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CHAPTER 1

INTRODUCTION

The Science of Complexity, in its infancy, is a known debated topic [1, 2, 3] and, as of the writ-

ing of this manuscript, no unified approach as to its dynamical origin has been established.

Complexity, commonly viewed as a condition intermediate between total randomness and

total order, is a physical state resulting from the cooperation of a large number of strongly

interacting units of a complex system and that as a result of this cooperative behavior, the

single components widely depart from the properties that they would have in isolation. The

interaction among these units results to a non-predictable or anomalous time evolution of

the properties of the system. The single components in solitude, that is, behaving inde-

pendently, are normally characterized by Poisson statistics while its cooperative behavior in

general exhibits anomalous relaxations in the form of non-exponential (non-Poisson) statisti-

cal distributions. The collective behavior of these coupled1 units is a long standing problem

[4, 5, 6, 7, 8] and the understanding of the dynamical properties of these complex systems

have triggered the need of abandoning the traditional concepts of statistical physics, paving

the way to the birth of several Complexity Theories.

Much of the complexity phenomena evolving from the interaction of units take place in

a special structural form of complex system called Complex Networks. Complex networks

form one of the most challenging areas of modern research encompassing a broad class of

discipline, from physical and life sciences to sociology and economics. Recent studies [9, 10]

went beyond the traditional concept of random networks [11] and established two new classes

of networks, with high clustering [9] and power law distribution of edges [10]. More recently

a new type of network has been proposed [12] with both high clustering and power-law

distribution of edges. Herein, we adopt a regular network and the complex networks of Refs.

1May also refer to interacting units.
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[9, 10, 11, 12] to study the dynamical properties of interacting units. The results of this

manuscript show that complex networks indeed play a significant role in the synchronization

and cooperation phenomena of oscillators. Herein, we do not discuss the properties and

statistical mechanics of complex networks but rather we merely adopt complex networks

topologies to model complexity and propose a theory as to what is the dynamical origin of

the anomalous collective properties emerging from the coupling of the single components.

The reader interested in complex networks is referred to the extensive review of Ref [13]. In

particular, we adopt a two-state stochastic clock and an integrate-and-fire stochastic neuron

as single components in the network to support the theory. As we shall see, the latter is a

promising model for the physics of blinking quantum dots and the former aims at mimicking

the dynamics of human brain.

The dynamical origin of complexity has attracted an increasing number of researchers

in the past two decades. The discovery of the 1/f noise [14], a well-known manifestation of

complexity, in many systems has given a clue as to what is the proper theoretical tool to

investigate complexity. Bak et al [15] proposed that the problem with the 1/f noise should

be settled with their theoretical perspective known as the Self Organized Criticality (SOC).

Recently [16], another theoretical tool known as superstatistics has been advocated to be

a proper approach to complexity. However, it has been shown with clarity in the book by

Jensen [17] that SOC and superstatistics share the same view on complexity as both are based

on the slow fluctuation of Poisson parameters, a class to which we refer herein as belonging to

modulation, a non-renewal process. However, technological advancements, such as the single

molecule spectroscopy and electroencephalography (EEG) among others, have revealed that

many processes in complex real systems obey renewal properties, thereby signaling the need

of a new approach to complexity assessing the renewal character of the system. Herein, to

explain complex phenomena arising from the interaction of units in a system, we adopt a

statistical technique called Renewal Aging to assess whether or not the time series of events
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generated from a complex process is renewal and we attempt to explain the emergence of

non-Poissonian statistical distributions from the perspective of Subordination Theory.

In this manuscript, we adopt complexity science as a field of investigation of multi-

component systems characterized by non-canonical distributions. By this notion we mean

the deviation from the canonical distribution as the breakdown of the conditions on which

Boltzmann’s view is based: short-range interaction, no memory, and no cooperation among

the constituents of the system. The complexity approach herein rests on the purpose of

addressing the problem on the departure from canonical distribution of complex systems,

focusing on the waiting time distribution from the time series of events rather than the

energy distribution. Thus, canonical and non-canonical distributions are represented here

as exponential and non-exponential waiting time distributions respectively. The latter is

generally manifested in the form of a stretched exponential and inverse power-laws in the

time asymptotic limit.

1.1. Chapter Summaries

The next chapter offers an introduction to the basics of probability theory applied

throughout the manuscript and gives a brief review of diffusion processes and theoretical

tools such as the Fokker-Planck Equation, the Generalized Langevin Equation and the Con-

tinuous Time Random Walk. Chapter 3 is devoted to understanding how several complexity

approaches are categorized based on addressing the renewal property of the system. Chapter

4 is the discussion of Subordination Theory which rests its foundations on the Continuous

Time Random Walk and the Renewal Theory. The theory attempts at discussing the origin

of non-Poisson statistical processes. In Chapter 5 we introduce the two-state stochastic clock

model and investigate its dynamics in regular and complex topologies. Another model to

explain complexity is discussed in Chapter 6. Here we use as single units the stochastic ver-

sion of the well-adopted integrate-and-fire neurons. We conclude the dissertation in Chapter

7 by discussing issues that need further clarification and discuss plausible future research

work.
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CHAPTER 2

DIFFUSION PROCESSES

This chapter is devoted to the introduction of the basic mathematical concepts used through-

out the entire manuscript. The chapter reviews the basic concepts in probability theory and

derives the equations necessary to explain diffusion processes. It is not intended as a com-

prehensive material about diffusion, the continuous time random walk (CTRW), and the

generalized langevin equation (GLE) that the reader is referred to Refs. [18, 19] for detailed

discussions on the topics.

2.1. Probability Theory

Let us start by considering a stochastic variable ξ(t) which can get a value x with a probability

density function (PDF) P (x, t). The joint probability density that the stochastic variable

gets x1 at time t1, x2 at time t2, . . . xn at time tn is expressed as Pn (x1, t1; x2, t2; . . . ; xn, tn)

which has the property:

Pn−1 (xn−1, tn−1; xn−2, tn−2; . . . ; x1, t1) =

∫

dxnPn (xn, tn; xn−1, tn−1; . . . ; x1, t1) (2.1)

where the ordering of the pairs {xi, ti} does not change the meaning of Pn (. . .) . The

probability that the stochastic variable ξ(t) at time tn gets the value (later we use the term

event to refer to this process) xn given that at time t1 gets the value x1, at time t2 gets the

value x2, and so on is known as the conditional probability (CP) and is formally written as

P (xn, tn|xn−1, tn−1; xn−2, tn−2; . . . ; x1, t1) =
P (xn, tn; xn−1, tn−1; . . . ; x1, t1)

P (xn−1, tn−1; xn−2, tn−2; . . . ; x1, t1)
. (2.2)
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The CP concept can be used to extract the information about the subensembles of a sto-

chastic process. In general for events at n + 1 to n + l given the events 1 to l, Eq.(2.2) is

written as

Pl|n (xn+l, tn+l; . . . ; xn+1, tn+1|xn, tn; . . . ; x1, t1) =
Pn+l (xn+l, tn+l; . . . ; x1, t1)

Pn (xn, tn; . . . ; x1, t1)
. (2.3)

We use the concept of conditional probability to define a Markov process. The variable

ξ(t) that we are considering is a Markov process if the following property holds true:

P1|n−1 (xn, tn|xn−1, tn−1; xn−2, tn−2; . . . ; x1, t1) = P1|1 (xn, tn|xn−1, tn−1) (2.4)

for all n where t1 < t2, . . . , < tn. This means that given the actual state of the system

(xn−1, tn−1) we can calculate the probability for the occurrence of (xn, tn), and that the

transition taking place when moving from tn−1 to tn does not depend on earlier times. Using

Eq. (2.2) the Markov process is described by the following equation:

Pn (xn, tn; xn−1, tn−1; . . . ; x1, t1) =

n
∏

m=2

P1|1 (xm, tm|xm−1, tm−1)P1 (x1, t1) . (2.5)

Applying Eq. (2.5) to Eq. (2.1) gives us

P1|1 (x3, t3|x1, t1) p1 (x1, t1) =

∫

dx2P1|1 (x3, t3|x2, t2)P1|1 (x2, t2|x1, t1) p1 (x1, t1) (2.6)

which yields:

P1|1 (x3, t3|x1, t1) =

∫

dx2P1|1 (x3, t3|x2, t2)P1|1 (x2, t2|x1, t1) . (2.7)

This is the fundamental equation known as the Chapman −Kolmogorov equation.
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2.1.1. Stationary Markov Processes and the Master Equation

Let us assume that the Markov process described above is stationary. This means that the

process depends only on the time difference and does not depend on the absolute time. It is

easy to show that integrating (2.6) with respect to x1 and applying the recurrence relation

(2.1) yields, after relabeling of indices,

P1(x2, t2) =

∫

P1(x1, t1)P1|1(x2, t2|x1, t1)dx1. (2.8)

Let us assume that the process takes place in a time interval τ = |t2 − t1| → 0. Thus,

(2.8) becomes

P1(x2, t1 + τ) =

∫

P1(x1, t1)P1|1(x2, t1 + τ |x1, t1)dx1. (2.9)

Using Taylor series expansion and noting that P1|1(x2, t1|x1, t1) = δ(y1 − y2), we obtain

P1|1 (x2, t1 + τ |x1, t1) = τW (x2|x1) + (1 −W0(x1)τ)δ(x1 − x2) + o(τ ′). (2.10)

Here W (x2|x1) is the transition probability density per unit time that the system changes

from x1 to x2 and (1−W0(x1)τ) is the probability that no transition takes place during the

time interval t→ t1 + τ where

W0(x1) =

∫

W (x|x1)dx. (2.11)

The last term has the property that o(τ ′)/τ goes to zero as τ ′ → 0. Taking the time

derivative (limiting case of τ → 0) of Eq. (2.9) and inserting Eqs. (2.10) and (2.11) to the

Chapman-Kolmogorov equation (2.7), we get the master equation:

∂

∂t
P (x, t) =

∫

[

W (x|x′)P(x
′, t) −W (x′|x)P (x, t)

]

dx (2.12)
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where proper relabeling of indices has been applied. In a discrete probability space (2.12)

takes the form:

∂

∂t
P (n, t) =

∑

n′

[

W (n|n′)P (n′, t) −W (n′|n)P (n, t)
]

. (2.13)

2.1.2. Kramers-Moyal Expansion and the Fokker-Planck Equation

The Chapman-Kolmogorov equation (2.7) is a consistency equation for the conditional

probabilities of a Markov process and a starting point for deriving the equations of motion

describing a Markov process. Let us derive the famous Fokker−P lanck equation from this

equation. To do that we assume x to be a continuous variable and that changes in x(t)

can only take place in small jumps. This makes W (x′|x), the transition probability per unit

time, decreases rapidly with increasing |x− x′|, the size of the jump. If we let the size to be

r = x− x′, we can write W (x′|x) ≡W (x′; x− x′) ≡W (x′; r). Eq. (2.12) then becomes

∂P (x, t)

∂t
=

∫

drW (x− r; r)P (x− r; t) − P (x, t)

∫

drW (x;−r). (2.14)

Taylor expansion in (x− r) around r = 0 gives us

∂P (x, t)

∂t
= P (x, t)

∫

W (x; r)dr − P (x, t)

∫

W (x;−r)dr −
∫

r
∂

∂x

[

W (x; r)P (x, t)
]

dr +
1

2

∫

r2 ∂
2

∂x2

[

W (x; r)P (x, t)
]

dr (2.15)

yielding the so-called Kramers−Moyal expansion of the master equation:

∂P (x, t)

∂t
=

∞
∑

n=1

(−1)n

n!

∂n

∂xn
[

An(x)P (x, t)
]

(2.16)

with

An(x) =

∫ ∞

−∞

rnW (x; r)dr. (2.17)
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For slowly varying transition rates, W (x − r; r) ≈ W (x; r), we can truncate (2.16) up

to an approximate order of derivatives. Considering only the second order gives us, with

A1(x) = A(x) and A2(x) = B(x), the celebrated Fokker − P lanck equation:

∂

∂t
P (x, t) = − ∂

∂x
A(x)P (x, t) +

1

2

∂2

∂x2
B(x)P (x, t) (2.18)

2.2. Diffusion and the Central Limit Theorem

2.2.1. Random Walks

Let us review the random walk [20] problem in one dimension and denote with Pn(j) the

probability that the random walker is in the site j at a discrete natural time n. As shown in

the figure, we assign p as the probability of the walker to make a jump from the left to the

right (site j − 1 to j) and q as the probability of jumping backward (site j + 1 to j). This

process can be modeled by the following master equation

Pn+1(j) = pPn(j − 1) + qPn(j + 1). (2.19)

with the normalization condition p+ q = 1. Moving to the continuous space-time represen-

tation, we assign







t = n∆t

x = j∆x
(2.20)

and assume n≫ 1 and j ≫ 1, thereby making x and t continuous allowing us to assume

P (x, t) = Pn(j) (2.21)
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and consequently,

P (x, t+ ∆t) = pP (x− ∆x, t) + qP (x+ ∆x, t). (2.22)

The continuum limit in space and time (2.20) allows us to make the following Taylor expan-

sions in ∆t and ∆x up to the first few terms:







P (x, t+ ∆t) = P (x, t) + ∆t ∂
∂t
P (x, t)

P (x± ∆x, t) = P (x, t) ± ∆x ∂
∂x
P (x, t) + 1

2
(∆x)2 ∂2

∂x2P (x, t)
(2.23)

Inserting (2.23) to (2.22) gives us a special form of Fokker-Planck equation (2.18) called

diffusion equation:

∂

∂t
P (x, t) = −V ∂

∂x
P (x, t) +D

∂2

∂x2
P (x, t) (2.24)

with

D ≡ 1

2

(∆x)2

∆t
(2.25)

and

V ≡ (p− q)
∆x

∆t
. (2.26)

It is easy to show that the solution of (2.24), with the initial condition x = 0, is given by

the Gaussian (normal) distribution

P (x, t) =
1

(4πDt)1/2
exp
[

−(x− V t)2

4Dt

]

(2.27)

which for the unbiased case V = 0, corresponding to the case p = q = 1/2, gives the familiar

form

P (x, t) =
1

(4πDt)1/2
exp
[

− x2

4Dt

]

. (2.28)
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2.2.2. The Central Limit Theorem

The Gaussian distribution result (2.27) is an ubiquitous property of stochastic processes.

This is a direct consequence of the Central Limit Theorem (CLT). The CLT states that for

statistically independent and identically distributed (IID) random variables x1, . . . , xN with

finite first and second moments, meaning < xi >< ∞ and < x2
i >< ∞ respectively, then

the sum variable

SN =
1

N

N
∑

i=1

xi (2.29)

is distributed according to a normal distribution provided N → ∞.

In the case of the random walk problem in Subsection 2.2.1, the jump distance’s first

and second moments, (p− q)∆x and (p+ q)(∆x)2 = (∆x)2 are obviously finite, thus giving

us the normal distribution form (2.27). There are, however, cases commonly occurring in

nature where the lowest moments of IID random variables diverge. The resulting distribution

of the sum of these variables belongs to a class of distributions called the Stable or Lévy

Distributions where the Gaussian (normal) distribution is a special case. This is the scope

of the Generalized Central Limit Theorem (GCLT). For detailed wealthy discussion of CLT

and GCLT, the reader is referred to the excellent book by Paul and Baschnagel [21].

2.3. Brownian Motion and Anomalous Diffusion

2.3.1. Brownian Motion

Let us consider a one-dimensional motion of a mesoscopic particle, called “Brownian par-

ticles”, of mass M immersed in a fluid (bath) with relatively lighter particles under the

influence of an external field. The erratic motion of this particle is described by the follow-

ing set of equations:

ẋ = v (2.30)

v̇ = −γv +
F (x)

M
+ f(t). (2.31)
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The term −γv, where γ = 6πηr, is the irreversible dissipative force arising from the effects

of Stokes’ Law for a spherical object of radius r moving through a fluid (environment) with

viscosity η. It has the effect of transferring the kinetic energy of the Brownian particle into

the thermal energy of the environment. For simplicity, let us assume that this friction term

does not contain memory effects. The term f(t) is a random force that mimics the influence

of the collisions between the Brownian particle with the much lighter particles of the fluid

and F (x)/M is added to take into account any external force affecting the motion of the

particle.

Let us consider the velocity process and assume that there are no external forces acting

on the particle. The resulting equation is the Langevin equation:

dv

dt
= −γv + f(t). (2.32)

A more general form of (2.32) is the so-called Generalized Langevin equation [22]:

dv

dt
= −

∫ t

−∞

dt′γmem(t− t′)v(t′) + f(t) (2.33)

where the function γmem(t− t′) takes into account the memory of the dissipative force.

To solve the Langevin equation, let us make the following assumptions. First, we ap-

proximate the collisions between the Brownian particle and the environment particles as

occurring instantaneously and imparting a random velocity change onto the Brownian par-

ticle. Furthermore, we assume that these collisions are totally uncorrelated. Let us also

assume that the random force f(t) has the following properties:

(i) f(t) is independent of the position x,

(ii) f(t) varies rapidly compared to the variation of x(t),

(iii) f(t) has zero-centered Gaussian property

< f(t) >= 0, (2.34)

11



and

(iv) the correlation of the random force takes the following form:

< f(t′)f(t) >= N δ(t′ − t) t′ > t, (2.35)

where the notation < ... > denotes the statistical average over an ensemble of realizations.

The symbol δ is the Dirac delta function and N is the intensity of the random force whose

exact expression is solved below.

Formally, the solution of Eq.(2.32) is:

v(t) = eγt
∫ t

0

eγt
′

f(t′)dt′ + e−γtv(0). (2.36)

Taking the first moment < v(t) > and using Eq.(2.34) gives us

< v(t) >= e−γt < v(0) > (2.37)

which coincides with the deterministic prescription of macroscopic bodies.

To get more significant results, let us evaluate the second moment < v2(t) >. Using

(2.36) and the random force property (2.35), we get

< v2(t) > = < v2(0) > e−2γt + N e−2γt

∫ t

0

dt′
∫ t

0

dt′′e−γ(t+t
′)δ(t′ − t′′) +

2e−2γt

∫ t

0

dt′eγ(t
′) < v(0)f(t′) >

= < v2(0) > e−2γt +
N
2γ

(

1 − e−2γt
)

. (2.38)

where we considered the simplified case where v0 and f(t) are uncorrelated.

Allowing the system to reach equilibrium (t→ ∞), we obtain

< v2(∞) >=
N
2γ
, (2.39)
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which when compared to the equipartition principle in one dimension:

E =
1

2
M < v2(∞) >=

1

2
kBT (2.40)

gives an expression for the noise intensity:

N =
2γkBT

M
. (2.41)

Eqn (2.41) is one of the forms of the so-called fluctuation-dissipation relation.

Let us now proceed with the position process x(t). Using Eqns. (2.30) and (2.36), we get

x(t) =
v0

γ
(1 − e−γt) +

∫ t

0

e−γt
′

dt′
∫ t′

0

eγt
′′

f(t′′)dt′′ (2.42)

where we assumed the initial condition to be x(0) = 0. Thus, the assumption (2.34) leads

to the expression of the mean position of the particle at time t.

< x(t) >=
v0

γ
(1 − e−γt) (2.43)

Let us proceed with the mean squared displacement of the particle. Squaring (2.42) and

applying the random force correlation (2.35) gives

< x2(t) > =
v2
0

γ2
(1 − e−γt)2 + N

∫ t

0

e−γt
′

dt′
∫ t

0

e−γt
′′

dt′′

×
∫ t′

0

eγt̃
′

dt̃′f

∫ t′′

0

eγt̃
′′

dt̃′′δ(|t̃′′ − t̃′|)

=
2kBT

Mγ
t+

v2
0

γ2
(1 − e−γt)2 − kBT

Mγ2
(3 − 4e−γt + e−2γt). (2.44)

In the limiting case t→ ∞, we obtain

< x2(t→ ∞) >∝ 2Dt (2.45)
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with

D =
kBT

Mγ
(2.46)

Eqn. (2.46) is the famous diffusion coefficient derived by Einstein [23].

2.3.2. Anomalous Diffusion

The mean squared displacement of particles in many systems is, however, not limited to

the form of (2.44). A number of diverse systems [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36] departs from the direct linear time dependence of the mean squared displacement (2.44).

This phenomenon is known as Anomalous Diffusion and takes the nonlinear form

< x2(t) >∼ Dαt
α. (2.47)

The factor Dα is the generalized diffusion coefficient. The processes with the property

0 < α < 1 belong to the class called Subdiffusion and for α > 1 Superdiffusion. For an

extensive discussion of these processes, the reader is referred to a review by Metzler and

Klafter [37].

2.4. First Passage Times and the Kramers Problem

One of the most important problems concerning Brownian motion is to calculate the

probability density function ψ(t) for a Brownian particle described by stochastic process

x(t) to reach for the first time the position xF (one-dimension) or to cross a boundary of

a spatial dimension (multi-dimension). Problems of this type is ubiquitous in a variety

of physical systems. This whole class of problems is the scope of the first passage times

formalism [38]. Here, after formulating the general first passage times solution of a one-

dimensional Fokker-Planck equation, we tackle the famous problem pertaining to reaction

kinetics known as the Kramers Problem [39] where the reaction particles are taken to be

Brownian particles in a potential.
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2.4.1. First Passage Times

Let us consider a one-dimensional stationary Markovian stochastic process x(t) where

the probability of getting x ≤ x(t) < x + dx for x(0) = x0, is defined by P (x, t|x0)dx. The

first passage times probability F (xF , t|x0)dt is defined as the probability that a continuous

function x(t) passes the boundary xF for the first time in the time interval (t, t+ dt) given

an initial condition x(0) = x0. F (xF , t|x0) is obtained by observing that for x0 < xF

F (xF , t|x0) ≡ − ∂

∂t

∫ xF

−∞

Pa(x, t|x0)dx, (2.48)

where Pa(x, t|x0)dx is the probability that the particle is in (x, x+dx) at time t and that at

no time between 0 and t the particle has reached the point xF . The probability Pa(x, t|x0)dx

can be visualized as the probability of finding the particle in (x, x+ dx) at t if an absorbing

barrier is present at xf , and can thus be obtained as the fundamental solution of the diffusion

equation with boundary conditions

Pa(−∞, t|x0) = Pa(a, t|x0) = 0. (2.49)

The fundamental integral equation is obtained by classifying the functions x(t′) for which

x(0) = x0 and (x ≤ x(t) < x + dx) according to the time τF > 0 at which they reach the

point xF for the first time (x0 < xF ≤ x). One thus obtains:

P (x, t|x0) =

∫ t

0

F (xF , τF |x0)P (x, t− τF |xF )dτF . (2.50)

Laplace transforming1 (2.50) and taking advantage of its time-convoluted structure gives us

P̂ (x, u|x0) = F̂ (xF , τF |x0)P̂ (x, u|xF ) (2.51)

and consequently we obtain

F̂ (xF , τF |x0) =
P̂ (x, u|x0)

P̂ (x, u|xF )
. (2.52)

1f̂(x, u) ≡
∫

∞

0
e−utf(x, t)dt
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For cases where the left-hand side of Eq. (2.51) satisfies the Fokker-Planck equaton (2.18) of

ordinary diffusion process, the first passage times probability density function can be easily

solved by taking the anti-Laplace transform 2 of Eq. (2.52) and using the diffusion solution

(2.27) with a suitable initial condition.

2.4.2. One-Dimensional Fokker-Planck Equation First Passage Times Moments

Let us consider the one-dimensional Fokker-Planck equation (2.18) written in terms of

the conditional probabilities:

∂

∂t
P (x, t|x0, t0) = LFP (x)P (x, t|x0, t0) (2.53)

with

LFP = − ∂

∂x
A(x) +

1

2

∂2

∂x2
B(x). (2.54)

Let us assume that at t = 0 the motion of the particle is governed by Eq. (2.53) in the

domain xǫ(−∞, xF ). The region x → −∞ is a reflecting boundary and when the particle

reaches xF , the particle is absorbed. Thus, giving us the following boundary conditions:

P (xF , t|x0, 0) = 0

∂

∂x
P (x→ −∞, t|x0, 0) −→ 0











. (2.55)

The probability for the particle to remain in the interval (−∞, xF ) at time t is

Q (x0, t) =

∫ xF

−∞

P (x, t|x0, 0) dx (2.56)

which is also the probability that the first passage time τ from x0 to xF is larger than t:

Q (x0, t) = Prob(τ ≥ t) =

∫ ∞

t

F (x0, τ) dτ (2.57)

2f(x, t) ≡ 1

2πi

∫ γ+i∞

γ−i∞
eutf̂(x, t)du
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and consequently,

F (x0, t) = −∂G(x0, t)

∂t
. (2.58)

Thus, Q(x0, t) takes the following boundary conditions:

Q(x0, t) =















1 if x0 ≤ xF ,

0 if x0 > xF ,

(2.59)

Q(xF , t) = 0, (2.60)

∂

∂x0
Q(xF , t)

x→−∞−−−−→ 0. (2.61)

Using Eq. (2.58) and the fact that limt→∞ tnQ(x0, t) = 0, the first passage times moments

can be written as

< τn >= −
∫ ∞

0

tn
∂

∂t
Q(x0, t)dt = n

∫ ∞

0

tn−1Q(x0, t)dt. (2.62)

Let us go back to the Fokker-Planck equation (2.53). The homogeneity condition P (x, t|x0, 0) =

P (x, 0|x0,−t) gives LFP (x) = L+
FP (x0). This allows us to write Eq. (2.53) as

∂

∂t
P (x, t|x0, t0) = L+

FP (x0)P (x, t|x0, t0) (2.63)

with

L+
FP (x0) = A(x0)

∂

∂x0
+
B(x0)

2

∂2

∂x2
0

. (2.64)

Taking the time derivative of (2.56) and using (2.63), we get

∂

∂t
Q (x0, t) =

[

A(x0)
∂

∂x0

+
B(x0)

2

∂2

∂x2
0

]

Q (x0, t) . (2.65)

Going back to Eq. (2.62) and applying (2.65) gives us
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−n < τn−1(x0) >=
[

A(x0)
∂

∂x0
+
B(x0)

2

∂2

∂x2
0

]

< τn(x0) > . (2.66)

Let us solve the first moment < τ(x0) >. Equation (2.66) has to be solved with the

boundary conditions

< τ(xF ) > = 0, (2.67)

∂

∂x0

< τ(x0) >
x0→−∞−−−−−→ 0. (2.68)

The homogeneous part of (2.66) for n = 1 when B(x0) 6= 0 has the solution

d < τ(x0) >

dx0

=< τ0 > exp
[

−2

∫ x

0

A(x′)

B(x′)
dx′
]

. (2.69)

To get a particular solution for the first moment case of (2.66), we apply the variation of

the constant method. Choosing < τ0 >=< τ0(x0) > and inserting (2.69) into n = 1 case of

(2.66), we get

d < τ0 >

dx0

exp
[

−2

∫ x

0

A(x′)

B(x′)
dx′
]

=
−2

B(x0)
. (2.70)

A particular solution of this equation is

< τ0(x0) >= −2

∫ x

0

dx′

B(x′)
exp
{

∫ x′

dx′′
2A(x′′)

B(x′′)

}

. (2.71)

Thus, we get the complete derivative of the mean first passage time:

d < τ(x0) >

dx0
=

[

< τ0 > −2

∫ x

0

dx′

B(x′)
exp
{

∫ x′

dx′′
2A(x′′)

B(x′′)

}

]

exp
{

−2

∫ x

0

A(x′)

B(x′)
dx′
}

.(2.72)

As d<τ(x0)>
dx0

has to vanish for x0 → −∞, only the particular solution remains. Using the

conditions (2.67), the first moment is written as

< τ(x0) >= 2

∫ xF

x0

dx′φ−1(x′)

∫ x′

−∞

dx′′
φ(x′′)

B(x′′)
. (2.73)
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Figure 2.1: The Kramers problem. The Brownian particles must pass through the barrier EB at
B to reach the stable state C.

with

φ(x) = exp
[

∫ x0

−∞

dx′
2A(x′)

B(x′)

]

.

In the following section we shall use Eqn. (2.73) to solve the chemical reaction rate considered

by Kramers [39].

2.4.3. The Kramers Problem

The famous Kramers problem is illustrated in Figure 2.1. In the chemical reaction prob-

lem considered by Kramers, state A, which is a metastable state, corresponds to the reactants

and state C, which is a stable equilibrium state of absolute minimum energy, to the prod-

ucts. The reaction can only take place when the system in state A crosses the barrier at xB

of energy difference EB with respect to state A. Let us solve the rate at which the system

changes state from A to C.
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Kramers used the same set of equations (2.30) to model the problem:

ẋ = v (2.74)

v̇ = −γv +
F (x)

M
+ f(t). (2.75)

To solve (2.74) for the Kramer’s problem in Figure 2.1, we first make the following assump-

tions on the time scales of the reaction process:

τenv ≪ τeq ≪ τesc, (2.76)

where τenv is the time scale of the bath particles, τeq is the equilibration time of the reacting

particles, and τesc is the time scale of the particle to escape the reactants well and cross

the barrier. The condition has to be satisfied for the reacting particles to reach thermal

equilibrium first with the bath particles to allow on the thermal fluctuations of the particles

to drive the system over the barrier. This is further fulfilled by the adoption of the following

relation between the mean thermal energy of the particles and the barrier height EB:

kBT ≪ EB. (2.77)

This relation prevents the particles to diffuse freely between the states A and C.

Kramers solved this problem in two-extreme cases:

(i) strong friction, γ/ωB ≫ 1

(ii) weak friction, γ/ωB ≪ 1

where ωB =
√

U ′′(xB)/M is the time scale for the exchange between kinetic and potential

energy during the barrier crossing and U ′′ is the second derivative of the potential U at xB

with respect to the reaction coordinate x. Herein, we only consider the first case, which is

also commonly known as the Smoluchowski regime. Considering that 1/γ (see deterministic

part of (2.36)) is the time scale over which the Brownian particle loses information about the

starting velocity, after this time inertia effects vanish. Thus, the strong friction condition
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allows us to use the Smoluchowski approximation dv/dt = 0. Hence, from (2.74) we get

dx

dt
=
F (x)

γM
+
f(t)

γ
. (2.78)

The corresponding Fokker-Planck equation (2.18) of (2.78) is

∂

∂t
P (x, t) =

[

− ∂

∂x

F (x)

γM
+D

∂2

∂x2

]

P (x, t) (2.79)

with D the diffusion coefficient (2.46). Comparing (2.79) with (2.18) we find the relation

A(x) =
F (x)

γM

B(x)

2
= D. (2.80)

Therefore, Eqn. (2.73) becomes

< τ >≈ Mγ

kBT

∫ xC

x

dx′exp
[U(x′)

kBT

]

∫ xB

−∞

dx′′exp
[

−U(x′′)

kBT

]

(2.81)

where we made use of the fact that F (x) = −dU(x)/dx. To simplify the solution of (2.81),

we make a Taylor expansion of the potential around x = xB in the first integral and around

x = xA in the second:

U(x′) = U(xB) − 1

2
Mω2

B(x′ − xB)2 (2.82)

U(x′′) = U(xA) +
1

2
Mω2

A(x′′ − xA)2 (2.83)

where we substituted U ′′(xA) = Mω2
A and U ′′(xB) = Mω2

B. The expansions (2.82) and

(2.83) allow us to change the limits of integration in (2.81) to (∞,−∞). Thus, Eqn. (2.81)
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becomes

< τ > ≈ Mγ

kBT

∫ ∞

−∞

dx′exp
[U(xB) − 1

2
Mω2

B(x′ − xB)2

kBT

]

×
∫ ∞

−∞

dx′′exp
[

−U(xA) + 1
2
Mω2

A(x′′ − xA)2

kBT

]

(2.84)

which, after solving the Gaussian integrals, gives

< τ >≈ 2πγ

ωBωA
exp
[ EB
kBT

]

. (2.85)

Therefore, we obtain the Kramers reaction rate formula from state A to state C:

r =< τ >−1≈ ωBωA
2πγ

exp
[

− EB
kBT

]

(2.86)

in accordance with the Arrhenius behavior [40].

2.5. Continuous Time Random Walk

In the random walk problem in section 2.3.1 we notice that this formalism has the walks done

with certain prescribed jump-distance distributions but at discrete fixed times. This problem

can be extended to a case where the time between successive steps (waiting times) is random

rather than being fixed. This is the continuous time random walk (CTRW) formalism. If

the length of the jumps l and the waiting times τ elapsing between two successive jumps are

drawn from a probability distribution, say φ(l, τ), which therefore represents the probability

density to move a distance l in time τ in a single motion event, we can deduce the length

distribution λ(l) and the waiting times distribution ψ(τ) as follows:

λ(l) =

∫ ∞

0

dτφ(l, τ), (2.87)

ψ(τ) =

∫ ∞

−∞

dlφ(l, τ). (2.88)
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Here the probability that a jump length is between [l, l+dl] is λ(l)dl and the probability for

a jump to occur in the time interval [τ, τ + dτ ] when the last step occurred at time τ = 0 is

ψ(τ)dτ . Denoting ψn(τ) as the probability density for the n-th step to occur after a time τ ,

we get the following recurrence relation:

ψn(τ) =

∫ τ

0

ψ(τ − τ ′)ψn−1(τ
′)dτ ′. (2.89)

Applying the convolution theorem of the Laplace transforms, Eq.(2.89) results to

ψ̂n(u) ≡
∫ ∞

0

dτe−uτψn(τ) = ψ̂(u)ψ̂n−1(u) = [ψ̂(u)]n. (2.90)

Let us now solve for the probability p(x, t) of finding the position of the walker at x at time

t. This is done by introducing two functions. First, let us define the survival probability

(SP) Ψ(τ). This is the probability that no jumps occurred in the time interval [0, τ ] and is

written as:

Ψ(τ) ≡ 1 −
∫ τ

0

ψ(τ ′)dτ ′ =

∫ ∞

τ

ψ(τ ′)dτ ′. (2.91)

The other one is the probability that the walker arrives exactly at x at time t:

Q(x, τ) =

∫ ∞

−∞

dx′
∫ τ

0

dτ ′Q(x− x′, τ ′)φ(x′, τ ′) + δ(x)(τ). (2.92)

The probability p(x, t) is related to Eq.(2.91) and Eq.(2.92) by the following equation:

p(x, t) =

∫ t

0

Φ(t− τ)Q(x− x′, τ)dτ. (2.93)

Fourier-Laplace (x→ k, τ → u) transforming Eq.(2.93) gives:
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P̂ (k, u) =
1 − ψ̂(u)

u

1

1 − λ̂(k)ψ̂(u)
. (2.94)

This is the famous Montroll-Weiss equation [41] for the standard CTRW. In the next two

chapters we use this equation as a building foundation of the renewal aging concept and

subordination theory.
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CHAPTER 3

COMPLEXITY AND AGING

In this chapter we review two dynamical approaches to complexity, namely the renewal

andmodulation. As we show herein, these two approaches generate the same non-exponential

waiting time distribution function ψ(τ). Though both yield the same waiting time distribu-

tion, this does not indicate, as we show in the succeeding sections, that they are statistically

equivalent and do not necessarily refer to the same physical properties. The next two sec-

tions cover the generation of time series ti in the renewal and modulation perspective. In

the renewal case, the time series is generated having the condition that every time the pro-

cess produces a waiting time τi, the system’s memory is reset to zero thereby making the

waiting times τi statistically independent. The time series from a modulation approach,

on the other hand, is realized in a way that from time to time a transition from a given

exponential scale to another occurs, in such a way that the resulting waiting time distri-

bution, which is therefore, the superposition of infinitely many exponential distributions, is

the same non-exponential form generated from a renewal perspective. This outcome may

lead to a confusion as to which is the correct approach for a given complex process under

consideration. The remaining sections of the chapter attempts to distinguish one from the

other base on two statistical techniques known as renewal aging and diffusion scaling.

3.1. Renewal Theory

Let us start with the renewal approach. Let us consider the following dynamical model:

dy (t)

dt
= ayz (t) (3.1)
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with a > 0 and z ≥ 1. Simple as it may appear, it nevertheless serves the complete purpose

of realizing the non-Poisson renewal condition, to which in this manuscript is considered as

a tool for a proper model of complexity . Equation (3.1) is an equation of motion describing

a particle moving in the positive y-axis direction and confined in the interval I = [0, 1].

Statistics come into play in this deterministic equation when we determine the waiting times

generated in the process by the following prescription: every time the particle reaches the

border at y = 1, we inject the particle back in a random position with uniform probability

distribution in the interval [0, 1]. We consider the times it takes the particle to reach the

border y = 1 as the waiting times of the process and we shall refer to the back injection as

events. With this condition, Eq.(3.1) can be rewritten in the integral form:

∫ 1

y0

dy

yz
= aτ. (3.2)

Solving this integral gives us the random initial position y0 of the particle in relation to the

waiting times τ through the following expression:

y0 =
1

[1 − (1 − z) aτ ]
1

1−z

. (3.3)

Let us now find the distribution density ψ(τ) of the waiting times. The probability that

the particle reaches the border in the time interval [τ, τ + dτ ] is determined by

ψ(τ)dτ = p0(y0)dy0. (3.4)

Due to the re-injection process of the particle when it reaches the border, we get p0(y0) = 1.

Thus giving us, using Eq. (3.3), the non-exponential distribution of waiting times:

ψ(τ) = |dy0

dτ
| = (µ− 1)

T µ−1

(τ + T )µ
(3.5)

26



where

µ =
z

z − 1
(3.6)

and

T =
µ− 1

a
. (3.7)

Eq. (3.5) is a properly normalized distribution function. The parameter T has the purpose

of bearing the information on the lapse of time necessary to reach the time asymptotic

condition when ψ(τ) becomes identical to an inverse power-law.

3.1.1. Evolution of Probability

Let us find the probability distribution function p(y, t) of the dynamical variable y(t) in

the form:

∂

∂t
p(y, t) = Lp(y, t). (3.8)

The equation of motion for y(t) consists of two contributions in the interval I: (a) the

deterministic motion within the interval; (b) the random re-injection. The Heisenberg-like

picture for (a) is :

L(a)
H ≡ −αyz ∂

∂y
(3.9)

which therefore gives us the Schrödinger-like picture

L(a) = L(a)+
H = α

∂

∂y
yz. (3.10)

The Schrödinger-like picture for the random part (b) is written as

L(b)p(y, t) = αp(1, t). (3.11)
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In fact,

∂

∂t
p(y, t) = L(b)p(y, t) = αp(1, t) (3.12)

yields

p(y, t) = α

∫ t

0

p(1, t′)dt′. (3.13)

This means that p(y, t) increases due to the uniform back injection. If the population inten-

sity with I increases, p(1, t) must decrease so as to keep constant the total population. We

are going to assess this in a little while. In conclusion, we get the following time evolution

of the probability function:

∂

∂t
p(y, t) = α

[

− ∂

∂y
yzp(y, t) + p(1, t)

]

. (3.14)

It is easy to show that this equation satisfies the normalization condition
∫ 1

0
p(y, t)dy = 1,

which is fulfilled at all times in the interval I.

From (3.8), we can find the equilibrium distribution1

peq(y) =
2 − z

yz−1
, (3.15)

which is also properly normalized. The equilibrium condition (3.15) implies z < 2 (µ > 2).

We see that 1/yz−1 is incompatible with the normalization request for z > 2. In fact, in this

case the integrand is faster than 1/y, thereby making the integral become equal to ∞.

Let us prepare the system in the flat distribution

p(y, 0) = 1. (3.16)

This distribution becomes the equilibrium distribution (3.15) as t→ ∞. The physical reason

is evident. The closer to y = 0, the slower the particle’s motion. Thus, there is a natural

tendency for the distribution to become denser as y → 0.

1In fact, Lpeq(y) = 0.
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Let us find the waiting time distribution for the re-injection event to occur and denote

ta as the beginning of the observation time. Starting the observation at ta = 0 is equivalent

to the concept yielding Eq. (3.4). Thus, we get

ψta=0 = (µ− 1)
T µ−1

(τ + T )µ
. (3.17)

The case where the observation and preparation times are not the same yields a different

result. To illustrate this point, let us find the waiting time distribution for the infinitely

aged condition case ta = ∞. In this case we have for the infinitely aged condition waiting

time distribution density:

ψta=∞(τ) = peq(y)
∣

∣

∣

dy

dτ

∣

∣

∣
. (3.18)

Using (3.1), (3.6), and (3.7), we get

ψta=∞(τ) = (µ− 2)
T µ−2

(τ + T )µ−1
. (3.19)

The corresponding survival probabilities of (3.17) and (3.19) are:

Ψ0(τ) =
( T

τ + T

)µ−1

, (3.20)

Ψ∞(τ) =
( T

τ + T

)µ−2

, (3.21)

thereby telling us that the relaxation of the system becomes slower and slower as time goes

by. This phenomenon is called the Aging Effect. The older you get, the slower you become.

A thorough discussion of this interesting effect will be presented in the later sections.

3.2. Modulation

It is known that a superposition of infinitely many exponentially decaying functions yields

an inverse power-law distribution [42]. In this section we show how a power-law distribution
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of the form (3.5) emerges from the superposition of exponentials through the process called

modulation.

To illustrate modulation, let us consider the following multiplicative stochastic process

of the relaxation times Tr = 1/λ:

dTr
dt

= −ν (Tr − T0) + Trξ (t) (3.22)

where ξ(t) is taken to be a delta correlated Gaussian random process

〈ξ (t) ξ (t′)〉 = 2Dδ (t− t′) (3.23)

and the rate ν keeps under control the modulation rate. The deterministic part of (3.22)

gives a relaxation to the rate 1/T0 in a time 1/ν. The time dependent Poisson rates λ are

uniquely derived from an exponential distribution

ψλ(τ) = λe−λτ . (3.24)

Modulation implies that given a suitable form of distribution Π(λ) of the Poisson rates λ,

the waiting time distribution ψ(τ)

ψ (τ) =

∫ ∞

0

dλΠ(λ)ψλ(τ) (3.25)

gets an inverse power law form (3.5).

The corresponding Fokker-Planck equation of (3.22) is written as

∂

∂t
P (Tr, t) = ν

∂

∂Tr

[

(Tr − T0)P (Tr, t)
]

+D
∂

∂Tr

[

Tr
∂

∂Tr

{

TrP (Tr, t)
}

.

]

(3.26)

The steady-state solution to (3.26) is given by the solution to

∂P (Tr, t)

∂t
= 0, (3.27)

which for the zero flux case yields
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1

TrP (Tr)

∂

∂Tr

{

TrP (Tr)
}

= −(Tr − T0)

DT 2
r

(3.28)

The solution to (3.28) is given by

P (Tr) =
Cnorm
T α+1
r

e−γ/Tr (3.29)

where Cnorm is the normalization constant and the parameter values are given by

α =
ν

D
(3.30)

γ =
ν

D
T0 = αT0. (3.31)

Normalizing the distribution (3.29) yields

P (Tr) =
γα

Γ (α)T α+1
r

e−γ/Tr . (3.32)

Since

Π(λ)dλ ≡ P (Tr)dTr, (3.33)

we get, using (3.24) and (3.25),

ψ (t) =
γα

Γ (α)

∫ ∞

0

dTr
e−γ/Tre−t/Tr

T α+2
r

=
Γ (α + 1)

Γ (α)

γα

(γ + t)α+1

=
αγα

(γ + t)α+1 . (3.34)

Thus, with α = µ− 1 and γ = T , we obtain the inverse power-law distribution density (3.5)

from the superposition of an infinite number of exponential functions with different rates.

31



Taking into account that

Π(λ) =
P (1/λ)

λ2
, (3.35)

we obtain the Π−distribution of order µ − 1 proposed by Beck [43] and used in later work

[44]:

Π(λ) =
T µ−1

Γ(µ− 1)
λµ−2 exp (−λT ). (3.36)

This is the statistical weight to adopt in Eq. (3.25) to get an inverse power law distribution

of waiting times.

It is convenient to stress that the slow modulation condition is realized by setting ν very

small. In this case, as we shall see, the theory here illustrated does not produce aging effects.

In the opposite limit of very large ν the dynamical approach of this Section yields a renewal

condition, but at that stage the process is Poissonian again. To realize a non-Poisson renewal

condition, we must ensure that after drawing a given waiting time τ for the next drawing

we shall use a different λ. This is an ideal condition, difficult if not impossible to realize

dynamically. In the following section we introduce a statistical analysis that tells us if a

process is renewal or not.

3.3. Aging Effects in Renewal and Modulation Theories

3.3.1. The Aging Experiment Analysis

A way to establish if a process is renewal or not is the so-called Aging Experiment.

To understand the nature of this experiment we have to be aware that, in general, the

distribution of waiting times depend on the time at which the observation begins. Let us

consider a Gibbs ensemble of time sequences produced by the same complex process shown in

Figure 3.1. For the case where we start the observation process at t = 0, corresponding to an

event on each of the time sequences, the waiting time probability density of the occurrence
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Figure 3.1: Gibbs ensemble of time sequences.

of an event on any of the time series is the same form as that of Eqn. (3.17):

ψ(τ ′) = (µ− 1)
T µ−1

(τ ′ + T )µ
. (3.37)

The observation process starting at t′ 6= t for a non-exponential process gives a form dif-

ferent than that of (3.37). Let us denote ψ(t, t′) as the waiting distribution density obtained

by an observer at time t with the observation process beginning at t′ > 0. If the process is

renewal, that is, the occurrrence of an event has the effect of erasing the system’s memory,

we obtain

ψ(t, t′) = ψ(t) +
∞
∑

n=1

∫ t′

0

dt′′ψn(t
′′)ψ(t− t′′). (3.38)

Let us discuss the meaning of this equation. The first term on the right hand side is the

probability distribution if no event occurred before the observation time t′ > 0. Thus, it is

equivalent to (3.37) provided an event took place at time t = 0. The second term is added to

take into account all the events that took place at an arbitrary time t′′ < t′. Let us imagine

that n ≥ 1 events occurred and the last of which exactly at time t′′ < t. The probability

density of these events is given by ψn(t
′′). The factor ψ(t − t′′) is the probability of event
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occurrence after t′. This is so because the probability of having an event after t′ depends on

the last event occurring prior to t′ which in this case took place at time t′′.

If the process fits the prescription of ordinary statistical physics we expect that

ψ(t, t′) = ψ(t− t′) = ψ(τ) (3.39)

which indicates that the system does not age. In the next section we show that a process

yielding Poisson distribution does not age.

Let us now proceed with the aging experiment analysis [45]. We generate a sequence of

times {ti}, which are recorded as vertical lines on the t-axis. Then we use a mobile window

of size ta, corresponding to the age that we want simulate. The beginning of the window is

located on each of the times of the sequence {ti} and we measure the time distance between

the end of the window and the first event time after it. These truncated time distances are

used to build up a ta-aged histogram, which is then used to defined the aged probability

density distribution ψta(τ) and the corresponding survival probability

Ψta(τ) =

∫ ∞

τ

ψta(τ
′)dτ ′ = 1 −

∫ τ

0

ψta(τ
′)dτ ′. (3.40)

Note that with this notation the exact prescription of Eq. (3.38) becomes

ψta(τ) = ψ(τ + ta) +

∞
∑

n=1

∫ ta

0

dyψ(y + τ)ψn(ta − y). (3.41)

3.3.2. Aging of an Exponential Renewal Process

Let us consider Eqn. (3.1) for the case z = 1. Following the entire procedure in Section

3.1, we obtain the renewal exponential distribution of waiting times

ψ(τ) = ae−aτ . (3.42)
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Let us now find the probability distribution ψn(t). Following the prescription in Section 2.5

leading to Eqn. (2.90), we have the following properties in the Laplace domain:

ψ̂n(u) =
[

ψ̂(u)
]n

. (3.43)

Therefore, inserting the Laplace transform of (3.42) to (3.43) yields, after anti-Laplace trans-

formation, the Poisson distribution

ψn(t) =
a(at)n−1

(n− 1)!
e−at. (3.44)

To evaluate the aging property of a renewal exponential distribution, we use (3.38). Thus,

we get

ψ(t, t′) = ψ(t) +

∞
∑

n=1

∫ t′

0

dt′′ψn(t
′′)ψ(t− t′′)

= ae−at + a2
∞
∑

n=1

∫ t′

0

dt′′
(at′′)n−1

(n− 1)!
e−at

′′

= ae−a(t−t
′). (3.45)

This means that the exponential renewal process does not produce aging. The probability

distribution of observing an event with the observation starts at t = 0 is the same probability

distribution as if the observation was began at t′ > 0. The next subsection shows that this

is not the case for a process yielding a non-exponential distribution.

3.3.3. Aging of a Non-exponential Renewal Process

Let us consider the waiting time distribution (3.37)

ψ(τ) = (µ− 1)
T µ−1

(τ + T )µ
. (3.46)

35



The Laplace transform of (3.46) is given by [48]:

ψ̂(u) =
(µ− 1)Γ(1 − µ)

(uT )1−µ

[

euT −EuT
µ−1

]

(3.47)

where

EuT
µ−1 ≡

∞
∑

n=0

(uT )n+1−µ

Γ(n+ 2 − µ)
(3.48)

is the generalized exponential relaxation [46]. Taylor series expansion of (3.47) gives us the

following asymptotic expressions in the limiting case u → 0:

ψ̂(u) = 1 − Γ(2 − µ)(uT )µ−1 1 < µ < 2, (3.49)

ψ̂(u) = 1− < τ > u− Γ(2 − µ)(uT )µ−1 2 < µ < 3, (3.50)

where < τ >= T/(µ− 2) is the mean waiting time.

The corresponding probability that no event occurs up to time t, the survival probability,

of (3.38) is

Ψ(t, t′) =

∫ ∞

t

dt′′ψ(t′′, t′). (3.51)

Note that by taking the t’-derivative of (3.51) and using (3.38) we obtain

d

dt′
Ψ(t, t′) = P (t′)Ψ(t− t′), (3.52)

where

P(t) =
∞
∑

n=0

ψn(t). (3.53)
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is the rate of events occurring at time t, under the condition that an event occurred at t = 0.

Laplace-transforming Eqn. (3.53) gives

P̂(u) =
∞
∑

n=0

ψ̂n(u) =
∞
∑

n=0

(ψ̂(u))n =
1

1 − ψ̂(u)
. (3.54)

From Appendices B and C, we get the following results:

P(t) =
1

< τ >
+

T µ−2

(3 − µ) < τ >

1

tµ−2
2 < µ < 3, (3.55)

P(t) =
1

Γ(µ− 1)Γ(2 − µ)T µ−1

1

t2−µ
1 < µ < 2. (3.56)

In conclusion, the renewal aging, in the case µ < 2 is characterized by the property that

the rate of event occurrence, tends to decrease as a function of time.

3.3.4. Modulation and Renewal Aging

Let us assume that the system is prepared at time t = −ta < 0. The first measured

waiting time is denoted by τ1. The first waiting time, distinct from the observation of the

successive waiting times, does not necessarily correspond to the total time duration of a

laminar region. The resulting histogram records time lengths that are generally smaller

than those corresponding to preparing the system at time t = 0. Nevertheless, in the

case when the waiting time distribution is exponential, both long and short time lengths

are reduced by the same percent. Thus, turning the histogram into a normalized waiting-

time distribution density has the effect of recovering the same exponential form. As shown

in Section 3.3.2 renewal exponential process does not age. In the non-exponential case

delaying the observation process has the effect of producing a percent cut of the short-time

laminar regions larger than that of the long-time laminar regions. As a consequence, with

the normalization of the distribution, the weight of the short-time laminar regions is reduced
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and the weight of the long-time laminar regions is enhanced, thereby generating a slower

decay of the survival probability Ψ(t) as we previously see in Section 3.1.1.

The work of Allegrini et al. [47] compared the results of aging analysis on artificial

waiting time sequences, leading to the same power-law distribution with the same power

index µ, generated by the renewal and modulation prescriptions with different numbers of

drawings Nd from the distribution (3.24) . The waiting times for the modulation process are

extracted based on the numerically-generated Π(λ) distribution (3.36). After Nd drawings,

they selected from Π(λ) a new rate λ. It is evident that ifNd = 1, and only one waiting time is

drawn from the Poisson distribution with a given λ and immediately afterward a different λ is

selected from the distribution density Π(λ), the resulting sequence is renewal. Increasing Nd

has the effect of realizing the prescriptions of superstatistics [16], which requires a long-time

sojourn in a given Poisson condition, for the system to adapt to the local thermodynamic

condition.

The results of this aging experiment are illustrated in Fig. 3.2. We see that when we

draw only a waiting time τ and then we use a different ψλ(τ) ≡ λexp(−λτ) for the drawing

of the next waiting time, the process is totally renewal. If we increase the number of waiting

times drawn from the same ψλ(τ), the intensity of aging is reduced till the condition of a

total lack of aging is reached when the number of waiting times drawn from the same waiting

time distribution becomes very large.

The aging experiment can be used to establish if a real sequence is renewal or not. The

earlier described aging experiment is applied to a real sequence so as to determine the aged

histogram and through it the corresponding survival probability, called Ψ
(exp)
ta (τ). We have

to establish also a criterion to determine the form of the survival probability produced by the

renewal condition. This is not quite straightforward to do, due to the fact that the exact form

of Eq. (3.38) is not a simple functional of ψ(τ). A simple functional is given by Eq. (3.59)

that makes it possible to get ψta(τ) from ψ(τ) by means of a simple expression, and thus to

derive from the form that the renewal theory assigns to the aged survival probability, denoted
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(a) (b)

(c) (d)

Figure 3.2: Comparison between the function Ψta(t) of a renewal process (continuous lines)
and the function Ψta(t) produced by a modulation approach with a changing value of Nd

(dotted lines). The curves from bottom to top refer to the ages ta = 0, 50, 100, 150, 200.
(a)Nd = 0; (b)Nd = 10; (c)Nd = 100; (d)Nd = 500. Taken from Ref. [47].

by Ψta(t). If these two procedures applied to the same sequence generate the condition

Ψ
(exp)
ta (t) = Ψ

(ren)
ta (t), (3.57)

we consider the process to be renewal. Note that a virtually exact criterion is obtained

by shuffling the time distances between two consecutive events to produce a more reliable

Ψ
(ren)
ta (t).

3.3.5. Aging and Rejuvenation

To discuss the interesting effect of a time dependent µ and of rejuvenation, let us adopt

a simplified formula rather than the exact formula Eq. (3.41).

As in the earlier subsection we set the condition that the system is prepared at ta < 0

and that observation begins at t = 0. The exact expression for ψta(t) (3.41) can be written
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Figure 3.3: The effective power index µeff of Eq. (3.63) as a function of time. The curves
refer, from top to bottom, to ta = 100, 1000, 10000. Taken from Ref. [49]

in the form

ψta(t) =

∫ ta

0

dyP (y)ψ(y + t), (3.58)

where P (y) is defined by Eq. (3.53). We have seen that for µ < 2, this quantity is not

constant and it decreases as 1/t2−µ (see Eq. (B-7)). Under the simplifying assumption that

P (y) is constant, we get [49]:

ψta(t) =

∫ ta
0
ψ(t+ y)dy

K(ta)
, (3.59)

where K(ta) is the normalization factor defined by

K(ta) ≡
∫ ta

0

Ψ(t′)dt′, (3.60)

and Ψ(t) is the probability that no event occurs throughout the time interval of length t.

We then introduce the aged survival probability by means of Eq. (3.40). This expression

can be used for the comparison of Eq. (3.38), even if it is not exact, insofar as it is expected

to be reliable in both the short and the long-time limit.
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Using for ψ(t) the explicit form (3.46), it is straight forward to show that (3.59) reduces

to

ψta(t) = (µ− 2)
(t+ T )(1−µ) − (t+ T + ta)

(1−µ)

T (2−µ) − (ta + T )(2−µ)
. (3.61)

This formula establishes that for t << ta the index of the distribution is µ− 1, whereas for

t >> ta the index becomes µ. This result for the age-dependent waiting time distribution

function agrees with the predictions by Barkai [50] and by the authors of [51]. Notice that the

formula (3.61) is equivalent to drawing the initial condition for y from an aged distribution

of this variable.

Here, we are in a position to evaluate the waiting time index at a generic time, where,

we write ψta(t), as

ψta(t) =
A(T, ta)

(t+ T )µeff (t)
. (3.62)

Using (3.61) we arrive at the following formula for the time dependence of the effective

power-law index

µeff(t) = − ln[(t + T )(1−µ) − (t+ T + ta)
(1−µ)]]

ln[t+ T ]
. (3.63)

Fig. 3.3 illustrates the regression of the effective power-law index to µ with two different

ages, and shows clearly that the regression is slower for older systems.
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CHAPTER 4

SUBORDINATION THEORY

4.1. Single Subordination

Let us imagine a fair coin tossing process occurring at every discrete time t(n) where

getting a head corresponds to assigning the value 1 and tail the value −1 to the variable ξ

so as to generate the fluctuation shown in Figure 4.1. We refer to the head and tail as states

|1 > and |2 > respectively. Let us adopt a Gibbs representation of the fluctuation of ξ(t) and

consider that at every time step n we count the number of systems located in each of the two

states. We assign N1 and N2 as the number of states in state |1 > and |2 > respectively. For

N = N1 + N2 very large, we can assume the ratio p1 = N1/N as the probability of finding

the system in the state |1 > and p2 = N2/N as the probability of finding the system in state

|2 >. Thus, in a discrete time representation we get time evolution of the probabilities:

p(n+ 1) − p(n) = Mp(n), (4.1)

where

p ≡ (p1, p2) (4.2)

and

M ≡ 1

2





−1 1

1 −1



 . (4.3)
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Figure 4.1: Fluctuation generated by the coin-tossing procedure where getting a head cor-
responds to assigning the value 1 and tail the value -1.

Let us consider the case where the coin tossing event, instead of occurring at every time

step, only takes place in a specific time interval

τn = t(n+ 1) − t(n) (4.4)

derived from a given distribution density ψ(S)(τ) to which we refer as the subordination

function. In this case, following the CTRW prescription, Eq. (4.1) becomes

p(t) =
∞
∑

n=0

∫ t

0

dt′ψ(S)
n (t′)Ψ(S)(t− t′)Knp(0), (4.5)

where we denote

K ≡ 1 + M. (4.6)

Here, ψ
(S)
n (t′) is the probability of drawing from the waiting time distribution ψ(S)(τ) n

times where the last coin tossing event occurs exactly at time t′. This generates the vector

Knp(0) whose form remains unchanged up to time t provided that in between the times t′

and t no further drawing occurs . This last condition is ensured by the survival probability

Ψ(S)(t− t′). In fact

Ψ(S)(t) ≡
∫ ∞

t

dt′ψ(S)(t′) (4.7)
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is the probability that no event occurs up to time t. By Laplace transforming Eq. (4.5) we

obtain

p̂(u) =
1

u− uψ̂(S)(u)

1−ψ̂(S)(u)
(K − 1)

p(0). (4.8)

It is easy to show that the Generalized Master Equation (GME) pertaining to (4.5) is

d

dt
p =

∫ t

0

dt′Φ(t− t′)Mp(t′), (4.9)

where the memory kernel, Φ(t), is related to the subordination function ψ(S)(t) in the Laplace

domain by

Φ̂(u) =
uψ̂(S)(u)

1 − ψ̂(S)(u)
. (4.10)

The Laplace transform of this GME coincides with Eq. (4.8), thereby establishing that Eq.

(4.9) coincides with Eq. (4.5).

4.1.1. Relaxation to Equilibrium

The coin tossing process can be regarded as a two-state system that at every time step,

with equal probability, either stays in the current state or jumps to the other state. Let us

define the non-equilibrium indicator:

Π(n) = p1(n) − p2(n). (4.11)

The adoption of the Gibbs ensemble perspective of the coin tossing process makes the re-

laxation of Π(n) move from an out-of-equilibrium condition Π(n) 6= 0 to the equilibrium

value Π(n + 1) = 0 in one time step. Following Eq. (4.9), let us define the relaxation to

equilibrium of the variable Π(t). In fact, after straightforward algebra, Eq. (4.9) is shown

to yield

d

dt
Π(t) =

∫ t

0

dt′Φ(t− t′)Π(t′), (4.12)
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whose Laplace transform is

Π̂(u) =
1 − ψ̂(S)(u)

u
Π(0), (4.13)

thereby implying

Π(t)

Π(0)
= Ψ(S)(t). (4.14)

This is an expected result, insofar as the probability that the quantity Π(t) does not vanish

is evidently equal to the probability that no event occurs up to time t.

We can also reverse this result. Any relaxation process described by the survival proba-

bility Ψ(S)(t) can be thought of as being subordinated to the coin tossing process described

by the matrix M of Eq. (4.3) by means of the subordination function

ψ(S)(t) = − d

dt
Ψ(S)(t). (4.15)

Note that a significant restriction to the possibility of relating a generic relaxation to a sub-

ordination function is given by the fact that the subordination function is the distribution

of waiting times between two consecutive events. Thus, it is always positive and the cor-

responding survival probability must correspond to a monotonic relaxation. A relaxation

process given by damped oscillations cannot have a renewal origin.

4.2. Exponential and Non-exponential Subordination

Let us consider the action of the demon sketched in Figure 4.2. The demon has a box of

very large number of black and white particles where the ratio of the black particles to the

total number of particles is given by

g =
NB

(NB +NW )
≪ 1, (4.16)

where NB and NW denote the number of black and white particles contained in the box,

respectively. Let us imagine that the coin-tossing event only happens when the demon draws
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Figure 4.2: The demon randomly draws a ball from the box. The drawing of a black ball
corresponds to an event occurrence.

Figure 4.3: Fluctuation produced by the Demon where coin-tossing is realized only when a
black ball is drawn.

a black ball. The probability that no events occur up to time t→ ∞ is given by

Ψ(t) = (1 − g)t = exp(−gt). (4.17)

The renewal nature of the ball drawing process allows us to use Eq. (4.15), thus we get

the exponential subordination function

ψ(S)(t) = gexp(−gt). (4.18)

Using (4.18), Eq. (4.9) yields

Φ̂(u) = g, (4.19)

which corresponds to

Φ(t) = gδ(t). (4.20)
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Thus the GME Eq. (4.9) becomes identical to the ordinary master equation

d

dt
p = gMp(t). (4.21)

The stochastic trajectory, of which this master equation is the Gibbs representation is illus-

trated in Fig. 4.1.

In conclusion, subordination to the coin tossing process, which can be interpreted as

a lazy demon that tosses coin only according to the time prescribed by the subordination

function ψ(S)(τ), is equivalent to the hardworking demon who draws ball at every time but

has a very small success rate (g ≪ 1) of getting a black ball.

Let us assume that the Demon’s box is affected by a leak that makes the number of black

balls decrease as a function of time making the rate time dependent with the following form:

g(t) =
g0

1 + g1t
. (4.22)

In this case, (4.17) becomes

Ψ(S)(t) =
t
∏

t′=1

(1 − g(t′)) (4.23)

which in the time continuum limit becomes

Ψ(S)(t) = exp(−
∫ t

0

dt′g(t′)). (4.24)

Inserting Eq. (4.22) into (4.24) gives

Ψ(S)(t) =

[

TS
TS + t

]µS−1

, (4.25)

with

TS =
1

g1

(4.26)
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and

µS − 1 =
g0

g1
. (4.27)

Using (4.15), we obtain the corresponding properly normalized subordination function:

ψ(S)(t) = (µS − 1)
T µS−1
S

(t+ TS)µS
, (4.28)

The inverse power-law form Eq. (4.28) is a simple way of connecting the short time

properties, where the inverse power law form does not yet appear, to the long-time limit

t >> TS, where the inverse power law form becomes evident. The parameter TS keeps under

control the time extent through which the transition from microscopic dynamics, with no

power law, to macroscopic dynamics with inverse power-law, occurs. As we shall see, the

non-renewal aging is related to this parameter becoming larger and larger as an effect of

aging. It is important to remark, however, that this regime of transition to the long-time

regime bearing signs of complexity under the form of the power law index µS, does not afford

by itself any information on the system’s complexity. For simplicity’s sake, it is convenient

to assume this transition regime to be as short as possible. Thus, it is convenient to assign

to T the shortest possible value, T = 1, if we set for the elementary time step the condition

∆t = 1. We shall see, however, that when the non-exponential waiting time ψ(S)(t) is used

as the subordination function, a new intermediate time regime appears, and this time regime

contains information on the system’s complexity.

The adoption of Eq. (4.15) is made possible only when the renewal condition applies [52].

This is an important property that requires some comments. Let us examine two distinct

conditions:

(a) The leaking of the black balls makes the Demon upset that every time he draws a

black ball, he replaces the box with a new one having the same property as the original box

(see Fig. 4.4). This is a Homogeneous Non-Poisson Process and the replacement of the box

makes it renewal.

48



Figure 4.4: The demon randomly draws a ball from the box. The drawing of a black ball
corresponds to an event occurrence.

(b) The demon keeps using the same box. In the case where the time dependence of g(t)

(4.22) is slow enough, this process is virtually equivalent to the slow modulation method

discussed in Chapter 3 which therefore tells us that the process is not renewal, preventing

us to use the prescription (4.15). This is a Non-Homogeneous Poisson (NHP) process.

It is important to notice that, according to the perspective emerging from the work of

Barabasi [53] and Vazques et al. [54], on e-mail users, as well as on the Einstein and Darwin

correspondence, the inverse power law of the waiting time distribution is an ineluctable

consequence of the social nature of human activities. Thus, it is perhaps more convenient to

interpret the inverse power law distribution density ψ(τ) Eq. (4.28) as a consequence of the

Demon’s social life.

Let us focus now on the renewal case. It is possible to demonstrate that the subordination

function g(S)(t), of whatever analytical form, can be realized with the Demon model (a). In

fact, for a given ψ(S)(t) we use Eq. (4.15) to derive the survival probability Ψ(S)(t). Then,
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using Eq. (4.24) we obtain

gs(t) =
ψ(S)(t)

Ψ(S)(t)
, (4.29)

which is an important relation of Renewal Theory [52], which allows us to establish the time

dependence of the number of black balls to realize a subordination function of any form.

Note that to take into account the renewal character of case (a), it is convenient to

write the time dependent rate of event production g(t) in the time region between the event

occurring at time ti and the next event, occurring at time ti+1 > ti, in the form

g(t) =
g0

1 + g1∆t
, (4.30)

where

∆t = ti+1 − ti. (4.31)

The introduction of the stochastic time ∆t is made necessary to generate a calculational

algorithm that is a faithful representation of the case where the upset Demon throws away

a box and replacing it with a new one when he eventually, after many drawings, finally gets

a black ball. Note that the upset Demon throwing away a box is an intuitive representation

of critical events. Unfortunately, the critical events are not so plainly evident, and special

methods must be adopted to reveal their occurrence.

4.3. Renewal versus Non-renewal Aging

The cases (a) and (b) of the earlier subsection makes it convenient for us to go back to

the aging issue of Chapter 3 to shed further light on the difference between renewal and

non-renewal aging. The non-renewal aging is easier to understand. Therefore, let us begin

discussing this case. Note that the subordination process is operated with the subordination

function ψS(t), which corresponds to a renewal process. We do not produce subordination by

means of a non-renewal process. Therefore, let us discuss this case omitting the superscript

S. Let us imagine that at a given time t′, regardless of whether an event occurs or not, the
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Demon focuses his attention only on the systems in the state |1 >, and he evaluates the

corresponding survival probability:

Ψ(t, t′) = exp(−
∫ t

t′
dt′′g(t′′)). (4.32)

In fact, this is the same condition as that examined by means of Eq. (4.24). The survival

probability Ψ(t) = 1 at t = t′ as a consequence of the fact that at the moment when

observation begins, the Demon focuses his attention only on the systems in the state |1 >.

This is a way generating out of equilibrium conditions, without perturbing system’s dynamics

[51]. In the special case when at t = t′ an event occurs, equilibrium would be realized.

However, if this is also the beginning of the observation process, the Demon creates an out

of equilibrium condition that is not associated however to the replacement of the old box with

a new one. This Demon keeps drawing balls from the same box. After some straightforward

algebra in this case we get

Ψ(t, t′) =

[

TS
TS + t

]µS−1 [
TS + t′

TS

]µS−1

=

[

TS + t′

TS + (t− t′) + t′

]µS−1

. (4.33)

We see that this kind of aging, non renewal, corresponds to the parameter TS becoming

larger and larger as a consequence of the increasing time. If the out of equilibrium condition

corresponding to observation beginning is realized at time t′ > 0, while the ball box is brand

new at time t = 0, TS is replaced by TS + t′. In conclusion, the non-renewal aging yields a

survival probability characterized by the property that the emergence of the inverse power

law behavior occurs at larger and larger times with increasing t′, the age of the system.

Case (a) is characterized by different properties. First of all the survival probability,

this time, depends on whether or not the beginning of observation process coincides with

an event occurrence. Let us denote by Ψ(t|ti) the survival probability referred to the initial

time ti, under the condition that the beginning of observation process corresponds to an

event occurrence. We have

Ψ(S)(t|ti) = Ψ(S)(t− ti). (4.34)

51



This result is easily obtained by plugging Eq. (4.30) into Eq. (4.32). Thus, we see that a

first big difference between renewal and non-renewal case is that the non-renewal aging is

independent of whether the observation beginning coincides or not with the event occurrence.

In the renewal case we have

Ψ(S)(t|t′) 6= Ψ(S)(t, t′). (4.35)

Let us now address the problem of evaluating Ψ(S)(t, t′) in the case of renewal aging.

This problem has been discussed in depth in the recent literature [51]. From a formal point

of view, the waiting time distribution density of age t′ is given by (see also Eq. (3.38))

ψ(S)(t, t′) = ψ(S)(t) +
∞
∑

n=1

∫ t′

0

ψ(S)
n (t′′)ψ(S)(t− t′′)dt′′. (4.36)

We refer the reader to Section 3.3.1 for the physical meaning of this exact expression.

4.4. Double Subordination

Let us now address the problem of creating a process subordinated to the fluctuations

ξS(t) illustrated in Fig. 4.3. In the long-time limit, the survival probability Ψ(t) = exp(−gt)
is indistinguishable from the coin-tossing survival probability itself. Thus, to create a process

departing from the conditions of ordinary statistical mechanics, we adopt for the second

subordination process the subordination function given by Eq. (4.28).

To shed light on the nature of this resulting process, we can evaluate analytically the

resulting survival probability ΨSP (t) by means of the following formula

ΨSP (t) =

∞
∑

n=0

∫ t

0

dt′ψ(S)
n (t′)Ψ(S)(t− t′)exp(−gn). (4.37)

This formula rests on the same arguments as those leading to Eq. (4.5), with a different

physical meaning, though. We are using the very small rate condition Eq. (4.16). Thus, we

imagine that the original Poisson process rests on the unit time step ∆t = 1, and we assume
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that it refers to a natural time scale, where time is the discrete number n = 1, 2, .... The

exponential survival probability of Eq. (4.17) now reads

Ψ(n) = exp(−gn). (4.38)

Let us consider now the generic time t. How many times did the Demon of Fig. 4.2 draw balls

from his box filled mainly with white balls? He may have done no drawing, one drawing, two

drawings, and so on. When he draws a black ball, he tosses a fair coin, and consequently, he

realizes equilibrium. The survival probability becomes smaller and smaller with increased

number of drawings. This explains the exponential weight exp(−gn) on the right-hand side

of Eq. (4.37). As in the case of Eq.(4.5), the probability that the last of a sequence of n

drawings occurs at time t′ is given by ψ
(S)
n (t′), and the probability that no drawing occurs

after this last drawing up to time t is given by Ψ(S)(t− t′).

Using the same Laplace transform method as that adopted to derive Eq. (4.8) we now

obtain

Ψ̂SP (u) =
1

u+ uψ̂(S)(u)

1−ψ̂(S)(u)
(1 − exp(−g))

. (4.39)

Note that in accordance with the condition of Eq.(4.16) we may expand the exponential and

write Eq. (4.39) as

Ψ̂SP (u) =
1

u+ uψ̂(S)(u)

1−ψ̂(S)(u)
g
. (4.40)

At this point we have to stress the difference between the power indices µS > 2 and

µS < 2. As mentioned earlier we are using the subordination function Eq. (4.28). The mean

waiting time is therefore given by

< τ >=
TS

µS − 2
. (4.41)
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which diverges at µS = 2 and remains divergent in the whole range from µS = 2 to µS = 1.

When µS > 2, the mean waiting time is finite and we have for u→ 0

ψ̂(S)(u) = (1− < τ > u). (4.42)

Thus Eq. (4.40) becomes

Ψ̂SP (u) =
1

u+ g
<τ>

. (4.43)

whose inverse Laplace transform yields an exponential survival probability again. In the

latter the exponential lifetime 1/g is turned into < τ > /g, which becomes much larger

than the original lifetime in the vicinity of the border with the non-ergodic region, µS = 2.

In other words, a second subordination process, resting on an exponential subordination

function is equivalent to a trivial time dilatation.

The non-ergodic condition µS < 2 is much more interesting than the µS > 2 situation.

In this case, the Laplace transform of ψ(S)(t) is given by Eq. (3.49). Thus, using Eq. (4.39),

we obtain, for u→ 0

Ψ̂SP (u) → egÊα(u), (4.44)

where

Êα(u) =
1

u+ λαu1−α
, (4.45)

with

α ≡ µS − 1 (4.46)

and

λ =

(

eg − 1

Γ(2 − µS)(TS)α

)1/α

. (4.47)
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Thanks to the relation of Eq. (4.46), when µS = 2, and thus α = 1, Eq. (4.45) becomes the

Laplace transform of an exponential. This is expected, since µS = 2 is the border with the

region where, as earlier shown, the mean waiting time < τ > is finite, and consequently the

non-exponential subordination is not efficient enough as to establish a significant departure

from the mere time dilatation produced by a second subordination resting on an exponential

subordination function.

We note that Eq. (4.45) is the celebrated Mittag-Leffler proposal for the generalization of

exponential relaxation [46]. According to the Mittag-Leffler theory, the stretched exponential

Eα(t) = exp(−(λt)α) (4.48)

occurs for t < 1/λ, and the inverse power-law

Eα(t) ∝
1

tα
(4.49)

occurs for t > 1/λ. We see that decreasing g has the effect of making more and more ex-

tended the region where the stretched exponential relaxation of Eq. (6.17) applies. If we

increase the parameter g we can significantly reduce the time over which stretched expo-

nential dominates even making it completely disappear. Although the double subordination

method that we have used rests on the condition g ≪ 1 making it impossible to get rid of the

stretched exponential regime, we notice that by increasing g we come close to the condition

corresponding the direct application of subordination procedure to the coin-tossing process,

yielding

ΨSP (t) = Ψ(S)(t), (4.50)

thereby making the resulting survival probability identical to the subordination survival

probability (4.25). In conclusion, the direct subordination to the coin-tossing process does

not create any significant intermediate complexity. The transition regime does not afford
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any information on the network complexity. The subordination to a sufficiently slow Pois-

son process, or sufficiently slow fluctuation-dissipation process, as we shall see in Section

4.6, has, on the contrary, the significant effect of creating an extended intermediate regime

with important information on the network’s complexity. If there exists an extended regime

of transition to the inverse power law behavior of the survival probability, which signifi-

cantly departs from the stretched exponential behavior, this may be an indication that the

subordination function ψ(S)(τ) of Eq.(4.28) has a very large TS, or, more in general, it is

characterized by its own slow regime of transition to the inverse power law regime. In this

case we do not get a reliable information on the complexity parameter µS, characterizing

the Demon’s social life. If, on the contrary, this extended regime of transition to the inverse

power law behavior is distinctly a stretched exponential with the stretching coefficient α < 1,

then µS = 1 + α may afford reliable information on Demon’s social life. Note that the time

series emerging from complex processes are usually of finite time duration. Consequently, if

the stretched exponential regime is very extended in time, it may be the only form of com-

plexity experimentally accessible. In the opposite condition when the stretched exponential

regime is significantly reduced by the adoption of large values of g, the inverse power law

part of the survival probability may become the only one experimentally observable if the

finite-seize induced truncation of the waiting time distribution density is not drastic .

As a final remark, we want to support our claim that µS > 2 does not make the sub-

ordination process to produce visible effects of departure from ordinary statistical physics,

with an example afforded by Metzler and Klafter [55]. Let us imagine that there are no

truncation effects and that we can explore time asymptotic regime, where the inverse power

law behavior distinctly appears. The quantity

vt = ξS(t) − ξS(t− 1) (4.51)

is almost everywhere vanishing, and becomes finite only in the correspondence of an event

occurrence. It is equivalent to the fluctuations responsible for the sub-diffusion process
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studied by Metzler and Klafter [55]. The model of sub-diffusion proposed by these authors

yields for t→ ∞

〈

x2(t)
〉

∝ tβ, (4.52)

where

β ≡ α

2
=
µS − 1

2
. (4.53)

We shall come back to discussing the scaling β as a complexity indicator in Section 4.6.

Here we limit ourselves to noticing that for µS > 2, the diffusion regime is characterized by

the ordinary scaling β = 1
2
, which is a clear manifestation of the fact that for µS > 2 the

Demon’s social life does not produce ostensible deviations from ordinary statistical physics.

4.5. Alternative Physical Interpretation of the Double Subordination

Probably a more attractive interpretation of the results of the earlier subsection is ob-

tained by going back to the Demon of Figure 4.2. This Demon takes action at every time

step of the natural time scale. However not all his actions produce events insofar as not all

his actions correspond to the drawing of a black ball. We do not make the assumption that

g ≪ 1 instead we make the weaker assumption

g ≤ 1. (4.54)

Repeating the same calculations as those of the earlier subsection we obtain

Ψ̂SP (u) =
1

u+ gΦ̂(u)
, (4.55)

where Φ(u) is given by Eq. (4.10). Setting g = 1, we immediately recover Eq. (4.50),

thereby establishing that when each of the Demon’s actions generate an event, then the

survival probability ΨSP (t) coincides with Ψ(S)(t), and consequently with the inverse power

law of Eq. (4.25).
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When g < 1, we obtain

Ψ̂SP (u) = AgÊα(u), (4.56)

with

Êα(u) =
1

u+ λα(g)u1−α
, (4.57)

λα ≡
[

g

(1 − g)

1

T αΓ(1 − α)

]1/α

(4.58)

and

Ag ≡
1

(1 − g)
. (4.59)

Note that the overall factor Ag is an artifact of the approximation done when we moved

from the discrete to the continuous time picture. In fact the survival probability up to the

occurrence of the first event is 1 − g, which would cancel with the denominator of Ag. A

more satisfactory way of expressing the result of this section is given by

ΨSP (t) = Eα (−(λα(g)t)
α) , (4.60)

where the survival probability is given by a Mittag-Leffler function. This is equivalent

to neglecting the regime of transition from the microscopic, discrete-time regime, to the

Mittag-Leffler regime. We have to keep in mind that the stretched exponential, exp(−(λt)α),

although fitting the condition ΨSP (0) = 1 corresponds to a time asymptotic rather than

microscopic time regime.

We have virtually recovered the same result as that of the earlier section. This shows that

the emergence of a stretched exponential can be interpreted in two different but equivalent

ways. The former is based on the concept of double subordination. The first subordination

process is based on the adoption of an exponential subordination function, which, as shown
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in Section 4.2, is equivalent to the Demon acting with no rest but with a very limited success

rate. The second subordination process is determined by the Demon’s social life and is

characterized by µS < 2. Thus, it is evident that this process of double subordination can

be interpreted as a single subordination applied to a Demon with a very limited success

rate. In fact, as shown here, this second procedure yields essentially the same result as the

application of the earlier.

We have to stress the big difference with the Demon of Fig. 4.2. As we have earlier seen,

in that case decreasing g has the effect of producing a trivial time dilatation. Here decreasing

g does more than producing time dilatation, insofar as it changes the balance between the

time extension of the stretched exponential regime and that of the inverse power law regime.

As a consequence, a mere time re-scaling is not enough to connect processes with lower

values of g to processes with higher values of this parameter.

4.6. Subordination to an Ordinary Fluctuation-dissipation Process

Let us now address the problem of generalizing the double subordination of the earlier

subsection. We have seen that the double subordination is equivalent to creating a process

subordinated to a dichotomous Poisson process with rate g. Here we consider the case where

the leading process, in the natural time scale n, is given by the ordinary Langevin equation

d

dn
y = −γy(n) + f(n), (4.61)

where f(n) is a noise of intensity

< f 2 >eq=
D

τc
, (4.62)

wtih the equation subscript referring to the equilibrium thermal bath. According to the

Einstein fluctuation-dissipation relation, the mean square value of y is given by

< y2 >eq=
D

γ
. (4.63)
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We again assume for the elementary time step the condition ∆t = 1, and we assume the

noise f(n) to have the correlation time τc = 1. This is a noise with no correlation, and the

diffusion coefficient D becomes identical to the noise intensity.

We note that in this case, the time scale is given by 1/γ, thereby playing the role 1/g. As

in the case of the process subordinated to dichotomous Poisson fluctuations, the condition

γ << 1 (4.64)

makes the time n of the order of 1/γ virtually continuous.

Applying the same approach as that used to derive Eq. (4.9) from Eq. (4.5), we obtain

[80]

∂

∂t
p(y, t) =

∫ t

0

Φ(t− t′)

[

γ
∂

∂y
y+ < y2 >eq

∂2

∂y2

]

p(y, t′)dt′, (4.65)

where the memory kernel in the Laplace domain is defined, through the Laplace transform

of the subordination function ψ(S)(t), by Eq. (4.10).

It is important to point out that the regression to equilibrium of the moments of the

dynamic variable < yq(t) > from an initial out-of-equilibrium state < y(0) > can be derived

using the same arguments as those adopted to derive Eq. (4.37). Thus we obtain

Yq(t) ≡< yq(t) >=

∞
∑

n=0

∫ t

0

dt′ψ(S)
n (t′)Ψ(S)(t− t′)exp(−γqn). (4.66)

and, instead of Eq. (4.44) we now have

Ŷq(u) → eγqÊα(u), (4.67)

with Êα(u) given, as in the earlier case, by Eq. (4.45), and λα defined by

λα =

(

eqγ − 1

Γ(2 − µS)(TS)α

)1/α

. (4.68)

60



It is evident that increasing q has the effect of reducing the size of the time interval of

the stretched exponential relaxation. Note that these results are obtained by assuming

〈y2(0)〉 ≫ 〈y2〉eq so as to neglect the influence of the stochastic force. The same results are

obtained using Eq. (4.65) with only the friction term on its right hand side.

The stochastic trajectory y(t) fluctuates within a strip of size 〈y2〉eq, thereby making it

possible to make predictions based on disregarding the first rather than the second term on

the right hand side of Eq. (4.65). This allows us to evaluate the distribution of the time

intervals between two consecutive re-crossings of the origin, y = 0.

Note that when we disregard the friction term on the right-hand side of Eq. (4.65), this

equation becomes equivalent to the Continuous Time Random Walk of Montroll and Weiss

[41] whose scaling index β is known to be

β =
µS − 1

2
. (4.69)

This scaling can be proved using Eq. (4.65). In the case where dissipation can be neglected

Eq. (4.65) becomes

∂

∂t
p(y, t) = γ

∫ t

0

Φ(t− t′) < y2 >
∂2

∂y2
p(y, t′)dt′. (4.70)

Moving to the Laplace-Fourier domain, we obtain for p̂(k, u)

p̂(k, u) =
1

u+ k2Φ̂(u)
. (4.71)

Using Eq. (4.10) and (3.49) and considering the limit u → 0 we arrive at

p̂(k, u) =
1

u+ γ k2u2−µS

Γ(2−muS )Tµs−1

. (4.72)

Diffusion scaling implies that

y ∝ tβ , (4.73)
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and consequently that the Fourier and Laplace variables are related by

k ∝ uβ. (4.74)

Invariance by scaling implies that plugging Eq. (4.74) into Eq. (4.72) so as to make p̂(k, u)

depend only on u, has the effect of producing a quantity proportional to 1/u, which is, in fact,

the aged memory of an invariant, namely, time-independent quantity. This is realized by

setting the scaling condition of Eq. (4.69), which is consequently proved. This is equivalent

to the diffusion scaling of the fractional diffusion process of Metzler and Klafter [55] (see Eq.

(4.53)). As we have pointed out earlier, the stochastic velocity creating, in the absence of

friction, the diffusion process y(t) is obtained through the subordination to the stochastic

velocity responsible for ordinary diffusion.

A further way of expressing diffusion scaling is given by

p(y, t) =
1

tβ
F (

y

tβ
), (4.75)

which is an obvious way to set the condition of Eq. (4.73), if we take into account that

the prefactor 1/tβ serves only the purpose to guarantee normalization of F (y) when the

integration variable y is replaced by the new integration variable z = y/tβ.

The adoption of Eq. (4.75) allows us to determine the asymptotic properties of the wait-

ing time distribution density ψD(t) which is derived from the origin re-crossing histogram.

We record the times ti defined by

y(ti) = 0 (4.76)

and we define the time interval between successive re-crossings

τi = ti+1 − ti. (4.77)

We note that these are renewal events, insofar as they have been proven [56] to fit the renewal

criterion illustrated in Section 3.1. However, we must emphasize that these renewal events
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are not as important as the renewal events associated with the subordination function ψ(S)(t).

In fact, as we have seen, in the case of the subordination to a coin-tossing process, these

events correspond to the choice of either +1 or −1. In the case of the double subordination,

they correspond to the drawing of a ball, whose color may leave unchanged the sign of

ξS, if the ball is white, or may also change it, with equal probability, if the ball is black.

In the case of the subordination to an ordinary fluctuation-dissipation process, here under

discussion, the leading Demon is creating a fluctuation y(t(n)). In other words, the times

t(n) are the times at which the fluctuation y(t) may undergo an abrupt change, due to the

fact that the stochastic force f(n) is assumed to be white. The effect of subordination can

also be interpreted as a way to turn this white noise into correlated noise, insofar as it is

kept unchanged for the whole time interval between t(n) and t(n+ 1).

Consequently, the distribution densities ψ(S)(t) and ψ(D)(t) have a different physical

meaning, although both become inverse power laws in the time asymptotic limit. The

inverse power law of ψ(S)(t), with µS < 2 is a choice dictated by the fact that, as we

have established with Eq. (4.43), the adoption of a subordination function compatible with

ergodicity would not establish a departure, in the macroscopic time regime, from the ordinary

forms of exponential relaxation. The inverse power-law nature of ψ(D)(t), with µD < 2 is a

consequence of Eq. (4.75). In fact,

∞
∑

n=1

ψ(D)
n (t) = Q(t), (4.78)

where

Q(t) ≡ p(0, t) =
1

tβ
F (0). (4.79)

The rationale for Eqs. (4.78) and (4.79) is as follows. We locate our diffusing trajectory at

y = 0 at time t = 0 and we wait for this trajectory to come back. In the time asymptotic

regime where the scaling condition of Eq. (4.75) applies, the trajectory y(t) can be found in

the original position only as a result of the re-crossing process. This property is obvious in
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the natural time condition. In the t time scale is justified by observing that the probability

of not leaving the origin is proportional to 1/tµS−1 and consequently faster than 1/t
µS−1

2 ,

which is the probability of finding the particle at y = 0 in the scaling regime.

From Eq. (4.78) we derive

ψ̂(D)(u)

1 − ψ̂(D)(u)
= Q̂(u), (4.80)

which yields

ψ̂(D)(u) =
Q̂(u)

1 − Q̂(u)
. (4.81)

Let us use Eq. (4.79) and the Tauberian theorem, according to which, for α < 1

tα−1 → 1

uα
(4.82)

. We set 1 − α = β, which is a legitimate choice insofar as β < α and we get

Q̂(u) =
const

u1−β
(4.83)

and consequently

Q̂(u)

1 − Q̂(u)
≈ (1 − u1−β

const
). (4.84)

By plugging Eq. (4.84) into the right side of Eq. (4.81) and using Eq. (3.49) again we find

µD = 2 − β. (4.85)

This is an interesting result. It means that also the re-crossing events are not ergodic.

However, we have to warn the reader about the fact that these events do not correspond

to objective facts. They are the consequence of assigning to the re-crossing of the origin a

special physical significance that may not correspond to reality. Here we are making the

assumption that, due to the Demon’s action, the index µS corresponds to a sequence of real

64



physical events. It is interesting to notice that the condition

µS = µD (4.86)

is realized when

β =
1

3
, (4.87)

which is the well known scaling of the Kardar-Parisi-Zhang renormalization theory (KPZ)

[57]. Thus, we conclude that the identification of re-crossings with significant renewal events,

in the case of the KPZ condition does not generate a quite unsatisfactory scenario. In fact,

in this case re-crossings and subordination events are characterized by the same non-ergodic

index

µ =
5

3
(4.88)

However, the adoption of the re-crossing technique can be used to establish a distinction

between µS and µD, when a renormalization approach different from the KPZ theory applies.

To make this aspect clearer, let us go back to the natural time scale, and let us establish

the time distribution of time distances between two consecutive re-crossing of the level R >

〈y2〉1/2eq . In this case, the dissipation process cannot be neglected, and it has the effect of

establishing a re-crossing distribution that involves directly µS. To get analytical results we

proceed as follows. We go back to the natural time scale, and we let the network evolve until

it reaches the equilibrium distribution described by

peq(y) =
1

(

2π 〈y2〉eq
)1/2

exp

(

− y2

2 〈y2〉eq

)

. (4.89)

We now study the recrossing of the level R > 〈y2〉eq)1/2. This is again using Eq. (4.78). In

this case Q(t) is time independent. We set the condition

Q(t) = gR ≡ γRpeq(R), (4.90)
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where gR coincides with the Kramers rate [39]. Thus, we obtain

ψR(n) = gRexp (−gRn) . (4.91)

The transition from n- to t-time scale is achieved in the usual way, as described by Eq. (4.37)

with exp(−gn) replaced by exp(−gRn), thereby yielding

ΨR(t) = egREα(t), (4.92)

where Eα(t) is derived from its Laplace transform that is identical to Eq. (4.45) with λα

given by

λα =

(

egR − 1

Γ(2 − µS)(TS)α

)1/α

(4.93)

We note that with increasing R, the rate gR becomes smaller and smaller thereby extending

the time interval of the stretched exponential.

This has the effect of establishing a direct connection with the subordination process. In

fact, thanks to Eq. (4.46) we can relate the stretched exponential relaxation directly to the

subordination process. In practice, the determination of µS through this procedure can be

hard, due to the fact that the statistics become poorer with increasing R. For a valuable

determination of µS we can express this parameter as a function of µD. Using Eq. (4.53)

and Eq. (4.85) we obtain

µS = 5 − 2µD, (4.94)

which, of course, in the KPZ case, yields µS = µD = 5/3.

It is convenient to mention that this subordination perspective, in the case of the random

growth of surfaces leads to a remarkably good agreement between theory and numerical

simulation [80]. This fact requires a proper comment. The time series generated by complex

systems are finite, and their own generators are networks of finite size. The authors of

Ref.[80, 59] have remarked that the adoption of the subordination function with a non
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truncated inverse power law distribution density is not realistic, because it rests on the

idealized condition that the time series under study are infinite. As pointed out in Ref. [80],

a convenient way to take truncation effects into account rests on replacing Eq. (4.45) with

Ŷ (u) =
1

u+ (λα)α(u+ Γtrunc)1−α
, (4.95)

where the parameter Γtrunc defines the time parameter

Ttrunc ≡
1

Γtrunc
. (4.96)

This choice implies that also the the subordination function ψ(S)(t) is truncated. This is

so because, according to Eq. (4.95) the real Φ(t) is related to to the ideal by means of the

relation

Φ(t) = Φ0(t)exp(−Γtrunct), (4.97)

which, in turn, thanks to Eq. (4.10) yields

ψ̂(S)(u) =
Φ̂0(Γtrunc + u)

u+ Φ̂0(Γtrunc + u)
. (4.98)

Thus, when u ≪ Γtrunc, ψ̂
(S)(u) becomes the Laplace transform of an exponential subordi-

nation function. In the case where Γtrunc is, due to the finite network size is of the order

of λα, the inverse power law of the Mittag-Leffler function does not emerge, and the whole

process is virtually described by a stretched exponential relaxation. This does not mean that

the inverse power-law does not contribute to the process. It does, although within the limits

established by the finite size of the networks under study. The authors of Ref.[80] found an

excellent agreement between theory and numerical experiment by adopting this perspective.

As we shall see in Chapter 6, this truncation effect can be due to the deterministic periodicity

of the interacting units in a system.
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We have also to point out that when gR << 1, Eq. (4.93), yields

TS ≫ 1

λα
. (4.99)

As a consequence, the renewal events of the subordination process keeps their inverse power

law nature in the time scale where the survival probability maintains its form of stretched

exponential function.

Finally, it is important to explain why the survival probability Y (t) (q = 1) of Eq. (4.67)

can be obtained from the survival probability of Eq. (4.44) by replacing g with γ. This

can be explained again using the concept of success rate. In fact, as we have seen in this

section, in the natural time scale the time distance between two big fluctuations of y is

under the control of the Kramers prescription that assigns to the corresponding waiting

time distribution density the exponential form of Eq. (4.91). This interpretation is not

quite satisfactory, due to the dependence on the threshold R, which seems to be to some

extent arbitrary. A more compelling argument is given by the remark that the regression

to equilibrium of a fluctuation y significantly larger than
(

〈y2〉eq
)1/2

is exp(−γt), thereby

leading to Y (t) (q = 1) of Eq. (4.67). In other words, here the success rate has to do with

the attainment of a level much higher than that of the many more numerous fluctuations of

small intensity.
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CHAPTER 5

COMPLEXITY FROM SYNCHRONIZATION AND COOPERATION I:

PHASE SYNCHRONIZATION OF STOCHASTIC CLOCKS

Phase synchronization is a growing field of research, which is fast developing from the

seminal work of Winfree [60] and Kuramoto [61] on coupled oscillators. A number of physi-

ologists use a clock, a form of oscillator, to represent single neurons. Stam [62] adopted the

chaotic oscillator Rössler attractor [63], to describe the dynamics of a single neuron. The

authors of Ref. [64] and of Ref. [66] have shown that coupled stochastic clocks can show co-

operative (synchronized) behavior, but overlooked the emergence of non-ergodic fluctuations.

Herein we consider the two-state version of stochastic clock used in Ref. [66] and show impor-

tant properties making it a plausible model for the dynamics of human brain, the blinking

quantum dots and numerous other complex systems exhibiting two-state properties.

The first section of the chapter will introduce the model of the stochastic clock. The

succeeding sections will investigate its dynamics on several types of network topologies; all-

to-all coupled, regular and several complex networks. We show that the cooperation of the

individual clocks yields collective properties different as the clocks would have in isolation,

behaving independently. We also show that synchronization is enhanced by the adoption of

complex network topologies.

5.1. The Two-State Stochastic Clock Model

The two-state stochastic clock is illustrated in Figure 5.1. The hand of the clock can

only move in two phases, Φ = 0 and Φ = π. We denote the former state |1 > and the latter

as state |2 > and let g12 be the constant transition rate from |1 > to |2 > and g21 for the

reverse.
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Let us find the probability density function (PDF) ψ(τ) of the time of sojourn of the

clocks in each of the two phases corresponding to the rates g12 and g21. For simplicity, let

us assume that the clocks has the same probability of staying in each state, allowing us to

write g = g12 = g21. The probability that the clock leaves its state is therefore

p(τ) = ψ(τ)∆τ. (5.1)

To find the form of ψ(τ), it is convenient to introduce the concept of Survival Probability

(SP) Ψ(τ). This is the probability that clock remains in the same state after a time τ has

elapsed. Thus, we have

Ψ(τ) =

∫ ∞

τ

ψ(τ)dτ. (5.2)

Using a discrete time representation, the SP of the clock after a time τ is given by

Ψ(τ) = (1 − g)τ ≈ e−gτ . (5.3)

where we assume in the second equality that τ ≫ 1. Thus, using (5.2) we get the waiting

time distribution density

ψ(τ) = τe−gτ . (5.4)

Following the arguments that lead to Eqn. (3.44), we conclude that an individual clock

is Poissonian. In the following sections we show that the collective behavior of a set of

interacting stochastic clocks yields a dynamic complexity, that is, it departs from the Poisson

statistics as obeyed by a single clock.

5.2. All-to-All Coupling

Let us consider a set of N two-state stochastic clocks and adopt an all-to-all coupling

configuration. The master equation (2.13) for a single clock in the Gibbs ensemble system is
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Figure 5.1: The two-state stochastic clock.







d
dt
P1(t) = −g12P1 + g21P2

d
dt
P2(t) = −g21P2 + g12P1

(5.5)

where P1 (P2) is the probability of finding the clock in the state |1 > (|2 >), and g12 (g21) is

the rate of transition from state |1 > (|2 >) to the |2 > (|1 >). The transition rates g12 and

g21 are defined by means of the following prescription:







g12(t) = g0 exp{−K(π1(t) − π2(t))}
g21(t) = g0 exp{+K(π1(t) − π2(t))}

. (5.6)

where g0 is the unperturbed transition rate, K > 0 is a constant coupling parameter and

π1(t) (π2(t)) is the fraction N1(t)/Nc (N2(t)/Nc) of the nearest neighbor1 clocks Nc in the

state |1> (|2>) at time t. With the choice of the all-to-all coupling topology, Nc = N − 1.

1refers to the number of clocks to where the currently evaluated clock is coupled
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Thus, in the limiting case N → 0, the mean field approximation [65]

π1(2) = P1(2) (5.7)

is an exact property.

Using the property (5.7) and the normalization condition P1+P2 = 1, the master equation

(5.5) reduces to

d

dt
Π(t) = −2gΠ cosh(KΠ) + 2g sinh(KΠ) = −∂V (Π)

∂Π
, (5.8)

where Π = P1 − P2 and Πǫ[−1, 1]. Eq. (5.8) describes the overdamped motion of a particle

with position Π within the potential V (Π) [39]. From (5.8), we find that the potential V (Π)

is symmetric and the values of its minima Πmin depend only on the coupling constant K.

Moreover, we find that there is a critical value Kc = 1 of the coupling parameter K such that:

1) if K ≤ Kc the potential V (Π) has only one minimum, Π = 0, 2) if K ≥ Kc the potential

V (Π) has two symmetric minima, Π = ±Πmin separated by a barrier (the maximum o f Π)

centered in Π = 0. As shown in Figure 5.2, the value Πmin and the height of the barrier

(V(0)) are increasing function of the coupling constant2 is chosen to satisfy the condition

V (±Πmin) = 0 for all values K > Kc . In particular Πmin → 1 and V (0) → +∞ when

K → +∞.

The time evolution of the variable Π(t) is determined by the minima and maxima of

the potential V (Π). Thus, two types of dynamical evolution are possible: 1) If K ≤ Kc,

Π(t) will reach, after a transient period, an asymptotic value Π(∞) = 0 not depending

on the initial conditions Π(0). 2) If K ≥ Kc, Π(t) will reach, after a transient period,

either of the two asymptotic values Π(∞) = ±Πmin 6= 0 depending on the initial condition.

Π(0) > 0 results to the positive minimum and Π(0) > 0 to the negative minimum. The initial

condition Π(0) = 0 will result in Πmin = 0 for all values of t. In Figure 5.3 we compare the

2The arbitrary constant in the definition of the potential V (Π)
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Figure 5.2: The potential V (Π), rescaled by a factor 104, as a function of Π for g=0.01 for K = 1.05
(continuous line), K = 1.1 (dashed line), and K = 1.2 (dotted line).

Figure 5.3: The minima Π of the potential V (Π) and the asymptotic value Π(∞) as a function of

the coupling constant K. The full line is the theoretical prediction for the minima Π̃ obtained from
(5.8). The squares denote the result of the numerical evaluation of Π(∞) with a Gibbs ensemble
consisting of N = 10000 clocks.
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Figure 5.4: The typical time evolution of a single clock in a system of Gibbs ensemble. The solid
(dashed line) refers to the case Π(∞) = +Πmin (Π(∞) = −Πmin). The system is composed of
10000 clocks with unperturbed transition rate g0 = 0.01 and the coupling constant K = 1.05.

minima Π̃ of the potential V (Π) and the numerical evaluation of Π(∞) as a function of the

coupling parameter K. The figure also shows that a second-order phase transition occurs

at K = Kc = 1. This phase transition also signals the birth of a “statistical preference”

(Π = P1 −P2 6= 0) for a single clock in the system of Gibbs ensemble to be in state |1 > and

|2 >. This is a consequence of the fact that the transition rate g12 and g21 of Eq. (5.6) are

different for K > Kc. Using the mean field approximation (5.7) and allowing Π(t) to reach

its asymptotic value, we get

g12(t) = g0 exp{−KΠ(∞)} 6= g21(t) = g0 exp{KΠ(∞)}. (5.9)

Figure 5.4 confirms the prediction of Eq. (5.9). It shows that if Π(∞) = +Πmin (Π(∞) =

+Πmin) the single clock, on the average, spends more time in the state |1 > (|2 >). The

probability density function for the sojourn times in both of the preferred and not-preferred

states are exponentials with different mean sojourn time.

74



5.2.1. Collective Behavior

Let us explore the collective behavior of a single system of N clocks under the all-to-all

coupling condition. Adopting the method from [68], we define the global clock variable ξ as

ξ =

∑N
j=1 exp(iΦj(t))

N
=
N1(t) −N1(t)

N
. (5.10)

The symbol i is the imaginary unit, Φj is the phase of the jth clock, and N1t and N2(t) are

the number of clocks in the state |1 > and |2 > at time t respectively. When N → 0, the

single system becomes a Gibbs ensemble on its own as all the clocks are identical and, at

the same time, the mean field approximation (5.7) becomes valid. In this case the master

equation for the single system of infinite clocks is the master equation Eq. (5.5), where P1

(P2) is now the probability of finding a clock in the system with the state |1 > (|2 >). From

Eq. (5.10), in the limiting case N → 0, we get ξ(t) = P1(t) − P2(t) = Π(t). Thus, for a

system with infinite clocks, the time behavior of the global clock variable ξ is identical to

that of the variable Π of Eq. (5.8). Thus, for K > Kc,

ξ(∞) = ±Πmin 6= 0 (5.11)

depending on the initial condition ξ(0) < 0 or ξ(0) > 0. Eq. (5.11) proves that a widespread

phase synchronization (ξ(∞) 6= 0) occurs in the system at the onset of phase synchronization

(K > Kc). Moreover, the time evolution of a single clock of the system is the one depicted

in Figure 5.4 where state |1 > is statistically preferred if ξ(∞) = +Πmin and state |1 > if

ξ(∞) = −Πmin.

5.2.2. Finite Size Effects

Is the phase synchronization of Eq. (5.11) present in a system with a finite number of

clocks? From the definition of transitional rate and the definition of probability, it follows
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that







g12P1 = limN→∞
N1→2

N

g21P2 = limN→∞
N2→1

N

, (5.12)

where N1→2 (N2→1) is the number of clocks that undergo a transition from the state |1 >
(|2 >) to the state |2 > (|1 >) per unit time, and N is the total number of clocks in the

system. Using the law of large numbers [18], we get, for 1 << N <∞,







N1→2

N
= g12P1 + ε12P2

N2→1

N
= g21P2 + ε21P1

, (5.13)

where ε12 and ε21 are fluctuating variables (white noise) whose intensities are ∝ 1
√
N .

Thus, from (5.12) and (5.13), we conclude that the master equation of a system with a finite

number of clocks is equivalent to that of a system with an infinite number of clocks but with

fluctuating transitional rates:







d
dt
P1(t) = −(g12 + ε12)P1 + (g21 + ε21)P2

d
dt
P2(t) = −(g21 + ε21)P2 + (g12 + ε12)P1

. (5.14)

Thus, the mean field master equation (5.8) is now written as, taking into account the finite

size effects,

d

dt
Π(t) = −∂V (Π)

∂Π
− η(t)Π(t) + θ(t) (5.15)

with η = ε12 + ε21 and θ = ε12 − ε21. The presence of the fluctuations η and θ in (5.15) has

the effect of triggering transitions from one well to the other of the potential V (Π) of Figure

5.2. Therefore, for a system with a finite number of clocks the phase synchronization (5.11)

is not stable. The global clock variable ξ Eq. (5.10) oscillates, for K > Kc between the two

minima, ±Πmin, of the potential V (Π), as confirmed by Figure 5.5. The single clock follows

the oscillations of the global clock variable ξ switching back and forth from the condition of

state |1 > to state |2 > and vice versa.
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Figure 5.5: The global variable ξ(t) as a function of time for K = 1.05 and g = 0.01 of a system
with 1000 clocks.

Figure 5.6: The survival probabilities Ψ(τ) (full line), Ψ(ta = 500, τ)(dashed line), and Ψr(ta =
500, τ) (full thick line) as a function of the sojourn times τ .

5.2.3. Renewal Property and the Origin of the System Power-Law Distribution

The probability density function ψ(τ) of the sojourn times τ in the states ξ > 0 and

ξ < 0 of Figure 5.5 are identical since the potential V (Π) of Figure 5.2 is symmetric. If
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the coupling constant K is close to the critical value Kc = 1, the height of the barrier V (0)

dividing the two wells of the potential in Figure 5.2 is smaller or comparable to the intensity

of the fluctuations η and θ of Eq. (5.15). Under this condition, we expect [67] the power-law

behavior ψ(τ) ∝ 1/τ 1.5 for an extended interval of sojourn times. This is exactly what we

observed in Figure 5.6 where the full line denotes the survival probability, the probability of

observing a sojourn time larger than τ , Ψ(τ) ∝ 1/τ 0.5. As the coupling parameter increases

(above the critical value Kc = 1), the height of the barrier dividing the two wells of the

potential V (Π) of Figure 5.2 quickly overcomes the intensity of the fluctuations η and θ in

Eq. (5.15). This time the power-law behavior disappears, the theoretical arguments of [67]

loses validity, and an exponential behavior emerges, the Kramers theory [39] becomes valid.

Finally, we show that the transition between the states ξ > 0 to ξ < 0 in Figure 5.5 is a

renewal process. For this purpose we use the aging experiment of Ref. [45]. We evaluate the

survival probability Ψ(ta, τ) of age ta : the probability of observing a sojourn time larger

than τ if the observation starts at a time ta after a crossing from ξ > 0 to ξ < 0 or vice

versa (Ψ(0, τ) = Ψ(τ)). We then compare Ψ(ta, τ) with the expected survival probability

Ψr(ta, τ) of age ta in the renewal case. If Ψ(ta, τ) = Ψr(ta, τ) for all values of ta, the process

described by Ψ(τ) is renewal. Figure 5.6 shows that the transition between the states ξ > 0

and ξ < 0 is a renewal process: the dashed line (Ψ(ta, τ)) and the full thick line (Ψr(ta, τ))

coincide (we choose ta = 500 in Figure 5.6 for clarity).

5.3. Effects of Complex Networks Topology

The inverse power-law distribution (see Eqn. (3.5)) of the time of sojourn of the global

clock (collective phase) in a specific state is not limited to the power index µ = 1.5 as

shown when the clocks interact in an all-to-all coupled network. A way to change the

dynamic complexity of the system is by adopting complex networks topology. Herein we

show the effects of different complex networks topologies on the dynamics of interacting

clocks. In particular we adopt four familiar complex networks: the random or Erdös-Renyi

(ER) network [11] (see Figure 5.7a) , the small-world network of Watts and Strogatz (WS)
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[9] (see Figure 5.7b), the Barabasi-Albert model (BA) [10] (see Figure 5.7c), and the more

recent model by Holme and Kim (HK) [12] (see Figure 5.7d). In addition, we also study the

effect of a regular network (R) (see Figure 5.7e) to make a comparison with the complex

networks.

To make a good comparison we created the networks in a way that all of them share

the same average number of links ml, which in the case of Figure 5.7 takes ml = 10 .

Another interesting result is the effect of complex topology on the phase synchronization of

the clocks. This is shown in Figure 5.9. Figure 5.9 shows that the regular network almost

does not make, if it does with larger values of K, the global system into phase synchrony

whereas the complex network topologies lead to the phase transition similar to the all-to-all

coupled network but with the expense of larger coupling parameter K. It also shows that

the HK network which is characterized with high clustering and power-law distribution of

links is the most efficient network for synchronization at least for the model used herein.

A deep understanding of these effects from complex networks is the subject of my future

research work. Theoretical concepts applied to the all-to-all coupled networks, that is the

mean field approximation, will no longer apply and new theory must be developed to explain

the dynamical origin of the effects of complex network.

5.4. Chapter Conclusion

In conclusion, we have shown that the system of two-state coupled clocks undergoes a

phase transition for a coupling parameter critical value K = Kc = 1. The onset of phase

transition signals the birth to a phase synchronization in the system. If the number of

constituents of the system is finite the phase synchronization is not stable and an oscillatory

behavior appears for the variable ξ describing the collective motion of the system. At the

onset of phase transition, the zero crossing of the global variable ξ defines a series of events

for which the probability density function ψ(τ) of the inter-events interval has a non-Poisson

non-ergodic behavior and exhibits a renewal property: independent inter-events interval.

These properties are observed in blinking quantum dots trajectories [45, 70, 67] and of the
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(a) Erdös-Renyi (ER) network
[11]

(b) Small World Network of Watts
and Strogatz [9]

(c) The Barabasi-Albert model
(BA) [10]

(d) Holme and Kim (HK) [12]

(e) A Regular Network

Figure 5.7: The four different complex networks and a regular network.

80



 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000  100000  1e+06

Ψ
(τ

)

τ

ER, k=1.3
µ=1.53

0.043*exp(-0.000044*x)

(a) SP from Erdös-Renyi (ER) network [11]

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000  100000

Ψ
(τ

)

τ

WS, k=1.7
µ=1.53

(b) SP from Small World Network of Watts and
Strogatz [9]

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000  100000  1e+06

Ψ
(τ

)

τ

BA, k=1.25
µ=1.35

0.092*exp(-0.0000183*x)

(c) SP from The Barabasi-Albert model (BA)
[10]

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000  100000

Ψ
(τ

)

τ

HK, k=1.1
µ=1.42

(d) SP from Holme and Kim (HK) [12]

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000  100000  1e+06

Ψ
(τ

)

τ

R, k=2.5
µ=1.58

(e) SP from A Regular Network

Figure 5.8: Effect of complex network topology on the state sojourn time distribution.
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Figure 5.9: The effect of complex network on the global synchrony of the clocks.

temporal changes of the network topology of the brain [59]. Thus, these results suggest that

a system consisting of a finite number of 2-state coupled clocks can be a good model for the

dynamics of blinking quantum dots and human brain brain as well.
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CHAPTER 6

COMPLEXITY FROM SYNCHRONIZATION AND COOPERATION II:

STOCHASTIC SYNCHRONIZATION OF NEURONS

The occurrence of events described by inverse power laws is a clear manifestation of com-

plexity. This phenomenon seems to be typical of processes characterized by the interaction

among the elementary constituents, which can be neuronal [72] as well as human [53]. The

authors of Ref. [72] have stressed the role of neuron synchronization as a source of neuronal

avalanches and have concluded that the theoretical foundation of these processes is still

open. It is worth mentioning that these real neurons are shown to interact in a scale free

complex network [73]. A well model of neuron synchronization is that proposed years ago

by Mirollo and Strogatz [74]. However, this model cannot be adopted as the prototype of

complexity origin insofar as at synchronization all the neurons fire at the same time thereby

realizing a perfectly periodic process. Herein, we modify the deterministic model by Mirollo

and Strogatz by making it stochastic and we study its dynamics in complex networks.

In this chapter we argue that the complex structure of the brain and the emergence of non-

exponential waiting time distribution as a result of neuron cooperation has a dynamic origin,

which allows us to interpret the events experimentally detected as determined by the inverse

power-law advocated by Barabási [53], even when the actions obeying this prescription are

invisible. This explains why cooperation generates stretched exponential relaxation as well

as inverse power-law decay [78].

6.1. The Mirollo-Strogatz Model

The Mirollo-Strogatz model [74] for synchronization of population of pulse-coupled os-

cillators is based on Peskin’s model for self-synchronization of the cardiac pacemaker [75].

The model is a network of N integrate-and-fire oscillators (neurons) (see Tuckwell [76] and
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references therein), each subject to the following equation of motion:

d

dt
xi = −γxi + S, i = 1, . . . , N. (6.1)

The variable xi, in the case where the oscillators refer to neurons, denotes the potential and

S is a positive constant making the potential essentially increase with time. When xi reaches

a threshold value Θ, the ith neuron “fires” and instantly resets to xi = 0, hence the name

“integrate-and-fire” neuron. For the case of a single neuron with Θ = 1, Eqn. (6.1) gives us

the firing period

TMS = −1

γ
ln
(

1 − γ

S

)

. (6.2)

Thus firing is only realize when γ/S < 1.

Let us consider the case when all the neurons interact through pulse-coupling: when one

neuron fires, all the others are pulled up by an amount k or to firing, whichever comes first.

That is,

xi = 1 ⇒ xj = min(1, xj + k) ∀ j 6= i. (6.3)

In addition to the coupling prescription above, Mirollo and Strogatz [74] assumed that

x evolves according to x = f(Φ) where f(Φ) is a smooth, concave down and monotonically

increasing function:

df

dΦ
> 0 (6.4)

d2f

dΦ2
< 0, (6.5)

with the phase variable Φǫ[0, 1]; 0 being the the phase at x = 0 and 1 when x = 1. With

these conditions, they proved that at some later time all the neurons would synchronize, that
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Figure 6.1: Synchronization of the Mirollo-Strogatz Model.

is, they fire at the same time with period TMS (6.2) as shown in Figure 6.1. Thus, giving us

the probability distribution density of times between two neuron firings (with τ being the

usual waiting times):

ψ(τ) = δ(τ − TMS). (6.6)

6.2. Stochastic version of the Mirollo-Strogatz Model

The Mirollo-Strogatz neuron model leading to the waiting times distribution (6.6) is

clearly unrealistic due to its deterministic nature. To make the model realistic, it is appro-

priate to replace (6.1) with the stochastic equation
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Figure 6.2: The trajectory of the single stochastic Mirollo-Strogatz neuron model as compared to
its deterministic counterpart.

d

dt
xi(t) = −γxi(t) + S + ξ(t), i = 1, . . . , N. (6.7)

where ξ(t) is a delta-correlated random function:

< ξ(t)ξ(t′) >= σ2δ(|t− t′|). (6.8)

The addition of the noise in (6.7) making the model stochastic has the effect of realizing

the firing process of a single neuron earlier or later than than the period TMS as shown in

Figure 6.2. The waiting time distribution density ψ(τ) in the case where γ = 0 can be easily

solved using the first passage time formalism introduced in Section 2.4.1. It can be shown
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Figure 6.3: The trajectory of the single stochastic Mirollo-Strogatz neuron model as compared to
its deterministic counterpart.

that this takes the inverse Gaussian form

ψ(τ) =
1

(2πσ2τ 3)1/2
exp
[

−(1 − Sτ)2

2σ2τ

]

. (6.9)

We are not aware of any solution for the case γ > 0. However, as shown in Figure 6.3, it

has the effect of making the mean waiting time larger.

6.3. Stochastic Firing Collective Behavior

Let us now study the collective behavior when the stochastic neurons obeying (6.7) are

coupled according to the pulse-couling scheme of Section 6.1. To do this, let us first review

some results in Section 4.4. Let us make the assumption that the rate g < 1. Thus we can
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Figure 6.4: Decay of the waiting time distribution for different values of N.

write the Laplace-transform of the survival probability (4.44) as

Ψ̂(u) =
1

u+ λα(u+ Γt)1−α
, (6.10)

with the introduction of the parameter Γt, to which, for the purposes herein, we refer to as

the inverse of the truncation time. The recent work of Ref. [59] has revealed the existence of

quakes on the human brain, and has proved that the time distance between two consecutive

quakes is well described by a survival probability Ψ(t), whose Laplace transform fits very

well the prescription of Eq. 6.10. In the case Γt = 0 this is the Laplace transform of the

Mittag-Leffler function [77], which interpolates between the stretched exponential relaxation

exp(−(λt)α), for t < 1/λ and the inverse power law behavior 1/tα, for t > 1/λ. The
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parameter Γt > 0 has been introduced in the recent work of Refs. [80, 59] to take into

account the truncation thought to be a natural consequence of the finite size of the time

series under study. As a matter of fact, when λ is of the order of the time step and 1/Γt

is much larger than the unit time step, the survival probability turns out to be virtually an

inverse power law, whereas when 1/λ is of the order of 1/Γt and both are much larger than

the unit time step, the survival probability turns out to be a stretched exponential function.

The noise ξ(t) in (6.7) has the effect of making the neurons fire at times t ≪ TSM .

Consequently, as an effect of setting σ > 0, a new, and much shorter time scale is generated.

When we refer to this time scale as time scale of interest, the Mirollo and Strogatz period

TMS plays the role of truncation time:

Γt ≈
1

TMS
. (6.11)

To examine this condition let us set k = 0. In this case even if we assign to all the neurons

the same initial condition, x = 0, due to the presence of stochastic fluctuation the neuron

will fire at different times thereby creating a spreading on the initial condition that tends to

increase in time, even if initially the firing will occur mainly at times t = nTMS. The system

will eventually reach a stationary condition with a constant firing rate G given by

G =
N

< τ >
, (6.12)

where < τ > denotes the mean time between two consecutive firings of the same neuron. For

noise intensity σ ≪ 1, < τ >= TMS. From the condition of constant rate G, we immediately

derive the Poisson waiting time distribution

ψ(τ) = Gexp(−Gτ). (6.13)
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We shall see hereby that this heuristic argument agrees very well with numerical results. For

the numerical simulation we select the condition

G≪ 1 ≪ N ≪ TMS, (6.14)

with N ≫ 1 and N ≪ TMS. As a consequence of this choice we get

1

G
≈ TMS

N
≪ TMS, (6.15)

thereby realizing the earlier mentioned time scale separation. It is evident that this condition

of non-interacting neuron fits Eq. (6.10) with α = 1 and

λ(k = 0) = G. (6.16)

In this case, the time truncation is not perceived, due to the condition 1/G≪ TMS.

To study the effect of coupling among neurons we adopt as benchmark the All-To-All

coupling (ATA). Then, we consider four different networks. The first one is a regular (R)

network (see Figure 5.7e), with the sites distributed on a circle with each site coupled to

its 2mnn nearest neighbors. The other three networks are complex: the Watts and Strogatz

(WS) network (see Figure 5.7b) characterized by high clustering [9]; the Barabási and Albert

(BA) network (see Figure 5.7c) [10], which is known to be scale free and finally the Holme

and Kim (HK) network (see Figure 5.7d) [12], which shares with WS the high clustering and

with BA the scale free condition. We assign to all three complex networks the same mean

number of links, ml, and we set ml = 2mnn.

We begin our analysis by discussing the ATA case. Fig. 6.5 refers to this condition. We

adopt the values N = 100, γ = 0.0001, S = 0.00019. We have assessed numerically that

〈τ〉 = 7431 thereby yielding, thanks to Eq. (6.12), G = 0.0135, and TMS = 7472.14. Curve

1 of Fig. 1 corresponds to k = 0. As earlier mentioned, this condition yields Eq. (6.13)

and thus Ψ(τ) = exp(−Gτ). The log-linear representation of Fig. 6.6 fully confirms this

expectation. Let us discuss now the effect of switching on the interaction among neurons.
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Fig. 6.5 shows that all the curves with k > 0 drop to zero at τ ≈ TMS. This is an indication

that the truncation parameter Γt of Eq. (6.10) is not a finite size effect, but rather a

consequence of the fact that cooperation tends to fill the gap between 1/G and TMS without

significant effects in the time region exceeding the Mirollo and Strogatz time. The intuitive

explanation is that no matter how small the coupling strength k is, the condition that at

each time step only one neuron fires is lost. In the case of no interaction the probability

that two neurons fire at the same time is G2. Thanks to G ≪ 1 (see Eq. (6.14)), the

simultaneous firing of two neurons virtually does not happen. When we switch on the

coupling, no matter how weak the interaction strength is, the simultaneous firing of more
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than one neuron becomes frequent, and this explains why curve 2, corresponding to k = 0.002

has a much slower decay, so that it is still significantly large at t = TMS.

Now, let us explore in detail the coupling interval (0, kbd], with kbd ≈ 0.002. This is the

coupling region where the theoretical expectation of Eq. (6.10) is satisfactorily fulfilled. As

earlier mentioned, in the time region t < 1/λ, we expect that

Ψ(t) = exp (−(λt)α) . (6.17)

To prove this important fact, we focus our attention on the upper limit of this region,

kbd = 0.002, and in Fig. 6.7 we show −log[Ψ(τ)] in a log-log representation, where the

stretched exponential should become a straight line with slope α. We see that this theo-

retical expectation is satisfactorily fulfilled with α = 0.77. We note that at τ ≈ 1000 a

significant departure from the straight line appears. This is a consequence of the earlier

mentioned emergence of the power law regime Ψ(τ) ∝ 1/τα. To make this fact evident,

we illustrate Ψ(τ) in a log-log representation in Fig. 6.8. We see that the numerical calcu-

lation confirms the Mittag-Leffler transition from the stretched exponential to the inverse

power law behavior, supplemented by the truncation at t ≈ TMS, taken into account by the

parameter Γt ≈ 1/TMS of Eq. (6.10).

We note that Barabasi [53] stressed the emergence of the inverse power law behavior,

properly truncated, as a consequence of the cooperative nature of human actions. Appar-

ently, the numerical results of this Letter set a limit to the generality of this view, insofar

as we see that the numerically monitored events suggest the stretched exponential behavior

rather than the inverse power law prescription to be the general consequence of coopera-

tion. However, we now prove that it is not so, if we make a distinction between actions and

events. The action generator is assumed to not be fully successful, and a success rate pa-

rameter g < 1 is introduced with the limiting condition g = 1 corresponding to full success.

To turn this perspective into a theory, yielding the theoretical prediction of Eq. (6.10), we

assume that the time distance between two consecutive actions is described by the function
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ψ(S)(τ), where the superscript (S) indicates that from a formal point of view we realize a

process corresponding to the subordination theory advocated by the authors of [81, 83]. It

is evident that when g = 1 the survival probability Ψ(τ) is equal to Ψ(S)(τ) =
∫

τ
ψ(S)(τ ′)dτ ′.

When, g < 1, using the formalism of the subordination approach [81, 80, 59], we easily prove

that the Laplace transform of Ψ(τ) (we adopt the notation f̂(u) =
∫

0
∞dτexp(−uτ)f(τ)) is

given by

Ψ̂(u) =
1

u+ gΦ̂(u)
, (6.18)
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where

Φ̂(u) =
uψ̂(S)(u)

1 − ψ̂(S)(u)
. (6.19)

To prove the emergence of Eq. (6.10) from this approach let us consider for simplicity’s sake

the case where ψ(S)(τ) is not truncated, namely the case Γt = 0 of Eq. (6.10). We assign to

ψ(S)(t) the form

ψ(S) = (µS − 1)
T µS−1
S

(τ + TS)µS
. (6.20)
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In the non-ergodic case µS < 2, using the Laplace transform method of Ref. [44], we obtain

that the limiting condition u→ 0 yields (6.10) with

λ =

[

g

T αS Γ(1 − α)

]1/α

(6.21)

where Γ(1 − α) is the Gamma function. Let us make also the assumption

T αS Γ(1 − α) = C, (6.22)

95



where C is constant that for simplicity’s sake we set equal to 1. Thus, for the interval (0, kbd]

we obtain

g(k) = λ(k)α(k). (6.23)

The parameters α(k) and λ(k), for any value of k belonging to the interval (0, kbd] are safely

obtained by fitting the numerical Ψ(t) with the stretched exponential of Eq. (6.17), because

the early time region is not affected by Γt > 0. Note that α and λ decreases and increases

respectively, moving from their respective initial conditions α = 1 and λ = G. From this

fitting procedure we get the dependence of α and λ, and so of the success rate g on k. The

result is plotted in Fig. 6.9. We see that, as expected g moves from the very small value

g = 0.02, at k = 0.001, and increases so as to become of the order of 0.14 at k = 0.01. As we

have earlier seen g = 1 corresponds to a regime totally dominated by the inverse power law

behavior. Upon increase of the coupling k we reduce the size of stretched exponential regime

and we make it possible for the inverse power law behavior to emerge. It is interesting

to noticing that due to condition of Eq. (6.22), since the Gamma function diverges for

α → 1, TS → 0 thereby making for the actions faster the transition to the inverse power

law in the coupling region where for the events is significantly postponed so as to become

virtually invisible. It is also evident that due to Γt > 0, the long-time regime of ψ(S)(τ) is

exponentially truncated in accordance with Ref. [53].

6.4. Role of Complex Networks in Stochastic Neuron Synchronization

We can now address the important issue of adopting a network with a finite number of

connecting links rather than the ATA condition. The result is illustrated in Fig. 6.10. We

adopt the log-log representation of −log[Ψ(τ)] as a function of τ so as to emphasize the

emergence of the stretched exponential condition for the R network. We see that for the

same value of k the complex networks already yield a pronounced transition to the inverse

power law behavior, thereby suggesting that the complex networks favor also the emergence

of the high synchronization condition.

96



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009  0.01

g(
k)

k

Figure 6.9: The function g(k) of Eq. (6.23) as a function of k.

Let us go back to Fig. 6.8. We see that in the region τ ≈ TMS immediately before the

fast drop to 0 a little bump appears. This is a preliminary sign of the high synchronization

condition that will produce at values of k of the order of 0.1 the step-like behavior corre-

sponding to a regular firing process with the period of TMS. We are convinced that this

model can be used to reproduce the main properties of healthy brain, located in the region

(0, kbd] and those of pathological brains [79] with k > kbd.
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CHAPTER 7

CONCLUSIONS

In conclusion, the results of this dissertation affords the following benefits: (a) It offers a

satisfactory model for blinking nanocrystals which is characterized by an inverse-power law

distribution of sojourn times in “on” and “off” states, and in addition, we found that adopting

a complex network topology results to change in the power index of the state sojourn time

distribution; (b) It builds up a foundation for the dynamics of human brain by adopting a

complex network topology for stochastic neuron synchronization; (c) It offers a clear proof

that synchronization of oscillators is enhanced through the adoption of complex networks; (d)

It supports the widely accepted view of complexity, that is, a condition intermediate between

total randomness and cooperation-generated excessive order; (e) It supports the view that

the experimentally observed deviations from the ordinary exponential behavior rests on

the inverse power-law nature of the distribution density of the time distances between two

consecutive actions, even when the actions cannot be directly observed.

99



APPENDIX A 
 

ASYMPTOTIC BEHAVIOR OF POWER-LAW WAITING TIME DISTRIBUTION

 100



APPENDIX A. ASYMPTOTIC BEHAVIOR OF POWER-LAW WAITING TIME

DISTRIBUTION

Let us consider the following inverse power-law distribution of waiting times:

ψ(τ) = (µ− 1)
T µ−1

(τ + T )µ
(A-1)

Using the result from [48], the Laplace transform of (A-1) gives

ψ̂(u) =
(µ− 1)Γ(1 − µ)

(uT )1−µ

[

euT −EuT
µ−1

]

(A-2)

where

EuT
µ−1 ≡

∞
∑

n=0

(uT )n+1−µ

Γ(n + 2 − µ)
. (A-3)

Using (A-3) and the Taylor series expansion of (A-1), we get:

ψ̂(u) = −(µ − 1)Γ(1 − µ)

(uT )1−µ
×
[ (uT )1−µ

Γ(2 − µ)
+

(uT )2−µ

Γ(3 − µ)
+

(uT )3−µ

Γ(4 − µ)
+ . . .

−1 − uT − 1

2
(uT )2 − 1

6
(uT )3 + . . .

]

=
[

1 +
Γ(2 − µ)

Γ(3 − µ)
(uT ) +

Γ(2 − µ)

Γ(4 − µ)
(uT )2 + . . .

−Γ(2 − µ)
[

(uT )µ−1 + (uT )µ +
1

2
(uT )µ+1 +

1

6
(uT )µ+2 + . . .

]]

(A-4)

where in the last step we applied the Γ function property

Γ(1 + x) = xΓ(x). (A-5)
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Let us approximate (A-4) in two different regions 1 < µ < 2 and 2 < u < 3. In the case

1 < µ < 2 the slowest decay is given by (uT )µ−1. Thus, in the limiting case u→ 0 we get

lim
u→0

ψ̂(u) = 1 − Γ(2 − µ)(uT )µ−1. (A-6)

The case 2 < u < 3 gives

lim
u→0

ψ̂(u) = 1− < τ > u− Γ(2 − µ)(uT )µ−1. (A-7)

where we made use of the mean waiting time < τ >= T/(µ− 2).
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APPENDIX B. DERIVATION OF THE RATE OF EVENTS

Let us evaluate the forms of the rate of events

P(t) =

∞
∑

n=0

ψn(t) (B-1)

in two cases 2 < µ < 3 and 1 < µ < 2. The condition 2 < µ < 3 gives, using Eqn. (3.54)

and (3.50),

P̂(t) =
1

< τ > u+ Γ(2 − µ)(µT )µ−1

=
1

< τ > u

1

1 + Γ(2 − µ) (uT )µ−1

<τ>u

≈ 1

< τ > u
− Γ(2 − µ)T µ−1

< τ >2

1

u3−µ
. (B-2)

The anti-Laplace transform of (B-2) can be easily evaluated using the Tauberian theorem

(see Appendix C). This gives

P(t) =
1

< τ >
− Γ(2 − µ)T µ−1

< τ >2 Γ(4 − µ)

1

tµ−2
. (B-3)

Using the Γ function property

Γ(1 + x) = xΓ(x) (B-4)

and the mean waiting time < τ >= T/(µ− 2), Eqn. (B-3) is simplified to

P(t) =
1

< τ >
+

T µ−2

(3 − µ) < τ >

1

tµ−2
. (B-5)
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In the case 1 < µ < 2, using Eqns. (3.54) and (3.49) we arrive at

P̂(t) =
1

Γ(2 − µ)T µ−1

1

uµ−1
(B-6)

which gives us

P(t) =
1

Γ(µ− 1)Γ(2 − µ)T µ−1

1

t2−µ
. (B-7)
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APPENDIX C. TAUBERIAN THEOREM

Suppose that f̂(u) is the Laplace transform of f(t), and that L(u) is a slowly varying

function at u = 0. Suppose further that as u→ 0, f̂(u) behaves like

f̂(u) =
1

uα
L
(1

u

)

(C-1)

where α ≥ 0. Let us define the function F (t) to be the indefinite integral of f(t):

F (t) =

∫ t

0

f(τ)dτ. (C-2)

Thus, the singular behavior shown in (C-1) implies that

F (t) ≈ tαL(t)

Γ(1 + α)
. (C-3)

Using (C-2) yields

f(t) ≈ αtα−1L(t)

Γ(1 + α)
=
tα−1L(t)

Γ(α)
. (C-4)

Therefore,

f(t) =
tα−1L(t)

Γ(α)
⇒ f̂(u) =

1

uα
. (C-5)

This is known as the Tauberian Theorem.
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