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 The emergence of optical applications, such as lasers, fiber optics, and 

semiconductor based sources and detectors, has created a drive for smaller and more 

specialized devices.  Nanophotonics is an emerging field of study that encompasses the 

disciplines of physics, engineering, chemistry, biology, applied sciences and biomedical 

technology.  In particular, nanophotonics explores optical processes on a nanoscale.   

This dissertation presents nanophotonic applications that incorporate various 

forms of the organic polymer N‐isopropylacrylamide (NIPA) with inorganic 

semiconductors.  This includes the material characterization of NIPA, with such techniques 

as ellipsometry and dynamic light scattering.  Two devices were constructed incorporating 

the NIPA hydrogel with semiconductors. 

The first device comprises a PNIPAM—CdTe hybrid material.  The PNIPAM is a 

means for the control of distances between CdTe quantum dots encapsulated within the 

hydrogel.  Controlling the distance between the quantum dots allows for the control of 

resonant energy transfer between neighboring quantum dots.  Whereby, providing a means 

for controlling the temperature dependent red‐shifts in photoluminescent peaks and 

FWHM.  Further, enhancement of photoluminescent due to increased scattering in the 

medium is shown as a function of temperature. 

The second device incorporates NIPA into a 2D photonic crystal patterned on GaAs.  

The refractive index change of the NIPA hydrogel as it undergoes its phase change creates a 

controllable mechanism for adjusting the transmittance of light frequencies through a 



linear defect in a photonic crystal.  The NIPA infiltrated photonic crystal shows greater 

shifts in the bandwidth per ºC than any liquid crystal methods. 

This dissertation demonstrates the versatile uses of hydrogel, as a means of control 

in nanophotonic devices, and will likely lead to development of other hybrid applications.  

The development of smaller light based applications will facilitate the need to augment the 

devices with control mechanism and will play an increasing important role in the future. 
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CHAPTER 1 

INTRODUCTION 

 

1.1  Light Interaction with Matter 

The emergence of optical applications, such as lasers, fiber optics, and 

semiconductor based sources and detectors, has created a drive for smaller and specialized 

device applications.  The theoretical and experimental fields of optical physics have 

flourished since the 1960's as optical applications have emerged in industrial and 

commercial sectors.  The basis of the physics is the interactions between light and matter.   

 The development of the theoretical nature of light is one of the most interesting 

stories to be told in historical physics.  The scientific awakening of the sixteenth and 

seventeen centuries brought forth two incompatible models of light, one based on a 

particle theory and the other a wave theory.  It was not until the dawn of the twentieth 

century that a complete understanding of light's wave-particle duality came into being.   

Quantum electrodynamics successfully 

married the sub-disciplines of 

electricity, magnetism and atomic 

physics, to satisfactorily describe the 

nature of light and its interaction with 

matter.1 

 The basic interactions of light 

with matter include reflection, 

diffraction, refraction, and absorption, 

Figure 1.1 A depiction of the interactions of light with 
matter. 
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depicted in figure 1.1.   Each of these interactions, alter the energy, polarization and 

propagating direction of the EM wave.  Absorption is unique among the basic interactions 

in that the EM radiation incident on the absorbing material is not the same EM radiation 

detected.  The absorbed radiation is reradiated through fluorescent or Raman processes, 

which differ in wavelength from the incident radiation. 

 The first optical phenomenon, 

historically described was the refraction 

and reflection of light.  Reflection is the 

simple concept of the direction of a wave 

being changed to the opposite direction 

of the incoming wave.  However, 

refraction the bending of waves when 

they travel from one medium to another 

required a mathematical framework developed as Snell's law which describes the 

refraction of light in geometrical terms and the refractive indices of the materials.  In figure 

1.2, the change in angle is shown as a light wave from a low refractive index material enters 

a higher refractive index material and finally enters a material with a refractive index less 

than the second but greater than the first.  The refraction process occurs because of the 

decrease in velocity with higher refractive index materials and is different for each unique 

material. 

 The process of diffraction is the bending of waves due to interactions with scattering 

objects.  Waves interfere with one another and produce the familiar diffraction patterns 

according to the number of scatterers through which it interacts.  These scatterers may be 

Figure 1.2 A diagram of the change in angle of a 
propagating wave as it moves through mediums with 
different refractive indices.  
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objects or slits where even a single slit will produce a diffraction pattern as Young showed, 

to definitely prove the wave nature of light.  

The diffraction of light becomes most 

pronounced when the objects are on same 

order of size as the wavelength of the 

interacting wave.  Figure 1.3 shows two 

intersecting wave fronts.  The intensity of 

the wave fronts which intersect the wave 

peaks (blue intersections) will add together 

as constructive interference; while opposite 

wave fronts, peaks and valleys (a blue and a 

white) will cancel one another out. 

 While most photons incident on a medium are elastically scattered, Raman scattered 

light occurs as a result of a change in vibrational, rotational or electronic energy.  The total 

number of atoms or molecules scattering through Raman processes is small compared to 

the number scattering through Rayleigh or Mie process. 

 Fluorescence is a result of radiation absorbed at one wavelength followed by an 

emission of radiation at a different wavelength.  The differences between the absorbed 

radiation and the emitted radiation are dissipated through vibrational or thermal 

processes.  Materials that fluoresce include both organic and inorganic materials and are 

used extensively biomedical applications. 

 It is by the light—matter interaction that a material is characterization.  These 

interactions yield information about the atomic and molecular structure, as well as the 

Figure 1.3 Diffraction patterns of two intersection 
circular wave patterns. 
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electronic and optical properties of the material medium.  An understanding of the 

fundamental properties of a material and its behavior in the presence of radiation allow for 

the material's use in a variety of applications.  One such application is the fabrication and 

use in nanophotonic devices. 

1.2  Nanophotonics 

 Nanophotonics is an emerging field of study that encompasses the disciplines of 

physics, engineering, chemistry, biology, applied sciences and biomedical technology.  In 

particular, nanophotonics is the exploration of optical processes on a nanoscale.  The 

investigations in this field can be placed into three categories: (1) nanoscale confinement of 

radiation; (2) nanoscale confinement of matter; and (3) nanoscale photophysical or 

photochemical transformation. 2   The first two categories define the field of nanomaterials, 

while the last is based on nanofabrication of photonic structures.3  The field of 

nanophotonics is rather young in relation to other fields of study but will play an 

increasingly predominant role in future research and development. 

1.3  Overview of Dissertation 

 This dissertation will present nanophotonic applications that incorporate various 

forms of N-isopropylacrylamide (NIPA).  The information contained in the dissertation can 

be broken into four categories: (1) optical and physical properties NIPA; (2) low 

dimensional semiconductors; (3) tunable photonic crystals; and (4) historical 

development.  The light interactions of matter discussed above are used in characterizing 

the devices incorporating the NIPA hydrogel. 

 Chapter 2 describes the physical properties of hydrogel and its response to various 

stimuli.  This chapter is vital in understanding the following chapters as the optical 



5 
 

properties and applications are discussed.   For example the process and mechanics of 

undergoing a volumetric phase change are foundational in understanding the material 

characteristics. 

 Chapter 3 is the first optical characterization section that deals exclusively with 

dynamic light scattering.  Many researchers in the polymer world believe that the process 

of dynamic light scattering is due to Bragg diffraction.  This is erroneous.  It is based on 

scattering of light off individual particles and is shown in derivation format. 

 Chapter 4 is the second optical characterization section that introduces the concept 

of a change in refractive index of the material as the NIPA undergoes its phase change.  

Ellipsometric techniques are used to measure the refractive index at temperatures above 

and below the critical temperature. 

 Chapter 5 is the first chapter introducing a device application of the NIPA gel.  Low 

dimensional semiconductors, CdTe quantum dots, are introduced into the pores of the 

hydrogel.  As the NIPA undergoes its phase change, the relative distances between quantum 

dots change, thereby adjusting the resonant energy transfer between dots. 

 Chapter 6 is an introduction to photonic crystals including defects, bends and 

multiplexing.  Methods of tuning the photonic bandgap are discussed as a backdrop for 

tuning via NIPA hydrogel. 

 Chapter 7 is a chapter based on computer simulations of a tunable photonic crystal 

incorporating NIPA hydrogel as a tunable refractive index material.  The simulations 

compare the bandgaps for hydrogel in a swollen, low refractive index state to the gaps for 

the hydrogel in a collapsed high refractive index state. 
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 Chapter 8 is the experimental verification of a photonic crystal incorporating NIPA 

hydrogel.  Transmission experiments were performed to verify the tunability.  Further, a 

discussion of the instrumentation developed for placing the gel inside the photonic crystal 

and used for characterization are included. 

 Chapter 9 is a brief summary of the results and their implications and future 

research directions for projects are discussed. 

                                                 
1 J. Z. Buchwald, The Rise of the Wave Theory of Light: Optical Theory and Experiment in the 
Early Nineteenth Century, ed. (University of Chicago Press, Chicago 1989). 
 
2 Y. Shen, C. S. Friend, Y. Jiang, D. Jakubczyk, J. Swiatkiewics, P. N. Prasad, "Nanophotonics: 
Interactions, Materials, and Applications," J. Phys. Chem. 104, 7577-7587 (2000). 

 
3 P. N. Prasad, Nanophotonics, ed. (Wiley-Interscience, New York 2004) p. 3-8. 
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CHAPTER 2 

ON THE KINETICS OF  

VOLUMETRIC HYDROGEL PHASE TRANSITIONS 

 

2.1 Introduction to N-Isopropylacrylamide  

The unique properties of NIPA gels, such as being water based and compatible with 

biological systems, have been of great interest in the biomedical industry for applications 

such as controlled drug delivery1, artificial muscles, cell adhesion mediators2, precipitation 

of proteins,3 and chromatography.4  These ‘smart’ polymers1 respond to external physical 

environmental stimuli such as temperature5, pH6, electric field7, magnetic field8, light, salt 

and organic solvents.9  Further these gel polymers may also respond to biomolecules such 

as glucose10 and proteins.11  Although biomedical applications are the most extensively 

studied, NIPA gels have other applications such as sensors, shape memory, tunable optics,12 

and molecular imaging13.    

The functionality and versatility of the hydrogel is derived from its ability to change 

shape and respond to many different stimuli.  Hydrogels comprise randomly cross-linked 

                                                 
1 The Maya are believe to be the first civilization to find an application for polymers.  British explorers in the 
1500's discovered that the Maya made rubber balls for their children from local rubber trees.  [D. Hosler, S. 
Burkett, M. J. Tarkanian, "Prehistoric Polymers: Rubber Processing in Ancient Mesoamerica," Science 284, 
1988-1991 (1999)].  The first modern use was by Charles Goodyear when he combined natural rubber with 
sulfur at 270°C to create vulcanized rubber which is used extensively in today's automobile tires. [Charles 
Goodyear, Patent No. 240, "Improvement in the Process of Divesting Caoutchouc, Gum-Elastic, or India-
Rubber of its Adhesive Properties, and Also of Bleach the Same, and Thereby adapting it to Various Useful 
Purposes, (June 17, 1873)].  The first artificial polymer was made by Leo H. Baekeland, in 1907.  Bakelite was 
formed by mixing carbolic acid with formaldehyde and is used as an electrical insulator because of its 
hardness and high heat resistivity. [Leo Hendrick Baekeland, Chemical Achievers: The Human Face of the 
Chemical Sciences, Chemical Heritage Foundation, Accessed March 2008)].  In 1917, Michael Polanyi, 
employed x-ray diffraction to study polymers and in 1923 proposed a structure of long-chains with high 
molecular weight. [M. J. Nye, "Michael Polanyi (1891-1976)," Inter. J. Phil. Chem. 8, 123-127 (2002)].  Finally 
in 1920, Staudinger  proposed that polymers were made of long chains comprised of shirt repeating 
molecular units lined by covalent bonds. [H. Staudinger, "Über Polymerization," Ber. Deut. Chem. Ges. 53, 1073 
(1920)].  This idea ushered in molder polymer science. 
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polymer chains with water filling interstitial spaces of a formed network.14  Using the 

molecular weight and the relation between the interpenetration function and expansion 

coefficients, it has been shown that the NIPA polymer molecules act as a flexible coil.15    

These flexible coils can form two different varieties of the gel, a micro- or nano-

spherical form (figure 2.1) and a bulk 

form (figure 2.2).  The optical 

properties are such that while the bulk 

hydrogel is swollen with water in is 

typically clear but upon undergoing a 

volumetric phase transition the bulk gel 

becomes opaque.  Figure 2.3 shows a 

photo of the bulk for below LCST and 

above LCST.  The apparent change in 

opacity of the bulk gel is easily seen while 

that of the microgel, nano-particle form is 

less easy to observe due to size.   

Poly-N-isopropylacrylamide (PNIPA) gel systems exhibit strong temperature 

dependent characteristics; in particular, they exhibit a sharp volume phase transition at a 

critical temperature.  Below the lower critical solution temperature (LCST), polymer chains 

are hydrophilic and swollen with water and remain swollen until heated beyond the critical 

temperature.  Once the critical temperature has been attained the gel undergoes a 

discontinuous phase transition whereby the polymer chains become hydrophobic, 

decreasing in length causing the water to be expelled from the network.   The process is 

Figure 2.1 poly(N-isopropylacrylamide) 
microspheres in a hydrophilic state below LCST 
and in a hydrophobic state above LCST. 

Figure 2.2 Bulk NIPA hydrogel in a network 
structure below LCST and the collapse gel above 
LCST. 
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reversible, whereby lowering the temperature below the LCST reverses the transition 

causing the hydrogel to become swollen again with water.   

2.2  Historical Development of Hydrogel 

Materials having the ability to deform and then recover their original form have 

been studied extensively over the past century.  This ability to deform and recover from 

‘extensive and prolonged deformation’ is a significant feature of hydrogels.16 

In 1942, Flory and Rehner began studying interactions between solvents and cross-

linked network structures, and subsequently developed a statistical mechanical 

treatment.17  The interaction of the solvent is expressed as function of two variables: (1) its 

concentration in the swollen network; and (2) the degree of cross-linking.18  A gel in a 

solvent has a maximum swelling volume, related to the degree of cross-linking.  Flory goes 

on to show that the interaction between the solvent and the network may be calculated 

from the temperature coefficient of maximum swelling.  Flory’s original statistical 

treatment used Gaussian distributions of polymer chains, which was later refined to 

account for large concentrations of cross-linking.19  Huggins also devolved a similar 

Figure 2.3  The photo to the right shows the bulk NIPA below 34°C, while 
the right photo shows the gel above 34°C. 
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treatment concurrently with Flory.20  Subsequently, the theory has come to be known as 

Flory-Huggins theory or Flory-Rehner Theory. 

Dušek and Patterson, first predicted the collapse of polymer networks using the 

mean-field treatment of gel network systems in FH theory.21  They predicted the phase 

would change between dense and dilute states via a volume transition. 

Kuhn, first reported in 1950, experimentally measured volume changes in poly-

acrylic acid and poly-methylacrylate acid gels.22  Then in 1973, polyacrylamide-based 

hydrogels became of interest because of their ‘half-liquidlike’ and ‘half-solidlike’ material 

properties.23  This particular gel maintained a crystal type rigid structure when stationary 

but when subjected to a shear force it deformed easily.  The properties of the gel were 

explained as frictional forces between the liquid-solvent and the fibers comprising the 

polymer network.  Using Flory’s statistical treatment Tanaka explained the local motion of 

a polymer network with a diffusion equation where the diffusion coefficient was defined by 

the ratio of the elastic modulus of the network, to the frictional coefficient, between the 

network and the fluid.24 

Tanaka’s continued work, on polyacrylamide gels, produced studies on the 

temperature dependent network density fluctuations, using the intensity and correlation 

time of laser light experiments.25  The gel consisted of a network of covalently cross-linked 

polyacrylamide polymers in an acetone-water mixture.26  A theoretical treatment of density 

fluctuations of network density, using mode-coupling theory, was calculated using the 

elastic constant of the network and a frictional coefficient between the network and 

solvent.27  The theoretical framework explained the experimental results of the light 

scattering measurement. 
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In 1979, Tanaka, demonstrated that the characteristic time of swelling is 

proportional to the square of the linear dimension of the gel and proportional to the 

diffusion coefficient of the gel network.28  It was established that the swelling of the 

hydrogel is related to the diffusion of the polymer network in the solution instead of the 

solution into the polymer network.  This recognized a difference of understanding from 

previous theories where the assumption was that the swelling time is determined by the 

diffusion coefficient of the fluid molecules.  The diffusion coefficient is defined as 

𝐷 =
𝐸

𝑓
                                                                         (2.1) 

where 𝐸 represents the longitudinal bulk modulus of the network and 𝑓represents the 

coefficient of friction between the network and solution.    

Pelton and Chibante produced the first N-isopropylacrylamide microgels (spherical 

form), in 1986, with gel diameters of approximately 1μm.29   The precipitation 

polymerization method used by Pelton was similar to the surfactant-free emulsion 

polymerization of styrene.  The monomer and cross-linker were heated above LCST, to 

approximately 70°C, when an initiator was added causing the polymer chains to form.  

While this formation is occurring the polymer chains aggregate and are cross-linked into 

micro-particles that are stabilized by electrostatic and steric forces.30  The micro-particles 

have a narrow size distribution, which have similar properties as the bulk gel such as the 

ability to undergo a sharp volumetric phase transition.   

2.3  Volumetric Phase Transition Interactions 

The phase transitions of macromolecules can be controlled by four main 

interactions: ionic, hydrophobic, van der Waals and hydrogen bonding.31  These 



12 
 

interactions can be understood by observing the phase transitions in polymer gels.  The 

volumetric transition is not unique to NIPA gel but general to all kinds of polymer 

networks.32  The volumetric phase change of the NIPA gel are a consequence of the 

competition between repulsive intermolecular forces seeking to expand the network and 

an attractive force that acts to shrink the polymer.33  Hydrogels comprise an elastic cross-

linked polymer network and a fluidic solvent, filling interstitial space between the network 

fibers.  The volumetric phase transition of hydrogel gel exhibits critical kinetic behavior 

near a critical point where the transition time goes to infinity.  The volume transition is 

caused by interactions within the medium result in a coil—globule transition for a 

macromolecule polymer network in a dilute medium.34  This coil—globule transition was 

first observed for a single temperature dependent polystyrene polymer chain which 

exhibited a low density state and a high density state.35  The polymer interactions are a 

result of repulsive and attractive forces, which serve to expand or collapse the gel network. 

2.3.1 Ionic Interactions 

When a gel undergoes a volumetric phase transition it may do so by a continuous 

phase transition, or a first order discontinuous transition.  The continuity of the transition 

is determined by the proportion of ionizable groups incorporated into the polymer 

network and the stiffness of the polymer chains comprising the network.36  The higher the 

ionization of the groups, the greater the volume will change over a discontinuous 

transition.37  There are several ways ionized polymer networks are created.   

First, copolymerization of ionizable molecules placed into the network creates a 

discontinuous transition.38  The discontinuous transition occurs when the counter-ions to 

the ionized groups and the stiffness of the polymer chains increase the osmotic pressure to 
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expand the polymer network.  This process is similar to a gas-liquid transition dependent 

on an applied external pressure, which determines whether the transition is continuous or 

discontinuous.  The conditions for creating a gel with a discontinuous phase change became 

more apparent when the swelling of hydrogel and a number of its ionized forms are 

measured as a function of temperature.39   The nonionic NIPA hydrogels exhibited a sharp 

but continuous volumetric phase change.  However, when a small concentration of 

ionizable groups is incorporated into the gel the phase change became discontinuous. 

The second and third methods are similar in that ions are produced in the network 

group.  First, hydrolysis may be used to produce charges in water or solvent 

electrostatically.40  Secondly, ultraviolet light may be used to initiate an ionizing reaction in 

the gel, resulting in an internal osmotic pressure, thus inducing swelling.41  When the UV 

light is removed the equilibrium moves toward the neutral polymer system causing the gel 

to collapse.  Harrington et al. 1986, reported a reversible photoresponsive acrylamide gel 

in an electric field, where a rod shaped gel bent at a rate of 0.40 mm/s and 0.075 mm/s in 

the reverse bias.42   The process is slow because it is dependent upon photochemical 

ionization and recombination of ions.  Visible light is another option for light induced 

effects where hydrophobic interactions are predominant.  The transition is induced by the 

heating of network polymers with visible light, and thus avoids the slow ionization 

processes.43   

2.3.2  Hydrophobic Interactions 

Interactions between non-polar molecules and polar molecules in a solvent, such as 

water, create a hydrophobic transition mechanism.44   The interaction is a result in the 

difference in the Hammaker constants between the particle and solvent.45  The water 
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molecules arrange themselves in an order considered to be ‘tightly bound’ water.46  As the 

temperature of the system increases, the ‘tightly bound’ water molecules become less 

bound and around the hydrophobic groups.  This decrease in molecular interactions 

increases the hydrophobic interaction as the temperature increases.   

Adding molecules, which form hydrates, may weaken hydrophobic interactions in 

the gel network.47  Molecules, which form hydrates in water, include alcohol48, Me2SO 

(dimethyl sulfoxide)49, and DMF (dimethyl formamide).  For example, a gel swollen in pure 

water will exhibit a reentrant behavior as an external stimulus is varied monotonically.50  

Consider a NIPA gel that gradually shrinks as Me2SO is added to the gel, until the 

concentration reaches a critical value causing the gel to undergo a discontinuous volume 

change.  However, if the concentration of Me2SO continues to increase the gel undergoes a 

second first order discontinuous volumetric phase change, rewselling into its expanded 

state.  Further, the hydrophobic interaction may be modified with the addition of 

surfactants.   

2.3.3  van der Waals Interactions 

A phase transition controlled by van der Waal forces is achieved by adding solvents, 

which reduce other interactions.  Typically, van der Waal interactions are minimized when 

a gel is engineered to react to other stimuli such as temperature.51  This interaction is 

dominant when the hydrophilic interactions of polymers and solvent are overcome by 

chain-chain attraction.52 

2.3.4  Hydrogen Bonding Interactions 

The last dominant attractive interaction in gel network systems is hydrogen 

bonding.    Investigations of the balance between hydrophilic and hydrophobic states of 
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NIPA networks showed a dependence on size, configuration and mobility of alkyl side 

chains on substituted acrylamides.53  Okano, who studied many different gels, found that 

only N-isopropylacrylamide showed a sharp phase transition of the gel network.   

In 1991, Ilmain et al. developed a NIPA gel, which exhibited a phase transition as a 

result of hydrogen bonding, by slightly ionizing the gel of Okano.54  Cooperativity between 

molecules provided the necessary interaction beyond the hydrogen bonds to yield a phase 

transition.  This cooperativity or ‘zipping’ effect plays a crucial role in enhancing the 

attractive interaction.  The unique feature of this particular gel was the volumetric phase 

change in swelling was induced by increasing rather than decreasing the temperature. 

 In regards to the microsphere poly(N-isopropylacrylamide) hydrogel, the hydrogen 

bonding interaction is paramount.  Currently it is believed that the hydrogen bonding 

interactions form stable hydration shells around the hydrophobic groups of PNIPA.  When 

the temperature is increased above LCST, the hydrophobic interactions between polymer 

chains increase, thus expelling the water.55 

2.4 Flory-Huggins Theory 

Although Tanaka used FH theory to model the behavior of the NIPA gel, on closer 

examination modifications have been required.  The FH free energy of a gel is 

𝛥

𝜈𝑘𝐵𝑇
= 𝑁

1 − 𝜑

𝜑
 ln 1 − 𝜑 + 𝜒𝜑 +

1

2
 𝛼𝑥

2 + 𝛼𝑦
2 + 𝛼𝑧

2 − ln 𝛼𝑥𝛼𝑦𝛼𝑧  + 𝑓 ln𝜑,     (2.2) 

where 𝑘𝐵  is the Boltzmann constant, 𝑇 is the absolute temperature, 𝜑 is the volume fraction 

of polymer, the total number of chains is represented by 𝜈, 𝑁 is the total number of 

persistent units, 𝜒 is the reduced chain-solvent interaction energy, 𝛼𝑖  is the linear swelling 

ration along the ith direction, and 𝑓 is the number of ionized groups per chain.56    
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 Typically experiments are carried out where the osmotic pressure, 𝜋, in the gel is 

held at a constant zero, 

𝜋 = 𝜑2  
𝜕𝜇

𝜕𝜑
 = 0.                                                             (2.3) 

Defining the several variables, 𝑡, 𝜌, and 𝑆 as 

𝑡 ≡
 1 − 𝜒  2𝑓 + 1 

3
2

2𝜑𝑜
                                                          (2.4) 

𝜌 ≡  
𝜑

𝜑𝑜
  2𝑓 + 1 3/2,                                                         (2.5) 

and 

𝑆 ≡  
𝜈𝑣

𝑁𝜑3
  2𝑓 + 1 4,                                                         (2.6) 

the expansion of the FH free energy57 may be written as 

𝑡 = 𝑆  𝜌−5 3 −
𝜌−1

2
 −

𝜌

3
.                                                     (2.7) 

This equation gives us the isobar in a single equation with only one adjustable parameter 𝑆, 

determining the continuity.  If 𝑆 has a value larger than a critical value 𝑆0 the transition 

becomes discontinuous while a value of 𝑆 is below the critical value the transition will be 

continuous.  The critical point of the FH free energy equation is given by 

𝜕𝑡

𝜕𝜌
=
𝜕2𝑡

𝜕𝜌2
= 0.                                                                 (2.8) 

Unfortunately, when the critical value for NIPA gel is calculated, the theory predicts a 

continuous phase transition, counter to experimental evidence of a discontinuous 

transition.  Oversimplification in the basic FH theory causes a failure predict a 

discontinuous transition for NIPA gel by neglecting such variables as defects within the gel 
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network, where large deformations are absorbed by a small number of chains.  Li and 

Tanaka introduce the parameter σ to account for the fraction of chains that deform under 

the volume transition.58  Later, an empirically modified FH theory was developed to 

account for the relations between the number of segments between junction points and the 

monomer concentration.59  These empirical formulations extend FH theory to the 

transition of microgel nano-particles and have been shown to agree with experimental 

data.60 

2.5  Kinetics of Volumetric Phase Transitions 

 The viscoelastic interactions of the gel polymer elasticity and friction between the 

network and the solvent determine the kinetic behavior of swelling and shrinking.  The 

first theory of shrinking and swelling gel networks was derived from the theory of 

elasticity to describe experimental results gathered from light scattering experiments.61    

The equation of motion of the network according to Tanaka and Filmore is 

𝑓
𝜕𝒖(𝒓, 𝑡)

𝜕𝑡
= 𝛻 ∙ 𝜍 ,                                                              (2.9) 

where 𝒖(𝒓, 𝑡) is the displacement vector of the network and 𝑓 is the frictional coefficient 

between the network and solvent, the stress tensor 𝜍 , is given by 

𝜍𝑖𝑘 = 𝐾𝛻 ∙ 𝒖(𝒓, 𝑡)𝛿𝑖𝑘 + 2𝜇  𝑢𝑖𝑘 −
1

3
𝛻 ∙ 𝒖(𝒓, 𝑡)𝛿𝑖𝑘 ,                             (2.10) 

and the strain tensor is defined as 

𝑢𝑖𝑘 =
1

2
 
𝜕𝑢𝑖
𝜕𝑥𝑘

+
𝜕𝑢𝑘
𝜕𝑥𝑖

 .                                                       (2.11) 

Later, with the assumptions that the shear modulus of the gel is negligible compared with 

the osmotic bulk module, this theory was applied to spherical gels.62  With these 

assumptions, Tanaka reported that the relaxation time of the gel network was proportional 
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to the square of the linear size and inversely proportional to the collective diffusion 

constant of the network.  However, most gels have a shear modulus of the same order of 

magnitude as the bulk modulus.63   The theory was then generalized to include solutions for 

infinitely long cylinders, and disks having infinite diameters.64  The motion of a network 

chain during the process of swelling or deswelling, as described by Tanaka and Filmore can 

be written as 

𝜕𝒖(𝒓, 𝑡)

𝜕𝑡
= 𝐷0𝛻

2𝒖 𝒓, 𝑡 +
1

𝑓
 𝐾 +

𝜇

3
 𝜵 ×  𝜵 × 𝒖 ,                             (2.12) 

where 𝒖(𝒓, 𝑡) is the displacement vector measured from the final equilibrium state.65  The 

collative diffusion coefficient is given by 

𝐷0 =
1

𝑓
 𝐾 +

4

3
𝜇 .                                                         (2.13) 

The cross term in the equation of motion is zero for symmetrical geometries such as 

spheres, long cylinders, and large disks.66 

These early theories ignored the polymer interaction with the solvent medium.  The 

motion of the gel is controlled by the solvent, which seeks to minimize the total energy of 

the system, and over-damps the network motion, resulting in a diffusion-like relaxation.67   

What has become known as LT theory (Li and Tanaka) solves this by defining a 

dimensional quantity 𝑑𝑖  that accounts for each orthogonal direction in which the gel may 

swell (i.e. a disk is defined by 𝑑𝑖 = 1, a cylinder by 𝑑𝑖 = 2 and a sphere 𝑑𝑖 = 3).68    The 

swelling of the gel will be fastest along the orthogonal directions, assuming the swelling 

process is solely a diffusion process, and given that the relaxation time of a diffusion 

process is proportional to the square of the length scale.  The gel swelling will cause 

anisotropic deformation at the cost of shear energy.  This requires an additional term to 
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minimize the overall shear energy during the kinetic process.  The change in volume caused 

by the diffusion occurring only in the 𝑑𝑖  directions is redistributed to the remaining 

dimensions 𝑑 − 𝑑𝑖  through shear processes.  The redistribution, thus, reduces the rate of 

diffusion in the allowed 𝑑𝑖  direction.   

A more complete description of the displacement vector can be made by considering 

first a purely network diffusion process using a collective diffusion process with zero 

solvent velocity and second considering the movement of the solvent together with the 

network.  To accomplish this LT theory writes the displacement vector using two 

operators, one to describe the shear energy relaxation, 𝑺(𝒓, 𝑖), and the other the diffusion 

process, 𝐷(𝒓, 0). 

𝒖 𝒓, 𝑡 =   𝑺 𝒓, 𝑖 ∙ 𝐷 𝒓, 0 

𝑖

 𝒖 𝒓, 0                                         (2.14) 

where the index 𝑖 = 1, 2, 3…∞ characterizes steps of time (i.e. 𝑡 = 𝑖𝛥𝑡).  LT theory 

describes the diffusion constant with three terms: (1) the time; (2) the position within the 

gel; (3) the shape of the gel.  Making use of the dimensional quantity the diffusion constant 

becomes  

𝐷𝑒 = 𝐷𝑑
𝑑𝑑
𝑑

 

where 𝑑 is the total number of dimension (𝑑 = 3 a spherical gel particle).  The fractional 

reductions of the different diffusion constants are thus, 1/3 for a disk, 2/3 for a cylinder 

and 3/3 for a sphere.   

LT theory seeks to describe the swelling of a gel at the boundary by separating the 

motion of the network and solvent from the diffusion process.  Others have sought to 

directly solve the coupled equations of motion for a network and solvent for specific cases 
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such as a long cylinder or large disk.69  These later papers further refine the basic fractional 

reductions with additional terms to account for specific geometries and more closely relate 

to experimental data. 

 A gel undergoing a discontinuous volume transition will approach a critical point 

where the bulk elastic modulus 𝐾 becomes zero and the relaxation time approaches 

infinity.70  This phenomena was first observed in 1977 by Tanaka et al.71  The bulk elastic 

modulus, 𝐾, shear modulus, 𝜇, and coefficient of friction, 𝑓, are no longer constants but 

functions of time that change as the discontinuity is approached.72 

2.6  Preparation of N-isopropylacrylamide Gels 

 Hydrogels may be prepared in three different forms, bulk, nano-particle or micro-

particle.  The bulk form is easily made and easy to handle but reacts slowly to external 

stimulation.  The micro-particle and nano-particle react very quickly to external stimuli 

because of their size but are more difficult to prepare and handle.  The three forms may be 

prepared through three different methods.  The first method requires the co-

polymerization of two different monomers.73, 74  The second method requires the forming 

of inter-penetrating polymer networks.75  Lastly, hydrogels may be prepared by creating 

networks with micro-porous structures.76 

2.6.1.  Bulk Form 

The NIPA gel was prepared using free radical polymerization.77  A mixture of 

mixture of 7.8 g of N-isopropylacrylamide (Kodak, Co.), 133 mg of methylene-bis-

acrylamide as cross-linker, tetra-methyl-ethylene-diamine (240 μl) as accelerator, and 

sodium acrylate (SA), ionic group, were dissolved in 100 ml of deionized and distilled 
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water.  Nitrogen gas was bubbled through the solution to remove dissolved oxygen.  Then 

ammonium persulfate (40 mg) as an initiator was added to the solution.78 

2.6.2  Micro-particle Form 

The preparation of the micro-particle form, poly(N-isopropylacrylamide) or 

PNIPAM, includes the insertion of quantum dots for photonic applications of the hydrogel.  

This is a multi step process 

consisting of (1) PNIPAM 

particle synthesis; (2) CdTe 

nanocrystal preparation; and 

(3) encapsulation of 

nanocrystals in PNIPAM 

micro-spheres.79   

Poly-N-

isopropylacrylamide 

(PNIPAM) particles were 

synthesized by mixing NIPA 

monomer, N(3-aminopropyl) 

methylacrylamide chloride 

monomer, methylene 

bisacrylamide and N,N-

Cysteine-bisacrylamide in deionized water.  

A hybrid material comprised of PNIPAM and CdTe was made.   Cadmium Teluride 

(CdTe) nanocrystals were synthesized from sodium hydrogen telluride (NaHTe). 

Figure 2.3  A depiction of the steps to encapsulate CdTe quantum 
dots within PNIPAM. 
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Cd(ClO4)2..6H2O with proper pH adjustment.  Quantum dot sizes of 2 nm (green) and 4 nm 

(red) were of particular interest, as the emission wavelength of the resultant fluorescence 

is dependent on the physical dimensions of the quantum dot.  The CdTe nanocrystals were 

then encapsulated inside the PNIPAM spheres.  A basic schematic is shown in figure 2.3. 
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CHAPTER 3 

DYNAMIC LIGHT SCATTERING 

 

3.1  Introduction to Light Scattering 

When an electromagnetic wave interacts with a medium, a portion of energy is 

removed from the incident wave and scattered in all directions.  A scattering medium is 

comprised of scattering units or molecules having a light electronic charge bound to a 

massive nucleus.  The electric field of the incoming EM wave induces an oscillating 

polarization of the bound charges in the molecules.  The molecules with oscillating bound 

charges radiate the EM field, resulting in scattered light.1  The size, shape and molecule-

molecule interactions may then be determined through study of the polarization, frequency 

shift, angular distribution, and 

intensity of the scattered light.   

 In determining these 

quantities the light scattering 

experiments requires an incident, 

monochromatic and coherent light 

source.  The scattered incident light 

can be broadly categorized as an 

either inelastic or elastic interaction.  

The inelastic interaction is an 

absorption process such as Raman, fluorescence and phosphorescence, while in the elastic 

interaction there is no absorption.2  In the polymer and colloidal arts, elastic interactions 

Figure 3.1 A schematic view of a basic scattering 
experiment. 



29 
 

are referred to as a static measurement and quasi-elastic interactions are dynamic 

measurements.   

In practice, as shown in figure 3.1, a laser is used as the incident light source and 

scatters in a dilute solution of suspended colloidal particles or macromolecules.  The 

incident light will scatter off the macromolecules given that the refractive index of the 

solvent and the macromolecules differ.3  The destructive and constructive interference 

from each scattering macromolecule are recorded by a detector and are recorded as a net 

scattered intensity or a photon count.  The net scattered intensity will fluctuate with time 

because of the Brownian motion of the macromolecules in the solvent.  The rate of change 

in the intensity can be related to translational, rotational and internal motions of the 

macromolecules.  

 The non-invasive nature of dynamic light scattering has made it a standard 

measurement in the polymer arts.  Commercialized instrumentation have simplified and 

decreased the time required for the measurement.4  Employing theoretical electrodynamics 

and statistical mechanics, the structure and molecular dynamics can be measured in a 

scattering medium. 

3.2 Historical Development of Dynamic Light Scattering 

 The first experiments conducted on light scattering were performed by Tyndall in 

1869 on the light scattering from aerosols.5, 6, 7  The first theoretical work was done by Lord 

Rayleigh in describing atmospheric phenomena.8  The theoretical works involve describing 

the refractive index of small scattering particles9 and electromagnetic theory.10  After these 

initial papers, Rayleigh explained the blue color of the sky by extended the theory to 

include assemblies of non-interacting particles with a diameter comparable to the 
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wavelength of incident light.11  Rayleigh's final contributions to scattering theory came 

when he derived a scattering formula for spheres of an arbitrary size and showed a fixed 

phase relation of scattered waves from different points on the same particle with each 

element of the particle as an independent dipole oscillator.12, 13, 14  Scattering theory was 

further extended by Debye when he performed the calculation for non-spherical particles.15   

The description of large particles proved to be rather difficult because of fixed 

spatial relations between scatters and the dependence upon the amplitude of the electric 

field on the particles position.  In 1908, Mie16 and Debye17solved the problem 

independently for the case for spherical scatterers.  This large spherical particle scattering 

theory now bares Mie's name, as Mie Scattering.  Gans extended the theory by considering 

aspect ratios of the particles rather than well defined dimensions.18  These studies by Gans 

involved a suspension of gold particles and silver particles19 in solution.  Later he described 

the scattering by a large particle in a medium where the ratio of the refractive indices is 

approximate one.20   

 Out of Rayleigh's scattering theory, fluctuation theory was born.  Rayleigh's theory 

had failed to accurately predict the intensity of scattered radiation by condensed phases.  

The destructive interferences between the wavelets, scattered from molecule to molecule, 

accounted for the difference in the experimental and theoretical prediction.  The 

development of fluctuation theory brought a theoretical model to account for the 

condensed phase scattering.  Smoluchowski21 and Einstein22 developed fluctuation theory 

and solved the problem by considering a liquid to be a continuous medium.  Smoluchowski 

described the optical effects that occur near the gas-liquid critical point of a binary mixture 

of liquids.  Einstein was able to show that critical opalescence could be explained by density 
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fluctuations.  Within the continuous medium thermal fluctuations can give rise to local 

inhomogeneities and thus density and concentration fluctuations.23  Thus the intensity of 

light can be found without a detailed description of the scattering medium. 

 The fluctuation approach calculates the mean square fluctuations of density and 

concentration from fluctuations in the scattered light.  These mean square fluctuations then 

are used to calculate the isothermal compressibility and the concentration dependence of 

the osmotic pressure.24  The phenomenological approach to light scattering was objected to 

by some on the grounds that light scattering arises from density fluctuations in a region 

with dimensions small compared to the wavelength of incident light. 25, 26  However, 

Fixman in 1955 was able to show that the Einstein-Smoluchowski phenomenological 

scattering theory agrees with the molecular scattering theory.27  

 Ornstein and Zernike's work in correlation functions provided the step in describing 

the scattering process in liquids.  Their studies centered on the scattering of light in a fluid 

critical opalescence.28, 29, 30  They showed that the pair correlation function becomes 

infinity long, when the turbidity of a fluid in a region is in close proximity to the gas-liquid 

critical point.  In 1927, Zernike and Prins showed that the pair correlation function could 

be used to correlate the positions of particles in a liquid with scattered x-rays.31 

Debye, in 1947, was able to show a method for measuring the molecular weight of 

large particles in solution by expanding the concentration as a power series and 

considering a distribution of masses and diameters.32, 33  Concurrently, Zimm developed a 

method of deriving molecular mass by performing scattering experiments at several angles 

and at least four different concentrations.34  The plot of the data is known as the Zimm 
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plot.35 Debye's method differed from Zimm's method in that Debye only required scattered 

data from only one angle. 

 Another light scattering method was developed by the Brillouin, which measured 

the frequency distribution of scattered light from acoustic vibrations a medium.36, 37  

Brillouin scattering is similar to Raman scattering38 in that Brillouin scattering results from 

acoustic phonons, while Raman scattering is derived form optic phonons and molecule 

vibrations.  The Brillouin scattering measurement determines a frequency shift with an 

interferometer and is limited to the detection of quasi-particles.  Brillouin predicted a 

doublet frequency distribution, now baring his name, which was observed by Gross in 

liquids.39, 40  Along with the Brillouin doublet, Gross also observed a central line with an 

unshifted maximum, which represented the fine structure of Rayleigh scattering due to 

acoustic waves in condensed matter.  The unshifted frequency was explained as the 

entropy fluctuation component of density fluctuations.41  The ratio of the integrated 

intensity of the central line to that of the doublet could be written as 

𝐼𝑐
𝐼𝑑

=
𝑐𝑝 − 𝑐𝑣

𝑐𝑣
. 

This relation is known as the Landau-Placzek ratio.  In their 1934 paper they also noted 

that the spectral width of the light scattered by the non-propagating density fluctuations 

would be proportional to the thermal diffusivity of the fluid. 

 The invention of the laser, by Gould in the late 1950's, brought new and increasingly 

accurate scattering experiments.  Using the frequency distribution of scattered light from 

suspended macromolecules the diffusion coefficient could be found.42  Finally, in 1964 

Cummins et al. introduced optical mixing as a method for resolving scattered light from a 



33 
 

suspension of dilute polystyrene spheres.43  With this technique of optical mixing 

spectroscopy, the modern era of laser light scattering emerged to be widely used in 

physics, material science, biology and chemistry. 

3.3  Theory of Light Scattering 
  
 Light scattering as formulated from classical electromagnetic theory occurs when 

incident light falls upon a medium containing charges.  The electromagnetic field exerts a 

force on the charges which in turn re-radiate the electromagnetic field.  If the medium is 

comprised of many scatterers, then the scatterers are assumed to receive the same incident 

field.  The resulting scattered electric filed from the particles will then be a superposition of 

scattered fields.  

 The direction of the scattered field depends on the characteristics of the scattering 

medium.  If the medium is composed of particles with identical dielectric constants, the 

only scattered light will be in the forward direction.  Scattered wavelets from each volume 

element will differ only by a phase factor which is determined by relative positions in the 

volume.  For a large volume, each scattered wavelet from a volume element can always be 

matched with a corresponding wavelet with equal amplitude but opposite phase from 

another volume element.  Conversely, if the medium is comprised of particles with differing 

dielectric constants, then the amplitudes from the various volume elements will no longer 

have equal amplitudes.  Thus, the wavelets will not be canceled and scattered light will 

propagate from the medium.  Fluctuation theory as introduced by Einstein brings a semi-

classical view of scattering based on molecular translation and rotation in the medium.44   
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 Particles in a solution, such as the PNIPA are not stationary but undergoing constant 

Brownian motion.  These 

motions within the solution 

result in fluctuations in the 

intensity of scattered 

radiation from the medium.  

The fluctuation rate of the 

scattered light gives 

information related to 

relaxation processes such as translation and rotational diffusions and molecular internal 

motions.   

Consider a light scattering experiment where a laser is focused onto a fluid 

containing macromolecules in a suspension.  The incident electric field, 𝑬𝐼 , of the plane 

wave impinging upon the 

suspended macromolecules is 

then scattered, 𝑬𝑆 , in all 

directions and a component of 

the electric field is transmitted 

through the scattering 

medium, 𝑬𝑇 , as shown in figure 

3.2.  Polarizers can be inserted, 

as in figure 3.3, to control the 

polarization of the incident light, allowing for study of the polarization by detectors in the 

Figure 3.2 The interaction of electromagnetic radiation with a 
medium depicted as the incident, scattered and transmitted 
electric fields. 

Figure 3.3 A basic schematic of the scattering experiment showing 
the relative positions of the polarizer, analyzer and detector.  The 
wavevectors kI and kS and the scattering vector are also defined. 
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setup.  Information about the macromolecules in solution can be determined from both the 

scattered electric field and the transmitted electric field.  

 The study of the resulting electric fields can be studied through optical mixing 

techniques.  The beating of electromagnetic waves was first studied in the radio 

frequency45 regime but is also applicable to other EM frequencies.  The study of the 

scattered light is called the homodyne method where only scattered light is collected by the 

detector.  The second method is called heterodyne where non-scattered light is mixed with 

the scattered light at the photomultiplier tube.  The signal from the PM is then analyzed 

with an autocorrelator.  

3.3.1  Scattering of Electromagnetic Waves 

In understanding the operation of the light scattering experiment it is first required 

to appreciate the interaction of the electromagnetic radiation with the medium.  A detailed 

derivation of the scattered field is given in section 8.1 at then end of this chapter.  In this 

section an expression for the amplitude of the scattered wavevector will be shown.  

Consider the electric field of an incident plane wave  

𝑬 𝒓, 𝑡 = 𝐸0𝑒
𝑖(𝒌𝐼 ∙𝒓−𝜔 𝐼𝑡)𝑛 𝐼                                                        (3.1) 

where 𝐸0 is the amplitude of the electric field, 𝒌𝐼  is the wavevector, 𝜔𝐼  is the angular 

frequency and 𝑛 𝐼  is the unit vector in the direction of the incident electric field.  Further, 

the local dielectric constant is given in terms of a fluctuation tensor I, the position r and 

time t 

𝜺 𝒓, 𝑡 = 𝜀0𝑰 + 𝛿𝜺 𝒓, 𝑡                                                          (3.2) 

A scattering vector 𝑞 may be defined in terms of the incident, 𝒌𝐼 , and scattered wave 𝒌𝑆  

vectors. 
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𝒒 = 𝒌𝐼 − 𝒌𝑆 .                                                                  (3.3) 

The wavevectors have magnitudes of 

𝑘𝐼 =
2𝜋𝑛

𝜆𝐼
                                                                      (3.4) 

and 

𝑘𝑆 =
2𝜋𝑛

𝜆𝑆
                                                                      (3.5) 

 where 𝑛 is the refractive index of the scattering media.  The wavelength of light will not 

change during the non-absorption scattering process allowing 

 𝒌𝐼 ≅  𝒌𝑆                                                                      (3.6) 

Using the law of cosines the scattering vector can be found 

𝑞2 =  𝒌𝑆 − 𝒌𝐼 
2 = 𝑘𝑆

2 + 𝑘𝐼
2 − 2𝒌𝐼 ∙ 𝒌𝑆                                            (3.7) 

= 2𝑘𝐼
2 − 2𝑘𝐼

2𝑐𝑜𝑠𝜃 = 4𝑘𝐼
2 sin2

𝜃

2
                                                 (3.8) 

Finally, taking the square root the magnitude of the scattering vector becomes 

𝑞 = 2𝑘𝐼 sin
𝜃

2
.                                                                (3.9)     

Many authors erroneously refer to equation (3.9) as the Bragg Condition.   The 

Bragg condition comes from the father-son physicist team of William Henry Bragg and 

William Lawrence Bragg and was derived in 1914 to describe the x-ray scattering off a 

crystal lattice.46  The Bragg condition is noted as 

𝑚𝜆 = 2𝑑 sin 𝜃.                                                              (3.10) 

In figure 3.4, it is apparent that the angle ΘD is equivalent to 2θ in equation (3.9).  However, 

there is a subtle difference between equations (3.9) and (3.10).  The two equations are only 

equivalent for a single crystalline plane, which without multiple planes, Bragg Diffraction 
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does not occur.  Thus, by some 

authors calling equation (3.9) 

the Bragg condition they are 

implicitly stating that more 

than one crystalline plane 

exists.  This is never assumed 

in the derivation nor is it a 

physical representation of 

reality.  The signal of scattered light received by the detector is due to fluctuations of the 

macromolecule, not a lattice type ordering of macromolecules.  Further, disorder in a 

medium of suspended scatterers would preclude any assumption of Bragg diffraction. 

3.3.2  The Correlation Function  

A correlation function associates random variables at two different points in space 

or time.  In other words, these functions provide a technique for measuring the extent to 

which two random variables are related over a period of time.  The autocorrelation 

function is the correlation of random variables at the same point but different times and is 

a measure of random variables in a system as they change with respect to time.  Further, 

sometimes the autocorrelation may refer to the correlation of random variables in a system 

with multiple random variables. 

Advancement in time-dependent correlations became realized with the theory of 

noise and stochastic processes.47  The correlation between random variables has become 

an extensively employed technique in light scattering spectroscopic experiments and in 

describing the scatterers which are governed by statistical mechanics.   

Figure 3.4  A depiction of Bragg Diffraction and the angles 
associated with the crystal phenomena. 
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In the dynamic light scattering experiment, changes in the properties of the 

electromagnetic radiation is measured, such as frequency shifts, intensity fluctuation and 

polarization changes from interactions with the macromolecules.  The incident EM wave is 

assumed to be weak and the macromolecules are assumed to interact linearly with the 

wave.  The theory of linear response was developed to measure reaction the light to 

macromolecules, when they are weakly coupled.48  The theory states that if the response of 

each system in the absence of coupling is known then the response of one system to the 

other is also known.49  Simply, the time-correlation function is determined by taking one 

dependent quantity 𝑋(𝑡), multiplied by another time dependent quantity 𝑋′(𝑡 + 𝜏) and 

averaged over an equilibrium ensample.50  The time-correlation functions of the random 

variables then describes the response of one system to the other.  Time-correlations occur 

widely in classical and quantum statistical mechanics. 

An example of time correlation functions in statistical mechanics is demonstrated 

with a cylinder of gas which is in thermal equilibrium.51  The random, Brownian motion of 

the particles of the gas will change the particles positions and momenta as functions of 

time.  The pressure on a cylinder wall is proportional to the total force per unit area, which 

is also proportional on the distance of various particles from the wall.  Consider pressure as 

the property 𝑋 which depends on both the positions and momenta.  If the pressure on the 

cylinder wall is measured instantaneously, the measurement will reflect the random 

molecular motion of the particles as fluctuations.  A plot of the property 𝑋 as a function of 

time will be similar to a noise pattern.  If the measurement of 𝑋, is made over a long time 

compared to the fluctuation period, instead of instantaneously, the measurement will 

approach an average value. 



39 
 

 The autocorrelation of the property 𝑋 will measure the similarity between two 

noise signals at different times and is derived in section 8.2.  The property 𝑋 will be 

measured at an initial moment 𝑋(𝑡) and after a time 𝑋(𝑡 + 𝜏).  If the autocorrelation 

function decays as a single exponential function then, the fluctuation of the property from 

its average value is given by 

 𝛿𝑋 0 𝛿𝑋 𝜏  =  𝛿𝑋2 𝑒
−𝜏
𝜏𝑟                                                    (3.11) 

In general the fluctuation does not decay exponentially, thus a time scale for the decay of 

the correlation can be defined as  

𝜏𝑟 ≡  𝑑𝜏
∞

0

 𝛿𝑋 0 𝛿𝑋 𝜏  

 𝛿𝑋2 
.                                                 (3.12) 

3.3.3  Spectral Density 

 Often the measurement made in light scattering experiments is the spectral density 

of the electric field of the incident light on a medium.  In the typical scattering experiment 

light scatters off a particle, then the scattered light passes through a filter with a given 

band-width and then is collected by a detector.  The spectral intensity of a property 𝑋 is 

given by 

lim
𝑇→∞

  𝑋𝑇0 
2 𝑇 = 𝐼𝑋 𝜔0 𝛥𝜔                                                  (3.13) 

where 𝑇 is the interval of time tending toward infinity, 𝛥𝜔 is the range of frequencies 

allowed through the filter, and 𝐼𝑋  is the spectral density of the property 𝑋 autocorrelation 

function.  The spectrum of 𝑋 can then be found by tuning the filter to allow different values 

of 𝜔0. 
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 In practice the property 𝑋(𝑡) is the scattered electric field 𝐸𝑇(𝑡), passes through a 

filter such as an interferometer, or grating, and collected by a photomultiplier tube (PM).  

Equation (3.13) becomes 

lim
𝑇→∞

  𝐸𝑇0 
2 𝑇 = 𝐼𝐸 𝜔0 𝛥𝜔.                                                   (3.14) 

The spectral density or power spectrum is found by Fourier inversion and using the time-

correlation, 

𝐼𝐸 𝜔 =
1

2𝜋
 𝑑𝜏

+∞

−∞

 𝐸∗ 𝑡 𝐸(𝑡 + 𝜏) 𝑒𝑖𝜔𝑡 .                                      (3.15) 

Thus, the in practice the spectral density 𝐼𝐸(𝜔) is measured with a filter or by heterodyne 

methods using a spectrum analyzer.   

3.4  Static Light Scattering  

The static light scattering experiment measures, the time averaged photon count, 

using a photomultiplier tube.  Fluctuation theory governs changes in the poarizability of 

the scattering.  The scattered intensity depends upon three variables: (1) the molecular 

weight, 𝑀𝑤 ; (2) the average root mean square of the radius of gyration; and (3) the second-

order virial coefficient 𝐴2.  Fluctuations in simple media are typically due to variations in 

temperature and pressure, while in polymer solutions the fluctuation is due to 

concentration fluctuations. 

3.4.1 Excess Rayleigh Ratio 

The Rayleigh Ratio is a measure of the intensity of electromagnetic radiation per 

unit scattering volume.  The first excess Rayleigh ratio measurements were performed in 

the early 60's, but deviated greatly from theoretical predictions.52  Later, measurements 

became reasonably closer to predicted values.53, 54, 55 
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The scattered intensity for a single particle is given by 

𝐼𝑠 =
𝑘𝑠

4 sin2 𝜃

𝑟2
𝛼2𝐼0                                                          (3.16) 

where 𝐼𝑠  is the scattered intensity, 𝐼0 is the incident radiation, 𝜃 is the angle of the scattered 

light, 𝑟 is the distance from the scattering particle to the detector, 𝛼 is the polarizability, 

and  𝑘𝑠 = 2𝜋𝑛
𝜆𝑜

 .  Now consider a volume 𝑉, containing 𝑁 scattering particles.  Equation 

(3.16) may be altered to account for the multiple particles 

𝐼𝑠 =
𝑘𝑠

4sin2𝜃

𝑟2
𝛼2

𝑁

𝑉
𝐼0.                                                       (3.17) 

Gathering the intensities 

𝐼𝑠𝑟
2

𝐼0
= 𝑘𝑠

4sin2𝜃 𝛼2
𝑁

𝑉
                                                       (3.18) 

allows the definition of the Rayleigh ratio as 

𝑅 =
𝐼𝑠𝑟

2

𝐼0
.                                                                   (3.19) 

The excess Rayleigh ratio is found by using the Clausius-Mosotti equation56 

(𝑛2 − 1)

(𝑛2 + 2)
= 4𝜋𝛼

𝑁

𝑉
.                                                           (3.20) 

However, in free space 𝑛~1, then 

𝑛2 − 1 = 4𝜋𝛼
𝑁

𝑉
.                                                            (3.21) 

For a solvent medium with a refractive index of 𝑛0 then 

𝑛2 − 𝑛0
2 = 4𝜋𝛼𝑒𝑥

𝑁

𝑉
.                                                        (3.22) 

where 𝛼𝑒𝑥  is the excess polarizability.  Solving for 𝛼𝑒𝑥  and writing 𝑁 in terms of the 

concentration 
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𝐶 =
𝑀

𝑁𝑎

𝑁

𝑉
 

𝛼𝑒𝑥 =
2

4𝜋𝐶

(𝑛 − 𝑛0)

𝑛

𝐶𝑉

𝑁
,                                                      (3.23) 

or in differential form 

𝛼𝑒𝑥 =
1

2𝜋𝑛0

𝑀

𝑁𝐴
 
𝜕𝑛

𝜕𝐶
 

2

 
𝜕𝜇

𝜕𝐶
 

𝑇,𝑃

−1

,                                             (3.24) 

where 𝜕𝜇 𝜕𝐶  is the fluctuation of chemical potential due to the fluctuation in 

concentration, 𝑁𝐴  is Avogadro's number and 𝑀 is the molecular weight .  Writing equation 

(3.19) as the excess Rayleigh ratio 

𝑅𝑒𝑥 =
𝐼𝑒𝑥 𝑟2

𝐼0
,                                                                 (3.25) 

where 𝐼𝑒𝑥 = 𝐼𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝐼𝑆𝑜𝑙𝑣𝑒𝑛𝑡 .  Substituting equation (3.24) and (3.25) into equation (3.18) 

yields 

𝑅𝑒𝑥 =
4𝜋2𝑛𝑜

2

𝜆𝑜
4

𝐶𝑀

𝑁𝑎
𝑠𝑖𝑛2𝜃  

𝜕𝑛

𝜕𝐶
 

2

 
𝜕𝜇

𝜕𝐶
 

𝑇,𝑃

−1

.                                      (3.26) 

where 𝜆0 is the wavelength of the incident light.  For dilute polymer solutions it is often 

more convenient to write equation (3.26) in terms of the osmotic pressure 𝜋0, 

𝑅𝑒𝑥 =
4𝜋0

2𝑛0
2

𝜆0
4 sin2𝜃  

𝑑𝑛

𝑑𝐶
 

2 𝑘𝐵𝑇𝐶

𝜕𝜋0 𝜕𝐶 
,                                          (3.27) 

where 𝑘𝐵  is the Boltzmann constant and 𝑇 is the absolute temperature.  The virial 

expansion of the ratio of the osmotic pressure  

𝜋0

𝐶
= 𝑁𝑎𝑘𝐵𝑇  

1

𝑀
+ 2𝐴2𝐶 + 3𝐴3𝐶 …  

−1

                                     (3.28) 

or in differential form 
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𝜕𝜋0

𝜕𝐶
= 𝑁𝑎𝑘𝐵𝑇  

1

𝑀
+ 2𝐴2 + ⋯  

−1

                                          (3.29) 

or 

𝜕𝜋0

𝜕𝐶
= 𝑁𝑎𝑘𝐵𝑇

1

𝑀
 1 + 2𝐴2𝑀 + ⋯  −1                                      (3.30) 

where 𝐴2 is the second virial coefficient and 𝐴3 is the third virial coefficient which is 

ignored.  Substituting (3.30) into equation (3.27) and allowing 𝜃 = 𝜋 2  for the incident 

angle, gives 

𝑅𝑒𝑥 =
4𝜋0

2𝑛0
2

𝜆0
4  

𝑑𝑛

𝑑𝐶
 

2 𝐶𝑀

1 + 2𝐴2𝐶𝑀 + ⋯
.                                       (3.31) 

An optical constant may be defined to simplify equation (3.31) 

𝐾𝐶

𝑅𝑒𝑥
=

1

𝑀
+ 2𝐴2𝐶 + ⋯                                                      (3.32) 

where 

𝐾 =
4𝜋2𝑛2

𝜆0
4𝑁0

 
𝑑𝑛

𝑑𝐶
 

2

.                                                          (3.33) 

In general the Rayleigh ratio is dependent upon the scattering vector q 

𝑞 =
4𝜋𝑛

𝜆
𝑠𝑖𝑛

𝜃

2
,                                                              (3.34) 

where 𝜆 is the wavelength of light in the medium and 𝜃 is the scattering angle.  Given that 

there are many scatterers, interference will arise that can be described in terms of a 

structure factor 

𝑃 𝜃 =
1

𝑁2
   𝑒𝑖𝒒𝒓𝑖𝑗  ,                                                 (3.35)

𝑁

𝑗

𝑁

𝑖
 

where 𝑁 is the number of scatterers per molecule.  Expanding for small values of 𝒒 

𝑃𝑧 𝜃 = 1 −
1

3
𝑞2 𝑅𝑔

2 𝑧 + ⋯,                                                  (3.36) 
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where the mean-square radius of gyration is 

 𝑅𝑔
2 𝑧 =

1

𝑁
  𝑅𝑖 

2 …                                                        (3.37) 

and the z-average of the mean-square is 

 𝑅𝑔
2 𝑧 =

 𝑚𝑖𝑀𝑖 𝑅𝑔
2 𝑖

 𝑚𝑖𝑀𝑖
.                                                        (3.38) 

Defining the z-average of 𝑃(𝜃) 

𝑃𝑧 𝜃 =
 𝑚𝑖𝑀𝑖𝑃𝑖(𝜃)

 𝑚𝑖𝑀𝑖
                                                      (3.39) 

where 𝑃𝑖(𝜃) is the structure factor of the ith particle and 𝑚𝑖  is the mass fraction of particle 

ith with molecular weight 𝑀𝑖 .   Thus writing equation (3.32) in terms of (3.36) yields57, 58, 59 

𝐾𝐶

𝑅(𝜃)
=

1

𝑀𝑤𝑃𝑧(𝜃)
+ 2𝐴2𝐶 + ⋯.                                              (3.40) 

Combining equation (3.40) and (3.36) yields the Zimm equation 
 

𝐾𝐶

𝑅(𝜃)
= 𝐾𝐶𝑀𝑃 𝜃 = 𝐾𝐶𝑀  1 −

1

3
𝑞2 𝑅𝑔

2 𝑧 + ⋯  .                            (3.41) 

 
Equation (3.41) may be simplified if 𝑞2 𝑅𝑔

2 ≪ 1 and ignoring higher order terms60 

𝐾𝐶

𝑅(𝜃)
=

1

𝑀𝑤
 1 +

1

3
𝑞2 𝑅𝑔

2 𝑧 + 2𝐴2𝐶                                         (3.42) 

where 

𝑀𝑤 =
 𝐶𝑖𝑀𝑖𝑖

 𝐶𝑖𝑖
.                                                                (3.43) 

3.5  Dynamic Light Scattering  

 Dynamic light scattering, also referred to as Quasi Elastic Light Scattering (QELS) is 

determined from an autocorrelation of the intensity fluctuations due to the Brownian 

motion of the suspended scatterers.  The quantities typically measured in the dynamic 
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scattering experiment are the translational diffusion coefficient 𝐷, the half width at full 

maximum 𝛤 and the hydrodynamic radius 𝑅𝑕 .   The measurement is made essentially using 

the Doppler Effect, where incident light on scatterers undergoing Brownian motion is 

shifted due to their motion.  The quantities measuring the fluctuation are either scattered 

intensity or frequency broadening.  These methods of measurement refer to the techniques 

of heterodyne and homodyne optical mixing.  Heterodyne mixing is the optical mixture of 

the scattered light with an unshifted unscattered reference beam.  The homodyne or self 

beating method does not require mixing of a reference beam but measures the beating 

directly.61  While the frequency broadening will be extremely small compared to the 

incident light in the frequency domain, the broadening can be measured in the time domain 

through a time-correlation function.   

 The Seigert relation, as derived in section 8.4, makes use of the time-time 

correlation function in determining 𝛤 and 𝐷.  The Siegert relation relates the second order 

autocorrelation curve with the first autocorrelation function 

𝑔 2  𝜏 = 𝐴  1 + 𝛽 𝑔 1  𝜏  
2
                                                (3.44) 

𝐴 =  𝐼 𝑡 𝐼(𝑡)                                                              (3.45) 

and 

𝑔 2  𝜏 =  𝐼 𝑡 𝐼(𝑡 + 𝜏) ,                                                     (3.46) 

where 𝑔(1) is the first autocorrelation function, 𝑔(2)is the second autocorrelation function, 

𝛽 is a correlation factor which is dependent upon the scattering geometry of the 

experiment and 𝜏 is the decay time. 
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 The intensities in the Seigert relation may be written in terms of the components of 

the scattering medium, particularly the solvent and solute (macromolecules).  Equation 

(3.46) becomes 

𝑔 2  𝜏 =   𝐼𝑠𝑜𝑙𝑣𝑒𝑛𝑡  𝑡 + 𝐼𝑠𝑜𝑙𝑢𝑡𝑒 (𝑡)  𝐼𝑠𝑜𝑙𝑣𝑒𝑛𝑡  𝑡 + 𝜏 + 𝐼𝑠𝑜𝑙𝑢𝑡𝑒 (𝑡 + 𝜏)              (3.47) 

and equation (3.45) becomes 

𝑔 2  𝜏 = 𝐴  1 + 𝛽  
𝐼𝑠𝑜𝑙𝑣𝑒𝑛𝑡

𝐼𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
  𝑔 1  𝜏  +

𝐼𝑠𝑜𝑙𝑢𝑡𝑒

𝐼𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 𝑔𝑠𝑜𝑙𝑢𝑡𝑒

 1  𝜏   
2

.             (3.48) 

It should be noted that the cross terms have been eliminated because the light scattered by 

the solvent is not correlated with light scattered by the solute.  Since the small molecules of 

the solvent diffuse faster than the solute, the decay of the first correlation function, 

 𝑔𝑠𝑜𝑙𝑣𝑒𝑛𝑡
 1 

(𝜏)  is faster than the second correlation function  𝑔𝑠𝑜𝑙𝑢𝑡𝑒
 2 

(𝜏)  .  Thus the 

approximation can be made 

𝑔 2  𝜏 = 𝐴  1 + 𝛽  
𝐼𝑠𝑜𝑙𝑢𝑡𝑒

𝐼𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 

2

 𝑔𝑠𝑜𝑙𝑢𝑡𝑒
 1 

 𝜏  
2

 .                               (3.49) 

Writing equation (3.49) in the same form as equation (3.44) 

𝑔 2  𝜏 = 𝐴  1 + 𝛽𝐴 𝑔𝑠𝑜𝑙𝑢𝑡𝑒
 1 

 
2

 ,                                            (3.50) 

where 𝛽𝐴  is dependent upon the ratio of the intensity of the solute to the solution and 𝛽 and 

is called the apparent coherence  

𝛽𝐴 = 𝛽  
𝐼𝑠𝑜𝑙𝑢𝑡𝑒

𝐼𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 

2

.                                                       (3.51) 

The determination of the intensity—intensity correlation function 𝑔 2 (𝜏) requires a 

definition of the first correlation function  𝑔 1 (𝜏) .  Assuming the medium is comprised of 
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monodisperse, spherical scatterers the first correlation function can be represented as an 

exponential decay function 

 𝑔 1 (𝜏) = 𝐺 𝛤 e−𝛤𝑡 ,                                                       (3.52) 

where 𝐺(𝛤) is the line width coefficient distribution having a full width at half maximum 𝛤.  

The FWHM is defined as 𝛤−1 = 𝜏𝑐  the characteristic decay time of the rate of dynamic 

relaxation in self beating. 

 Equation (3.52) can be generalized as a Laplace integral, for a polydisperse polymer  

 𝑔 1 (𝜏) =  𝐺 𝛤 𝑒−𝛤𝑡𝑑𝛤,                                                (3.53)
∞

0

 

where the polymer has a continuous molar mass 𝑀 and the quantity 𝐺 𝛤 𝑑𝛤 can be 

considered the statistical weight of the particles with a FWHM of 𝛤.  

 Another method of dealing with equation (3.52) is to apply a cumulant fit to the 

logarithmic correlation function 

ln 𝑔 1 (𝜏) = −𝛤𝑡 +
𝜇2

2
𝛤2𝑡2 −

𝜇3

6
𝛤3𝑡3 + ⋯.                                (3.54) 

where the cumulants 𝜇2 and 𝜇3 are measures of the degree of polydispersion.  In practice, 

the cumulant analysis of narrowly dispersed polymer chains in a dilute is sufficient to 

determine an accurate line width 𝛤.62  Defining an apparent diffusion constant in terms of 

the scattering vector q and inverse characteristic decay time 𝛤 

𝐷𝐴 𝑞 =
𝛤

𝑞2
.                                                                (3.55) 

In the limit of a small scattering vector 𝒒, 𝐷0  can be expanded and written in terms of the 

radius of gyration 

𝐷𝐴 𝑞 = 𝐷𝑧 1 + 𝑓 𝑅𝑔
2 𝑧𝑞

2 + ⋯                                              (3.56) 
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and the diffusion coefficient 𝐷𝑧  can be written as 

𝐷𝑧 = 𝐷𝑜(1 + 𝑘𝑑𝐶 + ⋯.                                                     (3.57) 

Thus, combining equation (3.56) and (3.57), equation (3.55) can be written as63, 64, 65 

𝛤

𝑞2
= 𝐷 1 + 𝑘𝑑𝐶  1 + 𝑓𝑞2 𝑅𝑔

2 𝑧 ,                                            (3.58) 

where 𝐷 is the translational diffusion coefficient of the solute molecule at 𝐶 → 0, 𝑘𝑑  is the 

second diffusion virial coefficient and 𝑓 is a dimensionless parameter characterizing the 

polymer chain structure and solvent.  

 The translational diffusion coefficient distribution 𝐺(𝐷) can be defined as 

𝐺 𝐷 = 𝑞2𝐺 𝛤                                                              (3.59) 

In the limit as 𝜏 → 0, the first correlation function can be written as 

 𝑔 1 (𝜏 → 0) =
 𝐸 𝑡 𝐸∗ 𝜏 → 0  

 𝐸 𝑡 𝐸∗ 𝑡  
                                             (3.60) 

or 

 𝑔 1 (𝜏 → 0) =  𝐺 𝛤 𝑑𝑇 =  𝐺 𝐷 𝑑𝐷 = 1.                               (3.61)
∞

0

∞

0

 

Thus, the average diffusion coefficient  𝐷  is defined as 

 𝐷 =  𝐺 𝐷 𝐷 𝑑𝐷.                                                           (3.62)
∞

0

 

The Stoke-Einstein relation associates translational diffusion coefficient 𝐷 and 𝑓 the 

molecular friction factor.  

𝐷 =
𝑘𝐵𝑇

𝑓
                                                                   (3.63) 

where 𝑘𝐵  is the Bolzmann constant and 𝑇 is the absolute temperature.  For a spherical 

particle  
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𝑓 = 6πη                                                                    (3.64) 

where 𝜂 is the viscosity of the solvent.  Defining a hydrodynamic radius 𝑅𝑕 , in terms of the 

diffusion coefficient and friction factor66  

𝑅𝑕 =
𝑘𝐵𝑇

6𝜋𝜂
                                                                   (3.65) 

  Assuming spherical colloidal particles, rotational and internal motion can be 

ignored, allowing 𝐺(𝛤) to be converted into a hydrodynamic size distribution of the 

colloidal particles.   In this way dynamic light scattering determines the radii of disperse, 

dilute, colloidal particles. 

3.6  Experimental Dynamic Laser Light Scattering 

Studying the angular cross section of photon correlation measurements on a few 

particles can yield information about particles and particle interactions.67 The technique of 

photon correlation measurement was introduced in the early 1970's.68, 69  These first 

calculations assumed the scattered light amplitude to be governed by Gaussian statistics 

and the autocorrelation was measured at a single sample time.70  Unfortunately, these first 

calculations contained a number of inaccuracies and errors.71  Improvements came when 

an accurate knowledge of the statistical precision of the measurement was understood.72   

Photon correlation techniques allow the measurement of Doppler shifts in the 

scattered laser light which characterizes colloidal suspensions.73  The development of 

correlation techniques have led to production of commercially available light scattering 

instruments with the capability of making static and dynamic measurements.  Currently, 

with the mathematics of the photon correlation largely developed for scattering, 

improvements are made in regard to sensitivity of detecting intensity fluctuations.74  
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Further, with increased computing power, data acquisition is an ongoing improvement in 

light scattering studies.75 

3.6.1  DLS Instrumentation 

These experiments were 

performed using a commercially 

available laser light scattering 

spectrometer (ALV/DLS/SLS-5000) 

equipped with an ALV 500 digital 

time correlator.  The scattering 

laser source was a Helium-Neon 

laser manufactured by Uniphase, 

model 1145 P, with a power output 

of 22 mW operating at a wavelength of 632.8 nm.  The incident laser light is vertically 

polarized with respect to the scattering plane and regulated with a Newport M-925B beam 

attenuator.  Light scattered from the medium is gathered and guided, with a ~40μm 

diameter fiber, to the detector, an active quenched avalanche photodiode.  The avalanche 

photodiode provides a higher sensitivity, 2 orders of magnitude, over photomultiplier 

tubes.  The higher sensitivity is such that a 22 mW laser will have an equivalent count rate 

as a 400 mW laser used in conjunction with a photomultiplier tube. 

3.6.2  Correlation Algorithm 

 The ALV-5000 digital correlator is capable of real-time computation of photon 

correlation functions with fixed simultaneous lag time ranging from 0.2 μs to several hours.  

Figure 3.5 The Dynamic Light Experiment (DLS) showing the 
laser as the incident source , and the ALV 5000 digital 
autocorrelator. 
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Two independent correlation functions of two different input signals can be sampled 

simultaneously. 

 The basic commercial light scattering apparatus contains digital correlator software 

to perform the following: (1) counting photoelectron pulses over a sampling time interval 

𝑡𝑠; (2) delaying samples for a lag time, that is a integer multiple of 𝑡𝑠 , 𝑡 = κts; (3) 

multiplying delayed and direct data samples; and (4) summing these products.76  

Steps (3) and (4) are typically done for many different delays in parallel. A corresponding 

number of channels are used to keep the results of these computations. 

3.7  DLS Experimental Results 

 Scattering techniques of particles incident on gels has become the major technique 

for measuring gel properties.  In particular, dynamic light scattering provides a non-

invasive, small interaction probing tool for understanding gel polymer chain interactions 

and motions.  Tanaka, used intensity and time-correlation of laser light in the initial studies 

of acrylamide gels and their responses.77  The phase transitions of NIPA hydrogel is 

dependent upon the ionic concentrations of the network, temperature, pH and solvent 

composition.78  The hydrogel has been found to undergo a discontinuous transition when a 

charged co-monomer, typically acrylic acid is added to the gel network, where the free 

energy of counter-ions lead to swelling and the elastic energy of the network maintains the 

shape of the gel.79  

3.7.1  Temperature Response  

Temperature responsive colloidal gels have been extensively studied since 1986, 

when Pelton and Chibante first synthesized NIPA base microgels.  Poly(N-

isopropylacrylamide) has a temperature sensitive phase behavior with a lower critical 
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temperature (LCST) where the microgel is in a hydrophilic state below LCST and in a 

hydrophobic state above LCST.80  The LCST can be changed by incorporating comonomers 

into the gel network where hydrophobic comonomers lower the LCST and hydrophilic 

comonomers raise the LCST.   The relevant forces which drive the volume transition in 

temperature dependent hydrogel is the balance of hydrophilic and hydrophobic 

interactions between inter-polymer and intra-polymer chains. 

The temperature of the 

NIPA hydrogel is maintained 

with a ISO Thermo water bath 

manufactured by Fisher 

Scientific.  The temperature of 

the dilute microgel sample 

was allowed to come to a 

constant temperature for one-

hour, to ensure temperature 

stability within the sample.  

Each data measurement was made 

after one-hour of constant temperature.    The data depicted in figure 3.6 shows the 

volumetric phase change with 34°C being the LCST.  The hydrodynamic radius of the gel 

sphere below LCST is approximately 460 nm and shrinks to 300 nm above LCST. 

3.7.2  Electric Field Response 

One of the more convientient environmental stimuli, which NIPA gel is responsive to 

is the electric field.  Since PNIPA hydrogel contains ions, when an electric field, of sufficient 

28 30 32 34 36 38

300

350

400

450

500

D
ia

m
e
te

r 
(n

m
)

Temperature (°C)

Dynamic Light Scattering of NIPA Microgel

Figure 3.6 The results from NIPA microgel under a 
temperature stimulus. 
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Figure 3.7 A schematic of laser light incident 
on scatterers between the parallel plates. 

strength to over come hydrohylic forces, is applied, the gel will undergo its discontinuous 

volumetric phase change.  The first electric field, sensitive gel was reported by Hamlen in 

1965, where a PVA gel fiber sharnk under an 

applied voltage of 5 V.81  Gel shrinking and 

swelling behavior is responsive to both ac and 

dc excitations.82, 83  Tanaka, was able to explain 

the collapse of bulk polyacrylamide gel with FH 

theory, described in the previous chapter.84  The 

degree of collapse is dependent upon the field 

intensity, the concentration of polyions in the gel and the size of the gel particles.85  The 

collaspe is based upon the change in osmotic pressure due to ion concentration differences 

between the inside and outside of the gel.  Although most electrolyte gels are rather slow to 

respond to an applied field, some have been shown to respond within miliseconds.86  

The electric field stimulus applied to 

the microgel particles is provided by two 

parallel electrodes sized to fit inside a test 

tube.  The incident laser light is adjusted to 

scatter off the medium disposed between the 

two electrodes depicted in figure 3.7.  The 

actual electrodes used in the experiment are shown in figure 3.8.  The electrodes were 

constructed of copper with stiff wire leads soldered onto the outward side of the electrode.   

Figure 3.8 The electrodes used in the DLS-
Electric Field experiment. 
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Data in the experiment was taken every 5 minutes over a sampling interval of 1 

minute.  The data was 

gathered much more 

quickly than the thermal 

experiment because of 

electrolysis of the solvent 

(water) causes anomalous 

readings due to gas 

bubbles.  In figure 3.9, the 

resulting graph of the 

hydrogel undergoing a 

volumetric phase change is 

shown.  The gel undergoes the discontinuous phase change at a field strength of 

approximately 2.1 V cm-1, where the initial diameter of the microgel particles being 312 nm 

which collapsed to a size of 180 nm. 

3.8  Derivations 

 The following sections show some of the assumed derivations in detail.  The detail is 

shown to give the reader a better understanding of the underlying physical processes. 

3.8.1   Derivation of Scattered Field87 

 The equations governing the electromagnetic interaction are the Maxwell equations.  

The Maxwell equations for a non-conducting, non-magnetic medium in the absence of 

source are 
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Figure 3.9 A depiction of the collapse of NIPA microspheres 
exposed to an electric field, measured my DLS. 



55 
 

𝜵 ∙ 𝑯 = 0,                                                                 (3.66) 

𝜵 ∙ 𝑫 = 0,                                                                 (3.67) 

𝜵 × 𝑬 = −
1

𝑐

𝜕𝑯

𝜕𝑡
,                                                         (3.68) 

𝜵 × 𝑯 =
1

𝑐

𝜕𝑫

𝜕𝑡
.                                                          (3.69) 

The vector 𝑬 represents the electric field, 𝑫 the electric displacement is written in terms of 

𝑬 and 𝑷 the dipole moment per unit volume. 

𝑫 ≡ 𝜀0𝑬 + 𝑷, 

and 𝑯 is the auxiliary field given by 

𝑯 ≡
1

𝜇𝑜
𝑩 − 𝑴 

 where 𝑩 is the magnetic field and 𝑴 is the magnetization, but 𝑴 = 0 for a nonmagnetic 

medium.  The local dielectric constant will be considered the tensor  

𝜺 𝒓, 𝑡 = 𝜀0𝑰 + 𝛿𝜺 𝒓, 𝑡                                                      (3.70) 

where 𝑰 is a second rank unit tensor, and the term 𝛿𝜺(𝒓, 𝑡)is the dielectric constant 

fluctuation tensor. 

 The total fields at a point in the scattering medium are given as the sum of the 

incident and scattered fields.  Thus 

𝑬 = 𝑬𝐼 + 𝑬𝑆                                                                (3.71) 

𝑫 = 𝑫𝐼 + 𝑫𝑆                                                               (3.72) 

 𝑯 = 𝑯𝐼 + 𝑯𝑆 .                                                             (3.73) 

Since the total fields obey Maxwell's equations, the individual fields must also obey 

Maxwell's equations, in particular the scattered field.   
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The total displacement vector, (3.72), can be written in terms of the dielectric 

tensor, equation (3.70) 

𝑫 =  𝜀𝑜𝑰 + 𝛿𝜺 ∙  𝑬𝐼 + 𝑬𝑆 =  𝜀𝑜𝑬𝐼 +  𝛿𝜺 ∙ 𝑬𝐼 + 𝜖𝑜𝑬𝑆 +  𝛿𝜺 ∙ 𝑬𝐼 .             (3.74) 

Further, using the fact that the polarization for the incident wave is zero the incident 

displacement vector may be written as 

𝑫𝐼 = 𝜀0𝑬𝐼 .                                                               (3.75) 

This allows the scattered displacement vector to be written as 

𝑫𝐼 = 𝜀𝑜𝑬𝑆 +  𝛿𝜺 ∙ 𝑬𝑆 ,                                                    (3.76) 

where the second order term (𝛿𝜺) ∙ 𝑬𝑠 is ignored. 

The scattered auxiliary field, 𝑯𝑠 , may be eliminated from Maxwell's equations by 

taking the curl of equation (3.68)     

𝜵 × 𝜵 × 𝑬 = −
1

𝑐

𝜕

𝜕𝑡
𝜵 × 𝑯. 

Substituting into equation (3.69) gives 

𝜵 × 𝜵 × 𝑬𝑆 = −
1

𝑐2

𝜕2𝑫𝑆

𝜕𝑡2
.                                                (3.77) 

              
The inhomogeneous wave equation can then be arrived at by solving equation 

(3.76) for 𝑬𝑠 and substituting into equation (3.77). 

𝛻2𝑫𝑆 −  
𝜀𝑜

𝑐
 
𝜕2𝑫𝑆

𝜕𝑡2
= −𝜵 × 𝜵 ×  𝜕𝜺 ∙ 𝑬𝐼                                    (3.78) 

Equation (3.78) may be simplified further by introducing a polarization potential or Hertz 

vector.88, 89, 90                                           

𝑫𝑆 = 𝛻 × 𝛻 × 𝝅                                                           (3.79) 
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The Hertz vector can be shown to satisfy the inhomogeneous wave equation with the 

source term –  𝛿𝜺 ∙ 𝑬𝑖 , by substituting equation (3.79) into equation (3.78) 

𝛻2𝝅 −
𝜀𝑜

𝑐2

𝜕2𝝅

𝜕𝑡2
= − 𝛿𝜺 ∙  𝑬𝐼 .                                            (3.80) 

The integral form of equation (3.80) can be written as 

𝝅 𝑹, 𝑡 =
1

4𝜋
 𝑑3𝑟 

𝛿𝜺 𝒓, 𝑡′ 

 𝑹 − 𝒓 
∙ 𝑬𝐼𝑬𝐼(𝒓, 𝑡′)                            (3.81) 

where 𝑹 and 𝒓 are depicted in figure 3.9 and 𝑡𝑡′ is the retarded time 

𝑡𝑡′ = 𝑡 −
 𝜀𝑜

𝑐
 𝑹 − 𝒓  

The incident electric field, 𝑬𝐼  can be written 

as 

𝑬𝐼 𝑟, 𝑡 = 𝐸𝑜𝑒𝑖(𝒌𝐼 ∙𝒓−𝜔𝐼𝑡)𝑛 𝐼 ,                    (3.82) 

where 𝑛 𝐼  is the unit vector in the direction 

of the incoming electric field.  If we assume 

that the detector is immersed into the 

scattering medium or is refractive index 

matched to the medium (i.e. 𝑫𝑠 = 𝜀0𝑬𝑠) and 

substitute equation (3.82) into equation (3.78) 

then 

𝑬𝑠 𝑹, 𝑡 = 𝜵 × 𝜵 ×  
𝐸𝑜

4𝜋𝜀𝑜
 𝑑3𝑟

1

 𝑹 − 𝒓 
 𝛿𝜺(𝒓, 𝑡′) ∙ 𝑛 𝐼 𝑒 𝑖 𝒌𝐼 ∙𝒓−𝜔𝐼𝑡′           (3.83) 

If the detector is also, assumed to be a large distance form the scattering volume the 

denominator of the integrand,  𝑹 − 𝒓 , may be expanded in power series as 

 𝑹 − 𝒓 ≅ 𝑅 − 𝒓 ∙ 𝑘 𝑓 + ⋯ 

Figure 3.10  The scattered field from an 
incident wave on a volume element of a 
scattering medium. 
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where k 𝑓  is the unit vector in the direction of 𝑹.  Thus, the retarded time can be written as  

𝑡′ ≅ 𝑡 −
 𝜀𝑜

𝑐
 𝑅 − 𝒓 ∙ 𝑘 𝑓                                                     (3.84) 

It is now necessary to perform a Fourier transform of 𝛿𝜺 𝒓, 𝑡′  over an interval 𝑇, yielding 

𝛿𝜺 𝒓, 𝑡′ =  𝛿𝜺𝑝 𝒓 𝑒𝑖Ω𝑜 𝑡′

𝑝

                                               (3.85) 

where 

Ω𝑜 =  
2𝜋

𝑇
 𝑝. 

The scattered frequency can be defined as 

𝜔𝑓 ≡ 𝜔𝐼 − Ω𝑜 .                                                          (3.86) 

Consider the relative frequencies for translational and rotational motions of a 

macromolecule in solution.  The translational and rotational motions will be much less than 

the frequency of incident light. 

Ω𝑜 ≪ 𝜔𝐼  

The wave vector can be defined as 

𝒌𝑜 ≡
 𝜀𝑜

𝑐
𝜔𝑓𝑘 𝑓                                                            (3.87) 

and the scattering vector or the wavevector component of the dielectric constant 

fluctuation that will give rise to the scattering 

𝒒0 ≡ 𝒌𝑖 − 𝒌𝑜 .                                                           (3.88)    

Substituting equations (3.84), (3.85) and (3.86) into equation (3.82), using the 

approximation and ignoring terms over order greater than 1 𝑅  
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𝑬𝑠 𝑹, 𝑡 =
𝐸𝑜

4𝜋𝜀𝑜𝑅
 𝑒𝑖 𝑘𝑜𝑅−𝜔𝐼𝑡 𝒌𝑜

𝑜

×  𝒌𝑜 ×  𝑑3𝑟 𝑒𝑖 𝒌𝐼−𝒌𝑜𝑘 𝑓 ∙ 𝑟 𝛿 𝒓 (𝑒𝑖Ω𝑜 𝑡) ∙ 𝑛 𝐼
𝑉

 .                                     (3.89) 

The following approximation can now be made 

𝑘𝑜 ≈
 𝜀𝑜

𝑐
𝜔𝐼 = 𝑘𝐼 ≅ 𝑘𝑓  

𝑘𝑜𝑘 𝑓 ≈ 𝑘𝐼𝑘 𝑓   

and definitions 

𝒌𝑓 = 𝑘𝐼𝑘 𝑓  

𝒒 = 𝒌𝐼 − 𝒌𝑓  

Using these approximations, definitions and equation (3.85), (3.89) becomes 

𝑬𝑠 𝑹, 𝑡 =
𝐸𝑜

4𝜋𝜀𝑜𝑅
𝑒𝑖(𝒌𝑓 ∙𝑹−𝜔𝐼𝑡)𝒌𝑓 ×  𝒌𝑓 ×  𝑑3𝑟 𝑒𝑖𝒒∙𝒓(𝛿𝜺(𝒓, 𝑡) ∙ 𝑛 𝐼)

𝑉

 .         (3.90) 

3.8.2  Derivation of Correlation Time91 

Consider a property 𝑋 having a time dependence, which exhibits a noise pattern as 

shown in figure 3.10, the motions of a macromolecule in solution.  If the property 𝑋 is 

measured over a time interval, the equilibrium of the system is also the time average 

𝑋  𝒓, 𝑡 =
1

𝑇
 𝑑𝑡

𝑡0+𝑇

𝑡0

 𝑋 𝒓, 𝑡 .                                                (3.91) 

where 𝑇 is the time which the measurement is performed, and 𝑡0 is the time when the 

measurement is initiated.  However, the average is only meaningful if the measurement is 

performed over a time interval much longer that an individual fluctuation.  The idealized 
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measurement will be conducted over an infinite time with 𝑋 averaged over the infinite 

time: 

𝑋  𝑡𝑜 = lim
𝑇→∞

1

𝑇
 𝑑𝑡 𝑋(𝑡)

𝑡0+𝑇

𝑡0

.                                               (3.92) 

In general for dilute scattering 

experiments the infinite time 

average is independent of 𝑡0.  This 

is called a stationary property 

since the average depends only on 

the measurement duration rather 

than a starting point.  The property 

𝑋 fluctuates, as depicted in figure 

3.10, about its time average  𝐴 , independent of 𝑡0. 

 𝐴 = lim
𝑇→∞

1

𝑇
 𝑑𝑡 𝐴 𝑡                                                         (3.93)

𝑇

0

 

In other words, the joint probability distribution depends on 𝑥𝑖 , 𝑥𝑖+1 and not on values of 𝑡𝑖 , 

𝑡𝑖+1.   

 The general noise function depicted in figure 3.10, shows that the property 𝑋 at time 

𝑡 and 𝑡 + 𝜏 where 𝜏 is the delay time, will have different values.  Thus 

𝑋(𝑡 + 𝜏) ≠ 𝑋(𝑡) 

However, if 𝜏 is sufficiently short to be comparable to fluctuations in 𝑋 then 𝑋(𝑡 + 𝜏) will 

nearly approximate 𝑋(𝑡) and 𝑋(𝑡 + 𝜏) will be correlated with 𝑋(𝑡).  However, an increasing 

𝜏 that causes a deviation of 𝑋(𝑡 + 𝜏) tending toward a non-zero value, results in a loss of 

Figure 3.11  A property X with a time dependence fluctuates 
similar to the movement of molecules in a fluid. 
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correlation.  The measure of correlation between the two functions is the autocorrelation of 

the property 𝑋. 

 𝑋 0 𝑋(𝜏) = lim
𝑇→∞

1

𝑇
 𝑑𝑡 𝑋 𝑡 𝑋 𝑡 + 𝜏 .

𝑇

0

                                      (3.94) 

 Consider a non-conserved, non-periodic process with the correlation function 

 𝑋 𝑡 + 𝜏 𝑋(𝑡) =  𝑋 𝜏 𝑋(0)                                                  (3.95) 

which is independent of 𝑡.  To create a graphical representation of the correlation function 

first let 𝜏 → 0, then 

 𝑋 𝑡 + 𝜏 𝑋 𝑡  →   𝑋 𝑡  2                                                   (3.96) 

But if 𝜏 → ∞, then 

 𝑋 𝑡 + 𝜏 𝑋 𝑡  →  𝑋 𝜏   𝑋 0  →  𝑋 2 

 In practice, the scattering experiment has a correlator which computes time-

correlation functions of the scattered field.  This requires the time axis in figure 3.10, to be 

divided into discrete intervals of time 𝛥𝑡, allowing the following variables to be rewritten 

assuming the property 𝑋 does not vary greatly over the time interval. 

𝑡 = 𝑖𝛥𝑡 

𝜏 = 𝑛𝛥𝑡 

𝑇 = 𝑁𝛥𝑡 

𝑡 + 𝜏 = (𝑖 + 𝑛)𝛥𝑡 

Thus equations (3.93) and (3.94) can be written as a summation rather than integral form 

as 

 𝑋 ≅ lim
𝑁→∞

1

𝑁
 𝑋𝑖

𝑁

𝑖=1

                                                         (3.95) 
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 𝑋 0 𝑋(𝜏) ≅ lim
𝑁→∞

1

𝑁
 𝑋𝑖𝑋𝑖+𝑛

𝑁

𝑖=1

                                           (3.96) 

 The decay of the time correlation function is more easily proved for the discrete 

case.  Using Schwartz's inequality which states 

  𝐴𝑗 𝐵𝑗
𝑗

 

2

≤   𝐴𝑗
2

𝑗
   𝐵𝑗

2

𝑗
                                              (3.97) 

In using the inequality the quantity 𝐵𝑗 = 𝑋𝑖+𝑛  and 𝐴𝑗 = 𝑋𝑖 .  Thus 

lim
𝑁→∞

1

𝑁
 𝑋𝑖

2 =  𝑋2                                                      (3.98)

𝑁

𝑖=1

 

lim
𝑁→∞

1

𝑁
 𝑋𝑖+𝑛

2 =  𝑋2                                                     (3.99)

𝑁

𝑖=1

 

and 

lim
𝑁→∞

1

𝑁
 𝑋𝑖𝑋𝑖+𝑛 =  𝑋 0 𝑋 𝜏  

𝑁

𝑖=1

.                                         (3.100) 

The inequality becomes 

  𝑋 0 𝑋 𝜏   2 ≤  𝑋2 2 .             (3.101) 

Since  𝑋 0 𝑋(𝜏)  is real 

 𝑋 0 𝑋 𝜏  ≤  𝑋2 .            (3.102) 

Therefore, the autocorrelation 

function either remains equal to its 

initial value for all τ, or decays from 

its initial value as depicted in figure 

3.11.  When 𝜏 becomes large compared 

to the fluctuation time of 𝑋, 𝑋(𝑡) and 𝑋(𝑡 + 𝜏) become uncorrelated  

Figure 3.12  The time correlation of a non-conserved, non-
periodic property X. 
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lim
𝜏→∞

 𝑋 0 𝑋(𝜏) =  𝑋(0)  𝑋(𝜏) =  𝑋 2.                                   (3.103) 

Therefore, for a non-periodic, non-conservative property, the time correlation function will 

decay from  𝑋2  to  𝑋 2. 

 When performing the scattering experiment, using an exponentially decaying 

autocorrelation function is typical.92 

 𝑋 0 𝑋 𝜏  =  𝑋 2 +   𝑋2 −  𝑋 2 e
−

𝜏
𝜏𝑟                                   (3.104) 

where 𝜏𝑟  is defined as the correlation or relaxation time.  The basic shape of the 

exponential autocorrelation function can be seen in figure 3.11. 

 The determination of the correlation time requires the a definition of a deviation 

from the average value of 𝑋(𝑡). 

𝛿𝑋 𝑡 ≡ 𝑋 𝑡 −  𝑋                                                       (3.105) 

The term 𝛿𝑋(𝑡) is referred to as the fluctuation.  Substituting equation (3.105) into 

equation (3.94) 

 𝑋 0 𝑋 𝜏  = lim
𝑇→∞

1

𝑇
 𝑑𝑡   𝑋 2 +  𝑋  𝛿𝑋 𝑡 + 𝛿𝑋 𝑡 + 𝜏  + 𝛿𝑋 𝑡 𝛿𝑋(𝑡 + 𝜏) .      (3.106)

𝑇

0

 

            

Since  𝑋  is a constant and 

 𝛿𝑋(𝑡) = 0 =  𝛿𝑋(𝑡 + 𝜏) . 

Equation (3.106) becomes 

 𝑋 0 𝑋 𝜏  =  𝑋 2 +  𝛿𝑋 0 𝛿𝑋(𝜏) . 

Solving for  𝛿𝑋 0 𝛿𝑋 𝜏  yields 

 𝛿𝑋 0 𝛿𝑋 𝜏  =  𝑋 0 𝑋 𝜏  −  𝑋 2                                         (3.107) 

and 
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 𝛿𝑋2 =  𝛿𝑋 0 𝛿𝑋 0  =   𝑋2 −  𝑋 2 .                                    (3.108) 

Substituting equation (3.107) and (3.108) into equation (3.104) gives 

 𝛿𝑋 0 𝛿𝑋 𝜏  =  𝛿𝑋2 e
−

τ
τr .                                                (3.109) 

More generally the time correlation may be written as 

𝜏𝑟 ≡  𝑑𝜏
∞

0

 𝛿𝑋 0 𝛿𝑋 𝜏  

 𝛿𝑋2 
,                                                 (3.110) 

since not all fluctuations decay exponentially. 

3.8.3  Derivation of the Power Spectral Density93 

The power spectral density of a time-correlation function is defined as 

𝑆𝑥 𝜔 ≡
1

2𝜋
 𝑑𝑡 𝑒−𝑖𝜔𝑡  𝑋∗ 0 𝑋 𝑡                                           (3.111) 

where 𝑋∗ is the complex conjugate of X.  The Fourier inversion of equation (3.111) yields a 

time correlation function in terms of the spectral density. 

 𝑋∗ 0 𝑋(𝑡) =  𝑑𝜔 𝑒𝑖𝜔𝑡
+∞

−∞

 𝑆𝑥 𝜔                                            (3.112) 

Since 𝑆𝑥(𝜔) and  𝑋∗ 0 𝑋(𝑡)  are Fourier transforms of one another, if one is found 

experimentally, then the other is also known.  Typically in the scattering experiment the 

spectral density is measured rather than the time-correlation function.   

In practice, a signal, 𝑋𝑇 , is measured, over a period T, by a detector whose output is 

proportional to  𝑋𝑇𝑜 𝑡  2.  The output of the detector is recorded as an average over the 

time interval, T, as the mean-square value,  𝑋 2, which is found by setting 𝑡 = 0 in equation 

(3.112), 

  𝑋 2 =   𝑋 0   2 =  𝑑𝜔 𝑆𝑥 𝜔 .
+∞

−∞

                                         (3.113) 
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The property 𝑋(𝑡) may be expressed in terms of its Fourier Components over a time 

interval (−𝑇 2, 𝑇 2)   

𝑋𝑇 =
1

 𝑇
 𝑋𝑛e𝑖𝜔𝑛 𝑡                                                         (3.114)

𝑛

 

where the Fourier coefficients are represented by 𝑋𝑛 . 

 The frequency components of 𝑋𝑛  are given by 𝜔𝑛 =
2𝜋

𝑇
𝑛 and can be filtered out by 

employing a filter in the scattering experiment.  The filter can be described by defining a set 

of numbers represented by 𝐹𝑛such that 

𝐹𝑛 =  
1       𝜔𝑜 ≤ 𝜔 ≤ 𝜔𝑜 + 𝛥𝜔
0       otherwise                 

  

 Equation (4.114) becomes 

𝑋𝑇𝑜 𝑡 =
1

 𝑇
 𝐹𝑛𝑋𝑛e𝑖𝜔𝑛 𝑡 .                                                  (3.115)

𝑛

 

The square of (3.115) measured by the detector is  

 𝑋𝑇𝑜 𝑡  2 =
1

𝑇
 𝐹𝑛′𝐹𝑛𝑋𝑛′e

𝑖(𝜔𝑛 −𝜔
𝑛 ′ )𝑡                                           (3.116)

𝑛,𝑛′

 

The time average value of 𝑋𝑇𝑜 𝑡  is given by 

  𝑋𝑇𝑜  2 =
1

𝑇
 𝑑𝑡  𝑋𝑇𝑜 𝑡  2

𝑇 2 

−𝑇 2 

                                              (3.117) 

Substituting equation (3.116) into (3.117) 

  𝑋𝑇𝑜  2 =
1

𝑇
 

𝑑𝑡

𝑇
 𝐹𝑛′𝐹𝑛𝑋𝑛′𝑒

𝑖(𝜔𝑛 −𝜔
𝑛 ′ )𝑡

𝑛,𝑛′

𝑇 2 

−𝑇 2 

.                                 (3.118) 

Integrating over time  

  𝑋𝑇𝑜  2 =
1

𝑇
 𝐹𝑛

2 𝑋𝑛  2.                                                   (3.119)

𝑛
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Writing this in terms of a time correlation function 

 𝑋∗ 𝑡 𝑋(𝑡 + 𝜏) 𝑇 =
1

𝑇
 𝑑𝑡 𝑋𝑇

∗ 𝑡 𝑋𝑇 𝑡 + 𝜏                               (3.120)
𝑇 2 

−𝑇 2 

 

where 𝑋∗ 𝑡  is the complex conjugate of 𝑋 𝑡  and 𝜏 is the relaxation time.  Substituting 

equation (3.114) into (3.120) yields 

 𝑋∗ 𝑡 𝑋(𝑡 + 𝜏) 𝑇 =  
1

𝑇
𝑋𝑛′

∗ 𝑋𝑛  
𝑑𝑡

𝑇
e𝑖 𝜔𝑛 −𝜔

𝑛 ′  𝑡 e𝑖𝜔𝑛 𝜏 .                  (3.121)
𝑇 2 

−𝑇 2 
𝑛,𝑛′

 

Performing the integration 

 𝑑𝑡 e𝑖(𝜔𝑛 −𝜔
𝑛 ′ )𝑡 = 𝑇𝛿𝑛,𝑛′

𝑇 2 

−𝑇 2 

. 

Equation (3.121) becomes 
 

 𝑋∗ 𝑡 𝑋 𝑡 + 𝜏  𝑇 =  
 𝑋𝑛

2 

𝑇
𝑛

𝑒𝑖𝜔𝑛 𝜏                                            (3.122) 

 
Multiplying by e−𝑖𝜔𝑚 𝜏  and integrating over 𝜏 yields 

 𝑋𝑚  2 =  𝑑𝜏  𝑋∗ 𝑡 𝑋(𝑡 + 𝜏) 𝑇e−𝑖𝜔𝑛 𝜏
𝑇 2 

−𝑇 2 

 

or 

 𝑋𝑚  2 = 2𝜋𝐼𝑋
𝑇 𝜔𝑚                                                        (3.123) 

where 𝐼𝑋
𝑇(𝜔𝑚 ) is defined as the spectral density of the time correlation function. 

Substituting equation (3.123) into (3.119) 

  𝑋𝑇𝑜  2 𝑇 =
2𝜋

𝑇
 𝐼𝑋

𝑇 𝜔𝑛 𝐹𝑛
2.

𝑛

                                           (3.124) 

Equation (3.124) may be written in terms of a range of frequencies 

𝛥𝜔𝑛 = 𝜔𝑛+1 − 𝜔𝑛 =
2𝜋

𝑇
 

Transforming equation (3.124) into 
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  𝑋𝑇𝑜  2 𝑇 =  𝛥𝜔𝑛𝐼𝑋
𝑇 𝜔𝑛 𝐹𝑛

2

𝑛

                                              (3.125) 

Writing the sum of equation (3.125) in integral form by 𝑇 → ∞, 𝛥𝜔𝑛 → 0 

lim
𝑇→∞

  𝑋𝑇𝑜  2 𝑇 =  𝑑𝜔
+∞

−∞

𝐼𝑋 𝜔  𝐹 𝜔  2,                                 (3.126) 

gives the spectral density.  Given that the filter has a band-width then  

 𝐹 𝜔  2 =  
1    𝜔𝑜 ≤ 𝜔 ≤ 𝜔𝑜 + 𝛥𝜔
0                      otherwise

  

If the wavelength lies within the band then equation (3.126) becomes 

lim
𝑇→∞

  𝑋𝑇𝑜  2 𝑇 = 𝐼𝑋(𝜔𝑜)𝛥𝜔                                               (3.127) 

 In practice, the spectral density 𝐼𝐴(𝜔𝑜) is found from the time average of  𝑋𝑇𝑜  2.  

Thus by scanning the values of 𝜔𝑜 , the spectrum of the fluctuation of 𝑋 is determined.  

3.8.4  Derivation of the Siegert Relation94  

The characterization of an electromagnetic field governed by Gaussian statistics 

consists of two correlation function, a first order and a second order.95  The Seigert 

equation relates the two correlation functions 𝑔 2 (𝜏)and 𝑔 1 (𝜏) in the equation96 

𝑔 2  𝜏 = 1 +  𝑔 1  𝜏  
2

                                                    (3.128) 

In deriving the Seigert equation first the total scattered electric field off a 

suspension of particles 

𝐸 𝑡 =  𝐸𝑘𝑒𝑖𝜑𝑘(𝑡)

𝑁

𝑘

,                                                      (3.129) 

where 𝑁 is the number of particles, 𝐸𝑘  is the amplitude from individual particles and 𝜑𝑘  is 

the phase of each individual particle. 

 The intensity of the scattered field is into a solid angle 𝑑Ω = sin 𝜃  𝑑𝜃 𝑑𝜑 is given by 
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𝐼𝑆 =
1

2
 
𝜀

𝜇
 

1
2 

 𝐸𝑆 ∙ 𝐸𝑆
∗  

where 𝜀 is the electric permittivity and 𝜇 is the permeability.  Thus the intensity as a 

function of time may be written as 

𝐼 𝑡 ∝ 𝐸∗ 𝑡 𝐸 𝑡  

or 

𝐼 𝑡 ∝  𝐸𝑘𝐸𝑙𝑒
𝑖𝜑 𝑙 𝑡 −𝑖𝜑𝑘(𝑡).                                                (3.130)

𝑘,𝑙

 

The amplitude of the autocorrelation function is thus given by 

𝐺 1  𝜏 =  𝐸∗𝐸(𝑡 + 𝜏) .                                                     (3.131) 

And substituting equation (3.129) into (3.131) 

=   𝐸𝑘𝐸𝑙𝑒
𝑖𝜑 𝑙 𝑡+𝜏 −𝑖𝜑𝑘(𝑡)                                                    (3.132)

𝑁

𝑘,𝑙

 

Similarly the second order correlation function for the intensity—intensity correlation is 

given by  

𝐺 2  𝜏 =  𝐼 𝑡 𝐼(𝑡 + 𝜏)                                                      (3.133) 

and substituting in for the intensity yields 

𝐺 2  𝜏 =   𝐸𝑘𝐸𝑙𝐸𝑚𝐸𝑛𝑒𝑖(𝜑 𝑙−𝜑𝑘+𝜑𝑛  𝑡+𝜏 −𝜑𝑚 (𝑡+𝜏)
𝑁

𝑘,𝑙,𝑚,𝑛
 .                     (3.134) 

It should be noted that the second order correlation function will vanish unless the indices 

of the sum are pairwise equal.  There are of three different cases for the summation. 

Case I:  If 𝑘 = 𝑙 and 𝑚 = 𝑛, but 𝑘 ≠ 𝑚, the summation is equal to 

𝑁 𝑁 − 1  𝐸𝑘
2  𝐸𝑚

2  =  1 −
1

𝑁
   𝐸𝑘

2

𝑁

𝑘

 

2

=  1 −
1

𝑁
  𝐺 1  0  

2
.               (3.135) 



69 
 

Case II:  If 𝑘 = 𝑛 and 𝑙 = 𝑚 but 𝑘 ≠ 𝑙, the summation is equal to 

𝑁 𝑁 − 1  𝐸𝑘
2  𝑒𝑖𝜑𝑘 𝑡+𝜏 −𝑖𝜑𝑘 𝑡   𝐸𝑙

2  𝑒𝑖𝜑 𝑙 𝑡 −𝑖𝜑 𝑙 𝑡+𝜏                             (3.136) 

=  1 −
1

𝑁
   𝐸𝑘

2 𝑒𝑖𝜑𝑘 𝑡+𝜏 −𝑖𝜑𝑘 𝑡  

𝑁

𝑘

 

2

 

 1 −
1

𝑁
  𝐺 1  𝜏  

2
.                                                       (3.137) 

Case III:  If 𝑘 = 𝑙 = 𝑚 = 𝑛, the summation is equal to  

𝑁 𝐸𝑘
4 = 𝑁 𝐸𝑘

2 2 =
1

𝑁
 𝐺 1  0  

2
.                                          (3.138) 

Letting 𝑁 → ∞ in each case and summing the elements of the summation   

𝐺(2)

𝐺 2 (0)
= 1 +  

𝐺(1)

𝐺 1 (0)
 . 

Defining the variables 

𝑔 2  𝜏 =
𝐺(2)

𝐺 2 (0)
                                                      (3.139) 

and 

𝑔 1  𝜏 =
𝐺(1)

𝐺 1 (0)
                                                     (3.140) 

yields 

𝑔 2  𝜏 = 1 +  𝑔 1  𝜏  
2

.                                                (3.141) 

Equation (3.140) and (3.139) may be written in terms of the normalized field—field and 

normalized intensity—intensity correlation functions. 

𝑔 1  𝜏 =
 𝐸∗ 𝑡 𝐸 𝑡 + 𝜏  

 𝐸∗ 𝑡 𝐸 𝑡  
                                                (3.142) 

𝑔 2  𝜏 =
 𝐼 𝑡 𝐼(𝑡 + 𝜏) 

 𝐼(𝑡) 2
                                                  (3.143) 
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Allowing equation (3.141) to be written as 

 𝐼 𝑡 𝐼 𝑡 + 𝜏  =  𝐸∗ 𝑡 𝐸 𝑡  2 +  𝐸∗ 𝑡 𝐸 𝑡 + 𝜏  2                          (3.144) 

Although a laser is typically used as the incident light the scattered light will not be purely 

coherent requiring an instrument parameter 𝛽 

𝑔 2  𝜏 = 𝐴  1 + 𝛽 𝑔 1  𝜏  
2
                                              (3.145) 

where 𝜏 is the delay time and 𝛽 is a measure of the coherence of the detected field.   𝐴 is 

defined as  

𝐴 =  𝐼 𝑡 𝐼 𝑡 + 𝜏  .                                                      (3.146) 

Equation (3.145) relates the intensity—intensity correlation function with the time 

correlation function for the self beating technique in optical mixing. 

                                                 
1 J. D. Jackson, Classical Electrodynamics, 3rd ed., (John Wiley & Sons, New York 1998), p. 
456. 
 
2 F. L. Pedrotti, L. S. Pedrotti, Introduction to Optics, 2nd ed. (Prentics Hall, New Jersey, 
1993), p. 305. 
 
3 C. Wu, B. Chu, in Experimental Methods in Polymer Science: Modern Methods in Polymer 
Research and Technology, edited by T. Tanaka, (Academic Press, San Diego, CA 2000), pp. 1. 
 
4 W. Brown, Dynamic Light Scattering, edited by W. Brown, (Clarendon Press, Oxford 1993), 
Preface. 
 
5 J. Tyndall, "On the blue colour of the sky, the polarisation of skylight, and the polarisation 
of light by cloudy matter generally," Phil. Mag. 37, 384-394 (1869). 
 
6 J. Tyndall, "On the chemical rays, and the light from the sky," Proc. Roy. Inst. 5, 429-450 
(1869). 
 
7 J. Tyndall, "On the action of rays of high refrangibility upon gaseous matter, Phil Trans. 
Roy. Soc. 160, 333-365 (1870).  
 
8 Lord Rayleigh, "On the light from the sky, its polarization and coulour," Phil. Mag. 41, 107-
120 (1871). 
 



71 
 

                                                                                                                                                             
9 Lord Rayleigh, "On the scattering of light by small particles," Phil. Mag.  41, 274-279, 447, 
(1871). 
 
10 Lord Rayleigh, "On the electromagnetic theory of light," Phil. Mag. 12, 81-102 (1881). 

11 Lord Rayleigh, "On the transmission of light through an atmosphere containing small 
particles in suspension, and on the origin of the blue sky," Phil. Mag. 47, 375-394 (1899). 
 
12 Lord Rayleigh, "The Incidence of Light upon a Transparent Sphere of Dimensions 
Comparable with the Wave-Length," Proc. Roy. Soc. A, 84, 25-46 (1910). 
 
13 Lord Rayleigh, "On the Diffraction of Light by Spheres of Small Relative Index," Proc. Roy. 
Soc. A 90, 219-225 (1914). 
 
14 Lord Rayleigh, "On the Scattering of Light by Spherical Shells, and by Complete Spheres 
of Periodic Structure, when the Refractivity is Small,"  Proc. Roy. Soc. A 94, 296-300 (1918). 
 
15 P. Debye, "Zerstreuung von Röntgenstrahlen,"  Annalen der Physik (Leipzig) 351, 809-
823 (1915). 
 
16 G. Mie, "Beiträge zur Optik tuber Medien, speziell kolloidaler Metallösungen," Annalen 
der Physik (Leipzig) 330, 377-445(1908). 
 
17 P. Debye, "Das Verhalten von Lichtwellen in der Nähe eines Brennpunktes oder einer 
Brennlinie,  Annalen der Physik (Leipzig) 335, 755-776 (1909). 
 
18  R. Gans, "Uber die from ultramikroskopischer Goldteilchen," Annalen der Physik 
(Leipzig) 342, 881 (1912). 
 
19 R. Gans, "Über die Form ultramikroskopischer Silberteilchen," Annalen der Physik 
(Leipzig) 352, 270-284 (1915). 
 
20 R. Gans, "Strahlunsdiagramme ultramikroskopischer Teilchen," Annalen der Physik 
(Leipzig) 381, 29-38 (1925). 
 
21 M. Smoluchowski, " Molekular-kinetische Theorie der Opaleszenz von Gasen im 
kritischen Zustande, sowie einiger verwandter Erscheinungen," Annalen der Physik 
(Leipzig) 25, 205-226 (1908). 
 
22 A. Einstein, "Theorie der Opaleszenz von homogenen Flüssigkeitsgemischen in der Nähe 
des kritischen Zustandes," Annalen der Physik (Leipzig) 14, 368-391 (1910). 
 
23 B. J. Berne, R. Pecora, Dynamic Light Scattering, ed. (John Wiley & Sons, New York 1976) 
p.4. 
 



72 
 

                                                                                                                                                             
24 B. J. Berne, R. Pecora, Dynamic Light Scattering, ed. (John Wiley & Sons, New York 1976) 
p.4. 
 
25 K. R. Ramanathan, Indian J. Phys. 1, 413 (1927). 
 
26 Y. Rocard, Annales de Physique (Paris) 10, 116 (1928). 
 
27 M. Fixman, "Molecular Theory of Light Scattering," J. Chem. Phys. 23, 2074-2079 (1955). 

28 L. S. Ornstein, F. Zernike, "Accidental deviation of density and opalescence at the critical 
point of a substance," Proc. Acad. Sci. Amst. 17, 793 (1914). 
 
29 L. S. Ornstein, F. Zernike, Proc. Acad. Sci. Amst. 19, 1312 (1916). 
 
30 L. S. Ornstein, F. Zernike, Z. Phys. 27, 761 (1926). 
 
31 F. Zernike, T. H. Prins, Z. Physik. 41, 184 (1927).  

32 P. Debye, " Molecular-weight determination by light scattering," J. Phys. Coll. Chem. 51, 
18-32 (1947). 
 
33 P. Debye, "Light Scattering in Solutions,"  J. Appl. Phys. 15, 338-342 (1944). 
 
34 B. H. Zimm, "The Scattering of Light and the Radial Distribution Function of High Polymer 
Solutions," J. Chem. Phys. 16, 1093-1099 (1948). 
 
35 B. H. Zimm, "Molecular Theory of Scattering of Light in Fluids," J. Chem Phys. 13, 141-145 
(1945).   
 
36 L. Brillouin," Über die Fortpflanzung des Lichtes in dispergierenden Medien," Annalen 
der Physik (Leipzig) 349, 203-240 (1914). 
 
37 L. Brillouin, "Diffusion de la lumiere et des rayonnes X par un corps transparent 
homogene; influence del'agitation thermique," Annales de Physique (Paris) 17, 88-122 
(1922). 
 
38 V. V. Raman, K. S. Krishnan, "A new type of secondary radiation," Nature 121, 501-502 
(1928). 
 
39 E. Gross, "Change of wave-length of light due to elastic heat waves at scattering in 
liquids," Nature 126, 201 (1930). 
 
40 E. Gross, "Modification of light quanta by elastic heat oscillations in scattering media," 
Nature 129, 722 (1932). 
 



73 
 

                                                                                                                                                             
41 L. Landau, G. Placzek, "Struktur der unverschobenen Streulinie," Phys. Zeitt. Sow. 5, 172-
173 (1934). 
 
42 R. Pecora, "Doppler Shifts in Light Scattering from Pure Liquids and Polymer Solutions," J. 
Chem. Phys. 40, 1604-1614 (1964). 
 
43 H. Z. Cummins, N. Knable, L. Yeh, "Observation of Diffusion Broadening of Rayleigh 
Scattered Light," Phys. Rev. Lett. 12, 150 (1964). 
 
44 A. Einstein, "Theorie der Opaleszenz von homogenen Flüssigkeitsgemischen in der Nähe 
des kritischen Zustandes," Annalen der Physik (Leipzig) 14, 368-391 (1910). 
 
45 A. T. Forrester, R. A. Gudmandesen, P. O. Johnson, "Photoelectric Mixing of Incoherent 
Light," Phys. Rev. 99, 1691 (1955). 
 
46 W.L. Bragg, "The Diffraction of Short Electromagnetic Waves by a Crystal", Proc. of the 
Cambridge Phil. Soc. 17, 43–57 (1914).  
 
47 N. Wax, Selected Papers on Noise and Stochastic Processes, edited by N. Wax (Dover, New 
York 1954). 
 
48 R. Zwanzig, "Time-Correlation Functions and Transport Coefficients in Statistical 
Mechanics," Ann. Rev. Phys. Chem. 16, 67-102 (1965). 
 
49 B. J. Berne, R. Pecora, Dynamic Light Scattering, ed. (John Wiley & Sons, New York 1976) 
p11. 
 
50 R. Zwanzig, "Time-Correlation Functions and Transport Coefficients in Statistical 
Mechanics," Ann. Rev. Phys. Chem. 16, 67-102 (1965). 
 
51 B. J. Berne, R. Pecora, Dynamic Light Scattering, ed. (John Wiley & Sons, New York 1976) 
p. 11. 
 
52 J. P. Kratohvil, Gj. Deželić, M. Kerker, E. Matijević, "Calibratin of Light Scattering 
Instruments: A Critical Survey," J. Poly. Sci. 57, 59-78 (1962). 
 
53 T. M. Bender, R. J. Lewis, R. Pecora, "Absolute Rayleigh ratios of four solvents at 488 nm," 
Macromolecules 19, 244-245 (1986). 
 
54 J. A. Finnigan, D. J. Jacobs, "Light scattering from benzene, toluene, carbon disulphide and 
carbon tetrachloride," Chem. Phys. Lett. 6, 141-143 (1970). 
 
55 O. J. Ehl, C. Loucheux, C. Reiss, H. Benoit, "Mesure de l' incrément d' indice de refraction 
de différentes solutions de hauts polymers, et du rapport de Rayleigh de quelques liquids, 
en function de la temperature," Makromol. Chem. 75, 35-51 (1964). 



74 
 

                                                                                                                                                             

 
56 R. L. Schmidt, H. L. Clever, "Thermodynamics of Binary Liquid Mixtures by Rayleigh Light 
Scattering," J. Chem. Phys. 72, 1529-1536 (1968). 
 
57 X. Lu, Z. Hu, J. Gao, "Synthesis and Light Scattering Study of Hydroxypropyl Celloulose 
Microgels," Macromolecules 33, 8698-8702 (2000). 
 
58 C. Wu, K. K. Chan, K. Q. Xia, "Experimental Study of the Spectral Distribution of the Light 
Scattered from Flexible Macromolecules in Very Dilute Solution," Macromolecules 28, 
1032-1037 (1995). 
 
59 G. Zhang, C. Wu, "The Water/Methanol Complexation Induced Reentrant Coil-to-Globule 
Transition of Individual Homopolymer Chains in Extremely Dilute Solution," J. Am Chem. 
Soc. 123, 1376-1380 (2001). 
 
60 B. Chu, Q. Ying, C. Wu, J. R. Ford, H. S. Dhadal "Characterization of poly(1,4-
phenyleneterephthalamide) in concentrated sulphuric acid. 2: Determination of molecular 
weight distributions," Polymer 26, 1408 (1985). 
 
61 K. Jubota, S. Fujishige, I. Ando, "Single-Chain Transition of Poly(N-isopropylacrylamide) 
in Water," J. Phys. Chem. 94, 5154-5158 (1990). 
 
62 X. Wang, C. Wu, "Light-Scattering Study of Coil-to-Globule Transition of a Poly(N-
isopropyacrylamide) Chain in Deuterated Water," Macromolecules 32, 4299-4301 (1999). 
 
63 W. Bruchard, M. Schmidt, W. H. Stockmayer, "Information on Polydispersity and 
Branching from Combined Quasi-Elastic and Integrated Scattering," Macromolecules 13, 
1265-1272 (1980). 
 
64 C. Wu, S. Zhou, "Laser Light Scattering Study of the Phase Transition of Poly(N-
isopropylacrylamide in Water. 1. Single Chain," Macromolecules 28, 8381-8387 (1995). 
 
65 M. Meewes, J. Rička, M. De Silva. R. Nyffenegger, Th. Binkert, "Coil-Globule Transition of 
Poly(N-isopropylacrylamide). A study of Surfactant Effects by Light Scattering," 
Macromolecules  24, 5811-5816 (1991). 
 
66 X. Qui, C. M. S. Kwan, C. Wu, "Laser Light Scattering Study of the Formation and Structure 
of Poly(N-isopropylacrylamide-co-acrylic acid) Nanoparticles," Macromolecules 30, 6090-
6094 (1997). 
 
67 K. Schätzel, M. Drewel, "Laser light scattering and correlation techniques for 
characterization of colloidal suspensions," Z. Physik B 68, 229-232 (1987). 
 
68 E. Jakeman, E. R. Pike, S. Sqain, "Statistical accuracy in the digital autocorrelation of 
photon counting fluctuations," J. Phys. A. : Gen. Phys. 4, 517-534 (1971). 



75 
 

                                                                                                                                                             

 
69 V. Degiorgoi, J. B. Lastovka, "Intensity—correlation spectroscopy," Phys. Rev. A 4, 2033-
2050 (1971). 
 
70 B. E. A. Saleh, M. F. Cordoso, "The effect of channel correlation on the accuracy of photon 
counting digital autocorrelators," J. Phys. A.: Math. Nuc. Gen. 6, 1897-1909 (1973). 
 
71 Z. Kojro, "Influence of statistical errors on size distributions obtained from dynamic light 
scattering data.  Experimental limitations in size distribution determination," J. Phys. A: 
Math. Gen. 23, 1363-1383 (1990). 
 
72 K. Schätzel, "Noise on photon correlation data: I. Autocorrelation functions," Quantum 
Opt. 2, 287-305 (1990). 
 
73 K. Schätzel, M. Drewel, "Laser light scattering and correlation techniques for 
characterization of colloidal suspensions," Z. Physik B 68, 229-232 (1987). 
 
74 R. G. W. Brown, "Homodyne Optical Fiber Dynamic Light Scattering," App. Opt. 40, 4004-
4010 (2001).  
 
75 K. Schätzel, "Correlation techniques in dynamic light scattering," App. Phys. B 42, 193-
213 (2004). 
 
76  ALV Laser Vertiebsgesellschaft,  ALV/DLS/SLS 5000 Digital Correlator Reference Manual, 
June 1993.  
 
77 T. Tanaka, S. Ishiwata, C. Ishimoto, "Critical Behavior of Density Fluctuations in Gels," 
Phys. Rev. Lett. 38, 771-774 (1977). 
 
78 S. Hirotsu, T. Hirokawa, T. Tanaka, "Volume-phase transitions of ionized N-
isopropylacrylamide gels," J. Chem. Phys. 87, 1392-1395 (1987). 
 
79 M. Shibayama, T. Fujikawa, S. Nomura, "Dynamic Light Scattering Study of Poly(N-
isopropylacrylamide-co-acrylic acid) Gels," Macromolecules 29, 6535-6540 (1996). 
 
80 Z. B. Hu, X. Lu, J. Gao, "Hydrogel Opals," Adv. Mater. 13, 1708 (2001). 
 
81 R. Hamlen, C. Kent, S. Shafer, "Electrochemically activated contractile polymer," Nature 
206, 1149-1150 (1965). 
 
82 S. Hirotsu, "Electric-Field Induced Phase Transition in Polymer Gels," Jpn. J. Appl. Phys. 
Suppl. 24, 396-388 (1985). 
 
83 T. Shiga, T. Kurauchi, “Deformation of Polyelectrolyte Gels under the Influence of Electric 
Field,” J. App. Poly. Sci. 39, 2305-2320 (1990). 



76 
 

                                                                                                                                                             

 
84 T. Tanaka, I. Nishio, S. Sun, S. Nisho, “Collapse of Gels in an Electric Field,” Science 218, 
467-469 (1982). 
 
85 T. Schica, Y. Hirose, A. Okada, T. Kurauchi, “Bending of Poly (Vinal Alcohol) –Poly 
(Sodium Acrylate) Composite Hdrogels in Electric Fields,” J. App. Polymer. Sci. 44, 249-253 
(1992). 
 
86 C. Nanavati, J. M. Fernandez, "The secretory granule matrix: a fast-acting smart polymer," 
Science 259, 963-965 (1993). 
 
87 L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. Translated by J. 
B. Sykes, J. S. Bell, M. J. Kearsley (Pergamon Press, New York 1984) p. 422-462.  
 
88 H. Hertz, "The Forces of Electrical Oscillations Treated According to Maxwell's Theory, 
Weidemann's Ann. 36, 1 (1889); reprinted in Chap. 9 of H. Hertz, Electric Waves, Dover, 
New York 1962).   
 
89 A. Righi, "Sui campi elettromagnetici e particolarmente su quelli create da cariche 
elettriche o da poli magnetic in movimento," Nuovo Cimento 2, 104-121 (1901). 
 
90 A. Righi, "Sulla questione del campo magneico generato dalla convenzione elettrica, e su 
alter questioni, Nuovo Cimento 2, 233-256 (1901). 
 
91 B. Chu, Laser Light Scattering, 2nd ed. (Academic Press, San Diego, CA, 1991) p. 35. 
 
92 B. J. Berne, R. Pecora, Dynamic Light Scattering, ed. (John Wiley & Sons, New York 1976). 
 
93 B. J. Berne, R. Pecora, Dynamic Light Scattering, ed. (John Wiley & Sons, New York 1976) 
p. 18. 
 
94 E. O. Schulz-Du Bois, In Photon Correlation Techniques in Fluid Mechanics ed., edited by E. 
O. Schulz-Du Bois, (Springer-Verlag, Berlin 1983) p. 15. 
 
95 L. Mandel, Prog. Opt. 2, 181 (1963). 
 
96 A. J. F. Seigert, "MIT Radiation Lab. Report" No. 465, (1943). 



77 
 

CHAPTER 4 

ON THE REFRACTIVE INDEX OF HYDROGEL 

 

4.1  Historical Introduction 

Greek philosophical thought on the nature of light shaped ideas governing optical 

natural philosophy in the centuries to follow.  Euclid, in 300 BC, made the first 

mathematical study of light where he described light traveling in straight lines and 

described the laws of reflection.1  The Greeks had postulated that eyesight was a result of 

an interaction from a beam from the observer's eye and a light source transmitted through 

the element of fire.2  From this postulate, Euclid went on to reason that light would travel 

infinitely fast.  In the fifth 

century BC, Empedocles 

proposed the natural 

theory of four elements, 

earth, water, air and fire, 

composed and governed 

all interactions in the 

universe.  Lucretius, 

whose theory was the 

most accurate among the 

Greeks but given little attention, proposed that light was composed of minuscule atoms 

which shoot across the sky when imparted by a shove.3  The observation of refraction and 

its importance was not described until around 140 AD by Ptolemy, when measuring the 

Figure 4.1 A beam of light incident upon a surface will partially reflect 
and partially be transmitted into the medium at an angle θT. 
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positions of the stars, he realized that light from the stars was being refracted by the 

atmosphere.4 

 The first ray theory, or geometrical explanation of the refraction of light was 

proposed by a Dutch astronomer in 1621, and a schematic diagram of the phenomena is 

shown in Figure 4.1.  This became known as Snell's law5 

𝑛1 sin 𝜃1 = 𝑛2 sin 𝜃2 . 

However, Snell's law was not published by Snell but first by Descartes6 in 1637 and then by 

Christian Huygens7.  Although Descartes does not mention Snell by name it is largely 

believed he had seen a manuscript of Snell's law.  Fermat also derived a refraction law 

based upon the principle that light will travel the path with requires the least time.  Later 

he was able to show that, although he and Snell had begun with different assumptions, both 

formulations were in agreement.8 

 The father of modern light theory, Sir Isaac Newton defined refraction in his 1704 

treatise on optics as  

"Refrangibility of the Rays of Light, is the Disposition to be 

refracted or turned out of their Way in passing out of one 

transparent Body or Medium into another.  And a greater or 

less Refrangibility of Rays, is their Disposition to be turned 

more or less out of their Way in like Incidences on the Same 

Medium."9 

At the time of Newton, two theories of light existed, a corpuscular or particle based theory 

and a wave theory.  Euler in 1746, argued for a wave theory of light because of the 

difficulties in describing diffraction with a corpuscular theory.10 
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 1804 marked the first major evidence of the wave theory of light when Thomas 

Young published his experimental results on interference patterns.11  Conducting his 

experiments at Cambridge, Young showed that when light is passed through two pin holes, 

the result on the screen is an interference pattern.12   Young explained the interference 

phenomena using Newton's wave theory of light. 

The polarization of light reflecting of a surface, a phenomenon used in many modern 

instruments, was discovered by Malus.13, 14  Malus also introduce the idea of geometric ray 

optics as straight lines which are relected or refracted at surface interfaces.  A more 

complete understanding of the polarization phenomena reported by Malus, was given by 

Brewster in 1811, in what became known as Brewster's Law.15   

𝜃𝑝 = tan−1  
𝑛2

𝑛1
  

Brewster stated, "If light is incident under this angle, the electric field vector of the 

reflected light has no component in the plane of incidence."16  In other words the maximum 

polarization of an incident beam occurs when the angle of incidence is such that the 

refracted ray makes an angle of 90° normal to the surface. 

 Fresnel, unaware of the work of Huygens, Euler or Young, developed his own wave 

theory of light based on his observations of diffraction patterns formed by the shadow of a 

small obstruction.17, 18  The first accurate measurement of the speed of light came in 1849, 

when Fizeau used a series of pulses created by a rotating cog wheel to find a value of 

300,000 ±1000 km/s.19  Foucault then used a similar method with a rotating mirror to 

measure the speed of light in air and water, discovering that the speed was slower in 

water.20 



80 
 

 In 1845, Faraday studied light passing through a polarizing medium where the 

plane of polarization is rotated by a magnetic field parallel to the beam.21  Faraday also 

proposed lines of electric and magnetic force to connect particles of mass.22  With the ideas 

of Faraday, Maxwell was able to develop the formalism of modern electromagnetic wave 

theory. 

 First in 1862, Maxwell discovered that electromagnetic phenomena traveled at the 

same speed as light.  He wrote  

We can scarcely avoid the inference that light consists in the 

traverse undulations of the same medium which is the cause of 

electric and magnetic phenomena.23 

Then two years later in regards to the velocity calculated from his electromagnetic theory 

This velocity is so nearly that of light that it seems we have 

strong reason to conclude that light itself (including radiant 

heat and other radiations) is an electromagnetic disturbance in 

the form of waves propagated through the electromagnetic 

field according to electromagnetic laws. 24 

The equations derived by Maxwell were published in 1873, and fully describe what is now 

called classical electromagnetic theory.25  The theory developed by Maxwell then provided 

the formalism upon which electromagnetic interactions with matter could be described. 

4.2  Theory of Mie Scattering  

A light beam interacting with a particle will result in oscillatory motion of electric 

charges in the particle.  The electric charge will then reradiate the energy as scattered light 

thus becoming a transport mechanism for electromagnetic radiation. 
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Many theoretical studies have been made regarding the scattering of light by small 

particles.  Lord Rayleigh made the first study of scattering by particles of ‘extremely small’ 

size.26  Interested in the colloidal suspension of metals, Mie calculated the scattering of 

particles of various sizes.27  Ryde and Cooper, used Rayleigh's and Mie's formulation, to 

make an experimental studies of the optical properties of opal glasses.28,29   

Light scattering can broadly be categorized in three classes: (1) Elastic scattering 

where the wavelength of the scattering light is unchanged form the incident beam; (2) 

Quasi-elastic scattering where there are small frequency shifts due to Doppler effects and 

diffusion broadening; and (3) Inelastic scattering where the scattered light has a 

wavelength different from the incident beam.   

The theory governing elastic scattering depends upon the wavelength of incident 

radiation, the particle size and the particles optical properties relative to the surrounding 

medium.  Typically, the particle size is expressed as a size parameter  

𝛼 =
𝜋𝐷𝑝

𝜆
.                                                                      (4.1) 

                 
 

There are many theories which govern scattering processes and only three will be 

mentioned here.  The theory governing the scattering of light incident on a particle with a 

size parameter, α, falls into three regimes: 

(1)  𝛼 ≪ 1 Rayleigh Regime; 

(2)  𝛼 ≅ 1 Mie Regime; and 

(3)  𝛼 ≫ 1 Geometric Regime. 

The poly-(N-isopropylacrylamide) hydrogel discussed in the preceding chapter had 

diameters on the order of hundreds of nanometers.  The wavelengths of operation for an 
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ellipsometric experiment are also based upon wavelengths of hundreds of nanometers.  

Thus, Mie scattering will be the Regime that will be discussed.  Further, the microgel 

particles comprised of hydrogel will also be considered spherical. 

In understanding Mie scattering, consider that the energy scattered by a particle is 

proportional to the intensity of the incident beam 

𝐼𝑠 = 𝐶𝑠𝐼𝑜                                                                       (4.2) 

where 𝐶𝑠  is the individual particle scattering cross-section area.  Likewise, the absorption 

energy will be 

𝐼𝑎 = 𝐶𝑎𝐼𝑜                                                                      (4.3)    

where 𝐶𝑎  is the individual particle absorption cross-sectional area. 

 The law of conservation of energy mandates that any light removed from the 

incident beam is either scattered or absorbed by the particle.  Extinction accounts for both 

the scattering and absorption that may occur in such an interaction.  The extinction 

sometimes is referred to as a "shadow" of influence that may be greater or less than a 

particles geometrical cross-section.  The extinction is defined as 

𝐶𝐸 = 𝐶𝑠 + 𝐶𝑎.                                                                (4.4) 

A scattering efficiency can be defined based upon the particles geometrical cross-section as 

𝑄𝑠 =
𝐶𝑠

𝐴
.                                                                      (4.5) 

The absorbing efficiency is likewise defined allow an extinction efficiency to be defined as  

𝑄𝐸 = 𝑄𝑠 + 𝑄𝑎.                                                                (4.6) 

The optical properties of the particle are defined in terms of the complex index of 

refraction 

𝑁 = 𝑛 + 𝑖𝜅                                                                    (4.7)   
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where the real part represents the non-absorbing interaction and the imaginary part 

represents the absorbing interaction.  The wavelength is accounted for by allowing both 

the real and imaginary parts to be functions of the incident wavelength.  The refractive 

index of the surrounding medium is accounted for by defining a normalized refractive 

index   

𝑚 =
𝑁

𝑁0
                                                                      (4.8) 

where 𝑁0 is the refractive index of the surrounding medium (i.e. air for atmospheric 

scattering, or solvent for colloidal suspensions). 

 An exact solution for the scattering and extinction efficiencies can be derived for a 

spherical particle.30 

𝑄𝑠 𝑚, 𝛼 =
2

𝛼2
 (2𝑗 + 1)   𝑎𝑗  

2
+  𝑏𝑗  

2
 

∞

𝑗 =1

                                      (4.9) 

𝑄𝐸 𝑚, 𝛼 =
2

𝛼2
  2𝑗 + 1 𝑅𝑒 𝑎𝑗 + 𝑏𝑗                                        (4.10)

∞

𝑗 =1

 

where 

𝑎𝑗 =
𝛼𝜓𝑗

′  𝑥 𝜓𝑗 (𝛼) − 𝑥 𝜓𝑗
′ (𝛼)𝜓𝑗 (𝑥)

𝛼𝜓𝑗
′  𝑥 𝜁𝑗 (𝛼) − 𝑥𝜁𝑗

′  𝛼 𝜓𝑗 (𝑥)
                                         (4.11) 

𝑏𝑗 =
𝑥 𝜓𝑗

′  𝑥 𝜓𝑗 (𝛼) − 𝛼 𝜓𝑗
′ (𝛼)𝜓𝑗 (𝑥)

𝑥 𝜓𝑗
′  𝑥 𝜁𝑗 (𝛼) − 𝛼𝜁𝑗

′  𝛼 𝜓𝑗 (𝑥)
                                        (4.12) 

and 𝑥 = 𝛼𝑚.  The functions 𝜓𝑗 (𝑧) and 𝜁𝑗 (𝑧) are the Riccati—Bessel functions31 

𝜓𝑗  𝑧 =  
𝜋𝑧

2
 

1
2
𝐽
𝑗 +

1
2

 𝑧                                                      (4.13) 

𝜁𝑗  𝑧 =  
𝜋𝑧

2
 

1/2

 𝐽
𝑗 +

1

2

 𝑧 + 𝑖(−1)𝑗  𝐽
−𝑗−

1

2

(𝑧)                                   (4.14)          
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At this point the problem of calculating the coefficients becomes a computational problem 

that can be solved through various techniques.32 

4.2.1  Mie Scattering for an Ensample of Particles 

The problem of Mie scattering by an ensample of particles is a complex problem that 

may be simplified with the following assumptions: (1) the average distance between 

particles is large compared to the particle size; (2) the total scattered intensity is the sum of 

individual intensities from each 

particle and (3) the single particle 

formulation may be used and 

summed.  These assumptions 

largely depend on the 

concentration of the sample.  

 Light extinction, in a 

medium being traversed by a 

beam, occurs through scattering 

and absorption by particles within the 

medium, as shown in Figure 4.2.  The reduction in intensity can be written 

𝑑𝐼 = −𝑏𝐸𝐼 𝑑ℎ,                                                             (4.15) 

where 𝑑ℎ is the an incremental length and 𝑏𝐸  is the extinction coefficient written for a 

monodisperse collection of particles in terms of 𝑁 the total particle number concentration. 

𝑏𝐸 = 𝐶𝐸𝑁                                                                   (4.16) 

A population of monodisperse particles with a number concentration 𝑁, allows the 

extinction coefficient to be related to the dimensionless extinction efficiency 

Figure 4.2 A beam of light incident on a medium 
with thickness h, containing scattering particles. 
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𝑏𝑒𝑥𝑡 =
𝜋𝐷𝑝

2

4
𝑁𝑄𝑒𝑥𝑡 .                                                          (4.17) 

Thus the extinction coefficient can be expressed as the sum of the scattering 

coefficient 𝑏𝑠𝑐𝑎𝑡  and an absorption coefficient 𝑏𝑎𝑏𝑠  

𝑏𝑒𝑥𝑡 = 𝑏𝑠𝑐𝑎𝑡 + 𝑏𝑎𝑏𝑠 .                                                       (4.18)         

If the incident intensity at the surface layer, ℎ = 0 then the intensity, in equation (4.15), at 

any point in the layer is given by 

𝐼

𝐼𝑜
= e−𝑏𝐸 ℎ .                                                                  (4.19) 

This is known as the Beer-Lambert law.33 

4.2.2  The Extinction Coefficient from Mie Scattering  

The poly(N-isopropylacrylamide) microgel undergoes a volumetric change, meaning 

equation (4.17) is no longer a constant.  Further, the degree of shrinking will not be 

uniform throughout the medium, requiring equation (4.17) to be written in terms of a 

population distribution 𝑛(𝐷𝑝),  

𝑏𝐸 𝜆 =  
𝜋𝐷𝑝

2

4
𝑄𝐸 𝑚, 𝛼 𝑛 𝐷𝑝 𝑑𝐷𝑝                                       (4.20)

𝐷𝑝
𝑚𝑎𝑥

0

 

where 𝐷𝑝
𝑚𝑎𝑥  is an upper limit diameter for the particle population. Similarly the coefficient 

of scattering and absorption may be written as  

𝑏𝑠 𝜆 =  
𝜋𝐷𝑝

2

4
𝑄𝑠 𝑚, 𝛼 𝑛 𝐷𝑝 𝑑𝐷𝑝

𝐷𝑝
𝑚𝑎𝑥

0

                                     (4.21) 

and 

𝑏𝑎 𝜆 =  
𝜋𝐷𝑝

2

4
𝑄𝑎 𝑚, 𝛼 𝑛 𝐷𝑝 𝑑𝐷𝑝

𝐷𝑝
𝑚𝑎𝑥

0

.                                    (4.22) 
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Typically these coefficients are written in terms of a mass distribution function 

𝑛𝑀 = 𝜌𝑝

𝜋𝐷𝑝
3

6
𝑛 𝐷𝑝                                                          (4.23) 

where 𝜌𝑝  is the scattering particle density.  Thus equation (4.20) becomes 

𝑏𝐸 𝜆 =  
3

2 𝜌𝑝𝐷𝑝
𝑄𝐸 𝑚, 𝛼 𝑛𝑀 𝐷𝑝 𝑑𝐷𝑝 .                                (4.24)

𝐷𝑝
𝑚𝑎𝑥

0

 

If the a mass extinction efficiency is defined as  

𝐸𝐸 𝐷𝑝 , 𝜆, 𝑚 =
3

2𝜌𝑝𝐷𝑝
𝑄𝐸 𝑚, 𝛼                                              (4.25) 

then equation (4.25) becomes 

𝑏𝑒𝑥𝑡  𝜆 =  𝐸𝑒𝑥𝑡  𝐷𝑝 , 𝜆, 𝑚 𝑛𝑀 𝐷𝑝 𝑑𝐷𝑝

𝐷𝑝
𝑚𝑎𝑥

0

.                                  (4.26) 

Likewise, the mass scattering efficiency and mass absorption efficiency are written in a 

similar fashion 

𝐸𝑠 𝐷𝑝 , 𝜆, 𝑚 =
3

2𝜌𝑝𝐷𝑝
𝑄𝑠 𝑚, 𝛼                                            (4.27) 

𝐸𝑎 𝐷𝑝 , 𝜆, 𝑚 =
3

2𝜌𝑝𝐷𝑝
𝑄𝑎 𝑚, 𝛼 .                                        (4.28) 

4.2.3  Scattering at the Extrema  

 Consider the light interactions at the two extremes governed by Rayleigh theory, 

𝐷𝑝 ≪ 𝜆  and geometrical optics, 𝐷𝑝 ≫ 𝜆.  First, in the Rayleigh regime the scattering 

efficiency is given by 

𝑄𝑆
𝑅 𝑚, 𝛼 =

8

3
𝛼4  

𝑚2 − 1

𝑚2 + 2
 

2

.                                               (4.29) 
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Thus, in terms of the particle diameter 

𝑄𝑆
𝑅 ≈ 𝐷𝑝

4.                                                                   (4.30) 

Conversely, in the geometrical regime the scattering efficiency becomes independent of 

particle size.  Therefore, for the Rayleigh regime 

𝐸𝑆 𝐷𝑝 , 𝜆, 𝑚 ≈ 𝐷𝑝
3              𝐷𝑝 ≪ 𝜆                                             (4.31) 

and for the geometrical optic regime  

𝐸𝑆 𝐷𝑝 , 𝜆, 𝑚 ≈ 𝐷𝑝
−1            𝐷𝑝 ≫ 𝜆.                                            (4.32) 

The mass scattering efficiency, therefore, increases as 𝐷𝑝
3 for small particles and falls off as 

𝐷𝑝
−1 for the largest particles.    

4.2.4 Scattering in the Mie Regime 

 The scattering dependence on particle size in the Mie regime is not as simple as the 

extrema examples, and thus requires complex calculations.  Many authors have solved this 

problem with varying assumption and methods.34, 35 36, 37, 38, 39, 40, 41 

 Consider the hydrogel made of identical microspheres that act as scatterers in a 

medium of water.  Generally, for a suspension of identical scatterers in a medium the 

effective refractive index is 

𝑛𝑒𝑓𝑓 = 𝑛𝑚  1 + 𝑖  
3

2

𝑓

𝛼3 𝑆 0                                                (4.33)  

where 𝑛𝑚  is the refractive index of the medium and 𝑆(0) is the forward scattering 

amplitude of a particle embedded in the medium calculated from Mie.  Mie scattering 

assumes spherical particles therefore, for non-spherical particles most authors average the 

particle over all possible orientations to find an effective diameter.   The volume fraction 𝑓 

is defined by the scattering spheres and recall 𝛼 the size parameter from equation (4.1) is  
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𝛼 =
𝜋𝐷𝑝

𝜆
. 

Although the effective refractive index will be a complicated function depending upon the 

forward scattering amplitude, it is also inversely dependent upon the volume of the 

scattering particle.  As the size of the particles decrease the scattering will increase and 

thus the index of refraction will increase as well.   Therefore, when the poly(N-

isopropylacrylamide) undergoes its volumetric phase change and shrinks, the effective 

refractive index should increase. 

4.3  Ellipsometric Measurement of Refractive Index 

Ellipsometry is a method that measures the change in the polarization of light 

reflecting of thin films, surfaces and interfaces.  The basic concept is a collimated beam of 

mono-chromatic light with a given polarization, impinges upon an unknown sample, the 

reflected light, having a new polarization is collected and analyzed.  Using the incident and 

reflected polarizations, ratios of two incident polarizations are determined.  The ratios then 

are modeled using properties of the sample interfaces and the optical constants are 

determined by solving the inverse problem. 

4.3.1  Types of Ellipsometry  

 The methods of performing ellipsometry fall into three categories depending upon 

the quantities measured:  (1) multiple angle of incidence ellipsometry (MAIE) where the 

ellipsometric measurement 𝜌 as a function of 𝜑 42, 43,44,45,46; (2) spectroscopic ellipsometry 

(SE) makes use of the wavelength 𝜆 47, 48, 49, 50; and (3) variable angle spectroscopic 

ellipsometry (VASE) measures 𝜌 in with two real variable 𝜑 and 𝜆51, 52.   
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4.3.2  Introduction to Ellipsometric Theory 

An ellipsometer consists of three basic elements, a light source, an unknown 

medium such as a thin film and a detector.  The polarization state is determined by the 

superposition of orthogonal components of the electric field vector of two co-propagating 

orthogonally polarized waves.  The measurement is made with the relative phase and 

amplitude of the two propagating beams.  Linearly polarized light becomes elliptically 

polarized as it reflects off the surface and the ellipse of polarization is measured.53, 54  Light 

impinging the sample at an oblique angle, is linearly polarized, with the electric-field 

vibration parallel p or perpendicular s to the plane of incidence.  The reflected light will 

also be p-polarized or s-polarized, making p and s eigen-polarizations of reflection.55 

The complex reflection coefficients 𝑅𝑃  and 𝑅𝑆  form the associated eigenvalues for 

arbitrary electric field components 𝐸𝐼𝑃  and 𝐸𝐼𝑆 .  They are related through 

𝐸𝑅𝑃 = 𝑅𝑃𝐸𝐼𝑃                                                                (4.34) 

and 

𝐸𝑅𝑆 = 𝑅𝑆𝐸𝐼𝑆 .                                                               (4.35) 

Taking the ratio of equation (4.34) and (4.35) to describe the ratio of the complex 

coefficients for the p and s polarizations   

𝐸𝑅𝑆

𝐸𝑅𝑃
=

𝑅𝑃

𝑅𝑆

𝐸𝐼𝑃

𝐸𝐼𝑆
                                                             (4.2.3) 

and defining 

𝜌 =
𝑅𝑝

𝑅𝑠
 

𝜒𝑖 =
𝐸𝑖𝑠

𝐸𝑖𝑝
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and 

𝜒𝑟 =
𝐸𝑟𝑠

𝐸𝑟𝑝
 

𝜌 may be written as 

𝜌 =
𝜒𝑖

𝜒𝑟
                                                                    (4.36) 

where 𝜒𝑖  describes the incident polarization and 𝜒𝑟  describes the reflected polarization.56 

 Consider a function written in polar coordinates  

𝜌 = tan 𝜓 e𝑖𝛥                                                                 (4.37) 

where 𝜌 is a measure of two ellipsometric angles 𝜓 and 𝛥 such that 

0 ≤ 𝜓 ≤ 90° 

0 ≤ 𝛥 ≤ 360° 

The reflection coefficients enter the equation as the relative amplitude attenuation 

 

tan 𝜓 =
 𝑅𝑝  

 𝑅𝑠 
                                                               (4.38) 

and the relative phase shift of p and s upon reflection from the sample is given by 

𝛥 = arg 𝑅𝑝 − arg 𝑅𝑠                  (4.39) 

Thus the measurement can be made using only the relative amplitude and phase shift and 

not absolutes. 

4.4  Experimental Ellipsometry 

Refractive index measurements were made using a commercial spectroscopic 

ellipsometer shown in figure 4.3 (manufactured by J.A. Woollam Co., model VUV-VASE).  

The sample was mounted in a vertical position via a vacuum pump on the instrument.  The 
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ellipsometer measures both ψ and Δ and are plotted versus wavelength.  Figures 4.4 and 

4.5 depict ψ data for a sample of silicon on insulator with different thin films of Si and SiO2. 

Vertical mounting of the 

ellipsometer posed some 

difficulties when making an the 

measurement because the 

microgel is liquid and the bulk 

gel is a non-rigid material.  Since 

liquid is free flowing it is 

necessary to hold it to a surface 

for a sufficient time period to 

make a measurement.  

Previous methods reported in journals have incorporated a rough surface to 

eliminate back surface scattering and provide a rigid surface to which liquid can be 

applied.57  The rigid surface 

slows the flow of the liquid 

down the slide long enough for 

an optical measurement to be 

made.58  Although the surface 

may not be completely smooth, 

an ellipsometric measurement is 

ratiometric where the ratio of p 

and s reflections are measured, 

Figure 4.4  Ellipsometric data and model for a sample of SOI with 
a SiO2 layer 408.43±0.108nm under a Si layer 1308.00±0.368nm. 

Figure 4.3 The commercially available ellipsometer used in 
measuring the refractive index of the hydrogel. 
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not the absolute intensity.   This technique allows for rewetting the sample are to account 

for evaporative losses.   

Although this may 

be an appropriate 

technique for some liquid 

samples, it is not for PNIPA 

gel.  Since, PNIPA 

microspheres are held in a 

suspension of water, any 

evaporation and subsequent 

rewetting would increase the concentration of microspheres yielding a false result.  

The technique used in this experiment incorporated the rough surface method 

where a frosted  glass slide was 

used to eliminate back surface 

scattering of the underlying 

substrate and a Corning glass 

cover slip covering the 

suspension of microspheres.  The 

purpose of the cover slip is 

twofold: first it reduces the 

exposed surface area, reducing 

evaporation and second it maintains an even layer of liquid in a vertical position.   The 
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Figure 4.5 Ellipsometric data and model for a sample of SOI with a 
SiO2 layer 152±0.0527nm under a Si layer 68.558±0.00321nm. 

Figure 4.6 A schematic of the sample holder showing the 
rough surface, the suspended microgel layer and the glass 
cover slip.  
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configuration depicted in figure 4.6 shows the frosted substrate, the Aqueous PNIPA and 

the confining glass cover slip. 

4.5  Ellipsometric Results  

The data acquired from 

the ellipsometer and the 

model fit data are depicted in 

figure 4.7.  In figure 4.7 the 

model data appears to 

coincide well with the model 

fit data.  Further, as a general 

indication of the closeness of 

the fit, figure 4.8 shows the 

difference between the 

measured data and the 

model fit data.  The VASE 

software provided by the 

manufacturer of the 

ellipsometer was 

used to build a model.  The gel layer was fit using the Cauchy dispersion relation,  

𝑛 𝜆 = 𝐴𝑛 +
𝐵𝑛

𝜆2
+

𝐶𝑛

𝜆4
                                                      (4.40) 
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Figure 4.7 Data taken for a suspension of poly(N-
isopropylacrylamide) microspheres, at three different angles. 

Figure 4.8 The differences between the model and the data.  If 
the model were a perfect fit the lines would be absolutely flat. 
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Where 𝜆 is the wavelength of incident light, 𝐴𝑛 , 𝐵𝑛 , and 𝐶𝑛  are fit parameters.  The 

Cauchy relation is particularly adept at describing the dispersion of the index of refraction 

in materials in which the spectral ranges in which the given material is transparent.  

Data was collected at three angles 70°, 75° and 80° over a range from 300nm to 

1800 nm, as shown in figure 4.9.  However, the model was constructed to fit only data 

ranging from 400 nm to 1800 nm to avoid lower wavelength regions which are strongly 

absorbed by the glass cover slip.  Further, the AutoRetarder was used on the VUV vase 

ellipsometer.  The AutoRetarder distinguishes non-polarized light from circularly polarized 

light by use of a compensator in the optical path.59  Depolarization of the light beam can be 

caused from a non-uniform film, backside reflection from a transparent substrate, spatial 

Figure 4.9  Refractive index data showing the change in refractive index in relation to 
wavelength and temperature.  
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incoherence of a patterned film or from the spectral resolution.60 In figure 4.8, the 

difference between the measured data and the constructed model show a close fit.  If the 

model were perfectly matched 

the difference would be a 

straight line at ψ = 0. 

Figure 4.9 shows the 

results for the survey of 

refractive index over the 

spectral range 400 nm to 1800 

nm at temperatures ranging 

from 28°C to 37°C.  A rapid 

increase in the index of 

refraction can be seen around 

the temperature of 34°C, which 

corresponds to the critical 

temperature where the gel 

sphere collapses.  This increase 

in index of refraction is what is 

expected when scattering 

spheres shrink and increase the 

scattering of light.   In figure 

4.10, we look at a cross section 

of figure 4.9 at the wavelength of 1500 
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Figure 4.10  The refractive index measured at 1500nm. 

Figure 4.11 A plot showing the refractive index change of 
water, hydrogel microspheres below LCST and hydrogel 
microspheres above LCST. 
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nm, and see the jump in refractive index more clearly.   

We expect that the refractive index of PNIPA at a temperature below the critical 

temperature would be comparable to water61 since the gel particles are engorged with 

water and not strongly scattering light.  Figure 4.11 shows that indeed the index of 

refraction is close to water at the shorter wavelengths.  The two curves do diverge at the 

longer wavelengths, however this is due to the different methods used to calculate the 

indices.  The significant finding is the change in index of refraction when the temperature is 

varied from below the critical temperature to above the critical temperature.   
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CHAPTER 5   

PHOTOLUMINESCENCE OF ENCAPSULATED  

QUANTUM DOT—HYDROGEL HYBRID MATERIALS 

 

5.1  A History of Luminescence  

One of the first documented references to luminescence is found in Shih Ching or 

Book of Odes (1500-1000 B.C.), which states in verse "i-yao hsiaohsing" or "Glowing 

intermittently are the fireflies."1  Perhaps the first industrial uses of luminescent material is 

reported by the Chinese in regards to a Japanese boat which was covered by paint derived 

from seashells that luminesced.2  The Greeks with their curiosity of natural philosophy 

wrote about luminescent bodies.  Aristotle, for example, in De Anima states 

"Some things, indeed, are not seen in daylight, though they 

produce sensation in the dark: as for example the things of 

fiery and glittering appearance for which there is no 

distinguishing name, like fungus (mukes) horn (keras) and the 

head scales and eyes of fishes.  But in no one of these cases is 

the proper color seen.  Why these objects are seen must be 

discussed elsewhere."3 

Many species of fungi are luminescent and the bacteria on dead fish are also luminescent.  

One branch of the study of luminescence is the study of phosphors, which is derived from 

Greek meaning "light bearer."  However, the term was not used in reference to an actual 

material until an alchemist named Vincentinus Casiarolo of Bologna, Italy discovered a 

glass stone at the foot of a volcano.  Intending to create a noble metal he fired the stone.  
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Ultimately he failed in changing it to a metal but did create a substance, which emitted red 

light in the dark after being exposed to sunlight.  In figure 5.1, 

we see a representation of the stone printed after its discovery.4  

Modern chemistry has shown that the rock was in fact was 

barite and once sintered became BaS, a well known phospor 

material.5  

Unfortunately with the onset of the Middle Ages, reports 

of luminescent phenomena ceased.  It wasn't until the late 15th 

century and early 16th century that reports began to be written.  

One of the most prevalent, is the ring of Catharine of Aragon, 

Queen of England (1485-1536), which is reported to have 

luminesced at night.6  Most likely, the jewel was a diamond 

since some are known to be phosphorescent.  The first serious scientific study of 

luminescent behavior and its causes were performed by Francis Bacon in the early 17th 

century.7 

As scientific thought began to flourish, rudimentary experimental based theories 

concerning luminescence began to emerge, although they still lacked the quantum 

mechanical understanding.  Stokes showed that the incident light differed in color or 

refrangibility from the emitted light.8  In particular, he stated Stokes' Law, that the light 

emitted at longer wavelengths was less frangible than the incident light.  Becquerel in 1867 

measured the decay in the luminescence in uranyl salts and showed that the decay was 

either exponential or hyperbolic which he credited to monomolecular decay and 

bimolecular decay.9  However, in 1928 Leonard suggested that the decay of the alkaline 

Figure 5.1 An Allegorical 
representation of the 
magical phenomenon of 
light emission by the 
Stone of Bologna (M. 
Cellio). 
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earth sulfides were monomolecular and the hyperbolic decay was the superposition of 

centers with different decay constants.10  These experimental findings had to wait for the 

development of quantum mechanics for a complete explanation. 

5.2  Theoretical Development 

 In this chapter luminescence is discussed as a general process where a material 

absorbs a photon, elevating the material to an excited electronic state, which in turn decays 

emitting an electromagnetic wave.  Luminescence emissions are different from other 

emissions such as Raman effect, Rayleigh scattering, Compton scattering and Cherenkov 

radiation in that there is a short delay between excitation and emission.  These delay times 

are long when compared to period of radiation 𝜆 𝑐  .11 

The terms used for light emission are dependent upon whether the material is an 

organic or inorganic material. 

12, 13  For an inorganic 

molecule, fluorescence is the 

light emission caused by the 

absorption a photon followed 

by the virtually instantaneous 

emission at a different 

wavelength that stops when 

the incident light stops.  

Phosphorescence in an inorganic molecule is defined as the after-glow of the material once 

the exciting radiation ceases.  Conversely, in an organic molecule fluorescence is emission 

Figure 5.2 A basic schematic of a two level system with a 
metastable state. 
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from a singlet excited state and phosphorescence is emissions from a triplet excited state.14, 

15  

5.2.1 Basic Model Development   

 Beginning in 1933 Jablonski, proposed an energy level model for the emitting center 

of organic molecules.16  His visualization of luminescence included a thermally activated 

metastable state shown in figure 5.2.  In this system an incident photon excites the system, 

which in turn decays to a metastable state and finally decays back to the ground state 

emitting a photon.  The theory became further developed with the introduction of ion 

impurities in the atomic lattice.  Seitz in his study on thamllium ions found that homopolar 

forces between the excited ion and its neighbor depressed singlet excited levels more so 

than triplet.17  Figure 5.3, a modification of figure 5.2 came to emerge as a more accurate 

picture.18   

Luminescence as 

described by quantum 

mechanics built a theory of 

band structures based on 

electrons in periodic 

potentials.  Seitz and Mott 

theory included spectral 

differences based on the 

nuclear coordinates of the atoms comprising the material.19 Further complexities in the 

theory of luminescent behavior were added to account for charge transfer between 

Figure 5.3 The configuration model of luminescence developed by 
Seitz (1938) and Mott (1939). 
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impurities and defect crystals which involved both bands and localized electronic states.20, 

21   

Quantum confinement in quantum dots began to be studied in the early 1980s as a 

result of the work of Efros and Ekimov22, 23 at the Ioffe in St. Petersburg and Brus24, 25 at 

Bell Labs.  These seminal studies involved correlating the size of the semiconductor to its 

emitting color. Other studies soon followed that described oscillator strengths26 in different 

semiconductor materials27 and radiative lifetimes28 of low dimensional structures.  The key 

to understanding the radiative transitions in quantum dots begins with an understanding 

of the density of states in a low dimensional 

system. 

5.3  Low Dimensional Density of States  

 The density of states for a 3D bulk 

material system is given by 

 

𝜌3𝐷 𝐸 =
1

2𝜋2
 

2𝜇

ℏ2
 

3 2 

 𝐸 − 𝐸𝑔 
1 2 

. 

 In this section the density of states for low dimensional systems, 2D, 1D and 0D will be 

discussed. 

Consider the 2D laminar sheet, in figure 5.4, where electrons are free to move in the 

x and y-directions but are confined in the z-direction.  The density of states for a 2D 

structure is the number of states per unit area and unit energy.  The wavefunction from 

elementary quantum mechanics for an infinitely deep potential well is 

𝜓𝑛 𝑧 =  
2

𝐿𝑧
 

1 2 

cos
𝑛𝜋𝑧

𝐿𝑧
,                                                      (5.1) 

Figure 5.4 2D structure with quantum 
confinement in the z-direction. 
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and the energies arising from such a system are given by 

𝐸𝑛 =
ℏ2

2𝑚
 
𝜋𝑛

𝐿𝑧
 

2

,          𝑛 = 1, 2, 3, …                                             (5.2) 

However, in the x and y-directions the Schrödinger equation is separable, thus the energy 

in the xy-plane is 

𝐸𝑥𝑦 =
ℏ2

2𝑚
 𝑘𝑥

2 + 𝑘𝑦
2                                                             (5.3) 

Thus the total energy for the electron and holes respectively will be the sum of 𝐸𝑛 , 𝐸𝑥𝑦 , and 

𝐸𝑔  the gap energy.  The energy levels for electrons and holes are given by 

𝐸𝑒 = 𝐸𝑔 +
ℏ2

2𝑚𝑒
∗   

𝜋𝑛ℎ

𝐿𝑧
 

2

+  𝑘𝑥
2 + 𝑘𝑦

2                       (5.4) 

𝐸𝑒 = 𝐸ℎ +
ℏ2

2𝑚ℎ
∗   

𝜋𝑛𝑒

𝐿𝑧
 

2

+  𝑘𝑥
2 + 𝑘𝑦

2                      (5.5) 

where 𝑚𝑒
∗  is the effective mass of the electron and 𝑚ℎ

∗  

is the effective mass of the hole.  The space reduced 

from the 3D to the 2D leaves only coordinates in the 

xy-plane.  In figure 5.5 the surface energy is a constant 

circle in the k-space with the coordinates 𝑘𝑥  and 𝑘𝑦 .  

The total energy of the electronic system, for an optical 

transition, is the sum of the energy for the electron and the hole 

𝐸 = 𝐸𝑒 + 𝐸ℎ                                                                    (5.6) 

or 
 

𝐸 = 𝐸𝑔 +
ℏ2

2𝜇
  

𝜋𝑛

𝐿𝑧
 

2

+  𝑘𝑥
2 + 𝑘𝑦

2                                                (5.7) 

 
where 𝜇 is the reduced mass, defined as 
 

Figure 5.5 The surface energy for a 2D system 
in k-space. 
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1

𝜇
=

1

𝑚𝑒
∗

+
1

𝑚ℎ
∗  

 
The volume of k-space is found by 

𝑉2𝐷 𝐸 = 𝑑𝐸  
1

∇k𝐸(𝑘)
𝑑𝑆 =

2𝜋𝜇

ℏ2
𝑆

                                               (5.8) 

Since two electrons with opposite spin can fill the same phase space the density of states is 

𝜌2𝐷 𝐸 =
𝜇

𝜋ℏ2
  𝐸 ≥ 𝐸0 .                                                       (5.9) 

Assuming the semiconductor has more than one quantum state, the total density of states 

can be written as 

𝜌2𝐷 𝐸 =
𝜇

𝜋ℏ2
 𝜃 𝐸 − 𝐸𝑛 − 𝐸𝑔 

𝑛

                                           (5.10) 

where 𝜃 is a step function, 𝐸𝑛  are quantized energy states and 𝐸𝑔  is the gap energy.  

Similarly, for a 1D system 

𝑉1𝐷 𝐸 =  
𝛿(𝑘𝑥 − 𝑘𝑥0)

∇𝑘𝐸(𝑘𝑥)
𝑑𝑆 =  

𝜇

2ℏ2

1

(𝐸 − 𝐸0)
     𝐸 ≥ 𝐸0 .                (5.11)

𝑆

 

More generally 

𝑉1𝐷 𝐸 =  
𝜇

2ℏ2

1

(𝐸 − 𝐸𝑚 − 𝐸𝑛 − 𝐸𝑔)
 .                                     (5.12) 

Recall that in phase space two electrons with opposite spin give a volume of 2𝜋, thus 

𝜌1𝐷 𝐸 =
 2𝜇 1 2 

𝜋ℏ
 

1

 𝐸 − 𝐸𝑚 − 𝐸𝑛 − 𝐸𝑔 
1 2 

𝑚,𝑛

.                                 (5.13) 

Finally, for a 0D system, the electron is confined in all three spatial dimensions leaving no 

k-space for the electrons to fill.  Thus, each quantum state of a 0D system is occupied by 

only two electrons. 
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The density of states in such a case is given by 

𝜌0𝐷 = 2  𝛿 𝐸 − 𝐸𝑙 − 𝐸𝑚 − 𝐸𝑛 − 𝐸𝑔 

𝑙,𝑚,𝑛

                                      (5.14) 

where 𝛿 is a delta function and the indices 𝑙, 𝑚, and 𝑛 refer to quantum numbers associated 

with each spatial direction. 

5.4  Basic Theory of  Quantum Dots 

 The density of states of a material describes the allowed energy of the particular 

material.  A bulk 3D material has a continuum of states, 

shown in figure 5.6(a).  The optical properties of a 3D system differ fundamentally from 

low-dimensional systems.  In low-dimensional systems spatial confinement of holes and 

electrons radically alter the states.  Layered 2D structures, figure 5.6(b) exhibit a step 

function density of states.  Often 2D structures are used as quantum wells commonly used 

in electronic applications.  In 1D structures, figure 5.6(c) there is only one-degree of 

freedom, creating a quantum wires.  0D structures, figure 5.6(d) are structures that exhibit 

discrete energy states and called quantum dots. 

Figure 5.6  The density of states for (a) 3D bulk materials, (b) 2D layer structures; (c) 1D quantum wires; (d) 0D quantum dots. 

(d) (b) (a) (c) 
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 Quantum dots are 

nanostructures composed of 

semiconductor materials having 

periodic groups of class II-VI, III-V or IV-

VI materials.  Quantum dot 

semiconductors are a distinctive from 

bulk semiconductors in that their 

diameters are on the order of 2-10 

nanometers. However, to understand the 

radiative processes in the quantum dot, the processes in the bulk structure will first be 

discussed. 

 The electrons in bulk 3D semiconductors have a continuum of energies as shown in 

figure 5.6(a).  In fact there are energy 

levels in bulk semiconductors but 

adjacent energy levels are so close 

together they are described as forming a 

continuous spectrum of energies.  

Within each of these energy levels two 

electrons are allowed to reside.  Further, 

there are some energy levels that are 

forbidden called a bandgap.  Electrons below the bandgap are in the valence band while 

those occupying levels above the bandgap are in the conduction band. 

Figure 5.7 A schematic of the electronic structure 
of a bulk semiconductor with the electrons in the 
valence band. 

Figure 5.8 A schematic of an electron that has 
jumped into the conduction band leaving a positive 
hole in the valence band. 
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 In the typical bulk semiconductor there are very few electrons occupying the 

conduction band, leaving the majority of electrons to nearly fill the valence band.  An 

electron can move from the valence band to the conduction band by absorbing enough 

energy to jump the bandgap.  When an electron is able to jump into the conduction band 

the vacancy in the valence band is called a "hole", as shown in figure 5.8. 

 The same concepts of 

bulk semiconductors also 

apply to quantum dot 

semiconductors such as energy 

levels, a conduction band and a 

valence band and a bandgap.  

The difference between the 

bulk material and the quantum dot 

is the size, which plays a vital role in exciton separation.  In the bulk semiconductor 

material the exciton Bohr radius 

is allowed to extend to its 

expected limit as shown in 

figure 5.9.  However, in a 

quantum dot with a physical 

size less than the exciton Bohr 

radius, the electron levels 

become discrete, quantum 

mechanically confining the electron.  The size of the bandgap in a quantum dot is 

Figure 5.9 A schematic depicting the a bulk material and a 
quantum dot in relation to the exciton Bohr radius. 

Figure 5.10  A representation of the size of quantum dots and 
their radiating wavelengths. 
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determined by its diameter,29 with larger quantum dots emitting in the red and smaller in 

the blue, as depicted in figure 5.10.  Thus, a quantum dot can be tailored to emit at a 

desired wavelength. 

5.4.1  Quantum Confinement 

 The exciton exists as a bound state of an electron and a hole, through Coulomb 

attraction.  In a 3D bulk material the lowest energy bound state is described by the effective 

Rydberg energy  

𝑅𝑦∗ =
𝜇

𝜀2𝑚𝑒
𝑅𝑦                                                             (5.15) 

and the effective Bohr radius 

𝑎𝐵
∗ =

𝜀𝑚𝑒

𝜇
𝑎𝐵                                                                (5.16) 

where 𝑚𝑒  is the electron mass, and 𝜀 is the dielectric constant.  Further, the Rydberg 

energy, 𝑅𝑦 = 13.6 𝑒𝑉and the Bohr radius of the hydrogen atom 𝑎𝐵 = 52.9 pm.  Thus, the 

energy levels of the exciton can similarly be written as30 

𝐸𝑛 = 𝐸𝑔 −
𝑅𝑦∗

𝑛2
         𝑛 = 1, 2, 3, …                                             (5.17) 

  Similar terminology is used to describe microcrystallines or quantum dots.  The 

quantum confinement is classified into three different confinement regimes: (1) strong; (2) 

intermediate; and (3) weak. 31, 32  These different categories are dependent upon the 

relative size of the quantum dot in relation to the exciton Bohr radius.33  Assuming the 

quantum dots are spherical the Bohr radii for the hole, 𝑎ℎ
∗ , and electron, 𝑎𝑒

∗  are  

𝑎𝑒
∗ =

ℏ2𝜀

𝑚𝑒
∗𝑒2

,                                                                 (5.18) 
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𝑎ℎ
∗ =

ℏ2𝜀

𝑚ℎ
∗𝑒2

.                                                                 (5.19) 

where 𝑒 is the fundamental charge of an electron.  Combining equations (5.18) and (5.19) 

yield the exciton Bohr radius 

𝑎𝐵
∗ =

ℏ2𝜀

𝜇𝑒2
                                                                   (5.20) 

where 𝑎𝑒
∗ < 𝑎𝐵

∗ , 𝑎ℎ
∗ < 𝑎𝐵

∗ ,  𝜇 is the reduced mass and 𝜀 is the dielectric constant. 

5.4.1.1  Strong Confinement 

 Strong confinement occurs when the Coulomb interaction energy is much smaller 

than the quantized energy.  Further, the motion of electrons and holes must be quantized.  

Under these conditions 𝑅 ≪ 𝑎𝑒
∗  and 𝑎ℎ

∗ < 𝑎𝐵
∗ .  The ground state energy is given a sum of the 

kinetic energy of electrons and hole, the gap energy and Coulomb energy34, 35, 36 

𝐸 𝑅 = 𝐸𝑔 +
ℏ2𝜋2

2𝜇𝑅2
−

1.786𝑒2

𝜀𝑅
− 0.248𝑅𝑦∗                                    (5.21) 

where the term 0.248𝑅𝑦∗ is the correlation energy.  Typical semiconductors which exhibit 

strong confinement are GaAs, CdS, CdSe, and CdTe quantum dots. 

5.4.1.2  Intermediate Confinement 

 Intermediate confinement occurs under the conditions that the electron motion is 

quantized and the hole is electron and hole are bound by Coulomb interactions.  

Mathematically stated 𝑎ℎ
∗ < 𝑅 < 𝑎𝑒

∗ .  Type II-VI quantum dots such as CuBr, belong to this 

regime. 
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5.4.1.3  Weak Confinement  

 Weak confinement exists when only the motion of the excitons center of mass is 

quantized.  Under these conditions 𝑅 ≫ 𝑎𝐵
∗ > 𝑎𝑒

∗  and 𝑅 ≫ 𝑎𝐵
∗ > 𝑎ℎ

∗ .  The ground state 

energy in the weak regime is37 

𝐸 = 𝐸𝑔 − 𝑅𝑦∗ +
ℏ2𝜋2

2𝑀𝑅2
.                                                     (5.22) 

where the total mass 𝑀 = 𝑚𝑒
∗ + 𝑚ℎ

∗ .  The most common semiconductor belonging to this 

class is CuCl.38   

5.4.2  Other Considerations 

 Although the diameter of a quantum dot and the ability to confine the exciton as 

discussed above is an integral, in practice there are other considerations when 

characterizing quantum dots.  The largest consideration is the shape of the quantum dot.  In 

the above discussion the quantum dot was always assumed to be a sphere.  In the 

preparation of quantum dots the diameters are never identical but are represented by a 

distribution of diameters.  The more uniform the diameter of the quantum dots the more 

narrow the luminescent spectral peak.  Other considerations include the ambient 

surroundings of the quantum dots and the impurities in the dots themselves. 

5.5  Förster Resonant Energy Transfer 

 Theodor Förster, a German scientist was the first to propose fluorescence resonance 

energy transfer (FRET).39, 40, 41, 42 In simple terms the process occurs when an excited donor 

chromophore transfers energy by dipole-dipole coupling to an acceptor chromophore.  The 

energy is not transferred through by fluorescent processes.  When both the donor and 

acceptor are fluorescent, some apply the term "fluorescence energy transfer" is to the 
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process, but the process is still non-radiative.  Thus, the preferred term is "Förster 

resonance energy transfer." 

 FRET processes remained relatively unexplored from when it was initially 

articulated to the mid 1960s.  In the mid 70s the biochemical community came to realize 

the potential worth of a FRET system for tracking global structural changes in 

macromolecules.43  The processes offered an experimental technique for estimating 

molecular distances as reactions occur.  Depending on the materials FRET has been found 

to occur between 10-80 Å.   

 The Förster formalism is based upon the transfer of energy between two 

neighboring chromophores.  A chromophore is a term used to describe the part of a 

molecule responsible for its color.  The chromophore is a chemical group, in the molecule 

where the energy difference between two orbitals, fall within a specific range of the EM 

spectrum.  Thus, when the chromophore is illuminated at a specific wavelength 

corresponding to the orbitals an electron is excited from the ground state to an excited one.  

There are two conditions which are required for resonant energy transfer.  First, a large 

overlap in the first absorption band of the acceptor and the emission band of the donor, 

creates the necessary transfer region.  Second, the donor must have a high fluorescence 

yield.44 

5.5.1 Förster Formalism 

 The transfer of energy from an donor to an acceptor molecule will involve the 

electronic states of the donor and acceptor and may be accomplished through different 

mechanisms.  However, regardless of the mechanism, conservation of total energy is 

required for a resonant process to occur.  The conservation of energy requires that the 
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donor molecule be greater than or equal to the acceptor molecule.  The transfer of energy 

between the donor and acceptor competes with other deexcitation processes such as 

vibration.  For example, once the transfer has been accomplished any surplus energy 

remaining with the donor is dissipated as vibration energy. 

The formalism of FRET requires several assumptions.45  The first being, the donor 

and acceptor chromophores are stationary, in relation to a time scale, on the same order as 

the lifetime of the excited state.  Second, the interaction energy is weak such that the rate of 

transfer is proportional to the square of vibrational interaction energy.46   Third, the donor 

and acceptor interaction is only a dipole-dipole interaction so the overlap between the 

electronic wavefunctions of the donor and acceptor is not a means of deexcitation.47 

 The Förster formulation for the rate of energy transfer, 𝑘𝑇 , is given by 

𝑘𝑇 =
9(ln 10)𝜅2𝑄𝑑𝐽

128𝜋5𝑛4𝑁𝐴𝜏𝑑𝑅6
                                                     (5.23) 

where 𝜅 is the orientation factor for a dipole-dipole interaction; 𝑄𝑑  is the fluorescence 

quantum yield of the donor in the absence of the acceptor, 𝐽 is the normalized spectral 

overlap integral, 𝑛 is the refractive index of the medium surrounding the donor and 

acceptor, 𝑁𝐴  is Avogadro's number, 𝜏𝑑  is the fluorescence lifetime of the donor in the 

absence of the acceptor, and 𝑅 is the distance between the centers of the donor and 

acceptor.  Notice that equation (5.23) does not require that the donor and acceptor be 

identical molecules.   

 The orientation factor 𝜅 is a measured with respect to the angle between the donor 

and acceptor molecules 𝜃𝑇  giving  

𝜅2 =  cos 𝜃𝑇 − 3 cos 𝜃𝑑 cos 𝜃𝑎 
2                                              (5.24) 
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where 𝜃𝑑  and 𝜃𝑎  are angles defined by the vector joining the donor and acceptor with the 

emission and absorption dipoles.  The orientation factor 𝜅2can vary from 0 to 4.0.48  The 

normalized spectral overlap is given by 

𝐽 =
 𝜀𝑎 𝜆 𝜆

4𝑑𝜆

 𝐹𝑑 𝜆 𝑑𝜆
                                                           (5.25) 

where 𝐹𝑑 𝜆  is the fluorescence intensity of the donor in the absence of the acceptor at 

wavelength 𝜆, and 𝜀𝑎(𝜆) is the molar absorption coefficient of the acceptor at 𝜆.  Equation 

(5.25) corresponds to the amount of overlap of the donor and acceptor emission spectra.    

 An alternative form of the Förster transfer rate can be stated in terms of a critical 

distance at which 50% of the excitation energy is transferred to the acceptor. 

𝑘𝑇 =
1

𝜏𝑑
 
𝑅0

𝑅
 

6

                                                            (5.26) 

where 𝑅0 is a spatial relation between the donor and acceptor where the probability of 

donor deexcitation by energy transfer equals the probability of deexcitation by other 

processes.  Substituting equation (5.26) into equation (5.23) and solving for  into equation 

(5.23) and solving for 𝑅0  

𝑅0
6 =

9(ln 10)𝜅2𝑄𝑑  𝐽

128𝜋5𝑛4𝑁𝐴
.                                                         (5.27) 

If the units of the variables are in terms of cm-1 and M-1 then 𝑅0 can be written as49 

𝑅0
6 = 9.78 × 103

𝑄𝑑𝜅
2𝐽

𝑛4
Å

6
.                                                   (5.28) 

The transfer efficiency(𝐸), of energy from the donor to the acceptor, is written as  

𝐸 =
𝑅0

6

 𝑅0
6 + 𝑅6 

                                                               (5.29) 
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where 𝑅0 and 𝐸 are found experimentally allowing the donor-acceptor distance 𝑅 to be 

determined. 

5.5.2  Experimental Verification of FRET 

 Equation (5.29) shows the energy to be inversely proportional to the sixth power of 

the donor-acceptor separation, 𝑅.  Three experimental papers represent this verification.  

In 1965, Latt et al. showed that the transfer efficiency between donor and acceptor 

chromophores attached to fused steroids showed a nearly 𝑅−6 dependence.50  Then Stryer 

and Haugland in a more controlled experiment showed transfer efficiencies between a 

series of poly-t-proline oligomers had a 𝑅5.9±.3 dependence.51  Finally, Buecher et al. used 

sheets of fatty acids to measure the separation between multilayers, to confirm the 𝑅−6 

dependence.52  The validation of 𝐽 was made by Haugland et al, in 1969 when they varied 

the magnitude of 𝐽 and showed that the transfer rate was proportional to 𝐽 the spectral 

overlap.53 

5.5.3  Modern Advances in FRET 

 Modern biochemistry makes extensive use of the FRET phenomena to measure 

conformational changes, such as molecular rotations and distance on a nanometer scale.54  

Using near-field scanning optical microscopy emission spectra from donor and acceptor 

fluorophores in a short DNA molecule can be imaged. 55, 56   Techniques and new 

fluorescent materials have improved spatial resolution, distance range and sensitivity.57   

 One material that is now being commonly used as a FRET marker is the quantum 

dot.  For example quantum dots allow specific labeling of cellular constitutions.58  Further, 

quantum dots have been used as donors for FRET in imaging the binding and uptake of 

biotinylated transferin on living cells.59 
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 The types of quantum dot used as FRET markers are colloidal dots which have a 

narrow emission bandwidth ad broad absorption spectra.  Unlike organic dyes, which 

require complex arrangement of excitation sources and filters, a population of quantum 

dots can be excited with a single source.60  Further advantages of quantum dots include 

their brightness and photostability.61  

5.6  Quantum Dots-Encapsulated in Hydrogel 

Encapsulating quantum dots in materials to create optical gains was seen early in 

their development.  For example, the II-VI semiconductor CdS were embedded in a sodium 

borosilcate glass matrix to 

create a gain material.62  

Thermoresponsive hydrogel 

has been realized as a 

controlled medium to adjust 

the distances between quantum 

dots, due to the relationship in 

the quantum dot size and 

hydrogel pore size.63 One well 

known thermoresponsive 

hydrogel is PNIPAM hydrogel, discussed in previous chapters, that undergoes a volumetric 

phase change at a lower critical solution temperature.   CdTe quantum dots were first 

embedded in the bulk form of the PNIPAM hydrogel to yield an enhancement in 

photoluminescence.64   Later the quantum dots were embedded in poly(N-

isopropylacrylamide-acrylic acid) a microsphere form of the NIPA gel which is tunable in 

Figure 5.11 A microsphere with embedded CdTe quantum dots 
undergoing a volumetric phase change, bringing the QD into 
close proximity to one another. 
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response to pH stimuli.65  The CdTe offered a way to control the self assembly of the gel 

network.  In another study, researchers loaded two different sized CdTe nanocrystals into 

PNIPAM in an effort to realize multiple optical encoding.66  However, they found that the 

"average distance between CdTe nanocrystals was still greater than that required for 

Förster energy transfer."67 

 In the following sections in this chapter CdTe quantum dots 

encapsulated in PNIPAM hydrogel will be discussed.  There are 

two separate stimuli applied in the experiments namely 

temperature and electric field.  When the stimuli is applied to the 

swollen PNIPAM microsphere, it undergoes a phase change 

bringing the quantum dots into close proximity (see figure  5.11), 

resulting in Förster resonant energy transfer. 

The experimental setup of each, the results and the 

interpretations thereof will also be discussed.  Finally, a 

transmission experiment was performed to indicate the level of 

scattering in the medium. 

5.6.1  Temperature Dependent Photoluminescence    

 In the previous sections the foundation for a PNIPAM 

hydrogel—Quantum Dot hybrid material was laid.  In this section 

the experimental setup and results will be discussed.   

 Samples of the hydrogel-QD material were placed in quartz 

glass cuvettes and placed in a heater.  Figure 5.12 shows a glass 

cuvette containing the hydrogel-QD material illuminated under a 

Figure 5.12 A quart 
glass cuvette 
containing green QD 
illuminated under a 
black light. 

Figure 5.13The 
sample illuminated 
by the 404nm laser 
source. 
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black light.  In the experimental setup, the sample was excited by a 404nm diode laser 

source, shown in figure 5.13, manufactured by Power Technology Incorporated . 

The illuminating laser 

was placed at 45° angle to the 

spectrometer, as shown in 

figure 5.14.  Once the laser 

(purple) illuminated the source, 

luminescent emission from the 

sample (green) was focused 

into the spectrometer via 

optical lens.   The spectrometer 

used to gather and record data is the 

TRIAX 320 spectrometer 

manufactured by Jobin Yvon.  The 

sample holder was built as a small 

enclosure containing a heater and a 

forward window to allow for sample 

excitation.  Thermoelectric heaters 

manufactured by Melcor 

Incorporated were used to drive the 

temperature.   The temperature of 

Figure 5.14 The geometrical setup of the PL experiment. 

Figure 5.15  The PL of the hydrogel-QD hybrid material 
showing luminescent enhancement as a function of 
temperature. 
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the sample was varied from 25°C to 41°C, to ensure measurement below the hydrogel LCST 

and above LCST.  A Lakeshore 332 Temperature Controller was used to set and monitor the 

temperature of the sample.  

The spectral data, shown in figure 5.15 indicates that as the temperature increases 

the photoluminescence also increases.  Further, the wavelength of the peak shifts toward 

the red as the temperature increases.  The shape of the curve also changes with 

temperature, where the spectral width increases with temperature. 

5.6.2  Temperature Dependent Peak Red-Shift Analysis 

The quantum dots encapsulated in the hydrogel are not represented by a single 

diameter.  Rather, there is a distribution of sizes, shown in figure 5.16, some of which are 

more excitable at a wavelength of 404nm.  Consider the blue dots as a representation of the 

smallest dots within the distribution.  These dots because of there size will more efficiently 

absorb the UV laser source.   The other quantum dots may or may not be excited by the 

laser depending upon their size.  .  Although the size of the quantum dots is represented by 

a distribution, there sizes do not significantly depart from one another and there bandgaps 

should have some 

overlap. Therefore, when 

the gel undergoes its 

phase change the 

quantum 

dots are 

brought into 

close proximity of one another the smallest quantum dots can transfer energy to the larger 

Figure 5.16 A hypothetical distribution of quantum dots encapsulated in a 
gel microsphere.  When the hydrogel undergoes its volumetric phase 
change the quantum dots are brought within close proximity to one 
another. 
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quantum dots.  Returning to figure 5.16, the blue dots now are able to transfer energy to 

the green dots and the green dots to the red dots (the larges size in the distribution).  The 

evidence of this process is seen in figure 5.16.  The red-shift in the spectral peak indicates 

that a larger number of dots with slightly redder bandgaps are being excited.  Further, the 

increase in spectral width and in particular the tail in the red indicates that larger dots are 

also being excited.  In summary, as the hydrogel undergoes its phase change: (1) dots of all 

sizes are brought closer together; (2) smaller dots are able to more efficiently transfer 

energy through the FRET process to the larger quantum dots; and (3) the larger quantum 

dots with redder spectrums become more and more dominant in the emitted spectrum. 

5.6.3  Luminescent Enhancement  

Perhaps the most notable feature in figure 5.15 is the increased in 

photoluminescence, one the temperature rises above 34°C.  Recall in the previous chapters 

that the refractive index of the hydrogel—water material was dependent upon the 

scattering in the medium.  Thus, below LCST there a given amount of scattering that occurs 

that subsequently 

excites a fixed number 

of quantum dots.  As the 

PNIPAM gel spheres 

undergo their 

volumetric phase change the 

scattering in the medium also increases.  Since the scattering has now increased more 

quantum dots will be excited, resulting in an increase in photoluminescence yield from the 

medium. 

Figure 5.17  In line photoluminescent of transmitted light. 
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5.6.4  Transmission through Hydrogel-QD Material 

Another experiment that indicated the above process, is the transmission 

experiment where laser light is passed through a volume of the hydrogel-QD material.  The 

experimental setup requires a 

linear setup where, the laser light 

passes through the volume and 

from the volume into the 

spectrometer.  A basic depiction is 

shown in figure 5.17.  In the 

experiment the path length of the 

volume transacted by the laser 

beam was increased from 1 

cylinder or by 3mm.  In figure 5.17, 

two cylinders are filled with the 

hydrogel-QD material and were held 

in place by two windows. 

The first sample analyzed was 

a well prepared sample with the 

quantum dot distribution showing a 

narrow spectral distribution.  In 

figure 5.18, the peak shifts toward the 

red and a tail develops in the red, as the 

path length is increased.  The peak wavelength is plotted against path length in figure 5.19.  
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Figure 5.18The transmission PL spectra of the 
hydrogel-QD at various path lengths. 
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The discontinuity in figure 5.19 may be due to a change in intensity of the laser light 

passing through the material.   Both figures 5.18 and 5.19 support the FRET process 

discussed above.  The larger quantum dots play a larger role in the emitted light as the path 

length increases.  This is to be 

expected since as the path length 

increases energy is able to be passed 

to increasingly larger dots. 

The second experiment 

illustrates this point of larger 

quantum dots being excited as the 

path length increases.  In this 

experiment a wide distribution of 

dots was prepared and transmission data was obtained 

for a 1.5 cm path length.  Also data was collected for the 

reflection geometry used in the temperature 

measurement.  Figure 5.20 indicates that indeed a 

longer path length is allowing larger dots to be excited.  

The shift in the spectral peak amounts to 

approximately 60nm.  This again bolsters the claim that 

the FRET process is occurring where energy is 

transferred from smaller dots to larger ones which 

then emit the energy according to the larger dot's 

bandgap. 
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Figure 5.20  The PL for a transmission through 1.5 
cm path and PL for reflection geometry. 

Figure 5.21 A schematic of the 
electro-chemical cell created to 
generate an electric field across the 
hydrogel-QD material. 
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5.6.5  Electric Field Enhancements 

The experimental setup to test for electric field enhancements is similar to that of 

the temperature dependent methods.  The geometry of the exciting laser and spectrometer 

remain the same.  The sample holder, however, is altered to accommodate electrodes 

disposed on opposite sides of the holder and lay within in the material.  Several different 

materials for the electrodes were tried in this experiment.  The best material for the 

electrodes was found to be Al.  Other metals such as Pt and Cu reacted with the with the 

quantum dots causing them to precipitate out of solution and loose their luminescent 

features. 

 An enhancement was also found four the hydrogel-QD material when an electric 

field was applied to the sample.  

However, the enhancement was 

found when the temperature was 

above LCST.  Figure 5.22 shows the 

increase in luminescence as a 

function of electric field.  The data 

was taken at 36°C, every 3 minutes 

in intervals of 0.2 V/cm.  The 

dramatic jump occurs at 5.4 V/cm.  

The curious feature of figure 5.22 is 

the fact that the enhancement is 

occurring above the critical temperature.  Most likely this is again due to an increase in 

scattering in the medium.  However, the scattering in this instance is due to a deformation 
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Figure 5.22 The enhancement of hydrogel-QD using 
an electric field, at 36°C, above LCST. 
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of the collapsed gel sphere.  A net charge exists on the gel particles.  When the particle is 

placed within an electric field a natural charge separation occurs, which naturally deforms 

the particle.  Since the particle is no longer a sphere, the scattering will increase, explaining 

the enhancement. 
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CHAPTER 6 

ON TUNABLE PHOTONIC CRYSTALS 

 

6.1  Introduction to Photonic Crystals 

 The language used in describing photonic crystals 

strongly overlaps the field of solid state physics, borrowing 

many terms of art which describe similar phenomena, but on 

different length scales.  Solid state describes the motion of 

electrons with respect to a lattice structure, whereas in a 

photonic crystal the propagation of an electromagnetic wave is 

described with respect to period scatterers.  Similarly the 

density of states, described for an electron in solid state, 

carries over to describe the density of states for confined EM 

radiation.   

 A photonic crystal requires two elements.  First, the crystal aspect requires two 

periodically ordered materials with differing dielectric materials.  Second, the photonic 

portion requires electromagnetic radiation to interact with the 

two materials.  Photonic crystals are grouped into three main 

categories depending upon the dimensionality of the 

periodicity of the dielectric materials, namely, one-

dimensional (1D), two-dimensional (2D) and three 

dimensional (3D).1  

The simplest photonic crystal, shown in figure 6.1, is 

Figure 6.2 Alternating 
dielectric materials in two 
dimensions. 

Figure 6.1 A one-dimensional 
photonic crystal comprised of 
the dielectric materials A and B, 
with a periodicity of a. 
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formed by alternating dielectric materials A and B with a periodicity of a.  This is termed a 

one-dimensional crystal because the dielectric materials 

alternate in only one direction.  Similarly, in a two-dimensional 

photonic crystal the dielectric materials alternate in two 

dimensions as in figure 6.2.  The 2D crystal is the easiest to 

fabricate with current technologies and will be discussed in 

further detail later in the chapter.  Although the 3D photonic 

crystal, shown in figure 6.3 is the most difficult to fabricate, it 

offers complete control of EM radiation in all directions.  

Recall that the frequency of an EM field in free space is given by 

𝑐 = 𝜆0𝜈,                                                                      (6.1) 

where 𝜆0 is the wavelength of the EM wave, 𝑐 represents the speed of light, and 𝜈 is the 

frequency.  Further, a wavenumber can be defined as 

𝑘 =
2𝜋

𝜆0
.                                                                      (6.2) 

Combining equations (6.1) and (6.2) yields the dispersion relation for an EM field. 

𝜔 = 𝑐𝑘.                                                                      (6.3) 

Although these three equations are valid only for free space they are easily modified for 

materials with a uniform refractive index 𝑛.  This is accomplished by letting 

𝑐 →   𝑣 =
𝑐

𝑛
                                                                   (6.4) 

and 

𝜆𝑜 →   𝜆 =
𝜆𝑜

𝑛
.                                                                 (6.5) 

Figure 6.3 A schematic of a 3D 
photonic crystal with differing 
dielectric materials in 3 
dimensions. 
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The density of states for EM radiation from an oscillating dipole in free space, is 

found by considering the number of eigenmodes in a volume 𝑉 with eigenfrequencies less 

than 𝜔𝑜 .  There are two polarizations for each wavevector 

𝑁 𝜔𝑜 = 2
𝑉

(2𝜋)3
 𝑑𝒌

𝑘<𝜔𝑜 𝑐 

 

=
𝜔𝑜

3𝑉

3𝜋2𝑐3
.                                                                         (6.6) 

Thus, the density of states is given by 

𝐷 𝜔 =
𝜕𝑁(𝜔)

𝜕𝜔
=

𝜔2𝑉

𝜋2𝑐3
.                                                      (6.7) 

Further, the density of states for a material with a uniform refractive index is found by 

allowing 𝑐 → 𝑣, just as before.  Therefore, from equation (6.7), the optical properties of a 

material is strongly dependent upon 𝐷(𝜔), and can significantly be altered by modifying 

𝐷(𝜔).2  A more in depth discussion of the density of states and its relation to the radiated 

energy of an oscillating dipole is given in appendix 6.A. 

 A photonic crystal with specific values will exhibit a range of frequencies where no 

electromagnetic eigenmodes exist.  The range of forbidden frequencies is called the 

photonic bandgap, similar in concept to the electron bandgaps in atomic crystal structures.  

The photonic crystal is tailored to have a specific bandgap, which is used to control the flow 

of an electromagnetic wave through the crystal. 

 Few 3D photonic crystals have been fabricated using fabrication techniques 

common in the semiconductor industry.  One early method was infiltrating synthetic opal 

spheres with conducting polymer.3, 4  However, there have been some who have 

successfully created photonic crystals based upon silicon processing techniques.5 
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2D photonic crystal structures are the most common and easily fabricated with 

attempts to create photonic crystals out of two-dimensionally ordered spheres.6, 7, 8  

Although these alternative methods office promise, they are often painstaking precision.  

For example, a two dimensional photonic crystal was created using dielectric sphere 

created by mechanically arranging ninety-one 

spheres in a scanning electron microscope.9  

 The most commonly fabricated 

photonic crystals are the 2D variety, in the 

form of photonic crystal slabs, which draw on 

the fabrication technologies of the 

semiconductor industry.  2D photonic crystals 

can exist as a lattice of holes, as in figure 6.4, or 

as a lattice of columns, as in figure 6.5.  These 

slabs consist of a semiconductor material on top of an insulating material.  Slab structures 

offer easy fabrication as well as high coupling efficiencies for transmitting light into and out 

of, high refractive index semiconductors.10  This discussions contained within this chapter 

will center on slab structures and their use in tunable photonic crystals.  Other applications 

of the 2D slab photonic crystal include the incorporation of other nano-photonic structures 

such as quantum dots.  The photoluminescence of InAs quantum dots as an internal 

photonic source was recognized early in the development of photonic crystals.11  Others 

have created lasers using 2D photonic crystals slabs which form an optical microcavity for 

the capture of photons.12   

 

Figure 6.4 A photonic crystal slab comprised of a 
triangle lattice of holes. 

Figure 6.5 A 2D photonic crystal comprised of a 
square lattice of columns. 



136 
 

6.2  Historical Development 

Our understanding of light and its interaction with matter was born with James 

Clerk Maxwell in 1864.  He developed the first theory to describe lights interaction with 

matter and just as his equations were valid then they are today.13  Later, Oliver Heaviside 

used differential operators to simply these fundamental equations into Maxwell’s 

equations into their modern form.   

The first photonic crystals were never man made but appear naturally in minerals 

butterfly wings and abalone shells.14  Although he did not call them photonic crystals, John 

Strutt (Lord Rayleigh) in 1887, was the first to describe their properties with respect to a 

natural crystalline mineral. 15  These 1D crystals are created by alternating dielectric layers 

which have a narrow bandgap, reflecting a particular color.  As the angle of the light 

changes so does the periodicity of the layers, thus altering the color reflected.  With the 

one-dimensional periodicity Lord Rayleigh was able to show a band gap of forbidden 

wavelength, which would be later known as a Bragg mirror.16 

 The next development came with the Bloch-Floquet Theorem, which describes how 

a wave can travel through a period medium without scattering.17  Lord Rayleigh actually 

formulated a solution for 1D periodic material that showed a bandgap, however he 

abandoned the solution for a more simplistic one.  

One-dimensional structures have become widely used in the areas of thin films, 

optical coatings, and diode lasers, while two and three dimensional structures were 

ignored up until the 1970’s and early 1980’s when a small amount of research was done for 

periodic lattices in higher dimensions without bandgaps.   
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The theoretical benchmark in the development of photonic crystals came in 1979, 

when Ohtaka used the vector-spherical wave expansion to model the dispersion relation 

and transmittance of an array of identical dielectric spheres.18, 19  Ohtaka's inspiration for 

the work was the number of materials created in the mid 70's exhibiting lattice constants 

comparable to that of light, such as polymers20, 21, 22, 23 , lattice voids in ion-bombarded24 or 

neutron-bombarded25 metals and ordered biological systems26.  This method he employed 

is also known as the vector KKR (Korigna-Kohn-Rostker) method a direct extension of the 

LEED (Low Energy Electron Diffraction)27, 28, 29.  The work of Korigna calculated the energy 

𝐸(𝒌) of a Bloch wave with a reduced wave vector 𝒌 using the dynamical theory of lattice 

interferences to electron waves30 and the work of Kohn and Kostker calculated the 

conduction band structure of metallic lithium by solving the Schrödinger equation in a 

periodic lattice using a variation-iteration method.31  Previous to this treatment a two 

different formulations were used in LEED calculations for band structure including 

Boudreaux-Heine32, 33, and Hartree-Fock34, 35 ,36. 

  In 1987, Yablanovitch announced the existence of photonic band gaps in 3D 

periodic structures and their applications in optoelectronic devices.37  The inspiration for 

the revolutionary idea was born out of photonic semiconductor applications and their 

bandgap properties.38, 39, 40, 41 Although other researchers that same year were working 

towards a theory describing the localization of electromagnetic waves42, 43, 44 it was John 

who described the localization of electromagnetic waves in disordered crystals and 

predicted quantum optical phenomena such as non-exponential decay of spontaneous 

emission and a bound state of photons.45  While Yablanovitch's work was driven by 
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bandgap theory, John's work derives from the interactions of an electromagnetic wave with 

matter and the effects of ordering.46, 47, 48, 49   

 With this newfound application of Maxwell’s equations researchers began exploring 

the nature of light propagation through two and three-dimensional periodic structures.50  

In 1997, researchers at MIT announced the theoretical prediction that light confined to a 

periodic lattice could be made to bend around tight corners with minimal losses.51  One 

year later the same group was able to show experimentally the confinement of light around 

a sharp bend.52  Others soon followed with confinement with different geometries.53 

 These first experimental studies were done with two-dimensional periodic 

geometries because of the ease of fabrication.54,55  The fabrication of a true three-

dimensional period structure with a band gap is very complicated and labor intensive.  The 

solution is a slab structure which confines the light in the x-y plane by the periodicity of the 

lattice and index waveguiding in the z-direction.56  Thus a period structure can be made on 

a two dimensional surface that will reflect electromagnetic radiation within the band gap.57  

The radiation will be confined in a third direction by lower refractive indexes above and 

below the two-dimensional plane.   

 These initial discoveries, of a photonic bandgap and the localization of light within a 

lattice, have been followed by research which has sought to release the full potential of 

photonic crystals.  With increased research, a theoretical understanding and modeling 

techniques have been further developed.  For example, the group theory for a vector field 

with two degrees of freedom describing symmetry properties in a photonic crystal.58, 59, 60  

Two standards for computational purposes have emerged, the plane-wave expansion 
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method and the FDTD method.  With these methods the expected optical properties of a 

particular photonic can be calculated.  

6.3  Basic Photonic Band-Gap Theory 

 The elements required for a photonic crystal are (1) a periodic dielectric structure 

that (2) exhibits a forbidden range of frequencies.  In this section basic bandgap theory is 

discussed in terms of a 1D crystal, for simplicity and conceptual purposes.  However, 2D 

structures, which are the most commonly made, will be discussed in regards to their 

geometries, materials and fabricated structures. 

6.3.1  The Photonic Band-Gap 

The calculation of the bandgap structure for a 1D photonic crystal is the simplest to 

perform and easiest to see conceptually.  Assuming that the magnetic permeability of the 

material is equivalent to that of free space, Maxwell's equations written for an EM wave in a 

varying dielectric in the 𝑥 direction is 

𝑐2

𝜀 𝑥 

𝜕2𝐸(𝑥, 𝑡)

𝜕𝑥2
=

𝜕2𝐸(𝑥, 𝑡)

𝜕𝑡2
                                                    (6.8) 

where 𝐸(𝑥, 𝑡) is the electric field as a function of position 𝑥 and time 𝑡, 𝑐 is the speed of light 

and 𝜀 𝑥  is the position dependent dielectric constant.  Further, since 𝜀(𝑥) is a periodic 

function a constant may be added without changing the function 

𝜀 𝑥 = 𝜀 𝑥 + 𝛼 .                                                              (6.9) 

Since dielectric constant, 𝜀(𝑥) is a periodic function, 𝜀−1(𝑥)in equation (6.8) is also a 

periodic function that is can be expanded by a Fourier series 

𝜀−1 𝑥 =  𝐴𝑛𝑒 𝑖
2𝜋𝑛𝑥

𝛼
 

∞

𝑛=−∞

,                                         (6.10) 
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where 𝑛 denotes an integer.  𝐴𝑛  are the Fourier coefficients, which are real, since 𝜀(𝑥) is 

real.  Thus  

𝐴−𝑛 = 𝐴𝑛
∗                                                                 (6.11) 

Bloch's theorem is used to describe the electronic eigenstates in crystals having a spatial 

periodicity.  The electron's motion through the crystal is dependent upon the potential 

energy of the regular periodicity of atomic nuclei.  Bloch's theorem is also valid for EM 

waves encountering a periodic dielectric structure, and is derived in appendix 6.B.  

Solutions to equation (6.8) can be written in the form of 

𝐸 𝑥, 𝑡 ≡ 𝐸𝑘 𝑥, 𝑡 = 𝑢𝑘 𝑥 𝑒𝑖 𝑘𝑥−𝜔𝑡  ,                                        (6.12) 

where 𝑢𝑘 𝑥  is also a periodic function so that  

𝑢𝑘 𝑥 = 𝑢𝑘 𝑥 + 𝛼                                                            (6.13) 

and 𝜔𝑘  is s the angular frequency.  Equation (6.12) can be expanded a Fourier series 

𝐸𝑘 𝑥, 𝑡 =  𝐸𝑚𝑒𝑖  𝑘+
2𝜋𝑚

𝛼
 𝑥−𝜔𝑘𝑡                                       (6.14)

∞

𝑚=−∞

 

where 𝐸𝑚  are the Fourier coefficients.  The only terms of equation (6.10) that are dominant 

are 𝑛 = 0, ±1, thus 

𝜀−1 𝑥 ≈ 𝐴0 + 𝐴1𝑒
𝑖
2𝜋𝑥
𝛼 + 𝐴−1𝑒

−𝑖
2𝜋𝑥
𝛼                                         (6.15) 

Substituting equations (6.14) and (6.15) into the wave equation (6.8) and cancelling 

exponential terms yields 

𝐴1  𝑘 +
2𝜋 𝑚 − 1 

𝛼
 

2

𝐸𝑚−1 + 𝐴−1  𝑘 +
2𝜋 𝑚 + 1 

𝛼
 

2

𝐸𝑚+1                                                      

≈  
𝜔𝑘

2

𝑐2
− 𝐴0  𝑘 +

2𝜋𝑚

𝛼
 

2

 𝐸𝑚    (6.16) 
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The next step in determining the bandgap for the 1D crystal is to find an equation for 𝐸 

when  𝑚 = −1 and 𝑚 = 0.  Thus  

𝐸−1 =
1

𝜔𝑘
2

𝑐2 − 𝐴0  𝑘 −
2𝜋
𝑎  

2  𝐴1  𝑘 −
4𝜋

𝛼
 

2

𝐸−2 + 𝐴−1𝑘
2𝐸0                     (6.17) 

and 

𝐸0 =
1

𝜔𝑘
2

𝑐2 − 𝐴0𝑘2

 𝐴1  𝑘 −
2𝜋

𝛼
 

2

𝐸−1 + 𝐴−1  𝑘 +
2𝜋

𝛼
 

2

𝐸1                      (6.18) 

A further simplification is made to equations (6.17) and (6.18) when 𝐸−1 and 𝐸0 are the 

dominant coefficients in equation (6.14).  These coefficients are dominant when 

𝜔𝑘
2 𝑐2 ≈ 𝐴0𝑘

2 and 𝑘 ≈  𝑘 −
2𝜋

𝛼
  in equations (6.17) and (6.18).  Thus, the coupled 

equations become 

−𝐴−1𝑐
2𝑘2𝐸0 +  𝜔𝑘

2 − 𝐴0𝑐
2  𝑘 −

2𝜋

𝛼
 

2

 𝐸−1 = 0                              (6.19) 

 𝜔𝑘
2 − 𝐴0𝑐

2𝑘2 𝐸0 − 𝐴1𝑐
2  𝑘 −

2𝜋

𝛼
 

2

𝐸−1 = 0                                 (6.20) 

These two equations are linearly independent and have a nontrivial solution when the 

determinant of the coefficients is set to zero. 

  
𝜔𝑘

2 − 𝐴0𝑐
2𝑘2 −𝐴1𝑐

2  𝑘 −
2𝜋

𝛼
 

2

−𝐴−1𝑐
2𝑘2 𝜔𝑘

2 − 𝐴0𝑐
2  𝑘 −

2𝜋

𝛼
 

2  = 0                                   (6.21) 

Solving the determinant for the eigenfrequency 

𝜔± =
𝜋𝑐

𝛼
 𝐴0 ±  𝐴1 ±

𝛼𝑐

𝜋 𝐴1  𝐴0

 𝐴0
2 −

 𝐴1 
2

4
  𝑘 −

𝜋

𝛼
 

2

                     (6.22) 
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If 𝑘 −
𝜋

𝛼
≪ 1, then there are no eigenmodes over the interval  

𝜋𝑐

𝛼
 𝐴0 −  𝐴1 < 𝜔 <

𝜋𝑐

𝛼
 𝐴0 +  𝐴1  ,                                         (6.23) 

and thus a photonic bandgap of 

forbidden frequencies is created, as 

schematically shown in figure 6.6.  From 

equation (6.23), the bandgap collapses 

when 𝐴1 = 0.   

6.3.2  Two-Dimensional Geometries  

 The requirement of a periodic 

varying dielectric, in the 𝑥 and 𝑦 

directions, are met by creating a 

background material with holes of a different dielectric constant.  Thus there are two 

possibilities (1) a photonic crystal can be formed by a series of high refractive index 

columns in a background of low refractive index material or (2) a series of low refractive 

index columns in a high refractive index material.  The lattice structure of the colomns are 

most often triangular or sqauare lattices but other lattices geometries are possible.61  The 

key is that periodicity of the scatterers in the photonic crystal gives rise to a range of 

forbidden frequencies or bandgap.62  Although the periodicity of the colomns varies in only 

two-dimensions, they exist in a 3D world.63 

2D strucutres are created on slab materials where EM wave interacts with the 

periodic structure is in the 𝑥𝑦 plane but is confined in the 𝑧 direction (figure 6.7), within 

the slab, through total internal reflection.64, 65  The materials typically used are 

Figure 6.6 A schematic of the dispersion relation for a 1D 
photonic crystal. 
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semiconductors and are fabricated using techniques borrowed from the semiconductor 

industry.66, 67 

These 2D 

structures can be used 

to create microcavities 

for use in low threshold 

laser, and waveguides 

with low-loss bends.68  Most photonic crystals fabricated are confined to operate in the 

near infrared or infrared range of the spectrum because of fabrication limitations.69, 70  The 

methods of fabrication include e-beam or x-ray beam lithography71, deep UV lithography72, 

wet etching techniques73 and focused ion beam milling. 

6.3.2.1 Air-bridges/Membranes 

The slab structures which maximize the concept of indexing in the z direction are 

air-bridges or membranes.74  In this structure the high index material is surrounded by air 

above and below the high index material.75, 76, 77, 78  In other words a high index material, 

typically semiconductor material such as GaAs, AlGaAs or Si, are suspended in the air and in 

the suspended structure the photonic crystal features created.79  These materials are 

selected because they are transparent at IR communication wavelengths of 1.55μm and 

1.3μm.80  Although membranes are the optimal structures for maintaining an EM wave in 

the material, they are not durable and suffer from structural failure.  However, being the 

optimal structures it is easy to observe true modes created by the photonic crystal 

structure and leaky slab modes.81, 82 

 

Figure 6.7 A slab of high refractive index surrounded by a low refractive 
index confines an EM wave inside the slab. 
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6.3.2.2  SOI (Silicon-on-Insulator) 

The semiconductor industry offers 

another material that is well adapted for 

use in fabricating 2D photonic crystals in 

SOI.83  A SOI wafer is composed of a top 

surface of silicon atop an insulator which is 

typically SiO2.  The SiO2 having a refractive 

index of approximately 1.45 is still much 

less than the refractive index of Si with a 

value of 3.5.  Thus the air above and the 

SiO2 below the silicon provide the necessary indexing to maintain the EM wave in the Si 

layer.84  SOI offers several advantages over bridge-type structures (1) the wafer cost; (2) 

fabrication cost; and (3) durability of the structure.  However, SOI material can also be used 

to make membrane type photonic crystal 

as discussed above.85 

6.3.3 Defects 

A photonic crystal acts as a perfect 

Bragg mirror, reflecting EM waves with 

frequencies that fall within the bandgap.  

Figure 6.8 shows such a structure.  If a row 

of the Bragg mirror is removed, as in figure 

6.9, light falling within the bandgap will be 

allowed to propagate down the defect, 

Figure 6.8 An array of scatterers form a photonic 
crystal, which acts as a Bragg mirror to an EM wave 
traveleing left to right. 

Figure 6.9 A row has been removed from the 
photonic crystal of figure 6.8 allowing an EM wave 
with a frequency in the bandgap to propagate from 
left to right. 
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while being confined by the photonic crystal on either side.86  Thus, the photonic crystal 

with a defect can act as a near lossless waveguide.87  Analysis of the light propagating 

through the waveguide will yield the bandgap structure of the photonic crystal.88, 89 

6.3.4  Bends  

 The waveguiding ability of 

photonic crystals with line defects 

introduced an apparatus for transporting 

EM radiation from one point to another.  

In 1996, the first theoretical predications 

for using a photonic crystal to waveguide 

light around corners began to appear.  

The numerical simulations indicated a 

transmission of 98% around 90° bends 

with a radius of curvature of zero.90  This 

provided a leap forward over 

conventional dielectric waveguides 

which exhibit a maximum of 30% 

transmission.  A couple years later this as 

shown experimentally, thus providing a 

new mechanism which could be used in 

large-scale all optical circuits.91 In  

 More complex structures for multiplexing and demultiplexing that are required for 

optical circuits were introduced.  Using scattering matrix computational methods the losses 

Figure 6.10 A photonic crystal with a Y-Bend structure 
used in multiplexing. 

Figure 6.11 A photonic crystal with a 120° bend. 
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for Y structures (shown in figure 6.10), abrupt bends and a directional coupler were 

calculated.92  Experimentally structures with 120° bends began being fabricated in 2000 

(shown in figure 6.11) on SOI, operating at a wavelength of 1550 where the radius of 

curvature is on the same order as the wavelength of light.93, 94  As a theoretical 

understanding has developed, the sophistication of creating bending waveguides has also 

become more sophisticated in created low loss structures.95, 96 

6.4  Tunable Photonic Crystals 

When a photonic crystal is designed the considerations include, the operating 

wavelength, fabrication materials, and proposed use of the crystal.  For example photonic 

crystals have been used to experimentally demonstrate an ultracompact biochemical 

sensor operating at a wavelength near 1550 nm that senses the evaporation of waver from 

glycerol.97 

 The first photonic crystal designed for specific systems were designed by adjusting 

the lattice spacing, scatterer diameters and defect widths.98   This is called structural 

tuning.  With the first structurally tuned photonic crystals, once the crystal was fabricated 

the properties of the structure could not be changed.   

 Thus, the need arose for the ability to change the photonic band gap, without the 

need to fabricate a new photonic crystal.  The photonic crystal may be tuned by changing 

(1) the lattice constant; (2) the scatterer diameter; (3) the optical properties of the 

background material; (4) the refractive index of the scatterers.     One early proposal was to 

change the optical properties of the semiconductor material by introducing temperature 

dependent impurities.99   Another common method of tuning the bandgap is by inserting a 

material into a defect, such as using quartz and high permittivity ceramics to create a 
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tunable defect.100  Finally, the other solution has been to insert a material into the lattice 

holes that is responsive to external stimuli, such as a magnetic field.101  For example a 

thermooptic effect was shown on SOI where hearing the holes changed the RI and thus the 

bandgap.102  Using this thermooptic effect Mach-Zehnder interferometers have been 

fabricated with a switching time of approximately 20 μs.103, 104 

6.4.1  Lattice Constant Tuning 

 Changing the lattice constant by some external means is the most simplistic method 

of changing the photonic bandgap.  One 

brute force method is to construct a 

photonic crystal that is sensitive to 

mechanical stresses, so when as a force is 

applied the lattice responds by changing 

the lattice spacing and scatterer 

diameter.105  Another example is the use of 

thermal expansion of the lattice to achieve 

bandgap tuning.  If Si is heated to 425°C 

the thermal expansion of the lattice is significant enough to shift the bandgap.106   

 Although thermal expansion and mechanical tuning of the bandgap achieve their 

respective goals the processes cause severe fatigue of the photonic crystal.  Further, such 

extreme heating will cause problems with components, in close proximity to the heat 

source, making this solution unattractive for integrated optical circuitry. 

 

 

Figure 6.12  A 2D photonic crystal with air holes that act 
as scatterers. 
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6.4.2  Scatterer Refractive Index Tuning 

 Currently the most practical solution 

to bandgap tuning is to introduce a material 

to the lattice structure which has the ability 

to change its refractive index.  There are 

many practical applications of tunable 

photonic crystals that encompass the fields 

of microwave engineering, quantum optics, 

semiconductor technology, lasers, and 

biosciences.107  For example, nonlinear 

optical polymers have been introduced to 

the scatterers that can be modulated by a high electric field.108   In the bio-sciences, sensors 

have been created where the level of protein concentrations in the scatterers effect the 

refractive index, thus, changing the 

transmission properties of the photonic 

crystal.109 

The basic idea is to take a photonic 

crystal with air voids as the scatterers, as 

shown in figure 6.12, and fill the scatterers 

with a tunable material, as shown in figure 

6.13.  The light transmitted through the defect 

waveguide then is dependent on the tunable 

material in the scatterers.  More complex structure incorporating tunable materials can be 

Figure 6.13 A 2D photonic crystal with the scatterers 
filled with a tunable material.  Thus, making the bandgap 
tunable. 

Figure 6.14 A 2D photonic crystal with a tunable 
multiplexing structure. 
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used for multiplexing.  For example, in figure 6.14, the path of the transmitted EM radiation 

through the crystal is dependent upon the tunable scatterers. 

6.4.2.1 Liquid Crystals 

Early in the development of photonic crystals, liquid crystalsi were seen as a likely 

candidate as a tunable material.  The first work in liquid crystal-photonic crystal hybrids, 

by Busch and John, showed that the bandgap could be controlled by the orientation of the 

liquid crystal.110  The attractiveness of the liquid crystal is its ability to be externally tuned 

thermally or by applying an electric field.111, 112, 113, 114  Over the past years many 

theoretical115 and experimental116 investigations have been made to increase there 

tunability117, 118, applications119 and fabrication techniques120.  Liquid crystals, however, 

suffer from the problem of offering only a small wavelength shift in the bandgap per degree 

of temperature or volt of electric field.  Many studies show only a 0.18 nm ℃  change121 and 

a total theoretic shift of 14 nm.122  Recently, larger 3D photonic crystal operating in the 3 

and 4 μm range, have been able to achieve tunability of 70 nm.123  However, to achieve such 

a wide tunability voltages in excess of 600V where applied and an average of only 0.117 

nm V  was achieved.  Although the tunability in the mid IR and microwave range makes 

liquid crystals attractive they are do not offer they same tunability in the communications 

                                                 
i Liquid crystals were discovered in 1888 by Austrian, Friedrich Reinitzer at the German University of Prague.  
While extracting cholesterol from carrots he observed that cholesteryl benzoate did not melt like in the usual 
ways.  The compound had two melting points at 145.5°C when it became a cloudy liquid and at 178.5°C 
became a clear liquid.  He presented his results on May 3, 1888 and shared the credit with collegues Otto 
Lehmann and von Zepharovich.  The term liquid crystal was not termed until 1922 by Georges Friedel.  
However, liquid crystals were not qidely studied until after 1969 when Hans Kelker synthesized a nematic 
phase at room temperature.  Finally in 1991, Pierre-Gilles de Gennes receive the Nobel Prize in Physics "for 
discovering that methods developed for studying order phenomena in simple systems can be generalized to 
more complex forms of matter, in particular to liquid crystals and polymers." 
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wavelengths or even the visible wavelengths.  The large problem with liquid crystals is 

their high viscosity, making it difficult to infiltrate a photonic crystal lattice. 

6.4.2.2   Hydro-Gel Based Methods 

 Another method for tuning photonic crystal is to make use of hydrogel polymer 

materials that offer a wide range of tunability.124  The methods of using hydrogel vary 

widely.  One method is to use hydrogel as a nanofluidic channel selector.125  The hydrogel is 

used to select a row on the photonic crystal, and then fluid is allowed to flow over the 

selected row creating a defect waveguide for EM radiation transmission.  Other methods 

include inserting nano-silicon columns in the hydrogel and using the hydrogel to 

manipulate the position of the columns for the creating of a photonic crystal.126  One 

dimensional photonic crystals have been created employing layers of hydrogel.  As the 

hydrogel undergoes its phase change the thickness of the layers change, tuning the 1D 

bandgap.127  This method showed a 575% change in the bandgap. 

 Hydrogel offers an unrealized 

method of tuning photonic crystals.  In 

the previous chapters it has been shown 

that as the hydrogel undergoes its 

volumetric phase change the refractive 

index changes.  This change in refractive 

index provides a tuning mechanism.  In figure 6.15 a schematic of a photonic crystal with 

hydrogel infiltrating the lattice structure is shown.  The remainder of this thesis will 

describe the process of building and the characteristics of a tunable hydrogel hybrid 

photonic crystal. 

Figure 6.15 A photonic crystal where hydrogel has 
infiltrated the scatterers and a small layer overlying the 
photonic crystal. 
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6.5  Derivations 

 The following derivations in this section are given for a more thorough 

understanding of the subjects discussed above.  

6.5.1  Energy of an Oscillating Dipole128 

 The density of states is a quantity that describes the allowed energies in a particular 

system.  In solid state physics it is used to describe the packing of the electronic energy 

levels in a quantum mechanical system.  The density of states in regards to EM waves 

describes the optical properties of the material and can describe the rate of spontaneous 

emission. 

 The derivation for the density of states begins with an understanding of dipole 

radiation.  Consider a single dipole oscillating with a frequency 𝜔 at a position 𝒓0.  Using a 

delta function, the polarization can be written in terms of a dipole moment, 𝒑, and a 

positive infinitesimal, 𝜂 → 0+. 

𝑃𝑝 𝒓, 𝑡 = 𝒑𝛿 𝒓 − 𝒓𝑜 𝑒
−𝑖𝜔𝑡 𝑒𝜂𝑡 .                                             (6.24) 

The infinitesimal is included so the electric field is switched on adiabatically at 𝑡 = −∞.   

 Maxwell's equations in matter are written as 

𝛁 ∙ 𝑫(𝒓, 𝑡) = 𝜌𝑓                                                            (6.25) 

𝛁 ∙ 𝑩 𝒓, 𝑡 = 0                                                             (6.26) 

𝛁 × 𝑬 𝒓, 𝑡 = −
𝜕𝑩

𝜕𝑡
                                                       (6.27) 

𝛁 × 𝑯 𝒓, 𝑡 = 𝑱𝑓 +
𝜕𝑫

𝜕𝑡
                                                    (6.28) 

In the case of this derivation free currents and free charge density will be ignored, thus 

𝑱𝑓 = 0                                                                     (6.29) 
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and  

𝜌𝑓 = 0                                                                       (6.30) 

 Further, the magnetic field 𝐵 can be written in terms of the auxiliary field, which will 

simply be called the magnetic field, 

𝑯 ≡
1

𝜇0
𝑩 − 𝑴                                                              (6.31) 

where the magnetization 𝑴 = 0 for nonmagnetic materials.  The electric displacement 

𝑫(𝒓, 𝑡) can be written in terms of the electric field and the polarization 

𝑫 𝒓, 𝑡 ≡ 𝜀0𝜀 𝒓 𝑬 𝒓, 𝑡 + 𝑷𝑒𝑥𝑡  𝒓, 𝑡 .                                         (6.32) 

Substituting equations (6.29), (6.30), (6.31) and (6.32) into Maxwell's equations yields129 

𝛁 ∙  𝜀0𝜀 𝒓 𝑬 𝒓, 𝑡 + 𝑷𝑒𝑥𝑡  𝒓, 𝑡  = 0.                                      (6.33) 

𝛁 ∙ 𝑯 𝒓, 𝑡 = 0                                                           (6.34) 

𝛁 × 𝑬 𝒓, 𝑡 = −
1

𝜇0

𝜕

𝜕𝑡
𝑯 𝒓, 𝑡                                              (6.35) 

𝛁 × 𝑯 𝒓, 𝑡 =
𝜕

𝜕𝑡
 𝜀0𝜀 𝒓 𝑬 𝒓, 𝑡 + 𝑷𝑒𝑥𝑡  𝒓, 𝑡                               (6.36) 

The inhomogeneous wave equation is obtained by eliminating the magnetic field in 

equations (6.34) and (.6.35). 

− 
1

𝑐2

𝜕2

𝜕𝑡2
+ ℋ 𝑬 𝒓, 𝑡 =

1

𝑐2𝜀0𝜀 𝒓 

𝜕2

𝜕𝑡2
𝑷𝑒𝑥𝑡  𝒓, 𝑡                           (6.37) 

where the differential operator ℋ is defined as 

ℋ 𝑨(𝒓, 𝑡) ≡ ∇ ×  ∇ × 𝑨 𝒓, 𝑡  .                                             (6.38) 

Further, defining the vector function 𝑸(𝒓, 𝑡),  

𝑸 𝒓, 𝑡 ≡  𝜀 𝒓 𝑬 𝒓, 𝑡 ,                                                   (6.39) 

equation (6.37) may be written 
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− 
1

𝑐2

𝜕2

𝜕𝑡2
+ ℋ 𝑸 𝒓, 𝑡 =

1

𝑐2𝜀0 𝜀 𝒓 

𝜕2

𝜕𝑡2
𝑷𝑒𝑥𝑡  𝒓, 𝑡 .                          (6.40) 

The solution to (6.40) is found in terms of a Green's tensor function130  

𝑸 𝒓, 𝑡 =  𝑑𝒓′
𝑉

  𝑑𝑡′𝑮    𝒓, 𝑟 ′, 𝑡 − 𝑡′ 
1

𝑐2𝜀0 𝜀 𝑟′ 

𝜕2

𝜕𝑡2
𝑃𝑒𝑥𝑡  𝑟

′, 𝑡′             (6.41)
∞

−∞

 

where V is the volume of the photonic crystal and the Green's function is 

𝑮    𝒓, 𝒓′, 𝑡 =
𝑐2

2𝜋𝑉
 

𝑸𝒌
(𝑇)

(𝒓) ⊗ 𝑸𝒌
(𝑇)

(𝒓′)

2𝜔𝒌
(𝑇)

𝒌

×   
1

𝜔 − 𝜔𝒌
(𝑇)

+ 𝑖𝜂
−

1

𝜔 + 𝜔𝒌
(𝑇)

+ 𝑖𝜂
 𝑒−𝑖𝜔𝑡 𝑑𝜔

𝐶

+
𝑐2

2𝜋𝑉
 𝑸𝒌

 𝐿 
(𝒓) ⊗ 𝑸𝒌

 𝐿 
(𝒓′)  

𝑒−𝑖𝜔𝑡

 𝜔 + 𝑖𝜂 2
𝑑𝜔

𝐶𝑘

. 

where (𝑇) represents the transverse component and (𝐿) represents the longitudinal 

components.  The Green's function can be simplified to 

𝑮    𝒓, 𝒓′, 𝑡 = −
𝑐2

𝑉
  

𝑠𝑖𝑛 𝜔𝒌
 𝑇 

𝑡 

𝜔𝒌
 𝑇 

𝑸𝒌
 𝑇  𝒓 ⊗ 𝑸𝒌

 𝑇  𝒓′ + 𝑡𝑸𝒌
 𝐿  𝒓 ⊗ 𝑄𝒌

 𝐿 † 𝒓′  

𝑘

  (6.42) 

Substituting (6.39) into (6.38) 

𝑸 𝒓, 𝑡 = −
1

𝜀0𝑉
  𝑑𝒓′   𝑑𝑡′   

sin 𝜔𝒌
 𝑇 

(𝑡 − 𝑡′)

𝜔𝒌
 𝑇 

𝑸𝒌
 𝑇  𝒓 ⊗ 𝑄𝒌

 𝑇 † 𝒓′ +  𝑡 − 𝑡 ′ 𝑸𝒌
 𝐿  𝒓 

𝑡

−∞𝑉𝑘

⊗ 𝑸𝒌
 𝐿 

 𝒓′   
1

 𝜀 𝒓′ 

𝜕2

𝜕𝑡2
𝑃𝑒𝑥𝑡  𝒓

′, 𝑡′                                                                      (6.42) 

This integral is solved by first integrating by parts 
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𝑸 𝒓, 𝑡 = −
1

𝜀0𝑉
  𝑑𝒓′   𝑑𝑡′ cos 𝜔𝒌

 𝑇  𝑡 − 𝑡′ 𝑸𝒌
 𝑇  𝒓 ⊗ 𝑸𝒌

 𝑇 † 𝒓′ + 𝑸𝒌
 𝐿  𝒓 

𝑡

−∞𝑉𝒌

⊗ 𝑸𝒌
 𝐿 † 𝒓′  

1

𝜀 𝒓′ 

𝜕

𝜕𝑡′
𝑷𝑒𝑥𝑡  𝒓

′, 𝑡′ .                                                                       (6.43) 

Using partial integration again 

𝑸 𝒓, 𝑡 = −
1

𝜀0𝑉
  𝑑𝑟 ′ 𝑸𝒌

 𝑇  𝒓 ⊗ 𝑸𝒌
 𝑇 † 𝒓′ + 𝑸𝒌

 𝐿  𝒓 ⊗ 𝑸𝒌
 𝐿 † 𝒓′  

1

 𝜀 𝒓′ 
𝑷𝑒𝑥𝑡  𝒓

′, 𝑡 
𝑉𝒌

+
1

𝜀0𝑉
  𝑑𝒓′  𝑑𝑡′  𝜔𝒌

(𝑇)
sin 𝜔𝒌

 𝑇  𝑡 − 𝑡′ × 
𝑡

−∞𝑉𝒌

 

 𝑸𝒌
 𝑇  𝒓 ⊗ 𝑸𝒌

 𝑇 †(𝒓′) 
1

 𝜀 𝒓′ 
𝑷𝑒𝑥𝑡  𝒓

′, 𝑡 .                                       (6.44) 

The direct products can be eliminated by using 

 𝑸𝒌
 𝑇  𝒓 ⊗ 𝑸𝒌

 𝑇 † 𝒓′ +  𝑸𝒌
 𝐿 

(𝒓) ⊗ 𝑸𝒌
(𝐿)†

𝑘𝒌

= 𝑉𝐼 𝛿 𝒓 − 𝒓′ .              (6.45) 

Equation (6.44) then becomes 

𝑸 𝒓, 𝑡 =
1

𝜀0𝑉
 𝑸𝒌

 𝑇 
(𝒓)  𝑑𝒓′  𝑑𝑡′

𝑡

−∞

                                                                                
𝑉𝒌

 

×  
𝑸𝒌

 𝑇 †(𝒓′) ∙ 𝑷𝑒𝑥𝑡 (𝒓′, 𝑡′)

 𝜀(𝒓′)
𝜔𝒌

(𝑇)
sin 𝜔𝒌

 𝑇  𝑡 − 𝑡′ −
𝑷𝑒𝑥𝑡 (𝒓, 𝑡)

𝜀0 𝜀(𝒓)
.             (6.46) 

Substituting into the equation (6.39) to change back to the electric field and placing all the 

integtals on one side of the equation 

𝑬 𝒓, 𝑡 +
𝑷𝑒𝑥𝑡 (𝒓, 𝑡)

𝜀0𝜀(𝒓)
=

1

𝜀0𝑉
 𝑬𝒌

 𝑇 
(𝒓)  𝑑𝒓′  𝑑𝑡′𝑬𝒌

 𝑇 †(𝒓′) ∙ 𝑷𝑒𝑥𝑡 (𝒓′, 𝑡′)
𝑡

−∞𝑉𝑘

 

× 𝜔𝒌
 𝑇 

sin 𝜔𝒌
 𝑇  𝑡 − 𝑡′ .                    (6.47) 

Substituting equation (6.24) into equation (6.47) yields 
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𝐸𝑝 𝑟, 𝑡 +
𝑃𝑝(𝑟, 𝑡)

𝜀0𝜀(𝑟)
=

1

𝜀0𝑉

𝑒−𝑖𝜔𝑡

2
 𝜔𝑘

 𝑇 
𝐸𝑘

 𝑇  𝑟  𝐸𝑘
 𝑇 † 𝑟𝑖 ∙ 𝑝 

𝑘

  

×  
1

𝜔 + 𝜔𝑘
(𝑇)

+ 𝑖𝜂
−

1

𝜔 − 𝜔𝑘
(𝑇)

+ 𝑖𝜂
                        (6.48) 

Poynting's vector describes the energy per unit time per unit area transported by the 

electric and magnetic fields and is given by 

𝑺 𝒓, 𝑡 ≡ 𝑬 𝒓, 𝑡 × 𝑯 𝒓, 𝑡   

and in terms of real and imaginary parts by   

𝑺 𝒓, 𝑡 =  𝑬𝑝 𝒓, 𝑡 + 𝑬𝑝
∗(𝒓, 𝑡) ×  𝑯𝑝 𝒓, 𝑡 + 𝑯𝑝

∗ 𝒓, 𝑡  .                 (6.49) 

Taking the time average of Poynting's vector 

𝑺 𝒓, 𝑡         =  𝑬𝑝 𝒓, 𝑡 + 𝑬𝑝
∗  𝒓, 𝑡  ×  𝑯𝑝 𝒓, 𝑡 + 𝑯𝑝

∗  𝒓, 𝑡                                                          .                    (6.50) 

Using a vector identity to group the vectors 

      𝑺 𝒓, 𝑡           =  𝑬𝑝 𝒓, 𝑡 × 𝑯𝑝
∗  𝒓, 𝑡  +  𝑬𝑝

∗  𝒓, 𝑡 × 𝑯𝑝 𝒓, 𝑡  .                   (6.51) 

Now using equation (6.35) 𝑯𝑝 𝒓, 𝑡  can be written in terms of 𝑬𝑝(𝒓, 𝑡).  Both 𝑯𝑝 𝒓, 𝑡  and 

𝑬𝑝(𝒓, 𝑡) are proportional to 𝑒−𝑖𝜔𝑡 , thus 

𝑯𝑝 𝒓, 𝑡 =
1

𝑖𝜔𝜇𝑜
𝛁 × 𝑬𝑝 𝒓, 𝑡 .                                            (6.52) 

Substituting (6.52) and (6.40) and taking the divergence of equation (6.51) 

𝛁 ∙ 𝑺(𝒓, 𝑡)        =  𝑯𝑝
∗  𝒓, 𝑡 ∙  𝛁 × 𝑬𝑝 𝒓, 𝑡  − 𝑬𝑝 𝒓, 𝑡 ∙  𝛁 × 𝑯𝑝

∗  𝒓, 𝑡  +  

 𝑯𝑝 𝒓, 𝑡 ∙  𝛁 × 𝑬𝑝
∗  𝒓, 𝑡  − 𝑬𝑝

∗ (𝒓, 𝑡) ∙  𝛁 × 𝑯𝑝 𝒓, 𝑡              (6.53) 

Simplifying 

𝛁 ∙ 𝑺(𝒓, 𝑡)        = 𝑖𝜔   𝑬𝑝
∗  𝒓, 𝑡 ∙ 𝑷𝑝 𝒓, 𝑡  −  𝑬𝑝(𝒓, 𝑡) ∙ 𝑷𝑝

∗  𝒓, 𝑡                  (6.54) 

Using Cauchy's principle value, ℘ 
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1

𝜔 − 𝜔𝑜 ± 𝑖𝛿
=

℘

𝜔 − 𝜔𝑜
∓ 𝜋𝑖𝛿 𝜔 − 𝜔𝑜                                   (6.55) 

and substituting (6.48) into (6.53) 

𝛁 ∙ 𝑺(𝒓, 𝑡)        =
𝜋𝜔2

𝜀𝑜𝑉
𝛿 𝒓 − 𝒓𝑖   𝒑 ∙ 𝑬𝒌

 𝑇 ∗ 𝒓𝑖  
2

𝛿 𝜔 − 𝜔𝒌
 𝑇 

 

𝒌

               (6.56) 

The energy density of the fields in the EM wave per unit time is given by 

𝑈 =  𝑑𝝈 𝑺(𝒓, 𝑡)        
𝜍

=  𝑑𝜏 𝛁 ∙ 𝑺 𝒓, 𝑡         
𝑉

                                     (6.57) 

Substituting (6.56) into equation (6.57) 

𝑈 =
𝜋𝜔2

𝜀𝑜𝑉
  𝒅 ∙ 𝑬𝑘𝑛

 𝑇 ∗ 𝒓𝑖  
2

𝛿 𝜔 − 𝜔𝑘𝑛
 𝑇 

 .

𝑘𝑛

                                 (6.58) 

 The energy emitted per unit time by the oscillating dipole in the photonic crystal can 

be approximated using the density of states 𝐷(𝜔).  The number of eigenmodes whose 

eigenfrequencies fall between 𝜔 and 𝜔 + 𝛥𝜔 is indicated by 𝐷 𝜔 𝑑𝜔.  The approximation 

we make is time averaging to give  

𝑈 ≅
𝜋𝜔2

𝜀𝑜𝑉
 𝒅 ∙ 𝑬𝑘𝑛

 𝑇 ∗ 𝒓𝑜  
2                   
 𝑑𝜔′𝐷 𝜔′ 𝛿 𝜔 − 𝜔′ 

∞

0

.                        (6.59) 

Performing the integral 

𝑈 =
𝜋𝜔2

𝜀𝑜𝑉
 𝒅 ∙ 𝑬𝑘𝑛

 𝑇 ∗ 𝒓𝑜  
2                   

 𝐷 𝜔                                            (6.60) 

Therefore, the energy radiated form the oscillating dipole is proportional to 𝐷(𝜔).  If 

𝐷 𝜔 = 0 in a particular frequency interval then no spontaneous emission takes place.  

6.5.2 Proof of Bloch's Theorem for EM Waves 

 Bloch's theorem in traditional solid state physics describes the interaction of an 

electron with the potentials from a periodic atomic crystal.  In this section instead of 
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regular atomic nuclei creating the crystal, dielectrics will create the periodic structure, 

forming the photonic crystal.  Bloch's theorem for the electric and magnetic fields are  

𝑬 𝒓 = 𝑬𝒌 𝒓 = 𝒖𝒌 𝒓 𝑒𝑖𝒌∙𝒓                                                 (6.61) 

𝑯 𝒓 = 𝑯𝒌 𝒓 = 𝒗𝒌 𝒓 𝑒𝑖𝒌∙𝒓.                                                (6.62) 

and 𝜔 represents the angular eigenfrequency.  Since the proof for the electric field and 

magnetic field131 are similar only the proof for the electric field is shown.  The 

eigenfunction for the electric filed is given by the Maxwell's equations 

1

𝜀 𝒓 
𝛁 × 𝛁 × 𝑬 𝒓 =

𝜔2

𝑐2
𝑬 𝒓 ,                                             (6.63) 

or 

𝛁 × 𝛁 × 𝑬(𝒓) −
𝜔2

𝑐2
𝜀 𝒓 𝑬 𝒓 = 0.                                            (6.64) 

The periodic dielectric function can be expanded in terms of a Fourier series 

𝜀 𝒓 =  𝜆 𝑮 𝑒𝑖𝑮∙𝒓

𝑮

.                                                      (6.65) 

where 𝑮 represents the reciprocal lattice vectors.  Finally, a Fourier integral can be used to 

express the eigenfunction of the electric field 

𝑬 𝒓 =  𝑑𝒌 𝑬 𝒌 𝑒𝑖𝒌∙𝒓.                                                     (6.66) 

Substituting equations (6.65) and (6.66) into equation (6.64) gives 

 𝑑𝒌  𝒌 ×  𝒌 × 𝑬 𝒌   𝑒𝑖𝒌∙𝒓 +
𝜔2

𝑐2
  𝑑𝒌 𝜆 𝑮 𝑬 𝒌 − 𝑮 𝑒𝑖𝒌∙𝒓 = 0               (6.67)

𝐺

 

Equation (6.67) is a function of 𝒓 only, thus the integrand disappears 

𝒌 ×  𝒌 × 𝑬 𝒌  +
𝜔2

𝑐2
 𝜆 𝑮 𝑬 𝒌 − 𝑮 = 0                                    (6.68)

𝑮
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Thus, only the Fourier components 𝑬(𝒌) related to the reciprocal lattice vectors 𝑮 form a 

set of eigenvalues equations. 

𝑬𝒌 𝒓 =  𝑬 𝒌 − 𝑮 𝑒𝑖 𝒌−𝑮 ∙𝒓

𝑮

.                                            (6.69) 

Defining 

𝒖𝒌 𝒓 =  𝑬 𝒌 − 𝑮 𝑒−𝑖𝑮∙𝒓

𝑮

                                          (6.70) 

allows equation (6.69) to be written as 

𝑬𝒌 𝒓 = 𝒖𝒌 𝒓 𝑒𝑖𝒌∙𝒓.                                                        (6.71) 

Equation (6.71) is Bloch's theorem derived for the electric field portion of an 

electromagnetic wave.  Individual eigenvalues and eigenfunctions are typically denoted by 

a subscript. 
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CHAPTER 7 

PHOTONIC CRYSTAL SIMULATIONS 

 

7.1  Bandgap Calculation—Plane Wave Method 

 

The software used in performing photonic bandgap simulations is made by the 

RSoft Design Corporation of Ossining, New York.  The packaged used in the bandgap 

simulations is the BandSolve portion of the RSoft suite.  In this section the plane wave 

method calculating the bandgap of a photonic crystal will be described in general.  

Although there are other methods for calculating the bandgap the plane wave method has 

been widely used and generally accepted since 2D and 3D photonic bandgaps were 

found.1, 

2, 3  As in the previous chapter, free charges and free currents are absent in the photonic 

crystal.  Maxwell's equations in matter are given by 

𝛁 ∙ 𝑫 𝒓, 𝑡 = 0                                                                 (7.1) 

𝛁 ∙ 𝑩 𝒓, 𝑡 = 0                                                                 (7.2) 

𝛁 × 𝑬 𝒓, 𝑡 = −
𝜕

𝜕𝑡
𝑩 𝒓, 𝑡                                                      (7.3) 

𝛁 × 𝑯 𝒓, 𝑡 =
𝑑

𝑑𝑡
𝑫 𝒓, 𝑡                                                   (7.4) 

To solve find the wave equation Maxwell's equations must be 

put in terms of 𝑬(𝒓, 𝑡) and 𝑯(𝑟, 𝑡).  The displacement vector 

𝑫 𝒓, 𝑡  in terms of the dielectric constant 𝜀(𝒓)  and the 

permittivity of free space 𝜀0 is given by 

𝑫 𝑟, 𝑡 = 𝜀0𝜀 𝒓 𝑬 𝒓, 𝑡 ,                                                  (7.5) 

where 𝜀(𝒓) is assumed to be periodic, such that  

Figure 7.1 A depiction of the lattice 
spacing a. 
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𝜀 𝒓 + 𝒂𝑖 = 𝜀 𝒓 .                                                                (7.6) 

The periodic spacing of the scatterers in the photonic crystal 

are given by the primitive lattice vector 𝒂𝑖 , where 𝑖 denotes the 

𝑖𝑡ℎ  scatterer.  The lattice vector is shown in figure 7.1 for a 

cubic lattice and figure 7.2 for a hexagonal lattice.  And the 

relationship between 𝐵 and 𝐻 is 

𝑩 𝒓, 𝑡 = 𝜇0𝑯 𝒓, 𝑡                                                           (7.7) 

where the magnetic permeability of free space is equivalent to that of the photonic crystal.  

Thus, substituting (7.5) and (7.7) into (7.1), (7.2), (7.3) and (7.4) allows Maxwell's equation 

to be written as 

𝛁 ∙  𝜀 𝒓 𝑬(𝒓, 𝑡) = 0                                                           (7.8) 

𝛁 ∙ 𝑯 𝒓, 𝑡 = 0                                                                (7.9) 

𝛁 × 𝑬 𝒓, 𝑡 = −𝜇0

𝜕

𝜕𝑡
𝑯 𝒓, 𝑡                                                 (7.10) 

𝛁 × 𝑯 𝒓, 𝑡 = 𝜀0𝜀 𝒓 
𝜕

𝜕𝑡
𝑬 𝒓, 𝑡                                               (7.11) 

Eliminating either 𝑬(𝒓, 𝑡) or 𝑯(𝒓, 𝑡) yields the wave equations for the magnetic and electric 

fields of an EM wave 

1

𝜀 𝒓 
𝛁 ×  𝛁 × 𝑬 𝒓, 𝑡  = −

1

𝑐2

𝜕2

𝜕𝑡2
𝑬 𝒓, 𝑡                                       (7.12) 

𝛁 ×  
1

𝜀(𝒓)
𝛁 × 𝑯(𝒓, 𝑡) = −

1

𝑐2

𝜕2

𝜕𝑡2
𝑯 𝒓, 𝑡                                      (7.13) 

where 

𝑐 =
1

 𝜀0𝜇0

, 

Figure 7.2 The lattice vectors for a 
hexagonal geometry photonic crystal. 
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is the speed of light.  Solutions to equations (7.12) and (7.13) will have the general forms 

𝑬 𝒓, 𝑡 = 𝑬 𝒓 𝑒−𝑖𝜔𝑡 ,                                                       (7.14) 

and 

𝑯 𝒓, 𝑡 = 𝑯 𝒓 𝑒−𝑖𝜔𝑡 .                                                       (7.15) 

where 𝐸(𝒓) and 𝐻(𝒓) are the eigenfunctions of the wave equation.  Writing equations 

(7.12) and (7.13) in terms of the eigenfunction (7.14) and (7.15 yield the eigenvalues 

equations 

ℒ𝐸𝑬 𝒓 ≡
1

𝜀 𝒓 
𝛁 ×  𝛁 × 𝑬 𝒓  =

𝜔2

𝑐2
𝑬 𝒓                                    (7.16) 

and 

ℒ𝐻𝑯 𝒓 ≡ ∇ ×  
1

𝜀 𝒓 
∇ × 𝑯 𝒓  =

𝜔2

𝑐2
𝑯 𝒓                                   (7.17) 

where the differential operator ℒ represents the second time derivative of the respective 

fields.  Bloch's theorem must now be applied but to do so two periodic functions 𝒖𝒌𝑛 𝒓  

and 𝒗𝒌𝑛 𝒓  are defined by 

𝒖𝒌 𝒓 ≡ 𝒖𝒌 𝒓 + 𝒂𝑖 ,                                                     (7.18) 

and 

𝒗𝒌 𝒓 ≡ 𝒗𝒌 𝒓 + 𝒂𝑖 .                                                     (7.19) 

Using equations (7.18) and (7.19) 𝐸(𝒓) and 𝐻(𝒓) can be written as 

𝑬 𝒓 = 𝑬𝒌 𝒓 = 𝒖𝒌 𝒓 𝑒
𝑖𝒌∙𝒓                                                  (7.20) 

and 

𝑯 𝒓 = 𝑯𝒌 𝒓 = 𝒗𝒌 𝒓 𝑒
𝑖𝒌∙𝒓,                                                (7.21) 
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where 𝒌 is the wave vector in the first Brillouin zone.  The term 𝜀−1(𝒓)  in equations (7.12) 

and (7.13) must be expanded as a Fourier series in terms of the primitive reciprocal lattice 

vectors 𝒃 where 

𝒂𝑖 ∙ 𝒃𝑖 = 2𝜋𝛿𝑖𝑗 ,                                                             (7.22) 

and the reciprocal lattice vectors 𝑮 such that 

𝑮 = 𝑙1𝒃1 + 𝑙2𝒃2 + 𝑙3𝒃3.                                                     (7.23) 

The terms 𝑙𝑖  terms in (7.15) are arbitrary integers and 𝛿𝑖𝑗  is the Kronecker delta.i   Thus, 

the reciprocal of the dielectric constant expressed as a Fourier series can be written as 

1

𝜀(𝒓)
=  𝜆 𝑮 𝑒𝑖𝑮∙𝒓

𝑮

                                                         (7.24) 

Likewise, because of the spatial periodicity equations (7.20) and (7.21) can also be 

expanded in terms of the reciprocal lattice vectors 

𝑬𝒌 𝒓 =  𝑬𝒌(𝑮)𝑒𝑖(𝒌+𝑮)∙𝒓

𝑮

                                                 (7.25) 

𝑯𝒌 𝒓 =  𝑯𝒌(𝑮)𝑒𝑖(𝒌+𝑮)∙𝒓

𝑮

                                                (7.26) 

Substituting (7.24), (7.25) and (7.26) into equations (7.16) and (1.17) yield  

                                                 
i As a historical side note, the first concept of the Kronecker delta appears in the work of Poisson [S. 
D. Poisson, Traité de Mécanique, (Bachelier, Paris, 1833); Memoir read before the Paris Academy 
1815], Fourier [J. Fourier, Théorie Analytique de la Chaleur, translated by Alexander Freeman 1822 
(Dover Publication, New York  2003)] and Cauchy [A. L. Cauchy, “Résumé des leçons données à 
l’école royale polytechnique sur le calcul infinitésimal, ” Paris, 1  (1823)].  These first uses were more 
arguments than rigorous use.  Poisson and Cauchy implied a Lorentzian representation of the delta 
function, while Fourier derived a series expansion of an impulse function.  The first mathematical 
use appears in the work of Kirchhoff [G. Kirchhoff, Gesammelte Abhandlungen, (Barth, Leipzig, 1882, 
supplement 1891)] who dealt with the three-dimensional wave equation and Heaviside [O. 
Heaviside, Electromagnetic Theory, ed. vol. 1 and 2 (MacMillan and Co. London 1892)] in his 
operational calculus.  Finally, it was Dirac [P. A. M. Dirac, "The Fundamental Equations of 
Quantum Mechanics," Proc. Roy. Soc. London Series A 109, 642-653 (1925)] who introduced a 
continuous version of the function in his quantum theory and thereafter the use of the Kronecker 
delta became commonplace.    
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− 𝜆 𝑮 − 𝑮′  𝒌 + 𝑮′ ×   𝒌 + 𝑮′ × 𝑬𝒌 𝑮
′  =

𝜔𝒌
2

𝑐2
𝑬𝒌(𝑮)

𝑮′

                  (7.27) 

− 𝜆 𝑮 − 𝑮′  𝒌 + 𝑮′ ×   𝒌 + 𝑮′ × 𝑯𝒌 𝑮
′  =

𝜔𝒌𝑛
2

𝑐2
𝑯𝒌(𝑮)

𝑮′

                  (7.28) 

Solving either (7.27) or (7.28) by numerical computations the dispersion relations for the 

eigenmodes are found and thus, the photonic band structure.4, 5, 6 

7.2  Band-Gap Simulations 

 Calculation in RSoft 

BandSolve package are performed on 

objects that are created in a Cad 

program that is capable of creating 

1D, 2D and 3D objects.  In performing 

a bandgap calculation, the scatterers 

are defined in the Cad area as 

individual objects or if the same 

object is being repeated, as an 

array.  The scatterers are defined 

either as holes (low refractive 

scatterers) or as columns (high 

refractive scatterers.  The 

simulation is run by defining the 

relative refractive index of the 

scatterer and the background material. 

Figure 7.3  The index profile for an array of low refractive 
scatterers in a high refractive index background material. 

Figure 7.4  A profile of the dielectric constants the 
comprise the array.  The dielectric constant is merely the 
square of the refractive index. 
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 For example, consider the 2D array in figure 7.3 where the background in red 

represents a refractive index of 3.6, while the scatterers, in pink, have a refractive index of 

1.  Further, it is possible to view the profile in terms of the dielectric constants, as shown in 

figure 7.4. 

 The calculation of the bandgap is performed 

over the first Brillouin zone, which is uniquely defined 

in the frequency domain, by the reciprocal lattice.  The 

first Brillouin zone is a space which comprises the 

points closer to the origin that other reciprocal lattice 

vectors.  For the example illustrated above of the 

hexagonal array of scatterers, the Brillouin zone will be 

hexagonal in figure 7.5.  The 

points M, K, and Γ 

correspond to points of high 

symmetry. 

 The radius and 

diameter of the scatterers 

also must be defined for the 

calculation to be made.   If 

the radius is defined as 

𝑟𝑎𝑑𝑖𝑢𝑠 = 0.48 × 𝑃𝑒𝑟𝑖𝑜𝑑 and the 

Figure 7.5  The first Brillouin zone 
for a hexagonal array of scatterers. 

Figure 7.6 depicts the both the TE and TM polarizations 
in the illustrated  photonic crystal of figure 7.2.1. 
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Figure 7.7 The TM bandgaps of a photonic crystal 
with hexagonal symmetry.  Scatterers filled with 
air and with hydrogel below LCST are depicted. 
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Figure 7.8 The TE bandgaps of a photonic 
crystal with hexagonal symmetry.  Scatterers 
are shown filled with air and with hydrogel 
below LCST 

period is set to 𝑃𝑒𝑟𝑖𝑜𝑑 = 1, the historically significant, band structure can be calculated.  

The bandgap structure of figure 7.6 

shows the overlap of the TE and TM 

bandgaps, which provides a photonic 

crystal that is independent of 

polarization. 

7.2.1  Hydrogel Parameters 

 The interest in this study is 

the behavior a photonic crystal array 

filled with the hydrogel discussed in 

the previous chapter.  As the photonic 

crystal is globally heated the 

hydrogel infiltrated in the lattice 

structure will undergo a phase 

change, changing the refractive 

index.  The refractive indies of the 

hydrogel are 1.3288 at a 

temperature below LCST and 1.3816 

above LCST. 

7.2.2  Introducing an Index Material 

In plotting the bandgaps, it is 

simply infeasible to place the thousands of bandgap calculations such as figure 7.6 into the 

dissertation.  The main concern is the bandgaps and whether they exist in the Brillouin 
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Figure 7.9 The bandgaps of a photonic crystal 
with square or rectangular symmetry.  Scatterers 
filled with air and with hydrogel below LCST are 
depicted. 

zone or not.  Therefore, in an effort 

to convey this information, the 

individual bandgaps for particular 

hole diameters are plotted in a 

compressed format. 

 In figures 7.7 and 7.8, the 

band gaps for the TM and TE 

modes are shown over a range of 

hole diameters for a photonic crystal 

with and without hydrogel.  Likewise, 

figure 7.9 depicts a photonic crystal with square symmetry, with air scatterers and with 

hydrogel scatterers.  The calculation of the hydrogel is made for a hydrogel below LCST.  

The importance of these plots is to see that when a material such as the hydrogel is 

introduces the bandgap of the 

crystal changes from the bandgap of 

an air-filled photonic crystal. 

7.2.3  Tuning with Hydrogel 

 In designing a tunable 

photonic crystal, the exhibited shift 

of the bandgap is one of the 

paramount considerations.  The 

other major consideration is the 

wavelength of interest.  In figures 7.10 

Figure 7.10 A hexagonal lattice filled with gel 
above and below LCST. 
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and 7.11, the bandgap shifts of an 

infiltrated hexagonal lattice 

structure, are depicted.  Figure 

7.11 clearly indicates that this 

photonic crystal structure is not 

well suited for the TE modes, 

since the bandgaps for the 

hydrogel above and below LCST 

lie nearly on top of one another.  

Figure 7.10 indicate a small degree of tunability which increases at higher frequencies, 

most of which lie outside the communications range.  In conjunction with figure 7.10, figure 

7.12 depicts a second bandgap, which exhibits a high degree of tunability.  In figure 7.13, 

the only bandgap for the 

rectangular lattice is depicted for 

TE polarized light.  Although the 

square lattice symmetry shows a 

good degree of tunability the 

wavelengths of interest are 

outside the communications 

range.  Although, these 

simulations do not show an ideal 

candidate for infiltrating the lattice 

with hydrogel for tunability, recall that these are 2D simulations.  To gain a more correct 

Figure 7.11 A hexagonal lattice filled with gel above 
and below LCST.  These band gaps exhibit poor 
tunability. 
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Figure 7.12  The second TM bandgap for a 2D hexagonal 
array. 
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view of the tunability the next 

section will show similar simulations 

for a photonic crystal on a SOI wafer. 

7.2.4  SOI Approximation 

 Silicon-on-Insulator 

possesses an increased difficulty in 

modeling because it is now a three 

dimensional structure.  In figure 

7.14, a cross section view of the SOI wafer 

is shown, where the pink represents hydrogel below LCST, the red is silicon containing a 

periodic lattice structure and the purple is the SiO2 layer acting as an insulator.  Similarly, 

in figure 7.15 a top view a SOI wafer is shown with the lattice structure infiltrated with 

hydrogel below LCST.   

The refractive index of SiO2 is approximately 1.45 in the communication 
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Figure 7.13  The bandgaps for a rectangular 
array filled with hydrogel above and below 
LCST. 

Figure 7.14  A cross sectional view along the 
z=0 axis, depicting the layers of SOI and the 
photonic crystal scatterers.   

Figure 7.15 A top view along the y=0 axis, 
depicting the silicon layer and the hydrogel 
infiltrating the scattering holes.  



179 
 

wavelengths and is clearly shown in figure 

7.14.  However, once the hydrogel 

undergoes the phase change, the 

surrounding refractive index increases to 

1.3816.  The refractive index between the 

SiO2 and the hydrogel is insufficient to be 

seen any longer on the contour maps.  

Therefore, more colors where added color 

scale creating more of a continuous 

spectrum as shown in figures 7.16 and 7.17.  

Figure 7.16 shows a cross sectional view 

along the z-axis, while, figure 7.17 shows a 

cross sectional view along the x-axis.  Using 

Figure 7.18 Improper gridding leads to 
discontinuities in the composite band structure. 
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Figure 7.16  The SOI structure with hydrogel above 
LCST.  The SiO2 layer is now in a light purple, 
representing a refractive index near that of the 
hydrogel. 

Figure 7.17 A side view along the x-axis of the 
SOI structure with a photonic crystal lattice in 
the Si layer. 

Figure 7.19 Improper gridding leads for odd 
modes. 
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this method of checking the refractive 

indices of the structure, the correct 

structure can be modeled.  

Careful attention must be made 

when modeling 3D layered structure 

when gridding is performed.  Artifacts 

such as those in figures 7.18 and 7.19 

can arise from too coarse a grid.   

The modes in a photonic crystal slab 

are no longer purely TM or TE.  

However these modes can be 

approximated as even and odd 

modes.  In figure 7.20 a composite of 

the bandgaps is depicted the even 

modes and shows some tunability.  

Further, figure 7.21 also shows the 

greater promise of tunability for odd 

modes. 

7.3  Transmission Simulation—FDTD Method 

 The Finite-Difference Time-Domain numerical method has become one of the most 

popular an extensively used techniques for solving electromagnetic problems.  The main 

methods for modeling the propagation of an EM wave in a photonic crystal are: (1) FDTD7, 

8, 9; (2) transfer matrix theory10; (3) spherical wave expansion11, 12, 13, (4) plane wave 
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Figure 7.20 A composite of the even mode 
bandgaps in SOI 

Figure 7.21 A composite of the odd mode 
bandgaps in SOI 
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method14, 15,finite element method16.  FDTD has become the standard in calculating the 

transmission of an EM wave, around bends, junctions, and crossings in photonic crystals.17, 

18 

 The FDTD method was first proposed, in 1966 by Yee, as a way to make the 

differential forms of Maxwell's equations discrete.19  In his paper, Yee replaced Maxwell's 

equations were by a set of finite difference equations.  In particular, Yee offset an electric 

field spatially and temporally from a magnetic field, in order to construct update equations, 

which represented present fields in the computational area in terms of the past fields.  

Once the update equations were constructed they were used to step the electric and 

magnetic fields forward in time.   

 Yee's original algorithm suffered from numerical-dispersion and grid-anisotropy 

errors.  Taflove began studying the errors and was able to introduce stability criteria to 

improve the Yee algorithm.20  As time has passed there have been many variations and 

improvements of the original Yee algorithm each having its own strengths and 

weaknesses.21, 22 For example, Merewether23 in 1971 and Holland24 in 1983 introduced 

alternative coordinate systems.  Other improvements have included update equations for 

modeling sub-cellular structures like wires and narrow slots.25, 26  FDTD has become a 

powerful tool for analysis of scattered EM waves in a medium.27 

7.3.1  FDTD 2D Formalism28 

The FDTD method was used by the Rsoft package FullWave in the simulations 

discussed at the end of this chapter.   Although many of the simulations discussed are 3D 

models the formalism is presented here in 2D for simplicity and illustration. 
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 Consider an electromagnetic wave propagating in the z-direction in a waveguide 

with the general fields 

𝑬 = 𝑬0𝑒
−𝑖 𝜔𝑡−𝛽𝑡                                                             (7.29) 

and 

𝑯 = 𝑯0𝑒
−𝑖 𝜔𝑡−𝛽𝑡                                                            (7.30) 

where 𝛽 is the propagation constant and 𝜔 is the angular frequency.  Maxwell's curl 

equations can be written as six equations in terms of the x and y electric and magnetic field 

components 

𝜀𝑟𝐸𝑥 =
𝑖

𝜔𝜇0
 
𝜕𝐻𝑧

𝜕𝑦
− 𝑖𝛽𝐻𝑦                                                   (7.31) 

𝜀𝑟𝐸𝑦 =
𝑖

𝜔𝜀0
 𝑖𝛽𝐻𝑥 −

𝜕𝐻𝑧

𝜕𝑥
                                                    (7.32) 

𝜀𝑟𝐸𝑧 =
𝑖

𝜔𝜀0
 
𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
                                                     (7.33) 

𝐻𝑥 = −
𝑖

𝜔𝜇0
 
𝜕𝐸𝑧

𝜕𝑦
− 𝑖𝛽𝐸𝑦                 (7.34) 

𝐻𝑦 = −
𝑖

𝜔𝜇0
 𝑖𝛽𝐸𝑥 −

𝜕𝐸𝑧

𝜕𝑥
              (7.35) 

𝐻𝑧 = −
𝑖

𝜔𝜇0
 
𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
               (7.36) 

where 𝜀0 is the permittivity of free 

space 𝜇0 is the permeability of free 

space and 𝜀 the permittivity of the 

material is a function of position 

𝜀 = 𝜀(𝑥, 𝑦).  To apply Yee's meshing 

scheme, as shown in figure 7.22 the electric and magnetic fields of equations (7.31)—(7.36) 

Figure 7.22 A schematic of a changing dielectric and the 
constituent electric and magnetic field components. 
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must be written in terms of indices.  The x-direction index is represented by 𝑖, while the y-

direction is represented by the 𝑗 index.  

 𝜀𝐸𝑥 𝑖+
1
2

,𝑗
=

𝑖

𝜔𝜀0
  
𝜕𝐻𝑧

𝜕𝑦
 
𝑖+

1
2

,𝑗

− 𝑖𝛽 𝐻𝑦 𝑖+
1
2

,𝑗
                                    (7.37) 

 𝜀𝐸𝑦 𝑖,𝑗+
1
2

=
𝑖

𝜔𝜀0
 𝑖𝛽 𝐻𝑥 𝑖,𝑗+

1
2
−  𝜕𝐻𝑧

𝜕𝑥
 
𝑖,𝑗+

1
2

                                       (7.38) 

 𝜀𝐸𝑧 𝑖,𝑗 =
𝑖

𝜔𝜀0
  
𝜕𝐻𝑦

𝜕𝑥
 
𝑖,𝑗

−  𝜕𝐻𝑥

𝜕𝑦
 
𝑖,𝑗

                                                 (7.39) 

 𝐻𝑥 𝑖,𝑗+
1
2

= −
𝑖

𝜔𝜇0
  
𝜕𝐸𝑧

𝜕𝑦
 
𝑖,𝑗+

1
2

− 𝑖𝛽 𝐸𝑦 𝑖,𝑗+
1
2
                                     (7.40) 

 𝐻𝑦 𝑖+
1
2

,𝑗
= −

𝑖

𝜔𝜇0
 −𝑖𝛽 𝐸𝑥 𝑖+1

2
,𝑗
−  𝜕𝐸𝑧

𝜕𝑥
 
𝑖+

1
2

,𝑗
                                   (7.41) 

 𝐻𝑧 𝑖+
1
2

,𝑗+
1
2

= −
𝑖

𝜔𝜇0
  
𝜕𝐸𝑦

𝜕𝑥
 
𝑖+

1
2

,𝑗+
1
2

−  𝜕𝐸𝑥

𝜕𝑦
 
𝑖+

1
2

,𝑗+
1
2

                                 (7.42) 

Using the second fundamental theorem of calculus, the differentials in equations (7.37)—

(7.42) can be expanded to 

 𝜀𝑥 𝑖+1
2

,𝑗
𝐸𝑥 𝑖+

1
2

,𝑗
=

𝑖

𝜔𝜀0
 

 𝐻𝑧  𝑖+1
2

,𝑗+
1
2
−  𝐻𝑧 𝑖+1

2
,𝑗−

1
2

𝛥𝑦
− 𝑖𝛽 𝐻𝑦 𝑖+

1
2

,𝑗
               (7.43) 

 𝜀𝑦 𝑖,𝑗+
1
2
 𝐸𝑦 𝑖,𝑗+

1
2

=
𝑖

𝜔𝜀0
 𝑖𝛽 𝐻𝑥 𝑖,𝑗+

1
2
−

 𝐻𝑧 𝑖+1
2

,𝑗+
1
2
−  𝐻𝑧 𝑖−1

2
,𝑗+

1
2

𝛥𝑥
              (7.44) 

 𝜀𝑧 𝑖,𝑗  𝐸𝑧 𝑖,𝑗 =
𝑖

𝜔𝜀0
 

 𝐻𝑦 𝑖+
1
2

,𝑗
−  𝐻𝑦 𝑖−1

2
,𝑗

𝛥𝑥
−

 𝐻𝑥 𝑖,𝑗+
1
2
−  𝐻𝑥 𝑖,𝑗−1

2

𝛥𝑦
             (7.45) 
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 𝐻𝑥 𝑖,𝑗+
1
2

= −
𝑖

𝜔𝜀0
 

 𝐸𝑧 𝑖,𝑗+
1
2
−  𝐸𝑥 𝑖,𝑗

𝛥𝑦
− 𝑖𝛽 𝐸𝑦 𝑖,𝑗+

1
2
                            (7.46) 

 𝐻𝑦 𝑖+
1
2

,𝑗
= −

𝑖

𝜔𝜇0
 −𝑖𝛽 𝐸𝑥 𝑖+1

2
,𝑗
−

 𝐸𝑧  𝑖+1,𝑗 −  𝐸𝑧 𝑖,𝑗

𝛥𝑥
                          (7.47) 

 𝐻𝑧 𝑖+
1
2

,𝑗+
1
2

= −
𝑖

𝜔𝜇0
 

 𝐸𝑦 𝑖+1,𝑗+
1
2
−  𝐸𝑦 𝑖,𝑗+

1
2

𝛥𝑥
−

 𝐸𝑥 𝑖+
1
2

,𝑗+1
−  𝐸𝑥 𝑖+1

2
,𝑗

𝛥𝑦
 .         (7.48) 

Equations (7.43)—(7.48) can be written in matrix form in conjunction with the square 

matrices 𝑼𝒙, 𝑼𝒚, 𝑽𝒙, 𝑽𝒚, which are dependent on the boundary conditions of the 

computation window.  For example, the matrix 𝑼𝒙 for the zero-value boundary condition 

will be 

𝑼𝒙 =
1

𝛥𝑥

 
 
 
 
 
−1  1 0
0 −1 1
0
0
0

0
0
0

⋱
0
0

     

0
0
⋱
−1
0

  

 0
 0
 0
 1
−1 

 
 
 
 

.                                            (7.49) 

Therefore, equations (7.43)—(7.48) become 

  

𝜺𝒙 0 0
0 𝜺𝒚 0

0 0 𝜀𝒛

  

𝑬𝒙

𝑬𝒚

𝑬𝒛

 =
𝑖

𝜔𝜀0
 

0 −𝑖𝛽𝐈 𝑽𝒙

𝑖𝛽𝐈 0 −𝑽𝒙

−𝑽𝒚 𝑽𝒙 0
  

𝑯𝒙

𝑯𝒚

𝑯𝒛

                            (7.50) 

 

𝑯𝒙

𝑯𝒚

𝑯𝒛

 = −
𝑖

𝜔𝜇0
 

0 −𝑖𝛽𝐈 𝑼𝒚

𝑖𝛽𝐈 0 −𝑼𝒙

−𝑼𝒚 𝑼𝒙 0
  

𝑯𝒙

𝑯𝒚

𝑯𝒛

                                    (7.51) 

where 𝐼 is the identity matrix.  Finally two equivalent eigenvalue equations can be derived 

from equations (7.50) and (7.51) 

𝑨  
𝑬𝒙

𝑬𝒚
 =  

𝑨𝒙𝒙 𝑨𝒙𝒚

𝑨𝒚𝒙 𝑨𝒚𝒚
  

𝑬𝒙

𝑬𝒚
 = 𝛽2  

𝑬𝒙

𝑬𝒚
                                          (7.52) 

and 
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𝑩  
𝑯𝒙

𝑯𝒚
 =  

𝑩𝒙𝒙 𝑩𝒙𝒚

𝑩𝒚𝒙 𝑩𝒚𝒚
  

𝑯𝒙

𝑯𝒚
 = 𝛽2  

𝑯𝒙

𝑯𝒚
 .                                      (7.53) 

The matrix elements of the eigenvalues problem of (7.52) are 

𝑨𝒙𝒙 = −𝑘0
2𝑼𝒙𝜺𝒛

−1𝑽𝒚𝑽𝒙𝑼𝒚 +  𝑘0
2𝐈 + 𝑼𝒙𝜺𝒛

−1𝑽𝒙  𝜺𝒙 +
1

𝑘0
2 𝑽𝒚𝑼𝒚                 (7.54) 

𝑨𝒚𝒚 = −
1

𝑘0
2 𝑼𝒚𝜺𝒛

−1𝑽𝒙𝑽𝒚𝑼𝒙 +  𝑘0
2𝐈 + 𝑼𝒚𝜺𝒛

−1𝑽𝒚   𝜺𝒚 +
1

𝑘0
2 𝑽𝒙𝑼𝒙                 (7.55) 

𝑨𝒙𝒚 = −  𝐈 +
1

𝑘0
2 𝑼𝒙𝜺𝒛

−1𝑽𝒙 𝑽𝒚𝑼𝒙 + 𝑼𝒙𝜀𝒛
−1𝑽𝒚  𝜺𝒚 +

1

𝑘0
2 𝑽𝒙𝑼𝒙                     (7.56) 

𝑨𝒚𝒙 = −  𝐈 +
1

𝑘0
2 𝑼𝒚𝜺𝒛

−1𝑽𝒚 𝑽𝒙𝑼𝒚 + 𝑼𝒚𝜺𝒛
−1𝑽𝒙  𝜺𝒙 +

1

𝑘0
2 𝑽𝒚𝑼𝒚                    (7.57) 

where 𝑘0 is the wavenumber in free space.  And the matrix elements for (7.53) are 

𝑩𝒙𝒙 = −
1

𝑘0
2 𝑽𝒙𝑼𝒚𝑼𝒙𝜺𝒛

−1𝑽𝒚 +  𝜀𝒚 +
1

𝑘0
2 𝑽𝒙𝑼𝒙  𝑘0

2𝐈 + 𝑼𝒚𝜺𝒛
−1𝑽𝒚                 (7.58) 

𝑩𝒚𝒚 = −
1

𝑘0
2 𝑽𝒚𝑼𝒙𝑼𝒚𝜺𝒛

−1𝑽𝒙 +  𝜀𝒙 +
1

𝑘0
2 𝑽𝒚𝑼𝒚  𝑘0

2𝐈 + 𝑼𝒙𝜀𝒛
−1𝑽𝒙                 (7.59) 

𝑩𝒙𝒚 = 𝑽𝒙𝑼𝒚  𝐈 +
1

𝑘0
2 𝑼𝒙𝜺𝒛

−1𝑽𝒙 −  𝜺𝒚 +
1

𝑘0
2 𝑽𝒙𝑼𝒙 𝑼𝒚𝜺𝒛

−1𝑽𝒙                      (7.60) 

𝑩𝒚𝒙 = 𝑽𝒚𝑼𝒙  𝐈 +
1

𝑘0
2 𝑼𝒚𝜺𝒛

−1𝑽𝒚 −  𝜺𝒙 +
1

𝑘0
2 𝑽𝒚𝑼𝒚 𝑈𝒙𝜺𝒛

−1𝑽𝒚                      (7.61) 

Therefore, once the transverse electric fields 𝑬(𝑇)are derived the other transverse field 

components can be found by equation (7.52).  Likewise, once the transverse magnetic field 

𝑯(𝑇)is found the other components are found by equation (7.53). 

 Although the ideas present in this section have been for a 2D model, the method can 

be extended to 3D.  The simulations in the following section were performed using the 

FDTD method. 
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7.4  Waveguiding Simulations 

 The RSoft package FullWave makes use of the FDTD algorithm in modeling the 

propagation of an EM wave through a medium.  The Cad program is again used to create an 

appropriate structure for simulation.  Once a structure has been created in the Cad the 

band structure can be found with BandSolve and then transmission modeling can be 

performed on the same structure.  In this manner a photonic crystal with a desired 

bandgap and characteristics can be engineered.  However, FullWave requires additional 

information beyond that of BandSolve.  Since FullWave models the transmission of an EM 

wave the transmitted wave must also be modeled. 

7.4.1  Transmission Simulation 

 Since FullWave is 

modeling the predicted response 

of the photonic crystal, it is 

possible to find the transmission 

bandgap.  This is accomplished 

by designing a defect waveguide 

in a lattice array.  Assuming a 

scatterer diameter of 200nm and 

a lattice constant of 320 nm the 

TM transmission gap can be simulated 

as shown in figure 7.4.1.  It should be noted that there is a red-shift in the spectrum as the 

hydrogel undergoes its phase change.  Further, there is an increase in intensity above LCST. 
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Figure 7.23  Transmission bandwidth through a 
linear defect in a 2D hexagonal photonic crystal. 
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7.4.2  Photonic Crystal Bends 

 The second use of FullWave is 

for modeling the transmission of EM 

waves around bend.  In figure 4.2.3 a 

2D simulation of a linear defect with a 

120° bend is shown.  A continuous EM 

wave is emitted from the source on the 

left side of the crystal and a monitor on 

the right side records the transmitted wave.  There is some loss of radiation through 

leakage around each of the bends.  Further, some radiation is lost by reflection at the first 

bend and can be seen leaving the waveguide by the source. 
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CHAPTER 8 

TUNABLE HYDROGEL BASED PHOTONIC CRYSTAL 
 

8.1  Introduction 

The basic goal of this section is to 

describe the device simulated in the 

previous chapter.  Specifically, a tunable 

photonic crystal comprised of a linear 

waveguide and air-holes infiltrated with 

NIPA hydrogel.  In this chapter the 

construction of such a tunable photonic 

crystal will be presented as well as the 

necessary tools to accomplish the task.  

These tasks include a description of the 

photonic crystal, gel insertion instrumentation and 

transmission measurement instrumentation. 

8.2  The Photonic Crystal 

 The photonic crystal consists of a single line 

defect in a hexagonal array of air-hole scatterers.  The 

crystal was formed in a GaAs wafer with hole diameters 

of 200 nm and lattice spacing of 330 nm.  The lattice matrix is a 

bridge or membrane structure suspended in air.  In figure 8.1, 

a photo at 20x magnification is shown.  There are in fact three 

Figure 8.1 A photo of the photonic crystal used in the 
experiment.  The center line is the waveguide used 
throughout this chapter. 

Figure 8.2 A close up of the 
lens structure used to focus 
the light onto the linear 
defect waveguide in the 
photonic crystal. 
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photonic crystals shown with linear defects, however, only the center waveguide was used 

because of defects in the matrix in the first and third lines. 

 One of the major issues in photonic 

crystal research is the coupling of light into 

and out of the linear defect.  The coupling 

process is the largest source of intensity loss, 

when measuring the transmission bandgap.  

In figure 8.1, notice the structures on the right 

hand side of the line.  These structures are 

lens fabricated to collect and focus the light 

onto the linear defect.  In figure 8.2, a close up 

of the structure is shown at 100x magnification.  

The use of this structure will be discussed in the 

section on the transmission experiment. 

8.3  Infiltrating the Photonic Crystal 

The first step in constructing the photonic crystal 

is infiltrating the NIPA hydrogel into the lattice matrix of 

the photonic crystal.  Since the NIPA gel is semi-rigid it is 

not possible to simply place the NIPA gel into the 200 nm 

diameter holes of the matrix.  However, the precursor to 

the NIPA polymer is a liquid monomer solution.  Therefore, the monomer can infiltrate the 

lattice matrix and then polymerize in the matrix.  In this fashion, the semi-rigid polymer is 

Figure 8.3  The microscope used for inserting 
the gel.  A CCD camera was mounted for 
viewing the procedure with two 3-axis stages 
for manipulating the sample and monomer. 

Figure 8.4  The 3-axis stages used for 
manipulating the photonic crystal and 
monomer. 
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grown in the matrix.  Although the monomer is a liquid there were still issues to overcome 

in infiltrating the matrix. 

First, the amount of monomer 

placed on the photonic crystal is crucial.  

The drop placed on the matrix must be 

small enough to leave the edges of the 

wafer clear from obstruction.  If the 

monomer is allowed to cover the wafer 

surface and contact the edge of the wafer, 

the coupling of the light into the waveguide will be impossible.  Second the placement of 

the droplet on the surface must be gentle.  The bridge photonic crystal structure on the 

GaAs is extremely fragile and the slightest touch will cause fracturing and total collapse.  

The precision necessary, required the infiltration to be performed under a microscope, as 

seen in figure 8.3.  The manipulation of the monomer and photonic crystal required two 3-

axis stages, shown in figure 8.4.  The plastic bag seen in figure 8.3 and 8.4 is used to 

Figure 8.5 Sutter P-87 used to make 20 μm 
diameter tips. 

Figure 8.6 A pristine tip shown under 20x 
magnification. 

Figure 8.7 A damaged tip that broke as the 
pipette was pulled.  The opening is 
approximately 50 μm. 
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maintain a nitrogen atmosphere around the monomer environment.  If there is not a 

nitrogen rich atmosphere in the proximity of the monomer, the contamination will cause 

the monomer will fail to polymerize. 

The solution to placing a small droplet on the surface was to use a micro-pipette.  

Pipettes were pulled using a P-87 pipette puller manufactured by Sutter, shown in figure 

8.5.  The target diameter of the pipette tips was 20 μm, however for every one tip at 20 μm 

four at 1 μm—5μm were made.  The difficulty in making the large tip accounts for the high 

cost in commercially available tips ($10 per 20 μm tip).   In figure 8.6 a pristine 20 μm tip is 

shown.  Conversely, a tip that broke during the pulling process is shown in figure 8.7. 

The micro-

pipette is next aligned 

over the photonic 

crystal of interest.  The 

3-axis stages are tilted 

at 45° angles to allow 

for a visually controlled 

alignment of the 

micropipette with the 

photonic crystal.  As the pipette approaches the surface of the wafer a reflection of the 

pipette can be seen.  When the reflection and the real image of the pipette nearly meet, the 

pipette is close enough to dispense the monomer.  The 45° tilt allows the alignment to be 

made with a single microscope objective rather that two, which saves money. 

Figure 8.8 A micro-pipette aligned over a GaAs wafer containing a 
photonic crystal. 
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Once the tip has been placed over the region of interest the monomer is back filled 

into the pipette and allowed to settle into the tip.  The tip is then lowered the remaining 

distance to the wafer surface.  When the tip reaches a critical distance a syringe pump is 

used to apply a slight positive pressure to the liquid.  The meniscus in the tip then slightly 

protrudes from the tip and attaches to the surface. 

Pristine tips such as those in figure 8.6 have more surface tension that damaged tips 

in figure 8.7.   With the greater surface tension in a pristine tip control of the droplet size is 

lost.  The tip used in the experiment was the damaged tip.  As the damaged tip is lowered to 

the surface the meniscus naturally protrudes from the tip negating the need to for pushing 

the monomer out (the syringe pump is necessary to remove the air trapped in the tip).   

When the protruding 

meniscus touches the 

surface of the GaAs it 

attaches and the tip is 

withdrawn leaving a 

single droplet on the 

surface.  Figure 8.9 

shows a droplet that was 

placed on the side of the 

waveguide.   

The droplet was polymerized using a UV lamp at a wavelength of 295 nm, 

manufacture by Phillips, for 15 minutes. The sample was placed in an ice bath during 

polymerization to maintain a temperature below LCST.  If the monomer reaches LCST 

Figure 8.9 A desiccated droplet of polymerized NIPA infiltrating a 
photonic crystal. 
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during polymerization, as polymerization occurs it will undergo the phase change and will 

remain in its collapsed state even when the temperature is reduced below LCST. 

8.4   Transmission Characterization  

 The transmission measurement is performed by sending a broad band light source 

through  one side of the line defect waveguide and recording the light emitted from the 

waveguide.  Light falling within the bandgap will be confined to the waveguide by the 

surrounding photonic crystal lattice, while light outside the bandgap will continue to 

expand.  When the light is gathered and recorded the light confined to the waveguide will 

have a much, much higher intensity than the unconfined light.  In figure 8.10 the incoming 

light comes from the right and is coupled into the waveguide by the lens structure in figure 

8.2, and finally the light is gathered 

to the left of the photonic crystal by 

an optical fiber. 

 The first step in the 

transmission experiment is align 

the incoming light, the waveguide 

and the optical fiber.  This is 

accomplished using a tunable laser 

source operating at a wavelength 

lying within the bandgap.  The light 

from the laser is fed via a polarization maintaining optical fiber to a focusing/polarizer 

assembly.  The  polarization maintaining fiber is used to reduce polarization changes 

caused by movement of the fiber, which in turn will cause drops in recorded intensity.  The 

Figure 8.10 A photo of the polarizer, photonic crystal and 
optical fiber. 
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polarizer/focuser assembly is pictured in figure 8.10.  The polarizer is rotated to excite 

either the TE modes or the TM modes photonic crystal.  In this experiment the TM modes 

were analyzed.  Alignment of the polarizer and the photonic crystal can be visually seen be 

a circular focus point on entrance to the waveguide and a bright circular point emitting 

form the waveguide.   The distance of the polarizer assembly to the photonic crystal is 

approximately 300 μm.  Next, the output fiber is aligned to gather the coupled light and 

stands at a distance of approximately 20 μm from the waveguide output.  The output 

waveguide is attached to a light-wave multimeter, which measures the intensity of the laser 

light.  Fine tuning of the alignment is performed by adjusting each axis in turn, maximizing 

the recorded intensity, 

 Once the system is aligned, a white light source replaces the laser source.  In this 

experiment Santec's Ultra-Wideband Source (UWS-1000) was used to generate a spectrum 

from 1200nm to 2000nm.  The light-wave multimeter was removed and a monochromater 

was used to record the transmission spectra. 

 The white base in figure 8.9 is a TE heater that provided a range of temperature 

from 21°C to 40°C.  The temperature was controlled by a Lakeshore 322 temperature 

control using a thermocouple, also pictured in figure 8.9 at the base of the staple. 

8.5  Transmission Measurement Results 

 Measurements were taken over temperatures form 21°C to 36°C and are shown in 

figure 8.11.  The peak transmission is consistently 1317.1 nm until the critical temperature 

is attained where the peak redshifts to 1318.2 nm.  Further, there is an increase in intensity 

as the NIPA hydrogel undergoes its phase change.  Recall from the previous chapter figure 

8.12, which predicts a 1.4 nm redshift and an increase in intensity.  However, the spectral 
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range of the simulation remains 

much larger than the recorded 

bandgap and is most likely due to 

the bridge structure being a 3D 

object and the simulation being 

performed as 2D structure. 

 The photonic crystal was 

then heated to a temperature of 

40°C to ensure the polymer phase 

change.  When the phase change 

was complete the water which 

was previously locked in the gel 

network was expelled and quickly 

evaporated.  Once the evaporation 

had occurred the spectral peak of 

the transmission bandwidth 

shifted back to a position 

equivalent to the photonic crystal 

without hydrogel.  However, the 

intensity remained low as shown 

in figure 8.13.  This is expected.  

Since the hydrogel is composed of 

97% water, once the water has evaporated the peak should shift back to its original 

Figure 8.11  The transmission spectra of temperatures 
from 21°C to 36°C. 
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position.  The fact that the peak 

intensity is not recovered shows 

that gel has infiltrated the photonic 

crystal matrix.  Further, notice in 

figure 8.8, the desiccated gel 

network can be seen as clumps of 

fibrous material over the photonic 

crystal and along the edges.  This 

indicates that polymerization 

occurred and the remaining 

polymer remains after the water has 

evaporated.   

 Of course one of the 

unique abilities of NIPA hydrogel 

is its ability to be rehydrated.  

The photonic crystal was placed 

in a cold bath, reducing the 

surface temperature of the 

wafer.  Humidity was allowed to 

collect on the surface and 

partially rehydrate the hydrogel.  In 

figure 8.14 a shift is observed, 

although not to the extent of the first experiment.  The peak intensity also is not fully 
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realized and is most likely due to water vapor around the bridge structure causing 

scattering. 

 Thus, the red-shift of the recorded data taken into account with the simulation and 

the rehydration of the gel show a tunable photonic crystal. 
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CHAPTER 9 

SUMMARY AND CONCLUSIONS 

 

The objective of this dissertation was to show uses of N-isopropylacramide hydrogel 

as a means for controlling photonic devices.  This was accomplished by first characterizing 

the hydrogel. 

Employing the use of ellipsometer for the measurement of the index of refraction of 

a fluid, particularly NIPA have been presented.  The great significance of the measurement 

is the jump in index of refraction as the temperature is increased over the critical 

temperature.   The shrinking of the NIPA gel particles cause an increase in scattering and 

hence an increase in the refractive index.  This work may lead to further technological 

applications of the NIPA material, particularly in the optical field, making use of the change 

in refractive index. 

The first device made was a PNIPAM—Quantum Dot hybrid material which is 

capable of controlling resonant energy transfer through externally applied stimuli.  

Enhancement of the photoluminescent was shown as functions of temperature and electric 

field.  Such a device can be used as a sensor, which increase the photoluminescence as the 

environmental conditions change. 

The second device is a tunable photonic crystal with the NIPA hydrogel infiltrating 

the crystal matrix.  By globally changing the temperature a shift in the transmission 

bandwidth was shown as well as a change in transmission intensity.  This again is useful as 

a sensor, where the transmission is observed as environmental conditions change. 
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