1.5 Overview of this Dissertation ..16

2. PRELIMINARIES ...27

2.1 Mathematical Structures ..27

2.2 Cryptographic Primitives ...31

2.3 Complexity Assumptions...38

2.4 Models of Computation ...40

3. SIGNATURE SCHEMES IN THE RANDOM ORACLE MODEL43

3.1 Design Technique ..43

3.2 The RQ Scheme ...46

3.3 The RG Scheme ...58

3.4 Summary ..64

4. SIGNATURE SCHEMES IN THE STANDARD MODEL66

4.1 Design Technique ..66

4.2 Basic Signature Scheme...67

4.3 Signature Scheme for Embedded Device Authentication..........................73

4.4 Signature Scheme for Bursty Server Authentication80

4.5 Summary ..88

 v

5. EXPERIMENTS..90

5.1 Performance Analysis ..91

5.2 Overview of the Experiments ..92

5.3 Experimental Results ...99

5.4 Summary ..109

6. CONCLUSION..110

6.1 Future Research ...112

BIBLIOGRAPHY..114

 vi

LIST OF TABLES

Page

1.1 Direct Online/Offline Signature Schemes in this Dissertation ..22

1.2 Online/Offline Time Complexity...24

1.3 Experiments on a Desktop Computer (times in microseconds on a Pentium Core 2 Duo
E6750)..24

1.4 Simulation Experiments on a Embedded Device (times in seconds on AVR Studio).......25

4.1 Comparison of the CL and SQ schemes ..73

5.1 Online Performance Comparison of Traditional Signature Schemes and their ST-based
Signature Schemes (times in seconds on a Pentium Core 2 Duo E6750)........................100

5.2 Offline Performance of Online/Offline Signature Schemes (times in seconds on a
Pentium Core 2 Duo E6750)..103

5.3 Online/Offline Performance (times in seconds on AVR Studio).....................................103

5.4 Online Performance of Online/Offline Signature Schemes (times in microseconds on a
Pentium Core 2 Duo E6750)..105

5.5 Bursty Authentication Throughput (online signatures per second)107

5.6 Verification Performance (times in seconds on a Pentium Core 2 Duo E6750)108

 vii

LIST OF FIGURES

 Page

1.1 The Relationship of Security Assumptions..19

5.1 Online Performance Comparison of Traditional Signature Schemes and their ST-based
Signature Schemes ...101

5.2 Online Performance of the ST-based Signature Schemes ...101

5.3 Offline Performance of Direct Online/Offline Signature Schemes104

5.4 Online Performance of Online/Offline Signature Schemes...105

5.5 Bursty Authentication Throughput ..107

5.6 Verification Performance...108

CHAPTER 1

INTRODUCTION

It has been more than thirty years since the digital signature concept was introduced in

1976 [14]. However, research on digital signatures is still active in the cryptographic research

community, focusing on either new constructions based on different computational hardness

assumptions, or constructions specialized for certain applications in which currently available

signature constructions do not perform very well. In this dissertation, signature schemes for

applications which demand that a signature be produced very quickly after the message to

be signed is known, are considered, which poses a big challenge to the design of a signature

scheme. The research results in this area are presented in this dissertation. This chapter

reviews the concepts of digital signature, online/offline signing, and previous work in this

area, and summarizes the contributions of this dissertation. While this chapter provides an

overview of the research, the descriptions are at a high level, and detailed formal definitions

appear in Chapter 2 and later in the dissertation.

1.1 Digital Signature and Online/Offline Signing

The digital signature concept is a fundamental primitive in modern cryptography, first pro-

posed by Diffie and Hellman [14]. In such schemes, a signer prepares a keypair which includes

a signing key sk and a verification key vk. The signing key is kept secret by the signer while

the verification key is public for potential verifiers. For a message m, the signer employs a

1

signing function Sig to produce a string σ using his signing key as follows:

σ = Sig(sk, m).

This string σ is called the signer’s signature on this particular message m.

Later a verifier can use the verification function V er to check the validity of the signature

σ on the message m using the signer’s verification key vk as follows:

V er(vk, m, σ) ∈ {accept, reject}

The concept of online/offline digital signature was first introduced by Even, Goldreich,

and Micali in 1989 [17]. An online/offline signature scheme produces a signature in two

phases (an offline phase and an online phase). In the offline phase, the signer does most of

its work for a signature generation, without knowing the message to be signed. Creation of

the signature is completed in the online phase when the message is known, and the computing

cost is very low for the online phase so it can be finished quickly. This two-phase signing

can be represented as follows.

In the offline phase, the signer typically generates a random input r, and calculates an

intermediate value σ′ using an offline function Sigoffline.

σ′ = Sigoffline(sk, r).

In the online phase, the signer uses an online function Sigonline to produce the signature

2

σ for a message m as follows:

σ = Sigonline(sk, m, σ′).

As an introduction to digital signature schemes and the problems they present in certain

settings, the well-known RSA signature scheme is described, which was proposed by Rivest,

Shamir and Adleman in 1978, and is still widely used [35]. The following introduction is

commonly referred to as the “textbook” version of the RSA scheme since most textbooks

introduce RSA this way; however, as it can be seen later, this is not secure and so a modified

version is used in practice.

A signer Alice picks two large random prime numbers p and q. She computes n = pq,

and φ(n) = (p − 1)(q − 1), which is called Euler’s totient function (n in this form is called

an RSA modulus in the literature). She further picks an e < n relatively prime to φ(n), and

calculates d, the multiplicative inverse of e modulo φ(n). d is Alice’s private signing key,

and (e, n) is the public verification key. The 4-tuple (d, p, q, φ(n)) is kept secret by Alice. To

sign a message, represented by a number m < n, Alice calculates

σ = md mod n,

so σ is the signature on m. To verify Alice’s signature σ, a verifier Bob does the following

computation:

m′ = σe mod n.

If m′ = m, σ is indeed the signature on m produced by Alice. Otherwise, the signature is

invalid.

3

For a typical key size, where n is 1024 bits, computing the signature requires raising a

1024-bit value to a 1024-bit exponent with a 1024-bit modulus, which requires on average

1024 large modular multiplications, so can take considerable time, especially on small devices

using relatively weak embedded processors.

1.2 Motivation for the Dissertation

In this dissertation, efficient online/offline digital signature schemes are pursued for two

scenarios: bursty server authentication and embedded device authentication. Traditional

signature schemes such as the RSA scheme are not efficient for these applications. Further-

more, as it is presented shortly, currently available online/offline techniques overcome many

difficulties, but leave room for improvement, and the proposed solutions in this dissertation

provide substantial improvements over these techniques.

1.2.1 Scenario 1: Bursty Server Authentication

On the Internet, a server may experience bursty traffic so that at times it needs to authen-

ticate itself simultaneously to a large number of client applications running on remote client

machines, while at other times there are many idle CPU cycles. For example, this server

could be a stock broker’s server and a client wants to confirm that the remote server is not a

spoofed server. The standard way of achieving this goal is with a digital signature scheme:

the client generates a random nonce, and asks the server to produce a digital signature on

this nonce using the server’s private key. Then the client can authenticate the server using

the server’s public key to check if the signature is valid on its random challenge. On a stock

broker’s server there would be a steady stream of requests during the trading day, but there

4

might be times — such as immediately after financial updates or news releases — when the

number of requests is extraordinarily high, and after hours there is significantly less traffic.

Since a traditional signature scheme is time consuming, with a high volume of simultane-

ous authentication requests the server could be overwhelmed, and not be able to produce

signatures in an acceptable amount of time.

1.2.2 Scenario 2: Embedded Device Authentication

Now consider a different scenario in which a mobile device with limited computing capability

needs to authenticate itself before accessing certain network resources. A remote server may

challenge a device with a random message, asking the device to produce a signature for

its message. Since a mobile device has limited computing capability, it might have some

difficulty generating the required signature quickly. For example, the authenticating device

could be a smart card, with a very weak processor, but which can be loaded with precomputed

results of the offline phase from a more powerful device.

1.2.3 Requirements for these Scenarios

To enable solutions for the above scenarios, it is highly desirable that online/offline signing

be deployed in a signature scheme to expedite the authentication process: when the system is

idle, the majority of computation of the signature can be pre-computed in the offline phase;

when a message arrives, only a very simple calculation is needed to complete the signature

generation.

However, the criteria is different in terms of what could be the best choice when multiple

online/offline constructions are available. For bursty server authentication, we would like the

5

online computation to be extremely efficient so the authentication throughput could be as

large as possible. Therefore online performance is much more important than other factors

such as offline signing performance or signature size. Suppose we have two online/offline

signature schemes: the first one has better online performance than the second one, but

its offline computing takes more time. As long as the offline time is reasonable, we might

still prefer the first one due to its better online performance. The reason is that a server

is powerful enough to take care of more offline computing overhead during idle time (which

is essentially free computation for a server), and the bottleneck of performance is on the

throughput for authentication.

In the scenario for embedded device authentication, offline performance can be as signif-

icant a concern as online performance. Since authentication for embedded devices happens

only occasionally, an online phase that takes 0.1 second would not make a noticeable differ-

ence from an online phase that takes 0.01 second. However, many online/offline signature

schemes add significant computing overhead in the offline phase (e.g., the Shamir-Tauman

method [39]), which might become a problem for embedded devices since the offline comput-

ing cost is also vital to these devices. One reason is that these devices have limited computing

capabilities, so it is always better to have a scheme with lower total computing cost. An-

other reason is that most embedded devices are powered by batteries, so more computation

implies more power consumption, and shorter life cycle. Therefore, idle time computation is

not free as it is for servers, and low offline computation cost is also an important factor for

embedded devices.

In summary, Scenario 1 is primarily concerned with online performance, while Scenario

2 must consider more carefully the costs of both offline and online phases.

6

1.3 Modern Cryptography Basics

Design of a cryptographic construction is a big challenge. After many years of research and

practice, standard practice in cryptographic research addresses problems using definitions

and analysis with four components, which include definition of a scheme, security properties,

computational hardness assumptions, and model of computation.

These notions are further described in the following sections, with informal examples to

illustrate the concepts. Formal definitions for the problems studied in this dissertation will

be given in Chapter 2.

1.3.1 Definition of a Scheme

The first step of designing a cryptographic construction is to define the functionality for

the proposed scheme. Most cryptographic constructions include one algorithm for system

parameter generation, and other algorithms to implement the main functionality. For ex-

ample, the definition of the RSA signature scheme includes an algorithm that produces all

system parameters such as p, q, n, φ(n), e, d, a signing algorithm for signature generation,

and a verification algorithm for signature verification.

One requirement for a construction is that all algorithms should be carried out as effi-

ciently as possible. The size of operations in a cryptographic scheme is usually controlled by

a parameter known as the security parameter, which controls the security and the efficiency

of the construction. Implementation is often a balancing act between efficiency (which gets

worse as the security parameter increases) and security (which gets better as the security

parameter increases). For example, in the RSA scheme, the security parameter is the bit

7

length of the primes p, q. With larger p, q, we have a stronger but less efficient instantia-

tion of the RSA scheme. A great deal of research effort in cryptography focuses on efficient

construction while keeping an appropriate level of security. This is what is pursued in this

dissertation.

1.3.2 Security Properties

The second step in designing a cryptographic scheme is to define the desired security proper-

ties. For example, common cryptographic problems such as encryption and signatures have

well-accepted and well-known security properties, such as security against chosen ciphertext

attacks and existential unforgeability.

Security properties are usually defined in terms of an attack game. The game is defined in

such a way that the attacker wins if he violates the desired security properties. For example,

the definition of secure digital signature was introduced by Goldwasser et al. in 1988 under

a notion called existential unforgeability under adaptive chosen message attacks [24]. Under

this notion, the attack game works as follows: an attacker, called the signature forger, is

allowed to adaptively choose messages a polynomial number of times, asking the signer to

produce the signatures for these messages. No restriction is placed on how a message may be

chosen by the signature forger. At the end of the game, if the forger can create a signature

which was not produced by the signer, the forger wins the attack game, so the signature

scheme is broken. If no polynomial time forger can win the game, the signature scheme is

considered to be a secure construction.

This notion of existential unforgeability under adaptive chosen message attacks has be-

come the standard by which digital signature schemes are judged for whether they are strong

8

enough to be deployed in a real application. In this dissertation, this notion of security is

used to prove the security of the proposed schemes.

1.3.3 Computational Hardness Assumptions

A cryptographic scheme is subject to attacks by adversaries, and a secure construction should

be able to achieve its security goals under all potential attacks. However, it is a non-trivial

task to demonstrate that a construction can satisfy all of its security requirements.

Most security proofs in cryptography follow the so-called “reduction to contradiction”

methodology [29]. That is, the proof itself does not enumerate specific attacks. Instead,

the proof blindly assumes that there exists a strategy for a probabilistic polynomial time

attacker to win the attack game defined in the security properties. Then using this strategy

as a “black box”, one can devise a method to solve another problem which is believed to

be computationally hard. Therefore, the assumed attack strategy is reduced to a method to

solve a new problem. If this problem happens to be intractable, meaning that no probabilistic

polynomial time algorithm is able to solve it, a contradiction is reached, and the assumption

that an attack algorithm exists must not be a valid one. Thus, we can be convinced the

proposed scheme is indeed secure.

To use the “reduction to contradiction” method, we need appropriate hard problems.

Unfortunately, until progress is made in understanding such fundamental computer science

problems as the relation between P and NP, the intractability of such problems must neces-

sarily remain just an assumption. That is, it is assumed that the problem can not be solved

in polynomial time by a probabilistic algorithm. Of course, one can not just randomly as-

sume a problem is difficult and devise a construction based on it. An assumption should

9

be well studied, and several assumptions have become widely accepted in the cryptographic

community. For example, factoring has been studied for centuries, and still no one knows

how to efficiently factor a number that is the product of two large primes, like an RSA

modulus, so this seems like a reasonable assumption. It was initially believed that breaking

RSA was equivalent to the difficulty of factoring, but no one has ever been able to prove this

(while the availability of an efficient factoring algorithm means you could break RSA, the

necessary reduction that breaking RSA means you can factor is still a famous open problem

in cryptography). So as a result a new assumption, called the RSA assumption was formu-

lated that does capture the difficulty of breaking RSA. This has subsequently been extended

to the strong RSA assumption and the strong RSA subgroup assumption. The proposed

constructions in this dissertation rely on these two assumptions, which are introduced in

Section 1.5.2.

1.3.4 Model of Computation

A security proof is carried out in a certain context which is called a model in cryptography,

which describes what kinds of computational resources the parties in the scheme have access

to. The most widely used models in cryptography are the random oracle model and the

standard model. The random oracle model was first proposed by Fiat and Shamir [18], and

formalized by Bellare and Rogaway [4]. In the random oracle model, a cryptographic hash

function is abstracted as a random function that can be accessed by all participants in the

protocol, including adversaries. The goal is to establish formal proofs in this model that

will carry over to real systems when the random oracle is replaced by a real function. The

standard model is also called the real world model, in which the running of the protocol

10

and the behaviors of the adversary are performed on models of computations that are not

augmented with any extra capabilities.

Many digital signature schemes (e.g., Fiat-Shamir [18], Schnorr [38], ElGamal [16], PSS [6])

can be proved secure under adaptive chosen message attack in the random oracle model.

However, serious doubt was cast on the random oracle methodology when Canetti et al.

constructed a scheme that can be proved secure in the random oracle model, while any

real implementation will result in an insecure construction [10]. Furthermore, Goldwasser

and Kalai recently published a result that casts doubt on the general applicability of the

Fiat-Shamir technique [23]. Therefore, security proofs in the random oracle model do not

necessarily imply security in the standard model, so a proof of security in the random oracle

model can only be treated as a heuristic argument that a scheme is secure.

Due to this fundamental flaw in the random oracle model, it is no longer common to treat

a proof in the random oracle model as an air-tight proof in cryptography. As a consequence,

providing a proof in the standard model increasingly becomes a standard requirement for

any cryptographic construction. However, it is worthwhile to point out that people still use

the random oracle model, since it is possible to derive more efficient and simple algorithms

this way, even though we should always be somewhat skeptical about the security of such

schemes.

1.4 Previous Work

In this section, current solutions which might be deployed in the target scenarios, are re-

viewed, which include currently available signature schemes, and methods for online/offline

signing.

11

1.4.1 Signature Schemes

Numerous constructions have been proposed in the literature based on different security

assumptions. Many schemes are based on the well-known RSA assumption and a variant

known as the strong RSA assumption, including PSS [6] and the Cramer-Shoup scheme [12].

Other schemes are based on variants of the discrete logarithm or computational/decisional

Diffie-Hellman assumption, including ElGamal signatures [16] and Schnorr signatures [38].

This section introduces signature schemes which are directly related to the research work.

1.4.1.1 The RSA Signature Scheme in the Real World

The “textbook” version of the RSA scheme is introduced in Section 1.1. However, this version

of the RSA scheme is not secure with respect to the existentially unforgeability criteria. For

example, suppose that we have two signatures such as

σe
1 = m1 mod n, σe

2 = m2 mod n.

It is easy to compute a pair (σ3, m3) such that

σ3 = σ1 × σ2 mod n, m3 = m1 ×m2 mod n, and σe
3 = m3 mod n.

This shows (σ3, m3) is also a valid signature. One may argue that m3 may not be a valid

message, but in general we do not assume a message should be in certain format. A message

is simply series of bytes.

In practice, the message to be signed is pre-processed in a certain way, then the RSA

12

function is applied to the processed message to obtain the final signature. Many techniques

have been proposed to do this pre-processing, such as PSS and PKCS#1 [6].

1.4.1.2 The Schnorr Signature Scheme

The first signature scheme suitable for devices with limited computing capabilities was de-

vised by Schnorr [38]. Schnorr constructed a three-round identification scheme over a small

prime-order subgroup of Z∗
p , which was then converted into a signature scheme using the

Fiat-Shamir heuristic [18]. This scheme will be described in Chapter 5.

The Schnorr scheme is an efficient direct online/offline signature construction. However

it can only be proved secure in the random oracle model.

1.4.1.3 Signature Schemes Secure in the Standard Model

Even though the first signature scheme was introduced in 1978, the first practical and prov-

able signature scheme in the standard model was invented much later. In 2000 Cramer and

Shoup [12] proposed the first practical digital signature scheme secure under adaptive chosen

message attacks under the strong RSA assumption in the standard model. Before this con-

struction, available schemes secure under adaptive chosen message attacks in the standard

model were not practical for real applications [24, 11, 15]. In this dissertation, Cramer and

Shoup’s scheme is referred as the CS scheme.

Based on the ideas of Cramer and Shoup, Camenisch and Lysyanskaya [9], Zhu [44, 45],

and Fischlin [19] all proposed schemes with similar structure based on the strong RSA

assumption. In 2005, Groth extended these results to work over a small subgroup of Z∗
n,

improving the efficiency of signature generation [25].

13

Unfortunately, none of these schemes can operate directly in an online/offline manner.

1.4.2 Methods for Online/Offline Signing

This section reviews two generic methods which can convert any signature scheme into

an online/offline construction: the Even-Goldreich-Micali method and the Shamir-Tauman

method.

1.4.2.1 The Even-Goldreich-Micali Method

In 1989, Even et al. proposed a generic method to convert any signature scheme into an

online/offline construction [17]. Their method is based on a special type of digital signature

called a one-time signature scheme which was proposed by Lamport [28] and Rabin [34].

In a one-time signature scheme, a signing/verification keypair can only be used once

when signing a message, which means that for each new message to be signed, the signer

needs to create a new signing/verification keypair. That is why this type of construction is

called “one-time.” A one-time signature scheme can be implemented using a traditional hash

function (e.g., SHA1 [33]), or a symmetric encryption function (e.g., DES [32]). Therefore,

one-time signature construction generally is very fast.

The idea of the Even-Goldreich-Micali method is as follows: during the offline phase,

a signer prepares as many one-time keypairs (sk, vk) as needed for its one-time signature

scheme, and uses a traditional signature scheme to sign these one-time verification keys.

In the online phase, when a message is known, the signer picks a one-time signing key

to sign the message. Therefore the final signature includes the signature for the one-time

verification key in the traditional signature scheme and the signature for the message in the

14

one-time signature scheme. After creating a signature, this one-time keypair (sk, vk) should

be destroyed since it can not be re-used.

One thing making the Even-Goldreich-Micali method impractical is its large signature

size. Even et al. presented four concrete constructions whose signature lengths vary from

4208 bytes to 31592 bytes, with the longer signature providing stronger security. This long of

a signature is normally undesirable for most applications. For comparison, an RSA signature

is only 32 or 64 bytes for different parameter choices. The long signature size in the Even-

Goldreich-Micali method is mainly due to the one-time signature scheme, which is inherent

in the design of the one-time signature construction.

Recently, some results have been published on reducing signature size for a one-time sig-

nature [31], although the proposed scheme still generates signature that are several thousand

bytes long, which is still not practical enough for many applications.

1.4.2.2 The Shamir-Tauman Method

In 2001, Shamir and Tauman proposed another generic method to achieve online/offline

signing, which is quite efficient [39]. Their method is based on a new type of hash function

called a trapdoor hash function, which was proposed by Krawczyk and Rabin [27], and allows

the use of a “hash-sign-switch” paradigm.

A trapdoor hash function uses a keypair with a public “hash key” hk and a private

“trapdoor key” tk, and the hash for message m is produced by the function h(hk, m, r),

where r is a supplemental random input. For a secure trapdoor hash function, given hk, m′,

r′, and alternative message m, it is infeasible to find an r such that h(hk, m, r) = h(hk, m′, r′);

however, given tk it is easy to find such an r.

15

The idea of Shamir and Tauman’s “hash-sign-switch” paradigm is to first use any signa-

ture algorithm to sign the hash value h(hk, m′, r′) for a random message m′, and then when

the real message m is known (in the online phase) the signer simply computes the r so that

the hash remains the same and the precomputed signature is valid. The random value r is

supplied as part of the signature. This is not suitable for all applications since you need to

maintain an extra keypair, and the signature length is increased (due to the inclusion of r).

The Shamir-Tauman method will be introduced with formal definitions in Chapter 2.

1.5 Overview of this Dissertation

So far, current techniques which may provide solutions for the target scenarios have been

reviewed. Unfortunately, none of these can fully meet the specified requirements. The goal

of this research is to find new techniques to devise online/offline signature schemes which can

provide good solutions to the sample scenarios. In this dissertation, new techniques which

produce direct online/offline signature schemes with highly efficient online operations, are

introduced. These new signature schemes operate under different models and assumptions,

so a person using these signature schemes can decide on how they want to balance security

assurance versus efficiency in practice.

1.5.1 Direct Online/Offline Signing

The Shamir-Tauman technique for online/offline signing is more appropriate in situations

where a signature scheme is already in place, and we only want to “embed” an online/offline

signing mechanism into the current system without discarding anything. The downside

of this method is that it increases the complexity of the current system by introducing

16

additional cryptographic settings, and also increases overall computing overhead as well as

the signature size.

In many scenarios, including the target scenarios, it would be more desirable for an on-

line/offline signing to be directly implemented in a signature scheme from the beginning, so

the whole system could be carried out more simply and efficiently. In fact, many signature

schemes naturally have an online/offline mechanism with only minor effort (e.g., The ElGa-

mal Scheme [16] and the Schnorr scheme [38]). But the problem for these direct online/offline

signature schemes is that they can only be proved secure in the random oracle model, which

is less than ideal, as described in Section 1.3.4.

In Chapter 3, the core design technique for direct online/offline signing is introduced.

Based on this new technique, additional online/offline signature schemes that are secure in

the random oracle model as well as in the standard model are devised. This way, some of

the shortcomings of the Shamir-Tauman method are overcame.

1.5.2 Security Assumptions and Efficiency

As described in Section 1.3.3, the security of cryptographic constructions is based on certain

assumptions. The constructions in this dissertation are based on the strong RSA assumption

and the related subgroup variant. The strong RSA assumption is a well-accepted crypto-

graphic assumption which was first proposed by Baric and Pfitzmann [3] and Fujisaki and

Okamoto [20].

The strong RSA assumption is defined over a mathematical structure, called the modular

group Z∗
n (defined in Chapter 2). Informally, the strong RSA assumption states that it is

impossible to solve the problem of taking a random number u in the modular group Z∗
n for

17

n being an RSA modulus as in the RSA signature scheme, and finding a pair (v, e) such

that e > 1 and ve ≡ u mod n. This problem is called the flexible RSA problem. For

example, suppose that n = 35, and when given a random number 27, one is asked to find

a pair (v, e) such that ve = 27 mod 35. This assumption is closely related to the standard

RSA assumption in which e is a given number. That is, the RSA problem is to take a pair

(e, u) and find a v such that ve = u mod n. Using the same example, the RSA problem

could specify e = 5 and ask for a v such that v5 = 27 mod 35. Obviously, the RSA

assumption puts more restrictions on the problem than the strong RSA assumption does.

In cryptography, an assumption is stronger if the underlying problem is potentially easier to

solve. For example, solving the Flexible RSA problem certainly is no harder than solving

the RSA problem, so the strong RSA assumption is a stronger assumption than the RSA

assumption (which is also reflected in the naming of the assumptions).

The efficiency of a cryptographic construction is significantly affected by its underlying

mathematical structure. Certain operations on Z∗
n (e.g., exponentiation) are computing in-

tensive, resulting in slow signature generation in many schemes. To improve computational

efficiency, Groth recently investigated cryptography over a small subgroup of Z∗
n, and intro-

duced a variant of the strong RSA assumption, called the strong RSA subgroup assumption

over the small subgroup of Z∗
n [25]. By using a much smaller group, the computation cost

can be significantly reduced. Thus Groth’s construction improves the efficiency of the cryp-

tographic construction while requiring a stronger assumption. All of these assumptions are

called the RSA-type assumptions.

The new schemes presented in this dissertation are based on the strong RSA assumption

and the strong RSA subgroup assumption. A question remains: how to determine the

18

security of the schemes? Or, more specifically, how to choose the security parameter k for the

constructions? These questions in turn rely on another assumption called the factorization

assumption, which states that it is infeasible to factor an RSA modulus. Obviously, if n can

be factorized efficiently, all underlying problems in the RSA-type assumptions can be solved,

and these assumptions will not hold on any longer. Therefore, the factorization assumption

is weaker than the RSA-type assumptions.

Figure 1.1 shows the relationship of these assumptions, ‘<’ means the assumption on the

left side is weaker than the one on the right. If a cryptographic construction is based on

a stronger assumption, then theoretically there is less assurance of security (although less

assurance does not mean that it is easier to break). Conversely, if a construction is devised

using a weaker assumption, the construction could be stronger.

< < <
Factorization

Assumption

RSA

Assumption

Strong RSA

Assumption

Strong RSA Subgroup

Assumption

Figure 1.1: The Relationship of Security Assumptions

Even though the RSA-type assumptions are stronger than the factorization assumption,

all known methods for solving the underlying problems for these RSA-type assumptions

require factoring n first. Therefore, Selection of the security parameter is based on the best

known algorithms for factoring when setting the security of schemes which are based on the

RSA-type assumptions. Selecting the security parameter for schemes that work over small

subgroups is more complicated, and the recommendations of Groth are followed to determine

appropriate values for the security parameter.

All current integer factorization algorithms (e.g., Quadratic Sieve Algorithm, Number

19

Field Sieve Algorithm, etc [30]) are super-polynomial in k for k being the bit length of the

two prime factors of n. For example, when k = 512, the bit length of p, q is set to 512, so the

bit length of n is 1024. Currently, k = 512 is considered to be secure for most applications.

The largest number of this form ever factored is RSA-200 which is a 663-bit RSA modulus,

and it took about 3 months on a cluster of 80 2.2 GHz Opterons [36].

1.5.3 Contributions of this Dissertation

In this dissertation, new techniques for online/offline signing are introduced, those are ap-

plied in a variety of ways for creating online/offline signature schemes, and two sets of direct

online/offline signature schemes that are proved secure under a variety of models and as-

sumptions are proposed. The first set of constructions can be proved secure in the random

oracle model, while the second set of constructions can be proved secure in the standard

model. These schemes are called the RQ, RG, SQ, SGE, and SGS schemes. In this dis-

sertation, these schemes are named in following notation: The first letter is either R, or S,

which means the scheme can be proved secure either in the random oracle model, or in the

standard model. The second letter is either Q, or G, which means the scheme is over either

QRn, or the small subgroup G of Z∗
n. An additional letter E or S indicates the scheme is

specialized for the embedded device authentication, or the server authentication.

Chapter 3 introduces the core design technique used in this dissertation, the two-exponent

version of the flexible RSA problem, which provides the flexibility of performing some compu-

tations before the message to be signed is known. Subsequently, the first direct online/offline

signature scheme using this design technique, the RQ scheme, is devised. This work has been

20

published in the paper [42]. Even though the RQ scheme is not a fully optimized construc-

tion, it builds the foundation for subsequent improvements. Using computation over the

small subgroup of Z∗
n, a simple and efficient signature construction, called the RG scheme,

is further devised. However, both the RQ and RG schemes can only provide security in the

random oracle model.

In Chapter 4, the underlying reason for the random oracle being necessary in the proofs

for the RQ and RG schemes is analyzed, and a new design technique is introduced when

using the two-exponent version of the flexible RSA problem. Then a direct online/offline

signature scheme in the standard model is devised. This construction is called the SQ scheme.

Based on the SQ scheme, first computation over the small subgroup of Z∗
n is used to reduce

overall computation overhead. Then, a type of function called a division intractable hash

function, is used to further reduce the offline cost, and the most efficient construction in

the offline phase is obtained. This construction is called the SGE scheme, which targets the

scenario of embedded device authentication. The SQ and SGE schemes are published in the

paper [43]. For the last technique, Shamir and Tauman’s trapdoor hash function is adapted

into the direct online/offline method, and the most efficient construction in the online phase

is obtained. This construction is called the SGS scheme, which targets the scenario of bursty

server authentication.

Table 1.1 summaries all of the new online/offline signature schemes. In the table, “ROM”

means the random oracle model while “SM” means the standard model. “SRSA” means the

strong RSA assumption while “SRSA-S” means the strong RSA subgroup assumption.

The time complexity for the offline phase is largely measured by the number of modular

multiplications in these schemes, which is determined by the security parameter k, and the

21

Schemes Secure Model Assumption Application Area
RQ ROM SRSA -
RG ROM SRSA-S Generic Scenario
SQ SM SRSA Generic Scenario

SGE SM SRSA-S Embedded Device
SGS SM SRSA-S Server

Table 1.1: Direct Online/Offline Signature Schemes in this Dissertation

cost of generation of a prime number if needed for the scheme. Specifically, the RQ scheme

needs about 2k modular multiplications to complete offline signing, while the SQ scheme

requires about 2k modular multiplications and the generation of a 162-bit prime number.

The use of a small subgroup in the RG, SGE and SGS schemes results in a significant decrease

in the number of modular multiplications required, with these schemes requiring roughly 2
5
k

modular multiplications. The SGE scheme needs additional computation for the generation

of an 162-bit prime number, and the SGS scheme needs additional computation for the

generation of an 88-bit prime number. As a concrete example, for k = 512, n is 1024 bits

long. The offline cost is about 1022 modular multiplications (plus additional cost if needed)

for the schemes based on the strong RSA assumption, while the cost for the schemes based

on the strong RSA subgroup assumption, is reduced to about 200 modular multiplications

(plus additional cost if needed).

As for the online phase, all these schemes only need a constant number of relatively simple

arithmetic operations, such as addition, multiplication, or modular reduction. However, each

operation has different computational cost. Unlike in the offline phase where the security

parameter k determines the number of modular multiplications in the schemes, in the online

phase k mainly affects the bit length of the operators of a simpler arithmetic operation. For

22

instance, modular addition is much less expensive than multiplication. Therefore, the online

cost is mainly affected by number, type, and the length of the operators in these operations.

Then the effort of reducing the online cost focuses on devising efficient online procedure that

use fewer operations as well as lower cost operations. The online cost for each scheme is

listed when n is a 1024-bit RSA modulus.

• RQ: one 1022-bit number by 1024-bit number modular multiplication with a 1022-bit

modulus;

• RG: one 200-bit number by 1024-bit number modular multiplication with a 260-bit

modulus, and one modular addition with a 260-bit modulus;

• SQ: one 160-bit number by 1022-bit number multiplication and one addition;

• SGE: three 200-bit number by 60-bit number multiplications, and three additions;

• SGS: one addition, and one modular reduction of a 420-bit number by a 260-bit mod-

ulus.

All these schemes can complete signing and verification in polynomial time with respect

to k. Table 1.2 shows the time complexity of these schemes, where m(n1, n2) is the time

needed for one n1-bit number by n2-bit number multiplication, add() is the time needed for

one addition, madd(n) is the time needed for a modular addition with n-bit modulus, mm(n)

is the time for an n-bit modular multiplication, pg(n) is the time needed to generate a n-bit

prime number, inv() is the time needed to compute a multiplicative inverse of a number, and

mr(n1, n2) is the time needed for one n1-bit number by n2-bit number modular reduction.

23

Schemes Offline Time Complexity Online Time Complexity
RQ 2k ∗mm(2k) mm(2k)
RG 2

5
k ∗mm(2k) mm(2

5
k + 60) + madd(2

5
k + 60)

SQ 2k ∗mm(2k) + pg(162) m(160, 2k) + add()
SGE 2

5
k ∗mm(2k) 3 ∗m(60, 2

5
k) + 3 ∗ add()

SGS 2
5
k ∗mm(2k) + pg(88) add() + mr(2

5
k + 220, 2

5
k + 60)

Table 1.2: Online/Offline Time Complexity

To see the real effect of the proposed schemes, especially performance in the online phase

which is not obvious from theoretical analysis, a series of experiments comparing the pro-

posed schemes with each other and with other state-of-the-art schemes in this area, have

been conducted, both on a desktop computer environment, and in a simulation environment

for embedded devices. Table 1.3 shows one snapshot of the experimental results on a desk-

top class computer for n being 1024 bits. The RSA-ST scheme is an online/offline RSA

construction based on the Shamir-Tauman method.

RSA RSA-ST Schnorr SGE SGS
Offline N/A 79200 7200 9600 10400
Online 40000 4.5 4.5 4.7 2.1

Table 1.3: Experiments on a Desktop Computer (times in microseconds on a Pentium Core
2 Duo E6750)

These results show that the SGS scheme beats all other schemes in terms of online per-

formance. To understand what this improvement means for the bursty sever authentication

scenario, we can calculate how many authentications can be completed in one second. The

numbers of signatures produced per second by SGS, SGE, Schnorr, RSA-ST, and RSA are

469109, 214348, 223548, 221273, and 25, respectively. Thus, SGS scheme generates 2.19

times as many as the SGE scheme, 2.098 times as many as the Schnorr scheme, and 2.12

24

times as many as the RSA-ST scheme, and 18764.36 times as many as the (traditional, non-

online/offline) RSA scheme. Thus we can see experimentally that the improvement by the

SGS scheme is quite significant.

Table 1.4 shows the simulation results on AVR Studio, which simulates an 8-bit processor

that is popular in embedded devices. It can be seen the SGE scheme is really suitable for

embedded devices with about 24.1 seconds for the offline phase and 14.9 milliseconds for

the online phase. The RSA-ST scheme needs 212.2 seconds in the offline phase, which cause

more rapid battery drainage (8 times the cost of SGE), and the RSA scheme takes about

106 seconds to finish the online phase, which is unacceptable for a embedded device to

authenticate to a network. Thus, the SGE scheme is far more suitable for the embedded

device authentication scenario. Notice that for the offline phase the Schnorr scheme runs

faster than the SGE scheme, taking 21.7 seconds to finish the offline computation, about

10 percent faster than the SGE scheme. However, this advantage is small considering that

the Schnorr scheme can only be proved secure in the random oracle model, while the SGE

scheme has a proof in the standard model.

RSA RSA-ST Schnorr SGE SGS
Offline N/A 212.24 21.69 24.11 26.69
Online 105.99 0.0138 0.0191 0.0149 0.0077

Table 1.4: Simulation Experiments on a Embedded Device (times in seconds on AVR Studio)

In summary, a set of new online/offline signature schemes that operate under a variety of

models and cryptographic assumptions, including two that are optimized for specific target

scenarios, have been successfully devised in this dissertation. The schemes that are devised

in this dissertation are currently the best known constructions for online/offline signature

25

schemes.

1.5.4 Scope of this Dissertation

The rest of the dissertation is organized as follows. Chapter 2 reviews some basic concepts

in abstract algebra, formal definitions for some cryptographic primitives, and security proof

techniques in cryptography. Chapter 3 presents the core design technique and the two on-

line/offline digital signature schemes that are secure in the random oracle model. Chapter 4

introduces a new design technique and the online/offline digital signature schemes that are

secure in the standard model, which include a basic scheme, one construction for embedded

device authentication, and one for bursty server authentication. Chapter 5 presents the ex-

perimental results. The research results are summarized and discussed, and conclusions and

future research for the dissertation are presented in Chapter 6.

26

CHAPTER 2

PRELIMINARIES

This chapter reviews the important concepts, mathematical structures and techniques in

abstract algebra, number theory and cryptography, which have been used throughout this

dissertation.

2.1 Mathematical Structures

The concept of groups in mathematics plays a key role in this dissertation. First some basic

definitions from abstract algebra, focusing on concepts which are used frequently in this

dissertation, are reviewed. Then some special group constructions which have been used in

the proposed signature schemes, are introduced. For more information about these concepts

and definitions, consult any good abstract algebra book such as Shoup’s introductory book

that takes a computational approach [41].

2.1.1 Definition of Group

Definition 2.1.1 (Group [30]) A group (G, ∗) consists of a set G with a binary operation

* (called the group operation) on G such that

• The group operation is associative. That is, a ∗ (b ∗ c) = (a ∗ b) ∗ c, for all a, b, c ∈ G,

• There is an element e ∈ G, called identity element, such that for all a ∈ G, a ∗ e =

a = e ∗ a,

27

• For each a ∈ G, there exists an element a−1 ∈ G such that a ∗ a−1 = e = a−1 ∗ a. a−1

is called the inverse of a.

A group is called an abelian group if this group satisfies the commutative property, i.e.,

for all a, b ∈ G, a∗ b = b∗a. A group G is finite if |G|, the number of elements in G, is finite.

|G| is called the order of G.

Definition 2.1.2 (Subgroup) A non-empty subset H of a group G is a subgroup of G if

H is itself a group with respect to the operation of G.

Definition 2.1.3 (Cyclic group) A group G is cyclic if there is an element g ∈ G such

that for each element a ∈ G there is an integer i ≥ 0 with a = gi. Such an element g is

called a generator of G.

Definition 2.1.4 (Order of an Element) Let G be a group and a ∈ G. The order of a is

the least positive integer t such that at = e, assuming that such an integer exists.

2.1.2 Modular Groups

For a positive integer n, the modulo operation on n maps all integers into the set {0, . . . , n−

1}. For two integers a, b, if a = b + kn for an integer k, we write a ≡ b mod n. Modular

arithmetic exhibits the following properties:

• (a mod n + b mod n) mod n = (a + b) mod n

• (a mod n− b mod n) mod n = (a− b) mod n

• (a mod n× b mod n) mod n = (a× b) mod n

28

A finite group can be formed by modular arithmetic, and many cryptographic schemes

use computation over modular groups, such as Z∗
n and QRn which are defined as follows.

Definition 2.1.5 (Multiplicative Group Z∗
n) The set of all positive integers that are less

than n and relatively prime to n, together with the operation of multiplication modulo n, forms

the multiplicative group Z∗
n.

Definition 2.1.6 (Quadratic Residue Group QRn) Let Z∗
n be the multiplicative group

modulo n. An element x ∈ Z∗
n is called a quadratic residue if and only if there exists an

a ∈ Z∗
n such that a2 ≡ x mod n. The set of all quadratic residues of Z∗

n forms a cyclic

subgroup of Z∗
n, which is denoted by QRn.

2.1.3 Groups Used in the Dissertation

One of the first public key cryptographic systems published was the RSA scheme [35], which

uses computation over modular group Z∗
n, where n = pq, p, q are both prime, and n should

be constructed in a way such that factorization of n is infeasible. This type of n is called

an RSA modulus. Many different ways exist to construct n such that the resulting modular

groups exhibit different properties which can be used in cryptographic constructions.

In this dissertation, two special subgroups of Z∗
n for n being an RSA modulus are used:

one is QRn, another one is G. Before the subgroup G of Z∗
n is introduced, the definition of

a special RSA modulus is reviewed.

Definition 2.1.7 (Special RSA Modulus) An RSA modulus n = pq is called special if

p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ also are prime numbers. p, q are also called safe

prime numbers, and n is called a safe RSA modulus.

29

When n is a special RSA modulus, the order of QRn is exactly one fourth of the order

of Z∗
n, i.e., |QRn| = 1

4
|Z∗

n|. When constructed with a special RSA modulus, QRn also has a

special property described by Camenish and Lysyanskaya which will be used in some later

proofs (Lemma B.3 in [9]).

Property 2.1.1 If n is a special RSA modulus, with p, q, p′, and q′ as in Definition 2.1.7

above, then |QRn| = p′q′ and (p′ − 1)(q′ − 1) elements of QRn are generators of QRn.

Two of the proposed schemes (the RQ and SQ schemes) use the subgroup QRn of Z∗
n.

While QRn is an useful subgroup of Z∗
n for cryptographic constructions, its size is comparable

to the size of Z∗
n, which is fairly large for certain applications where the complexity grows

with the size of the group being used.

By using a different form of modulus n, there are smaller subgroups, which has been

shown to be useful in recent work by Groth, who investigated cryptography over a small

subgroup of Z∗
n [25]. Three of the proposed schemes (the RG, SGE, and SGS schemes) use

this special kind of small group of Z∗
n. The definition is presented as introduced by Groth

here.

Definition 2.1.8 (Small Subgroup G of Z∗
n) Let n = pq such that p = 2p′rp + 1 and

q = 2q′rq + 1, where p, p′, q, q′ are all prime. There is a unique cyclic subgroup G of Z∗
n of

order p′q′. For the purpose of efficient cryptographic construction, the order of G, i.e., p′q′,

is chosen small. Let g be a random generator of G, and (n, g) is called an RSA subgroup

pair.

30

2.2 Cryptographic Primitives

This section reviews definitions for some cryptographic primitives such as digital signatures

and hash functions. First, some commonly used terminology in theory of computation [22]

are reviewed.

2.2.1 Terminology in Theory of Computation

Definition 2.2.1 (Probabilistic Polynomial Time [22]) A probabilistic Turing machine

is a standard Turing machine that is augmented with an extra read-only tape that provides

random bits. A probabilistic polynomial time algorithm is a probabilistic Turing machine that

always halts in a number of steps that is bounded by a polynomial in the size of the input.

When defining the security of a cryptographic scheme, we can never guarantee that a

scheme cannot be broken — in any public-key scheme it is possible, although highly unlikely,

for an attacker simply to randomly select a valid signature. In order to refer to probabilities

like this that are extremely small, the concept of a “negligible function” is used.

Definition 2.2.2 (Negligible Function [22]) A function v(k) is negligible if, for any pos-

itive polynomial p(·), there exists an N such that for all k > N ,

v(k) <
1

p(k)
.

Success probability of attack games is used to represent the security of the scheme, which

is affected by the security parameter k of this scheme.

31

Definition 2.2.3 (Success Probability of Attack Games) A(x) is an algorithm (pos-

sibly given with multiple steps) and P (x) is a predicate that also might have multiple parts.

Success probability of attack games is represented as Pr[A(x), s.t., P (x)], which is the proba-

bility that condition P (x) holds after running A(x), where the probability is taken over coin

tosses made by A(x).

Computational indistinguishability is an important concept in cryptography. Many se-

curity proofs for cryptographic constructions are based on a simulation paradigm, in which

a simulator sets up a context, and plays the attack game with the attacker. The primary

requirement for this simulation is that it should be infeasible for the attacker to determine

whether he is in a simulation context rather than in the real context of the scheme. That

is, the simulation context should be computational indistinguishable from the real context.

Computational indistinguishability is sometimes called polynomial time indistinguishability,

and is defined as follows.

Definition 2.2.4 (Polynomial Time Indistinguishability [29]) Let E = {e1, e2, · · ·},

E ′ = {e′1, e′2, · · ·} be two ensembles in which ei, e
′
i are random variables in a finite sample

space S. Denote k = log2|S|, where |S| is the total number of variables in S. Let a =

(a1, a2, · · · , al) be random variables such that all of them are yielded from either E or E ′,

where l is polynomial in k.

A distinguisher D for (E, E ′) is a probabilistic algorithm which halts in time polynomial

in k with output in {0, 1} and satisfies (i)D(a, E) = 1 iff a is from E; (ii)D(a, E ′) = 1 iff a

is from E ′.

If Adv(D) = |Pr[D(a, E) = 1] − Pr[D(a, E ′) = 1]|, then D distinguishes (E, E ′) with

32

advantage Adv > 0.

E, E ′ are said to be polynomially indistinguishable if there exists no distinguisher for

(E, E ′) with advantage Adv > 0 non-negligible in k for all sufficiently large k.

A concept that is closely related to indistinguishability is the distance between two dis-

tributions. If the statistical distance between two distributions is negligible, these two dis-

tributions are indistinguishable. The formula for distance of two distributions is introduced.

Definition 2.2.5 (Statistical Indistinguishability) Let PrD(x) denote the probability of

x in discrete probability distribution D. Then the distance between distributions D1 and D2

is

dist(D1, D2) =
1

2

∑

x

|PrD1
(x)− PrD2

(x)| .

Note that for any two distributions dist(D1, D2) ≤ 1. Two distributions D1 and D2 are

statistically indistinguishable if dist(D1, D2) is negligible.

Note that if two distributions are statistically indistinguishable, then they are also com-

putationally indistinguishable.

2.2.2 Formal Definition of Digital Signature Schemes

The digital signature concept was proposed by Diffie and Hellman in 1976 [14]. However, the

formal mathematical definition that is standard today only appeared later, after refinement

by several researchers. The formal definition for signature schemes due to Goldwasser et

al [24] is introduced.

33

Definition 2.2.6 (Signature Schemes) A signature scheme is a triple, (Gen, Sig, V er),

of probabilistic polynomial time algorithms as defined below:

• Algorithm Gen(1k) is called the key generation algorithm. There exists a polynomial

kl(·), called the key length, so that on input 1k, algorithm Gen outputs a pair (sk, vk)

so that sk, vk ∈ {0, 1}kl(k). The first element, sk, is called the signing key, and the

second element vk is the corresponding verification key.

• Algorithm Sig(sk, m) is called the signing algorithm. There exists a polynomial ml(·),

called the message length, so that on input a pair (sk, m), where sk ∈ {0, 1}kl(k) and

m ∈ {0, 1}ml(k), algorithm Sig outputs a string called a signature of message m.

• Algorithm V er(vk, m, σ) is called the verification algorithm that outputs either “accept”

or “reject”. For every k, every (sk, vk) in the range of Gen(1k), every m ∈ {0, 1}ml(k)

and every σ in the range of Sig(sk, m), it holds that

V er(vk, m, σ) = accept.

The security properties of secure digital signature schemes are described in the notion

of existential unforgeability under adaptive chosen message attacks, which was proposed by

Goldwasser, Micali and Rivest [24]. This notion has been widely used in the design of digital

signature schemes. In this dissertation, this notion is used to prove the security of the

proposed schemes. The definition given here appears in [21].

Definition 2.2.7 (Secure Signatures [21]) A signature scheme (Gen, Sig, V er) is exis-

tentially unforgeable under adaptive chosen message attack if it is infeasible for a forger who

34

only knows the public key, to produce a valid (message, signature) pair, even after obtaining

polynomially many signatures on messages of its choice from the signer.

Formally, for every probabilistic polynomial time forger algorithm F , there exists a neg-

ligible function negl() such that

Pr




〈vk, sk〉 ← Gen(1k);

for i = 1 . . . n

mi ← F(vk, m1, σ1, . . . , mi−1, σi−1); σi ← Sig(sk, mi);

〈m, σ〉 ← F(vk, m1, σ1, . . . , mn, σn),

s.t. m 6= mi for i = 1 . . . n, and V er(vk, m, σ) = accept




= negl(k).

2.2.3 Cryptographic Hash Functions

Hash functions are commonly used in cryptographic constructions. A hash function maps

arbitrary strings of finite length to binary strings of fixed length. For cryptographic purposes,

a hash function should satisfy one or more of the following security properties defined by

Damgard [13].

Definition 2.2.8 (Cryptographically Secure Hash Function) A hash function h maps

arbitrary strings of finite length to binary strings of fixed length lh, which is polynomial in k

(the security parameter):

h : {0, 1}∗ → {0, 1}lh.

A cryptographically secure hash function should satisfy at least one of the following prop-

erties:

35

• Strong collision resistance: No probabilistic polynomial time algorithm can find a pair

(x, x′) with x 6= x′ such that h(x) = h(x′).

• Weak collision resistance: For a given x, no probabilistic polynomial time algorithm

can find an x′ 6= x such that h(x) = h(x′).

• One-way: For a given c, no probabilistic polynomial time algorithm can find an x such

that c = h(x).

One of the proposed schemes in this dissertation will use another property of hash func-

tions called “division intractability,” which was introduced by Gennaro et al. [21]. Informally

speaking, a hash function is division intractable if it is infeasible to find distinct inputs for

this hash function such that the hash value of one input divides the product of hash values

of all other inputs.

Definition 2.2.9 (Division Intractability [21]) A hash function h is division intractable

if it is infeasible to find distinct inputs x1, . . . , xn, y such that h(y) divides the product of the

h(xi)’s.

Formally, for every probabilistic polynomial time algorithm A, there exists a negligible

function negl() such that

Pr




A(h) = 〈x1, . . . , xn, y〉

s.t. y 6= xi for i = 1 . . . n,

and h(y) divides
∏n

i=1 h(xi)




= negl(k).

36

2.2.4 Hash-Sign-Switch Paradigm

As described in Chapter 1, Shamir and Tauman proposed a “Hash-Sign-Switch” technique

that can convert any signature scheme to an online/offline signature construction using a

trapdoor hash function. The formal definition for this technique is introduced here.

Definition 2.2.10 (Hash-Sign-Switch Paradigm) For security parameter k, recall that

a signature scheme S = (Gen, Sig, V er) has a public verification key vk, and a private

signing key sk. Similarly, a trapdoor hash function h has a public hash key hk, and a private

trapdoor key tk. An online/offline signature scheme can be generated as follows.

Key Generation. Output public key (vk, hk), and private key (sk, tk). Let M = {0, 1}lm

be the message space for the scheme, and R = {0, 1}lr be the space of random input for a

trapdoor hash function.

Signing Algorithm. The signing procedure includes the standard two phases for an on-

line/offline scheme.

Offline Phase: Compute h(hk, m′, r′), where (m′, r′) ∈R M × R, and compute σ =

Sig(sk, h(hk, m′, r′)).

Online Phase: For a message m, compute r such that h(hk, m, r) = h(hk, m′, r′) Then

the signature is (σ, r).

Verification Algorithm. To verify that (σ, r) is a valid signature on message m, compute

h(hk, m, r), and check that

V er(vk, h(hk, m, r), σ) = accept.

37

Using this Hash-Sign-Switch paradigm, the resulting online/offline signature scheme

needs to manage the second keypair (hk, tk), and its signature contains the additional ran-

dom value r. In addition, this technique adds significant computational overhead in the

offline phase because a trapdoor hash function is in fact another set of public key operations.

2.3 Complexity Assumptions

This section reviews the formal definitions for complexity assumptions used in this disser-

tation. Specifically, the strong RSA assumption and its variant are used. The strong RSA

assumption is a well-accepted complexity assumption in cryptography, which was first pro-

posed by Baric and Pfitzmann [3] and Fujisaki and Okamoto [20].

Assumption 2.3.1 (Strong RSA Assumption) Let n be an RSA modulus. The flexible

RSA problem is the problem of taking a random element u ∈ Z∗
n and finding a pair (v, e)

such that e > 1 and ve = u mod n. The strong RSA assumption says that no probabilistic

polynomial time algorithm can solve the flexible RSA problem for random inputs with non-

negligible probability.

The strong RSA assumption itself is defined over Z∗
n for when n is an RSA modulus.

Cramer and Shoup investigated this assumption over QRn for n being a special RSA modulus,

and showed that the assumption is no stronger in QRn than in general Z∗
n. Some of the

proposed schemes use computation over QRn and rely on this assumption.

When investigating cryptography over a small subgroup of Z∗
n, Groth also introduced a

variant of the strong RSA assumption, called the strong RSA subgroup assumption, over

a specially formed small subgroup of Z∗
n — this definition is given here, with terminology

38

slightly cleaned up from the original paper [25].

Assumption 2.3.2 (Strong RSA Subgroup Assumption) Let K be a key generation

algorithm that produces an RSA subgroup pair (n, g). The flexible RSA subgroup problem is

to find u, w ∈ Z∗
n and d, e > 1 such that g = uwe mod n and ud = 1 mod n. The strong

RSA subgroup assumption for this key generation algorithm states that it is infeasible to solve

the flexible RSA subgroup problem with non-negligible probability for inputs generated by K.

To facilitate the proofs for the proposed schemes in the subsequent chapters, a multiple

generator version of the strong RSA subgroup assumption is presented, which is implied by

a lemma in Groth’s paper (Lemma 1 in [25]).

Assumption 2.3.3 (Strong RSA Subgroup Assumption with Multiple Generators)

Let K be a key generation algorithm that produces an RSA subgroup pair (n, g). Let g1, . . . , gw

be randomly chosen generators of G. The multiple generator version of the flexible RSA sub-

group problem is to find values (y, e, e1, . . . , ew) such that ye = ge1

1 . . . gew
w mod n. If e = 0,

then it is required that there exists an ei for i ∈ [1, w] such that ei 6= 0 . Otherwise there

exists an ei for i ∈ [1, w] such that GCD(e, ei) < e. The strong RSA subgroup assump-

tion with multiple generators for this key generation algorithm states that it is infeasible to

solve the multiple generator version of the flexible RSA subgroup problem with non-negligible

probability for inputs generated by K.

Note that this assumption can also be used with a single generator when w = 1, despite

it is a multiple generator version of the strong RSA subgroup assumption.

39

2.4 Models of Computation

Chapter 1 briefly introduced the concept of models of computation, and implications for

cryptographic constructions. Two sets of signature schemes have been devised in this disser-

tation, one of which is secure in the random oracle model, and the other of which is secure

in the standard model. The standard model follows the standard definition of computa-

tional models in theory of computation, while the random oracle model is a special model

in cryptography, which is described in this section.

2.4.1 Random Oracle Model

Many cryptographic constructions use a hash function to randomize values such as a mes-

sage to be encrypted or signed. For example, in the hashed version of the RSA signature

scheme [6], a message to be signed is hashed first, then the hash value in turn is signed by

the RSA signing function.

The output of a cryptographically secure hash function “looks random” in all important

ways when it can satisfy the security properties defined in 2.2.8. Therefore, the analysis can

be simplified by assuming it is random. This analysis technique, in which the hash function

is treated as a random function, was formalized by Bellare and Rogaway [4] as the so-called

random oracle model, which treats the hash function as a random function publicly accessed

by all participants in a scheme.

Definition 2.4.1 (Random Oracle) A random oracle is a mathematical abstraction, which

answers a query x as follows:

• If it answered the query x before, it responds with the same value it given the last time.

40

• If it has not answered the query x before, it generates a random response which is

uniformly chosen from the oracle’s output range. The random oracle also records the

answer for this x in case the same query is asked later.

To carry out a security analysis or proof in the random oracle model, a public random

oracle is set up to be accessed by all parities, either good or bad. Since random oracles are a

mathematical convenience for the sake of analysis, when such an algorithm is implemented in

practice the random oracle is replaced by a hash function. The random oracle methodology

facilitates design and analysis of many cryptographic schemes. For example, the RSA scheme

with the Optimal Asymmetric Encryption Padding (OAEP), which is one way the RSA

scheme is used for encryption in practice, has been proved secure in the random oracle

model [5, 40].

Unfortunately, in 1998, Canetti et al. constructed a scheme that can be proved secure

in the random oracle model, while any real implementation will result in an insecure con-

struction [10]. The basic idea is to start with a secure scheme and modify it to obtain a

construction secure in the random oracle model, but this modified scheme does not enjoy any

secure implementation. A special structure called an evasive relation is used in the modified

scheme with the following operations: if a (query, answer) pair produced by the random

oracle is in the evasive relation, output the private key; otherwise, the scheme behaves as

the original construction. This modification implies that the scheme is broken if a query sat-

isfying the evasive relation is made, since the private key is exposed. In the random oracle

model, finding such a (query, answer) pair is infeasible so the modified scheme will maintain

its security. However, it is easy to find such a pair under any implementation of the random

41

oracle, thus any implementation will not be secure.

Due to this fundamental flaw in the random oracle model, security proofs in the random

oracle model do not necessarily imply security in the standard model, so a proof of security in

the random oracle model can only be treated as (at best) a heuristic argument that a scheme

is secure. However, people still use the random oracle model since it is possible to derive

more efficient and simple algorithms this way. For example, most widely used constructions

such as the RSA signature/encryption schemes can only be proved secure in the random

oracle model. The lesson from Canetti et al.’s work is that we should always be somewhat

skeptical about the security of schemes which can only be proved secure in the random oracle

model.

42

CHAPTER 3

SIGNATURE SCHEMES IN THE RANDOM ORACLE MODEL

Since the strong RSA assumption was introduced in 1997, many new cryptographic construc-

tions have been proposed (e.g., [1, 7, 8, 9, 12, 26]). This chapter introduces the core design

technique used in this dissertation, generalizing the flexible RSA problem to use exponents

on both sides of the equation, which is no easier to solve than the standard flexible RSA

problem assuming certain conditions are met. The two-exponent version of the flexible RSA

problem provides the flexibility of performing some computations before the message to be

signed is known, and delaying other computations until the message is provided, allowing us

to devise online/offline signature schemes. In this chapter, this design technique is described

and used to devise two direct online/offline signature schemes which are secure in the random

oracle model.

3.1 Design Technique

Informally, the strong RSA assumption states that when n is an RSA modulus, for a random

u ∈ Z∗
n, no probabilistic polynomial time algorithm can find a pair (v, e), e > 1 such that

ve = u mod n,

with non-negligible probability. However, this problem is efficiently solvable if the factoriza-

tion of n is known. Knowing the factorization of n, we can pick a random e relatively prime

43

to φ(n) = (p−1)(q−1), calculate d, the inverse of e modulo φ(n), and obtain v = ud mod n.

This is exactly the process used by the RSA scheme. The only difference between the RSA

problem and the flexible RSA problem is that e is a given input in the RSA problem while

e is an output to be computed in the flexible RSA problem. This small difference has a

big impact on the design of cryptographic constructions. The flexibility of the flexible RSA

problem is one reason so many constructions have been proposed since the introduction of

the strong RSA assumption.

In 1999 Gennaro, Halevi and Rabin proposed a signature scheme [21], which is called the

GHR scheme, which produces a signature that satisfies

σh(m) = g mod n,

where h is a hash function, g is a fixed integer in Z∗
n, and σ is the signature with respect

to a message m. Notice that the signature σ and h(m) give a solution to the flexible RSA

problem, for input value u = g.

Now the two-exponent version of the flexible RSA problem is introduced. Let n be

an special RSA modulus. The two-exponent version of the flexible RSA problem is the

problem of taking a random element u ∈ QRn and finding a triple (v, e1, e2) such that

e1 > 1, GCD(e1, e2) < e1, and ve1 = ue2 mod n.

Notice, when e2 is 1, the GCD condition is always met and we have exactly the standard

flexible RSA problem. The following lemma, due to Camenisch and Lysyanskaya, shows that

under the right conditions the two-exponent version of the flexible RSA problem is not any

easier to solve than the standard flexible RSA problem [9].

44

Lemma 3.1.1 Let n be a special RSA modulus. Given values u, v ∈ QRn and x, y ∈ Z,

GCD(x, y) < x such that vx ≡ uy mod n. Values z, w > 1 such that zw ≡ u mod n can

be computed efficiently.

Since a solution to the standard flexible RSA problem is also a solution to the two-

exponent version (with e2 = 1), and the preceding lemma shows that a solution to the

two-exponent version can be used to compute a solution to the standard problem, the com-

putational complexities of these two variants are equivalent. Furthermore, note that if the

factorization of n is known we can compute more general solutions to the two-exponent ver-

sion, with random exponents: pick two random numbers e1, e2, calculate e−1
1 with respect to

p′q′, and obtain v = ue−1

1
e2 mod n.

However, notice that there exists another way to obtain a solution to the two-exponent

version of the flexible RSA problem. We can first pick a random number r, and compute

v = ur mod n. Then we pick an e1, and compute e2 = r × e1 mod p′q′. This way, the

computation of v is independent of e1 and e2, and e2 is computed from r and e1. The

computation of v uses modular exponentiation, which is time consuming. Under this new

method, v can be obtained independently of its exponent (which, in the signature schemes,

includes the message to be signed), allowing us to devise online/offline signature schemes.

The GHR scheme fixes e2 to be 1 and solves for v — but solving for v is slow and can’t

be done until m is known. The use of the two-exponent version allows us to pick v randomly

and solve for e2 after m is known, which is much more efficient.

45

3.2 The RQ Scheme

In this section, the first proposed direct online/offline signature scheme is presented, called

the RQ scheme — recall that the name indicates that this scheme is designed for the random

oracle model using computations over QRn.

3.2.1 The Scheme

Now details of the online/offline design sketched above are given. When a message is known,

the signer calculates the hash value for this message by using a division intractable hash

function, which is modeled in the analysis by a random oracle. Then the techniques described

in the previous section on the two-exponent flexible RSA problem are used in order to

complete the signature. The formal description of the RQ scheme follows.

Public System Parameters. Let k be the security parameter. Let lh be the output

length of a hash function, which is polynomial in k, and should be chosen so that the failure

probability in Lemma 3.2.5 is acceptably small.

Key Generation. On input 1k, pick two k-bit safe primes p and q (so that p = 2p′ +1, and

q = 2q′ + 1, where p′ and q′ are also prime), and let n = pq. Let ln = 2k be the length of

the public modulus used in the signing algorithm. Select b as a random generator of QRn.

Choose a division intractable hash function h : {0, 1}∗ → {0, 1}lh. Output private key (p′q′),

and public key (n, b, h).

Signing Algorithm. The signing procedure includes two phases.

Offline Phase: Pick Np random values γi ∈R [0, p′q′), for i = 1, · · · , Np. For each γi,

46

compute

vi = bγi mod n.

Thus, the signer prepares a pool of Np pairs (γi, vi) in idle time.

Online Phase: Given a message m ∈ [0, 2lm), compute h(m), then use the next unused

(γi, vi) pair to compute

s = γi × h(m) mod p′q′.

Optional test step: Test if GCD(h(m), s) ≤ 22
√

lh — if so, the signature is ready; otherwise,

the signer will continue by trying other (γi, vi) pairs. The signature is (vi, s) for the message

m.

Verification Algorithm. To verify that (v, s) is a signature on message m, check that

GCD(h(m), s) ≤ 22
√

lh , and

vh(m) ≡ bs mod n.

The online phase of the signing algorithm includes an optional test step — if time can

be taken to perform this step, the signing algorithm will never fail, but at the cost of a

moderately expensive GCD computation. On the other hand, as shown in Lemma 3.2.5,

the probability of this test failing is negligible, so the test can be omitted if a negligible

failure probability is acceptable. If the test is omitted, the online phase only requires a

single modular multiplication.

In a real application, it is desirable to have a pool of (γi, vi) pairs available when needed.

For instance, in the case of server authentication, the server might need a large pool to

complete a large burst of authentication requests, so Np could be large (e.g., over 10,000).

47

On the other hand, for a mobile device, Np can be set reasonable small — a pool size of 5 or

less should be enough for most situations. During idle time, the device produces new pairs

to keep the pool full, or it could download new pairs when securely connected to a more

powerful device.

3.2.2 Security Analysis

In this section, the security of the RQ scheme is discussed. The proof technique used is the

“reduction to contradiction” method described in Chapter 1. The idea is as follows: An

algorithm which uses a signature forgery algorithm to solve the flexible RSA problem, is

created, where the proposed algorithm simulates the signature oracle for interaction with

the forgery algorithm. First, the proposed algorithm for the flexible RSA problem is given

an input (u, n) which is used to initialize the signature oracle simulator. Based on the (u,n)

values, the signature oracle simulator sets up the signature parameters (including creating a

simulated “key” for the signature scheme) and answers queries asked by an assumed signature

forger. Under the notion of adaptive chosen message attack, the simulator should not make

any assumption about the messages queries made by the signature forger. If, after polynomial

times of queries, the forger can produce a new signature which is not answered by the

simulator, then the simulator uses this forged signature to obtain a solution to the flexible

RSA problem, which can only happen with negligible probability under the strong RSA

assumption.

First, some lemmas which are needed for the security proof, are introduced. The first

lemma addresses the smoothness of a random integer. A positive integer is called B-smooth

if none of its prime factors is greater than B. For example, 84 = 22 × 3 × 7, so 84 is a

48

7-smooth integer. The smoothness property for a random integer expressed in the following

lemma will be used in the later proof. The proof for this lemma can be found in the proof

of Lemma 6 presented by Gennaro et al. [21].

Lemma 3.2.1 Let e be a random lh-bit integer. The probability of e being 22
√

lh-smooth (i.e.,

all e’s prime factors are no larger than 22
√

lh) is no larger than 2−2
√

lh. In other words, the

probability of e having at least one prime factor larger than 22
√

lh is at least 1− 2−2
√

lh.

The following lemma is used directly in the security proof for the RQ scheme — note

that the condition on w is met for sufficiently large lh whenever w is polynomial in k, which

is in turn polynomial in lh. The division intractability property of a hash function is based

on this lemma: when a hash function outputs lh-bit random integers for arbitrary inputs, it

is intractable to find an input whose hash value can divide the product of other hash values.

Due to the importance of this lemma, its proof is re-written to facilitate understanding of

the subsequent proof. The original proof is presented by Gennaro et al. [21].

Lemma 3.2.2 Let e1, e2, · · · , ew be random lh-bit integers, where w ≤ 20.5
√

lh. Let j be a

randomly chosen index from [1, w], and define E = (
∏w

i=1 ei)/ej. Then the probability that ej

divides E is less than 2−
√

lh.

Proof : We denote by smooth the event that ej is 22
√

lh-smooth. From Lemma 3.2.1, we

know that Pr[smooth] ≤ 2−2
√

lh .

Consider the case in which ej is not 22
√

lh-smooth. Then ej has at least one prime factor

p > 22
√

lh , so Pr[ej divides E] is bounded by the probability that at least one of the ei (i 6= j)

is divisible by p. Since the ei’s are chosen uniformly, the probability that any specific ei is

49

divisible by p is at most 1/p < 2−2
√

lh. Then, the probability that there exists an ei which

is divisible by p is at most w× 2−2
√

lh , and based on the bound on w given in the lemma we

get w × 2−2
√

lh < 2−1.5
√

lh . Therefore, Pr [p divides E|¬smooth] < 2−1.5
√

lh , and since p is a

prime factor of ej, we get Pr[ej divides E| ¬smooth] < 2−1.5
√

lh.

Therefore, the probability that ej divides E is at most

Pr[smooth] + Pr[ej divides E|¬smooth] < 2−2
√

lh + 2−1.5
√

lh < 2−
√

lh ,

which completes the proof. ⊓⊔

Based on Lemma 3.2.2, another lemma is introduced, which is used directly in the security

proof for the RQ scheme.

Lemma 3.2.3 Let e1, e2, · · · , ew be random lh-bit integers, where w ≤ 20.5
√

lh. Let j be a

randomly chosen index from [1, w], and define E = (
∏v

i=1 ei)/ej. If s is an integer such that

GCD(ej, s) ≤ 22
√

lh, then the probability that ej divides Es is less than 2−
√

lh .

Proof : We denote by smooth the event in which ej is 22
√

lh-smooth. From Lemma 3.2.1, we

know Pr[smooth] ≤ 2−2
√

lh.

Consider the case in which ej is not 22
√

lh-smooth. Then ej has at least one prime factor

p > 22
√

lh , thus, Pr[ej|Es] is bounded by the probability that at least one of the ei (i 6= j)

or s is divisible by p. Since the ei’s are chosen uniformly, the probability that any specific ei

is divisible by p is at most 1/p < 2−2
√

lh. Then, the probability that there exists an ei which

is divisible by p is at most w× 2−2
√

lh , and based on the bound on w given in the lemma we

get w × 2−2
√

lh < 2−1.5
√

lh. Furthermore, since GCD(ej , s) ≤ 22
√

lh , p cannot divide s due to

50

p > 22
√

lh. Therefore, Pr [p divides Es|¬smooth] < 2−1.5
√

lh , and since p is a prime factor of

ej , Pr[ej divides Es|¬smooth] < 2−1.5
√

lh.

Therefore, the probability that ej divides Es is at most

Pr[smooth] + Pr[ej divides Es|¬smooth] < 2−2
√

lh + 2−1.5
√

lh < 2−
√

lh.

⊓⊔

The security proof uses the standard technique of simulating the signature oracle for a

forgery algorithm, resulting in algorithm to solve an assumed hard problem (the flexible RSA

problem in this instance). Unfortunately, we cannot perfectly simulate the signature oracle,

because the distribution of the s value produced by the signing algorithm depends on the

unknown value p′q′. However, we can simulate something very close to this distribution — in

the main security theorem the following lemma is used to show that the “close” distribution

is in fact close enough to establish the security of the RQ scheme.

Lemma 3.2.4 Let p′ and q′ be as defined in the RQ scheme, so in particular p′ and q′ are

k − 1 bit prime numbers. Consider the following two distributions on pairs (e, s):

• Distribution D1 is obtained by selecting e uniformly from the set of lh-bit integers, and

s is computed as s = γ×e mod p′q′, where γ is chosen uniformly from (0, · · · , p′q′−1).

• Distribution D2 is obtained by selecting e uniformly from the set of lh-bit integers, and

s is uniformly selected from (0, · · · , n−1
4
− 1).

dist(D1, D2) < 2−k+3, so distributions D1 and D2 are statistically indistinguishable.

51

Proof : PrDi,e(s) is used to denote the probability distribution of s values under Di condi-

tioned on e being a specific, given value. If S is a set of e values, the notation PrDi,S(s) is

used to denote the probability distribution of s values under Di conditioned on e being in S.

Since e is chosen independently as a uniformly distributed lh-bit integer in both D1 and

D2, it makes sense to talk about the probability that e ∈ S for some set S without specifying

distribution D1 or D2, and this is denoted as Pr[e ∈ S].

The possible e values are partitioned into two sets, S1 and S2, defined as follows:

S1 = {e|GCD(e, p′q′) = 1}

S2 = {e|GCD(e, p′q′) > 1}

Now note that the goal is to compute 2 · dist(D1, D2), or

∑

(s,e)

|PrD1
(s, e)− PrD2

(s, e)| =

Pr[e ∈ S1]
∑

(s,e)|e∈S1

|PrD1,S1
(s)− PrD2,S1

(s)|+

Pr[e ∈ S2]
∑

(s,e)|e∈S2

|PrD1,S2
(s)− PrD2,S2

(s)|

Intuitively, the situation is that when e ∈ S1 the distance between D1 and D2 is negligible.

However, when e ∈ S2, the distributions are quite different, but the probability of e ∈ S2 is

negligible.

First, consider one particular e ∈ S1, so e is relatively prime to p′q′, and hence for any

s ∈ {0, · · · , p′q′ − 1} there is exactly one γ ∈ {0, · · · , p′q′ − 1} such that s ≡ γ × e (mod p′q′)

52

— namely, γ = s×e−1 mod p′q′, where e−1 is the inverse of e in Z∗
p′q′. This gives a one-to-one

mapping between s and γ values in this case, and since γ is uniformly distributed we have

that PrD1,e(s) = 1
p′q′

for this e and any s ∈ {0, · · · , p′q′ − 1}. Furthermore, since s is chosen

uniformly in distribution D2, we have PrD2,e(s) = 4
n−1

for any s ∈ (0, · · · , n−1
4
− 1). Since

PrD1,e(s) = 0 whenever p′q′ ≤ r < n−1
4

, we get

∑

(s,e)|e∈S1

|PrD1,S1
(s)− PrD2,S1

(s)|

=

(
1

p′q′
− 4

n− 1

)
p′q′ +

4

n− 1

(
n− 1

4
− p′q′

)

= 2− 8p′q′

n− 1

= 2− 8p′q′

4p′q′ + 2p′ + 2q′

=
8p′q′ + 4p′ + 4q′ − 8p′q′

4p′q′ + 2p′ + 2q′

=
2p′ + 2q′

2p′q′ + p′ + q′

<
p′ + q′

p′q′

=
1

p′
+

1

q′
.

Next, we turn to the case where e ∈ S2, and consider Pr[e ∈ S2]. For e to be in S2, it

must be a multiple of p′ or q′ (or possibly both). For any lh, the probability that a randomly

chosen lh-bit integer is a multiple of p′ is at most 1
p′

, and the probability that e is a multiple

of q′ is at most 1
q′

. Therefore,

Pr[e ∈ S2] ≤
1

p′
+

1

q′
.

53

Returning to the overall distance between distributions D1 and D2, we get

∑

(s,e)

|PrD1
(s, e)− PrD2

(s, e)|

= Pr[e ∈ S1]
∑

(s,e)|e∈S1

|PrD1,S1
(s)− PrD2,S1

(s)|+

Pr[e ∈ S2]
∑

(s,e)|e∈S2

|PrD1,S2
(s)− PrD2,S2

(s)|

<

(
1− 1

p′
− 1

q′

)
×
(

1

p′
+

1

q′

)
+

(
1

p′
+

1

q′

)
× 1

< 1×
(

1

p′
+

1

q′

)
+

(
1

p′
+

1

q′

)
× 1

= 2×
(

1

p′
+

1

q′

)
.

Therefore, dist(D1, D2) <
(

1
p′

+ 1
q′

)
, and since p′ and q′ are k − 1 bits, we conclude that

dist(D1, D2) < 2−k+3. ⊓⊔

Lemma 3.2.5 Let (e, s) be a pair drawn from D1, where lh ≥ 4 is polynomial in k. Then

the probability that GCD(e, s) > 22
√

lh is at most lh

22
√

lh
+ ν(k), where ν(k) is negligible in k.

Proof : We first consider the probability that GCD(e, s) > 22
√

lh when (e, s) comes from D2.

If GCD(e, s) > 22
√

lh then e and s are both divisible by some d > 22
√

lh , and the probability

that e and s are both divisible by an integer d is no larger than (1
d
)2. Then, the probability

that GCD(e, s) > 22
√

lh is equal to the probability that e and s are both divisible by some

d > 22
√

lh, which is

≤
(

1

22
√

lh + 1

)2

+
(

1

22
√

lh + 2

)2

+ · · ·+
(

1

2lh

)2

54

<
1

22
√

lh

(
1

22
√

lh + 1
+

1

22
√

lh + 2
+ · · ·+ 1

2lh

)

=
1

22
√

lh
(H2lh −H

22
√

lh
)

<
1

22
√

lh
H2lh

<
1

22
√

lh

(
ln 2l

h + 1
)

=
lh

22
√

lh

(
ln 2 +

1

lh

)

<
lh

22
√

lh
.

By Lemma 3.2.4, D1 and D2 are statistically indistinguishable, so the probability that

GCD(e, s) > 22
√

lh when (e, s) comes from D1 can be larger than lh

22
√

lh
by only a negligible

amount. Therefore, Pr[GCD(e, s) > 22
√

lh] ≤ lh

22
√

lh
+ ν(k), where ν(k) is negligible in k. ⊓⊔

Now the proof for the RQ scheme is secure under the strong RSA assumption when the

hash function h is replaced by a random oracle, is given as follows.

Theorem 3.2.1 In the random oracle model, the RQ scheme is existentially unforgeable

under an adaptive chosen message attack, assuming the strong RSA assumption.

Proof : Let F be a forgery algorithm. Under the random oracle model, F always queries

the random oracle about a message m before it either asks the signature oracle to sign this

message, or outputs (m, v, s) as a potential forgery. Let w be some polynomial upper bound

on the number of queries that F makes to the random oracle.

Now an efficient algorithm A is shown, that uses F as a subroutine, such that if F has

probability ǫ of forging a signature, then A has probability ǫ′ ≈ ǫ/w of solving the flexible

RSA problem.

55

A is given a special RSA modulus n and a t ∈R QRn, and its goal is to find a pair (z, e)

such that e > 1 and ze ≡ t mod n.

First, A prepares answers for the random oracle queries that F will ask by picking w

random lh-bit integers e1, · · · , ew and a random j ∈R [1, w]. A is betting on the chance that

F will use its j’th oracle query to generate the forgery.

Next, A prepares answers for signature queries that F will ask. A computes E =

(
∏w

i=1 ei)/ej. If ej divides E, then A outputs “failure” and halts. Otherwise, it sets b =

tE mod n, and initializes the forger F , giving it the public key (n, b).

A then runs the forger algorithm F , answering oracle queries with the help of a function

SampleD() which gets a random sample from some distribution D described in Lemma 3.2.4.

Specifically, oracle queries are answered as follows:

• Random oracle queries for m1 . . .mw are answered by setting h(mi) = ei for each

i ∈ [1, w].

• Signature oracle queries for message mi, for i 6= j, are answered with (mi, vi, si) where

si = SampleD() and vi = tEsi/ei mod n.

If F queries the signature oracle for message mj, or halts with an output other than

(mj , vj, sj) for which v
ej

j ≡ bsj mod n and GCD(ej, sj) ≤ 22
√

lh , then A outputs “failure”

and halts. Otherwise we have a valid forgery with

v
ej

j ≡ bsj ≡ tEsj mod n.

By Lemma 3.2.3, ej divides Esj with a negligible probability, and so with overwhelming

56

probability GCD(ej, Esj) < ej, and we can apply Lemma 3.1.1 to find values z and e such

that ze ≡ t mod n. Therefore, if A does not output “failure” then with overwhelming

probability it outputs a valid solution to this instance of the flexible RSA problem.

To bound the probability that A outputs “failure”, we need to examine the probability

distribution D used in answering queries to the signature oracle. If we could sample according

to distribution D1, as defined in Lemma 3.2.4, then the distribution of signature responses is

identical to that produced by an actual signer, so the probability of generating a valid forgery

for a specific message is ǫ, and combined with the probability that we correctly picked the

correct j for the forgery query the overall success probability is ǫ/w. However, we cannot

sample from distribution D1 without knowing the value p′q′, which is not available to us in

A’s simulation of the signature oracle.

Instead, we use distribution D2 from Lemma 3.2.4, which is just the uniform distribution

on (0, · · · , n−1
4
− 1) and so can be efficiently sampled. The success probability of the forgery

algorithm is only changed by a negligible amount, since as showed in Lemma 3.2.4 that these

two distributions are statistically indistinguishable (if the change in success probability was

more than a negligible amount, we could use this very simulation as a distinguisher between

D1 and D2). In other words, using D2 for the distribution D, the success probability of the

forgery algorithm is at least ǫ − η(k), where η(k) is some negligible function in k, so A’s

probability of success is at least (ǫ− η(k))/w.

A can also output “failure” if, in selecting the random oracle outputs e1, · · · , ew, we

have Esj divisible by ej . However, Lemma 3.2.3 established that this is another negligible

probability, and so the overall probability of successfully solving the flexible RSA problem

is ≈ ǫ/w. ⊓⊔

57

3.3 The RG Scheme

The RQ scheme nicely implements direct online/offline signing, and is a clear example of

the proposed design technique based on the two-exponent version of the flexible RSA prob-

lem. However, it is not a completely satisfactory construction in terms of efficiency since

the scheme requires a GCD check, an optional step for the signer, but a required test for

the verifier. This section introduces a new construction, called the RG scheme, which uses

computation over a small subgroup G of Z∗
n to improve overall computing efficiency. Further-

more, the method of online/offline signing is adjusted, making the GCD check unnecessary

in the RG scheme.

3.3.1 The Scheme

Public System Parameters. Let k be the security parameter. Let lh be the output

length of a hash function, which is polynomial in k. l is a security parameter that controls

the statistical closeness of distributions, and should be polynomial in k (in practice l = 60

is sufficient).

Key Generation. On input 1k, pick two k-bit primes p and q as in Definition 2.1.8 (so

p = 2p′rp +1, and q = 2q′rq +1, where p′ and q′ are also prime), and let n = pq. Let ln = 2k

be the length of the public modulus, let lp′q′ be the length of p′q′, and let ls = lp′q′ + l be the

length of a specific exponent used in the signing algorithm. Let G be the unique subgroup

of Z∗
n of order p′q′, and select a random generator b of G. Select β ∈R [0, p′q′) and compute

c = bβ mod n. Choose a division intractable hash function h : {0, 1}∗ → {0, 1}lh. Let

58

K = ⌊2ls/p′q′⌋. Output public key (n, b, c, h), and private key (p′q′, β, K).

Signing Algorithm. The signing procedure includes two phases.

Offline Phase: The signer picks a random γ ∈R [0, p′q′), and a random k′ ∈R [0, K), and

then computes

v = bγ mod n, λ = k′p′q′ − β mod Kp′q′.

Online Phase: When a message m ∈ [0, 2lm) appears, the signer computes

s = λ + γ × h(m) mod Kp′q′.

The signature is (v, s) for the message m.

Verification Algorithm. To verify that (v, s) is a signature on message m, check that

vh(m) ≡ bsc mod n.

This new scheme is very efficient for the signer. Given reasonable parameters ln = 1024,

lp′q′ = 200, l = 60, and ls = 200 + 60 = 260, the offline signing cost is about 200 modular

multiplications, while the online signing needs one modular multiplication of 1024-bit and

200-bit numbers and an modular addition with a 260-bit modulus. The GCD check is not

needed in this scheme.

59

3.3.2 Security Analysis

In this section, the RG scheme is proved secure under Groth’s strong RSA subgroup assump-

tion over the small subgroup G of Z∗
n. First, two lemmas which are needed for the main

proof, are presented as follows.

The first lemma addresses the indistinguishability of distributions [0, Kp′q′) and [0, 2ls)

for K, p′q′, and s as defined in the RG scheme.

Lemma 3.3.1 Let K = ⌊2ls/p′q′⌋, where K is superpolynomial in the security parameter k.

The uniform distribution over [0, Kp′q′) is statistically indistinguishable from the uniform

distribution over [0, 2ls).

Proof : Let distribution D1 be the uniform distribution over [0, Kp′q′), and let distribution

D2 be the uniform distribution over [0, 2ls).

Doing the basic algebra, we get

dist(D1, D2) =
1

2

∑

x

|PrD1
(x)− PrD2

(x)|

=
1

2
[(

1

Kp′q′
− 1

2ls
)Kp′q′ +

1

2ls
(2ls −Kp′q′)]

= 1− Kp′q′

2ls

= 1− ⌊2
ls/p′q′⌋p′q′

2ls

< 1− ((2ls − p′q′)/p′q′)p′q′

2ls

= 1− (1− p′q′

2ls
)

=
p′q′

2ls
.

Thus, the distance between D1 and D2 is less than p′q′

2ls
, and since 2ls

p′q′
is superpolynomial

60

in the security parameter k, this distance is negligible. So, the uniform distribution over

[0, Kp′q′) is statistically indistinguishable from the uniform distribution over [0, 2ls). ⊓⊔

The second lemma shows s as used in the RG scheme is statistically indistinguishable

from the uniform distribution over [0, 2ls).

Lemma 3.3.2 Let K = ⌊2ls/p′q′⌋, where K is superpolynomial in the security parameter

k. Let β be a constant in [0, p′q′), k′ ∈R [0, K), and γ ∈R [0, p′q′). If we define s =

(k′p′q′−β+γh(m)) mod Kp′q′, where h : {0, 1}lm → {0, 1}ln is modeled with a random oracle,

then the distribution of s is statistically indistinguishable from the uniform distribution over

[0, 2ls).

Proof : First, we prove that h(m) is relatively prime to p′q′ with overwhelming probability.

For h(m) is not relatively prime to p′q′, it must be a multiple of p′ or q′ (or possibly both).

For any lh, the probability that a randomly chosen lh-bit integer h(m) is a multiple of p′ is

at most 1
p′

, and the probability that h(m) is a multiple of q′ is at most 1
q′

. Therefore,

Pr[GCD(h(m), p′q′) > 1] ≤ 1

p′
+

1

q′
.

So, the probability that h(m) is not relatively prime to p′q′ is negligible.

Now consider the case when h(m) is relatively prime to p′q′. For any x ∈ [0, Kp′q′),

since h(m) is relatively prime to p′q′, there exists exactly one pair (k′, γ) such that x =

(k′p′q′ − β + γh(m)) mod Kp′q′. Therefore there is a one-to-one mapping between pairs

(k′, γ) and values in [0, Kp′q′), and since pairs (k′, γ) are chosen uniformly, the resulting

distribution of s over [0, Kp′q′) is uniform. According to Lemma 3.3.1, the distribution of s

61

is statistically indistinguishable from the uniform distribution over [0, 2ls). Combined with

the negligible probability that h(m) is not relatively prime to p′q′, we get the result stated

in the lemma. ⊓⊔

Now the RG scheme is secure under the strong RSA subgroup assumption when the hash

function h is replaced by a random oracle, is proved as follows.

Theorem 3.3.1 In the random oracle model, the RG scheme is existentially unforgeable

under an adaptive chosen message attack, assuming the strong RSA subgroup assumption.

Proof : Let F be a forger algorithm. Under the random oracle model, F always queries

the random oracle about a message m before it either asks the signature oracle to sign this

message, or outputs (m, v, s) as a potential forgery. Let w be some polynomial upper bound

on the number of queries that F makes to the random oracle.

We now show an efficient algorithm A for the multiple generator version of the strong

RSA subgroup problem in Assumption 2.3.3, that uses F as a subroutine, such that if F has

probability ǫ of forging a signature, then A has probability ǫ′ ≈ ǫ/w of solving the multiple

generator version of the strong RSA subgroup problem. In the following we show that such

an A is impossible, so we conclude that no successful forger F can exist.

A is given a special RSA modulus n and a generator t ∈R G, and its goal is to find a

solution to the multiple generator version of the strong RSA subgroup problem.

First, A prepares answers for the random oracle queries that F will ask by picking w

random lh-bit integers e1, · · · , ew and a random j ∈R [1, w]. A is betting on the chance that

F will use its j’th oracle query to generate the forgery.

Next, A prepares answers for signature queries that F will ask. A computes E =

62

(
∏w

i=1 ei)/ej, and picks at random an ls-bit long s. If ej divides E, then A outputs “failure”

and halts. Otherwise, it sets b = tE mod n, c = bs mod n and initializes the forger F ,

giving it the public key (n, b, c).

A then runs the forger algorithm F , answering oracle queries as follows:

• Random oracle queries for m1 . . .mw are answered by setting h(mi) = ei for each

i ∈ [1, w].

• Signature oracle queries for message mi, for i 6= j, are answered with (mi, vi, si) where

si ∈R [0, 2ls) and vi = tE(si+s)/ei mod n.

If F queries the signature oracle for message mj, or halts with an output other than

(mj , vj, sj) for which v
ej

j ≡ bsjc mod n, then A outputs “failure” and halts. Otherwise we

have a valid forgery with

v
ej

j ≡ bsjc ≡ tE(sj+s) mod n.

We can assume that ej has a prime factor π > 22
√

lh and the probability that E con-

tains π as a factor is negligible — this assumptions fail with negligible probability, due to

Lemma 3.2.1 and Lemma 3.2.2. Next, we show that (sj +s) is divisible by π with a negligible

probability.

Assume (sj + s) is divisible by π with non-negligible probability. Let s = yp′q′ + s′,

and note that the forger’s view is independent of y. Therefore, if the forger succeeds for

this value of s it must also succeed for a random ŝ = ŷp′q′ + s′ with ŷ 6= y. Thus, π must

divide (sj + s) when s is replaced by ŝ, and so must divide the difference of these two values,

leading to the requirement that π divides (s − ŝ) = (y − ŷ)p′q′. However, the probability

63

that a random factor π divides p′q′ is negligible, and since y and ŷ are chosen randomly the

probability that π divides (y − ŷ) is also negligible. Thus, (sj + s) is divisible by π with a

negligible probability.

As a result of these arguments, ej divides E(sj + s) with a negligible probability, and so

with overwhelming probability GCD(ej, E(sj + s)) < ej . Therefore, if A does not output

“failure” then with overwhelming probability it outputs a valid solution to this instance of the

multiple generator version of the strong RSA subgroup problem. However, this is infeasible

under the strong RSA subgroup assumption with multiple generators. We conclude that it

is infeasible for F to forge a valid signature. ⊓⊔

3.4 Summary

In this chapter, two new direct online/offline digital signature schemes, which are proved

secure under adaptive chosen message attack in the strong RSA assumption and the strong

RSA subgroup assumption, respectively, have been presented.

First the two-exponent version of the flexible RSA problem was defined. Based on this

new problem, the RQ scheme, an online/offline signature scheme in the random oracle model

operating over QRn, is devised, and the scheme is further improved by removing the GCD

check and using a small subgroup G of Z∗
n, giving the second major result, which is called

the RG scheme.

The RQ scheme is not a perfect construction. However, the core contribution for this

scheme is that it implements direct online/offline signing under the strong RSA assumption.

No constructions in the literature have done this before. The RQ scheme is the foundation

for the further improvements. Indeed, based on the RQ scheme, the RG scheme, a simple

64

and efficient construction, is devised, which can accommodate most applications requiring

online/offline signing.

However, one problem remains: the security proofs for these two schemes require the

random oracle model. In the next chapter, some new techniques that remove this restriction

are introduced, giving schemes that are secure in the standard model.

65

CHAPTER 4

SIGNATURE SCHEMES IN THE STANDARD MODEL

In Chapter 3, the basis of the new methods for online/offline signing, the two-exponent

version of the flexible RSA problem, is introduced, and two online/offline signature schemes

are designed. However, these two schemes can only be proved secure in the random oracle

model. In this chapter, the new techniques for online/offline signing are extended, and a

basic signature scheme which is proved secure in the standard model, is introduced. This

result is further extended in two directions, for the two sample scenarios defined in Chapter 1:

embedded device authentication, and bursty server authentication.

4.1 Design Technique

The proposed schemes in Chapter 3 are based on the two-exponent version of the flexible

RSA problem, finding solutions to an equation of the form

vh(m) = bs mod n.

The proof technique used for these techniques constructs a signing simulator by com-

puting the generator b beforehand, such that b = ur1···rw mod n. Since the value b must

be computed before any queries are made, but it depends on values r1 · · · rw derived from

messages, the fundamental problem is that the message queries from the forger cannot be

predicted. This demonstrates why random oracles are so powerful in analysis: since the

66

hash function produces a random value, independent of the actual value of mi, it does not

matter whether this random value is sampled before or after mi is known. Therefore, the

proof relies on the random oracle model to randomly assign a hash value for a message, i.e,

h(mi) = ri.

To overcome this obstacle, we can take another approach when using the two-exponent

version of the flexible RSA problem. We move m to the right of the equation, and construct

an equation of the form

ve = bm+s mod n,

where e and s are random values. Thus, a signing simulator can prepare b without relying

on specific messages. Using this idea, we can design a scheme without requiring the random

oracle model.

4.2 Basic Signature Scheme

In this section, a new direct online/offline signature scheme is presented, which is called the

SQ scheme following the naming convention (secure in the standard model, and using the

group QRn where n is a special RSA modulus). Interestingly, the SQ scheme uses exactly

the same verification formula as in the traditional (non-online/offline) scheme proposed by

Camenisch and Lysyanskaya in 2002 [9], which is referred to as the “CL Scheme” in this

dissertation. Technically, the SQ scheme could be viewed as an online/offline extension of

the Camenisch-Lysyanskaya scheme. However, the new derivation was made independently,

using a different set of design techniques and criteria. Furthermore, due to the different

derivation, the new scheme provides much better performance than their construction, even

67

when offline and online phases are combined to use the SQ scheme as a traditional signature

scheme.

The CL scheme produces a triple (v, e, s) as a signature, where e and s are chosen

randomly, and v is computed from (e, s), the message to be signed, and the private key.

The SQ scheme produces the same triple (v, e, s) for the signature. In the SQ scheme, v

and e are chosen randomly and s is computed from (v, e), the message to be signed, and

the private key (and with precomputation in the offline phase, computing s is much simpler

than computing v). But since v is independent of e, s and the message to be signed, the

selection of v can be done in the offline phase. It will be shown that the distribution of triples

from the new algorithm is statistically indistinguishable from the distribution of triples from

the CL scheme, so the new scheme enjoys the same strong security guarantees as the CL

scheme. Since the new signing algorithm produces the same signature as in the CL scheme,

the verification algorithm is the same as in the CL scheme.

4.2.1 The SQ Scheme

Public System Parameters. Let k be the security parameter, and define the following

lengths: lm is the length of the message to be signed, with the restriction that lm < k − 2.

l is a parameter that controls the statistical closeness of distributions, and should be at

least polynomial in k (in practice l = 160 is sufficient). For convenience, some lengths are

also defined based on these parameters: le is the length of an exponent in the signature

algorithm, which satisfies lm + 2 ≤ le < k. ln = 2k is the length of the public modulus, and

68

ls = ln + lm + l is the length of another exponent used in the signing algorithm.

Key Generation. On input 1k, pick two k-bit safe primes p and q (so that p = 2p′ + 1,

and q = 2q′ + 1, where p′ and q′ are also prime), and let n = pq. Select b as a random

generator of QRn. Select α, β ∈R [0, p′q′) and compute a = bα mod n and c = bβ mod n.

Let K = ⌊2ls/p′q′⌋. Output public key (n, a, b, c), and private key (p′q′, α, β, K).

Signing Algorithm. The signing procedure includes two phases.

Offline Phase: The signer picks a random γ ∈R [0, p′q′), a random le-bit prime number

e, and a random k′ ∈R [0, K), and then computes

v = bγ mod n, λ = k′p′q′ + γe− β mod Kp′q′.

Online Phase: When a message m ∈ [0, 2lm) appears, the signer computes

s = λ− αm mod Kp′q′.

Note that while this is stated as a modular operation, the ranges of the values ensure that

an adjustment to keep the value in range is only needed with negligible probability, and even

then this is accomplished with a single addition. The signature is (v, e, s) for the message

m.

Verification Algorithm. To verify that (v, e, s) is a signature on message m, check that

e’s length is le, and

ve ≡ ambsc mod n. (4.1)

69

It can be verified that a valid signature can always pass the verification test. Since these

operations are being performed in QRn, we consider operations in the exponent modulo p′q′

(the size of QRn), and get

s ≡ γe− β − αm (mod p′q′),

and so

ambsc ≡ bαm+(γe−β−αm)+β ≡ bγe ≡ ve mod n.

The salient characteristic for the signing algorithm is its online/offline mechanism. Most

of the computation can be done before the appearance of a message, and the online phase

only needs a single multiplication (where one of the values is short) and a subtraction.

4.2.2 Security Analysis

In this section, the proposed SQ scheme is compared with the CL scheme.

The SQ scheme produces signatures that are indistinguishable from those of the Camenisch-

Lysyanskaya scheme. To see this, consider (4.1). In the CL scheme, a, b, c are randomly

chosen from QRn, and v is calculated as

v = (ambsc)e−1

mod n, (4.2)

where s ∈R [0, 2ls). In the SQ scheme, a, b, c are also random elements of QRn, but s is

calculated; however, the following lemma shows that s in SQ is statistically indistinguishable

from uniform over [0, 2ls).

70

Lemma 4.2.1 Let K = ⌊2ls/p′q′⌋, where K is superpolynomial in the security parameter

k. Let e be a value that is relatively prime to p′q′, let α and β be constants in [0, p′q′),

and let m be a constant in [0, 2lm). Let k′ ∈R [0, K) and γ ∈R [0, p′q′). If we define

s = (k′p′q′ + γe− β − αm) mod Kp′q′, then s is statistically indistinguishable from uniform

over [0, 2ls).

Proof : First, we prove that s is uniformly distributed over [0, Kp′q′). For any s ∈ [0, Kp′q′),

since e is smaller than p′ or q′ (since le < k), it is relatively prime to p′q′ and so there exists

exactly one pair (k′, γ) such that s = (k′p′q′ + γe− β − αm) mod Kp′q′. Therefore there is

a one-to-one mapping between pairs (k′, γ) and values in [0, Kp′q′), and since pairs (k′, γ)

are chosen uniformly, the resulting distribution of s over [0, Kp′q′) is uniform. Applying

Lemma 3.3.1, we conclude that the distribution of s is statistically indistinguishable from

the uniform over [0, 2ls). ⊓⊔

As a consequence of Lemma 4.2.1, the view of an attacker with respect to the SQ scheme

is statistically indistinguishable from the view of an attacker with respect to the CL scheme,

which gives the following lemma.

Lemma 4.2.2 The view of an attacker with respect to the SQ scheme is statistically indis-

tinguishable from the view of an attacker with respect to the CL scheme.

Proof : Consider equation (4.1). In the CL scheme, a, b, c are randomly chosen from QRn,

and v is calculated as

v = (ambsc)e−1

mod n, (4.3)

where s ∈R [0, 2ls). In the SQ scheme, a, b, c are also random elements of QRn, and in

the proof of Lemma 4.2.1 it is shown that s in the SQ scheme is uniformly distributed over

71

[0, Kp′q′), which is statistically indistinguishable from [0, 2ls). Thus, the SQ scheme produces

signatures that are statistically indistinguishable from those of the CL scheme. Therefore,

the view of an attacker with respect to the SQ scheme is statistically indistinguishable from

the view of an attacker with respect to the CL scheme. ⊓⊔

From the above lemma and the security proof given by Camenisch and Lysyanskaya [9],

the following theorem can be given.

Theorem 4.2.1 The SQ scheme is existentially unforgeable under an adaptive chosen mes-

sage attack, assuming the strong RSA assumption.

4.2.3 Performance Analysis

For concrete parameters, the recommended parameter settings from the CL scheme are used,

with k = 512, so n is 1024 bits long. lm can be chosen as 160, and messages longer than 160

bits can first be sent through a collision-resistant hash function (e.g., SHA-1) to produce a

160-bit message digest, which is then signed. As stated earlier, l = 160 is sufficient to ensure

the statistical closeness of the signature’s actual distribution to the simulated distribution in

the proof of the scheme [9], so ls = 1024 + 160 + 160 = 1344. For this setting of parameters,

the cost of the signing algorithm is about 1022 modular multiplications and the generation

of a 162-bit prime number in the offline phase, and one multiplication and one subtraction in

the online phase. The SQ scheme avoids the multiplications related to s in the CL scheme,

which is about 1344 modular multiplications. Furthermore, note that the SQ scheme does

not require computation of the multiplicative inverse of e as required by the CL scheme

(see (4.2)), so has advantages even when not used in the online/offline mode.

72

Table 4.1 shows the comparison of the CL and SQ schemes’ signing cost when the key

size is 1024 bits, where m(n1, n2) is the time needed for one n1-bit number by n2-bit number

multiplication, add() is the time needed for one addition, mm(n) is the time for an n-bit

modular multiplication, pg(n) is the time needed to generate a n-bit prime number, inv() is

the time needed to compute a multiplicative inverse of a number.

Signing Algorithm
Offline Phase Online Phase

CL – 2528 ∗mm(1024) + pg(162) + inv()
SQ 1022 ∗mm(1024) + pg(162) m(160, 1022) + add()

Table 4.1: Comparison of the CL and SQ schemes

4.3 Signature Scheme for Embedded Device Authentication

The SQ scheme can accommodate many application scenarios when online/offline signing

is needed. However, it is possible to improve the efficiency further as long as the users

are willing to accept the strong RSA subgroup assumption. In this section, techniques are

investigated to reduce the offline cost, which is particularly important in the scenario defined

in Chapter 1 for embedded device authentication.

With typical parameter settings, the main costs of the offline phase in the SQ scheme

are due to an exponentiation taking 1022 modular multiplications and the generation of a

162-bit prime e. Using computation over a small subgroup G of Z∗
n, the exponentiation cost

can be reduced from 1022 to 200 modular multiplications. To reduce the cost of generating a

prime e, a division intractable hash function as in the RQ and RG schemes is used. Thus, a

scheme specialized for embedded device authentication is obtained, which is called the SGE

73

scheme.

4.3.1 The SGE Scheme

This section introduces how to avoid using prime numbers explicitly for the exponent e. In

the SQ signature scheme, there were two important system requirements: that e ≥ 2lm+2, and

e should not be chosen more than once. If we can somehow generate a random integer that

always has a prime factor greater than m, we don’t have to use a prime number explicitly.

In order to accomplish this, a division intractable hash function is used to produce a pseudo-

random hash value, the same technique that was used in Chapter 3. An lh-bit integer of

this type (for sufficiently large lh) has at least one prime factor greater than 22
√

lh with

overwhelming probability by Lemma 3.2.1. For example, suppose lh = 1024, then this prime

factor is greater than 264. Unfortunately, this bound is too small compared to the message

size which is set lm = 160. To overcome this obstacle, the m can be split into three pieces

as m = m1||m2||m3 where “||” represents string concatenation, and the bit length of each

sub-message is shorter than 63 bits. For simplicity of notation in this section, the message

are split into three pieces as just described, but clearly this generalizes to other numbers of

pieces.

Public System Parameters. Let k be the security parameter, and define the following

lengths: lm is the length of the message to be signed, with the restriction that lm < k− 2. l

is a parameter that controls the statistical closeness of distributions, and should be at least

polynomial in k (in practice l = 120 is sufficient). For convenience, some lengths are also

defined based on these parameters: ln = 2k is the length of the public modulus, lp′q′ is the

74

length of p′q′, and ls = lp′q′ + lm/3 + l is the length of another exponent used in the signing

algorithm. A length lh is defined to be the length of message digests produced by a division

intractable hash function h : {0, 1}∗ → {0, 1}lh, with the requirement that 2
√

lh ≥ lm/3 + 2.

Key Generation. On input 1k, pick two k-bit primes p, q such that p = 2p′rp + 1, and

q = 2q′rq + 1, where p′ and q′ are also prime. Let n = pq, and let G be the unique subgroup

of Z∗
n of order p′q′. Select a random generator b of G, select α1, α2, α3, β ∈R [0, p′q′), and

define

a1 = bα1 mod n, a2 = bα2 mod n, a3 = bα3 mod n, c = bβ mod n.

Finally, let K = ⌊2ls/p′q′⌋. The public key is (n, a1, a2, a3, b, c), while the private key is

(p′q′, α1, α2, α3, β, K).

Signing Algorithm. The signing procedure includes two phases.

Offline Phase: Pick a random γ ∈R [0, p′q′), a random r ∈R [0, 2lr), and a random

k′ ∈R [0, K). Compute

v = bγ mod n, λ = k′p′q′ + γ × h(r)− β mod Kp′q′.

Online Phase: For m ∈ [0, 2lm), break m into pieces such that m = m1||m2||m3 and the

length of each piece is at most ⌈lm/3⌉ bits. Compute

s = λ− α1 ×m1 − α2 ×m2 − α3 ×m3 mod Kp′q′.

75

The signature is (v, r, s).

Verification Algorithm. To verify that (v, r, s) is a signature on message m, check that

r’s length is lr, and

vh(r) ≡ am1

1 am2

2 am3

3 bsc mod n.

This new scheme is extremely efficient for the signer. Given parameters ln = 1024,

lp′q′ = 200, lh = 1024, lr = 256, lm = 180, l = 120, and ls = 200 + 180/3 + 120 = 380,

the offline signing cost is about 200 modular multiplications, while the online signing needs

three multiplications with small numbers as well as three subtractions.

4.3.2 Security Analysis

To prove the security of the SGE scheme, the multiple generator version of the strong RSA

subgroup assumption defined in Chapter 2 is used.

Theorem 4.3.1 The SGE scheme is existentially unforgeable under an adaptive chosen mes-

sage attack, assuming the strong RSA subgroup assumption.

Proof : Suppose there exists a probabilistic polynomial time forgery algorithm F , which can

launch an adaptive chosen message attack on SGE and output a valid signature which has not

been produced by the signing oracle. Then we can construct a probabilistic polynomial time

algorithm A for the multiple generator version of the strong RSA subgroup problem, defined

in Assumption 2.3.3. A takes a random input (n, g1, g2, g3), with generators g1, g2, g3 ∈R G,

and uses F as a subroutine. In the following proof, all exponentiations are done modulo n.

Suppose F asks w signature queries for messages m1, . . . , mw, and F obtains signatures

(v1, r1, s1), . . ., (vw, rw, sw) before forging a valid signature (v, r, s) for a message m. We can

76

define three types of forgeries.

Type I: For all 1 ≤ i ≤ w, r 6= ri.

Type II: For some 1 ≤ i ≤ w, r = ri, v = vi.

Type III: For some 1 ≤ i ≤ w, r = ri, v 6= vi.

Any forgery algorithm which succeeds in producing forgeries with non-negligible probability

must produce forgeries of at least one of these types with non-negligible probability. Next,

we show how to construct three different algorithms for A such that if F succeeds in pro-

ducing a forgery of a particular type, then the corresponding A will succeed in solving the

multiple generator version of the strong RSA subgroup problem. By the strong RSA sub-

group assumption, such an A is impossible, so we conclude that no successful forger F can

exist.

Type I: For all 1 ≤ i ≤ w, r 6= ri. A works as follows: choose according to the signature

algorithm distinct lr-bit integers r1, . . . , rw. Set E =
∏w

i=1 h(ri). A selects t1, t2 ∈R [0, 2ls),

and sets a1 = gE
1 , a2 = at1

1 , a3 = at2
1 , b = gE

2 , c = gE
3 . A gives (n, a1, a2, a3, b, c) to the forger

F . A can answer the forger F ’s signature query mi = mi1||mi2||mi3 by choosing si ∈R [0, 2ls)

and computing

vi = g
(mi1+t1mi2+t2mi3)E/h(ri)
1 g

siE/h(ri)
2 g

E/h(ri)
3 = (ami1

1 ami2

2 ami3

3 bsic)h(ri)−1

.

A gives F the signature (vi, ri, si) for message mi, which is statistically indistinguishable

from the signature produced by SGE.

77

Consider that the forger F outputs (v, r, s) for a message m, so we have

vh(r) = am1

1 am2

2 am3

3 bsc = g
(m1+t1m2+t2m3)E
1 gsE

2 gE
3 .

By Lemma 3.2.2, h(r) divides E with a negligible probability, and so with overwhelming

probability GCD(h(r), E) < h(r). Therefore, A outputs a valid solution to this instance

of the multiple generator version of the strong RSA subgroup problem with overwhelming

probability. However, this is infeasible under the strong RSA subgroup assumption with

multiple generators. We conclude that the F cannot produce a Type I forgery with non-

negligible probability.

Type II: For some 1 ≤ i ≤ w, r = ri, v = vi. A uses the same method as in Type I to

prepare E, a1, a2, a3, b, c, and answers the forger F ’s signature queries.

Consider now that the forger’s signature is (vi, ri, s) on message m. We have

ami1

1 ami2

2 ami3

2 bsi = am1

1 am2

2 am3

3 bs,

and so ami1−m1

1 ami2−m2

2 ami3−m3

3 bsi−s = 1, which gives

g
E((mi1−m1)+t1(mi2−m2)+t2(mi3−m3))
1 g

E(si−s)
2 = 1 = y0

for any non-zero y. Since mi 6= m, E((mi1 − m1) + t1(mi2 − m2) + t2(mi3 − m3)) 6= 0.

Therefore, A outputs a valid solution to this instance of the multiple generator version of

the strong RSA subgroup problem with overwhelming probability. However, this is infeasible

78

under the strong RSA subgroup assumption with multiple generators. We conclude that the

F cannot produce a Type II forgery with non-negligible probability.

Type III: For some 1 ≤ i ≤ w, r = ri, v 6= vi. A guesses the forger F will make the

forgery by reusing ri. A prepares E as in Type I, and picks at random an ls-bit long t, and

(ls − lm/3− l/2)-bit long t1, t2, t3, t4. Then A sets up

b = g
E/h(ri)
2 , a1 = bt1 , a2 = bt2 , a3 = bt3 , c = bh(ri)t4−t.

A can answer all queries j 6= i as in Type I. For query i, A computes si = t− t1mi1− t2mi2−

t3mi3, vi = bt4 such that (vi, ri, si) is also a valid signature. Due to length restrictions

over t, t1, t2, and t3, the distribution of si is statistically indistinguishable from the uniform

distribution over [0, 2ls), which is in turn indistinguishable from the distribution of signatures

produced by SGE.

Consider now that the forgery F outputs a new signature (v, ri, s) on message m. That

is, vh(ri) = am1

1 am2

2 am3

3 bsc. We can obtain

(v/vi)
h(ri) = g

((m1−mi1)t1+(m2−mi2)t2+(m3−mi3)t3+(s−si))E/h(ri)
2 .

We can assume that h(ri) has a prime factor π > 22
√

lh and the probability that E/h(ri)

contains π as a factor is negligible — this assumptions fail with negligible probability, due

to Lemma 3.2.1 and Lemma 3.2.2. Next, we show that

((m1 −mi1)t1 + (m2 −mi2)t2 + (m3 −mi3)t3 + (s− si)) (4.4)

79

is divisible by π with a negligible probability.

Assume (4.4) is divisible by π with non-negligible probability. Let t1 = x1p
′q′ + t′1, and

note that the forger’s view is independent of x1. Therefore, if the forger succeeds for this

value of t1 it must also succeed for a random t̂1 = x̂1p
′q′ + t′1 with x̂1 6= x1. Thus, π must

divide (4.4) when t1 is replaced by t̂1, and so must divide the difference of these two values,

leading to the requirement that π divides (m1 − mi1)(t1 − t̂1) = (m1 − mi1)(x1 − x̂1)p
′q′.

However, since 2
√

lh ≥ lm/3 + 2, π cannot divide m1 −mi1. Furthermore, the probability

that a random factor π divides p′q′ is negligible, and since x1 and x̂1 are chosen randomly

the probability that π divides (x1 − x̂1) is also negligible. Thus, (4.4) is divisible by π with

a negligible probability.

So, h(ri) divides (4.4) with a negligible probability, and so with overwhelming probabil-

ity GCD(ej, E(sj + s)) < ej . Therefore, A outputs a valid solution to this instance of the

multiple generator version of the strong RSA subgroup problem with overwhelming proba-

bility. However, this is infeasible under the strong RSA subgroup assumption with multiple

generators. We conclude that the F cannot produce a Type III forgery with non-negligible

probability. ⊓⊔

4.4 Signature Scheme for Bursty Server Authentication

The scheme in the previous section focuses on reducing the offline computation cost. Now,

investigate possible ways to reduce the online cost. As described in Chapter 1, online perfor-

mance is extremely important for server authentication when bursty authentication requests

come in simultaneously from remote applications.

80

In this section, a new construction, called the SGS scheme with the last letter S repre-

senting server, which has the best online performance of any currently-known online/offline

signature scheme, is presented. The Shamir-Tauman trapdoor function is extended to a small

subgroup G of Z∗
n, and online/offline signing without using “Hash-Sign-Switch” paradigm is

directly implemented. The new scheme requires the modular reduction of a 420-bit value by

a 260-bit modulus as well as one or two additions in the online phase when the key size is

1024 bits. Using the trapdoor hash proposed by Shamir and Tauman, the Shamir-Tauman

construction requires the modular reduction of a 1184-bit value by a 1024-bit modulus as

well as one or two additions in the online phase.

4.4.1 The Shamir-Tauman Trapdoor Hash Function

Shamir and Tauman proposed a trapdoor hash function whose security is based on the

factoring assumption when the modulus n is a special RSA modulus [39]. The online com-

putation for their hash function is very efficient, which only incurs one modular addition and

a modular reduction. The following describes the Shamir-Tauman trapdoor hash function

for reference.

Key Generation Algorithm Gen. On input 1k, pick two k-bit safe primes p and q (so

p = 2p′ + 1, and q = 2q′ + 1, where p′ and q′ are also prime), and let n = pq. Let ln = 2k

be the length of the public modulus, and let lm be the length of the message to be signed.

Choose a random g ∈R Z∗
n of order λ(n) = lcm((p− 1), (q− 1)) = 2p′q′. Output public hash

key hk = (n, g), and private trapdoor key tk = (p, q).

Hash Function h. For hk = (n, g), hash function is defined as h(hk, m, r) = gm||r mod n,

81

where m is the message to be signed, and r is a random number in Zλ(n).

Trapdoor Collision Computation. Given a pair (m′, r′) ∈ Zn × Zλ(n), and m ∈ Zn, we

need to find r ∈ Zλ(n) such that gm||r = gm′||r′ mod n, that is 2km′+r′ = 2km+r mod λ(n).

Given the private trapdoor key tk = (p, q), we can obtain r as

r = 2k(m′ −m) + r′ mod λ(n).

Computing 2k(m′ −m) is a simple add and shift operation. When ln = 1024, lm = 160,

the reduction of the 1184 bit result modulo a 1024 bit modulus is about 6 times faster than

a standard reduction of a 2048 bit product modulo a 1024 bit modulus. Shamir and Tauman

estimate that software implementations of this collision finding procedure will be about 10

times faster than performing a single modular multiplication of two 1024 bit numbers.

4.4.2 The SGS Scheme

The verification algorithm in the SQ scheme takes the form of

ve = ambsc mod n.

If we treat m||r in the Shamir-Tauman hash function as a message in the SQ scheme, we can

take advantage of the great online performance in their construction in a direct online/offline

scheme, avoiding the need for extra keys and longer signatures as in the Shamir-Tauman

scheme. The design of the SGS scheme follows from this observation, and next this scheme

82

in detail is described.

Public System Parameters. Let k be the security parameter, and define the following

lengths: lm is the length of the message to be signed, with the restriction that lm < k− 2. l

is a parameter that controls the statistical closeness of distributions, and should be at least

polynomial in k (in practice l = 60 is sufficient). For convenience, some lengths are also

defined based on these parameters: ln = 2k is the length of the public modulus, lp′q′ is the

size of the subgroup used, lr = lp′q′ + l, t and le are subject to t× le ≥ lm + lr + 2.

Key Generation. On input 1k, pick two k-bit primes p and q (so p = 2p′rp + 1, and

q = 2q′rq + 1, where p′ and q′ are also prime, each with length lp′q′/2), and let n = pq. Let

G be the unique subgroup of Z∗
n of order p′q′, and select a random generator a of G. Select

α, β ∈R [0, p′q′) such that b = aα mod n, and c = aβ mod n. Let K = ⌊2lr/p′q′⌋. Output

public key (n, a, b, c, t), and private key (p′q′, α, β, K).

Signing Algorithm. The signing procedure includes two phases.

Offline Phase: Pick a random prime e with length le, a random m′ ∈R [0, 2lm), a random

r′ ∈R [0, 2lr), and a random s ∈R [1, et). Compute γ by

γ × et = m′||r′ + α× s + β mod p′q′.

Then compute

v = aγ mod n.

83

Online Phase: For m ∈ [0, 2lm), compute

r = 2lr(m′ −m) + r′ mod Kp′q′.

The signature is (v, e, s, r).

Verification Algorithm. To verify that (v, e, s, r) is a signature on message m, check that

e’s length is le, and

vet ≡ am||rbsc mod n.

For concrete parameters, let k = 512, so n is 1024 bits long. lm can be chosen as 160, and

messages longer than 160 bits can first be sent through a collision-resistant hash function

(e.g., SHA-1) to produce a 160-bit message digest, which is then signed. As stated earlier,

l = 60 is sufficient to ensure the statistical closeness of the signature’s actual distribution

to the simulated distribution in the proof. Further other system parameters are set up as

lp′q′ = 200, le = 88, t = 5, so lr = 200 + 60 = 260. For this setting of parameters, the cost

of the signing algorithm is about 200 modular multiplications and the generation of a 88-bit

prime number in the offline phase, and a modular reduction of a 420-bit value by a 260-bit

modulus as well as one or two additions in the online phase when the key size is 1024 bits.

4.4.3 Security Analysis

Theorem 4.4.1 The SGS scheme is existentially unforgeable under an adaptive chosen mes-

sage attack, assuming the strong RSA subgroup assumption.

Proof : Suppose there exists a probabilistic polynomial time forgery algorithm F , which can

84

launch an adaptive chosen message attack on the above signature scheme and output a valid

signature which has not been produced by the signing algorithm. Then we can construct a

probabilistic polynomial time algorithm A for the multiple generator version of the strong

RSA subgroup problem. A takes a random input (n, g1, g2, g3), with g1, g2, g3 ∈R G, and

uses F as a subroutine. In the following proof, all exponentiations are done modulo n.

Suppose F asks w signature queries for messages m1, . . . , mw, and F obtains signatures

(v1, e1, s1, r1), . . ., (vw, ew, sw, rw) before forging a valid signature (v, e, s, r) for a message m.

We can define three types of forgeries.

Type I: For all 1 ≤ i ≤ w, e 6= ei.

Type II: For some 1 ≤ i ≤ w, e = ei, s = si.

Type III: For some 1 ≤ i ≤ w, e = ei, s 6= si.

Any forgery algorithm which succeeds in producing forgeries with non-negligible probability

must produce forgeries of at least one of these types with non-negligible probability. Next,

we show how to construct three different algorithms for A such that if F succeeds in pro-

ducing a forgery of a particular type, then the corresponding A will succeed in solving the

multiple generator version of the strong RSA subgroup problem. By the strong RSA sub-

group assumption, such an A is impossible, so we conclude that no successful forger F can

exist.

Type I: For all 1 ≤ i ≤ w, e 6= ei. A works as follows: randomly choose according to the

signature algorithm distinct le-bit primes e1, . . . , ew. Set E =
∏w

i=1 et
i. A sets a = gE

1 , b = gE
2 ,

c = gE
3 . A gives (n, a, b, c) to the forger F . A can answer the forger F ’s signature query mi

85

by choosing ri ∈R [0, 2lr), si ∈R [1, et
i), and computing

vi = g
(mi||ri)E/et

i

1 g
siE/et

i

2 g
E/et

i

3 = (ami||ribsic)(et
i)

−1

.

A gives F the signature (vi, ei, si, ri) for message mi, which is statistically indistinguishable

from the signature produced by the signature scheme.

Consider that the forger F outputs (v, e, s, r) for a message m, so we have

vet

= am||rbsc = g
(m||r)E
1 gsE

2 gE
3 .

By Lemma 3.2.2, et divides E with a negligible probability, and so with overwhelming proba-

bility GCD(et, E) < et. Therefore, A outputs a valid solution to this instance of the multiple

generator version of the strong RSA subgroup problem with overwhelming probability. How-

ever, this is infeasible under the strong RSA subgroup assumption with multiple generators.

We conclude that the F cannot produce a Type I forgery with non-negligible probability.

Type II: For some 1 ≤ i ≤ w, e = ei, s = si. A guesses the forger F will make the forgery

by reusing ei and si. A prepares E as in Type I, and picks at random s′ ∈R [1, et
i + 2lm+lr).

Then set up

a = g
E/et

i

1 , b = agE
2 , c = gE

3 a−s′.

A can answer all queries j 6= i as in Type I. For query i, A computes si = s′−mi||ri, where

ri ∈R [0, 2lr), and computes

vi = (ami||ri+si−s′gsiE
2 gE

3)(et
i
)−1

= (gsiE
2 gE

3)(et
i
)−1

= (ami||ribsic)(et
i
)−1

.

86

A gives F the signature (vi, ei, si, ri) for message mi, which is statistically indistinguishable

from the signature produced by the signature scheme.

Consider now that the forger’s signature is (v, ei, si, r) on message m. We have

(v/vi)
et
i = am||r−mi||ri = g

(m||r−mi||ri)E/et
i

1 .

Since et
i divides E/et

i with a negligible probability by Lemma 3.2.2, |m||r−mi||ri| < et
i, and

mi 6= m, et
i divides (m||r−mi||ri)E/et

i with a negligible probability, and so with overwhelm-

ing probability GCD(et
i, (m||r − mi||ri)E/et

i) < et
i. Therefore, A outputs a valid solution

to this instance of the multiple generator version of the strong RSA subgroup problem with

overwhelming probability. However, this is infeasible under the strong RSA subgroup as-

sumption with multiple generators. We conclude that the F cannot produce a Type II

forgery with non-negligible probability.

Type III: For some 1 ≤ i ≤ w, e = ei, s 6= si. A guesses the forger F will make the forgery

by reusing ei. A prepares E as in Type I, and picks at random si ∈R [1, et
i). Then set up

a = gE
1 , b = g

E/et
i

2 , c = gE
3 b−si .

A can answer all queries j 6= i as in Type I. For query i, A computes vi = g
(mi||ri)E/et

i

1 g
E/et

i

3

such that (vi, ei, si, ri) is also a valid signature.

Consider now that the forgery F outputs a new signature (v, ei, s, r) on message m. We

have

(v/vi)
et
i = am||r−mi||ribs−si = g

(m||r−mi||ri)E
1 g

(s−si)E/et
i

2 .

87

Since et
i divides E/et

i with a negligible probability by Lemma 3.2.2, and |s−si| < et
i, et

i divides

(s−si)E/et
i with a negligible probability, and so with overwhelming probability GCD(et

i, (s−

si)E/et
i) < et

i. Therefore, A outputs a valid solution to this instance of the multiple generator

version of the strong RSA subgroup problem with overwhelming probability. However, this is

infeasible under the strong RSA subgroup assumption with multiple generators. We conclude

that the F cannot produce a Type III forgery with non-negligible probability. ⊓⊔

4.5 Summary

In this chapter, the new online/offline signing methods are extended and a direct on-

line/offline signature scheme that is secure in the standard model under the strong RSA

assumption is proposed.

To pursue solutions for targeted applications presented in Chapter 1, two signature con-

structions are further devised : the SGE scheme targeted for embedded device authentica-

tion, and the SGS scheme targeted for bursty server authentication. The first construction

focuses on reducing the offline computation cost while the second construction focuses on

reducing the online computation cost. Both the SGE and SGS schemes are proved secure in

the standard model under the strong RSA subgroup assumption.

This completes the family of new online/offline signature schemes. While it is not difficult

to count the operations required by each of these schemes, the various operations have many

complex and interacting parts, so the concrete practical performance gains are not clear from

this analysis. To determine if the new designs provide the expected practical improvements,

a series of experiments have been conducted comparing the new schemes with each other

and with the state-of-the-art schemes in this area. These results are introduced in the next

88

chapter.

89

CHAPTER 5

EXPERIMENTS

In this dissertation, five direct online/offline signature schemes based on the new general

techniques are proposed. Two of the proposed five schemes, the SGE scheme and the SGS

scheme, are the most efficient techniques for embedded device authentication and bursty

server authentication, respectively. To fully understand the performance of the proposed

schemes, a series of experiments have been conducted comparing the proposed schemes

with each other and with other state-of-the-art schemes which have an online/offline signing

mechanism, as well as traditional signature schemes in order to appreciate the gains of

online/offline signing. For multiprecision arithmetic and standard cryptographic operations,

RSARef library is used. The experiments are conducted in two different environments: a

desktop computer and AVR studio, a simulation platform for an 8-bit processor.

In this chapter, after the performance of each scheme in this dissertation being analyzed,

the experimental environments used are described. Then three different sets of experimental

results are shown: The first one is a performance comparison between the traditional signa-

ture schemes and their converted constructions using the Shamir-Tauman method in order

to verify the effect of online/offline signing and to gain a concrete sense of times involved

for signature generation in the online phase; The second one is the comparison of offline

performance among all schemes in order to explore which scheme is best suited for embed-

ded device authentication scenario; The third one focuses on the online performance of all

schemes in order to identify the best scheme for the bursty server authentication scenario.

90

5.1 Performance Analysis

First analyze the performance of the schemes in this dissertation. It can be seen that major-

ity of computation in these schemes are due to modular exponentiations. Thus, the perfor-

mance is mainly determined by the cost of modular exponentiations in these schemes. The

technique for general modular exponentiation is called the “repeated square-and-multiply”

algorithm [30]. There are several variants for this algorithm, and one of them, called “Right-

to-left binary exponentiation”, is introduced as follows.

Definition 5.1.1 (Right-to-Left Binary Exponentiation) For an element g ∈ G and

integer r ≥ 1, gr is obtained through the following procedure.

1. A← 1, S ← g.

2. While r 6= 0

(a) if r is odd, then A← A× S.

(b) r ← ⌊r/2⌋

(c) if r 6= 0, then S ← S × S

3. Return (A)

Let k + 1 be the bit length of the binary representation of r, and let wk(r) be the

number of 1′s in this representation. The algorithm requires k squarings and wk(r) − 1

multiplications. If r is randomly selected in the range [0, n), then ⌊lg(n)⌋ squarings and

1
2
(⌊lg(n)⌋ + 1) multiplications can be expected. Since the cost of a multiplication can be

91

twice as that of a squaring [30], two squarings are treated as one multiplication, so the

expected cost is about ⌊lg(n)⌋ multiplications.

To take an example from the proposed signature schemes, if the security parameter

k = 512 in the SQ scheme, the order of QRn is p′q′, which is roughly 1022 bits long in binary

representation. Therefore, lg(|QRn|) would be about 1022, so the cost for the offline phase

of the signing algorithm would be around 1022 modular multiplications.

The algorithms in the schemes in this dissertation only require several modular exponen-

tiations and additional computation if needed. The bit length of exponents in these schemes

is polynomial in the security parameter k, so all these schemes can be efficiently completed

in time that is polynomial in k. To simplify the analysis, the efficiency of a scheme can be

estimated by the total bit length of exponents in this scheme.

5.2 Overview of the Experiments

This section reviews the schemes implemented in the experiments, experimental environ-

ments used, and the three sets of experiments conducted in the experiments.

5.2.1 The Schemes in the Experiments

For comparison with the new schemes, state-of-the-art schemes which provide online/offline

signing mechanisms, are implemented, including constructions based on Shamir and Tau-

man’s “Hash-Sign-Switch” paradigm, and constructions with direct online/offline schemes

such as the Schnorr scheme. The primary interest is in schemes proved secure in the standard

model, and which are designed for the two sample scenarios. Other widely used techniques,

which can only be proved secure in the random oracle model, are included, such as the RSA

92

scheme and the Schnorr scheme, since they are popular. Following are the schemes that are

used in the experiments.

5.2.1.1 The RSA Scheme

The RSA scheme is the most widely used signature scheme in practice, which is introduced

in Chapter 1. The RSA scheme operates in the group Z∗
n, having a long exponentiation

for the signing algorithm, but a very efficient exponentiation with a short exponent for the

verification algorithm (a commonly used exponent is 65537, which is 0x10001 in hexadecimal

form, so this exponentiation only requires 16 squarings and one multiplication).

5.2.1.2 The CS Scheme

The CS scheme, proposed by Cramer and Shoup in 2000, was the first practical signature

scheme to be proved secure in the standard model [12]. The scheme works in QRn for n

being a special RSA modulus. The CS scheme is described here for completeness.

Key Generation. k is the security parameter, and l is an additional parameter, which is

polynomial in k, where l+1 < k. On input 1k, pick two k-bit safe primes p, q and let n = pq.

Select a, b ∈ QRn. Select a random (l + 1)-bit prime e′. Select a collision-resistant hash

function h : {0, 1}∗ → {0, 1}lh. The public key is (n, a, b, e′, h), and the private key is (p, q).

Signing Algorithm. To sign a message m, choose a random (l + 1)-bit prime e 6= e′ and a

random v′ ∈ QRn. The equation

ve = abh(x′) mod n

93

is solved for v, where x′ satisfies the equation

v′e′ = x′bh(m) mod n.

The signature is (e, v, v′).

Verification Algorithm. To verify that (e, v, v′) is a signature on message m, check that

e is an odd (l + 1)-bit number different from e′. Next, compute x′ = v′e′b−h(m) mod n and

check whether a ≡ veb−h(x′) mod n.

The CS scheme needs about three short (l-bit) exponentiations, one long (2k-bit) exponen-

tiations, generation of an l + 1-bit prime number, and computing the multiplicative inverse

of e for the signing algorithm. Thus, the CS scheme is several times slower than the RSA

scheme.

5.2.1.3 The CL Scheme

The CL scheme was proposed by Camenisch and Lysyanskaya in 2002. The SQ scheme in

Chapter 4 can be considered as the online/offline extension of the CL scheme.

Key Generation. k is the security parameter. l is a parameter that controls the statistical

closeness of distributions, and should be at least polynomial in k. On input 1k, pick two safe

k-bit safe primes p, q and let n = pq. Select a, b, c ∈R QRn. The public key is (n, a, b, c), the

private key is (p, q).

Signing Algorithm. The message space is [0, 2lm). Given a message m, pick a random

prime number e with length le ≥ lm + 2, and a random number s of length ls = ln + lm + l,

94

and solve for v in the equation

ve = ambsc mod n.

(v, e, s) is the signature on m.

Verification Algorithm. To verify that (v, e, s) is a signature on message m, check that

e’s length is le, and ve ≡ ambsc mod n.

The CL scheme requires one short (lm-bit) and two long (ln-bit and ls-bit) exponentiations,

generation of le-bit prime number, and computing the multiplicative inverse of e for the

signing algorithm.

5.2.1.4 The Schnorr Scheme

The Schnorr scheme was designed for smart cards with limited computing capabilities. This

scheme provides a direct online/offline signing mechanism.

Key Generation. k is the security parameter. l is a parameter, and should be at least

polynomial in k. On input 1k, pick one l-bit prime number q, and one k-bit prime number p

such that p = q× t+1 for a random t. Pick a random b whose order is q, i.e., bq = 1 mod p.

Pick α ∈R (0, q), let a = bα mod p. Pick a collision-resistant hash function h : {0, 1}∗ →

{0, 1}lh. The public key is (p, q, a, b, h), the private key is α.

Signing Algorithm. The signing procedure includes two phases.

Offline Phase: The signer picks a random β ∈R [0, q), computes

v = bβ mod p.

95

Online Phase: When a message m appears, the signer computes

r = h(m||v), w = r × α + β mod q.

The signature is (r, w).

Verification Algorithm. To verify that (r, w) is a signature on message m, compute

v′ = bwa−r mod p, and check that whether h(m||v′) = r.

The Schnorr scheme is a very efficient online/offline scheme, with one short (l-bit) expo-

nentiation in the offline phase, and one hash calculation, one modular multiplication, and

one modular addition in the online phase. However, the Schnorr scheme can only be proved

secure in the random oracle model.

5.2.1.5 The SQ Scheme

This is the basic signature scheme which is secure in the standard model. It needs one long

exponentiation and generation of an le-bit prime in the offline phase, one multiplication and

addition in the online phase.

5.2.1.6 The SGE Scheme

This scheme is specialized for embedded device authentication scenario. In the offline phase,

it requires one short exponentiation, a hash calculation and several multiplications. In the

online phase, it needs three multiplications with small numbers and three additions.

96

5.2.1.7 The SGS Scheme

This scheme is specialized for bursty server authentication. In the offline phase, it requires

one short exponentiation, generation of a medium size (e.g., 88-bit) prime number, and

several multiplications. In the online phase, it only requires one addition and one modular

reduction with a short modulus.

5.2.2 Experimental Environments

The experiments are conducted in two different environments. The majority of the experi-

ments have been performed on a desktop class computer. The specifics of this environment

are as follows:

• CPU: Intel(R) Core(TM)2 Duo CPU E6750 @ 2.66GHz;

• Memory: 2031612 KB;

• Operating System: Linux 2.6.23.15-80.fc7;

• Compiler: GCC Version 4.1.2.

To test the behavior of the schemes on embedded devices with limited computing capa-

bilities, experiments are also conducted using Atmel’s AVR Studio 4.0 (Version 4.13 Service

Pack 2) [2], a simulation platform for an 8-bit processor that is popular for embedded sys-

tems. The experiments in AVR Studio simulate the following system:

• CPU: atmega2560 16MHz;

• Memory: 255 KB (Program Memory), 8 KB (Data Memory);

97

• Compiler: WinAVR-20071221.

The experiments in AVR Studio focus on answering the question of whether the proposed

schemes operate in an acceptable amount of time on such a limited processor, so the tests

measure the time for the online phase and offline phase of these algorithms when the key

size is 1024 bits. While more extensive tests would provide some additional information that

could be interesting, the extreme slowness of simulation in AVR Studio makes this infeasible.

Each second of simulation time takes about 3.6 minutes of real time, meaning that a single

trial of the complete signing procedure in RSA-ST, which takes 200 seconds of simulated

time, takes almost 12 hours of real time. Therefore, the experiments in AVR Studio are

limited to only the more important and interesting questions.

For multiprecision arithmetic and standard cryptographic operations, RSARef [37] is

used, which is a cryptographic toolkit designed by RSA Laboratories, a division of RSA

Data Security, Inc. RSARef means “RSA reference” and serves as a portable, educational,

reference implementation, which is available for free.

5.2.3 Experiments Performed

The experiments performed focus on online/offline signing for each scheme in this disserta-

tion. Three sets of experiments have been carried out as described below.

• The first set of experiments is a performance comparison between the traditional sig-

nature schemes and their converted constructions using the Shamir-Tauman method.

The purpose for this set of experiments is to verify the effect of online/offline signing,

to gain a concrete sense of times involved for signature generation in the online phase.

98

• The second set of experiments focuses on the offline performance among all schemes.

Since the embedded device scenario depends on the offline phase being efficient (as

well as the online phase), these experiments explore which scheme is best suited for

embedded device authentication.

• The last set of experiments focuses on the online performance of all schemes, in order

to identify the best scheme for the bursty server authentication scenario.

For each set of experiments, key sizes from 512 bits to 2048 bits are tested in order to

obtain performance data under different key sizes. In addition, some tests on the verification

phase are also run to provide a complete picture for each scheme.

5.3 Experimental Results

The experimental results are presented in this section. In the experiments, five different sets

of parameters are generated for each signature scheme, and for each set of parameters and

each scheme, the signature algorithm is run for 100 different messages, then the time for

each phase such as offline phase, online phase and verification phase, is averaged. Since the

exponents in each scheme are randomly chosen, the efficiency of the scheme is determined by

the total bit length of exponents in this scheme as described in Section 5.1, so the averaged

value should be similar for different test times. Averaging over different numbers of signature

tests are tried, and the average of 100 gave consistent, reliable results. Therefore, 100 is a

reasonable test times for each set of parameters of each scheme in the experiments. The

data in the following tables are averaged value for time in seconds.

99

5.3.1 Testing the Shamir-Tauman Method

This set of the experiments is designed to explore the efficiency of Shamir and Tauman’s

“Hash-Sign-Switch” paradigm, and to get a feel for how much online/offline techniques can

improve efficiency on desktop class systems. RSA, CS, CL, and their corresponding on-

line/offline versions based on the Shamir-Tauman method, which are called RSA-ST, CS-

ST, and CL-ST, are implemented. Table 5.1 gives the experimental results for average

online signing time with different key sizes. Figure 5.1 shows these results on a graph, and

while the scale required to show all six results does not allow any difference to be seen

among the three ST-based techniques, it does show the dramatic improvement over the non-

online/offline versions. For example, when the key size is 1024 bits, which is a typical key

size used in practice, the online phase of RSA-ST is over 7538 times faster than using RSA

in a traditional non-online/offline manner. Figure 5.2 shows that all RSA-ST, CS-ST, and

CL-ST line up practically on top of each other, which reflects the fact that the online phase

of the ST-based techniques depends on the trapdoor hash used, but not on the underlying

traditional signature scheme. Thus, their online signing times are almost the same.

Key Size RSA CS CL RSA-ST CS-ST CL-ST
512 0.0064 0.0252 0.0212 0.00000312 0.00000325 0.00000304
768 0.0178 0.0542 0.0512 0.00000375 0.00000384 0.00000373
1024 0.0340 0.1082 0.1078 0.00000451 0.00000449 0.00000451
1280 0.0742 0.1948 0.1930 0.00000520 0.00000551 0.00000545
1536 0.1230 0.3212 0.3208 0.00000588 0.00000602 0.00000597
1792 0.1944 0.4741 0.4781 0.00000681 0.00000669 0.00000704
2048 0.2826 0.7073 0.7167 0.00000742 0.00000770 0.00000763

Table 5.1: Online Performance Comparison of Traditional Signature Schemes and their ST-
based Signature Schemes (times in seconds on a Pentium Core 2 Duo E6750)

While 34 ms for RSA is acceptable for a single request in most situations, when there is a

100

Online Signing Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

256 512 768 1024 1280 1536 1792 2048 2304

Key Size (bit)

O
n

li
n

e
 S

ig
n

in
g

 T
im

e
 (

s
e
c
o

n
d

)

RSA

CS

CL

RSA-ST

CS-ST

CL-ST

Figure 5.1: Online Performance Comparison of Traditional Signature Schemes and their
ST-based Signature Schemes

Online Signing Time

0

0.000001

0.000002

0.000003

0.000004

0.000005

0.000006

0.000007

0.000008

0.000009

256 512 768 1024 1280 1536 1792 2048 2304

Key Size (bit)

O
n

li
n

e
 S

ig
n

in
g

 T
im

e
 (

s
e
c
o

n
d

)

RSA-ST

CS-ST

CL-ST

Figure 5.2: Online Performance of the ST-based Signature Schemes

101

heavier load of requests this time becomes quite significant, and the 7538 times improvement

from using the Shamir-Tauman method is very dramatic. So, this set of experiments demon-

strates the Shamir-Tauman techniques is an effective technique to achieve a online/offline

signing.

5.3.2 Offline Performance

As described in Chapter 1, offline performance is important in the embedded device au-

thentication scenario. As seen in the previous section, the Shamir-Tauman technique can

dramatically improve the online signing speed, but as can be seen from the algorithm def-

inition this is paid for with additional computation in the offline phase. In this section,

experiments are run to determine how much this affects times in practice, and compare to

the proposed direct online/offline schemes to judge whether improvements are significant.

Table 5.2 gives the experimental results for offline performance of all online/offine signa-

ture schemes. Comparing Table 5.1 and Table 5.2, it can be seen that the Shamir-Tauman

method adds significant cost to the original signature scheme. For example, the signing time

for the RSA scheme approximately doubles, increasing from 34ms to 79ms with 1024-bit

keys. This additional overhead is significant considering the limited computing capabilities

of embedded devices. By comparison, the direct online/offline schemes in the rightmost 4

columns of Table 5.2 show very significant improvements in running time, so in the following

the attention is restricted to just the direct online/offline schemes.

Figure 5.3 compares the four direct online/offline schemes that are tested on a graph.

The Schnorr, SGE and SGS’s performance stand almost at the same level, with the Schnorr

scheme being slightly faster than SGE and SGS.

102

Key Size RSA-ST CS-ST CL-ST Schnorr SQ SGE SGS
512 0.0128 0.0286 0.0266 0.0008 0.0092 0.0014 0.0026
768 0.0360 0.0736 0.0726 0.0029 0.0198 0.0040 0.0054
1024 0.0792 0.1498 0.1520 0.0072 0.0396 0.0096 0.0104
1280 0.1458 0.2670 0.2722 0.0145 0.0734 0.0176 0.0182
1536 0.2398 0.4525 0.4563 0.0246 0.1182 0.0302 0.0312
1792 0.3777 0.6845 0.6853 0.0409 0.1848 0.0458 0.0478
2048 0.5525 0.9994 0.9926 0.0608 0.2778 0.0684 0.0688

Table 5.2: Offline Performance of Online/Offline Signature Schemes (times in seconds on a
Pentium Core 2 Duo E6750)

While the initial experiments were in a standard PC environment, the embedded device

authentication scenario demands that performance be tested in a typical embedded device

environment. For this purpose, the AVR Studio simulator is used, as described earlier, and

Table 5.3 shows the simulation results in the AVR Studio environment.

RSA RSA-ST Schnorr SGE SGS
Offline N/A 212.24 21.69 24.11 26.69
Online 105.99 0.0138 0.0191 0.0149 0.0077

Table 5.3: Online/Offline Performance (times in seconds on AVR Studio)

Using typical security parameters and simulating an Atmega2560 processor, the Schnorr

scheme is about 10% more efficient than the SGE scheme for the offline signing, but the

security guarantees of the SGE scheme are higher since it does not require the random

oracle model to reason about security. The 10% is potentially significant, but SGE can have

stronger security guarantees. Since SGE and SGS have the same basic security assumptions,

the one with best performance (SGE) should be used. By comparison, traditional RSA

and RSA with the Shamir-Tauman online/offline extension are much less suitable for the

embedded device scenario due to a much larger signing time.

103

Offline Signing Time

0

0.05

0.1

0.15

0.2

0.25

0.3

256 512 768 1024 1280 1536 1792 2048 2304

Key Size (bit)

O
ff

li
n

e
 S

ig
n

in
g

 T
im

e
 (

s
e
c
o

n
d

)

Schnorr

SQ

SGE

SGS

Figure 5.3: Offline Performance of Direct Online/Offline Signature Schemes

In the scenario for embedded device authentication, since these devices have limited

computing capabilities and most of them are powered by batteries, more computation implies

more energy use, and shorter life cycle. Therefore, idle-time computation for the offline

phase is not free as it is for servers, it is important to reduce offline computation cost (and

hence energy use) as much as possible for embedded devices. The new direct online/offline

techniques avoid overhead associated with the offline phase of the Shamir-Tauman technique,

and use computation over the small subgroup G of Z∗
n, which results in much shorter modular

exponentiations. The experiments show that this makes a concrete and noticeable difference

in practice: the offline phase of the SGE technique is roughly 8 times faster than RSA-ST

for a typical key size. Thus, the experimental results show that the SGE and SGS schemes

are more suitable for the embedded device scenario.

104

Online Signing Time

0

0.000001

0.000002

0.000003

0.000004

0.000005

0.000006

0.000007

0.000008

0.000009

0.00001

256 512 768 1024 1280 1536 1792 2048 2304

key Size (bit)

O
n

li
n

e
 S

ig
n

in
g

 T
im

e
 (

s
e
c
o

n
d

)
RSA-ST

CS-ST

CL-ST

Schnorr

SQ

SGE

SGS

Figure 5.4: Online Performance of Online/Offline Signature Schemes

5.3.3 Online Performance

Online performance is key to the bursty server authentication scenario, and in this section

the online performance of the various online/offline signature schemes is carefully examined.

Table 5.4 and Figure 5.4 give the experimental results on the online performance of all

schemes.

Key Size RSA-ST CS-ST CL-ST Schnorr SQ SGE SGS
512 3.1 3.2 3.0 3.2 3.7 3.9 1.6
768 3.8 3.8 3.7 3.8 4.6 4.2 1.9
1024 4.5 4.5 4.5 4.5 5.5 4.7 2.1
1280 5.2 5.5 5.4 5.3 6.3 4.9 2.2
1536 5.9 6.0 6.0 6.1 7.2 5.4 2.4
1792 6.8 6.7 7.0 6.6 7.8 5.7 2.5
2048 7.4 7.7 7.6 7.7 8.8 5.6 2.7

Table 5.4: Online Performance of Online/Offline Signature Schemes (times in microseconds
on a Pentium Core 2 Duo E6750)

To get a better idea of how these schemes perform in the bursty server scenario, we

105

look at these performance results in terms of throughput, i.e., how many signatures can be

produced in one second. Note that if we were to consider the long term throughput, we

would have to factor in the time for the offline phase as well. For example, if a server repeats

busy/slow cycles on a daily basis, and in one day can finish offline computation for at most

one million signatures, then no matter how fast the online phase is, this will be the maximum

throughput for this server in a day. However, note that the online/offline model also provides

an excellent means for supporting throughput that can be scaled up by adding additional

machines: by having a cluster of machines working on offline phase precomputation and

making the results available to the front-end machine, throughput can be increased almost

to the full online signature throughput. Therefore, the main limiting factor: the online phase

throughput, is considered in this dissertation.

Data from RSA, RSA-ST, Schnorr, SGE, and SGS are selected to measure bursty au-

thentication throughput. Note that when the Shamir-Tauman technique is used, the online

phase is independent of the underlying signature scheme, so the results for RSA-ST can be

used for CS-ST and CL-ST as well.

Table 5.5 and Figure 5.5 show the performance data in terms of bursty authentication

throughput. Clearly, the SGS scheme outperforms all other schemes by a substantial amount.

For example, for a 1024-bit key,the SGS scheme generates over twice as many signatures as

any other scheme: 2.188 times signatures as many as the SGE scheme, 2.098 times as many

as the Schnorr scheme, and 2.12 times as many as the RSA-ST scheme.

106

Key Size RSA RSA-ST Schnorr SGE SGS
512 156 320,153 315,905 254,362 643,583
768 56 265,999 259,780 236,440 528,066
1024 25 221,273 223,548 214,348 469,109
1280 13 192,263 189,422 202,212 449,296
1536 8 170,151 163,476 185,556 408,563
1792 5 146,907 150,534 174,547 402,965
2048 3 134,718 129,890 179,108 366,085

Table 5.5: Bursty Authentication Throughput (online signatures per second)

Number of Signatures Generated Per Second

0

100000

200000

300000

400000

500000

600000

700000

256 512 768 1024 1280 1536 1792 2048 2304

Key Size (bit)

N
u

m
b

e
r

o
f

S
ig

n
a
tu

re
s

RSA

RSA-ST

Schnorr

SGE

SGS

Figure 5.5: Bursty Authentication Throughput

5.3.4 Verification Performance

In this dissertation, signing performance for digital signature schemes, both offline and online

phases, as appropriate for the application scenarios, are mainly considered. Experiments are

also conducted to measure the verification phase, to provide a complete picture for each

scheme.

Table 5.6 and Figure 5.6 give these experimental results. The verification of each scheme

107

Key Size RSA-ST Schnorr SQ SGE SGS
512 0.0072 0.0032 0.0132 0.0194 0.0160
768 0.0190 0.0077 0.0312 0.0412 0.0338
1024 0.0410 0.0156 0.0618 0.0716 0.0620
1280 0.0746 0.0271 0.1080 0.1124 0.1054
1536 0.1226 0.0415 0.1718 0.1646 0.1586
1792 0.1906 0.0646 0.2538 0.2270 0.2144
2048 0.2796 0.0909 0.3701 0.3012 0.2872

Table 5.6: Verification Performance (times in seconds on a Pentium Core 2 Duo E6750)

Verification Time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

256 512 768 1024 1280 1536 1792 2048 2304

Key Size (bit)

V
e
ri

fi
c
a
ti

o
n

 T
im

e
 (

s
e
c
o

n
d

)

RSA-ST

Schnorr

SQ

SGE

SGS

Figure 5.6: Verification Performance

108

is less than half second, which is very fast considering verifications are only needed and per-

formed occasionally on a computer rather than a embedded device in the sample scenarios. It

can be seen that signatures from the Schnorr scheme can be verified the fastest of all schemes,

and the SGE and SGS schemes are a little slower than the Schnorr scheme and the RSA-ST

scheme for verification performance. However, this little slowness in verification is trivial for

the sample scenarios, and the SGE and SGS schemes are still the best schemes for embedded

device authentication scenario and bursty server authentication scenario, respectively.

5.4 Summary

In this chapter, three different sets of experimental results have been shown. The first set of

experiments between the traditional signature schemes and their ST-based signature schemes

confirmed that online/offline signature schemes are very important in the sample scenarios;

The second set of comparison experiments of offline performance among all schemes showed

that the SGE scheme is more suitable for embedded device authentication scenario; The last

set of comparison experiments of online performance among all schemes demonstrated that

the SGS scheme is the best scheme for the bursty server authentication scenario.

In the next chapter, the research results will be summarized, and conclusions and future

research for the dissertation will be given.

109

CHAPTER 6

CONCLUSION

In this dissertation, new general techniques for online/offline signing were developed, those

were applied in a variety of ways for creating online/offline signature schemes, and five

different online/offline signature schemes that are proved secure under a variety of models

and assumptions were proposed. The results of the new techniques include two direct on-

line/offline schemes that have the best offline or best online performance of any currently

known technique. These two schemes are particularly useful in the two scenarios defined in

Chapter 1: bursty server authentication and embedded device authentication. Through a

series of experiments we have gained a concrete understanding of the performance of the new

techniques, in relation to each other and to other state-of-the-art techniques. The new tech-

niques are able to provide online signature performance that produces over twice as many

signatures per second as the next best technique, and have the best offline performance of

any scheme that has been proven secure in the standard model.

After the background and foundation for the research work being introduced in Chapters 1

and 2, the core design technique used in this dissertation, the two-exponent version of the

flexible RSA problem, was introduced, which provides the flexibility of performing some

computations before the message to be signed is known. As a direct application of this

technique, the new direct online/offline signature scheme, the RQ scheme, was proposed.

Although the RQ scheme is not a fully optimized construction, it is the foundation for the

further improvements. Using computation over a small subgroup of Z∗
n, another simple and

110

efficient direct online/offline signature construction, the RG scheme, was further devised.

The RQ and RG schemes are proved secure under adaptive chosen message attack with the

strong RSA assumption and the strong RSA subgroup assumption, respectively. However,

both security proofs rely on the random oracle model.

Next, the underlying reason for the random oracle being necessary in the proofs for the

RQ and RG schemes was analyzed. As a result, a direct online/offline signature scheme, the

SQ scheme, was devised, which is secure in the standard model under the the strong RSA

assumption. Based on the SQ scheme, first computation over a small subgroup of Z∗
n was

used to reduce overall computation overhead. Looking specifically at the offline phase of the

algorithm, in the next improvement a type of hash function called a division intractable hash

function was used to further reduce the offline cost, and the SGE scheme was obtained, which

targets the scenario of embedded device authentication. The SGE scheme has the best offline

performance of any known signature scheme that is provably secure in the standard model.

In the last derivation, Shamir and Tauman’s trapdoor hash function was adapted into the

new direct online/offline method, and the most efficient construction in the online phase, the

SGS scheme, was obtained, which targets the scenario of bursty server authentication. The

SGS scheme has the best online performance of any known scheme, even compared against

those that are secure only in the random oracle model. Both the SGE and SGS schemes are

proved secure in the standard model under the strong RSA subgroup assumption.

Finally, to determine if the new direct online/offline designs provide the expected practical

improvements, a series of experiments have been conducted comparing the new schemes

with each other and with other state-of-the-art schemes in this area, both on a desktop

class computer, and under AVR studio, a simulation platform for an 8-bit processor that is

111

popular for embedded systems. The experimental results also show that the SGE scheme

and SGS scheme are the most efficient techniques for embedded device authentication and

bursty server authentication, respectively.

6.1 Future Research

In this dissertation, five direct online/offline signature schemes based on the new general

techniques has been successfully devised. Two of the proposed five schemes, the SGE scheme

and the SGS scheme, are the most efficient online/offline techniques of any known scheme in

the standard model. Both of them operate on a small subgroup G of Z∗
n in order to reduce

overall computation overhead, and so they are proved secure under the strong RSA subgroup

assumption, which is stronger than the strong RSA assumption.

The strong RSA subgroup assumption is only a few years old, so is relatively new by

cryptographic standards. Therefore, one important direction for future work is to pursue

a better understanding of the relation between the strong RSA assumption and the strong

RSA subgroup assumption. A stronger foundation in this area could allow us more insight

into the selection of parameters for subgroup-based schemes, allowing us to optimize various

aspects more carefully.

The RQ and RG schemes in Chapter 3 can be proved secure in the random oracle model.

The question is: can we determine if random oracles are really required in their security

proofs? Therefore, another important direction for future work is to have a deeper un-

derstanding of the random oracle model, which could allow us to better understand the

requirements on the hash function, the real difference between a signature scheme in the

random oracle model and a signature schemes in the standard model, and the problems with

112

random oracles.

113

BIBLIOGRAPHY

[1] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure

coalition-resistant group signature scheme. In Advances in Cryptology — Crypto, pages

255–270, 2000.

[2] Atmel. AVR studio 4.0 (version 4.13 service pack 2), 2007.

http://www.atmel.com/products/AVR/.

[3] N. Baric and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes

without trees. In Advances in Cryptology — Eurocrypt’97, pages 480–494, 1997.

[4] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing ef-

ficient protocols. In First ACM Conference on Computer and Communication Security,

pages 62–73, 1993.

[5] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In A. de Santis, editor,

Advances in Cryptology —EUROCRYPT 94, LNCS 950, pages 92–111. Springer-Verlag,

1995.

[6] M. Bellare and P. Rogaway. The exact security of digital signatures — how to sign with

RSA and Rabin. In Advances in Cryptology — Eurocrypt’96, pages 399–416, 1996.

[7] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In ACM Con-

ference on Computer and Communications Security, pages 132–145, 2004.

114

[8] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient

revocation of anonymous credentials. In Advances in Cryptology — Crypto’02, LNCS

2442, pages 61–76, 2002.

[9] J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In Third

Conference on Security in Communication Networks (SCN’02), pages 268–289, 2002.

[10] R. Canetti, O. Goldreich, and S. Halevi. The random oracle model, revisited. In 30th

Annual ACM Symposium on Theory of Computing, pages 209–218, 1998.

[11] R. Cramer and I. Damgard. New generation of secure and practical RSA-based signa-

tures. In Advances in Cryptology — Crypto’96, pages 173–185, 1996.

[12] R. Cramer and V. Shoup. Signatures schemes based on the strong RSA assumption. In

ACM Transaction on Information and System Security, pages 161–185, 2000.

[13] I. Damgard. Collision free hash functions and public key signature schemes. In Advances

in Cryptography – Eurocrypt’87, pages 203–216, 1987.

[14] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on

Information Theory, 11:644–654, Nov. 1976.

[15] C. Dwork and M. Naor. An efficient existentially unforgeable signature scheme and its

applications. J. Cryptology, 11(3):187–208, 1988.

[16] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. In Advances in Cryptology — Crypto’84, pages 10–18, 1984.

115

[17] S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures. In Advances

in Cryptology — Crypto’89, pages 263–275, 1990.

[18] A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification and

signature problems. In Advances in Cryptology — CRYPTO’86, pages 186–194, 1987.

[19] M. Fischlin. The Cramer-Shoup strong-RSA signature scheme revisited. In International

Workshop on Practice and Theory in Public Key Cryptography (PKC 2003), pages 116–

129, 2003.

[20] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular

polynomial relations. In Advances in Cryptology — Crypto’97, pages 16–30, 1997.

[21] R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the

random oracle. In Advances in Cryptology — Eurocrypt’99, pages 123–139, 1999.

[22] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press,

2001.

[23] S. Goldwasser and Y. T. Kalai. On the (in)security of Fiat-Shamir paradigm. In

Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science

— FOCS’03, pages 102– 114, 2003.

[24] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against

adaptive chosen-message attacks. SIAM J. Computing, 17:281–308, 1988.

[25] J. Groth. Cryptography in subgroups of Z∗
n. In Theory of Cryptography Conference

(TCC 2005), pages 50–65, 2005.

116

[26] A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In Advances in

Cryptology—Eurocypt, LNCS 3027, pages 571–589. Springer-Verlag, 2004.

[27] H. Krawczyk and T. Rabin. Chameleon signatures. In Symposium on Network and

Distributed Systems Security – NDSS’00, pages 143–154, 2000.

[28] L. Lamport. Constructing digital signatures from a one-way function, Oct. 1979.

[29] W. Mao. Modern Cryptography: Theory & Practice. Prentice Hall PTR, 2004.

[30] A. J. Menezes, P. C. Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography.

CRC Press, Inc, 1997.

[31] D. Naor, A. Schenhav, and A. Wool. One-time signatures revisited: Practical fast

signatures using fractial merkel tree traversal. In IEEE 24th Convention of Electrical

and Electronics Engineers i Israle, pages 255–259, 2006.

[32] NIST. Data encryption standard (des), 1999.

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.

[33] NIST. Secure hash standard, 2002. http://csrc.nist.gov/publications/fips/fips180-

2/fips180-2withchangenotice.pdf.

[34] M. O. Rabin. Digitalized signatures. In Foundations of Secure Computation, pages

155–168, 1978.

[35] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and

public-key cryptosystems. In Commnuications of the ACM, volume 21, pages 120–126,

Feb. 1978.

117

[36] RSA. The RSA factoring challenge.

[37] RSA Laboratories. RSAREF(TM): A cryptographic toolkit for privacy-enhanced mail,

1993. http://plan9.bell-labs.com/sources/contrib/btdn/src/pgp/rsaref/.

[38] C. Schnorr. Efficient signature generation for smart cards. Journal of Cryptology,

4(3):161–174, 1991.

[39] A. Shamir and Y. Tauman. Improved online/offline signature schemes. In Advances in

Cryptology — Crypto’01, pages 355–367, 2001.

[40] V. Shoup. OAEP reconsidered. In Advances in Cryptology — Crypto01 LNCS 2139,

pages 239–259, 2001.

[41] V. Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge

University Press, 2005.

[42] P. Yu and S. R. Tate. An online/offline signature scheme based on the strong RSA

assumption. In 21st International Conference on Advanced Information Networking and

Applications Workshops – 3rd IEEE International Symposium on Security in Networks

and Distributed Systems (SSNDS), pages 601–606, 2007.

[43] P. Yu and S. R. Tate. Online/offline signature schemes for devices with limited com-

puting capabilities. In RSA Conference 2008, Cryptographers’ Track (CT-RSA), pages

301–317, 2008.

[44] H. Zhu. New digital signature scheme attaining immunity to adaptive chosen-message

attack. Chinese Journal of Electronic, 10(4):484–486, 2001.

118

[45] H. Zhu. A formal proof of Zhu’s signature scheme, 2003. http://eprint.iacr.org/.

119

