ANALYSIS OF WEB SERVICES ON J2EE APPLICATION SERVERS

Adarsh Kumar Gosu, B.E.

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

May 2004

APPROVED:

Robert Brazile, Major Professor

Kathleen Swigger, Committee Member

Karl Steiner, Committee Member

Krishna Kavi, Chair of the Department of Computer
Science

Oscar N. Garcia, Dean of the College of Engineering

Sandra L. Terrell, Interim Dean of the Robert B.
Toulouse School of Graduate Studies

Gosu, Adarsh Kumar, Analysis of Web Services on J2EE Application Servers.

Master of Science (Computer Science), May 2004, 62 pp., 1 table, 4 figures, references,
27 titles.

The Internet became a standard way of exchanging business data between B2B
and B2C applications and with this came the need for providing various services on the
web instead of just static text and images. Web services are a new type of services
offered via the web that aid in the creation of globally distributed applications. Web
services are enhanced e-business applications that are easier to advertise and easier to
discover on the Internet because of their flexibility and uniformity.

In a real life scenario it is highly difficult to decide which J2EE application server
to go for when deploying a enterprise web service. This thesis analyzes the various ways
by which web services can be developed & deployed. Underlying protocols and crucial
issues like EAI (enterprise application integration), asynchronous messaging, Registry
tModel architecture etc have been considered in this research. This paper presents a
report by analyzing what various J2EE application servers provide by doing a case study

and by developing applications to test functionality.

ACKNOWLEDGEMENTS

I want to thank my advisor Dr. Robert Brazile, for his guidance, patience, in-
sightful ideas and suggestions throughout my thesis work. His valuable guidance

throughout my graduate life is whole-heartedly appreciated.

Sincere thanks to Dr. Kathleen Swigger and Dr. Karl Steiner for taking time off
their busy schedules to be a part of my thesis committee. I would also like to thank
the Computer Science department and faculty for providing me an opportunity to
pursue my master’s degree at University of North Texas and work on various edge
cutting technologies. I would like to thank my manager & my colleagues at Sabre

Holdings for helping me in various ways in getting the thesis work done.

Finally and most importantly, I would like to express my deep appreciation to
my parents, brother and friends for their moral support and encouragement, without

which I would not have reached this stage.

i

CONTENTS

ACKNOWLEDGEMENTS ii
LIST OF TABLES vi
LIST OF FIGURES vii
TRADEMARKS viii
1 INTRODUCTION 1
1.1 Organization of the Material 3

2 Web Services 4
2.1 Web Service Architecture 6
2.2 Web Service Conceptual Stack 7
2.3 Web Service Protocols 9
2.3.1 Simple Object Access Protocol (SOAP) 9

2.3.2 Web Service Description Language (WSDL) 13

2.3.3 Universal Description, Discovery and Integration (UDDI) . . . 16

3 Application Servers 19
3.1 J2EE Architecture 19

3.2 Application Servers 20

1ii

3.2.1 BEA WebLogic Application Server 8.1 24
3.2.2 IBM WebSphere Application Server 5.0 26
3.2.3 Sun Java System Application Server 7 28
3.2.4 Oracle 91 Application Server 30

4 Analysis Parameters 32
4.1 Parameters Used for Analysis 32
4.1.1 Application Server Supported Protocols. 32
4.1.2 Publish Web service from Java Class 34
4.1.3 Publish Web service from Enterprise JavaBean 34
4.1.4 Publish Web service from Message-Driven Bean (JMS) 35
4.1.5 Support for built in & non built in data types 35
4.1.6 RPC Oriented Web Services. 35
4.1.7 Document-Oriented Web Service 36
4.1.8 JAX-RPC protocol Support 37
4.1.9 JAXM protocol Support 37
4.1.10 Support for eb XMLo 38
4.1.11 Tool to Convert Java class/EJB to Web service 39
4.1.12 Tool to Convert Web service to Java Interface 40
4.1.13 Support for SOAP with Attachments. 40

v

4.1.14

4.1.15

4.1.16

4.1.17

4.1.18

4.1.19

4.1.20

Components that provide support for Messaging and Applica-
tion Integration L.
Global Registry
Local/Private Registry
Support to Query Local/ Global Registry
GUI to perform operations on private registry
Application Server Configuration Difficulty

Level of Web Service Deployment Difficulty

4.2 Final Results Table

5 Conclusion And Future Work

A WSDL Document

BIBLIOGRAPHY

o1

93

60

4.1 Final Results Table

LIST OF TABLES

vi

2.1

2.2

2.3

3.1

LIST OF FIGURES

Web Service Architecture (Adapted from [10])

Web Service Conceptual Stack (Adapted from [10]) .

SOAP Message Structure (Used with permission) [23]

J2EE Architecture

vil

TRADEMARKS

List of Trademarks used in this thesis:

Registered Trademarks of BEA Systems, Inc. :

e BEA

o WebLogic

o Tuzedo

Trademarks of BEA Systems, Inc. :

e BEA WebLogic Server

BEA WebLogic Integration

BEA WebLogic Portal

BFEA WebLogic Enterprise Platform

Registered Trademarks of Oracle Corporation :

e Oracle

Trademarks of Oracle Corporation :

e Oracle9i

viil

o PL/SQL

Registered Trademarks of International Business Machines Corporation:

e [BM

o DB2

MQSeries

VisualAge

WebSphere

Trademarks of International Business Machines Corporation :

e Cloudscape

e DB2 Universal Database

Registered Trademarks & Trademarks of Sun Microsystems, Inc. :

o J2EE

e Java

e JDBC

o JMS

1X

Enterprise JavaBeans

SOAP with Attachments API for Java

SUN ONE Application Server

SUN Java System Application Server

SUN ONE Message Queue

JAXM

JAX-RPC

JAXR

JAXP

CHAPTER 1

INTRODUCTION

With the rapid growth of the Internet in the past few years, came new ways of us-
ing the Web. The Internet, which primarily used to be a source of static information,
gave birth to sophisticated interactions like e-commerce applications.

Currently Web took a new face with application to application interactions with-
out or little human interference. Business organizations are exchanging huge chunks
of data online which can be secure or non-secure in nature. Irrespective of the type
of data there needs to be a common way to exchange and handle this data between
various organizations. Web services provide a pivoted solution to this problem. Web
services are services offered via the Web that aid organizations in creation of dis-
tributed applications. Web services are enhanced e-business applications that are
easier to advertise and easier to discover on the Internet because of their flexibility
and uniformity. Web service popularity is because of their inherent features like in-
teroperability, efficient application integration, flexibility, uniformity, security, use of
existing standards and protocols.

Web services are different from Web applications, Web services use SOAP (Sim-

ple Object Access Protocol)[1] messages instead of standard MIME (Multipurpose

Internet Mail Extensions) messages, Web services are not HTTP(Hypertext Trans-
port Protocol) specific and Web services provide metadata describing the messages
they produce and consume.

All potential Web services needs to be registered in UDDI (Universal Description,
Discovery and Integration) [2] registry so that service requestors can find the service
they need. Web services publish their information to requestors using WSDL (Web
Services Description Language)[3]. The WSDL document contains information like
the name of the service, the operations that the service provides to the requestor
and the location where the service requestor has to send the request to consume
the Web service. A business application sends a request for service to a given URL
(uniform resource locator) using SOAP message over HT'TP. The Web service receives
the request, processes the request and returns a response again as a SOAP message.
The sending and receiving of messages can be synchronous or asynchronous in nature
based on the type of the service.

XML (Extensible Markup Language) is considered as a standard language for all
Web service applications because of its portability and interoperability. Currently
most of the Web services are deployed on J2EE (Java 2 Platform Enterprise Edition)
application servers since they are scalable, secure and efficient even with the growth of
the service. All major J2EE application server developers like BEA®), IBM®), Sun®),

Oracle®etc have come up with their support for Web services based on the standards

specified by W3C (World Wide Web consortium)[9]. In a practical scenario it is highly
difficult to decide which application server to go for when deploying an enterprise Web
service. In order to overcome this problem analysis of various application servers with

regards to Web services has been done and surveyed in this research.

1.1 Organization of the Material

Chapter 2 describes Web services, it’s architecture and the protocols associated
with it.

Chapter 3 describes the J2EE architecture, provides an overview of the application
servers and their functionality.

Chapter 4 gives a brief explanation of each and every parameter used in this thesis
and the results of the thesis.

Chapter 5 presents a summary of the thesis along with a discussion of future

work.

CHAPTER 2

Web Services

Web services are a way to convert Web from a human centric to application
centric. With the advent of the Web services the face of B2B (business-to-business) ,
B2C (business-to-consumer) and EAI (enterprise application integration) has totally

changed. Web services can be defined as:

e Web service can be treated as a network accessible interface to a Web applica-

tion.

e Web service is a way to automate various Web application interactions with

minimum human intervention.

e Web service can be treated as an application that interacts with other systems of
the network using XML (Extensible Markup Language) messages via lightweight

vendor neutral protocols.

e Web service is a system that can be identified by an URI (Universal Resource
Identifier), whose public methods and bindings are defined by a WSDL (Web
Services Description Language) document and published in a UDDI (Universal
Description, Discovery and Integration) registry.

4

e Web services provide flexibility for applications that run on different hardware

and softwares to interact with each other using minimum human intervention.

Web services use a stack of protocols that are developed by vendor neutral orga-
nizations like W3C (World Wide Web consortium) and OASIS(Organization for the
Advancement of Structured Information Standards).

Web services represent the next step beyond the existing distributed computing
protocols like CORBA (Common Object Request Broker Architecture), RMI(Remote
Method Invocation), COM(Component Object Model), DCOM(Distributed Compo-
nent Object Model), RPC(Remote Procedure Call) and sockets etc. Most of the
existing distributed protocols provide tight coupling between applications, language
dependent, vendor dependent or provide firewall & security problems while integrat-
ing. Web services overcome all these problems by providing a flexible & most efficient
way to handle distributed computing.

Web service components are loosely coupled and it is possible for a client to query
the service broker at run-time, get the interface to a service, and bind to it without
having to do any hard-coding of the URL or method names.

The basic Web services are a messaging framework. The most critical requirement
of a Web service is it should be able to send and receive XML messages between

applications.

The architectural model behind Web services is they are loosely coupled, service-
oriented architecture and vendor neutral protocols. The service-oriented architec-
ture is satisfied by declaring the interface of the application as a WSDL document
that serves as a contract between the service provider and the service requester.
The loosely coupled architecture can be achieved by using vendor neutral protocols
like SOAP(Simple Object Access Protocol), UDDI, and WSDL on top of transport
protocols like HTTP (Hypertext Transport Protocol), SMTP (Simple Mail Transfer

Protocol), and IIOP (Internet Inter-ORB Protocol).

2.1 Web Service Architecture

The three basic components of the Web service are

Registry: Registry is a broker for Web services. This is a logically centralized directory
of Web services. The registry is a central repository where providers can publish

Web services and consumers can search and consume services. [10]

Service Provider: A service provider publishes a description of the services it provides

to the registry. [10]

Service Requester: The service requester searches the registry to find services it need

and uses them accordingly. [10]

Registry

Publish

Requester —> Provider
Bind

Figure 2.1: Web Service Architecture (Adapted from [10])

2.2 Web Service Conceptual Stack

The Web service conceptual stack can be considered as a layer of different tech-

nologies stacked upon one another.

Service Discovery: This layer provides the mechanism for service requestors to fetch
the UDDI document of the service providers. The discovery of a service depends

on the way it is published in the UDDI registry. [10]

Service Publication: This layer provides the functionality such that the WSDL docu-
ment is available to a service requestor. In a direct publication mode the service
provider can directly send the WSDL document to the service requestor. In an
indirect mode the service provider publishes the WSDL document to an UDDI

registry and the service requestor retrieves it. [10]

Service Description: Description of the service describes the way service requester can
contact and use the service. WSDL is a standard that is used to provide the

description information. This layer is actually a stack of description documents.

[10]

XML Based Messaging : XML based messaging is a way of packing the data that is
moved across applications so that they can understand the data . SOAP over

XML is used in this layer. [10]

Network: The network layer is used to do the basic communication, addressing and
routing etc. Some protocols for transport used by the network layer are TCP,

HTTP, SMTP etc. [10]

Static UTDDI Service Discovery
Direct UD DI Service Publication
WEDL Service Description
SOAP HML Based Messaging
HTTF, FTF, IIOF etc. Metwork

Figure 2.2: Web Service Conceptual Stack (Adapted from [10])

2.3 Web Service Protocols

2.3.1 Simple Object Access Protocol (SOAP)

SOAP is a XML based communication protocol that facilitates the interaction be-
tween applications and Web services located on remote computers. SOAP is based
on XML and uses XML standards like XML Schema and XML Namespaces for its

definition and function.

SOAP Messages: SOAP message is based on XML specification. SOAP messages

can be categorized as request messages and response messages.

The basic building blocks of a SOAP message are

e SOAP Envelope:The SOAP envelope element is the root element of any
SOAP message. It consists of an optional SOAP header and a mandatory

SOAP body. [5] [23]

e SOAP Header :The SOAP header element is optional and offers a flexible
framework for specifying additional application level requirements. The
header provides a mechanism for authentication, transaction management,

state information and routing etc. [5] [23]

e SOAP Body: The SOAP body element is mandatory for all SOAP mes-
sages. The body element contains a XML document of the sender if it is
a request message or a XML document of the receiver if it is a response

message. [5] [23]

e SOAP Faults: SOAP faults are used in case of an error. The response
SOAP body element contains the appropriate fault in case of an error. [5]

[23]

SOAP Attachments: SOAP attachments element is an optional part. It is generally
used to transmit non XML data like images, zip files etc along with the SOAP
messages. It can also be used to transmit XML files that are not part of SOAP
body element. There can be any number of SOAP attachment elements in a

SOAP message. [5] [23]

10

SOAP Message

SOAP Part

SOAP Envelope

SOAP Header
(optional)
Headers (if
present)

SOAP Body

XML Content (if
present)

SOAP faults(if
present)

Attachement Part
(optional)

MIME Headers

XML or Non XML Content

Attachement Part
(optional)

MIME Headers

XML or Non XML Content

Figure 2.3: SOAP Message Structure (Used with permission) [23]

11

A sample SOAP request message:

<?xml version="1.0" encoding="UTF-8"7>

<soap-env:Envelope
xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
<soap-env:Header/>

<soap-env:Body>

<ResearchStock:GetStockPrice
xmlns:ResearchStock="http://cs.unt.edu/ akg0011/ResearchStock">
<ResearchStock:symbol>Sabre</ResearchStock:symbol>
</ResearchStock:GetStockPrice> </soap-env:Body>

</soap-env:Envelope>

A Sample SOAP response message:

<?xml version="1.0" encoding="UTF-8"7>
<soap—-env:Envelope
xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

12

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
<soap-env:Header/>
<soap—env:Body>
<Response>Response for the Stock

Research Price Request Message </Response>
</soap-env:Body>

</soap-env:Envelope>

2.3.2 Web Service Description Language (WSDL)

WSDL document contains the public interface and binding definitions of a Web ser-
vice. WSDL uses XML specification. WSDL standardizes XML elements that de-
scribe a collection of communication endpoints.

The basic XML elements of a WSDL are:

Type Element: The type element contains the definitions of the data types used
within the WSDL document message. The data types use the XML schema

so that they can be independent. [3] [11]

Message Element: The message element identifies the body of the WSDL document.

3] [11]

13

PortType Element: The porttype element describes the abstract operations and mes-
sages. The element operation is used to uniquely identify the operation within

the port type element. [3] [11]

<wsdl:operation name="getPrice" parameterOrder="inO">
<wsdl:input message="intf:getPriceRequest" name="getPriceRequest"/>
<wsdl:output message="intf:getPriceResponse" name="getPriceResponse"/>

</wsdl:operation>

Binding Element: Binding element defines the protocols and the message formats
that are referenced in the PortType element. There can be many bindings in a

WSDL document. [3] [11]

<wsdl:binding name="StockSoapBinding" type="intf:StockInterface">
<wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="getPrice">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getPriceRequest">
<wsdlsoap:body namespace="http://stockSession.stock.research"
use="literal"/>
</wsdl:input>

14

<wsdl:output name="getPriceResponse">
<wsdlsoap:body namespace="http://stockSession.stock.research"
use="literal"/>
</wsdl:output>
</wsdl:operation>

</wsdl:binding>

Port Element: The port element identifies the end points of the Web service. It

contains the URI of the Web service. [3] [11]

<wsdl:port binding="intf:StockSoapBinding" name="Stock">
<wsdlsoap:address 1location=
"http://localhost:6080/StockWebService/services/Stock"/>

</wsdl:port>

Service Element: The service element is used to group all the port elements inside a

WSDL document. [3] [11]

<wsdl:service name="StockInterfaceService">
<wsdl:port binding="intf:StockSoapBinding" name="Stock">
<wsdlsoap:address location=

"http://localhost:6080/StockWebService/services/Stock"/>

15

</wsdl:port>

</wsdl:service>

2.3.3 Universal Description, Discovery and Integration (UDDI)

Web services are registered with a registry along with the name of the service, its
description, interfaces etc and this registry is called UDDI registry. The Web service
providers register these services with the UDDI registry so that global access to the
Web service can be provided, the consumer of the service looks up the registry to
find the services he need and consumes them. Each Web service that is published
with a registry server is assigned a unique key so that services with same name can
be registered in the registry server.

UDDI entries are called as tModel . A tModel is a metadata describing

Name of business.

Business contact information.

Industry code.

Description of Web service.

Classification.

Access rights to Web service.

16

e Public interfaces & properties.

The UDDI version 2 provides a fixed set of API calls that can be used to access

any UDDI complaint registry. They are

find_binding : This is used when a Web service client wants to find out how to bind

to a particular Web service. [2] [11]

find_business : Used to find business that are registered in the UDDI registry. [2] [11]

find_relatedBusinesses : Used to find information about one or more registrations that

are related to the same business entity is the UDDI registry. [2] [11]

find_service : Used to find one or more services of a business entity in the UDDI

registry. [2] [11]
find_tModel : Used to find one or more tModel information structures in the UDDI

registry. [2] [11]

Get_bindingDetail : Used to retrieve the full runtime binding template information

from the UDDI registry. [2] [11]

Get_businessDetail : Used to retrieve full business entity information from business

that are registered in the UDDI registry. [2] [11]

Get_businessDetailExt : Used to retrieve extended information about a business en-
tity from the UDDI registry. [2] [11]

17

Get_serviceDetail : Used to retrieve all the details related to a service registered in

the UDDI registry. [2] [11]

Get_tModelDetail : Used to retrieve full details of a specified tModel from the UDDI

registry. [2] [11]

18

CHAPTER 3

Application Servers

3.1 J2EE Architecture

J2EE(Java 2 Platform, Enterprise Edition) is a multi-tier distributed architecture
developed by Sun Microsystems, Inc. All the application servers that currently exist
inherit the multi tier J2EE architecture.

A J2EE component is a self-contained functional software unit that is assembled
into a J2EE application with its related classes and XML descriptor files that com-
municate with other components.

The various tiers are:

Client-tier : Client applications that runs on client machine come under this tier.

[11]

Web-tier Components : Components like JSP(JavaServer Pages), servlet that run on

J2EE server. [11]

Business-tier Components : Components like session beans, entity beans, message

driven beans runs in this tier of the J2EE server. [11]

19

Enterprise Information System (EIS) tier : Components like databases, ERP(Enterprise

Resource Planning) etc runs on EIS tier. [11]

J2EE containers are the interface between a component and the low-level platform
specific functionality that supports the J2EE components. All J2EE components must
be assembled into J2EE applications and deployed into appropriate J2EE containers.
While assembling the components container specific settings should be set. Some of
them include security, transaction model, remote connectivity, database connectivity,
naming and directory lookup.

The J2EE containers that exist currently are:

Enterprise JavaBeans container : This container is used to hold the enterprise beans

and message-driven beans for J2EE applications.

Web Container : This container manages the execution of JavaServlets and JaveServer
pages. This container is also responsible to providing the JSP & servlet access

to bean container.

3.2 Application Servers

An application server is a software server program in a distributed network that
provides the business logic for an application program. Application servers provide

middleware services for security, state maintenance, database access and persistence.

20

Internet Brorser)

Applications Applications
s Client Tier
i
Weh Tier f
Business Tierj
J2EE Tier
Applijcation Server f J2EE™ Platform
v 3
Weh Server * » EJBfBean Server
k &
EIS Tier

Databhase Servers

Datahase

Figure 3.1: J2EE Architecture

21

Application server also handles all application operations between users and back-
end business applications or databases. Application servers handle complex transac-
tions while providing stability, redundancy, high availability, high performance and
complex database querying capability.

Application servers are also called as appservers. The application servers are based
on the Java platform and J2EE architecture. The database access is made through
JDBC (Java Database Connectivity), SQLJ or JDO API.

Some of the functions and services that application servers provide are:

Load balancing.

e Web service capability.

e Fault tolerance.

e Network transparency.

e Transaction management.

e Security.

e Synchronous & asynchronous messaging.

e Multi-threading.

e Integration with traditional applications.

22

e Database connectivity.

e Persistence.

e Resource pooling.

Different vendors have come with different version of application servers based on

the J2EE architecture. Some application servers are:

BEA WebLogic ®Application Server.

IBM WebSphere ® Application Server.

iPlanet ®Application Server.

Oracle ®Application Server.

Sybase ®Enterprise Application Server.

Sun Java System Application Server formerly SUN One Application Server.

JBoss ®Application Server.

The application servers that are used in this thesis for analysis are

e BEA WebLogic Application Server 8.1.

e Sun Java System Application Server 7 formerly SUN One Application Server 7.

23

e IBM WebSphere Application Server 5.0.

e Oracle9i Application Server.

3.2.1 BEA WebLogic Application Server 8.1

BEA WebLogic server is a fully featured application server, which provides function-
ality to deploy and handle enterprise applications. BEA WebLogic server adheres to
the multi-tier J2EE architecture by separating the presentation, business logic & data
connectivity.

In a Web service perspective a BEA WebLogic server provides [15]:

High performance reliable SOAP implementation.

Support for WSDL & UDDI.

Automatic generation of Web services helper code.

Support for Web services security.

Graphic tools for development. & deployment of Web services.

Support for XML parsing.

WebLogic server provides the flexibility to create Web services using enterprise

application components or use existing Web services.

24

BEA WebLogic server provides necessary support to create thin client stubs while
deploying Web services, SOAP encoding/decoding, generation of WSDL scripts |,
management and monitoring of Web services, graphical administration console, pri-
vate UDDI registry. Security of Web services is provided by transmitting the SOAP
messages using SSL(Secure Socket Layer). SOAP by nature is not reliable and it is
made reliable by BEA WebLogic by providing support for asynchronous communica-
tion, receipts and notifications.[12]

BEA WebLogic enterprise platform is an integrated suite of application infras-
tructure built on open standards with support for high volume transactions, business
process management, application integration and business collaboration.[12]

BEA WebLogic platform infrastructure includes:

BEA WebLogic Server: An application server based on J2EE architecture to handle

enterprise applications.[12]

BEA WebLogic Workshop ™ : Unified graphical development environment and run-

time framework to develop, test and deploy enterprise Web service applications.[12]

BEA WebLogic Integration ™ : A solution for delivering application server, applica-

tion integration, business process management and B2B integration functionality.[12]

25

BEA WebLogic Portal™ : Used for delivering integrated enterprise platform includ-
ing portal framework with portal foundation services, personalization, interac-

tion management and integration services.[12]

BEA Liquid Data for WebLogic™ : A virtual data access and aggregation product
for information visibility allowing a real-time unified view of distinct enterprise

data.[12]

BEA Tuzedo ®: A platform for building rock-solid, easy-to-manage enterprise sys-

tems that enable businesses to rapidly launch new products and services. [12]

BEA WebLogic JRockit ™: A highly-optimized JVM (Java Virtual Machine) that
delivers superior application performance, reliability, and manageability for

mission-critical Java applications running on the Intel 32 and 64 bit architecture.[12]

3.2.2 IBM WebSphere Application Server 5.0

IBM WebSphere application server is a J2EE based application server that provides
the foundation for business-on-demand infrastructure. WebSphere server provides
integration of deployment model, programming model, administration point and in-
tegrated application development environment. It also provides a visual work flow
support for Web service standards.

WebSphere provides :

26

Full J2EE 1.3 compatibility.

Configuration and administration based on Java Management Extensions (JMX)

Support for JMS, Web services and a private UDDI registry.

Security using Java 2 security, JAAS (Java Authentication and Authorization

Service) and WebSphere’s pluggable security architecture.

Web Service Standard Development Kit : The WSDK contains WebSphere 5.0 ap-
plication server and a set of tools to deploy Web services. It also includes a
private UDDI registry server, used to publish and discover Web services using
the UDDI protocols. The UDDI server runs as an enterprise application (EAR)
within the application server. WSDK is based on Axis but does not expose the
Axis programming model, it uses the WebSphere programming model based on

JAX-RPC and Web services for J2EE . [17]

WebSphere Studio : The WebSphere studio is a suite of development tools for enter-
prise e-business Java-based applications. It also provides functionality to test
and deploy applications. The WebSphere studio combines the functionality of
VisualAge for Java and WebSphere Studio (classic). The studio contains Eclipse

Workbench as a standard. [17]

27

3.2.3 Sun Java System Application Server 7

The Sun Java System Application Server 7, is an enterprise application server devel-
oped based on multi-tier J2EE architecture. The components that are included in

SUN Java System Application Server 7 are :

Sun Java System Message Queue 3.5 formerly SUN ONE Message Queue 3.0.1.

PointBase database server. & Type 4 JDBC drivers.

Java 2 Software Development Kit.

SUN ONE Studio 4, Enterprise Edition for Java Plugin Module.

The following specifications that are supported by the Sun Java System Applica-
tion Server 7 have been taken directly from Introduction to Sun ONE Application

Server 7 [22]:

Support for Java Web services by using JAXP, JAXM, JAX-RPC, JAXR,

SAAJ.

Runtime including runtime control, process and thread management.

o HTTP server based on SUN ONE Web Server. Highly scalable and high perfor-

mance CMP runtime.

JTS-based, Java Transaction Manager.

28

Object Request Broker (ORB).

SNMP Agent.

HTTP Proxy Plugin.

J2EFE verifier utilities.

Apache Ant and Sun Optional Tasks.

Web-based administration interface with local and remote administration.

Server JMX technology used for internal underlying administration infrastruc-

ture.

Full-featured, Command-line interface local and remote operation.

Command line with interactive and scripting mode.

Multiple administrative domains capabilities for creating wholly separate appli-

cation server configurations.

Provides multiple instances in each domain.

JAAS support.

Multiple authentication realms including file, Solaris realms and LDA P (Lightweight

Directory Access Protocol).

29

e SUN ONE Directory for authentication.

3.2.4 Oracle 9i Application Server

Oracle9iAS is a J2EE based application server that provides a platform for running

J2EE applications & Web services. Oracle9iAS provides support for

J2EE and Web Services : Oracle9iAS framework provides functionality to design,
develop, and deploy dynamic Web sites, portals and transactional applications.
With Oracle9iAS Web services can expose business functions to authorized par-

ties over the Internet from any Web device. [24]

Portals : Oracle9iAS provides functionality to support enterprise portals. Ora-
cle9iAS allows for self-service content management and publishing, wizard-based

development, deploying, publishing, and consuming Web services. [24]

Wireless : Oracle9iAS wireless provides the ability to deliver content to any device
by using any protocol on any wireless network. It can also provide location-

based services. [24]

Caching : Oracle9iAS can cache both static and dynamically generated Web content

thus improving the performance and scalability of heavily loaded websites. [24]

Business Intelligence : Oracle9iAS provides comprehensive personalization and busi-
ness intelligence services through Web analytic applications. [24]

30

FE-Business Integration : Oracle9iAS provides communications and integration capa-
bilities for e-business applications. It provides seamless query and transaction
access to many non-Oracle data sources, provide integrated e-mail, voice, and

fax messaging for access through multiple client devices. [24]

Management and Security : Oracle9iAS provides flexibility to configure and monitor
Oracle9iAS instances, optimize them for performance and scalability, respond to
problem conditions from a centralized console, use Secure Sockets Layer (SSL)
connections, user and client certificate-based authentication, single sign-on ca-
pability across applications, LDAP directory that provides a single repository

and administration environment for user accounts . [24]
Oracle9iAS components that are needed to deploy J2EE and Web services are:

e Oracle9iAS Web services.

e Oracle9iAS Containers for J2EE.

e Oracle HTTP Server.

e Oracle PL/SQL.

e Oracle9iAS Forms services.

e Oracle XML Developer Kit.

e Oracle9i Client.

31

CHAPTER 4

Analysis Parameters

4.1 Parameters Used for Analysis

The analysis of the application servers with respect to Web services is done using
a set of parameters. The detail explanation of each parameter is provided in the next

section followed by the results explaining what application servers provide.

4.1.1 Application Server Supported Protocols

This parameter is used to give an overview of all the Web service related protocols
supported by each application server that are used directly/indirectly to build and

deploy an application server.

SOAP 1.1, 1.2 : Simple Object Access Protocol is a W3C standardized XML based
light weight protocol used to exchange information in a distributed environment.
SOAP 1.2 differs from SOAP 1.1 slightly by the syntax and semantics. SOAP

1.2 is still a W3C recommendation while SOAP 1.1 is a W3C standard. [1]

WSDL 1.1 : Web service Description Language is a W3C standardized XML based
specification that describes a Web service, the functionality provided by that
service, how to invoke the service, how to connect to service etc. [3]

32

UDDI 2.0 : Universal Description, Discovery and Integration is a specification that
describes the process of registering with a public registry, invoking the service
from registry etc. UDDI is a cross-industry effort driven by major software/e-

business providers within the OASIS standards consortium. [2]

JAX-RPC 1.0 : The Java API for XML-based RPC (JAX-RPC) is a Sun Microsys-
tems, Inc protocol used to develop SOAP based interoperable and portable Web
services on the Java platform. The primary advantage of using JAX-RPC is that
the developer of Web services is relieved from the complexity of the underlying
runtime mechanisms. The JAX-RPC runtime takes care of the marshalling and

un-marshalling ; SOAP protocol level mechanisms etc. [4]

JAXM 1.1 : The Java API for XML Messaging is a Sun Microsystems, Inc protocol
used to develop Web services that can send and receive document oriented
XML messages on the Java platform. The JAXM implements the SOAP 1.1
with Attachments and includes the notion of messaging profiles. Profiles enables
the support to use higher level messaging protocols beyond basic SOAP based

messaging. [5]

SAAJ 1.1 : The SOAP with Attachments 1.1 is a Sun Microsystems, Inc used by
Web services that consume and produce messages using SOAP 1.1 specification

and an additional SOAP with Attachment note. SAAJ is used internally by

33

JAXM messages. [6]

JAXR 1.0 : The Java API for XML Registries is a Sun Microsystems, Inc protocol
used to provide an uniform and a standard API for accessing different XML
registries. JAXR uses unified JAXR information model, which describes content
and metadata with in XML registries. JAXR provides rich metadata capabilities
for classification, association and rich query capabilities. JAXR supports both

the ebXML registry and the UDDI registry v2.0 specifications. [7]

4.1.2 Publish Web service from Java Class

This parameter analyzes whether the application server has got the capability to

convert a Java class or a Java interface to a Web service and deploy the Web service.

4.1.3 Publish Web service from Enterprise JavaBean

This parameter analyzes whether the application server has got the capability to
convert an EJB (Enterprise JavaBean) to a Web service and deploy the Web service
in the bean container of the application server. The published Web service should

also have a capability to invoke an entity JavaBean to cater the user requests.

34

4.1.4 Publish Web service from Message-Driven Bean (JMS)

Message-Driven JavaBeans are used to develop enterprise applications that support
asynchronous communication between client and server. There is no direct point
to point contact between the provider/requester, instead all the communication is
diverted through a messaging provider. This parameter will decide whether the
message-driven bean can be published as a Web service, so that the concept of asyn-

chronous communication still works.

4.1.5 Support for built in & non built in data types

Built in data types are those that are supported by the XML Schema. Some of them
include int, string, float etc. Every Java data type that is used inside a Web service
should be either mapped as a built in or non built in data type. If a non built in data
type is used as a parameter or a return value, then the Web service developer should

provide a serialization class that converts the data between the XML and java data

types.

4.1.6 RPC Oriented Web Services

Web services can be implemented as both RPC-oriented and document-oriented ser-

vices. This parameter is used to analyze the application server capability in handling

35

RPC oriented Web services. The SOAP messages that use RPC-oriented style con-
tain input parameters and output values. The input parameters are transmitted to
the Web service via a SOAP message, Web service maps the set of input parameters
received to the native programming method parameters, processes the request and
returns the values to the service requesters by constructing a response SOAP message.
RPC oriented services has got the flexibility to handle any number of parameters as
long as they match the parameter types in the calling procedure.

By default most of the currently existing application servers use RPC oriented

services.

4.1.7 Document-Oriented Web Service

Web services that contain an XML document inside the SOAP message come under
this category. Document oriented Web services create an XML document with all the
data that needs to be transmitted and embeds this XML document inside the SOAP
message.

The advantages of using document oriented services are high flexibility, dynamic,
optimized & interpreted.

Application servers can handle either one of RPC-oriented style or Document-

oriented style in a single SOAP message but not both simultaneously.

36

4.1.8 JAX-RPC protocol Support

Application servers that provide Web services functionality should support either
one of JAX-RPC or JAXM. The Java API for XML-based RPC (JAX-RPC) is a
Sun Microsystems, Inc protocol used to develop SOAP Web services on the Java
platform. The JAX-RPC runtime takes care of the marshalling and un-marshalling,
SOAP protocol level mechanisms etc.

The JAX-RPC requires javax.xml.soap , which is a low level SOAP package pro-
vided by Sun Microsystems, Inc to handle Web services. This SOAP package pro-
vides SOAP message access & SOAP message communication. JAX-RPC relies on
SAAJ. The whole concept of JAX-RPC is based primarily on three interfaces: service,
stub and call. The call interface is a dynamic invocation interface (DII) that sup-
ports synchronous & asynchronous messaging, service & stub support synchronous

request /response invocations by using the RMI architecture.

4.1.9 JAXM protocol Support

The Java API for XML Messaging is a Sun Microsystems, Inc protocol used to de-
velop Web services that can send and receive document oriented XML messages on
Java platform. The JAXM protocol requires javax.xml.soap a low level SOAP package
provided by Sun Microsystems, Inc to provide SOAP message access and communica-

tion and javax.xml.messaging a higher level messaging package that supports SOAP

37

communication.

The advantage of using the messaging package is it auto generates SOAP enve-
lope using the low level SOAP package based on predefined profiles. Profiles enables
support to use higher level messaging protocols beyond basic SOAP based messaging.
JAXM is primarily used when there is a need to handle high level messaging profiles
like ebXML and asynchronous communication. Currently asynchronous communica-
tion can also be handled using JMS. JAXM uses the Simple Object Access Protocol

(SOAP) 1.1 with Attachments (SAAJ) and includes the notion of messaging profiles.

4.1.10 Support for ebXML

Electronic Business Extensible markup language (ebXML) is a specification that al-
lows business organizations to exchange electronic business data by using XML spec-
ifications & Web service capability.

ebXML provides a framework that can be used by business organizations or in-
dividual components. ebXML provides support for SOAP based ebXML messaging
service. ebXML also provides support for security, reliable messaging, registry ser-
vice, mechanism to define high level profiles and a mechanism to define electronic
trading agreements. [§]

SUN ONE application server provides the capability to handle ebXML profiles.

The JAXM messaging package provided by SUN ONE server has got the capability to

38

generate a SOAP envelope based on predefined ebXML profile. SUN One application

server has also got the capability to provide security and reliable messaging for the

ebXML profiles.

4.1.11 Tool to Convert Java class/EJB to Web service

The process of converting an enterprise bean or a Java interface to a Web service
is often tedious and cumbersome. So every application server has come up with
a set of tools to convert the source program to Web service interfaces and publish
them as Web services. Some important things that needs to be done in this phase
are creating a Web service deployment descriptor, checking for dependencies and
other runtime issues , generating client JAR files, creating EAR files by packing the
necessary archive files and deployment descriptors. All application servers used in
this thesis use a variant of Ant tool. Ant is a Java based build tool that uses XML
based configuration files to execute tasks written in Java. The tools provided by
application servers are BEA WebLogic server: Servicegen, Source2Wsdd; IBM Web
Sphere: Bean2WebService, EJB2WebService; SUN Java System Server: Wscompile,

Wsdeploy; Oracle 91AS: WebServiceAssembler.

39

4.1.12 Tool to Convert Web service to Java Interface

Client applications that need to invoke a Web service should have a capability to
convert the WSDL document to a Java interface/class which can be inherited by
other classes. To accomplish this there should be a way to convert the Web service
deployment descriptor to an interface that provide all the methods and parameters
that are declared in the WSDL document. Application servers provide a tool to
support this functionality and the tools are: BEA WebLogic server: Wsdl2service;

IBM Web Sphere: WSDL2Java; SUN One Server: Wscompile; Oracle 91AS: wsdl2ejb.

4.1.13 Support for SOAP with Attachments

This parameter is used to analyze whether the Web service deployed in a particular
application server has got the capability to transmit non XML based documents as
SOAP messages when a client requests. Non XML based documents include images,

zip files etc.

4.1.14 Components that provide support for Messaging and Application Integration

Web services can be developed and accessed in many ways, but providing support
for messaging and enterprise application integration is a key issue. This parameter is
used to analyze the various queuing and application integration components provided

by application servers. Queuing is a way by which various application communicate

40

asynchronously.

WebSphere M@ : IBM WebSphere MQ is an integrated middleware providing the
intelligence and infrastructure to integrate business applications. It provides
support to provide messaging functionality between clients and servers. Web-
Sphere application servers JMS functionality is based on the WebSphere MQ
architecture. WebSphere MQ supports application integration by allowing ap-
plications to exchange data as messages synchronously /asynchronously across
different platforms. Some of the additional features provided by WebSphere MQ
are automatic dealing with network protocols, dynamic distribution of workload,

fault tolerant recovery, application portability and scalability.[19] [20]

Sun Java System Message Queue formerly Sun ONE Messages Queue : Sun Java Sys-
tem Message Queue 3.5 is a middleware product that provides support for re-
liable messaging between applications. Sun Java System Message Queue is an
integral part of Sun Java System application server which allows components
to deliver JMS messages between applications. The components of the Message
Queue are the client API that implements the JMS API; the broker (Message
Server) and an administration component. The primary functionality of the
broker is to route the messages between the applications.It is extremely scal-

able with high-performance. [22]

41

WebLogic JMS Server : WebLogic JMS Server is a message oriented middleware that
provide reliable messaging service between applications that run on BEA We-
bLogic server. The components of WebLogic JMS Server are : WebLogic JMS
Server that provide messaging functionality; client API, JNDI(Java Naming
and Directory Interface) and backing stores for persistence of JMS Queues/Topics.
Some of the features provided by WebLogic JMS server are support for unified
messaging, clustering support, messaging between applications that run on dif-
ferent hardwares/operating systems, persistence of message stores and multicast

capability allowing messages to be delivered using IP Multicasting. [16]

Oracle Message Broker : Oracle Message Broker is a middleware that provides sup-
port for enterprise application integration & messaging. It provides support
for asynchronous system-independent message based communication mecha-
nism. The components of the Oracle Message Broker are Message Broker Core :
JMS provider that supports publishing messages, polling of message servers etc.
[26] Drivers and Message Servers : Drivers provide access to message servers,
message servers stores and manage messages. Drivers are also responsible for
message translation to native storage formats. Administrative Components :

Support for LDAP directory configuration & Lightweight configuration.|26]

42

4.1.15 Global Registry

Global registry is a database repository that facilitates the participation of companies
that provide Web services in e-commerce and business-to-business places. Global
registry makes service provider companies more visible and accessible to the external
world. Global registry is an UDDI registry where Web service providers register their
Web services with information like the name of the service, description, interfaces etc.
so that global access to the Web service can be provided. The consumer of the Web
service looks up the registry to find out the services it needs and access them. Each
Web service that is published with the registry server is assigned an unique key so
that services with same name and different providers can be present in the registry
server. Organizations that wish to publish their services to UDDI registry have to
register with global registry service provider. Operations like publishing, deletion of
Web service from global registry need the verification of security credentials, while

searching the registry can be done with out any security credentials.

4.1.16 Local/Private Registry

The local registry provides the same functionality provided by the global registry
except that it is used for internal applications of business organization, development
and testing etc. The local registry can also be exposed to the external world but

it will not have the performance and scalability of a global registry, and it might

43

also not have a global access point. Local/private registries are generally used by
various departments inside an organization which communicate with each other via
Web services. Application of security credentials is optional and is based on the

requirements of the organization.

4.1.17 Support to Query Local/ Global Registry

This parameter is used to analyze whether global & local registries can be accessed
programmatically. The concept of Web services stand on the idea that human in-
tervention should be minimized. This can be achieved only if the registries can be
accessed programmatically for publishing, retrieving or searching by organizations

that need services.

4.1.18 GUI to perform operations on private registry

All global registries by default provide a Graphical User Interface (GUI) to access
them and this might not be the case with local /private registries. Even though most of
the Web service operations are handled automatically by computers with out human
intervention, this is not true always as there are lot of administrative and maintenance
tasks which needs man power to do them. This parameter analyzes whether there
is a GUI for the private registries that aid in performing registry operations and the

flexibility provided to do the task.

44

4.1.19 Application Server Configuration Difficulty

Application server configuration is a tedious task, as the overall performance of a Web
service application depends on how the application server is configured. Some major
issues that need to be taken care are database configuration, network configuration,
security issues etc. Clustering/Load balancing should also be considered if the traffic
on the system is too high. Application server configuration is not something that’s
needs to be concerned only for production systems but it is a major issue at every
point in development life cycle. This is a one time task that needs to be done while
the application server is installed. Changes has to be made to the application server

when new services, databases etc are added.

4.1.20 Level of Web Service Deployment Difficulty

Developing a Web service is an important issue, but deploying Web service is much
tedious and crucial task as maximum productivity can be achieved only by deploying
it accurately. Some of the major steps while deploying a Web service are: compilation
of the Web service code, proper mapping of the interfaces with the business logic,
validation of the deployment descriptors, marshalling and un-marshalling routines
that aid in the SOAP message creation and communication, creation of a WSDL
document if not already present or validation of the WSDL document against the

Web service interfaces to check the application integrity, creating Web components if

45

needed by the application, creating enterprise archive files with the necessary classes,
stub ,skeleton code and XML deployment descriptors, migrating the archive file to the
respective physical deployment container under the application server, registering the
service with JNDI by resolving any naming issues and finally cleaning up temporarily
created unused files.

This parameter analysis how much complex the whole process is under each ap-

plication server and the difficulty associated with the use of automated tools.

4.2 Final Results Table

46

Table 4.1: Final Results Table

Analysis Pa- | BEA WebLogic | IBM Web- | Sun Java | Oracle9i Appli-
rameter Server 8.1 Sphere Server | System Appli- | cation Server
5.0 cation Server
7
Application SOAP 1.1 & | SOAP 1.1, | SOAP 1.1, | SOAP 1.1,
server sup- | 1.2, SAAJ, | WSDL 1.1, | WSDL 1.1, | WSDL 1.1,
ported proto- | WSDL 1.1, | UDDI 2.0, | UDDI 2.0, | UDDI 2.0,
cols UDDI 2.0, | JAX-RPC 1.0, | JAX-RPC 1.0, | JAX-RPC 1.0,
JAX-RPC 1.0, | JAXR JAXM, JAXR, | JAXR, SAAJ
JAXR SAAJ
Publish ~ Web | Yes Yes Yes Yes
service from
Java class
Publish ~ Web | Yes Yes Yes Yes
service from
Enterprise Jav-
aBean (EJB)
Publish ~ Web | Yes No Yes (Partially | Yes
service from supported)
Message-
Driven Bean
(JMS)
Support for | Yes Yes Yes No
built in & non
built in data
types
RPC-Oriented | Yes Yes Yes Yes

Web services

47

Document- Yes Yes Yes Yes
Oriented Web

services

JAX-RPC pro- | Yes Yes Yes Yes
tocol support

JAXM protocol | No No Yes No
support

Support for | No No Yes No
ebXML

Tool to convert | Servicegen, Bean2Web Ser- | Wscompile, WebService As-
Java class/EJB | source2wsdd vice, EJB2Web | Wsdeploy sembler
to Web service Service

Tool to convert | Wsdl2service WSDL2Java Wscompile wsdl2ejb
Web service to

Java interface

Support for | Yes No Yes No

SOAP with

Attachments

48

Components WebLogic JMS | IBM MQ Series | Sun Java Sys- | Oracle Message
that provide | Server tem Message | Broker
support for Queue formerly
Messaging and SUN ONE MQ
Application Series

Integration

Global Registry | No Yes No Yes
Local/Private | Yes Yes Yes Yes
Registry

Support to | Yes Yes Yes Yes
query lo-

cal/global

registry

GUI to perform | Yes Yes Yes Yes

operations on

private registry

49

Application Easy Medium Medium High
Server configu-
ration difficulty
Level of Web | Easy Easy Easy High

service deploy-

ment difficulty

20

CHAPTER 5

Conclusion And Future Work
This thesis has parameterized a set of parameters that analyze the functionality of
Web services. The application servers have been surveyed based on these parameters
and the results are documented. The results show that most of the application servers
provide the most basic features needed to deploy Web services. Application servers
also provide some additional functionality that can enhance the way Web services are
deployed.

Based on the type of functionality, it can be concluded that BEA WebLogic server
can be used to develop traditional & sophisticated Web services. If there is a strong
need for application integration and messaging IBM WebSphere & Sun Java System
application servers can be considered. Sun Java System application server is also
advisable to use when there is a need to automate legacy system interaction, which
can be handled by ebXML. Oracle application server can be used when the Web
service has to do a lot of database interactions , wireless & portal integration.

This thesis can be extended in future to analyze the security issues concerned with
Web service. Security for Web services is needed to ensure that the confidentiality
& integrity of the SOAP message is not compromised while in transit. This thesis
can be extended to make an enhanced study of how security can be applied to SOAP

o1

messages in synchronous and asynchronous mode. Security issues associated with the
global registry authentication also can be analyzed.

This thesis can also be further extended to make an enhanced study of various
enterprise application integration components with regards to their functionality, per-
formance & security. Web service interoperability issues between different software
platforms and application servers also needs to be studied.

This thesis can also be extended to study the workflow and programming models
used by application servers. Finally this thesis can be extended to further analyze
various high level messaging profiles like ebXML its message structure, data formats

and ebXML registry structures.

52

APPENDIX A

WSDL Document

<?xml version="1.0" encoding="UTF-8"7>

<wsdl:definitions
targetNamespace="http://stockSession.stock.research"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://stockSession.stock.research"
xmlns:intf="http://stockSession.stock.research"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:types/>

<wsdl:message name="sellResponse">

<wsdl:part name="sellReturn" type="xsd:string"/>

</wsdl:message>

93

<wsdl:message name="buyRequest">
<wsdl:part name="in0" type="xsd:string"/>
<wsdl:part name="inl" type="xsd:int"/>

</wsdl:message>

<wsdl:message name="showListRequest">

</wsdl:message>

<wsdl:message name="sellRequest'">
<wsdl:part name="in0" type="xsd:string"/>
<wsdl:part name="inl" type="xsd:int"/>

</wsdl:message>

<wsdl:message name="buyResponse'">
<wsdl:part name="buyReturn" type="xsd:string"/>

</wsdl:message>

<wsdl:message name='"getPriceResponse">
<wsdl:part name="getPriceReturn" type="xsd:float"/>

</wsdl:message>

o4

<wsdl:message name="showListResponse">
<wsdl:part name="showListReturn" type="xsd:string"/>

</wsdl:message>

<wsdl:message name="getPriceRequest">
<wsdl:part name="in0" type="xsd:string"/>

</wsdl:message>

<wsdl:portType name="StockInterface">
<wsdl:operation name="showList">
<wsdl:input message="intf:showListRequest" name="showListRequest"/>
<wsdl:output message="intf:showListResponse" name="showListResponse"/>
</wsdl:operation>
<wsdl:operation name="getPrice" parameter(Order="in0">
<wsdl:input message="intf:getPriceRequest" name="getPriceRequest"/>
<wsdl:output message="intf:getPriceResponse" name="getPriceResponse"/>
</wsdl:operation>
<wsdl:operation name="sell" parameterOrder="inO inl">

<wsdl:input message="intf:sellRequest" name="sellRequest"/>

95

<wsdl:output message="intf:sellResponse" name="sellResponse"/>
</wsdl:operation>
<wsdl:operation name="buy" parameterOrder="in0O inl">

<wsdl:input message="intf:buyRequest" name="buyRequest"/>

<wsdl:output message="intf:buyResponse" name="buyResponse"/>
</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="StockSoapBinding" type="intf:StockInterface">
<wsdlsoap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="showList">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="showListRequest">
<wsdlsoap:body namespace="http://stockSession.stock.research"
use="literal"/>
</wsdl:input>
<wsdl:output name="showListResponse">

<wsdlsoap:body namespace="http://stockSession.stock.research"

o6

use="literal"/>
</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getPrice">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getPriceRequest">
<wsdlsoap:body namespace="http://stockSession.stock.research"
use="literal"/>
</wsdl:input>
<wsdl:output name="getPriceResponse">
<wsdlsoap:body namespace="http://stockSession.stock.research"
use="literal"/>
</wsdl:output>

</wsdl:operation>

<wsdl:operation name="sell">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="sellRequest">

<wsdlsoap:body namespace="http://stockSession.stock.research"

o7

use="literal"/>
</wsdl:input>
<wsdl:output name="sellResponse">
<wsdlsoap:body namespace="http://stockSession.stock.research"
use="literal"/>
</wsdl:output>

</wsdl:operation>

<wsdl:operation name="buy">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="buyRequest'">
<wsdlsoap:body namespace="http://stockSession.stock.research"
use="literal"/>
</wsdl:input>
<wsdl:output name="buyResponse">
<wsdlsoap:body namespace="http://stockSession.stock.research"
use="literal"/>
</wsdl:output>
</wsdl:operation>

</wsdl:binding>

o8

<wsdl:service name="StockInterfaceService">
<wsdl:port binding="intf:StockSoapBinding" name="Stock">
<wsdlsoap:address location=
"http://localhost:6080/StockWebService/services/Stock"/>
</wsdl:port>

</wsdl:service>

</wsdl:definitions>

29

BIBLIOGRAPHY

[1] Simple Object Access Protocol (SOAP) 1.1 W3C

http://www.w3.org/TR/SOAP/

[2] Universal Description, Discovery, and Integration (UDDI)

http://www.uddi.org/

Note,

project:

[3] Web Services Description Language (WSDL) 1.1 W3C Note,

http://www.w3.org/ TR /wsdl

[4] Java APl for XML-Based RPC (JAX-RPC) Specification

http://java.sun.com/xml/downloads/jaxrpec.html

[5] Java API for XML Messaging Specification

http://java.sun.com/xml/jaxm/

[6] SOAP with Attachments API for Java (SAAJ)

http://java.sun.com/xml/saaj/

[7] Java API for XML Registries Specification

http://java.sun.com/xml/jaxr/index.html

[8] ebXML, http://www.ebxml.org/

[9] World Wide Web Consortium (W3C), www.w3.org

60

1.0,

1.1,

vl.1,

1.0,

[10]

[11]

[12]

[13]

[14]

[15]

[18]

[19]

Web Services Conceptual Architecture (WSCA 1.0) May 2001 By Heather

Kreger IBM Software Group

The Complete Reference J2EFE by James Edward Keogh, Jim Keogh

BEA White Paper - BEA WebLogic Server 8.1 Overview

BEA WebLogic Platform 8.1 Online Documentation,

http://edocs.bea.com/wls/docs81 /index.html

BEA WebLogic Workshop : building next generation Web services visually /

Sean Christofferson ... [et al.].

BEA Weblogic Server, Programming Weblogic WebServices version 8.1 re-

vised:December 2003.

Introduction to WebLogic JMS, BEA Weblogic Online Documentation

IBM Redbooks: WebSphere Version 5 Web Services Handbook by Ueli Wahli,

Matija Drobnic, Christian Gerber, Gustavo Garcia Ochoa, Michael Schramm

Professional IBM WebSphere 5.0 Application Server by Tim Francis, Eric Her-

ness, Rob High, Jim Knutson, Kim Rochat, Chris Vignola

IBM Redbooks: WebSphere Application Server V5 and WebSphere MQ Family
Integration by Jill Lennon, Ashok Ambati, Bill Moore, John W. Mount, Fred
Plassman, Mark Smith, Peter von Hirschfeld

61

[20]

[21]

[22]

[23]

[26]

IBM Redbooks: IBM MQSeries Primer by Dieter Wackerow

Sun Product Documentation: Sun ONE Application Server 7 Product Intro-

duction

Sun Product Documentation: Introduction to Sun ONE Application Server 7

The Java T™MWeb Services Tutorial by Eric Armstrong, Stephanie Bodoff, Deb-
bie Carson, Maydene Fisher, Scott Fordin, Dale Green, Kim Haase, Eric Jen-

drock

Oracle9i Application Server, An Oracle White Paper September 2002

Oracle Documentation: Oracle9i Application Server Web Services Developers

Guide Release 2 (9.0.3) August 2002

Oracle Documentation: Oracle Message Broker Administration Guide Release

2.0.1.0

Developing Java Web Services by Ramesh Nagappan, Robert Skoczylas John

Wiley & Sons Copyright Wiley Publishing, Inc.

62

