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One of the problems sensor networks face is adversaries corrupting nodes along the path 

to the base station.  One way to reduce the effect of these attacks is multipath routing.  This 

introduces some intrusion-tolerance in the network by way of redundancy but at the cost of a 

higher power consumption by the sensor nodes.  Erasure coding can be applied to this scenario in 

which the base station can receive a subset of the total data sent and reconstruct the entire 

message packet at its end.  This thesis uses two commonly used encodings and compares their 

performance with respect to power consumed for unencoded data in multipath routing.  It is 

found that using encoding with multipath routing reduces the power consumption and at the 

same time enables the user to send reasonably large data sizes. 

The experiments in this thesis were performed on the Tiny OS platform with the 

simulations done in TOSSIM and the power measurements were taken in PowerTOSSIM.  They 

were performed on the simple radio model and the lossy radio model provided by Tiny OS.  The 

lossy radio model was simulated with distances of 10 feet, 15 feet and 20 feet between nodes.  It 

was found that by using erasure encoding, double or triple the data size can be sent at the same 

power consumption rate as unencoded data.  All the experiments were performed with the radio 

set at a normal transmit power, and later a high transmit power. 
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CHAPTER 1

INTRODUCTION

1.1. Definition and Uses of Sensor Networks

Sensor networks can consist of thousands of low-power, low-cost nodes deployed in either

mobile or fixed locations to monitor activities. Among the many uses of sensor networks are

environmental habitat monitoring (e.g., Great Duck Island deployment), traffic monitoring,

military operations and geological applications. These nodes might be controlled by a pro-

cessing center known as the base station. The base station can be a more powerful computing

device such as a laptop or a gateway to another network. It can either disseminate data to

the network or can extract data from it or both.

Individual sensor nodes consist of a central processing unit (CPU), sensing unit, a transceiver

and a power unit. The transceiver unit connects the node to the network, the sensing unit

takes the signals produced by the sensors and converts them to digital signals. The power

unit keeps track of the total power consumed and remaining power. The processing unit

might perform some in-node computataion of the data collected, extract the relevant parts

and send that.

Routing in sensor networks provides a challenge due to the fact that adversaries can easily

capture and corrupt nodes. Some authors suggest using multiple, disjoint paths to counter

denial of service attacks. In this thesis, I examine these techniques and power usage charac-

teristics, and explore encoding techniques that reduce power usage while retaining robustness.

1.2. Constraints in Sensor Networks

Sensor nodes typically have limited memory (4KB RAM), a low power radio and a 4MHz

CPU. The device typically is powered by one or more batteries running at 3V which might

vary across different vendors. These values are for the mica motes developed at UC Berkeley,
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but since the nodes work in a resource constrained environment, power and energy usage

must be optimized. Due to these constraints, the challenges faced by sensor networks become

a lot different from those faced by ad-hoc wireless networks. This is because the design goals

and routing architecture of sensor networks are somewhat different from ad-hoc wireless

networks. Some of the differences as outlined in [1] are:

• Sensor networks typically are deployed with a much larger number of nodes than

wireless networks.

• The sensor network topology can change much quicker than a wireless ad-hoc net-

work.

• The communication model of sensor networks is either many-to-one (all sensor

nodes to a base station), one-to-many (base station to sensor nodes), or localized

communication wherein sensor nodes send messages to neighbors or broadcast a

message to a group of neighbors. Sensor networks typically do not support any-to-

any routing in the network.

• Neighboring nodes in sensor networks might have highly similar data or readings,

hence to optimize bandwidth and power, aggregation of data is an important con-

sideration. Thus there might be a need to establish trust relationships betweeen

nodes that might not be necessary in ad-hoc networks.

Message routing is the most affected by these constraints. There are various kinds of routing

that can take place in a network. Some of them are:

• Static vs. dynamic routing: In static routing, the routing table is precomputed and

all nodes have to refer to it to find the next node on the path. In dynamic routing,

each node decides the next node based on certain heuristics like hop count, signal

strength, transmission capacity of that node. Dynamic routing might be a better

option in some cases to optimize shared radio usage.

• Clustered vs. flat hierarchy: Some networks might have one or more levels of

clustering wherein some nodes act as aggregators leading to a hierarchical network.
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The aggregator nodes can then collect a threshold amount of data and perform

in-node processing and relay the data to the base station. Hence the number of

packets that get transmitted to the base station gets reduced. This is useful in

networks where readings of two nodes are highy similar, e.g., temperature sensing

networks, light sensing networks, etc.

• Stateful vs. stateless networks: In stateful networks, each node can remember its

past routing decisions and can possibly base its new decisions on the past ones. In

stateless networks, routing decisions are not remembered. Stateful protocols might

be memory-intensive, but over a period of time might reduce the computational

time (to make routing decisions) by a considerable extent.

In each of these routing topologies, the following problems can occur:

• Due to low power radio, messages may get dropped.

• Effects of noise and collision are more pronounced as the radio channel is shared.

• Problems seen in regular wireless networks like multipath, fading and signal atten-

uation also affect routing in sensor networks.

1.3. Security Issues in Sensor Networks

In this section, I look at some common attacks in sensor networks and ways to defend

against some of them. I also take a look at how security primitives can be applied to sensor

networks.

1.3.1. Security Primitives

The radio links in sensor networks are inherently insecure thus enabling adversaries to

eavesdrop on transmissions, perform replay attacks and inject spurious data packets. Nodes

can be captured too and used for malicious purposes. Also the attacker need not be a sensor

node: it can be a laptop or a more powerful device. Providing all three traditional security

primitives (confidentiality, integrity and availaibility) at the same time may not be possible

in this scenario. To this end some assumptions have to be made. First, the base station

will in most cases have to be assumed to be non-malicious. Aggregation points or clustering
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nodes in the network if any will have to be trusted by other nodes. Confidentiality, as such,

can be obtained but managing encryption results in a lot of overhead. Also, the key sizes

have to be as small as possible. Integrity of the data in the network can be maintained with

a message authentication code (MAC), and availability of the network can in most cases

be acheived. In addition to this, there is the possibility of an insider node being corrupted

by an adversary. In this scenario, it might not be possible to guarantee any of the three

primitives, and the most that can be hoped for is graceful degradation of the network. In

some networks, there might be hierarchical grouping of nodes where all nodes in one group

report to one aggregator node. In such networks, one might have to think about protection of

the aggregator node, secure admission of nodes in the group, intrusion detection, prevention

of adversaries performing traffic analysis, etc.

1.3.2. Common Attacks and Defenses

Attacks can take place at any layer of the network stack. Some of them are as follows:

(i) Physical layer: An attacker can jam the frequencies at which some or all of the

nodes are transmitting thus performing denial of service. One way to combat this

attack is spread-spectrum communication or switching to lower duty cycle when

the jamming occurs. Another defense includes transmitting at infra-red or optical

wavelengths. Another kind of attack is physical tampering or interrogation of

nodes. Defenses for this may include tamper-proof packaging or hiding of nodes.

(ii) Data link layer: In this an attacker can introduce collisions in a MAC packet, thus

forcing the receiver to request retransmisisons. This might lead to exhaustion of

resource at both ends. Using error correction codes might reduce the effect of this

but not to a considerable extent and at the cost of a high overhead.

(iii) Network layer: There might be a lot of attacks in this layer. Some of the more

common ones as outlined in [26] are:
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• Spoofing routing information in the network: By doing this, an attacker can

create a routing loop, attract traffic towards them, divert traffic away from

the base station, etc.

• Sinkholes: In this, a compromised node can attract all traffic towards itself

by advertising a high-quality route to the base station. By doing this, all

traffic in the network is channeled to the adversary who can then suppress

messages from other nodes or mount other forms of attacks. This can be a

serious problem in many-to-one networks, and is hard to defend against. One

way of defending against sinkholes is to contruct or use protocols where traffic

is not routed to one centre, but rather topology is constructed on the fly by

localized interactions between nodes, e.g., GPSR [27].

• Selective forwarding: In this the attacker puts itself on a data flow path and

refuses to forward data from certain nodes in the network. It can also modify

the data originating from a certain node and forward it. One way to reduce

the effect of this is multipath routing where source nodes can forward data

along multiple disjoint paths to the base station.

• Wormholes: This occurs when an attacker performs a replay attack of messages

received in one part of the network in another part using an out-of-bound

channel. This can be used along with sinkholes to great effect. This is very

hard to defend against.

• HELLO floods and acknowledgement spoofing attacks: In some protocols

nodes are required to authenticate or announce themselves to each other before

starting communication. In acknowledgement spoofing, an attacker replays an

overheard acknowledgement message to convince the node that it is the node’s

neighbour. In HELLO floods, an attacker broadcasts to every node in the net-

work that it is its neighbour, thus creating a wormhole. One defense against
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these attacks is to verify the bidirectionality of the link before starting any

message communication.

• Sybil: In this the attacker assumes different identities to the other nodes in the

network thus convincing every node that it is the node’s neighbor. One defense

is to force a node to only communicate with a set of neighbors (determined by

the base station) with whom it shares keys.

(iv) Transport layer: This layer manages end-to-end communication. An adversary

can perform the classic TCP-SYN style flood attack by sending many connection

requests to a single node, thereby causing exhaustion of resources at that node’s

side. Also it can repeatedly forge connection request and connection status mes-

sages between two nodes, thus causing desynchronization between them. One way

to prevent against this is to perform authentication of all packets exchanged. Also,

client puzzles can be generated and verified by each server node to whom a con-

nection request has been sent.

Erasure encoding is a technique used in multicast routing to send redundant data packets

along different paths in the network so that the receiver, after having received a sufficient

number of packets, can reconstruct the original data packets from a subset of the original

packets. This is to ensure speedy downloads. This can be applied to sensor networks with

many-to-one routing so that when nodes transmit data to the base station, they can send

encoded packets along multiple paths so that the base station can reconstruct the data from

a subset of the packets.

1.4. Scope of the Thesis

In this thesis I use the idea of multipath routing as used in INSENS [10] to redundantly

route messages along different paths to the base station, thus reducing the effect of DoS

attacks or selective forwarding/modification attacks. Instead of one message being duplicated

across different paths, an attempt was made to explore encoding the message using erasure

encoding and sending the message pieces along different paths. Thus if the base station
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gets a sufficient number of messages out of the message pool, it can reconstruct the data

at its end. If the network is sufficiently dense (there can be many disjoint paths between a

node and the base station), the presence of adversaries along some paths might not affect

the data reaching the base station. The usage of erasure encoding reduces the bandwidth

consumption. In the original multipath scenario, the channel’s bandwidth is used for sending

the same data along different paths. In this setting, the channel bandwidth can be more

efficiently used to send double or triple the data size depending on the kind of encoding used.

Also the overall power consumed is reduced as the data size is halved (or even divided by

three) when using erasure encoding. The different encoding schemes that were experimented

with are:

• Encoding two different data packets and sending them along three different routes

such that recovery of any two out of three messages will guarantee recovery of the

complete data set - this is called 2-of-3 encoding.

• Encoding three different data packets and sending them along four different routes

such that recovery of any three messages out of four will guarantee recovery of the

complete data set - this is called 3-of-4 encoding.

A comparative analysis was done on the different radio transmit powers and different radio

models and their effect on power consumption. The results presented are in terms of data

size vs. overall power consumed and message count. For each different simulation, the results

are presented for 3 sets of nodes: the source node, the base station and the remaining nodes

(which perform packet forwarding).

In this thesis, there is a trade-off between power consumed and the resilience of the

network. Less power has been used for a fixed data size as compared to unencoded data but

at the cost of decreasing the network resilience. In INSENS [10], the data is duplicated along

different paths which gives greater resilience, but consumes more power for the same data

size as compared to the encoding scheme used in this thesis. One more kind of encoding

which has not been experimented with is 1-of-2. In this, the same resilience as 2-of-3 can be
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Table 1.1. Comparison of encoding cost of different encoding schemes.

Encoding Resilience Communication Cost

1-of-3 2 3n

1-of-2 1 2n

2-of-3 1 1.5n

1-of-4 3 4n

3-of-4 1 1.33n

acheived, but at a higher communication cost.

If n bytes of data need to be sent from the source to the base station, 1-of-3 would require 3·n

bytes of data sent into the network, 2-of-3 would require 1.5·n bytes of data and 1-of-2 would

require 2·n bytes of data to be sent into the network. Table 1.1 shows the communication

requirements of different encoding schemes for a data size of n bytes. Resilience means the

number of disjoint paths an attacker can corrupt in the network while the complete data set

still gets to the base station.

The erasure encoding technique used here is very simple. More complex codes like Reed-

Solomon codes, Tornado codes, Online codes etc. can be adapted to the multipath scenario,

and this is left to future work.

1.5. Organization of the Thesis

Chapter 2 presents a review of related work in sensor network security, usage of cryptog-

raphy, some key distribution schemes and a view of TinyOS (the operating system designed

at the University of California at Berkeley on which the application is based), nesC (the

language in which it is written), TOSSIM (the TinyOS simulator), and finally a brief review

of erasure encoding. Chapter 3 describes the design of the experimental application and

design considerations. Chapter 4 presents the simulation and experimental results in Pow-

erTOSSIM. Chapter 5 summarizes the work done and looks at future research possibilities.
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CHAPTER 2

OVERVIEW OF SENSOR NETWORK SECURITY

2.1. Cryptography

In this chapter, I review prior work in sensor network security. This is mostly in the area

of cryptography and secure routing. I also provide some background on erasure encoding

schemes.

A major technique of combating security problems is seeing how to apply cryptography

efficiently and then designing protocols which can use these algorithms (trying to minimize

memory, bandwidth, and the computation required at the sensor nodes end). Public key

cryptography is highly taxing on the limited memory and computation power of the sensor

nodes, although there have been some public key schemes designed for use in lightweight

sensor networks. Carman, Kruss and Matt [6] show that for an encryption key size of

1024 bits, the Rivest-Shamir-Adleman algorithm (RSA) consumes about 42 mJ whereas

Advaned Encryption Standard (AES) consumes 0.104 mJ. Also, using digital signatures for

authentication would be too expensive. Hence symmetric key ciphers have to be used.

2.1.1. Symmetric Key Ciphers

Symmetric key cryptography is done by key pre-distribution. Here again you cannot

have a single shared key throughout, because if one node gets compromised, then the entire

network gets compromised. Therefore techniques of pair-wise key-sharing between nodes

have to be used. In a network of n nodes, you have to distribute (n − 1) keys to each

node. Each node having pair-wise keys with others poses different problems: If nodes arrive

dynamically, then it might be difficult assigning keys to them. Also, node capture necessitates

re-keying of the nodes whom the captured node had shared keys with, and the capture event

has to be broadcast throughout the network to stop other nodes from dealing with that node.
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There might not be enough memory on chip to do all of this, so random key pre-distribution

has been used to overcome these problems. Here you can generate and distribute a random

subset of keys taken from a large pool of keys to each node before network deployment. Two

nodes can then interact with each other to find out whether they have a shared key. If they

do not, they can establish a path of nodes between them, with each node along the path

sharing keys with each other. Eschenauer and Gligor [13] present such a scheme. They give

a 3-step protocol:

(i) Key Distribution

(ii) Shared key discovery

(iii) Path establishment

Initially the nodes are loaded with some keys taken from a pool. This pool is generated offline

to reduce the computation required at the sensor node’s end. Some subset of these keys is

drawn without replacement and loaded into the key ring of each sensor node. Then during

the second phase, the network topology is established, i.e., the nodes interact with each other

to see whether they have a shared key. One way of doing this would be to broadcast the key

IDs. (There has to be a secure way to do this or else adversaries can spoof that node’s key

ring). In the third phase, the nodes that are not connected directly attempt to establish a

indirect link between each other. This is because every node’s key ring has some extra keys

which it doesn’t share with any other node, so they can be reserved for new connections.

If a path of nodes sharing keys exists between two nodes who do not share a key, then the

nodes can use that path to exchange a key that establishes a direct link. Also, when a key

needs to be revoked, the revoke event is broadcast and all nodes who have that key in their

rings remove that key.

The process can be viewed as constructing a random graph, the nodes being vertices and

an edge exists between 2 nodes if there exists a link (direct or otherwise) between them. A

random graph has a high probability of being connected if the degree of its nodes is high or

at least above a certain threshold. Eschenauer and Gligor showed that in a random graph
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of 10,000 nodes only 250 keys needed to be preloaded to each node’s key ring so that the

probability of the network being fully connected will be 0.9999.

Perrig and Song [7] extend this concept in three different ways. First, instead of two

nodes having one pair-wise key, they can have q keys which are taken from a key pool S.

They call this the q-composite technique. Unless two nodes have q keys in common, they

cannot communicate with each other. This increases the resilience against node capture in

the sense that an adversary needs to know all q keys to impersonate another node. But an

adversary can get hold of a large subset of keys by breaking fewer nodes’ key set. Hence the

key pool has to be large enough to prevent this from happening. But if it is too large then

the number of keys shared between two nodes might be less, thus increasing the number of

pairs of nodes that might not have any connections with each other. Also if the key pool

is small, the adversary can build up a critically large set of keys, so a tradeoff has to be

achieved. Perrig and Song mathematically show that the smaller the number of captured

nodes, the greater is the resilience of the network. So if a few nodes’ key rings have been

compromised, the attacker cannot use those keys to compromise other nodes. Hence it will

have to attempt large-scale attacks in which a lot of nodes get compromised which are more

expensive to mount and easier to detect. If a large-scale attack has been mounted though,

the network becomes more vulnerable in the q-composite scheme than other schemes.

The second mechanism that they present is multi-path key reinforcement. This is ba-

sically a technique to improve the earlier random mechanism (not q-composite). After key

establishment has taken place sometimes the keys on a node’s key ring might be shared by

other nodes. If two nodes A and B share one pair-wise key, say k, and if k resides in the key

ring of some other node who got compromised, then the link between A and B is compro-

mised. Multi-path key reinforcement presents a way in which, after key establishment, the

key is immediately updated. A computes a new key (this might have to be done in-node)

and sends it to B via multiple paths. Bits of the new key travel along multiple paths. Only

if B gets all the bits, it will be able to reconstruct the entire key (done by XORing all the
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bits received). Now if an adversary compromised some (but not all) nodes along the path,

he will not be able to reconstruct the entire key. This is used in conjunction with the basic

scheme and not the q-composite scheme. They have experimentally shown that in a network

of 10,000 nodes the basic scheme with multi-path routing gives a boost to the performance

of the basic scheme, but the q-composite scheme with multi-path routing has little effect.

The main reason for this happening is that there are certain weaknesses in both the

schemes: the weakness of the q-composite mechanism is that if it has a small key pool size,

then if an adversary is able to compromise a number of keys, he would have gotten a good

number of keys from the key pool. The weakness of the multi-path scheme is that finding

multiple (completely disjoint) paths between two nodes is a bit difficult if the nodes along

the path all have different key rings. This would increase network overhead. So we would be

forced to make the key pool size small. This reduces the overall effectiveness of combining

both these techniques.

The third technique Perrig and Song present is that of random pairwise keys. In the

previous two techniques, each node shared a pairwise key with some other node and could

communicate. But there was no way a node could ascertain the identity of the node it was

communicating with: More than one node can have the same key in its key ring. So if node

A is communicating with node B, even node C can have the same key as B in its key ring, so

A should be certain that he is communicating with B and not C. Even though C might have

a pairwise key with A, it might have been compromised by malicious parties. They present

a mode of authentication wherein instead of just the pairwise key, the ID of all the nodes

that have it in their key ring is also loaded into the key-ring of each node. This technique

has been shown to be best of all the three they developed.

Another scheme is presented by Ning and Liu [34] wherein a pool of bivariate polynomials

are used as a key pool. Nodes which have shares in the same polynomial can communicate

with each other. This is a 3-step protocol where first a pool of bivariate polynomials is

generated, then key establishment takes place wherein nodes look for others who have shares
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of the same polynomial as them. They do this by broadcasting the polynomial ID’s. Lastly

path key establishment take place, where sensors who don’t have a direct link between them

will try to find other nodes and will establish a path through these nodes.

These random schemes have high memory overhead and have a probabilistic model in

which the probability of a random graph being highly connected increases the chances of a

secure link existing between 2 nodes. Moreover, all these schemes assume that the network

is dense. If the network is sparse, then it could result in a disconnected graph where some

nodes do not have any links at all with some others. Hence they wouldn’t be able to do key

exchanges at all.

Perrig and Chan [43] give a scheme, PIKE, where two nodes who do not share a direct

link can find some intermediary who shares a pair-wise key with both of them. They also

provide for dynamic node arrival by deploying the network in such a way that nodes have

sequential IDs. They assume that there exists a two-dimensional lookup table where all node

IDs are stored. A matrix is developed where nodes (IDs) lying on a row or column share

a pair-wise key with all others on the same row/column. If two nodes lying on different

rows/columns want to find an intermediary, all they have to do is look for nodes that lie at

the intersection of the two nodes IDs. Nodes lying on the same row/column do not need to

perform any key establishment as they already share a key. They also extend this to three

dimensions. They simulated this using the GPSR algorithm and a geographic hash table

(GHT) was used to provide a list of node IDs.

2.1.2. Public Key Cryptography

Memory and processor constraints limit the use of public key cryptography in sensor

networks. There have been some schemes designed though in which authentication is done.

Watro et al. present TinyPK, where authentication and key agreement takes place between

an external party and a sensor node [54]. The external party is typically a more powerful

device like a laptop. Here the external party authenticates itself to a sensor node but the

sensor node does not authenticate, so even if there is any malicious activity from the sensor

13



node’s end, the external party has no option but to trust it. In this there is a certification

authority (CA) somewhere in the picture and the sensor nodes are loaded with the public

key of the CA. Now there is a challenge response protocol:

(i) The external party submits it own public key signed by the CA’s private key.

(ii) The sensor node will then use the preloaded CA’s public key to verify the external

party’s public key.

(iii) External party will send a nonce and a checksum signed with its private key which

the sensor node will be able to decrypt using the public key extracted in the second

step. If the nonce and the checksum are validated, then the external party has

been authenticated.

(iv) Now the sensor node will send across a session key and the nonce which will be

encrypted with the external party’s public key stored in the sensor node. When

the external party receives it, he will decrypt it using his private key. Thus a

communication link can be established. This was implemented on Mica motes

with 4 KB RAM and 1024-bit RSA took about 14.5 seconds.

Here the sensor node operates with the public keys of the CA and the external party. If it

had used the private keys of both, it would have required more time and memory.

2.2. Secure Routing Protocols

There have been several routing protocols that have been optimized for use in sensor

networks, including SPIN [44], TinySec [25] and Directed Diffusion [23]. Details of them are

provided below:

1. SPIN: SPIN stands for Sensor Protocols for Information via Negotiations. There are

two categories of SPIN. The first is SPIN1 and the other is SPIN2. SPIN1 is the basic

protocol and SPIN2 makes optimum use of energy. SPIN1 has three steps:

• ADV: This is the first step where any node that has new information will advertise

information about it to its neighbors. Here energy consumption is minimized by

not forwarding the entire data but just a brief description of it: metadata.
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• REQ: In this step, all the nodes that are interested in the metadata will respond to

that node with a data request message. Even if the nodes are not interested, they

will inform their immediate neighbors about the availability of the data. Thus,

soon the entire network will get to know of the existence of the new data.

• DATA: In this last step, the originator node will give copies of the full data to all

those nodes who sent a REQ request back.

SPIN2 performs the same steps but nodes conduct energy checks at regular intervals. If

a node knows it will not be able to complete the entire protocol (after some other node gives

it a DATA request) it will not even advertise the presence of new data that it has.

Perrig et al. [44] experimentally showed that SPIN outperforms traditional sensor network

protocols like Flooding and Gossiping and disseminates 60% more data per unit energy than

these protocols.

This protocol mainly focuses on energy efficiency, reducing the computation required at

the sensor node’s end (nodes do not require any information about network topology, only

about their immediate neighbors) and reducing bandwidth consumption. SPIN by itself does

not have any cryptographic operations, so an attacker might be able to forge the identities

of nodes, send spurious data, perform denial of service (DoS) attacks, etc. SPIN is mainly

targeted for the Link/MAC layer.

Perrig et al. [44] present two protocols which build on SPIN, viz. SNEP and µTESLA

which provide confidentiality and authentication.

(i) SNEP: It stands for Secure Network Encryption Protocol. This provides confiden-

tiality and integrity of the data. In SNEP the nodes send encrypted messages to

each other with a Message Authentication Code (MAC). This uses a block cipher

(DES) in counter mode which has the property that it is resilient against known

ciphertext attacks. Basically, both nodes share a counter which is used along with

the encryption key, and a MAC is also sent which includes the value of the counter.
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This is to prevent replay attacks. The following notation is used to describe com-

munication between two parties A and B:

C is the counter to be incremented.

km is the MAC key.

k is the encryption key.

{Plaintext}(k,C) denotes the encryption of the plaintext with the encryption key,

k and the counter C.

A -> B : {Plaintext}(k,C) , MAC(km,C | {Plaintext}(k,C))

Here every node shares a master secret key with the base station, and km, the

MAC key, is derived from that using a pseudo random function.

(ii) µTESLA: This stands for Micro Timed Efficient Streaming Loss Tolerant Authenti-

cation protocol. This provides authentication of nodes. The base station and nodes

are loosely time synchronized with each other and initially the base station sends

across a MAC on the packet to each node (which is computed using a secret key).

The nodes can verify that the MAC has come from the base station (by verifying

the MAC). After a particular period of time, the base station sends across the key

used to compute the MAC. The keys are part of a key chain which is generated by a

publically known one-way function. The sender selects the last key in the sequence

and repeatedly applies the one-way function to compute all other keys. The keys

in the chain are generated in a few time intervals of each other. They are generated

using a one-way hash function (e.g., MD5), and they have the property that they

cannot be computed backward, i.e., if you have key ki, ki+1 can be computed by

the function ki = Fki+1

The symmetric algorithm used for key generation is RC5.

Hence every node need have only the first key in the sequence to verify the

entire sequence.
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2. TinySec: TinySec is a link layer encryption protocol which uses the symmetric cipher

Skipjack. There are two modes provided: Authentication only and authentication with

encryption (auth-encryption). In Authentication only, the nodes send packets with a MAC

where the payload is not encrypted. In auth-encryption mode, the node sends a data packet

and MAC with the data payload encrypted. At the other end, the receiver can validate the

message using the MAC and decrypt it.

Here a block cipher in CBC mode was chosen in order to prevent (or reduce the effects)

of the same Initialization vectors (IV’s) being reused despite the fact that a stream cipher

would have been a faster choice. If an IV is ever repeated for 2 plaintexts, then an adversary

can gather knowledge about both the plaintexts. At the same time, generating an unlimited

set of different IV’s means they have to be really long which is too memory and bandwidth

intensive for sensor nodes. With a block cipher, even if the same IV gets used twice, the

effect will not be as bad as it is with a stream cipher. The mode to guarantee this is CBC

which has a fairly good performance in the face of repeated IVs. This is further strengthened

by encrypting the IV’s. TinySec was shown to add at the most 10% overhead in terms of

latency.

3. INSENS [10]: Intrusion Tolerant Routing in Wireless Sensor Networks (INSENS) is

a routing protocol which uses redundant routing between the sensor nodes and the base

station. In INSENS, there are 3 steps:

1. Route request: This is when the network has just been established and the base station

sends out routing topology requests to all the nodes. The integrity of this is protected by a

one-way-sequence number. All subsequent communication from the base station will use a

one way hash function to compute the next number in the one way sequence. This is similar

to µTESLA. In µTESLA, the base station sends out a MAC, here it sends out a one-way

sequence number.

2. Feedback: In this step, on receipt of the routing request from the base station the

nodes will send feedback on the same route back. Each node will send the information back
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to the parent node which sent it the request information. The integrity of this is protected

by a keyed MAC which includes neighbour information and the current one way sequence.

In this way, the base station can verify and compare the topology information with all the

other nodes’ information, and even if an adversary manages to spoof a message he will get

the neighbours list wrong.

3. The base station computes routing tables and forwards them to all the nodes.

This protocol uses the idea of one-way hash chains as used in µTESLA and keyed MAC’s

as used in SPINS. The major contribution of this protocol is that it incorporates redundancy

in the routing paths: it constructs multiple paths between the base station and nodes. So

if a malicious node resides on a path between a node and a base station, there are enough

additional paths between them to ensure that the data reaches the destination safely. Of

course, the network has to be dense enough to enable this.

Aggregation: One way of minimizing overhead is to make some nodes aggregators: They

gather data from the surrounding nodes, process them and propagate the result to the base

station. For example, in a temperature monitoring system, a node can gather data from all

its neighbors, calculate their average value and send it to the base station. Some security

issues here are that the sensor readings may be wrong due to the sensors getting compromised

or the aggregators themselves getting compromised.

One way of doing this is presented in SIA [46]. Here the aggregators share a key with

the sensor nodes, thus they can verify that the data came from the correct nodes. Then the

aggregator uses the data to compute the aggregate value of it. It does this by constructing a

binary hash tree keyed at the root using a collision resistant hash function and then transmits

the root to the base station. The base station can the check whether the aggregated values

are close to the actual data values by random sampling mechanisms and interactive proofs.

Deng et al. in [12] present a method to perform secure in-network processing where the

base station delegates authority to certain nodes (aggregators) for some time to perform data

gathering and processing. The tools for doing this (member nodes’ keys, one way hash chains,
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topology information, etc.) are all provided by the base station. The aggregator needs just

to utilize this information, gather data, perform processing and deliver the information to

the base station.

2.3. Introduction to Encoding Schemes

Encoding schemes are used in some peer-to-peer networks wherein one sender transmits

data to one or multiple receivers who then upload their own content to the network. In this

scenario, one has to make sure that adversaries do not choke up the bandwidth by inserting

spurious data. Traditional forward error correction codes like Reed-Solomon codes require a

fair amount of decoding time. Among all the encoding schemes available, erasure encoding

has been found to be reliable and low-cost. In erasure encoding, the sender divides a file F

into n blocks and then maps this set of n blocks onto a larger set of k blocks which then get

transmitted. The receiver has to receive any sufficiently large subset of those k blocks to be

able to reconstruct the entire data. There are two kinds of erasure encoding:

1. Erasure codes of rate k: In this a block of n blocks is mapped onto a larger set of n/k

blocks where 0 < k < 1.

2. Rateless erasure codes: In this, a set of n is mapped onto a set of blocks whose size

is exponential in n. There are many classes of erasure codes including Tornado codes [5],

Online codes [38], LT codes [35] and Raptor codes [52]. Details of them are provided below.

• Online codes: Online codes map a set of n message blocks onto a set of n·k auxiliary

blocks where k is a small constant between 1 and 3, a constant, δ = 0.005 and n is

the number of message blocks. It has three stages: a precoder, an encoder and a

decoder. The precoder adds a set of n message blocks onto a randomly chosen set

of k auxiliary blocks. It then sums up the message blocks and auxiliary blocks as a

complete file, F ′ whose size is n(1+δk) which is given to the encoder. The encoder

then specifies a probability distribution di for each check block i. It then outputs

a pair < xi, ci > where xi is meta-data that describes which blocks were chosen

and ci is the sum of those blocks. The decoder maintains a pool of unrecovered
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check blocks; whenever a message block is received, it subtracts it from the pool

of unrecovered check blocks. Maymounkov and Mazieres [39] propose a scheme to

implement Online codes for multi-source downloads wherein the each block has an

ID.

Gkantsidis and Rodriguez [18] present a scheme wherein one can use network

encoding, i.e., each node in the network can encode blocks and transmit them as and

when they receive them. This scheme has been tested against different topologies

like dynamic node (server node) departures and heterogenous client populations

and has been shown to outperform other error correction techniques in all cases.

Based on this, they implemented Avalanche a real time system that used network

encoding. Luby and Mitzenmacher in [4] present a scheme where they use erasure

codes to construct a digital fountain. The digital fountain injects a set of distinct

encoded blocks into the network, if the receiver recives any subset of those encoded

blocks equal in length to the source data, irrespective of the specific blocks received,

it can construct the source data. They implement this by using a class of erasure

codes known as Tornado codes.

• LT codes [35]: This class of codes also uses the digital fountain approach. In LT

codes every encoded block has a degree associated with it chosen from a degree

distribution. The degree distribution has to be evenly spread out over the set of

encoding blocks. It then chooses a set of random neighbours of the encoding sym-

bol same as the degree. When all the neighbours are XOR’d, we get the encoding

symbol. A major consideration of this encoding scheme is that the degree distibu-

tion should be good. Input symbols are added as soon as they are processed and

the redundancy in the encoding symbols is as low as possible, i.e., the number of

encoding symbols covering the same input symbol should be minimum. LT presents
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a distribution called Solitron distribution to this effect. It also discusses varia-

tions of this distribution called Ideal Solitron distribution and Robust Solitron

distribution.

• Raptor Codes: Raptor codes [52] are a subclass of the digital fountain codes and

are based on LT codes with the advantage that they are linear time codes. Just

before an LT-code is applied to the input symbols, they are pre-coded with some

redundant symbols. On the decoder’s side, this means that only a constant fraction

of the input symbols need to be recovered.

• Tornado codes [5]: Tornado codes are similar to Reed-Solomon codes in that they

have a system of equations where the variables are the unreceived packets. An XOR

operation is performed between the received packets to get the missing packet. The

equations are of the form: y3 = x1 ⊕ x4 ⊕ x7

If any three of the four unknowns in the above equation, are received, the fourth

unknown can be reconstructed. When a packet arrives, it can result in solving for

unknowns in a cascade of equations, thereby recovering all the source data packets.

This is mainly geared toward multicast (one-to-many) downloads.

Problems with erasure codes: Erasure codes provide security against loss of packets and not

against injection of spurious data into the network or corruption of packets. Security can

be provided against this by having each packet have an index; the receiver then checks for

duplicate index and drops both the packets. But this can get difficult for packets with large

number of invalid indices. Karlof et al. [24] present a scheme in which they implement an

improvement over erasure codes: distillation codes. In this the valid symbols are “distilled”

from invalid ones. A set of valid symbols is constructed and each received symbol is tested for

membership by way of one-way accumulators. The accumulator is a Merkle hash tree [40].

If the one-way accumulator is broken, then an adversary can pollute the network. Krohn et

al. [28] give a scheme where each block of data to be transmitted is hashed and the receiver
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need only obtain the hash value to verify the integrity of the check blocks as and when they

arrive.

2.4. Platform and Language Details

The platform used for the experiments described in this thesis is TinyOS-1.1.15 [33],

using programming language nesC [16] and simulated in TOSSIM [32]. I next provide an

overview of these technologies.

2.4.1. TinyOS

TinyOS was developed at the University of California at Berkeley and is a popular oper-

ating system for sensor networks. It supports multiple platforms: mica, mica2, micaZ, rene

and telos. TinyOS can execute only one program at a given time. It has two threads of

execution: Tasks and Hardware Event handlers. Below is a brief discussion of them.

• Tasks: Tasks are functions which cannot be preempted by anything except by

hardware event handlers. They are typically short and run to completion. Tasks

are basically deferred functions. Once a program posts a task, it does not know

when it is going to be executed. The TinyOS scheduler executes it when it is free.

Hence tasks do not have return values; they return void. They also do not take

any parameters. For example:

task void SendMessages(){

statement 1;........

statement 2;........

...}

This is because tasks are executed within the scope of a module, so any variables

passed to the task would go out of scope outside the module. A component posts

a task to the scheduler by using the post keyword. This queues up the task in the

task queue. A task can post itself too.
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• Hardware event handlers: Hardware event handlers are executed in response to

interrupts which can preempt tasks and each other. Commands and events that

have to be executed as part of a Hardware Event Handler are declared with the

async keyword. Tasks, that can be preempted are declared with the sync keyword.

Hence there might be race conditions when a hardware event handler is being

executed. These can be prevented using the atomic keyword. When this keyword

is used, it enforces exclusive access to shared code/data. This is usually used with

variables and/or small statements. If a possible race condition needs to be avoided

or disregarded, there is a keyword norace. If a variable is declared with this

keyword, then in case of a race condition involving that variable, the ncc compiler

just ignores it. Tasks are by default sync. The posting of a task by a component

is async however. Any command that calls an async command or event has to be

async itself. For example:

interface Leds{

async command void LedsOn();

async command void LedsToggle()

....}

TinyOS has various components that control different node activities like sensing, EEPROM,

ADC, radio, etc. The radio stack used is the mica2 stack.

The TinyOS networking model is made up of 3 layers: Physical layer which sends the bits

over the radio, Link Layer which employs a BMAC protocol, Transport Layer which controls

actual communication between nodes: by swapping and routing buffers to and fro between

nodes. This layer performs a buffer swap with the lower layers. The link layer has Active

Message ID’s (up to 256) for each message. This is like a port number associated with each

message.
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2.4.2. TOSSIM

TOSSIM is a discrete event simulator for TinyOS networks. The same code that is com-

piled for actual motes can be compiled for TOSSIM by the change of a compiler option. In

TOSSIM, each simulated node boots up at a random time avoiding synchronization with

other nodes. It simulates TinyOS network stack at bit-level granularity. TinyOS follows a

radio model wherein the sender transmits a start symbol at a rate of 10Kbps, the receiver

listens at a rate of 20Kbps and then the actual data is transmitted at a rate of 40Kbps.

TOSSIM simulates this radio model by sampling the bit-rates at regular intervals and if

there is a change in the bit-rate, changes the period between radio clock events. TinyOS

provides two radio models: the simple radio model and the lossy radio model. The lossy

model is based on empirical data collected from actual sensor node deployment. In the actual

sensor deployment, packet loss rate was measured, a probability disribution was determined

for the packet loss rate over distance, and this was mapped onto independant bit-error rates.

TOSSIM can simulate both the simple radio model and the lossy model. In the simple

model, all nodes are placed in a cell and each node can hear each other perfectly with no

transmission errors, and in the lossy model we can specify the packet loss rate between two

nodes in terms of probability of the packet being lost or bit being flipped, for bit-level and

packet-level simulations respectively. With TOSSIM, it is possible to examine the output

with different modes at run time, e.g. radio, route, cyclic redundancy check (CRC) bits,

active message (AM) packets, etc. TOSSIM takes in one required parameter, the number

of nodes to simulate, along with optional debug options. It has an user interface called

TinyViz which allows the user to control and interact with the simulation as it runs provid-

ing capabilities like setting breakpoints, packet injection, manipulating radio links, position

of nodes, etc. TinyViz provides plugins for doing all of this, and the user can write her own

plugins as well.
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The only difference between TinyOS and TOSSIM is that in TOSSIM tasks are not pre-

empted by hardware interrupt handlers. This is beacuse TOSSIM is a discrete event simu-

lator.

Applications can be compiled to run under TOSSIM by compiling with make pc, using

a standard TinyOS make file which generates an executable located in build/pc/main.exe.

This can then be run using various run-time options. This is an example of the way it is

run:

build/pc/main.exe -t=30 -r=lossy -rf=Lossy.nss -p 9

TOSSIM provides a list of debug modes to use such as USR1,USR2, route, AM, crypto,

sensor, etc., depending on what debug messages are required to be displayed at run-time.

USR1 - USR4 are for the user to print out debug messages. AM is for displaying the AM

ID’s of messages sent, crypto is for printing out TinySec messages if used and so on. Two

or more of these can be combined too.

2.4.3. PowerTOSSIM

PowerTOSSIM is an application that measures the power consumed by TinyOS applica-

tions simulated in TOSSIM. TOSSIM does not model the CC1000 mica2 radio stack which

PowerTOSSIM uses as a microbenchmark. Hence PowerTOSSIM ports this stack to TOSSIM

and uses it as an energy model. It logs the energy consumed by various components: radio,

CPU, analof to digital converter (ADC), sensor boards and EEPROM into a file and then

applies a code transformation technique to it every time there is a change in power. Each

simulated component makes calls to a new component called PowerState which does the

logging. An excerpt of this log file for Test3Paths (one of our experimental applications) is

shown below:

2: POWER: Mote 2 RADIO STATE OFF at 7815908

2: POWER: Mote 2 RADIO STATE ON at 7815908

2: POWER: Mote 2 RADIO STATE RX at 7815908

2: POWER: Mote 2 ADC SAMPLE PORT 0 at 7921602
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2: POWER: Mote 2 ADC DATA READY at 7921602

2: POWER: Mote 2 RADIO STATE TX at 7922402

2: POWER: Mote 2 RADIO STATE RX at 8252002

2: POWER: Mote 2 ADC SAMPLE PORT 0 at 8346402

PowerTOSSIM has a detailed power model of the mica2 node which is used with the

logged power state transition messages to generate a detailed energy consumption estimate

of each component of the node. PowerTOSSIM also models the CPU cycle count of each

node, but this was not used by the applications in this thesis. This is done by using CIL (C

Intermediate Language) which maniputales the C source file generated by the nesC compiler,

breaks it into blocks and inserts an execution counter into each block.

In addition to energy consumption, PowerTOSSIM also provides a detailed current draw

for each node outlining the current consumed in different states: idle state, radio receiving

state, transmitting state and radio off state.
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CHAPTER 3

DESIGN OF THE EXPERIMENTS

I designed experiments to test different data encoding schemes by creating an encoding

module that is designed to send and receive messages using the mica2 radio stack. The

experiments were performed through simulations that were run on TOSSIM, and power

consumption analysis was done on PowerTOSSIM. The basic idea was to apply erasure

encoding schemes to sensor networks to reduce the power consumption and explore the cost-

effectiveness of these techniques. Erasure encoding schemes have been used in multicast

networks for a long time, but have not been tried in sensor networks until now. Applying

these codes will reduce redundancy in the network as compared to basic redundant routing

schemes like INSENS [10]. But this also reduces the resilience of the network as compared to

INSENS [10]. I implemented three applications for my experiments: Test3Paths, Test4Paths

and TestAgg.

Test3Paths: This sends three packets along three different paths from the source node to

the base station. All the remaining nodes along the multihop path forward the packet until

it reaches the base station. Depending on whether encoding is applied or not, Test3Paths

either sends the original data set along three different paths or splits the data set and sends

the pieces along with the encoded data along three different paths.

Test4Paths: This sends four packets along four different paths from the source node to

the base station. All the nodes in the network forward the packet until it reaches the base

station. If encoding is applied, Test4Paths splits the data packet and sends the pieces along

with the encoded data along four different paths. If not, it sends the original data packet

along four paths.

TestAgg: This sends three packets along three different paths from the source node to the

base station. On one of the paths, there is an aggregating node which takes all the packets

27



from other nodes, suppresses them until it collects all data, decodes it and then routes it to

the base station.

3.1. Design of Test3Paths

Test3Paths was designed as a simple multi-hop application which sends data along three

different paths to the base station. One execution of Test3Paths sends packets simultaneously

along three paths. If erasure encoding is to be used, Test3Paths takes a data packet and

splits it into two different data packets, applies erasure encoding on these two packets which

forms the third packet and sends the three packets along three different paths to the base

station. As shown in Fig. 3.1, the three packets are sent from node 2, which is the source

node, to node 0, which is the base station.

Message structure and power modes: A TinyOS message packet has 3 parts: a preamble,

a header and a payload. The preamble is 28 bytes long, the header 7 bytes and the payload

can be up to 29 bytes. The payload is provided by the application and the multihop suite of

applications takes 7 bytes off it for the multihop header. Hence the final payload can be up

to 21 bytes long. The preamble is provided by the CC1000 radio stack. TinyOS supports two

radio stacks: CC1000 and CC2420. While TOSSIM simulates both, PowerTOSSIM simulates

the power consumption for only the CC1000 stack, which has an operating frequency of 300-

1000 MHz with data rates of up to 76.8 Kbps.

Different power modes: In this application, the values used are 0 for the highest duty cycle

(100%) at a data rate of ∼42 Kbps and the lowest is 3 for the lowest duty cycle (7%) at a data

rate of ∼1.7 Kbps. Duty cycle is the time period for which a node is functional. Transmitter

and receiver should be at the same duty cycle and data rate to be able to communicate with

each other. Here node 2 will have the highest data rate while transmitting and its receiving

power mode is set at 3 as it does not have to receive anything. Node 0 has transmit set at 3

since it does not have to transmit anything and receive set at 0. The remaining nodes have

receive set at 0 but adjust their transmit accordingly as and when they need to transmit.
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Figure 3.1. Topology of Test3Paths.

3.2. Test4Paths

Test4Paths is an application that routes data along four different paths to the base

station. If erasure encoding is performed, Test4Paths takes a data packet, splits it into three

different packets up to a maximum size of 21 bytes and then computes the erasure encoding

of them which forms the fourth packet. It then sends the four packets along four different

paths to the base station. The nodes are put into low power modes in the same order as

Test3Paths. The network topology is as shown in Fig. 3.2

3.3. TestAgg

TestAgg is an application that routes data along three paths to the base station with

data aggregation along a path. On one path to the base station, a node will intercept all

the messages, wait till it receives data from all the three paths, decodes the data packets

received, assembles the fragments and then routes the result to the base station. Here Node
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Figure 3.2. Topology of Test4Paths.

2 transmits in high power mode but listens at the lowest duty cycle possible since it does

not have to receive anything. All the remaining nodes will receive in a high power mode

but will adjust their transmit power in a way similar to that described in Test3Paths and

Test4Paths. The network topology is as shown in Fig. 3.3

3.4. PowerTOSSIM Power States

PowerTOSSIM provides different CPU power states at different current rates: active,

idle, standby and power saving state. The current consumed at each of these states varies

from 8.0 mA at active state, 3.2 mA at idle state to 103 µA at power-down state. It uses

a table of actual measured radio transmission current values (10 in all) for different modes
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Figure 3.3. Topology of TestAgg.

ranging from 3.7 mA to 21.48 mA. The power drawn by all the components (radio, sensors,

ADC, EEPROM, etc.) are stored in an energy model file. The receiving current drawn for

the radio is fixed at 7.0 mA. The default transmission current is 8.47 mA which was changed

to full transmission power at 21.48 mA and the lowest at 3.7 mA. PowerTOSSIM also has

values of the current drawn for the sensor board, LED’s, EEPROM and ADC.

For measuring the power, the power consumed by each component of the application is

computed using these measured values.

3.5. Radio Models

TOSSIM provides a directed graph of independant bit error rates between two nodes. It

does not model radio propogation as such. There are two radio models in TOSSIM: simple

radio model and lossy radio model. The simple radio model assumes that all the nodes are in

a single cell and can hear each other perfectly, hence there are no bit transmission errors. In

the lossy model, the network is modeled as a directed graph, where nodes represent vertices
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and an edge is the radio link between them. Every edge has a weight that represents the

probability of bits getting flipped during transmission. A probability of 0 means that there

will be no errors. There are some files representing loss topologies collected from empirical

data for grids of 20x20 nodes with varying distances which can be used in simulations. In

my experiments, the lossy model was simulated with spacings of 10 feet, 15 feet and 20 feet

between nodes.
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CHAPTER 4

SIMULATION RESULTS

Objective of the experiments: The goals of the experiments were determining the

following:

(i) Determining power requirements for routing packets along 3 and 4 paths as the

data size varies;

(ii) Explore the effect of different power modes of the radio when doing multipath

routing;

(iii) Determine the relative efficiencies of different encoding schemes, e.g., 1-of-3, 2-of-3,

1-of-4 and 3-of-4;

(iv) Examine the power consequences of doing in-network aggregation;

(v) Compare the power consumed by the simple and lossy radio models.

To this end, the following kinds of experiments were run with increasing data sizes from

0 to 255 bytes for 1-of-3, 2-of-3, 1-of-4 and 3-of-4 encoding schemes:

(i) The simple radio model was simulated with different power modes set on nodes. In

this there are no errors in transmission. This was done with all the nodes booting

up at the same time.

(ii) The network was simulated with a lossy radio model with spacings of 10 feet, 15

feet and 20 feet.

(iii) The transmit radio current was varied from normal to high.

(iv) In-network aggregation was implemented and the power consumption pattern was

studied.

From the experiments run, it was noticed that as the data size increases, the percentage

of power difference between encoded and unencoded data increases. This is more pronounced
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in larger data sizes. Hence I present the results separately for smaller data sizes (data sizes

from 40-140 bytes) and larger data sizes (data from 140-240 bytes).

4.1. Simple Radio Model

The simple radio model has no errors in transmission. Each node can hear all the other

nodes perfectly well. There are no bit transmission errors. The simulation was run with all

the nodes booting up at the same time. The radio was set at the normal transmit current:

8.7 mA. The power drawn by the source node is shown in the graph below.

Figure 4.1. Test3Paths: Source node power consumption.

4.1.1. Test3Paths

1-of-3: This sends the same data along three different paths. 2-of-3: This sends half the

data along two paths each, and the encoding of the data along the third path. Fig. 4.1

shows the results for the source node for 1 of 3 and 2 of 3 for Test3Paths. In 2 of 3, for

transmitting the same total data size, the data along each path will be half of that along

each path in 1 of 3. The dark columns in the graph represent the power consumption for 1
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of 3 and the lighter columns represent the power consumption for 2 of 3. The results show

that the power consumed for 1 of 3 is higher than that for 2 of 3. For small data sizes

(up to 140 bytes), there is a power savings of 8.46% and for data sizes 160-240, we get a

power savings of 16.08% when using erasure encoding. The graph also shows the number of

messages transmitted by the source node. The dotted line shows the message count for 1 of

3 and the solid line shows that for 2 of 3. The messages are transmitted by the source node

every 5 seconds for a time period of 30 virtual seconds (∼ 70 real seconds in the simulator).

I have used fragmentation of the data packets which can help in transmitting larger

packets than the maximum payload size TinyOS allows per packet. Packets are sent in

fragments of at most 21 bytes each. The maximum number of fragments transmitted is 13

for 1 of 3 at a data size of 255 and 7 for 2 of 3 at a data size of 255. The TinyOS header is

7 bytes per packet and the header added by the multihop module is 7 bytes. In addition to

this, there is a 28 byte preamble added by the radio stack. Hence counting the header and

preamble bytes, the total overhead transmitted by the source node per fragment is 42 bytes.

In 2 of 3, the power consumed by the source node increases very gradually, often staying

the same for 2 consecutive data values as 2 consecutive data sizes require the same number

of fragments to be transmitted. In 1 of 3, the power drawn by the source node increases

with each data size. Since total transmission size in 2 of 3 is half that of 1 of 3, the encoded

data grows to require additional fragments only after total data size increases by 42 bytes,

hence the increase in power is only seen at every second 20-byte total size increase. For a

data size of, say, 120 bytes, the source node transmits only 9 fragments, whereas in 1 of 3,

it transmits 18 fragments (packets). This reduces the power consumption rate in 2 of 3.

The power consumed by the remaining nodes (other than the source node and base

station) is shown in Fig. 4.2. The dark bars represent 1 of 3 and the light ones represent 2

of 3. This varies from 1000 mJ - 1007 mJ. At a data size of 255 bytes, the power consumed

by the remaining nodes peaks at ∼ 1007 mJ. The dotted line shows the number of messages

transmitted in 1 of 3. The solid line shows the number of messages transmitted in 2 of 3.
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Figure 4.2. Test3Paths: Remaining nodes power consumption.

The power drawn by the remaining nodes does not increase as much as the source node as

all the nodes always consume significant power due to having to listen for incoming messages

and forwarding them. The power drawn for listening remins constant all through and the

slight increase in power is due to forwarding messages of larger data sizes. It was seen that at

smaller data sizes, each node gets exactly one-third of the transmitted packets, but as data

size increases, packets begin to get lost. For example, if the total no. of packets transmitted

by the source node is 18, nodes along each of the paths should get 6 packets each. The

packet loss may be due to the fact that sometimes nodes along the forwarding path may be

transmitting at the same time that the previous node is sending a packet (which they are

supposed to be receiving). Hence packets might get dropped along the path. Also, it was

observed that the nodes closer to the source node get almost all the tranmsmitted packets

but as the number of hops from the source node increases, the number of packets dropped

increases.
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The power consumed by the base station for 1 of 3 and 2 of 3 is shown in Fig. 4.3. The

dotted line respresents 1 of 3. It remains constant as the base station just has to spend time

listening for messages which is constant for all data sizes. It is almost same for 1 of 3 and

2 of 3. It was seen that although the base station has to decode the fragments, the CPU

power required to decode and re-assemble the fragments is negligible.

Figure 4.3. Test3Paths: Base station power consumption for 3 paths.

4.1.2. Test4Paths

1-of-4: This sends the same data along 4 paths. 3-of-4: This sends one-third of the data

along each of three paths and the encoded data along the fourth path.

For Test4Paths, the power consumed by the source node is shown in Fig. 4.4. The dark

columns represent the power consumed by 1 of 4 and the lighter ones represent the power

consumed by 3 of 4. From the graph, it can be seen that the power consumed by the source

node is much higher for 1 of 4 than 3 of 4. For Test4Paths, the simulations were run for 30

virtual seconds with packets being transmitted every 10 seconds.

For 3 of 4, there is a power savings of 6.84% for small data sizes up to 140 bytes and for

larger data sizes, we get a power savings of 13.13% when using erasure encoding. Here too,
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as in Test3Paths, data is fragmented into packets of at most 21 bytes. As before, the header

overhead for each fragment is 14 bytes. The dotted line represents the message count of 1 of

4, the solid line represents that of 3 of 4. Here too as in Test3Paths, it was seen that as the

number of hops from the source node increases, the number of messages dropped increases

and this also increases with increase in data size.

Figure 4.4. Test4Paths: Source node power consumption.

For the remaining nodes (other than the source node and the base station), the power

consumed is shown in Fig. 4.5. The dotted line shows the number of messages sent in 1 of

4, the solid line shows the number of messages sent in 3 of 4. The power consumed does

not vary much: it stays around 1004 mJ throughout for 3 of 4 and varies slightly from 1003

mJ - 1005 mJ in 1 of 4. This is due to the fact that, as in Test3Paths, the remaining nodes

spend most of the time listening for messages.

For the base station, the power consumption graph is shown in Fig. 4.6. The base

station just listens for messages and hence the power consumption is constant. The dotted

line represents 1 of 4 and the dark line 3 of 4. In both cases, the base station consumed

almost the same amount of power.
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Figure 4.5. Test4Paths: Remaining nodes power consumption.

Figure 4.6. Test4Paths: Power consumed by the base station.

4.2. Lossy Radio Model

In the lossy model, bit error rates are simulated. TinyOS has a few files which contain

a probability distribution for packet loss. These files are based on empirical data collected
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over a 20x20 grid with variable distances of 5 feet, 10 feet, 15 feet and 20 feet between them.

These files were used for simulating the loss probability, and the simulation was done with

re-transmissions in case of loss. Since the nodes transmit in a radius of 50 feet and as the

distance from the centre (and the distance between nodes) increases so does the probability

of loss, the number of re-transmissions were based on distance: for a distance of 20 feet,

there were 3 re-transmissions, for 15 feet, 2 re-transmissions, for 10 feet, 1 re-transmission.

4.2.1. Test3Paths

In Test3Paths, a network of 10 nodes was simulated and the lossy files were used with

distances of 10, 15 and 20 feet. For the source node, the power consumed for 2 of 3 is far

smaller than 1 of 3. For smaller data sizes, there is not much difference, but for larger data

sizes, the difference is significant and ranges from 200 to 300 mJ. For smaller data sizes, the

power savings is 8.82% and for larger data sizes, it is 14.96% The results for the source node

for 20 feet are shown in Fig. 4.7. The dark columns indicate 1 of 3 and the lighter ones, 2 of

3. The dotted line is for message count of 1 of 3 and the solid line, 2 of 3. The simulations

in this section (for Test3Paths) were run for a time period of 60 virtual seconds with the

source node transmitting every 20 seconds.

The results for 15 foot spacing for the source node are shown in Fig. 4.8. It was seen

that the power consumption for 15 feet is smaller than that of 20 feet. This would be due to

the smaller number of re-transmissions done by the source node. The power savings we get

for smaller (40-140) and larger data sizes (160-240) is 8.2% and 14.99% respectively. It can

be seen that the message count in 15 feet is smaller than in 20 feet. At 20 feet, the source

node does up to 40 more transmissions than at 15 feet.

For 10 foot spacing, the results for the source node are shown in Fig. 4.9. The power

savings obtained was 4.74% for data sizes 40-140 and 10.4% for data sizes 160-240. This

is lesser than the savings obtained for 20 and 15 feet. This would be due to the fact that

the source node does just 1 re-transmission as compared to 3 for 20 feet. The number of
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Figure 4.7. Test3Paths: Power consumption of source node with lossy

distance = 20 feet.

Figure 4.8. Test3Paths: Power consumption of source node with lossy

distance = 15 feet.
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messages transmitted is up to 100 smaller than at 20 feet. This applies for 1 of 3 as well as

2 of 3. For 1 of 3, the difference in power consumed is higher.

Figure 4.9. Test3Paths: Power consumption of source node with lossy

distance = 10 feet.

For the remaining nodes, for 20 feet, the results are shown in Fig. 4.10. The difference

between 2 of 3 and 1 of 3 is not very high although 1 of 3 consumes marginally more power

than 2 of 3. The dark columns show the results for 1 of 3 and the lighter ones for 2 of 3.

The dotted line shows the message count for 1 of 3 and the dark line for 2 of 3. It was seen

that in 1 of 3, the remaining nodes forwarded almost 100 more messages than 2 of 3.

For 15 feet and 10 feet, the remaining nodes’ power consumption decreased by 5-10

mJ. The graphs for them are not shown since this difference is so small. This would be

because the remaining nodes spend most of their time listening and waiting for messages

and transmit in short bursts. Hence an increase in number of re-transmissions (due to an

increase in distance) will not affect their power consumption too much. For the base station,

the power consumption remained constant across the data sizes from 0 to 255. Also the

power consumption of the base station in 1 of 3 and 2 of 3 remained the same. This was
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Figure 4.10. Test3Paths: Power consumption of remaining nodes with

lossy distance = 20 feet.

similar to the results obtained in the simple model. The results for the base station for

Test3Paths are shown in Fig. 4.11. The dotted line represents 1 of 3 and the dark line, 2 of

3.

The base station power was almost the same for 20 feet, 15 feet and 10 feet. Hence

the results for 15 feet and 10 feet are not shown. This would be because the base station

only listens for messages and does not trasmit anything. The differences in power con-

sumption for different nodes for different distances is due to the difference in the number

of re-transmissions. This increases/decreases the total power consumed. Hence for the base

station, this does not make any significant difference.

4.2.2. Test4Paths

For Test4Paths, the simulations were run for 10 feet, 15 feet and 20 feet. The simulations

for Test4Paths were run for 60 seconds with the source node transmitting data every 30

seconds. The results for the source node for 20 feet are shown in Fig. 4.12. The dark
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Figure 4.11. Test3Paths: Power consumption of base station.

columns represent 1 of 4 and the lighter ones, 3 of 4. From the graph, it can be seen that

the power consumed by 1 of 4 is far higher - up to 400 mJ more than 3 of 4. Using erasure

encoding results in a 6.84% power savings for data sizes 40-140 and 13.13% savings for

data sizes 160-240. In 3 of 4, the power consumed remains the same for 3 consecutive data

sizes. This is because 3 consecutive data sizes require the same number of fragments to be

transmitted.

For 15 feet, it was seen that the power consumption decreased by up to 45 mJ (3 of 4)

and 100 mJ (1 of 4). Since the number of re-transmissions is smaller in 15 feet spacing, the

number of transmissions by the source node (message count) went down by almost 50. The

results are shown in Fig. 4.13. The dotted line shows the message count for 1 of 4 and the

solid line for 3 of 4.

For 10 feet, with 1 re-transmission per lost message, the power consumed by the source

node was approximately 100 (3 of 4) - 300 (1 of 4) mJ smaller than 20 feet. It was seen that

the differences in power for different spacings are more in 1 of 4 and 1 of 3 than in 3 of 4

and 2 of 3 respectively. The results for the source node are shown in Fig. 4.14.

44



Figure 4.12. Test4Paths: Power consumption of source node with lossy

distance = 20 feet.

Figure 4.13. Test4Paths: Power consumption of source node with lossy

distance = 15 feet.
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Figure 4.14. Test4Paths: Power consumption of source node with lossy

distance = 10 feet.

For the remaining nodes, the power consumption, as in Test3Paths, did not vary much

for 20, 15 and 10 feet distances. The power consumed by 1 of 4 was marginally more than

3 of 4. The results for 20 feet are shown in Fig. 4.15. This would be again due to the fact

that the remaining nodes spend most of their time waiting for and listening to messages

and transmit occasionally. Hence a few re-transmissions more would not affect their power

consumption too much.

The power consumed by the base station for Test4Paths is shown in Fig. 4.16. This did

not vary across the different distances and even for 1 of 4 and 3 of 4, it remained somewhat

the same. Hence the graphs for 15 feet and 10 feet are not shown. The base station spends all

its time listening for and receiving messages. Hence an increase in the number of transmitted

mesages will not affect its power consumption pattern.

4.3. Varying the Power of the Radio

The above simulations were done with the power modes of individual nodes being set

individually to different levels: The base station (node 0) had receive set at a high duty cycle
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Figure 4.15. Test4Paths: Power consumption of remaining nodes with

lossy distance = 20 feet.

Figure 4.16. Test4Paths: Power consumption of base station.

(0) but transmit set at a low duty cycle (3). The source node (node 2) had transmit set at a

high duty cycle (0) but receive set at the lowest duty cycle (3). When any of the remaining

nodes want to transmit, they can set the power high just before transmission and as soon as
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they finish, the power is set to a low duty cycle. The receive power of the remaining nodes

is kept high throughout as the exact time when the messages will arrive at the forwarding

nodes cannot be predicted beforehand. The transmit current of the radio was till now set to

the normal transmit power: 8.7 mA. For the simulations in this section, the transmit current

was set to the highest possible value: 21.47 mA.

4.3.1. Test3Paths

The results for power consumption of the source node for Test3Paths are shown in Fig.

4.17. When the radio is kept at the highest transmit current, the power consumption of

the nodes increases to almost two times that of the radio at normal trasmit current. In the

graph, the dark columns represent 1 of 3 and the lighter ones represent 2 of 3. The graph

shows that the power consumed by 2 of 3 is far lesser than that of 1 of 3. Using erasure

encoding results in a power savings of 11.66% for data sizes 40-140 and 21.45% for data sizes

160-240. The simulations were run for 30 virtual seconds with the source node transmitting

data every 5 seconds.

Comparing the results for the radio transmit current set at normal to the radio set at

high, we can see that the power consumed by the source node increases significantly by about

200 mJ (2 of 3) and 600 mJ (1 of 3).

The power consumed by the remaining nodes with the radio set at high is shown in Fig.

4.18. For 1 of 3, the power consumed by the remaining nodes goes from 1000 mJ - 1038

mJ. This is a bigger range as compared to the radio set at normal transmit current. As the

radio current increases, the transmit power increases and the ratio of transmit current:receive

current increases. Hence the power consumed for forwarding packets also increases. For 2 of

3, the power consumed varies from 1004 mJ - 1023 mJ. The number of messages transmitted

and received remains the same as before.

The power consumed by the base station for Test3Paths for the radio set at high is shown

in Fig. 4.19. The dotted line represents the power drawn by 1 of 3. The power consumed for

2 of 3 and 1 of 3 increase very slightly from 1000 - 1004 mJ. Comparing the results for the
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Figure 4.17. Test3Paths: Source node power consumption with radio set

at high.

Figure 4.18. Test3Paths: Power consumed by remaining nodes with radio

set at high.

radio set at high to the radio set at normal transmit current, it can be seen that the power

consumed by the base station is relatively unaffected. This is because the base station only
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receives messages and does not transmit anything. Hence any changes in the radio transmit

current will not affect the power consumption of the base station.

Figure 4.19. Test3Paths: Base station power consumption for radio set at high.

4.3.2. Test4Paths

Test4Paths was also run with the radio transmit power set to high. The results for the

source node are shown in Fig. 4.20. The dark columns and dotted lines represent the power

consumption and message count of 1 of 4 and the lighter columns and solid lines represent

3 of 4. It can be seen that the power consumed by the source node is more for 1 of 4 than

for 3 of 4. The power consumed as compared to the radio set at normal transmit current

increases by about 100 mJ for both 1 of 4 and 3 of 4. Using erasure encoding, we get a power

savings of 11.6% for data sizes 40-140 and 21.15% for data sizes 160-240.

The simulations were run for 30 virtual seconds with the source node transmitting data

every 10 seconds.

The power consumed by the remaining nodes for the radio set at high for Test4Paths is

shown in Fig. 4.21. The power consumption for the remaining nodes increases a bit more
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Figure 4.20. Test4Paths: Power consumed by source node for radio set at high.

than that of the radio set at normal (∼ 4-5 mJ more). The power consumption is higher for

1 of 4 than 3 of 4. This is consistent with that observed in Test3Paths.

Figure 4.21. Test4Paths: Power consumed by remaining nodes with radio

set at high.

For the base station, the power consumption graphs are shown in Fig. 4.22. The dotted

lines represent 1 of 4. The power consumption for the base station does not increase as
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compared to the results for the radio set at normal for both, 1 of 4 and 3 of 4 as the base

station just has to listen for incoming messages and a change in the transmit current does

not change its power consumption pattern.

Figure 4.22. Test4Paths: Power consumed by base station with radio set

at high.

One thing that could be observed when the radio was set at a higher transmit current

was that the number of dropped messages decreases. Even nodes that are a few hops away

from the source node get all the packets correctly for most of the data sizes and even at

higher data sizes the number of dropped messages decreases.

4.4. Aggregation

In a sensor network, each node transmitting data to the base station may be too power

consuming if all of them are transmitting similar kinds of data. One way of reducing this

might be to designate one node to collect all relevant data, process it and send it to the base

station. Networks can have hierarchies where clusters of nodes report to their respective

aggregator nodes. The processing of the data might be application specific: in a network

sensing temperature or light, the aggregator might just take the average of all the sensor
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readings and route it to the base station. This reduces unnecessary redundant or duplicate

messages to the base station, as in such networks a lot of readings might be similar. In this

module, there is a node in the network which collects messages from all the three different

paths and sends them to the base station. The aggregating node is node 1. It intercepts each

of the messages going along the three paths, supresses them till all the three messages have

been received, decodes the message, and sends it to the base station. The power consumed

by node 1 is just 25-30 mJ more than that of the other nodes. This would be the power

overhead for collecting and processing all the three messages. The simulations were run for

30 virtual seconds and the source node transmits every 5 seconds. Fig. 4.23 shows the total

power consumed by the source node. The power consumed by the source node is the same

as that of Test3Paths.

Figure 4.23. TestAgg: Power consumed by source node.

The power consumed by the aggregating node (node 1) is shown in Fig. 4.24. The

maximum power drawn by the aggregating node at a data size of 255 bytes is 1030 mJ. The

dark bars represent the power consumption of the aggregating node and the lighter ones

represent the power consumption of the remaining nodes (other than the source node and
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base station). It can be seen that the aggregating node draws almost the same power as the

other nodes. The difference in the power consumption of the aggregating node increases as

the data size increases.

Figure 4.24. TestAgg: Power consumed by aggregating node.

The power consumed by the base station is shown in Fig. 4.25. The base station con-

sumes about the same power as Test3Paths and Test4Paths. In TestAgg, the base station

receives only one set of messages and does not have to decode them, unlike Test3Paths and

Test4Paths, but still its power consumption graph remains the same.

The radio transmit current for TestAgg was also varied from normal to high. The results

for the source node are shown in Fig. 4.26. The power consumed by the source node increases

by ∼100 mJ.

The power consumed for the remaining nodes with the radio set at high is shown in Fig.

4.27. The power consumed by the remaining nodes (represented by the lighter columns)

increases by about 18 mJ. This is consistent with what was observed in Test3Paths and

Test4Paths: as the radio transmit current increases, the power consumption of the remaining

nodes increases. Here the power consumed by the aggregating node (dark columns) is far
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Figure 4.25. TestAgg: Power consumed by base station.

Figure 4.26. TestAgg: Power consumed by the source node for radio set at high.
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higher than the remaining nodes. Here the power difference between the aggregating node

and the remaining (forwarding) nodes is more pronounced as compared to the radio set at

normal.

Figure 4.27. TestAgg: Power consumed by the remaining nodes for radio

set at high.

The power consumed by the base station for the radio set at high is shown in Fig. 4.28.

Here again the power consumed by the base station does not increase much and stays almost

the same as that of the radio set at normal as the base station is in listen mode most of the

time.

The overhead required for encoding and decoding the messages is the CPU cycles taken

by nodes 2 and 0, i.e., the source and base station. This is negligible, as the current drawn

by the CPU is just 4.13 mA. The power drawn by the CPU component stayed the same for

all the nodes even if some of the nodes performed more activity, such as node 2 transmitting

three times the number of messages, node 0 (base station) decoding and assembling the

fragments and node 1 aggregating the data. Also it was observed that the power drawn by

the CPU increases gradually from a data size of 0 bytes to 255 bytes - by about 2-3 mJ.
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Figure 4.28. TestAgg: Power consumed by the base stationfor radio set at high.
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CHAPTER 5

CONCLUSION

5.1. Summary of Results and Analysis

From the results obtained in Chapter 4 the following could be concluded:

(i) You can send more data for the same power consumed in 2-of-3 encoding and 3-of-4

encoding as compared to 1-of-3 and 1-of-4 respectively.

(ii) The power consumed by the lossy model is more than twice that of the simple

model (about 700 - 800 mJ higher). This is almost 50-60% more than the power

consumed by the simple model.

(iii) The power consumed by the lossy model increases as the distance between the

nodes increases. This trend is visible in Test3Paths and Test4Paths.

(iv) Encoding with in-network aggregation consumes about 20 to 30 mJ more power

compared to the one without it.

(v) The energy consumed by the source node increases with data size at a much greater

rate then the remaining nodes.

The results showing the power consumption of the source node for both the radio models for

different encodings are shown in Table 5.1. These are for the radio set at a normal transmit

current. The values shown are the lowest and highest power consumed. All units are in mJ.

It can be seen that the power consumed by 2-of-3 is less than that of 1-of-3 and the power

consumed by 1-of-4 is greater than 3-of-4. Also the power consumed by the lossy model in-

creases as the distance increases. The ranges shown here are for the maximum and minimum

data sizes.
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Table 5.1. Power consumption of different encodings for different radio models.

Simple model Lossy 10 feet Lossy 15 feet. Lossy 20 feet.

1-of-3 550 - 1100 1250 - 1640 1280-2090 1340 - 2100

2-of-3 530 - 690 1248 - 1440 1290 - 1610 1403 - 1773

1-of-4 625 - 822 1446 - 1780 1475 - 1972 1485 - 2073

3-of-4 626 - 687 1455 - 1547 1485 - 1592 1529-1670

Table 5.2. Power consumption of different encodings for radio current set at high.

Normal (8.7 mA) High (21.48 mA)

1-of-3 550 - 1100 551 - 1670

2-of-3 530 - 690 551 - 881

1-of-4 625 - 822 642 - 1009

3-of-4 626 - 687 644 - 755

Aggregation 532 - 717 550 - 810

The results showing the power consumption of the network when the radio current is set

at high are shown in Table 5.2. The ranges shown here are the maximum and minimum

power consumed.

The results on a per-node basis are summarized in table 5.3. These results are the

average power consumed from a data size of 0 bytes to 255 bytes. The results show that for

Test3Paths and Test4Paths, the energy consumed by all nodes other than node 2 (source

node) is somewhat the same. For TestAgg, the power consumed by node 1 and 2 vary while

that of node 0 is minimum. These results are for 2-of-3 and 3-of-4.

The total power savings obtained from using erasure encoding for various simulations is

shown in table 5.4. This table shows the power savings of the source node only as the source

node gets the maximum power savings.
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Table 5.3. A comparison of energy consumed on a per-node basis for the 3 applications.

Test3Paths Test4Paths TestAgg

Normal High Normal High Normal High

Base Station 1004 1003 1002 1004 1004 1003

Source node 603 677 660 702 621 644

All remaining nodes 1004 1014 1004 1007 1004 1014

Table 5.4. Power savings obtained by using erasure encoding for various simulations.

40-140 bytes 160-240 bytes

Simple radio model - 3 paths 8.46% 16.08%

Simple radio model - 4 paths 6.84% 13.13%

Lossy model 20 feet - 3 paths 8.82% 14.96%

Lossy model 15 feet - 3 paths 8.20% 14.99%

Lossy model 10 feet - 3 paths 4.74% 10.40%

Lossy model 20 feet - 4 paths 8.93% 18.05%

Lossy model 15 feet - 4 paths 7.23% 14.82%

Lossy model 10 feet - 4 paths 5.26% 10.84%

Radio at high - 3 paths 11.66% 21.45%

Radio at high - 4 paths 11.6% 21.15%

5.2. Future Work

From the results it is clear that by using 2-of-3 encoding and 3-of-4 encoding, you can

send more data at the same power consumption rate. For 1-of-3 and 1 -of-4, the encoding

proves to be costly. For the same power consumed, you can send twice or thrice the data

size in bytes for 2-of-3 and 3-of-4 respectively. Conversely, for a fixed data size, less power

is consumed by 2-of-3 and 3-of-4 encodings which leads to longer battery life. Other kinds

of encodings similar to the ones in this thesis can be experimented with. An example of

this being 1-of-2. In 1-of-2, you get the same resilience as 2-of-3, but have to transmit more
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data into the network for a fixed data size as compared to 2-of-3. More elaborate encodings

like Reed-Solomom codes [48], Tornado codes [5] etc. can be experimented with, and if the

power required for performing computations is not too high, they will provide a means to

send packets of much larger data sizes than the ones in this test module.

For future work, the applications described in this thesis can also be ported to TinyOS-

2.0 which has a bigger set of multihop protocols and algorithms to which different encoding

techniques can be applied. Also, the routing used in this thesis was many-to-one: all nodes

communicate with the base station. Erasure encoding can also be applied to any-to-any

routing or one-to-many routing. In this thesis, the routing table was hand-coded, but erasure

encoding can also be applied in conjunction with different routing algorithms, e.g., directed

diffusion, SPINS, etc., to increase the power efficiency.

61



BIBLIOGRAPHY

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor networks. In IEEE

Communications Magazine, pages 102–114, 2003.

[2] N. Alon and M. Luby. A linear time erasure-resilient code with nearly optimal recovery. In IEEE

Transactions on Information Theory (special issue devoted to coding theory), volume 42, pages 1732–

1736, November 1996.

[3] R.E. Blahut. Theory and Practice of Error Control Codes. Addison Wesley, 1984.

[4] John W. Byers, Michael Luby, and Michael Mitzenmcher. A digital fountain approach to reliable dis-

tribution of bulk data. In SIGCOMM, pages 56–67, 1998.

[5] J.W. Byers, M. Luby, and M. Mitzenmacher. Accessing multiple mirror sites in parallel: using tornado

codes to speed up downloads. In Proc. of the IEEE INFOCOMM ’99, pages 275–283, 1999.

[6] D.W. Carman, P.S. Kruss, and B.J. Matt. Constraints and approaches for distributed sensor network

security. Technical report, NAI Labs, 2000.

[7] Haowen Chan, Adrian Perrig, and Dawn Song. Random key predistribution schemes for sensor networks.

In IEEE Symposium on Security and Privacy, page 197, 2003.

[8] Chee-Yee Chong and Srikanta Kumar. Sensor networks: Evolution, opportunities and challenges. Proc.

of the IEEE, 91:1247–1256, August 2003.

[9] B. Dahill, B.N. Levine, E. Royer, and C. Shields. A secure routing protocol for ad-hoc networks. Tech-

nical Report UM-CS-2001-037, Electrical Engineering and Computer Science , University of Michigan,

August 2001.

[10] Jing Deng, Richard Han, and Shivakant Mishra. A performance evaluation of intrusion-tolerant rout-

ing in wireless sensor networks. In Proc. of the I.E.E.E. 2nd International Workshop on Information

Processing in Sensor Networks, IPSN’03, LNCS 2634, pages 349–364, 2003.

[11] D.Liu and P.Ning. Efficient distribution of key chain commitments for broadcast authentication in

distributed sensor networks. In Proc. of the 10th Annual Network and distributed System Security

Symposium, pages 263–276, February 2003.

62



[12] W. Du, J. Deng, Y. Han, and P. Varshney. A pairwise key pre-distribution scheme for distributed

sensor networks. In Proc. of the tenth ACM Conference on Computer and Communications Security

(CCS 2003), pages 42–51, October 2003.

[13] Laurent Eschenauer and Virgil D. Gligor. A key management scheme for distributed sensor networks.

In Proceedings of the 9th ACM Conference on Computer and Communication Security, pages 41–47,

November 2002.

[14] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges: Scalable co-ordination

in sensor networks. In 5th Annual ACM/IEEE International Conference on Mobile Computing and

Networking, pages 263–270, 1999.

[15] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin. Highly-resilient energy-efficient multipath routing

in wireless sensor networks. Mobile Computing and Communications Review, 4(5), October 2001.

[16] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC language: A holis-

tic approach to networked embedded systems. In Proc. of the ACM SIGPLAN 2003 Conference on

Programming Language Design and Inplementation, pages 1–11, New York, NY, USA, 2003. ACM

Press.

[17] Christos Gkantsidis and Pablo Rodriguez Rodriguez. Cooperative security for network coding file dis-

tribution. Technical Report MSR-TR-2004-137, Microsoft Research, 2004.

[18] Christos Gkantsidis and Pablo Rodriguez Rodriguez. Network coding for large scale content distribution.

IEEE Infocomm 2005, 4:2235–2245, March 2005.

[19] J. Hill and D. Culler. System Architechture for Wireless Sensor Networks. PhD thesis, University of

California, Berkeley, May 2004.

[20] Y.C. Hu, D.B. Johnson, and A Perrig. SEAD: Secure efficient distance vector routing for mobile wireless

ad hoc networks. In Proc. of the 4th IEEE Workshop on Mobile Computing Systems and Applications

(WMCSA 2002), pages 3–13, June 2002.

[21] Y.C. Hu, A. Perrig, and D.B. Johnson. Ariadne: A secure on-demand routing protocol for ad-hoc

networks. Technical Report TR01-383, Department of Computer Science, Rice University, December

2001.

[22] Y.C. Hu, A. Perrig, and D.B. Johnson. Wormhole detection in wireless ad hoc networks. Technical

Report TR01-384, Department of Computer Science, Rice University, June 2002.

[23] C. Intanagonwiwat, R. Govindan, Deborah Estrin, J. Heidemann, and F. Silva. Directed diffusion for

wireless sensor networking. IEEE/ACM Trans. Networking, 11:2–16, February 2002.

63



[24] C. Karlof, N. Sastry, Y. Li, A. Perrig, and J. Tygar. Distillation codes and applications to DoS resistant

multicast authentication. In Proc. of the 11th Network and Distributed Systems Security Symposium

(NDSS), San Diego, CA., February 2004.

[25] C. Karlof, N. Sastry, and D. Wagner. TinySec: A link layer security architechture for wireless sensor

networks. In (to appear), Proc. of the second ACM Conference on Embedded Networked Sensor Systems

(SenSys 2004), Baltimore, MD, November 2004.

[26] C. Karlof and D. Wagner. Secure routing in wireless sensor networks: Attacks and countermeasures. In

Proc. of the First IEEE International Workshop on Sensor Network Protocols and Applications, pages

113–127, 2003.

[27] Brad Karp and H.T. Kung. GPSR: greedy perimeter stateless routing for wireless networks. In Proc.

of the Sixth International Conference on Mobile Computing and Networking (MobiComm 2000), pages

243–254, August 2000.

[28] Maxwell N. Krohn, Michael J. Freedman, and David Mazieres. On-the-fly verification of rateless erasure

codes for efficient content distribution. In IEEE Symposium on Security and Privacy, pages 226–241,

Berkeley,California, 2004. IEEE.

[29] J. Kulik, W.R.Heinzelman, and H. Balakrishnan. Negotiation-based protocols for disseminating infor-

mation in wireless sensor networks. Wireless Networks, 8(2-3):169–185, 2002.

[30] Joanna Kulik, Wendi Rabiner, and Hari Balakrishnan. Adaptive protocols for information dissemination

in wireless sensor networks. In Proc. of the Fifth Annual IEEE/ACM International Conference on Mobile

Computing and Networking (MobiComm ’99), 1999.

[31] Philip Levis. TinyOS Programming, February 2006.

[32] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. Tossim: Accurate and scalable simulation

of entire tinyos applications. In Proc. of the First ACM Conference on Embedded Networked Sensor

Systems (Sensys), 2003.

[33] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin Whitehouse, Alec Woo, David

Gay, Jason Hill, Matt Welsh, Eric Brewer, and David Culler. Ambient Intelligence, chapter TinyOS:

An Operating System for Wireless Sensor Networks. W. Weber and J. Rabaey E. Aarts, 2005.

[34] D. Liu and P. Ning. Establishing pairwise keys in distributed sensor networks. In Proc. of the Tenth

ACM Conference on Computer and Communications Security (CCS 2003), pages 52–61, October 2003.

[35] M.G. Luby. LT codes. In The 43rd Annual IEEE Symposium on Foundations of Computer Science,

pages 271–282, 2002.

64



[36] M.G. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D.A. Spielman. Efficient erasure correcting codes.

IEEE Trans. on Information Theory, 47(2):585–598, February 2001.

[37] M.G. Luby, M. Mitzenmacher, M.A. Shokrollahi, D.A. Spielman, and V. Stemann. Practical loss-resilient

codes. Annual ACM Symposium on Theory of Computing, pages 150–159, 1997.

[38] P. Maymounkov. Online codes. Technical Report Tech.Rep. 2002-833, NYU, November 2002.

[39] P. Maymounkov and D. Mazieres. Rateless codes and big downloads. In Proc. of the 2nd International

workshop on Peer-to-Peer Systems (IPTPS), February 2003.

[40] R. Merkle. Protocols for public key cryptosystems. In In Proc. of the IEEE Symposium on Research in

Security and Privacy, pages 122–134, April 1980.

[41] J.M. Park, E.K.P. Chong, and H.J. Siegel. Efficient multicast stream authentication using erasure codes.

ACM Trans. Inf. Syst. Secur., 6(2):258–285, 2003.

[42] S. Park, S. Savvides, and M. Srivastava. Simulating networks of wireless sensors. In Proc. of the 2001

Winter Simulation Conference, pages 1330–1338, 2001.

[43] A. Perrig and H. Chan. Pike: Peer intermediares for key establishment in sensor networks. In Proc. of

the IEEE INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications

Societies., volume 1, pages 524–535, March 2005.

[44] A. Perrig, R.Szewczyk, V. Wen, D. Culler, and J.D. Tygar. SPINS: Security protocols for sensor net-

works. Wireless Networks Journal (WINET), pages 8(5):521–534, 2002.

[45] Adrian Perrig, John Stankovic, and David Wagner. Security in sensor networks. Communications of the

ACM, 47:53–57, June 2004.

[46] B. Przydarek, D. Song, and A. Perrig. SIA:secure information aggregation in sensor networks. In ACM

Sensys 2003, November 2003.

[47] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica. Geographic routing without location

information. In Proc. of the 9th Annual International Conference on Mobile Computing and Networking,

pages 96–108, 2003.

[48] I.S. Reed and G. Solomon. Polynomial codes over certain finite fields. J. Soc. Indust. Appl. Math.,

8:300–304, 1960.

[49] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryp-

tosystems. In Communications of the ACM, volume 21, pages 120–126, 1978.

[50] L. Rizzo. Effective erasure codes for reliable computer communication protocols. ACM Computer

Communication Review, 27(2), April 1997.

65



[51] V. Shnayder, M. Hempstead, B. rong Chen, G.W. Allen, and M. Welsh. Simulating the power consump-

tion of large-scale sensor network applications. In Proc. of the Second ACM Conference on Embedded

Networked Sensor Systems (SenSys), pages 1–12, New York, NY, USA, 2004. ACM Press.

[52] M. Amin Skokrollahi. Raptor codes. Technical Report DF2003-06-001, Digital Fountain Inc., June 2003.

[53] D. Spielman. Linear-time encodable and decodable error-correcting codes. In IEEE Transactions on

Information Theory (special issue devoted to coding theory), volume 42, pages 1723–1731, November

1996.

[54] Ronald Watro, D. Kong, Sue fen Cuti, J. Mulligan, Charlie Gardiner, and Dan Coffin. TinyPK: securing

sensor networks with public key technology. In Proc. of the 2nd ACM workshop on Security of ad-hoc

and sensor networks, pages 59–64, 2004.

[55] A. Woo and D.E. Culler. A transmission control scheme for media access in sensor networks. In Proc. of

the 7th International Conference in Mobile Computing and Networking (MobiComm 2001),ACM Press,

pages 221–235, 2001.

[56] A. Woo, T. Tong, and D. Culler. Taming the underlying challeges of reliable multihop routing in sensor

networks. In Proc. of the First ACM Conference on Embedded Sensor Systems (SenSys), pages 14–27.

ACM Press, 2003.

[57] A. Wood and J.A. Stankovic. Denial of service in sensor networks. IEEE Computer, 35(10):54–62,

October 2002.

66


