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This thesis introduces an innovative methodology of combining some traditional
dictionary based approaches to word sense disambiguation (semantic similarity measures and
overlap of word glosses, both based on WordNet) with some graph-based centrality methods,
namely the degree of the vertices, Pagerank, closeness, and betweenness. The approach is
completely unsupervised, and is based on creating graphs for the words to be disambiguated. We
experiment with several possible combinations of the semantic similarity measures as the first
stage in our experiments. The next stage attempts to score individual vertices in the graphs
previously created based on several graph connectivity measures. During the final stage, several
voting schemes are applied on the results obtained from the different centrality algorithms.

The most important contributions of this work are not only that it is a novel approach and
it works well, but also that it has great potential in overcoming the new-knowledge-acquisition
bottleneck which has apparently brought research in supervised WSD as an explicit application
to a plateau. The type of research reported in this thesis, which does not require manually
annotated data, holds promise of a lot of new and interesting things, and our work is one of the
first steps, despite being a small one, in this direction.

The complete system is built and tested on standard benchmarks, and is comparable with
work done on graph-based word sense disambiguation as well as lexical chains. The evaluation
indicates that the right combination of the above mentioned metrics can be used to develop an

unsupervised disambiguation engine as powerful as the state-of-the-art in WSD.
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CHAPTER 1

INTRODUCTION

1.1. A Word on Meaning

Languages are inherently ambiguous. Most words in a language usually have a multitude
of meanings, and usually only one of its several possible meanings fits in a given context.
We encounter this issue all around us - from lighthearted puns to misinterpreted statements
to serious research, it is hard not to marvel at this phenomenon.

These meanings, or “senses” in natural language processing (NLP) terms, can further
be classified as coarse-grained or fine-grained. As an example of the coarse-grained sense
distinction, the word “plant” could refer to either the green plant sense of the word or the
factory sense. As another example, the word “bank” could refer to any of the several senses
of the word - river bank, a place where we put our money, or the action of a plane while
making a turn. As far as coarse-grained senses are concerned, usually for humans as well as
machines it is easy to be able to tell from context which sense is being referred to. All we
need to do is read a sentence, and in extreme cases look at the preceding and succeeding
sentences, and we know what the word really means.

Problems start arising when we look at the other way in which senses can be divided —
namely fine-grained distinctions. An extreme case of finer distinctions in senses is that of
looking at the word “bank”, and trying to determine whether it is meant as the building where
the bank is located, the financial institution in itself, or the bank as the company. Sometimes
it is difficult even for humans to distinguish such fine-grained words. However, for the most
part, disambiguating the sense of a word given enough context like this is a very easy task

for human beings, owing to common sense and other faculties of the mind that we are born



with. On the other hand, it is hard for a machine to be able to tell the finer-grained sense
distinctions correctly.

The very notion of meaning is somewhat suspect from both philosophical as well as
practical points of view, and several thoughts and alternative views have been put forward in
this regard. While sometimes it is easier to divide words into different clusters of meanings,
oftentimes one finds examples in which meanings are loose, overlapping or extended, as
mentioned by Agirre and Edmonds in [1]. The complexity of word meanings is at its early
stages of research and has not yet been satisfactorily explained. For the purpose of this thesis,
however, word meanings would refer to a set of fixed senses as available in the WordNet sense
repository.

To elaborate a little bit on the coarse-grained and fine-grained sense distinctions men-
tioned above, coarse-grained senses are very few - probably just 2 or 3 for a word - and they
are totally unrelated in every way. They are often called homographs and they are considered
almost a solved problem (refer to Chapter 2). Fine-grained senses are obtained by dividing
up the coarse-grained senses further and breaking them down into a complex structure of
interrelated senses (Agirre and Edmonds, [1].) Ide and Wilks, in the same book [1] have gone
so far as to argue that both machines and humans are only able to reliably disambiguate
coarse-grained senses. However, active research using WordNet as a repository has shown
that machines are capable of disambiguating much finer levels of meanings to a reasonable

degree.

1.2. Word Sense Disambiguation

Word sense disambiguation (WSD) is the task of resolving ambiguities in text resulting
from the inherent polysemous nature of language. Starting in the 1940s as a sub-problem
of the much wider field of artificial intelligence (AlI), and related in particular to machine
translation (MT), through the decades WSD has evolved in what it represents as well as in its

potential applications. Researchers have developed several approaches that attempt to solve



this problem of lezical disambiguation (for a more complete history and the state-of-the-art
in WSD, please refer to Chapter 2.)

One of the most important resources used in WSD research are sense inventories. Sense
inventories provide a fixed set of meanings, thus offering a standard upon which all researchers
can test their systems’ performance. This introduces uniformity and scientific rigor, and
provides a common ground on which different systems can be built and compared with one
another. There are several sense inventories available today, as seen in the list below. Some

of these have been listed with their pros and cons (please refer to Agirre and Edmonds [1]):

(i) Longman’s Dictionary of Contemporary English: has subject codes, but is not
available freely
(ii) WordNet: is freely available, but for many applications its senses are too fine-
grained
(iii) Roget’s Thesaurus
(iv) Hector: low coverage despite being detailed

(v) Oxford Advanced Learner’s Dictionary

1.3. Applications of WSD

One of the most important reasons propelling this thesis work on WSD is the potential use
that WSD can be put to under certain conditions. In general, WSD finds several applications
in the following research areas within natural language processing, both as an explicit system

as well as an implicit one (Agirre and Edmonds [1]):

(i) Machine Translation: Machine translation (MT) was the original problem that
gave rise to WSD. Since different senses of a word often have completely different
translations across languages, all machine translation systems implement some sort
of WSD. Often the senses of a word in the source language are represented directly
as the translated words in the other language. Even though most MT systems don’t
use an explicit WSD system because of the structure of the MT algorithms, still

there is scope for a change in the algorithms so that WSD can be used explicitly.



(i)

A highly accurate WSD system is likely to enhance the performance of automatic
translators to a great degree.

Information Retrieval: Information Retrieval (IR) often requires that ambiguities
be resolved before certain queries can be performed. For example, consider the
following example by Agirre and Edmonds from [1]: for the query item depression,
the user querying the search engine might be looking for information related to
economics, illness or weather systems. The same kind of issue needs to be addressed
by a search engine for proper nouns - if there are two or more people with the same
name the search engine doesn’t know which results to show first. Current systems
depend on the user to provide some context, e.g. tropical depression in order to
provide the exact results. While this may seem relatively unimportant, recently
WSD has been shown to improve performance in cross-lingual IR and document
classification. Furthermore, subdivisions of IR like news recommendation, alerting,
topic tracking and automatic advertisement placement can also benefit from a good
WSD system.

Information Extraction and Text Mining: Any accurate analysis of a text requires
WSD. Some application might be required to keep track of all information on the
Internet regarding tropical depression rather than any of the other senses of depres-
sion. Correct analysis of text also finds a great deal of application in bioinformatics,
where it might be required to collect genes and gene proteins separately, especially
because genes and gene proteins often have the same names. The new field of the
Semantic Web needs automatic annotation of documents. Acronym expansion and
named-entity classification are other applications in need of a gopod WSD system.
Lexicography: WSD might be used to provide a rough higher-level grouping of
senses which can help lexicographers provide better sense inventories and corpora
back to the WSD system, thus creating a cycle where both components benefit

from each other.



1.4. Utility of WSD

As explored in the above discussion, WSD can be used in various ways to benefit various
existing applications. Even though systems resulting from research in WSD as an explicit
problem have not shown any significant improvement in any real applications, the following

points make it clear why there is still a lot of scope in WSD research:

(i) WSD as of today is not accurate enough for fine-grained sense distinctions. Im-
proving this performance could change the way WSD bears down upon other ap-
plications.

(ii) No proper way has been found to integrate explicit WSD into existing systems.

(iii) Even though supervised corpus-based WSD suffers from the knowledge-acquisition
bottleneck, and it is not feasible to collect sufficient manually tagged corpora for
all possible domains, unsupervised WSD still has promise, and when explored ad-
equately, it is expected to significantly improve the impact of WSD on all other

research in NLP - because it can be be inexpensive and extremely scalable.

1.5. Problem Statement and Outline of Approach

Inspired by the above motivation, we attempt to develop a completely unsupervised word
sense disambiguation system, making use of several available methodologies and combining
them in an innovative way. The gist of this thesis work can be summarized as follows:

Given a sequence of sentences of words, containing content words (nouns, verbs, adjectives
and adverbs) with several possible senses according to WordNet, the algorithm seeks to
disambiguate all the content words in the sequence, by aiming to ultimately assign one sense
to each content word. This is accomplished one word at a time, by building a graph around
the word to be disambiguated.

By looking at the senses of neighboring words within different window-sizes (the size of
the window ultimately used being an experimental issue,) the algorithm finds relationships
amongst all vertices in such a graph, using combinations of different measures of semantic

similarity based on the WordNet hierarchy. Which measure is used for which pair of vertices



is again an empirically determined parameter. This is followed by running several graph
centrality algorithms on the (fairly dense) graph thus constructed. This step assigns scores
to each vertex in the graph, thus facilitating selection of one, most appropriate, sense for
each word.

This approach therefore tends to be an extension of some of the traditional local ap-
proaches of graph-based WSD (please refer to Chapter 2) - we look at the words and their
neighbors, we determine how similar they are, and we use local measures of graph connec-
tivity on top of that to assign final scores. Finally the algorithm also performs a voting

amongst the results from the different graph algorithms.

1.6. Contribution of the Thesis

As apprehended in the SENSEVAL-3 evaluation (refer to Chapter 2), supervised WSD
as an explicit application has reached a point where we need to either significantly improve
performance, or find applications for existing systems that perform moderately well. One
of the reasons behind this could be that supervised WSD requires manually tagged data to
train on, and collecting large amounts of such data for newer domains is not a feasible task.
This problem is referred to as the new knowledge acquisition bottleneck.

The approach presented in this work is completely unsupervised - thus contributing
toward overcoming the knowledge acquisition bottleneck and the scalability problems as-
sociated with typical supervised systems. Furthermore, the algorithm combines dictionary-
based measures of semantic similarity, overlap of word glosses, and graph-centrality measures,
which is an innovative combination of the two fundamentally different approaches for WSD
(namely graph-based and dictionary-based) that have mostly only been studied separately so
far. Graph-based approaches toward WSD are themselves a relatively new and unexplored
territory. Unsupervised WSD in general is catching the attention of many leading researchers
today, and when further exploited and extended with graph-based approaches, it promises

a significant change in WSD as we know it today.



The results obtained by our system are competitive with the state-of-the-art, which
speaks about the potential of these powerful approaches coming together in unison to address

WSD.
1.7. Outline of the Remainder of the Thesis

The thesis is organized as follows: In Chapter 2, we take a good look at the history, basic
approaches and the state-of-the-art in WSD using traditional approaches as well as graph
based approaches. In Chapter 3, the graph-based algorithm for WSD is presented in detail,
by going in details over how measures of semantic similarity and graph connectivity are used
in it. This is followed by Chapter 4, i.e. the details about our experiments and evaluation.
Finally these results are accounted for and a discussion is presented for future work in the

final section, Chapter 5.



CHAPTER 2

LITERATURE SURVEY

2.1. Overview

This chapter attempts to take a look at some of the most recent research done in the field
of word sense disambiguation (WSD), as well as the current state-of-the-art. WSD is the
task of examining the word tokens in a given context and determining which of the several
possible senses (according to a given sense inventory) of each word token is being used in
that particular context. Given the sheer multitude of senses that a word could have, this
task is far from trivial.

WSD is related to the more general task of lexical semantic processing, which comprises
tasks focusing on meanings of individual words rather than meanings of a paragraph or a
discourse. Even though the approaches to handle lexical semantics are considered to be a
little different from those designed to handle compositional semantics, the problems of lexical
and compositional ambiguity are closely related, because the ambiguity in the words of a

sentence can lead to several possible interpretations of the sentence.

2.2. History of WSD

WSD is one of the oldest problems in computational linguistics. It was in the 1940s that
WSD was first formulated as a separate task by Weaver [36]. It was acknowledged from the
very beginning that the task is crucial and non-trivial. Zipf [42] then published his Laws
of Meaning, * that accounts for the fact that the more frequent words have more senses
compared to the less frequent words.

The inherent difficulty in the task of WSD was well appreciated further in the 1960s,

and owing to the unfavorable ALPAC report in 1966, most of MT was abandoned. WSD

ldifferent from his Zipf’s Law on word frequencies



was then resurrected in the 1970s, within the research in artificial intelligence on complete
natural language understanding. Wilks’s preference semantics, as mentioned in [38], was one
of the first systems to explicitly account for WSD.

The 1980s witnessed a turning point in WSD research, and large scale corpora and other
lexical resources became available. Before the 1980s much of WSD research depended on
handcrafting of rules. Now it became possible to use knowledge extracted automatically
from the resources.

Lesk [17] came up with a simple yet seminal algorithm that used dictionary definitions
from the Oxford Advanced Learner’s Dictionary (OALD), and this marked the beginning of
dictionary-based WSD. Guthrie et. al. [14] used the subject codes found in the Longman’s
Dictionary of Contemporary English (LDOCE) on top of the Lesk algorithm. Yarowsky [40]
combined the information in Roget’s thesaurus with co-occurrence data from large corpora
in order to learn disambiguation rules for Roget’s classes.

The 1990s saw further improvements in the field, which can be categorized in three major
groups - WordNet, statistical NLP, and SENSEVAL (later SEMEVAL).

WordNet made it possible for all the researchers to have easy and free access to a stan-
dardized inventory using which to compare their work. Its hierarchical structure, synsets,
and other such features made it the most used general sense inventory in WSD research.

The mainstream approach in WSD so far has been supervised learning, where systems are
trained on manually tagged corpora. Statistical approaches in supervised learning were used
by Weiss [37] and several others which was a foresight to the so-called “statistical revolution”
in the 1990s. Brown et. al. [8] were the first to use corpus-based WSD in statistical MT.

SENSEVAL (later SEMEVAL) made it possible for researchers to compare different sys-
tems with each other because of the fixed set of test words, annotators, sense inventories,
and corpora. Before SENSEVAL, the only common ground that WSD researchers had were
a lower bound (calculated by either picking a random sense, or taking into account the most

frequent senses) and an upper bound (derived from inter-tagger agreement). Now it became



possible to develop different systems and evaluate them on the data sets provided by SEN-
SEVAL, thereby introducing scientific rigor and uniformity. SENSEVAL eventually became
the primary forum for all WSD evaluations.

In SENSEVAL-3 (2004), a conclusion was reached that WSD in itself has reached a
performance plateau, and no significant leap in the results obtained already is possible. It
is since then, that people started thinking about new directions in which WSD research can
go. In particular, in recent years there has been considerable growth in the areas of parallel
bilingual corpora, and unsupervised corpus-based WSD. This thesis combines unsupervised
WSD with dictionary-based methods, and attempts to draw upon the idea that unsupervised

WSD is the way to go in future.

2.3. Basic Approaches to WSD

There are primarily two traditional approaches used to solve the problem of WSD:

(i) Dictionary-based/ knowledge-based approaches: Dictionary-based approaches rely
on dictionaries, thesauri, other lexical knowledge bases and ontologies. While sev-
eral methods are used under these approaches - namely selectional restrictions, over-
lap of definition text, and semantic similarity measures, dictionary-based methods
still remain a matter of research.

(ii) Corpus-based approaches: These approaches can further be divided into two cate-

gories - supervised and unsupervised.

2.3.1. Supervised approaches

Supervised approaches have been the mainstream technique used in WSD for
a long time and have produced considerable results. These methods make use of
annotated data to train from, or the starting data in a bootstrapping process. The
algorithms used under supervised methods include aggregative and discriminative

algorithms, using feature selection, parameter optimization and ensemble learning.

10



While they perform really well, these methods suffer from a problem known as
the knowledge-acquisition bottleneck, meaning it is not always feasible to have at

one’s disposable large corpora annotated manually for every possible domain.

2.3.2. Unsuperwised approaches

These approaches avoid all external information, working directly with the in-
formation available in form of raw unannotated corpora. Potentially, these ap-
proaches can overcome the problems faced by supervised approaches as they do
not depend on manually annotated corpora. Theoretically, all types of information
can be learned by raw corpora, which makes these approaches extremely scalable
too. The work done by Schiitze [32] follows this direction.

Unsupervised approaches can also induce word senses from training text by
clustering word occurrences, and then classifying new occurrences into one of the

existing clusters/ sense groupings (Agirre and Edmonds [1]).

Modern systems in WSD research are mostly combinations of the above methods. All
systems usually extract features of a target word based on the context it is found in, and
compare the features with the other information collected for that word. WSD is thus
basically a classification problem, notable for its very high-dimensional feature space. The
feature space consists of properties such as part of speech, word form - written or lemma,

subject or domain code, semantic class etc.

2.4. Graph-based Approaches to WSD

One direction that modern research in WSD has taken is graph-based approaches. Work
has been done in this area by Barzilay and Elhadad [3], Navigli and Velardi [24], and Mihalcea
[22]. Comparative studies performed by Mihalcea [22] indicate that graph-based methods
often outperform the similarity-based ones by a significant margin.

One of the earliest works in graph-based WSD, namely that by Barzilay and Elhadad [3],
focuses on using lexical chains based on lexical cohesion for producing indicative summaries

of text. Navigli and Lapata [26] state that most unsupervised algorithms can be seen as

11



either similarity-based approaches or graph-based approaches. The authors further note
that these graph-based algorithms often have two stages - during the first stage a graph is
constructed based on all the possible sequences of senses for the words to be disambiguated.
During the next stage the structure of the graph is exploited to determine the most important
nodes in the graph, which eventually leads to disambiguation of the polysemous words in
the context. As mentioned in the above referenced paper, graph-based approaches attempt
to assign senses to words collectively in a global manner, by exploiting dependencies across
senses, while in contrast similarity-based approaches disambiguate each word individually
without looking at the senses that are assigned to the words immediately before and after.

Also, as noted in Navigli and Lapata [26], graph connectivity measures could be local or
global. If the graph connectivity measure is local, then for each word to be disambiguated,
the measure is able to select one sense which is most suitable in the given context. If the
connectivity measure happens to be global, then the disambiguation methodology changes
a little bit, in that instead of providing the disambiguated senses for each polysemous word,
the algorithms score the overall interpretation of the sentence. Thus, if a sentence could have
twenty possible interpretations, then a local graph connectivity measure provides us with
the best scoring sense for each polysemous word in one iteration, whereas a global graph
connectivity measure provides us with twenty overall possible assignments of senses, each
assignment with a score. Some of the local centrality measures are indegree, PageRank (Brin
and Page [7]), closeness and betweenness (Freeman [12]). Some well-known global centrality
measures are compactness (Botafago et. al. [5]), graph entropy and edge density.

Apart from providing a comprehensive comparison amongst different measures of graph
centralities, Navigli and Lapata [26] present a generic graph-based algorithm which handles
one sentence at a time and disambiguates polysemous words based entirely on the structure
of the graph of their sense-inventory (WordNet or Extended WordNet (Navigli [25].) For
their purposes, they view the WordNet graph as a set of nodes (comprising synsets) and

edges (comprising the relationship between the synsets, e.g. synonyms, meronyms etc.) For

12



a sentence to be disambiguated, they start with a graph G = (V| E) where V' consists of
each synset in WordNet corresponding to all the words in the sentence. Next, they perform
a depth-first search (DFS) of the WordNet graph. In order to do so, they start with any
vertex v in V' and keep searching the WordNet graph until they find another vertex v in
it which was already present in V. Every time this happens, they add all the intermediate
nodes on this path to G' as undirected edges.

Navigli and Lapata use random assignment as lower bound and a first-sense heuristic
based on SEMCOR as an upper bound, and use simulated annealing to speed up the algo-
rithm. They report the performance of their system on SEMCOR (Miller et. al. [23]) and
SENSEVAL-3 English all-words data. For WordNet, the results obtained by them when using
some local graph connectivity measures are depicted in Table 2.1. For a more detailed report
including the results from the Extended WordNet and some global measures, please refer to
Navigli and Lapata [25]. Table 2.2 depicts the results of the best performing measure, KPP

(Key Player Problem, a variant of Closeness, Borgatti [4]) on SENSEVAL-3 English all-words

data.
WordNet
Measure Prec Rec F1
Baseline 23.7 23.7 23.7
Indegree 35.3 24.0 28.6
Betweenness 38.4 15.5 22.1

Closeness variant (KPP) 31.8 31.8 31.8
PageRank 35.3 24.0 28.6

TABLE 2.1. Performance of local graph connectivity measures on SEMCOR data

The conclusions drawn from the above presented work by Navigli and Lapata are that
(1) local measures perform better than global measures, and (2) KPP performs better than

in-degree, betweenness and other centrality measures.
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Measure Part of speech Prec Rec F1

KPP Nouns 61.9 619 619
Adjectives  62.8 62.8 62.8
Verbs 36.1 36.1 36.1

TABLE 2.2. Performance of KPP on SENSEVAL-3 English all-words data

Our work, though related to the experiments reported above by Navigli and Lapata,
is considerably different. In their work, the graphs are built directly from WordNet, and
thus include links explicitly encoded in the structure of WordNet, rather than accounting
for semantic similarities, as we do. Given a sentence and the list of senses for all the words
in the sentence, for each sense they traverse the WordNet graph using a depth-first search
strategy, and if a new node is found in the WordNet graph that also exists in the list of the
word senses for the current sentence, all the intermediate edges and nodes from WordNet
are added to the graph. Since the edges in the WordNet graph are semantic relations and
not numerical quantities, the graph built in their method is unweighted.

In contrast, our approach, although formulated in a similar graph-based setting, does not
disambiguate on a sentence-by-sentence basis, but rather on the basis of the target word and
a number of words before and after the target word. We thus construct separate graphs for
each word to be disambiguated. Our approach yields almost identical results for nouns, and
considerably better results for verbs, as measured on the SENSEVAL-3 data, which was used
in their experiments. They obtain a precision and recall of 61.90, 36.10 and 62.80 for nouns,
verbs and adjectives respectively, compared to a precision and recall of of 61.93, 46.24 and
53.63 for the same parts of speech, as obtained by us (see Table 4.7).

Another recent work in graph-based algorithms for WSD (Mihalcea [22]), presents an
algorithm for automatic sequence data labeling, tested on the problem of unsupervised WSD
targeting all open-class words in unrestricted text. The algorithm uses a global annotation

approach, annotating all the words in a sequence simultaneously by exploiting dependencies
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across labels and random walks. The work presented in this thesis builds on the algorithm
proposed in this paper, therefore please refer to Chapter 3 for a detailed description of the
algorithm. The author of the above mentioned paper reports results using the presented
graph model and a definition-based similarity measure, obtained on SENSEVAL-2. Her work
also compares results with an enhanced version of the Lesk algorithm, presented by Cowie
et. al. in [10]. Since both algorithms (Mihalcea and Cowie) work with dictionary overlaps,
it is reasonable to directly compare results from the two algorithms. The author reports
accuracies of 54.2% for fine-grained sense distinctions and 55.3% for coarse-grained sense
distinctions, both times achieving an error rate reduction of about 11% over the improved
lesk algorithm. The author further reports a fine-grained accuracy of 55.2% on SENSEVAL-3
and 56.5% on a subset of SEMCOR, both significantly better than accuracies achieved using
individual data labeling (lesk) or random assignment.

Our approach builds on a method similar to the one reported above, although instead
of a measure of similarity based on sense definitions computable on any machine readable
dictionary, we experiment with various semantic similarity measures. While the approach
with the sense definition overlap gives an accuracy of 54.2% on SENSEVAL-2 data, the ap-
proach presented in this thesis gives an overall score of 58.39%, which represents a significant
improvement. The SENSEVAL-3 results reported in [22] consisted of a precision and recall of
52.20%, which are again improved over by our current system that provides an overall score
of 55.05%.

Some other notable algorithms which are similar to the approach used by Mihalcea [22]
are Hidden Markov Models, especially the well-known Viterbi algorithm. However, whereas
the Viterbi algorithm attempts to maximize the overall score of a sentence (global connec-
tivity measure), our algorithm, albeit drawing upon a global graph, assigns senses locally,
individually to each word.

Finally, our work is also comparable to a method for word sense disambiguation based

on lexical chains, proposed by Galley and McKeown in [13]. In that method, lexical chains
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were constructed over a text by using the semantic relations from WordNet, which were
empirically assigned with a weight (e.g., a synonymy relation identified between word senses
in the same sentence was assigned with a weight of 1, whereas a sibling relation found across
three sentences had a weight of 0.3). Once the lexical chains were constructed, a sense was
selected for each word based on the strength of the connectivity to other words in the chain.
The algorithm was evaluated on the disambiguation of all the nouns from 74 documents
from SemCor, which led to an overall score of 62.09%. An evaluation of our system on the

nouns from the same data set led to a significantly higher disambiguation score of 68.70%

(see Table 4.7).

2.5. State-of-the-art in Non-graph-based WSD

The disambiguation of homographs is considered a solved problem, and various systems
have repeatedly reported results with accuracies nearing 95%. In 1995, Yarowsky [41] re-
ported an accuracy of 96.5% on a related task, while in 2001 Stevenson and Wilks [35]
reported an accuracy of 94.7%.

The disambiguation of polysemy is harder, but it has been improving over the years.
Table 2.3 shows the progressive results reported by the systems participating in SENSEVAL
over the years. The apparent drop in the best results from SENSEVAL-1 to SENSEVAL-2
may be attributed toward the fact that SENSEVAL-2 was a harder task in itself as it was
based on finer-grained senses from WordNet as compared to Hector for SENSEVAL-1. Refer
to Agirre and Edmonds [1] for details.

At SENSEVAL-2, a fully unsupervised system (one not using a back-off method to most-
frequent sense) developed by Litkowski [19] combined analysis of multiword units and contex-
tual clues based on collocations and content words from dictionary definitions and examples,
and had an overall accuracy of 45.1%. McCarthy et. al.[21] report one of the best evalua-
tions on SENSEVAL-2, using automatic derivation of the most frequent sense of a word using
distributional similarities learned from a large raw corpus, for a precision of 53.0% and a

recall of 49.0%.
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In SEMEVAL-2007, one of the tasks (please refer to Agirre et. al. [2]) was related to
cross-lingual IR, and was proclaimed to be one of the first attempts toward an application-
driven WSD exercise. In this task, participants tried to disambiguate text by assigning
WordNet 1.6 synsets to it, and then expanding the text to other languages on which an IR
exercise was to be performed. The retrieval results indicated how good the WSD system
was. On the SENSEVAL-2 all-words data, the best performing system reached a precision
of 58.4% and a recall of 57.7% respectively. On the SENSEVAL-3 all words data, the best
performing score was a precision of 59.1% and a recall of 56.6% respectively.

A lot of WSD research so far has focused on content words - namely nouns, verbs,
adjectives and adverbs. Recently at SEMEVAL-2007 one of the tasks was to disambiguate
prepositions (please refer to Litkowski [20].) It was designed as a lexical sample task, and
the best-performing systems reached a recall of 100% and precisions of 69.3% and 75.5%
respectively for fine-grained and coarse-grained sense distinctions. This task has generated
considerable information for further research on preposition WSD and this work can further
be used in several NLP tasks.

A coarse-grained WSD task (refer to Navigli et. al. [27]) was also administered at
SEMEVAL2007, and an overall F-1 measure score of 82.50% was achieved. The system
used a back-off strategy, depending on the most-frequent-sense heuristic whenever no sense
assignment was attempted. In contrast to previous attempts at coarse-grained WSD, this
exercise was performed as an all-words task on a coarse-grained version of WordNet. Since
recent consensus amongst WSD researchers has been that some sense inventories are so fine-
grained that even inter-tagger agreement is not encouraging, this research sheds light on a
relatively new direction that WSD research can take.

Last but not least, SEMEVAL-2007 also had a WSD task comprising an English fine-
grained all-words task, evaluated on data from the Wall-Street Journal (WSJ) and annotated
with senses of WordNet 2.1, and an English coarse-grained lexical sample task, on a selected

set of lexemes (refer to Pradhan et. al. [30].) The systems reached an overall F-score of
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59.1% for the all-words task and an F-score of 88.7% on the lexical sample task. One of the
conclusions drawn from this task were that if the human annotator agreement is high, we
can hope to build a WSD system which might benefit any of the other NLP tasks.

In the light of all this work done in both graph-based as well as non-graph based WSD,
our system with a SENSEVAL-2 English all-words F-1 score of 58.39%, SENSEVAL-3 English
all-words F-1 score of 55.05% and an F-1 score of 63.79% on a subset of the SEMCOR corpus
performs on par with some of the best results reported so far on these data sets, with the

added advantage that our approach is completely unsupervised.
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Year Senseval Task  Language System Result
1997 SENSEVAL-1 (Hector) LS English Inter-tagger agreement 80%
Best 7%
2001 SENSEvAL-2 (WordNet) LS English Inter-tagger agreement 86%
MFS baseline supervised 48%
Best supervised 64%
MFS baseline unsupervised — 16%
Best unsupervised 40%
AW MFS baseline supervised 57%
Best supervised 69%
Best unsupervised 55%
2004 SENSEvVAL-3 (WordNet) LS English Inter-tagger agreement 67%
MF'S baseline supervised 55%
Best supervised 73%
Best unsupervised 66%
AW MFS baseline supervised 62%
Best supervised 65%
Best unsupervised 58%
2007 SEMEVAL-2007 IR Cross-lingual SENSEVAL-2 all-words data  58%
SENSEVAL-3 all-words data  59%
LS English prep. coarse-grained 76%
fine-grained 69%
AW English coarse-grained 83%
AW English fine-grained 59%
LS English coarse-grained 89%

TABLE 2.3. Advances in WSD over the years, LS = Lexical Sample, AW =

All Words, MFS = Most Frequent Sense, prep. = prepositions
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CHAPTER 3

A GRAPH-BASED ALGORITHM FOR WORD SENSE DISAMBIGUATION

In this chapter,! we describe the graph representation used to model word sense depen-
dencies in text, and show how graph centrality algorithms can be used to determine the most
likely combination of word senses. This is an extension of the random-walk sequence data

labeling algorithm proposed by Mihalcea in [22].

3.1. Graph Representation

Given a sequence of words W = {wy, wy, ..., w, }, each word w; with corresponding pos-
sible labels L,, = {l}ui, l?ui, ey lfi.wi}, we define a label graph G = (V,E) such that there is a
vertex v € V for every possible label l&w 1 =1..n, 7 =1..N,,. Dependencies between pairs of
labels are represented as undirected edges e € E, defined over the set of vertex pairs V' x V.
Such label dependencies can be learned from annotated data, or derived by other means. In
our case, these dependencies are learned from WordNet and measures of semantic similarity.
Figure 3.1 shows an example of a graphical structure derived over the set of labels for a
sequence of four words. Note that the graph does not have to be fully connected, as not all
label pairs can be related by any dependency function. The figure 3.1 depicts the situation
after the dependencies have been resolved, but before the graph centrality algorithms are
run to determine the scores of the vertices.

Given such a label graph associated with a sequence of words, the likelihood of each label

can be determined using a graph-based centrality algorithm, which runs over the graph of

labels just created, and identifies the importance of each label (vertex) in the graph. The

IParts of this chapter have been previously published in a work by the same author (Sinha and Mihalcea,

33])
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(w4, 4)

0.4

I(w4, 3)

1(w4, 2)

(W1, 1) — 5 w2, 1) I(W3,1) —57— I(w4, 1)

FIGURE 3.1. Sample graph built on the set of possible labels (shaded nodes)
for a sequence of four words (unshaded nodes). Label dependencies are indi-

cated as edge weights.

graph-based algorithm results in a set of scores attached to vertices in the graph, which are
used to identify the most probable label (sense) for each word.

For instance, for the graph drawn in Figure 3.2, the word w; will be assigned with
label I, , since the score associated with this label (1.39) is the maximum among the scores
assigned to all admissible labels associated with this word.

A property that makes these graph-based algorithms interesting is the fact that they take

into account information drawn from the entire graph, capturing relationships among all the
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0.48

0.6

F1GURE 3.2. Graph centrality measures are run on the graph previously cre-
ated. The nodes in dark gray depict the chosen nodes, i.e. the nodes with the
highest centrality values for each word to be labeled. The centrality measure

could be chosen out of a large number of options.

words in a sequence, and following this global technique they fall back to a local measure of

graph centrality to assign labels. As will be seen ahead, this combination works very well.

3.2. Word Sense Disambiguation Algorithm

Given a sequence of words with their corresponding admissible labels (senses), the disam-
biguation algorithm seeks to identify a graph of sense dependencies on which the centrality
can be measured, resulting in a set of scores that can be used for sense assignment. Algo-

rithm 1 shows the pseudocode for the labeling process. The algorithm consists of three main
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Algorithm 1 Graph Centrality for Word Sense Disambiguation
Input: Sequence W = {w;|i = 1..N}

Input: Admissible senses L, = {l, |t = 1. Ny, },i=1.N
Output: Sequence of senses L = {l,,,|¢ = 1..N}, with sense [,,, corresponding to word w; from the input
sequence.
Build graph G of sense dependencies
1: fori=1to N do

2: for j=i+1to N do

3: if j —i > MaxDist then
4 break
o end if
6: fort=1to Ny, do
7 for s =1to Ny, do
8: weight — Dependency(ll,,, Ly, » Wi w;)
9: if weight > 0 then
10: AddEdge(G, 1,13, , weight)
11: end if
12: end for
13: end for
14:  end for
15: end for

Score vertices in G

1: for all V,, € Vertices(G) do

2:  Score(V,) « Centrality(Vy,)

3: end for

Sense assignment

1: for i =1to N do

20y, — argmax{WP(l, )|t = 1.N,,}
3: end for

steps: (1) construction of sense dependencies graph; (2) sense scoring using graph-based

centrality algorithms; (3) sense assignment.
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First, a weighted graph of sense dependencies is built by adding a vertex for each ad-
missible sense, and an edge for each pair of senses for which a dependency is identified. A
maximum allowable distance can be set (MaxzDist), indicating a constraint over the distance
between words for which a sense dependency is sought. For instance, if MaxDist is set to
3, no edges will be drawn between senses corresponding to words that are more than three
words apart, counting all running words. Alternatively, a window of, say 3 words could be
chosen so that in order to disambiguate a word the algorithm looks at three words preceding
the word and three words following the word. Sense dependencies are determined through
the Dependency function, which encodes the relation between word senses. We experiment
with six different measures of word semantic similarity as a means to derive the dependency
between word senses (see Section 3.6).

Next, scores are assigned to vertices using a graph-based centrality algorithm. In this
work, we experiment with four centrality algorithms, namely: indegree, closeness, between-
ness, and PageRank (see Section 3.7).

Finally, the most likely set of senses is determined by identifying for each word the sense
that has the highest score. Note that all admissible senses corresponding to the words in the
input sequence are assigned with a score, and thus the selection of two or more most likely
senses for a word is also possible. Right now, our algorithm chooses the first sense which
has a centrality score greater than the previous senses. If after that another sense is found

to have the same centrality score, the previous sense remains the predicted sense.

3.3. Word Sense Dependencies

Word sense dependencies can be defined in various ways, depending on the knowledge
sources that are available. If an annotated corpus is available, dependencies can be defined
as label co-occurrence probabilities approximated with frequency counts P(lfyi,lfuj), or as

conditional probabilities P(lfﬂi|l;j). Optionally, these dependencies can be lexicalized by

taking into account the corresponding words in the sequence, e.g. P(Iy,|l7,,) X P(wi|ly,)-
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In the absence of an annotated corpus (as is the case in our experiments), dependencies
can be derived based on the information available in dictionaries or semantic networks, by
measuring the semantic similarity between word senses. In this work, we experiment with a
variety of such similarity measures, which are described in Section 3.6. 2

Once calculated, the dependencies between word senses are set as weights on the arcs
drawn between the corresponding senses. Arcs can be directed or undirected for joint prob-
abilities or similarity measures, and are usually directed for conditional probabilities. In our

experiments, the arcs are weighted and undirected.

3.4. Labeling Example

Consider again the example from Figure 3.1, consisting of a sequence of four words, and
their possible corresponding senses. In the first step of the algorithm, sense dependencies
are determined, and let us assume that the values for these dependencies are as indicated
through the edge weights in Figure 3.1. Next, vertices in the graph are scored using a graph
centrality algorithm, resulting in a score attached to each sense, shown in place of the name
of the vertex in Figure 3.2. Finally, the most probable sense for each word is selected.

Word wy is thus assigned with sense I, , since the score of this sense (1.39) is the maximum
among the scores associated with all its possible senses (1.39, 1.12, 0.86). Similarly, word w,

is assigned with sense 2, ws with sense [}, , and wy receives sense [, .

3.5. Efficiency Considerations

For a sequence of words W = {wy,ws,...,w,}, each word w; with N,, possible senses,

the running time of the graph-based sequence data labeling algorithm is proportional to
n i1+MaxDist

O(CY > (N X Ny,)) (the time spent in building the sense graph, and possibly
i=1  j=i+1

2Please note that, even though SEMCOR and SENSEVAL corpora have manual tags, our approach does

not look at the tags for the development or testing phase. The tags are only used to check the accuracy of

the system after the system has used the proposed algorithm and has thereby predicted senses. In fact, we

have even extended our work so that the user has the choice of either checking the performance of the system

by working on a corpus which is manually tagged, or actually tagging an untagged corpus with senses.
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iterating the algorithm for a constant number of times C'). This is orders of magnitude
n

better than the running time of O(]] V,,) for algorithms that attempt to select the best

=1
sequence of senses by searching through the entire space of possible sense combinations,

n

although it can be significantly higher than the running time of O(>_ N,,) for individual

=1
sense labeling, where no dependency graphs are constructed over the possible word senses

in the input sequence.

3.6. Measures of Word Semantic Similarity

Having described the mechanics of the algorithm above, we now describe the means used
to determine the dependency function amongst the words. There are a number of measures
that were developed to quantify the degree to which two words are semantically related using
information drawn from semantic networks — see e.g. work by Budanitsky [9] for an overview.
We present below several measures found to work well on the WordNet hierarchy. All these
measures assume as input a pair of concepts, and return a value indicating their semantic
relatedness. The six measures below were selected based on their observed performance in
other language processing applications, and for their relatively high computational efficiency.

We conduct our evaluation using the following word similarity metrics: Leacock &
Chodorow, Lesk, Wu & Palmer, Resnik, Lin, and Jiang & Conrath. We use the WordNet-
based implementation of these metrics, as available in the WordNet::Similarity package
(please refer to Patwardhan [29]). We provide below short descriptions for each of these
six metrics.

The Leacock & Chodorow(Ilch) [16] similarity is determined as:

length
2xD

(1) Simlch = — log

where length is the length of the shortest path between two concepts using node-counting,
and D is the maximum depth of the taxonomy.
The Lesk similarity of two concepts is defined as a function of the overlap between the

corresponding definitions, as provided by a dictionary. It is based on an algorithm proposed
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by Lesk [17] as a solution for word sense disambiguation. The application of the Lesk
similarity measure is not limited to semantic networks, and it can be used in conjunction
with any dictionary that provides word definitions.

The Wu and Palmer(wup) [39] similarity metric measures the depth of two given
concepts in the WordNet taxonomy, and the depth of the least common subsumer (LCS),

and combines these figures into a similarity score:

2 % depth(LC'S)
depth(concepty) + depth(concepts)

(2) SiMypup =

The measure introduced by Resnik(res) [31] returns the information content (IC) of the

LCS of two concepts:
(3) Simy.es = IC(LCS)

where IC is defined as:

(4) IC(c) = —log P(c)

and P(c) is the probability of encountering an instance of concept ¢ in a large corpus.
The next measure we use in our experiments is the metric introduced by Lin [18], which
builds on Resnik’s measure of similarity, and adds a normalization factor consisting of the

information content of the two input concepts:

2+ IC(LCS)
IC(concepty) + IC(concepts)

Finally, the last similarity metric considered is Jiang & Conrath(jcn) [15]:

1

(6) Simjen = IC(concepty) + IC(concepty) — 2% IC(LCS)
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3.7. Graph-based Centrality Algorithms

Now that we know how to determine the Dependency function in our graph, and therefore
to get all the vertices connected with edges having weights as determined by the Dependency
function (any combination of the semantic similarity metrics described above), we describe
a way to assign scores to the individual nodes, using measures of graph connectivity or
centrality.

The basic idea implemented by a graph centrality algorithm is that the “importance” of
a node in a graph can be determined by taking into account the relation of the node with
other nodes in the graph. In our experiments, we use four centrality algorithms: indegree,
closeness, betweenness, and PageRank.

The indegree of a vertex refers to the number of edges incident on that vertex. For an
undirected graph, as used in our experiments, the “indegree” is equivalent to the degree of
the vertex; thus, an edge contributes towards the degrees of the vertices at both its ends.
Since our graphs are weighted, we calculate the indegree by taking into account the weights
on the edges, and adding them together into a score that reflects the centrality of the vertex.

Thus, for an undirected weighted graph G = (V, E), the indegree is defined as follows:

(7) Indegree(V,) = Z Wap
(Va,Vy)EE

where wg, is the weight on the edge between V, and Vj,.

The indegree is usually normalized by dividing the value by the maximum degree in the
graph (Navigli [26]). Here, we adopt a different strategy, where the weights on the edges are
themselves normalized according to their ranges (see Section 4.3 for details).

The closeness of a vertex can be defined in multiple ways. In our experiments, we define
the closeness of a vertex as the reciprocal of the sum of the shortest paths between the vertex

and all the other vertices in the graph:
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I
> s(Va, Vy)

VeV

(8) Closeness(V,) =

where s(V,,V;) is used to denote the “shortest path” or “shortest geodesic distance”
between the nodes V, and V,. Here the nodes represent the words. The shortest geodesic
distance can be computed using the Dijkstra’s algorithm. The description of closeness can be
found in Freeman [12]. In the weighted graphs built in our experiments, we use a weighted
version of the closeness measure, which takes into account the weights on the edges while
computing the shortest path.

The betweenness of a node is defined in terms of how “in-between” a vertex is among

the other vertices in the graph (Freeman [11]). Formally:

oy, v.(Va)

O-Vb Ve

(9) Betweenness(V,) = Z

Vb€V,VcEV

where oy, v, represents the total number of shortest geodesic paths between V4, and V,
while oy, v.(V,) means the number of such paths that pass through V.

Closeness and betweenness are usually regarded as extremely computationally expensive
methods owing to the number of shortest paths that need to be calculated. For betweenness,
we use a simplified algorithm found to approximate well the original definition of between-
ness, while being significantly more efficient (refer to Brandes [6]).

Finally, the last graph centrality algorithm we consider is PageRank (Brin and Page
[7]). The main idea implemented by PageRank is that of “voting” or “recommendation.”
When one vertex links to another one, it is basically casting a vote for that other vertex. The
higher the number of votes that are cast for a vertex, the higher the importance of the vertex.
Moreover, the importance of the vertex casting a vote determines how important the vote
itself is, and this information is also taken into account by the ranking algorithm. Although
PageRank was originally defined on directed graphs, it can also be applied on undirected

graphs. The PageRank score associated with a vertex V, is defined using a recursive function:
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PageRank(V;)
|degree(V,)|

(10) PageRank(V,) = (1 —d) + d * Z
(Va,Vo)€E

where d is a parameter that is set between 0 and 1. The typical value for d is 0.85 (Brin
and Page [7]), and this is the value we are using in our implementation.

This vertex scoring scheme is based on a random-walk model, where a walker takes
random steps on the graph G, with the walk being modeled as a Markov process — that
is, the decision on what edge to follow is solely based on the vertex where the walker is
currently located. Under certain conditions, this model converges to a stationary distribution
of probabilities, associated with vertices in the graph.

In a weighted graph, the decision on what edge to follow during a random walk is also
taking into account the weights of outgoing edges, with a higher likelihood of following an
edge that has a larger weight. Given a set of weights w,;, associated with edges connecting

vertices V, and V;, the weighted PageRank score is determined as:

(11) PageRank(V,) = (1 —d)+d Z Y pageRank(Vy)

(Va,Vb)EE

Z Wpe

(Ve,Vo)EE

3.8. An Example

Consider the task of assigning senses to the words in the text The church bells no longer

3 For the purpose of illustration, we assume at most three senses for

rung on Sundays.
each word, which are shown in Figure 3.3. Word senses and definitions are obtained from
the WordNet sense inventory. All word senses are added as vertices in the label graph,
and weighted edges are drawn as dependencies among word senses, derived using the Lesk
similarity measure (no edges are drawn between word senses with a similarity of zero). The

resulting label graph is an undirected weighted graph, as shown in Figure 3.3. After running

the PageRank graph centrality algorithm, scores are identified for each word-sense in the

3Example drawn from the data set provided during the SENSEVAL-2 English all-words task.
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graph, indicated in Figure 3.4. Selecting for each word the sense with the largest score
results in the following sense assignment: church#2, bell#1, ring#3, Sunday#1, which is

correct according to annotations performed by professional lexicographers.

The church bells no longer rung on Sundays.
church

1: one of the groups of Christians who have their own beliefs and forms of worship
2: a place for public (especially Christian) worship
3: a service conducted in a church

bell
1: a hollow device made of metal that makes a ringing sound when struck
2: a push button at an outer door that gives a ringing or buzzing signal when pushed
3: the sound of a bell

ring
1: make a ringing sound
2: ring or echo with sound
3: make (bells) ring, often for the purposes of musical edification

Sunday

1: first day of the week; observed as a day of rest and worship by most Christians
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bell_S3

F1GURE 3.3. The graph for assigning senses to the words in The church bells

no longer rung on Sundays., before PageRank is run.
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F1GURE 3.4. After PageRank has finished running, the nodes with lighter-

colored borders are the senses assigned to the respective words.
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CHAPTER 4

EXPERIMENTS AND EVALUATIONS

In this chapter we present the actual experiments and the results obtained thereof. Sev-
eral experiments were run using the algorithm described in Chapter 3, using a combination
of semantic similarity measures and graph centrality algorithms, as described before.

The graph construction works as follows. For each word to be disambiguated, a window
is constructed using a few words before and a few words after the word. All the senses of
these words are listed such that the senses belonging to one word correspond to a group
or a sub-graph. Whenever there is a relationship between senses corresponding to neigh-
boring words (not senses belonging to the same word) based upon the different semantic
similarity measures, an edge is drawn between them, with the similarity score being the edge
weight. The edge weights are normalized so that a uniform range is used for all the similarity
measures.

Each word thus has a window associated with it, including several words before and after
that word, which in turn means that each word has a corresponding graph associated with
it, and it is that word that gets disambiguated after the centrality measures are run on that
graph. The values that each node in the graph receives as a result of the centrality algorithm
are collected, and out of each group (i.e. the set of senses for one word) the node that has

the highest centrality value is assigned as the sense for the word.

4.1. Data

The experiments are primarily carried out on 10 files from the SEMCOR corpus [23],
which were randomly selected while making sure that none of these files were used by Galley
and McKeown [13] in their lexical chains experiments. We use this data set of 10 files

for development purposes, to determine the optimal settings of window sizes, similarity
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measures, and choices for the disambiguation algorithm. Once the settings are determined,
the final testing is reported on the SENSEVAL-2 and SENSEVAL-3 English all-words data
sets, as well as on the SEMCOR subset used by Galley and McKeown in [13]. This allows us
to compare our results with those of previously reported word sense disambiguation methods

that were tested on the same data sets.

4.2. Evaluation of Word Similarity Measures

We started by evaluating the individual disambiguation performance of each similarity
measure, using graphs built using one part-of-speech at a time. In these experiments, since
the goal is to determine the performance of the similarity measures, and consequently decide
on the best combination of measures, we only use one graph-centrality algorithm, namely
the indegree algorithm. It is possible that different centrality measures might have different
optimal combinations of the similarity measurs, which could be a future direction this work
could take.

Several comparative evaluations were run on the development data set; the best results,
obtained using a window size of 6, are shown in Table 4.1. Note that all the measures *
except for lesk, work only on nouns and verbs, and thus the results are reported only for
these parts-of-speech. As seen in the table, the results indicate that jen tends to work best
for nouns as well as for verbs. The method with the highest coverage is lesk, which is the
only metric that can address adjectives and adverbs. The window size of 6 is empirically

determined; we experimented with different windows sizes starting from 2, and went on

increasing the size as long as the results kept increasing.

4.3. Normalization

Given that different methods are better for different parts of speech, a natural next step
would be to combine several semantic similarity measures into a common graph represen-
tation. Before this step can be performed, we need to address aspects concerned with the
normalization of the measures.

las taken from the Perl module WordNet::Similarity
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part-of-speech lesk  jen res lin  Ilch wup

Noun 2916 3122 2076 2552 2492 2446
Verb 1153 1367 397 519 1190 1147

TABLE 4.1. Noun and verb true positives returned by the different similarity
measures; results obtained on the development data set using a window size

of 6.

We performed extensive experiments for normalizing the scores provided by the different
similarity measures. As these metrics are fundamentally different, they return values within
different ranges. Thus, a vertex in the graph has incoming edges with weights that cannot
be directly compared and combined (because, for example, a vertex might have an incident
edge which has an edge weight returned by the lesk similarity measure, while it has another
incident edge which has an edge weight returned by the jen similarity measure). In the
following, we concentrate our attention on the jcn and lesk measures; since these are the
ones we use for the combination in our system. The system we developed in the process of
this thesis work is versatile and highly parametrized, and graphs could be built using any
other combination of similarity measures and those other measures can be normalized using
a similar approach if desired.

Our first attempt at normalization was to use the technique proposed by Budanitsky
and Hirst [9], and classify the similarity measures as either “connected” or “not connected”.
In order to achieve this, the values of the different measures were extracted from the graph
and plotted individually. Threshold values were then selected in the ranges of the measures;
below these thresholds, the similarities are considered 0, i.e. “not connected,” and above
them, they are considered 1, i.e. “connected.” The results obtained using this normalization
technique were not satisfactory, perhaps mainly due to the fact that they depend on the
value selected for the threshold (as mentioned in [9]). As done in the past, we used the mean

values as thresholds, but this technique did not yield favorable results.

36



Our next attempt was to normalize the results individually according to their ranges. For
the lesk measure, we observed that the edge weights were in a range from 0 up to an arbi-
trary large number. However, there were relatively a very few instances where the similarity
value returned by this measure was greater than 240. Consequently, values greater than 240
were set to 1, and the rest were mapped onto the interval [0,1]. Similarly, the jcn values were
found to range from 0.04 to 0.2, with the exception of some “very similar” (same) senses
which return a similarity value of the range of millions; and thus the normalization was done
with respect to this range. This normalization procedure resulted in a 10% increase in recall

on the development data.

4.4. Combination of the Similarity Measures

Given a normalization technique, the next step was to implement a combination of the
similarity measures, so as to combine the strengths of each individual metric together into a
combined graph representation. We build a graph where we use the similarity metric jen to
determine similarity values (and hence the edge weights) between the senses of words tagged
as nouns as well as those tagged as verbs. All the other edges in the graph, including links
between adjectives and adverbs, or links across different parts-of-speech, for example those
between nouns and verbs, or verbs and adverbs, are drawn using the lesk measure. The
results obtained on the entire development data set (namely the 10 randomly selected files
from SEMCOR) using this combination graph are shown in Table 4.2.

To assess the performance of the combined similarity measure, as compared to the indi-
vidual metrics, two separate evaluations were run on the development data set, where the
graph was constructed using the individual metrics jen or lesk. Table 4.3 shows the results
obtained in each of these experiments. As seen in the table, the combination performs signif-
icantly better than the best performing measure, i.e. lesk. Note that, when the graphs are
built for all the parts of speech and individual similarity measures are used, lesk outperforms

any other one measure because it returns similarity values between all the permutations of
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noun verb adj adv all

P 7247 51.00 68.71 61.92 64.53
R 7243 50.96 68.71 61.92 64.51
F' 7245 50.98 68.71 61.92 64.52

TABLE 4.2. Results obtained using a combination of similarity methods on

the development data.

part-of-speech pairs (e.g., adjective-noun, verb-adverb), while the other metrics fail to do so.
However, Table 4.3 proves that a combination of the two measures can be even better than
simply using lesk or jen. Moreover, the combination makes the entire system faster, as jcn

tends to perform much faster than lesk.

jen lesk combined

n \% n \% n \4

P 71.57 50.00 66.85 42.20 72.47 51.00
R 70.89 48.11 66.21 40.58 72.43 50.96
F 7122 49.04 66.53 41.37 72.45 50.98

TABLE 4.3. Results obtained using individual or combined similarity metrics

4.5. Evaluation of the Graph Centrality Algorithms

All the experiments so far have been carried out using the indegree centrality algorithm.
Our next set of experiments is thus concerned with the evaluation of several graph centrality
algorithms run on top of the graph built in the previous stage. The algorithms were run on
graphs obtained from our previous experiments, namely those obtained by combining the
two semantic similarity measures lesk and jecn. Table 4.4 shows the results obtained with

PageRank, closeness, and betweenness; for comparison purposes, we also include the results
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obtained using the indegree. Following comparative experiments run on the development
data set, we selected a window size of 6 that was found to lead to the best results, and only

these results are reported.

noun verb adj adv all

indegree

P 7247 51.00 68.71 61.92 64.53
R 7243 50.96 68.71 61.92 64.51
F 7245 5098 68.71 61.92 64.52

PageRank

P 67.68 47.79 68.62 61.85 61.38
R 66.14 47.31 67.70 60.96 60.35
F' 66.90 47.55 68.16 61.40 60.86

closeness

P 31.19 11.94 39.65 57.11 29.64
R 31.17 11.93 39.65 57.11 29.63
F 31.18 11.94 39.65 57.11 29.63

betweenness

P 5597 24.37 56.37 62.31 47.52
R 5594 2436 56.37 62.31 47.50
F' 55.96 24.37 56.37 62.31 47.51

TABLE 4.4. Results obtained using different graph centrality algorithms.

In order to determine if the graph centrality measures make diverse word sense choices,
we measured the Pearson correlation between pairs of systems based on different graph cen-

trality algorithms. Table 4.5 shows the correlation observed between the senses assigned by
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different centrality methods. The table (and the Pearson correlation) indicates that PageR-
ank and Indegree are closely related to each other, which is reasonable because PageRank is

an extended version of Indegree.

Indegree PageRank Closeness Betweenness

Indegree 1.00

PageRank 0.87 1.00

Closeness 0.13 0.16 1.00

Betweenness  0.45 0.45 0.39 1.00

TABLE 4.5. Pearson Correlation between the systems

4.6. Voting Between the Graph Centrality Algorithms

Given the diversity of the results obtained with the graph centrality algorithms, as the
final step in our experiments, we implemented a voting scheme among these four measures.
Specifically, we obtain the sense predictions from the individual methods - namely indegree,
Pagerank, closeness and betweenness, and then apply a voting among these predictions.

We also keep track of which metric has actually predicted a sense out of the four possi-
bilities. If two or more metrics return the same sense, we consider that the voting system
has addressed the word, and hence the sense selected by most of the methods is assigned.
The voting scheme could be one out of many possibilities. To name a few, we can use
two-measures-at-a-time simple agreement; agreement between all four measures; a genetic
algorithm running on the four solutions as well as random combination of all four, etc.

As an example for the voting process, consider for instance the word “unambiguous” from
the SENSEVAL data set. The indegree, PageRank and betweenness algorithms selected sense
#2 (defined in WordNet as admitting of no doubt or misunderstanding), while the closeness

algorithm chose sense #1 (defined in WordNet as having or exhibiting a single clearly defined
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meaning). Since most of the methods selected the sense #2, this is also the sense predicted
by the our system, which in this case happens to be correct.

We performed several experiments with each of the above possibilities, and the one which
gave us the most favorable results is a combination of two measures at a time. The essence
of this scheme is that when any two of the algorithms agree, we report that sense to be
The results obtained using the

predicted; otherwise, we do not predict anything at all.

voting scheme are reported in Table 4.6.

PageRank Closeness Betweenness

P R F P R F P R F

Indegree | 65.08 59.35 62.08 | 97.89 21.91 35.80 | 76.73 41.36 53.75
PageRank 93.75 21.49 34.98 | 74.67 39.61 51.76
Closeness 76.94 23.05 35.48

TABLE 4.6. Results obtained using voting over several graph centrality algorithms.

Not surprisingly, this voting scheme leads to high precision and low recall. In particular,
combinations involving the closeness measure can lead to a precision figure as high as 97%,
but with a low recall of 21%. Combinations involving the betweenness method can give
precision figures of 76%, with a recall of 41%. Thus, for the purpose of an overall high-
precision system, a combination of systems is desired. On the other hand, for the purpose
of an overall high-performance system, with a balance between precision and recall, the
individual methods are a better option.

In the following, we run additional evaluations using the best identified individual method

(indegree), on several larger data sets.

4.7. Evaluation and Results

The final system, providing the best results on the development data set, integrates

two similarity measures (jen for nouns and verbs, and lesk for the other parts of speech)
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and uses the indegree graph centrality algorithm. We use this system to run larger scale
evaluations on three data sets. Specifically, we evaluate the system on the SENSEVAL-2 [2§]
and SENSEVAL-3 [34] English all-words data, as well as on the set of 74 SemCor files that
were used in the experiments reported in [13].? The disambiguation results obtained on these

three data sets are shown in Table 4.7.

noun verb  adj adv all

Senseval-2

P 69.06 36.64 61.18 59.06 59.01
R 68.06 34.81 60.41 59.06 57.78
F' 68.56 35.70 60.79 59.06 58.39

Senseval-3

P 61.93 46.24 53.63 100.00 55.05
61.93 46.24 53.63 100.00 55.05
F' 6193 46.24 53.63 100.00 55.05

SemCor

P 68.70 50.06 68.38 64.18 63.79
R 68.70 50.06 68.38 64.18 63.79
F 68.70 50.06 68.38 64.18 63.79

TABLE 4.7. Disambiguation results on three test data sets.

4.8. Discussion

During the course of this work we experimented with several different techniques and
methodologies. We present below a summary of which ones worked, which ones did not

work, and also some efficiency considerations.

2Many thanks to Michel Galley for providing us with the list of files used in his experiments.
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While building the graphs during the comparison of the different measures of semantic
similarity, we noticed that the six measures of semantic similarity all work well for noun
disambiguation, with jen topping the list and lesk coming a close second. These results can
be seen in Table 4.1. Verbs, on the other hand, showed a more varied range of output, with
the results from some measures considerably different from one another. In case of verbs,
jen outperformed the other measures, lesk, Ich and wup followed closely behind, and then
there was a large gap between these results and the results from the other two measures.
The execution time of the lesk measure was one of the largest in the group, while jen ran
much faster.

During the normalization phase, the technique of incorporating in the graph values over
the range of 0 and 1 (real numbers) worked much better than a binary classification. Dur-
ing the evaluation of the graph centrality algorithms, the execution speeds of indegree and
Pagerank were comparable and both were reasonably fast. On a data set of the size of
SENSEVAL-3, they both typically took 20-30 minutes to finish, which is good considering
the potentially huge graphs created by our algorithm (given the enormous number of senses
for some content words in WordNet). Closeness and betweenness, on the other hand, were
extremely slow, and took 12-13 hours to finish on the same data set.

During the voting phase in order to combine the results from indegree, Pagerank, closeness
and betweenness, the combination of two measures at a time performed better than combining
three or all four measures together. Further, an experiment with genetic algorithms was
also performed, with the members of the population being randomly selected from any of
the four measures for each word to be disambiguated. To come up with a proper fitness
function for the genetic algorithm was the greatest challenge, and several experiments were
performed to that end. On top of these the algorithm incorporated random mutation and
2-point crossovers. However, the genetic algorithm did not improve the results over those

obtained using indegree.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this work, we described an unsupervised graph-based word sense disambiguation al-
gorithm, which combines several semantic similarity measures and algorithms for graph cen-
trality. To our knowledge, little attempt has been made in the past to address the problem
of word sense disambiguation by comparatively evaluating measures of word similarity in a
graph theoretical framework.

Through experiments performed on standard sense-annotated data sets, we showed that
the right combination of word similarity metrics and the right graph centrality algorithms
can significantly outperform methods proposed in the past for this problem. As is stands,
the combination of different similarity measures along with the simple centrality algorithm
of indegree works very well.

Detailed comparisons of results with the state-of-the-art are presented in Chapter 2. We
showed that our system performs as well as some of the best results reported on standard
benchmarks and provides significant improvements over several others.

Some of the directions future work can take are - experiment with other measures of
semantic similarity or graph centrality (especially global measures which provide an over-
all score to a sequence of words rather than to an individual word), and experiment with
asymmetric similarity and other methods of normalization. Since the different measures of
semantic similarity return values over different ranges, and sometimes mean different things,
it is challenging to come up with a way to combine them. Another interesting area would
be to perform Pagerank, closeness or betweenness on the graphs while comparing the dif-
ferent similarity measures (in order to choose the best combination) rather than indegree.
This approach probably will be much slower than indegree, but it might yield very different

results.
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As mentioned in the thesis, unsupervised WSD is a mine potentially full of great riches,
waiting to be explored. If systems are built which learn automatically from existing resources,
without asking for manually tagged data sets, WSD research can take a new road and become
much more useful and scalable than it currently is. The challenge then, is to make systems

more and more accurate, so that they can be used as explicit systems themselves.
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