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I present a time synchronization algorithm for wireless sensor networks that aims to 

conserve sensor battery power. The proposed method creates a hierarchical tree by flooding the 

sensor network from a designated source point. It then uses a hybrid algorithm derived from the 

timing-sync protocol for sensor networks (TSPN) and the reference broadcast synchronization 

method (RBS) to periodically synchronize sensor clocks by minimizing energy consumption. 

In multi-hop ad-hoc networks, a depleted sensor will drop information from all other 

sensors that route data through it, decreasing the physical area being monitored by the network. 

The proposed method uses several techniques and thresholds to maintain network connectivity. 

A new root sensor is chosen when the current one’s battery power decreases to a designated 

value. 

I implement this new synchronization technique using Matlab and show that it can 

provide significant power savings over both TPSN and RBS.
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CHAPTER 1 

INTRODUCTION 

Time synchronization is a crucial aspect of any networked system.  The majority 

of research in this field has concentrated on traditional high-speed computer networks 

with few power restraints, leading to the global positioning system (GPS) [1] and the 

network time protocol (NTP) [2].  These conventional networks are effective for 

communication of large amounts of data, typical of local area networks (LAN). 

 

Wireless Sensor Network Overview 

Over the past few years, applications have been developed to monitor 

environmental properties such as temperature and humidity; they can also be used to 

analyze motion of animals or vehicles.  One of the most important requirements for these 

monitoring applications is unobtrusiveness; this creates a need for wireless ad-hoc 

networks using very small sensing nodes.  These special networks are called wireless 

sensor networks (WSN).  These networks are built from many wireless sensors in a high-

density configuration to provide redundancy and to monitor a large physical area. 

WSNs can be used to detect traffic patterns within a city by tracking the number 

of vehicles using a designated street.  If an emergency arises, the network can relay the 

information to the city hall and notify police, fire, and ambulance drivers of congested 

streets.  An application could even be designed that suggests the fastest route to the 

emergency area. 
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Another emergency condition could arise should a chemical plant be damaged 

and develop a leak, creating a toxic fume cloud that could endanger an entire city [3].  

Sensors could be deployed from the safety of a plane above the cloud.  As the sensors fall 

through the fumes, they could determine the size of the cloud, as well as the wind speed 

which propels the cloud.  The sensors could then relay this information either to the plane 

or to a unit on the ground, which could then suggest evacuations according to the cloud’s 

projected path.  Changes in wind speed and direction could be detected from the plane 

above the cloud, so the projected path could be updated in real-time as well. 

When compared to computer terminals in LANs, wireless sensors must operate on 

very low capacity batteries to minimize their size to about that of a quarter.  The nodes 

use slow processing units to conserve battery power.   A typical sensor node such as 

Crossbow’s Mica2DOT operates at 4 MHz with 4 Kb of memory and has a radio 

transceiver operating at up to 15 Kbps [4].  Radio transmissions consume by far the 

majority of the battery’s energy, so even with this low-power hardware, a sensor can 

easily be depleted within a few hours if it is continuously sending transmissions. 

With the emergence of WSNs, current LAN synchronization methods will not 

work efficiently.  GPS provides good synchronization accuracy, but requires a very large 

amount of power from the sensors.  In a power-constrained sensor, this synchronization is 

infeasible.  NTP is also infeasible since it is designed for traditional computer networks 

and will not scale well for wireless sensor networks.  Some new synchronization methods 

have been developed specifically for sensor networks, such as the timing-sync protocol 

for sensor networks (TPSN) and the reference broadcast synchronization method (RBS). 
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Objectives 

RBS and TPSN both achieve accurate clock synchronization within a few 

microseconds of uncertainty.  However, they are both designed for networks with a small 

number of sensors and are not specifically geared towards energy conservation; although 

these algorithms will work for larger networks, their energy consumption becomes 

inefficient and network connectivity is not maintained once nodes begin losing power.  

Simulating each of these methods shows that synchronizing a large sensor network 

requires an unnecessarily large number of transmissions, which will quickly deplete 

sensors and reduce the network’s coverage area. 

This work concentrates on the following aspects of WSNs: 

1. Design a hybrid method between RBS and TPSN to reduce the number of 

transmissions required to synchronize an entire network. 

2. Extend single-hop synchronization methods to operate in large multi-hop 

networks. 

3. Verify that the hybrid method operates as desired by simulating against RBS 

and TPSN. 

4. Maintain network connectivity and coverage. 
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Organization 

Chapter 0 explores wireless sensor networks in more detail.  Applications for 

WSN time synchronization, such as routing and localization, are listed and described in 

detail.  Previous research in these areas is also outlined in this chapter. 

Chapter 0 describes in detail how RBS and TPSN operate.  Both of these 

algorithms provide high accuracy, but do not concentrate on energy efficiency in large 

multi-hop networks.  This chapter will provide a benchmark to which the presented 

method can be compared to. 

Chapter 0 discusses the details of the hybrid method.  An efficient 

synchronization method is used depending on the number of receivers for each sensor.  

Once the source sensor’s battery power drops below an established threshold, a new 

source node is chosen and the network is re-established.  Assumptions will also be 

described in this chapter. 

Chapter 0 presents the energy-consumption data and simulation results from our 

method.  Our data is then compared to RBS and TPSN as tested in various network 

topologies. 

Chapter 0 provides conclusions and summaries of the advantages of the hybrid 

method and comparisons to established sensor network synchronization methods.  This 

chapter will also highlight future work that could be done to further improve upon power 

consumption. 

The Matlab source code for all simulations is provided in the appendix. 
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CHAPTER 2 

RELATED WORK IN WSN 

When wireless sensor networks were first being developed, the main topic of 

research involved reliability and routing.  WSNs are usually deployed in relatively 

inaccessible environments such as heavily forested areas or within buildings, where using 

wired networks are impractical.  Consequently, transmissions are unreliable and lost 

packets are common.  Equation (2.1) shows how signal power fades as it travels further 

from the transmitter: 

 T
R c

PP
d

= , (2.1) 

where PT is the power of the transmitted signal, d is the distance from the transmitter, and 

c is the path loss coefficient, which usually varies from between 2 and 5.  These typical 

environments have large path loss coefficients because of signal fading from diffractions, 

reflections, and scattering off of walls and foliage.  SCALE (Simple Connectivity 

Assessment in Lossy Environments) is a tool developed for Mica2 sensors to measures 

packet delivery [5].  Using SCALE, research has verified the above fading effects on 

sensor networks.   It was shown that outdoor urban environments with large buildings 

disrupt wireless signals more so than do doors and walls from within buildings.  Flooding 

algorithms such as the ones described in [6] and [7] have been used to study multi-hop 

routing in WSNs.  Unreliable networks have several issues that were uncovered with this 

algorithm: 

• Backward links: a link that transmits flood packets back towards the source. 



 6

• Long links: a link that is significantly longer than would be expected given the 

transmission power level. 

• Stragglers: sensors that do not receive flood packets, despite having a high 

probability of reception from a neighboring transmitter. 

• Clustering: a node that connects to a very large number of receivers. 

Span is an algorithm that reduces a network’s energy consumption while 

maintaining its topology as well as its sensing effectiveness [8].  Each node determines 

whether it should sleep or become a coordinating node that forwards packets.  This 

decision is based on an estimation of the number of neighbors that would benefit from the 

node’s state.  The network’s lifetime increases as more nodes are deployed and as the 

sleep time for each node is increased. 

ASCENT is an algorithm that changes the network’s topology in an effort to 

maximize the lifetime of each sensor [9], [10].  In this case, each node will self-configure 

itself based upon its connectivity and its participation in the network’s topology.  Timers 

are used to switch a sensor’s state between sleep, passive, test, and active.  A sleeping 

sensor’s radio is turned off to save power, while an active sensor’s radio is turned on to 

allow the sensor to communicate with its neighbors.  A sensor in the test phase monitors 

the number of neighbors and its data loss rate to determine whether it is beneficial to join 

the network; if one of these parameters is not above a certain threshold, then the node 

will become passive, otherwise it will become active.  A passive node will transition back 

to the test phase if the data loss rate is low, the number of neighbors is below a threshold, 

or if a help packet is received.  If none of these parameters are met, the node goes to sleep 

and transitions back to the passive phase once a timer expires.  When the thresholds and 
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timer lengths are set correctly, ASCENT has reduced packet loss while decreasing energy 

consumption.  The algorithm must still be tested for large networks to determine its 

scalability. 

One of the most common uses for wireless sensor networks is for localization and 

tracking.  Tracking of a single object is relatively simple since data can be handed-off 

from sensor to sensor as the object moves through the network.  Information-driven 

sensor query (IDSQ) is one tracking method that works well, even for multiple targets 

[11].  It defines a “belief state,” which contains the position and velocity of each target.  

Previous tracking methods scaled very poorly since every sensor would update its belief 

state, requiring a large amount of network communication.  With IDSQ, only nodes that 

have useful and non-redundant information will have their belief state updated.  

Furthermore, IDSQ tracks multiple targets more efficiently by splitting up the network 

into sub-sections, each of which is assigned a leader node that keeps track of when 

objects enter and leave the area.  Contour tracking at the boundaries can be accomplished 

by using triangulation and a contour threshold [12]. 

Sensor networks have also been used to monitor conservation habitats for wildlife 

[13], [14], [15].  Sensors area being used to monitor the nesting habits of a coastal bird on 

Great Duck Island, 10 miles off of the coast of Maine.  In the past, researchers would 

have to go to the island and physically disrupt the nests to count eggs and to measure 

temperature and humidity.  Now however, small sensors are able to do these same 

observations without disrupting the birds’ nesting habits. 

Localization and tracking are also used when attempting to locate a sniper’s 

location from the gun’s muzzle blast [16].  Each sensor will detect the blast noise at 
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unique times but within microseconds of each other, so the only way to accurately 

compare observations is if all of the sensors are well-synchronized [17].  If the sensors 

know their locations relative to one another, then the path of the bullet can be reproduced 

from the observations of the blast noise, ultimately finding the point of origin. 

Target tracking applications such as the ones just described require some degree 

of synchronization amongst nodes to provide useful observation comparisons.  A 

significant distinction between each application is the degree of synchronization that is 

required; when tracking an animal or a vehicle, up to one millisecond of accuracy could 

be required, whereas in the case of sniper localization, the sensors must be synchronized 

to within a few microseconds.  A high-accuracy algorithm will require more 

communication amongst nodes, thereby using more energy, whereas a less accurate 

method will usually require less energy.  Some of the synchronization algorithms are 

discussed in Sections Error! Reference source not found., 0, and 0. 

 

NTP 

One of the first synchronization protocols used for computer systems is the 

network time protocol (NTP), first developed in 1985.  This protocol uses a relatively 

large amount of memory to store data for synchronization sources, authentication codes, 

monitoring options, and access options [18], [19].  As mentioned earlier, typical wireless 

sensor nodes have limited onboard memory; for example, Crossbow’s popular Mica2 and 

Mica2DOT sensors each have 4KB of configurable memory.  A large sensor network will 

require large files for synchronization sources and codes.  Even if these configuration 

files can be programmed into each node, it would leave very little memory to hold the 
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data monitored by the sensor, limiting NTP’s use for WSNs.  Furthermore, NTP’s 

synchronization accuracy is within 10 ms over the Internet, and up to 200 μs in a LAN; 

these specifications are usually adequate for computer networks, but do not meet the 

requirements for most sensor network applications. 

 

GPS 

Global positioning system (GPS) is another accurate and commonly used 

synchronization protocol.  The Department of Defense (DoD) began launching 

NAVSTAR (Navigation Signal Timing and Ranging) GPS satellites in 1978 to allow the 

U.S. military to localize any object on the ground to within a few feet [20].  Although 

commercial applications could use GPS when it was first created, the technology was 

classified so unauthorized users would have inaccurate results, usually to an accuracy of 

100 meters at best.  This technology was de-classified in 2000, leading to the 

development of commercial GPS navigation systems with an accuracy of a few 

centimeters.  The NAVSTAR GPS currently consists of 24 active satellites which 

continuously transmit their own position and a time code in the microwave spectrum at 

1.5 GHz.  By measuring the relative arrival times of signals from several satellites and 

using triangulation, a GPS receiver can determine its own position.  The radio signals are 

electromagnetic waves traveling at the speed of light, so the propagation delay is only 50 

ms from an altitude of 10,000 miles, so GPS's triangulation method requires very precise 

time information from the satellites.  The master clock on each satellite is therefore kept 

within 1 μs of the U.S. Naval Observatory's Master Clock [21], [22]. 
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At first glance, GPS would seem to be an ideal candidate for time synchronization 

for wireless sensor networks since the algorithm is wireless and the local node clocks will 

always synchronize to 1 μs of each other.  However, there are a few requirements that 

GPS fails to meet.  The receiver is 4.5 inches in diameter, more than 4 times the size of a 

typical sensor node, and also requires an external power source [23].  These two traits 

counteract the goal of using small and mobile nodes to create a wireless sensor network.  

In addition, the GPS receiver draws 120 mA while the Mica2DOT wireless sensor only 

uses 25 mA when transmitting at maximum power.  Lastly, signal attenuation from 

scattering and diffraction is significant since GPS operates at a high frequency, which 

forces the receiver to have an unobstructed view of a large portion of the sky to 

accurately receive the satellite signals.  This line-of-sight requirement cripples GPS’s use 

for sensor networks dispersed within a building or in a heavily forested area. 

 

Media Access Control Issues 

A significant amount of research has been done on the medium access control 

(MAC) layer.  These protocols control how sensors access the radio channel to 

communicate with neighbors, so energy can be saved by using the channel more 

efficiently.  Two of the classic MAC protocols are ALOHA [24] and carrier-sense 

multiple access (CSMA) [25].  In ALOHA, packets can either be transmitted immediately 

after they are generated or on the next available slot.  Dropped packets from collisions are 

simply re-transmitted later.  In CSMA, a sensor will listen to the MAC layer before it 

transmits a packet.  This MAC protocol is currently being used in many wireless 
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technologies, including 802.11.  Both of these protocols use energy very inefficiently, so 

new energy-aware modifications to the MAC layer have been created. 

Packet collisions are one of the most wasteful phenomena in wireless 

communication, since these packets must be re-transmitted in full.  One way to greatly 

reduce collisions is by using time division multiple access (TDMA), where each sensor 

would be given a unique time slot in which to transmit information.  Low-energy 

adaptive clustering hierarchy (LEACH) is an application of TDMA towards wireless 

sensor networks [26].  It organizes nodes into clusters with one head node, and applies 

TDMA within each cluster.  Bluetooth uses a similar approach [27], using clusters called 

piconets, where devices are given the right to transmit only when their time slot becomes 

available.  Since each sensor requires a unique transmission time slot, LEACH and other 

TDMA-type algorithms do not scale very well with larger networks.  In addition, sensors 

are not allowed to directly communicate with each other, so very accurate time 

synchronization is required to ensure that one sensor’s transmissions do not spill over 

into another sensor’s time slot. 

Instead of using TDMA, contention-based algorithms allow sensors to 

communicate directly with each other, removing the dependency on accurate time-

synchronization.  S-MAC is a modification to the MAC protocol designed specifically for 

WSNs to increase energy efficiency [28].  To do this, a low duty-cycle is first obtained by 

scheduling the nodes to transmit depending on their remaining battery life.  When 

transmitting a packet, the S-MAC adds a duration field to notify other nodes how long of 

a packet transmission is needed.  The nodes will therefore immediately know for how 

long they must refrain from sending their own data, even without requiring 
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synchronization.  T-MAC improves upon S-MAC by adding the ability for a variable 

duty-cycle to compensate for inconsistent data rates [29]. 
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CHAPTER 3 

WSN TIME SYNCHRONIZATION ALGORITHMS 

Although traditional synchronization methods are effective for computer 

networks, they are ineffective in sensor networks.  New synchronization algorithms 

specifically designed for wireless sensor networks have been developed and can be used 

for several applications. 

 

RBS 

Clearly GPS and NTP are not very effective in wireless sensor applications.  One 

of the first major research attempts to create a time synchronization algorithm specifically 

tailored for sensor networks led to the development of reference broadcast 

synchronization (RBS) in 2002 [30].  This algorithm defines the critical path, which is the 

portion of the network where a significant amount of clock uncertainty exists.  A long 

critical path results in high uncertainty and low accuracy in the synchronization.  RBS 

improves upon NTP by reducing the length of the critical path, which can improve the 

accuracy of the synchronization to 7 μs in light traffic.  There are four main sources of 

delays that must be accounted for to have accurate time synchronization: 

• Send time: this is the time to create the message packet. 

• Access time: this is a delay when the transmission medium is busy, forcing 

the message to wait. 

• Propagation time: this is the delay required for the message to traverse the 

transmission medium from sender to receiver. 
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• Receive time: similar to the send time, this is the amount of time required 

for the message to be processed once it is received. 

 

RBS Algorithm and Analysis 

The RBS algorithm can be split into three major events: 

1. Flooding: a transmitter broadcasts a synchronization request packet. 

2. Recording: the receivers record their local clock time when they initially 

pick up the sync signal from the transmitter. 

3. Exchange: the receivers exchange their observations with each other. 

RBS synchronizes each set of receivers with each other as opposed to traditional 

algorithms that synchronize receivers with senders.  These latter algorithms have a long 

critical path, starting from the initial send time until the receive time.  For this reason, 

NTP’s accuracy is severely limited, as discussed previously.  RBS uses a relative time 

reference between nodes, eliminating the send and access time uncertainties.  The 

propagation delay of signals is extremely fast from point-to-point; a set of nodes 

separated by 100 meters will have a propagation delay of 340 ns, so this delay can be 

ignored when dealing in the microsecond scale.  Lastly, the receive time is reduced since 

RBS uses a relative difference in times between receivers.  Also, the time of reception is 

taken when the packet is first received in the MAC layer, eliminating uncertainties 

introduced by the sensor’s processing unit. 

The authors of RBS reported 11.2 μs for the synchronization error on the MICA2 

wireless sensors.  However, the motes have an integrated transmitter with a processor, 

requiring additional CPU cycles and yielding this relatively inaccurate precision (this 
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hypothesis was verified when RBS was tested using much more powerful IPAQs units, 

where the errors were 6.3 μs in light traffic and 8.4 μs in heavy traffic).  By comparison, 

the errors for NTP using the IPAQs were 51 μs in light traffic and 1542 μs in heavy 

traffic.  RBS clearly outperforms NTP, even on vastly inferior hardware. 

There are two unique implementations of RBS.  The simplest method is designed 

for very high accuracy for sparse networks, where transmitters have at most two 

receivers.  The transmitter can broadcast a synchronization request to the two receivers, 

which will record the times at which they receive the request, just as the algorithm 

describes.  However, the receivers will exchange their observations with each other 

multiple times, using a linear regression to lower the clock offset.  After 30 exchanges, 

the accuracy is improved from 11 μs to 1.6 μs. 

The other version of the RBS algorithm involves the following steps: the 

transmitter sends a reference packet to two receivers; each receiver checks the time when 

it receives the reference packet; the receivers exchange their recorded times.  The main 

problems with this scheme are the nondeterminism of the receiver, as well as clock skew.  

The receiver’s nondeterminism can be resolved by simply sending more reference 

packets.  The clock skew is resolved by using the slope of a least-squares linear 

regression line to match the timing of the crystal oscillators. 

RBS can be adapted to work in multihop environments as well.  Assuming a 

network has grouped clusters with some overlapping receivers, linear regression can be 

used to synchronize between receivers that are not immediate neighbors.  However, it is 

more complicated than the single-hop scenario since there will be timestamp conversions 
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as the packet is relayed through nodes.  This extra complication is manifested in larger 

synchronization errors. 

Figure 1 shows how a sensor network is synchronized by using RBS. 
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Figure 1: RBS synchronization of a wireless sensor network. 
The initial solid dark lines represent the network’s topology after flooding; the solid light lines represent 
transmitter-to-receivers communication; the dashed lines represent receiver-to-receiver transmissions. 
 

RBS Issues 

There are some issues with the RBS synchronization algorithm that must be 

addressed in an energy-aware sensor network.  First, the receiver-to-receiver 

synchronization method is effective at reducing the critical path to increase the accuracy, 

but RBS scales poorly with dense networks where there are many receivers for each 
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transmitter.  Given n receivers for a single transmitter, the number of transmissions 

increases linearly with n, but the number of receptions increases as O(n2).  The following 

numbers of transmissions and receptions exist: 

 RBSTX n= ,  (3.1) 
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1

( 1)
2 2

n

RBS
i

n n n nRX n i n
−

=

− +
= + = + =∑ .  (3.2) 

For a large number of receivers per transmitter, this method becomes infeasible due to 

energy constraints. 

Lastly, RBS does not account for lost network coverage when nodes begin losing 

power.  Should a transmitting node be depleted, all of its receivers will be dropped from 

the network, so measures should be taken to re-establish connectivity when the coverage 

decreases beyond some threshold value. 

 

TPSN 

The timing-sync protocol for sensor networks (TSPN) was developed in 2003 in 

an attempt to further refine time synchronization beyond RBS’s capabilities [31], [32].  

TPSN uses the same sources of uncertainty as RBS does (send, access, propagation, and 

receive), with the addition of two more: 

• Transmission time: the time for the packet to be processed and sent 

through the RF transceiver during transmission. 

• Access time: the time for each bit to be processed from the RF transceiver 

during signal reception. 
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TPSN Algorithm and Analysis 

The TPSN works in two phases: 

1. Level discovery phase: this is a very similar approach to the flooding 

phase in RBS, where a hierarchical tree is created beginning from a root 

node. 

2. Synchronization phase: in this phase, pair-wise synchronization is 

performed between each transmitter and receiver. 

In the level discovery phase, each sensor node is assigned a level according to the 

hierarchical tree.  A pre-determined root node is assigned as level 0 and broadcasts a 

level_discovery packet.  Sensors that receive this packet are assigned as children to the 

transmitter and are set as level 1 (they will ignore subsequent level_discovery packets).  

Each of these nodes broadcasts a level_discovery packet, and the pattern continues with 

the level 2 nodes. 

In the synchronization phase, pair-wise synchronization is performed between the 

transmitter and receiver nodes using a 2-way handshake.  Given a parent node A and a 

child node B, node A sends a synchronization_pulse to B, timestamped at T1.  Once node 

B receives the pulse, it timestamps at T2, then sends an ack packet back to A at T3.  The 

parent node receives the ack packet and timestamps one last time at T4.  These 4 

timestamps provide estimates for clock drift (3.3) and propagation delay (3.4): 

 ( ) ( )2 1 4 3
2

T T T T− − −
Δ = , (3.3) 

 ( ) ( )2 1 4 3
2

T T T T
d

− + −
= . (3.4) 
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The synchronization error can be calculated from the clock drift between the two nodes 

as well as the drift at T4: 

 4
A B

tError D →= Δ − . (3.5) 

The following equations characterize T2 and T4: 

 12 1 A B
A A B B tT T S P R D →

→= + + + + , (3.6) 

 34 3 B A
B B A A tT T S P R D →

→= + + + + , 

 44 3 A B
B B A A tT T S P R D →

→≈ + + + − , (3.7) 

where SA, A BP → , and RB refer to the time to send the packet at node A (send time + access 

time + transmission time), the propagation time between nodes A and B, and the time to 

receive the packet at node B, respectively. 

Equations (3.6) and (3.7) can be combined and used in (3.5) to get the theoretical 

error for TPSN: 

 1 4
4 2 2 2 2

A BUC UC UC
A B t t

TPSN t
RDS P RError D

→
→ →= Δ − = + + + . (3.8) 

By contrast, the error for RBS as claimed by the TPSN authors is: 

 4 1 4
A B UC UC A B

RBS t D t tError D P R RD→ →
→= Δ − = + + . (3.9) 

In equations (3.8) and (3.9), SUC, PUC, and RUC refer to the uncertainty in the send time, 

propagation time, and receive time respectively.  RD is the relative drift between nodes A 

and B from time T1 through T4. 

Although RBS removes the uncertainty at the sender by exchanging times 

amongst receivers, TPSN reduces the remaining uncertainties by a factor of 2 due to the 

handshake process that averages the clock drift and propagation delay.  However, 
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TPSN’s uncertainty at the sender can be reduced to an insignificant delay by 

timestamping at the MAC layer just before the bits are sent through the transceiver. 

Figure 2 shows how a sensor network is synchronized by using TPSN. 
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Figure 2: TPSN synchronization of a wireless sensor network. 
The initial solid dark lines represent the network’s topology after flooding; the subsequent light lines 
represent successful transmitter-to-receiver synchronizations. 
 

TPSN Issues 

TPSN is a great improvement over RBS in terms of accuracy.  Using a 2-way 

handshake reduces uncertainty in half since the average of the time differences is used.  

The algorithm can be easily applied to multi-hop situations since it scales very well to 

dense networks: 
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 1TPSNTX n= + ,  (3.10) 

 2TPSNRX n= .  (3.11) 

The main disadvantage that TPSN faces is its energy consumption in sparse networks; a 

2-way handshake requires each node to receive a packet and to send one in response.  For 

a parent node A with two children B and C, node A broadcasts the level_discovery packet, 

and then a synchronization_pulse packet.  Nodes B and C receive both packets, and then 

transmit an ack packet back to node A.  This example uses 4 transmissions and 4 

receptions for TPSN.  In contrast, the same situation would only require 2 transmissions 

and 3 receptions when using RBS; node A broadcasts a synchronization request packet 

with a timestamp, and then node B sends a second transmission to node C with its 

observation (node C can also transmit to node B with the same end result). 

In addition, TPSN has the same problem as RBS with respect to lost network 

coverage when nodes begin losing power.  A dead transmitter node will drop all of its 

receivers from the network, lowering the WSN’s coverage area.  Network restructuring is 

not included in the TPSN algorithm. 
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CHAPTER 4 

ENERGY-AWARE TIME SYNCHRONIZATION 

The timing-sync protocol for sensor networks (TPSN) and reference broadcast 

synchronization (RBS) are some of the first efforts in creating synchronization algorithms 

tailored towards low-power sensor networks.  They both have unique strengths when 

dealing with energy consumption.  RBS is most effective in networks where transmitting 

sensors have few receivers, while TPSN excels when transmitters have many receivers.  

As previously shown in (2.1), the signal’s power increases linearly with the transmitter’s 

power and decreases with an inverse power law with respect to distance.  This means that 

a transmitter will have more children if it transmits at higher power or if the receivers 

have higher sensitivity to pick up weaker signals.  These properties can be verified by 

building a network from uniformly distributed sensors and by changing the transmitter 

power or the reception power threshold, as shown in Figure 3. 

 

Figure 3: Uniformly distributed sensors with high transmission power (left) and with lower transmission 
power (right). 
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However, the sensors are most often randomly distributed and not uniformly 

spaced.  Manually deploying sensors in a uniform grid is time-consuming and non-covert.  

Covertness is critical in battlefield and animal tracking scenarios.  It would be best to 

drop the wireless sensors from an airplane to avoid disturbing the environment; however, 

the sensors would be distributed non-uniformly once they land.  Even within buildings, 

WSNs are usually non-uniform; nodes can be distributed with uniform distances from 

each other, but the path loss is very variable in such an environment, mostly due to 

scattering.  This property results in a large variance in the number of receivers for each 

transmitter, effectively creating a non-uniform sensor distribution.  Figure 4 shows how 

power affects the flooding in a network with randomly distributed sensors. 

  

Figure 4: Randomly distributed sensors with high transmission power (left) and with lower transmission 
power (right). 
 

The work presented in this thesis combines the efforts in various areas of research 

presented in the previous chapters to create a hybrid time synchronization algorithm that 

minimizes power usage by reducing the number of transmissions between sensors.  
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Although this method works for both uniform and non-uniform sensor deployment 

scenarios, many of the details are derived to best accommodate random sensor placement. 

 

Hybrid Flooding 

Before the sensors can be synchronized, a network topology must be created.  

Algorithm 1 is used by each sensor node to efficiently flood the network. 

 

Algorithm 1: Hybrid Flooding Algorithm 

Accept flood_packets 

Set receiver_threshold to low_power 

Set num_receivers to 0 

If current_node is root node 

Broadcast flood_packet 

Else If current_node receives flood_packet and is accepting them 

Set parent of current_node to source of broadcast 

Set current_node level to parent’s node level + 1 

Rebroadcast flood request with current_node ID and level 

Broadcast ack_packet with current_node ID 

Ignore subsequent flood_packets 

Else If current_node receives ack_packet 

Increment num_receivers 

 

Each sensor is initially set to accept flood_packets, but will ignore subsequent ones in 

order not to be continuously reassigned as the flood broadcast propagates.  The 
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num_receivers variable keeps track of the node’s receivers and is used in the 

synchronization algorithm.  Figure 5 shows the implementation of Algorithm 1. 
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Figure 5: Flooding a wireless sensor network: a sync_req packet is initially transmitted by the root node 
and is then re-transmitted by each receiver. 
 

Hybrid Synchronization 

Once the network flooding has been completed, the network can be synchronized 

using the determined hierarchy.  In networks where the sensors are dispersed at random, 

there will be patches of high density node distribution interspersed with lower density 

regions.  As shown in Figure 4, a transmitter in a high density area will usually have a 
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large number of receivers, while another transmitter in a lower density section will 

usually have 1 or 2 receivers at most.  As discussed in section 0, RBS excels when the 

transmitter has few receivers.  In contrast, TPSN excels with many receivers connected to 

each transmitter, as discussed in section 0. 

The hybrid algorithm minimizes power regardless of the network’s topology by 

choosing the best synchronization technique depending on the number of children 

connected to the transmitter.  Since the energy required for reception usually differs from 

that of a transmission, the ratio of the reception power to the transmission power is 

needed in order to find the optimal point at which to switch from receiver-receiver 

synchronization to transmitter-receiver synchronization.  Equations (3.1), (3.2), (3.10), 

and (3.11) are combined below, where α is the ratio of reception-to-transmission power: 

 RBS RBS TPSN TPSNTX RX TX RXα α+ × = + × .  (4.1) 

For example, assume that a reception uses approximately half the power of a 

transmission, so α = ½. 

 1 1
2 2RBS RBS TPSN TPSNTX RX TX RX+ × = + × ,  (4.2) 

 ( )
21 11 2

2 2 2
n nn n n

⎛ ⎞+
+ = + +⎜ ⎟

⎝ ⎠
,  (4.3) 

 
2

2 1
4

n nn n+
+ = + ,  (4.4) 

 2 3 4 0n n− − = ,  (4.5) 

 ( )( )4 1 0n n− + = .  (4.6) 

Equation (4.6) shows that the energies used by RBS and TPSN on this example platform 

are equal when there are 4 receivers per transmitter, so the receiver_threshold value from 
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the previous algorithm is set to 4 (negative values for receiver_threshold are not 

applicable here).  With fewer than 4 receivers, the RBS algorithm is more efficient, while 

TPSN is better with more receivers.  Since the ratio of reception-to-transmission power 

can vary for different platforms, the current draws for both reception and transmission are 

stored as variables and the receiver_threshold value is calculated at every sensor.  This 

value is assumed to remain constant throughout the network.  In general, the following 

equation can be used to determine the receiver_threshold: 

 2 23 0n n
α

− − = .  (4.7) 

Algorithm 2 describes the algorithm used for the hybrid algorithm. 

 

Algorithm 2: Hybrid Synchronization Algorithm 

Set receiver_threshold to high_power 

If num_receivers < receiver_threshold // Use RBS algorithm 

Transmitter broadcasts sync_request 

For each receiver 

Record local time of reception for sync_request 

Broadcast observation_packet 

Receive observation_packet from other receivers 

Else // Use TPSN algorithm 

Transmitter broadcasts sync_request 

For each receiver 

Record local time of reception for sync_request 

Broadcast ack_packet to transmitter with local time 
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Figure 6 shows the implementation of Algorithm 2 in a wireless sensor network which 

has already been flooded. 
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Figure 6: Hybrid synchronization of a wireless sensor network. 
The initial solid dark lines represent the network’s topology after flooding; the solid light lines represent 
transmitter-to-receivers communication; the dashed lines represent receiver-to-receiver transmissions. 
 

Energy Depletion 

Another issue that the hybrid algorithm addresses when synchronizing a sensor 

network is the effect that a depleted sensor has on the topology.  Once the battery is 

exhausted, the node will be dropped from the network, but so will all of the receivers 

depending on it.  This loss of connectivity cascades through each receiver, so a drastic 
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restructuring can occur when a high-level sensor is drained.  The hybrid algorithm keeps 

track of the number of powered nodes.  Once this number decreases below another user-

defined threshold, the network is re-flooded according using the flooding algorithm 

described earlier in this section.  Should the source node lose power, a new source node is 

chosen from the original one’s receivers.  These receivers communicate their power 

levels with each other and the one with the most remaining energy is elected as the new 

root node, as show in Algorithm 3. 

 

Algorithm 3: Root Node Election Algorithm 

If cur_node_level == 1 and cur_node_power allows 1 more TX 

Broadcast elect_packet with cur_node_ID 

If cur_node_level == 2 

Broadcast elect_packet with cur_node_ID, cur_node_power 

If cur_node receives elect_packet and elect_packet_power >= cur_node_power 

Set elect_packet_ID to root node 

 

In addition, receivers will only analyze the sync_request packets from their 

respective transmitters when using the TPSN-style synchronization.  This saves 

additional battery power since the receivers do not have to analyze packets they overhear 

from other broadcasting transmitters.  Lastly, the dropped packets are monitored.  This is 

a useful statistic since it keeps track of algorithm efficiency and wasted energy.  Dropped 

packets also allow us to compare various network topologies and determine which ones 

allow for the most energy conservation. 
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CHAPTER 5 

RESULTS AND ANALYSIS 

Several simulations were run to compare the power consumption of the timing-

sync protocol for sensor networks (TSPN), the reference broadcast synchronization 

(RBS), and the hybrid algorithm developed in chapter 0. 

 

Hybrid Algorithm Validation 

The first set of simulations were run to validate (4.7), which is the basis for the 

hybrid algorithm’s behavior.  Using this equation, a transmitting sensor can dynamically 

switch between RBS and TPSN by simply comparing the number of connected receivers 

to the reception/transmission power ratio.  In this experiment, this ratio is changed in 

order to observe how each of the algorithms is affected.  All other parameters are kept 

constant: 20 simulations are run over a 1000m x 1000m area which is randomly 

populated with 500 sensors, and the path loss coefficient is set to 3.5.  In each simulation, 

the receiver_threshold value is changed from 1 to the largest number of receivers 

connected to a sensor.  The hybrid synchronization algorithm is executed for each of 

these receiver_threshold values and the energy consumption is stored and compared to 

the consumption of TPSN, RBS, and the optimal hybrid synchronization algorithm.  Each 

of the data points is plotted, along with a line representing the average from all of the 

simulations. 

For the MICA2Dot platform, a reception uses approximately 24 mW of power, 

while a transmission requires 75 mW at -5 dBm [4], so: 
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 24 0.32
75

α = =  (5.1) 

Equation (4.7) is solved with this value for α to get: 

 2 2
24
75

2 253 3 0
4

n n n n− − = − − =  (5.2) 

 3 9 25 4.42
2

n + +
= ≈  (5.3) 

The hybrid algorithm will use the least amount of energy when the receiver_threshold is 

set to 4.42.  This means that transmitters with 4 or fewer sensors will use RBS for 

synchronization while those with 5 or more receivers will use TPSN.  Figure 7 illustrates 

how changes in the receiver_threshold value affect the hybrid algorithm. 

 

Figure 7: Mica2DOT synchronization comparison. 
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The energy consumption from the hybrid algorithm when using the optimal 

receiver_threshold value is lower than both TPSN and RBS.  As expected from (5.3), the 

minimum value is found between values of 4 and 5.  Lastly, the spread amongst data 

points increases dramatically as the receiver threshold increases beyond 13. 

More importantly, setting the receiver_threshold value to 1 will force a 

transmitter to use TPSN, as shown in Algorithm 2.  The hybrid algorithm in this case will 

have the same energy consumption as TPSN.  On the other hand, a receiver_threshold set 

to the largest number of receivers connected to a transmitter will force a transmitter to 

use RBS, so this algorithm will consume the same amount of energy as the hybrid one. 

The hybrid synchronization algorithm is very dynamic and will adapt itself to 

multiple equipment specifications.  The power requirements for the MicaZ sensor 

platform are drastically different from the Mica2DOT platform; MicaZ uses 59.1 mW for 

a reception, but only uses 42 mW for each transmission at -5 dBm [33], so: 

 59.1 1.407
42

α = ≈  (5.4) 

Solving equation (4.7) just as before, the following receiver_threshold value is found: 

 3.42n ≈  (5.5) 

Not only does the MicaZ platform have a higher α value, it actually uses more power to 

receive information than to transmit it.  In order to minimize energy consumption, the 

hybrid algorithm will automatically adjust the sensors so that any transmitter with 3 or 

fewer receivers will use RBS, while those with 4 or more receivers will use TPSN.  

Figure 8 shows the hybrid algorithm’s performance when using the MicaZ platform. 
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Figure 8: MicaZ synchronization comparison. 
 

When using MicaZ, the optimal receiver_threshold value is 3.42.  This property is 

reflected in the above graph, where the local minimum has shifted further to the left when 

compared to the Mica2DOT platform. 

Despite the differences in architecture, both of the above examples yield relatively 

similar values for the optimal receiver_threshold.  Assume that there is an improvement 

in the Mica2DOT platform which allows for much lower power in receiving mode.  Each 

transmission still requires 75 mW at -5 dBm, but only 8 mW is needed for a reception.  

The reception/transmission power ratio now becomes: 

 8 0.107
75

α = ≈  (5.6) 
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The optimal receiver_threshold value now becomes: 

 6.08n ≈  (5.7) 

Figure 9 illustrates the energy usage when the receiver_threshold changes. 

 

Figure 9: Synchronization comparison for architecture with n=6. 
 

In this example architecture, the hybrid algorithm produces a local minimum 

when using the optimal receiver_threshold, as was expected.  It is also interesting to note 

that now, RBS becomes more energy efficient than TPSN. 

Another example would be an architecture which uses 75 mW for transmitting 

and 2 mW for receiving, so α=0.0267 and n=10.29.  This new threshold will move the 

graph’s local minimum further to the right, as shown in Figure 10. 
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Figure 10: Synchronization comparison for architecture with n=10. 
 

Once again, the hybrid algorithm correctly predicts the minimum for energy 

consumption. 

 

Synchronization Power Reduction 

The next set of simulations demonstrates the algorithm’s reduction in power 

consumption in several network sizes.  The number of sensors was changed from 250 up 

to 1500, in increments of 250.  Just as before, 20 simulations were run over a 1000m x 

1000m area which was randomly populated with 500 sensors, and the path loss 
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coefficient was set to 3.5.  The Mica2DOT platform was used and the ratio of 

reception/transmission power remained fixed. 

The receiver_threshold value is once again changed from 1 to the largest number 

of receivers connected to a sensor.  The hybrid synchronization algorithm is executed for 

each of these receiver_threshold values and the energy consumption is stored and 

compared to the consumption of TPSN, RBS, and the optimal hybrid synchronization 

algorithm.  Each of the data points is plotted, along with a line representing the average 

from all of the simulations. 

Table 1: Average Number of Transmissions 
Sensors 250 500 750 1000 1250 1500 

RBS 249 499 749 999 1249 1499 
TPSN 351 664 955 1245 1531 1810 
Hybrid 261 533 800 1065 1331 1593 

 RBS Savings -5.06 % -6.76 % -6.84 % -6.59 % -6.59 % -6.26 % 
TPSN Savings 25.58 % 19.72 % 16.20 % 14.50 % 13.06 % 12.01 % 
 

Table 1 shows that RBS requires the fewest number of transmissions, while TPSN 

uses the most.  The results for RBS and for TPSN both increase linearly with network 

size, as was expected from (3.1) and (3.10), respectively.  The hybrid algorithm is up to 

6.8% less efficient than RBS.  However, when compared to TPSN, the hybrid algorithm 

performs very well.  For small networks, there is up to a 25% savings in energy.  As the 

number of sensors is increased, the hybrid algorithm efficiency drops to a 12% advantage 

over TPSN. 

Table 2 shows the standard deviation in the number of transmissions for each of 

the synchronization algorithms.  These results are important in determining how sensitive 

an algorithm is to modifications in the network’s topology and sensor density. 
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Table 2: Standard Deviation for Transmissions 
Sensors 250 500 750 1000 1250 1500 

RBS 0.37 
0.15% 

0.00 
0.00 % 

0.00 
0.00 % 

0.00 
0.00 % 

0.00 
0.00 % 

0.00 
0.00 % 

TPSN 7.59 
2.16 % 

8.88 
1.34 % 

14.31 
1.50 % 

14.48 
1.16 % 

18.22 
1.19 % 

22.09 
1.22 % 

Hybrid 1.61 
0.61 % 

2.29 
0.43 % 

1.89 
0.24 % 

5.02 
0.47 % 

4.29 
0.32 % 

4.24 
0.27 % 

 

It is interesting to note that the standard deviation for RBS transmissions is 

usually 0, which shows that the number of transmissions is strictly dependent on the 

number of sensors in a network, regardless of network topology.  The only exception 

occurred when 250 sensors were used, and was most likely caused when some sensors 

that did not receive a flood_packet and were therefore not used for synchronization. 

The table shows that there is very little variation in the number of transmissions 

for TPSN.  In fact, the largest standard deviation for TPSN comes from smaller networks.  

Similar results appeared when the hybrid algorithm was simulated, but with even less 

variability.  Both of these algorithms are therefore only slightly affected by changes in 

sensor placement and sensor density. 

Table 3 shows results for the number of receptions when using each of the 

algorithms. 

Table 3: Average Number of Receptions 
Sensors 250 500 750 1000 1250 1500 

RBS 615 1709 3421 5510 7833 11128 
TPSN 498 998 1498 1998 2498 2998 
Hybrid 447 924 1415 1898 2386 2879 

RBS Savings 27.44 % 45.94 % 58.65 % 65.55 % 69.54 % 74.13 % 
TPSN Savings 10.27 % 7.43 % 5.57 % 4.99 % 4.47 % 3.97 % 
 

Although the number of receptions when using TPSN increases linearly with 

network size, as would be expected from (3.11), this number increases much more 
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quickly when using RBS, as illustrated in (3.2).  The hybrid algorithm greatly reduces the 

number of receptions when compared to RBS; for small networks, the advantage is 27%, 

but it increases to over 74% in networks with a large number of sensors.  In contrast, the 

hybrid algorithm has a large advantage over TPSN in small networks, but that advantage 

decreases as more sensors are added. 

Table 1 and Table 3 both show that the hybrid algorithm mimics RBS’s behavior 

for small networks.  However, the hybrid algorithm changes its behavior as more sensors 

are included and begins resembling TPSN for very large networks. 

Table 4 shows the standard deviation in the number of receptions for each of the 

synchronization algorithms.  Similar to Table 2, these results help to determine how 

sensitive an algorithm is to modifications in the network’s topology and sensor density.   

Table 4: Standard Deviation for Receptions 
Sensors 250 500 750 1000 1250 1500 

RBS 54.71 
8.89 % 

150.09 
8.78 % 

365.43 
10.68 % 

524.32 
9.52 % 

614.26 
7.84 % 

1129.50 
10.15 % 

TPSN 0.73 
0.15 % 

0.00 
0.00 % 

0.00 
0.00 % 

0.00 
0.00 % 

0.00 
0.00 % 

0.00 
0.00 % 

Hybrid 11.73 
2.63 % 

13.16 
1.42 % 

15.89 
1.12 % 

14.75 
0.78 % 

15.99 
0.67 % 

16.77 
0.58 % 

 

The table shows that there is very large variation in the number of receptions for 

RBS, meaning that the number of receptions when using RBS is highly dependent on the 

topology of the network.  The table also shows that the deviation in receptions when 

using TPSN is usually 0, with the exception once again in the 250 sensor network.  Just 

as before, this exception is due to orphaned nodes which do not participate in the 

synchronization.  The hybrid algorithm has a relatively low deviation, which decreases 
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further with large numbers of sensors.  This behavior is attributed to the hybrid algorithm 

behaving similarly to TPSN when the network is large. 

It is important to compare the number of transmissions and receptions amongst 

algorithms to understand each one’s advantages and drawbacks, but the ultimate goal in 

these experiments is to minimize the total amount of energy expended when 

synchronizing the network.  Since the transmitted packets are the same size for every 

algorithm, the radio and processor will be operating for a constant length of time, so the 

energy consumption can be calculated as follows: 

 energy numTx numRxα= + × . (5.8) 

Table 5 compares the energy values amongst algorithms. 

Table 5: Average Energy Consumption 
Sensors 250 500 750 1000 1250 1500 

RBS 446 1046 1844 2762 3756 5060 
TPSN 511 983 1434 1885 2331 2770 
Hybrid 404 828 1253 1672 2095 2514 

RBS Savings 9.29% 20.79% 32.04% 39.46% 44.22% 50.31% 
TPSN Savings 20.80% 15.73% 12.65% 11.28% 10.11% 9.23% 
 

Table 2 shows that all of the standard deviations for transmissions are relatively 

low, while RBS usually has a constant number.  In contrast, Table 4 shows that while the 

standard deviations for receptions when using RBS are very high, TPSN usually has a 

constant number of receptions.  Finally, Table 6 compares the standard deviation for each 

of the algorithms. 

 

 

 

 



 44

Table 6: Standard Deviation of Energy Consumption 
Sensors 250 500 750 1000 1250 1500 

RBS 17.38 
3.90% 

48.03 
4.59% 

116.94 
6.34% 

167.78 
6.07% 

196.56 
5.23% 

361.44 
7.14% 

TPSN 7.67 
1.50% 

8.88 
0.90% 

14.31 
1.00% 

14.48 
0.77% 

18.22 
0.78% 

22.09 
0.80% 

Hybrid 4.00 
0.99% 

4.72 
0.57% 

5.23 
0.42% 

6.85 
0.41% 

6.33 
0.30% 

6.84 
0.27% 

 

Although the standard deviations usually fluctuate with network size, larger 

networks generally increase the variance in RBS while decreasing the variance in TPSN.  

Furthermore, the deviation for RBS is relatively large, while that for TPSN is much 

lower.  However, the variance for the hybrid algorithm is always lower than the other 

two, and it constantly decreases with larger networks. 

These results show that not only is RBS’s energy consumption highly dependent 

on network topology, it becomes even more so as the network becomes larger.  In 

contrast, TPSN and the hybrid algorithm are less affected by the network layout, and both 

become even more independent as more sensors are introduced into a given area.  The 

graphs below show how the energy consumption of all three algorithms compares with 

various network sizes. 
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Figure 11: Synchronization comparison for 250 sensors. 
 

As mentioned before, the hybrid algorithm can adapt accordingly to transmission 

and reception power usages.  TPSN and RBS become special cases of the algorithm.  A 

receiver_threshold value of 1 will force a transmitter to use TPSN, whereas a 

receiver_threshold set to the largest number of receivers connected to a transmitter will 

force a transmitter to use RBS.  These traits are shown in Figure 11. 

For a relatively small network of 250 sensors, TPSN is the most inefficient 

algorithm of the three used in this study, followed by RBS.  The hybrid algorithm 

outperforms TPSN by over 20%, while outperforming RBS by over 9%, as shown in 

Table 5. 
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Figure 12: Synchronization comparison for 500 sensors. 
 

One major difference observed when the network grows from 250 sensors to 500 

sensors is that RBS becomes less energy efficient than TPSN.  The hybrid algorithm 

outperforms TPSN by 15.7%, while outperforming RBS by 20.8%. 
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Figure 13: Synchronization comparison for 750 sensors. 
 

Once the network grows to 750 sensors, RBS clearly becomes less efficient than 

TPSN.  The hybrid algorithm still outperforms TPSN by 12.7%.  Since RBS consumes 

more energy, the hybrid algorithm now outperforms it by 32%. 
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Figure 14: Synchronization comparison for 1000 sensors. 
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Figure 15: Synchronization comparison for 1250 sensors. 
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Figure 16: Synchronization comparison for 1500 sensors. 
 

As more sensors are introduced into the network, RBS becomes dramatically less 

feasible for a wireless sensor network.  As shown in Table 5, the hybrid algorithm’s 

energy savings over RBS increases from 39% with 1000 sensors to over 50% when the 

network uses 1500 sensors. 

In contrast, as the network becomes large, the hybrid algorithm mimics TPSN’s 

behavior, but uses less energy.  The difference is 11% with 1000 sensors and 9% with 

1500 sensors. 
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CHAPTER 6 

CONCLUSIONS 

 

Summary 

Wireless sensor networks have tremendous advantages for monitoring object 

movement and environmental properties; their small size makes them very stealthy and 

ideal for covert observations.  Their size also makes it easy to drop them into a 

designated area by plane.  Sensors can be deployed within a congested city to monitor 

traffic patterns.  They can be used to monitor the migration patterns of animals.  Should a 

chemical plant begin leaking toxic fumes, wireless sensors can monitor the movement 

and size of the fume cloud.  They can also be deployed within a city or battlefield and can 

determine the location of a sniper from a rifle’s blast noise. 

All of these applications require some degree of synchronization to achieve the 

best results.  Tracking animal movement does not require a high degree of accuracy, so 

the synchronization between clocks can be kept within a second.  The same 

synchronization accuracy can be used to monitor traffic congestion patterns and the 

movement of a toxic chemical cloud.  Determining a bullet’s point of origin from a rifle 

blast, however, is much more challenging.  The blast will propagate uniformly from the 

sniper’s location, so sensors closest to the shot will detect the shock wave first, while 

those further away will detect it later.  To accurately determine the point of origin, the 

sensor clocks should be synchronized within a few microseconds of each other.  The 

work developed in this thesis not only includes an algorithm for synchronizing each 
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sensor, but also includes algorithms for flooding and electing a new root node when the 

current root’s battery is depleted. 

The hybrid synchronization algorithm was designed to switch between timing-

sync protocol for sensor networks (TPSN) and the reference broadcast synchronization 

algorithm (RBS).  These two algorithms allow all the sensors in a network to synchronize 

themselves within a few microseconds of each other, while at the same time using the 

least amount of energy possible.  The savings in energy varies upon the density of the 

sensors as well as the reception-to-transmission ratio of energy usage; networks which 

are saturated with sensors, for example 1500 sensors in a 1 km2 area, will favor TPSN 

over RBS.  TPSN also becomes more favorable as receptions consume more power. 

The hybrid algorithm compromises between both of these previous algorithms.  

The energy savings over RBS can range from 9.3% in small networks of 250 sensors, to 

over 50% for large networks using 1500 sensors.  In contrast, the hybrid algorithm’s 

savings over TPSN range from 20.8% in the same small networks down to 9% in the 

large networks.  Furthermore, analysis of the standard deviation for each of the 

algorithms shows RBS’s energy consumption can vary dramatically, from nearly 4% to 

over 7%, generally increasing for larger networks.  In contrast, the standard deviation for 

TPSN’s energy usage decreases from 1.5% to less than 1%, generally decreasing for 

larger networks.  The hybrid algorithm’s deviation is always less than 1% and 

continuously decreases down to 0.3% as more sensors are used. 
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Future Work 

There are a few improvements that can be implemented to the hybrid system in 

order to further decrease energy consumption. 

• Physical implementation: although the system is designed from algorithms 

that have been researched and implemented on physical sensors, the work 

presented in this study has only been simulated using Matlab.  Physically 

testing an algorithm on a sensor network comprised of 1500 sensors is a very 

difficult task; even testing a network with 250 sensors is not an easy feat.  A 

study should be conducted to ensure that the algorithms developed in chapter 

0 work correctly. 

• Localized re-flooding: in the hybrid algorithm presented in this study, the 

entire network is re-flooded once the percentage of unused sensors reaches a 

given threshold.  This threshold value is important since energy is wasted if 

the network topology is continuously updated whenever a sensor’s battery 

dies.  At the same time, the physical area being monitored decreases as the 

algorithm waits for the threshold value to be met.  The best way to maintain 

network connectivity while using the least amount of energy is to re-flood 

only some areas of the network instead of the entire WSN.  The hybrid 

algorithm is well-suited for localized floods since each transmitting sensor 

knows its receivers; when one of its receivers loses power, the transmitter can 

send a localized flood packet to re-establish the network’s topology without 

disrupting the rest of the WSN. 
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• Non-uniform path loss coefficient: the research conducted here assumes that 

the path loss coefficient remains constant over the entire monitored area.  This 

assumption may be valid in the case where sensors are dropped from a plane 

into a dangerous chemical cloud, but the path loss coefficient can drastically 

change in urban and heavily forested areas.  When simulating a WSN that will 

monitor traffic patterns in an area surrounded by tall glass buildings, 

deflections and refractions will change the path loss coefficient; the only way 

to accurately portray this behavior in a simulation is to allow for a variance in 

path loss. 

• Network layer modifications: sensor networks are quite different from the 

typical computer network being used today.  The 5-layer internet architecture 

has been adapted to work with wireless sensor networks, but should be 

modified as it can be inefficient.  Experiments should be conducted to find the 

best applicable network layer for sensor networks. 
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% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas
 
function varargout = WSNSIM(varargin)
    gui_Singleton = 
    gui_State = struct('gui_Name', mfilename, 'gui_Singleton', gui_Singleton, 
'gui_OpeningFcn', @WSNSIM_OpeningFcn, 'gui_OutputFcn', @WSNSIM_OutputFcn, 'gui_LayoutFcn', 
[], 'gui_Callback', [])
    if (nargin && ischar(varargin{1}))
        gui_State.gui_Callback = str2func(varargin{1})
    end
    if (nargout)
        [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:})
    else
        gui_mainfcn(gui_State, varargin{:})
    end
end % End initialization code
 
% --- Executes just before WSNSim is made visible.
function WSNSIM_OpeningFcn(hObject, eventdata, handles, varargin)
    GlobalVars()
    clear workspace  clc
    handles.output = hObject  guidata(hObject, handles)
    axes(handles.GridAxes)  cla
    sensorLogoHandle = imshow('sensorLogo.jpg')
    axis([get(sensorLogoHandle, 'XData') get(sensorLogoHandle, 'YData')])
    SetSamples(handles, 'initAll', 'hide')  % Set default values
    if (nodesDispersedF)
        ClearHandles(handles)
    end
 
    set(handles.syncType_RBS, 'Value',0)
    set(handles.syncType_TPSN, 'Value',0)
    set(handles.syncType_Source, 'Value',0)
    set(handles.syncType_Hybrid, 'Value',0)
    switch syncType
        case 'RBS'
            set(handles.syncType_RBS, 'Value',1)
        case 'TPSN'
            set(handles.syncType_TPSN, 'Value',1)
        case 'source'
            set(handles.syncType_Source, 'Value',1)
        case 'hybrid'
            set(handles.syncType_Hybrid, 'Value',1)
    end
    simFileInfo = dir('WSNSim.m')
    set(handles.clearGrid, 'String','Quit')
    set(handles.statusText, 'String','Enter Grid parameters...')
    set(handles.sourceNodeID, 'String','')
    set(handles.curLocX, 'String','')
    set(handles.curLocY, 'String','')
    set(handles.analyzedNode, 'String','')
    set(handles.pwrRem, 'String','')
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    set(handles.WSNSim, 'Name', sprintf('WSN Simulator 2.0   -   %s', simFileInfo.date))
end
 
% --- Outputs from this function are returned to the command line.
function varargout = WSNSIM_OutputFcn(hObject, eventdata, handles) 
    varargout{1} = handles.output
    reqVer = '7.1.0.246 (R14) Service Pack 3'
    if (version ~= reqVer) % Incorrect Matlab version detected
        msgbox('Matlab R14 SP3 is required to ensure proper GUI performance.')
    end
end
 
% ================= BUTTON FUNCTIONS =================
function editParams_Callback(hObject, eventdata, handles)
    ParamEdit()
end
 
function recharge_Callback(hObject, eventdata, handles)
    GlobalVars()
    if (nodesDispersedF)
        nodePower = nodePowerMax .* ones(1, nodeCount)  % Maximize the power of each node
        deadNodes = 
        set(handles.depletedNodes, 'String',sprintf('%g / %.3g%%', deadNodes, 
100*deadNodes/nodeCount))
        UpdateAnalyzedNode(handles, closestNode)
        UpdatePowerAxes(handles, 'noCalc')
        axes(handles.GridAxes)
        PlotGrid()  % Redraw the nodes to refresh their color
    end
end
 
function clearGrid_Callback(hObject, eventdata, handles)
    GlobalVars()
    if (networkSyncF) % Clear the sync lines first
        set(handles.syncTime, 'String','')
        set(handles.numTX, 'String','')
        set(handles.numRX, 'String','')
        set(handles.droppedTX, 'String','')
        UpdateGridAxes(handles)
        DrawFlooding(0)
        PlotGrid()
        networkSyncF = 
    elseif (networkLvlDiscF) % Clear the lvl-disc lines if no sync has been performed
        parent = []
        closestNode = sourceNode
        ClearHandles(handles)
        UpdateGridAxes(handles)
        PlotGrid()
        set(handles.orphNodes, 'String','')
        set(handles.statusText, 'String','Enter Flood parameters...')
        networkLvlDiscF = 
    elseif (nodesDispersedF) % Clear nodes and reset to the opening screen
        WSNSIM_OpeningFcn(hObject, eventdata, handles, 1)
        axes(handles.PwrAxes)  cla  axis([0 1 0 1])
        set(handles.orphNodes, 'String','')
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        set(handles.depletedNodes, 'String','')
        set(handles.sourceNodeID, 'String','')
        set(handles.curLocX, 'String','')
        set(handles.curLocY, 'String','')
        set(handles.analyzedNode, 'String','')
        set(handles.pwrRem, 'String','')
        set(handles.clearGrid, 'String','Quit')
        nodesDispersedF = 
    else
        close
    end
end
 
function plotGrid_Callback(hObject, eventdata, handles)
    GlobalVars()  clc
    set(handles.clearGrid, 'String','Clear Grid')
    set(handles.statusText, 'String','Initializing Network...')
    if (~dataLoadedF) % Set variables here to avoid disrupting loaded values
        SetSamples(handles, 'initArrays', 'hide')  % Set default values
        networkChangedF = 
        nodesDispersedF = 
        networkLvlDiscF = 
        networkSyncF = 
        closestNode = sourceNode
    else
        dataLoadedF = 
    end
    UpdateGridAxes(handles)
    PlotGrid()
    if (~networkChangedF && networkLvlDiscF)
    % Needed in case the data has been loaded and we want the flooding lines...
NetworkChangedF flag must be 0 to redraw the flooding lines
        DrawFlooding(0)
    end
    UpdatePowerAxes(handles, 'noCalc')
 
    ClearHandles(handles)
    set(handles.depletedNodes, 'String',sprintf('%g / %.3g%%', deadNodes, 
100*deadNodes/nodeCount))
    set(handles.statusText, 'String','Enter Flood parameters...')
    set(handles.analyzedNode, 'String',sourceNode)
    set(handles.pwrRem, 'String',nodePower(sourceNode))
    set(handles.flood, 'Enable','on')
    set(handles.synchronize, 'Enable','on')
end
 
function flood_Callback(hObject, eventdata, handles)
    GlobalVars()  clc
    if (networkChangedF || ~nodesDispersedF || dataLoadedF)
        plotGrid_Callback(hObject, eventdata, handles)
    end
 
    if (nodePower(sourceNode) < 2)
    % If source node can only transmit one more time, elect a new source
        ElectNewSource(handles, sourceNode)
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        tempStr = get(handles.statusText, 'String')
        tempColor = get(handles.statusText, 'BackgroundColor')
        set(handles.statusText, 'String',sprintf('Source node is depleted. New source node 
is %g', sourceNode))
        set(handles.statusText, 'BackgroundColor','red')
        pause(2)
        set(handles.statusText, 'String',tempStr)
        set(handles.statusText, 'BackgroundColor',tempColor)
    end
    parent = []
    maxDistanceLow = nthroot(PtWLow/PrThresholdWLow, pathLossCoeff)
    maxDistanceHigh = nthroot(PtWHigh/PrThresholdWHigh, pathLossCoeff)
    closestNode = sourceNode
 
    set(handles.statusText, 'String','Simulating flooding...')
    set(handles.plotGrid, 'Enable','off')
    set(handles.clearGrid, 'Enable','off')
    set(handles.flood, 'Enable','off')
    set(handles.synchronize, 'Enable','off')
    set(handles.syncType_RBS, 'Enable','off')
    set(handles.syncType_TPSN, 'Enable','off')
    set(handles.syncType_Source, 'Enable','off')
    set(handles.syncType_Hybrid, 'Enable','off')
    set(handles.FloodTest, 'Enable','off')
    set(handles.EnergyTest, 'Enable','off')
    set(handles.TimeTest, 'Enable','off')
    set(handles.editParams, 'Enable','off')
    set(handles.recharge, 'Enable','off')
    pause(0.001)
    UpdateGridAxes(handles)
    PlotGrid()
 
    s = cputime
    BasicDecayFlooding(handles)
    floodTime = cputime - s
 
    DrawFlooding(pauseInt)
    ClearHandles(handles)
    PlotGrid()
    UpdatePowerAxes(handles)
    UpdateAnalyzedNode(handles, closestNode)
    UpdateNodeStatus(handles)
    set(handles.plotGrid, 'Enable','on')
    set(handles.clearGrid, 'Enable','on')
    set(handles.flood, 'Enable','on')
    set(handles.synchronize, 'Enable','on')
    set(handles.syncType_RBS, 'Enable','on')
    set(handles.syncType_TPSN, 'Enable','on')
    set(handles.syncType_Source, 'Enable','on')
    set(handles.syncType_Hybrid, 'Enable','on')
    set(handles.FloodTest, 'Enable','on')
    set(handles.EnergyTest, 'Enable','on')
    set(handles.TimeTest, 'Enable','on')
    set(handles.editParams, 'Enable','on')
    set(handles.recharge, 'Enable','on')
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    set(handles.floodTime, 'String',floodTime)
    set(handles.numTX, 'String',numTx)
    set(handles.numRX, 'String',numRx)
    if (tracebackF)
        Traceback(closestNode,1)
    end
    networkLvlDiscF = 
    networkSyncF = 
    set(handles.statusText, 'String','Flooding complete.')
end
 
function synchronize_Callback(hObject, eventdata, handles)
    GlobalVars()  clc
    networkSyncF = 
    if (networkChangedF || ~networkLvlDiscF)
        flood_Callback(hObject, eventdata, handles)
        if (continuousF)
            pause(1)
        end
    end
 
    if (nodePower(sourceNode) < 2)
    % If source node can only transmit one more time, re-flood network (new source is 
automatically elected)
        flood_Callback(hObject, eventdata, handles)
    end
    set(handles.plotGrid, 'Enable','off')
    set(handles.clearGrid, 'Enable','off')
    set(handles.flood, 'Enable','off')
    set(handles.synchronize, 'Enable','off')
    set(handles.syncType_RBS, 'Enable','off')
    set(handles.syncType_TPSN, 'Enable','off')
    set(handles.syncType_Source, 'Enable','off')
    set(handles.syncType_Hybrid, 'Enable','off')
    set(handles.FloodTest, 'Enable','off')
    set(handles.EnergyTest, 'Enable','off')
    set(handles.TimeTest, 'Enable','off')
    set(handles.editParams, 'Enable','off')
    set(handles.recharge, 'Enable','off')
    set(handles.statusText, 'String','Synchronizing network...')
    pause(0.001)
    UpdateGridAxes(handles)
    DrawFlooding(0)
    PlotGrid()
 
    initUsedNodes = nodeCount - orphanNodes
    initOrphNodes = orphanNodes
    newOrphNodes = initOrphNodes - orphanNodes
    numTx = 
    numRx = 
    dropTx = 
    s = cputime
 
    switch (syncType)
        case 'hybrid'
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            TimeSyncHybrid()
        case 'TPSN'
            TimeSyncTPSN('all')
        case 'RBS'
            TimeSyncRBS('all')
        case 'source'
            if (parent(closestNode) == 0) % Only synchronize with non-orphaned nodes
                syncTime = 'Failed'
            else
                traceSuccessF = Traceback(closestNode, 1)
                if (traceSuccessF) % Traceback is successful
                    pause(1)
                    s = cputime
                    syncSuccess = TimeSyncTPSN('toNode', closestNode, sourceNode)
                    if (syncSuccess)
                        syncTime = cputime - s
                    else
                        syncTime = 'Failed'
                    end
                    set(handles.statusText, 'String','Synchronization complete.')
                else % Traceback failed (one of the intermediate nodes is dead)
                    syncTime = 'Failed'
                    set(handles.statusText, 'String','Synchronization failed.')
                end
            end
        otherwise
    end
    syncTime = cputime - s
 
    if (~strcmp(syncType, 'source')) % Only continuously synchronize with RBS, TPSN, and 
hybrid
    % Continuously synchronize
        while (continuousF && deadNodes/nodeCount <= 0.9)
            pause(1)
            UpdateGridAxes(handles)
            DrawFlooding(0)
            PlotGrid()
            UpdatePowerAxes(handles)
            pause(1)
 
    % Re-flood when:
    % - Only 1 node is used
    % - Source node can only transmit one more time
    % - Number of orphaned nodes reaches threshold percentage
            if (initUsedNodes <= 1 || nodePower(sourceNode) < 2 || 
100*newOrphNodes/initUsedNodes >= refloodLimit)
                flood_Callback(hObject, eventdata, handles)
                initUsedNodes = nodeCount - orphanNodes
                initOrphNodes = orphanNodes
                newOrphNodes = orphanNodes - initOrphNodes
            end
            numTx = 
            numRx = 
            dropTx = 
            UpdateGridAxes(handles)
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            DrawFlooding(0)
            PlotGrid()
            s = cputime
 
            switch (syncType)
                case 'hybrid'
                    TimeSyncHybrid()
                case 'TPSN'
                    TimeSyncTPSN('all')
                case 'RBS'
                    TimeSyncRBS('all')
                otherwise
            end
 
            syncTime = cputime - s
            newOrphNodes = orphanNodes - initOrphNodes  % Update the number of orphaned 
nodes from this iteration
            UpdateAnalyzedNode(handles, closestNode)
            UpdateNodeStatus(handles)
            networkSyncF = 
        end
    end
 
    UpdatePowerAxes(handles)
    UpdateAnalyzedNode(handles, closestNode)
    UpdateNodeStatus(handles)
    set(handles.plotGrid, 'Enable','on')
    set(handles.clearGrid, 'Enable','on')
    set(handles.flood, 'Enable','on')
    set(handles.synchronize, 'Enable','on')
    set(handles.syncType_RBS, 'Enable','on')
    set(handles.syncType_TPSN, 'Enable','on')
    set(handles.syncType_Source, 'Enable','on')
    set(handles.syncType_Hybrid, 'Enable','on')
    set(handles.FloodTest, 'Enable','on')
    set(handles.EnergyTest, 'Enable','on')
    set(handles.TimeTest, 'Enable','on')
    set(handles.editParams, 'Enable','on')
    set(handles.recharge, 'Enable','on')
    set(handles.syncTime, 'String',syncTime)
    set(handles.numTX, 'String',numTx)
    set(handles.numRX, 'String',numRx)
    set(handles.droppedTX, 'String',dropTx)
    set(handles.statusText, 'String','Synchronization complete.')
end
 
% ------------------- NON-BUTTON CALLBACKS -------------------
function continuous_Callback(hObject, eventdata, handles)
    GlobalVars()
    continuousF = get(gco,'Value')
end
 
function changeSourceNode_Callback(hObject, eventdata, handles)
    GlobalVars()
    changeSourceNodeF = get(gco,'Value')



9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\WSNSim.m 8 of 20

end
 
function traceback_Callback(hObject, eventdata, handles)
    GlobalVars()
    tracebackF = get(gco,'Value')
    if (networkLvlDiscF)
        handles = guidata(hObject)
        UpdateGridAxes(handles)
        DrawFlooding(0)
        PlotGrid()
        if (tracebackF && networkLvlDiscF && parent(closestNode) ~= 0) % Traceback only on 
non-orphaned nodes
            traceSuccessF = Traceback(closestNode,1)  % Create a traceback to the source 
node
            if (traceSuccessF)
                set(handles.statusText, 'String','Traceback Successful.')
            else
                set(handles.statusText, 'String','Traceback Failed.')
            end
        else
            set(handles.statusText, 'String','')
        end
    end
end
 
function syncType_RBS_Callback(hObject, eventdata, handles)
    GlobalVars()
    set(handles.syncType_RBS, 'Value',1)
    set(handles.syncType_TPSN, 'Value',0)
    set(handles.syncType_Source, 'Value',0)
    set(handles.syncType_Hybrid, 'Value',0)
    syncType = 'RBS'
end
 
function syncType_TPSN_Callback(hObject, eventdata, handles)
    GlobalVars()
    set(handles.syncType_RBS, 'Value',0)
    set(handles.syncType_TPSN, 'Value',1)
    set(handles.syncType_Source, 'Value',0)
    set(handles.syncType_Hybrid, 'Value',0)
    syncType = 'TPSN'
end
 
function syncType_Source_Callback(hObject, eventdata, handles)
    GlobalVars()
    set(handles.syncType_RBS, 'Value',0)
    set(handles.syncType_TPSN, 'Value',0)
    set(handles.syncType_Source, 'Value',1)
    set(handles.syncType_Hybrid, 'Value',0)
    syncType = 'source'
end
 
function syncType_Hybrid_Callback(hObject, eventdata, handles)
    GlobalVars()
    set(handles.syncType_RBS, 'Value',0)
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    set(handles.syncType_TPSN, 'Value',0)
    set(handles.syncType_Source, 'Value',0)
    set(handles.syncType_Hybrid, 'Value',1)
    syncType = 'hybrid'
end
 
function GridAxes_ButtonDownFcn(hObject, eventdata, handles)
    GlobalVars()
% Check to make sure that the nodes have been plotted and the user has either performed 
network level discovery or wants to change the source node
    if (networkChangedF || dataLoadedF)
        plotGrid_Callback(hObject, eventdata, handles)
        tempStr = get(handles.statusText, 'String')
        tempColor = get(handles.statusText, 'BackgroundColor')
        set(handles.statusText, 'String','Network parameters changed')
        set(handles.statusText, 'BackgroundColor','red')
        pause(2)
        set(handles.statusText, 'String',tempStr)
        set(handles.statusText, 'BackgroundColor',tempColor)
        networkChangedF = 
        dataLoadedF = 
    elseif (nodesDispersedF)
        pt = get(gca,'currentpoint')  % Find the nearest node to the mouse-click
        closestDist = xDistance
        for i = 1 : nodeCount
            d = CalcDistance(pt(1,1), pt(1,2), nodeList(i,1), nodeList(i,2))
            if  (d < closestDist)
                closestNode = i  % Nearest node to mouse-click after loop is complete
                closestDist = d
            end
        end
 
        if (changeSourceNodeF) % Change source node
            sourceNode = closestNode
            set(handles.sourceNodeID, 'String',sourceNode)
            set(handles.curLocX, 'String',sprintf('X = %g', nodeList(sourceNode, 1)))
            set(handles.curLocY, 'String',sprintf('Y = %g', nodeList(sourceNode, 2)))
            parent = []
            closestNode = sourceNode
            ClearHandles(handles)
 
            axes(handles.GridAxes)
            cla  axis([0 xDistance 0 yDistance])  axis on  axis xy  axis fill  axis 
manual  hold all
            PlotGrid()
            set(handles.orphNodes, 'String','')
            set(handles.statusText, 'String','Enter Flood parameters...')
            networkLvlDiscF = 
            networkSyncF = 
            UpdateAnalyzedNode(handles, closestNode)
        else % Analyze node's properties
            PlotGrid()
            UpdateAnalyzedNode(handles, closestNode)
            if (networkLvlDiscF)
                PlotGrid()
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                if (tracebackF && parent(closestNode) ~= 0)
                    UpdateGridAxes(handles)
                    DrawFlooding(0)
                    PlotGrid()
                    Traceback(closestNode, 1)  % Create a traceback to the source node
                end
            end
        end
    end
end
 
function PwrAxes_ButtonDownFcn(hObject, eventdata, handles)
    GlobalVars()
    pt = get(gca,'currentpoint')  % Find the nearest node to the mouse-click
    closestDist = length(gridPower)
    for i = 1 : length(gridPower)
        d = CalcDistance(pt(1,1), pt(1,2), i, gridPower(i))
        if  (d < closestDist)
            closestPt = i  % Nearest event to mouse-click after loop is complete
            closestDist = d
        end
    end
end
 
% =================== MENU FUNCTIONS ===================
function Menu_LoadPar_Callback(hObject, eventdata, handles) % FILE FUNCTIONS
    GlobalVars()
    [fname pname]= uigetfile('*.mat', 'Open')
    if ((ischar(fname))& (ischar(pname)))
        curdir = pwd
        cd(pname)
        load(fname)  % Load the entire workspace
        cd(curdir)
        SetSamples(handles, 'load','hide')
        dataLoadedF = 
        msgbox('Parameters loaded succesfully!')
    end
end
 
function Menu_SavePar_Callback(hObject, eventdata, handles)
    GlobalVars()
    [fname pname] = uiputfile('parameters.mat', 'Save As')
    if ((ischar(fname))& (ischar(pname)))
        curdir = pwd
        cd(pname)
        fid = fopen(fname,'wt')
        save(fname, '*')  % Save the entire workspace
        fclose(fid)
        cd(curdir)
        networkLvlDiscF
        msgbox(sprintf('%s%s', 'Parameters successfully saved to ', fname))
    end
end
 
function Menu_Exit_Callback(hObject, eventdata, handles)
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    clear all
    if (isdeployed)
        close all
        quit force
    else
        close all
    end
end
 
function Menu_View_NodeIDs_Callback(hObject, eventdata, handles) % VIEW FUNCTIONS
    GlobalVars()
    if strcmp(get(gcbo,'Checked'),'on')
        viewNodeIDF = 
        set(gcbo, 'Checked','off')
    else 
        viewNodeIDF = 
        set(gcbo, 'Checked','on')
    end
    if (nodesDispersedF) % Update the grid axes only if the nodes have been dispersed
        UpdateGridAxes(handles)
        if (networkLvlDiscF) % Draw flooding lines only if network has already been lvl-
discovered
            DrawFlooding(0)
        end
        PlotGrid()
    end
end
 
function Menu_MatlabVer_Callback(hObject, eventdata, handles) % HELP FUNCTIONS
    msgbox(sprintf('Current Matlab Version:\n%s', version), 'Matlab Version')
end
 
function Menu_Info_Callback(hObject, eventdata, handles)
    titleStr = 'WSN Clock Synchronization Simulator'
    authorStr = sprintf('%s\n%s', 'Dr. Robert Akl, Ph.D.', 'Yanos Saravanos, M.S.')
    simFileInfo = dir('WSNSim.m')
    msgbox(sprintf('%s\n%s\n\nLast Updated on %s', titleStr, authorStr, simFileInfo.date), 
'Info')
end
 
% =================== OTHER FUNCTIONS ===================
function ElectNewSource(handles, currentSource)
    GlobalVars()
    axes(handles.GridAxes)
    TimeSyncRBS('children', currentSource)
    maxPower = max(nodePower(children(currentSource,1:numChildren(currentSource))))
    for i = 1 : numChildren(currentSource)
        if (nodePower(children(currentSource,i)) == maxPower)
            sourceNode = children(currentSource,i)
        end
    end
end
 
function UpdateAnalyzedNode(handles, node)
    GlobalVars()
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    set(handles.analyzedNode, 'String',node)
    set(handles.pwrRem, 'String',nodePower(node))
    if (networkLvlDiscF) % Output flooding details
        set(handles.level, 'String',nodeLevel(node))
        if (parent(node) == 0)
            set(handles.parentNode, 'String','Orphan')
        else
            set(handles.parentNode, 'String',num2str(parent(node)))
        end
        if (numChildren(node) == 0)
            set(handles.childNodes, 'String','')
        else
            set(handles.childNodes, 'String',num2str(children(node, 1:numChildren
(node))))
        end
        if (nodePower(node) <= 0)
            set(handles.pwrRem, 'String','Depleted')
        else
            set(handles.pwrRem, 'String',num2str(nodePower(node)))
        end
    end
end
 
function UpdateNodeStatus(handles)
    GlobalVars()
    deadNodes = 
    orphanNodes = 
    for i = 1 : nodeCount
        if (nodePower(i) <= 0)
            deadNodes = deadNodes + 
        end
        if (parent(i) == 0)
            orphanNodes = orphanNodes + 
        end
    end
    set(handles.depletedNodes, 'String',sprintf('%g / %.3g%%', deadNodes, 
100*deadNodes/nodeCount))
    set(handles.orphNodes, 'String',sprintf('%g / %.3g%%', orphanNodes, 
100*orphanNodes/nodeCount))
end
 
function UpdateGridAxes(handles)
    GlobalVars()
    axes(handles.GridAxes)  cla
    axis([0 xDistance 0 yDistance])
    axis on  axis xy  axis fill  axis manual  hold all
end
 
function UpdatePowerAxes(handles, x)
    GlobalVars()
    if (nargin == 2 & x == 'noCalc')
        gridPower = [1]
    else
        gridPower = [gridPower sum(nodePower)/(nodePowerMax*nodeCount)]  % Calculate new 
normalized grid power
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    end
    axes(handles.PwrAxes)  cla
    axis([1 length(gridPower)+1 0 1])  set(handles.PwrAxes, 'YGrid','on', 
'YMinorGrid','on')
    axis on  axis xy  axis fill  axis manual  hold all
    plot(gridPower, '-b*')
end
 
function ClearHandles(handles)
    GlobalVars()
    set(handles.analyzedNode, 'String','')
    set(handles.parentNode, 'String','')
    set(handles.childNodes, 'String','')
    set(handles.level, 'String','')
    set(handles.pwrRem, 'String','')
    set(handles.floodTime, 'String','')
    set(handles.syncTime, 'String','')
    set(handles.numTX, 'String','')
    set(handles.numRX, 'String','')
    set(handles.droppedTX, 'String','')
    if (sourceNode > nodeCount)
        sourceNode = 
    end
    set(handles.sourceNodeID, 'String',sourceNode)
    set(handles.curLocX, 'String',sprintf('X = %g', nodeList(sourceNode,1)))
    set(handles.curLocY, 'String',sprintf('Y = %g', nodeList(sourceNode,2)))
end
 
% =================== TEST FUNCTIONS ===================
function FloodTest_Callback(hObject, eventdata, handles)
    GlobalVars()  clc
    nodeCount = 
    i = 
    while (i<20)
        i = i + 1
        plotGrid_Callback(hObject, eventdata, handles)
        networkLvlDiscF = 
        networkSyncF = 
        if (nodePower(sourceNode) < 2)
        % If source node can only transmit one more time, elect a new source
            ElectNewSource(handles, sourceNode)
            tempStr = get(handles.statusText, 'String')
            tempColor = get(handles.statusText, 'BackgroundColor')
            set(handles.statusText, 'String',sprintf('Source node is depleted. New source 
node is %g', sourceNode))
            set(handles.statusText, 'BackgroundColor','red')
            pause(2)
            set(handles.statusText, 'String',tempStr)
            set(handles.statusText, 'BackgroundColor',tempColor)
        end
        parent = []
        maxDistanceLow = nthroot(PtWLow/PrThresholdWLow, pathLossCoeff)
        maxDistanceHigh = nthroot(PtWHigh/PrThresholdWHigh, pathLossCoeff)
        closestNode = sourceNode
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        set(handles.plotGrid, 'Enable','off')
        set(handles.clearGrid, 'Enable','off')
        set(handles.flood, 'Enable','off')
        set(handles.synchronize, 'Enable','off')
        set(handles.syncType_RBS, 'Enable','off')
        set(handles.syncType_TPSN, 'Enable','off')
        set(handles.syncType_Source, 'Enable','off')
        set(handles.syncType_Hybrid, 'Enable','off')
        set(handles.FloodTest, 'Enable','off')
        set(handles.EnergyTest, 'Enable','off')
        set(handles.TimeTest, 'Enable','off')
        set(handles.editParams, 'Enable','off')
        set(handles.recharge, 'Enable','off')
        set(handles.statusText, 'String','Simulating flooding...')
        pause(0.001)
 
        UpdateGridAxes(handles)
        PlotGrid()
        s = cputime
        BasicDecayFlooding(handles)
        floodTime = cputime - s
        DrawFlooding(pauseInt)
        ClearHandles(handles)
        PlotGrid()
 
        UpdatePowerAxes(handles)
        UpdateAnalyzedNode(handles, closestNode)
        UpdateNodeStatus(handles)
        set(handles.statusText, 'String','Flooding complete.')
        set(handles.plotGrid, 'Enable','on')
        set(handles.clearGrid, 'Enable','on')
        set(handles.flood, 'Enable','on')
        set(handles.synchronize, 'Enable','on')
        set(handles.syncType_RBS, 'Enable','on')
        set(handles.syncType_TPSN, 'Enable','on')
        set(handles.syncType_Source, 'Enable','on')
        set(handles.syncType_Hybrid, 'Enable','on')
        set(handles.FloodTest, 'Enable','on')
        set(handles.EnergyTest, 'Enable','on')
        set(handles.TimeTest, 'Enable','on')
        set(handles.editParams, 'Enable','on')
        set(handles.recharge, 'Enable','on')
 
        set(handles.floodTime, 'String',floodTime)
        set(handles.numTX, 'String',numTx)
        set(handles.numRX, 'String',numRx)
 
        fname = strcat('Flood', num2str(nodeCount), '_', num2str(pathLossCoeff), '_', 
num2str(i), '.mat')
        save(fname, '*')  % Save the entire workspace
 
        recharge_Callback(hObject, eventdata, handles)
        syncType = 'hybrid'
        synchronize_Callback(hObject, eventdata, handles)
        fname = strcat('Hybrid', num2str(nodeCount), '_', num2str(pathLossCoeff), '_', 
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num2str(i), '.mat')
        save(fname, '*')  % Save the entire workspace
 
        recharge_Callback(hObject, eventdata, handles)
        syncType = 'TPSN'
        synchronize_Callback(hObject, eventdata, handles)
        fname = strcat('TPSN', num2str(nodeCount), '_', num2str(pathLossCoeff), '_', 
num2str(i), '.mat')
        save(fname, '*')  % Save the entire workspace
 
        recharge_Callback(hObject, eventdata, handles)
        syncType = 'RBS'
        synchronize_Callback(hObject, eventdata, handles)
        fname = strcat('RBS', num2str(nodeCount), '_', num2str(pathLossCoeff), '_', 
num2str(i), '.mat')
        save(fname, '*')  % Save the entire workspace
    end
end
 
function EnergyTest_Callback(hObject, eventdata, handles)
    GlobalVars()  clc
    nodeCount = 
    energy = []
    numSims = 
    for j = 1 : numSims
        j
        fname = strcat('Flood', num2str(nodeCount), '_', num2str(pathLossCoeff), '_', 
num2str(j), '.mat')
        cd('../Data/')
        filevars = {'parent', 'nodeLevel', 'maxGens', 'nodePower', ...
            'nodeList', 'children', 'numChildren', 'receiver_threshold', ...
            'nodesDispersedF', 'networkChangedF', 'networkLvlDiscF', 'dataLoadedF'}
        load(fname, filevars{:})
        cd('../WSN Simulation/')
        setEnergy = []
        numSets = max(numChildren) + 
        RXtoTXratio = 
        receiver_threshold = (3 + sqrt(9 + 8/RXtoTXratio)) / 
 
        if (dataLoadedF)
            plotGrid_Callback(hObject, eventdata, handles)
        end
        if (networkChangedF || ~networkLvlDiscF)
            flood_Callback(hObject, eventdata, handles)
        end
        set(handles.plotGrid, 'Enable','off')
        set(handles.clearGrid, 'Enable','off')
        set(handles.flood, 'Enable','off')
        set(handles.synchronize, 'Enable','off')
        set(handles.syncType_RBS, 'Enable','off')
        set(handles.syncType_TPSN, 'Enable','off')
        set(handles.syncType_Source, 'Enable','off')
        set(handles.syncType_Hybrid, 'Enable','off')
        set(handles.FloodTest, 'Enable','off')
        set(handles.EnergyTest, 'Enable','off')
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        set(handles.TimeTest, 'Enable','off')
        set(handles.editParams, 'Enable','off')
        set(handles.recharge, 'Enable','off')
        set(handles.statusText, 'String','Synchronizing network...')
        pause(0.001)
 
        initUsedNodes = nodeCount - orphanNodes
        initOrphNodes = orphanNodes
        newOrphNodes = initOrphNodes - orphanNodes
        numTx = 
        numRx = 
        dropTx = 
        s = cputime
 
        numTx = 
        numRx = 
        UpdateGridAxes(handles)
        DrawFlooding(0)
        PlotGrid()
        TimeSyncHybrid()
        hybridEnergy(j) = numTx + numRx * RXtoTXratio
        set(handles.numTX, 'String',numTx)
        set(handles.numRX, 'String',numRx)
 
        numTx = 
        numRx = 
        UpdateGridAxes(handles)
        DrawFlooding(0)
        PlotGrid()
        recharge_Callback(hObject, eventdata, handles)
        TimeSyncTPSN('all')
        TPSNEnergy(j) = numTx + numRx * RXtoTXratio
        set(handles.numTX, 'String',numTx)
        set(handles.numRX, 'String',numRx)
 
        numTx = 
        numRx = 
        UpdateGridAxes(handles)
        DrawFlooding(0)
        PlotGrid()
        recharge_Callback(hObject, eventdata, handles)
        TimeSyncRBS('all')
        RBSEnergy(j) = numTx + numRx * RXtoTXratio
        set(handles.numTX, 'String',numTx)
        set(handles.numRX, 'String',numRx)
 
        for k = 1 : numSets
            numTx = 
            numRx = 
            UpdateGridAxes(handles)
            DrawFlooding(0)
            PlotGrid()
            recharge_Callback(hObject, eventdata, handles)
            UpdateGridAxes(handles)
            DrawFlooding(0)
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            PlotGrid()
            receiver_threshold = k
            TimeSyncHybrid()
            setEnergy(k) = numTx + numRx * RXtoTXratio
            energy(j,k) = setEnergy(k)
            set(handles.numTX, 'String',numTx)
            set(handles.numRX, 'String',numRx)
        end
 
        UpdatePowerAxes(handles)
        UpdateAnalyzedNode(handles, closestNode)
        UpdateNodeStatus(handles)
        set(handles.plotGrid, 'Enable','on')
        set(handles.clearGrid, 'Enable','on')
        set(handles.flood, 'Enable','on')
        set(handles.synchronize, 'Enable','on')
        set(handles.syncType_RBS, 'Enable','on')
        set(handles.syncType_TPSN, 'Enable','on')
        set(handles.syncType_Source, 'Enable','on')
        set(handles.syncType_Hybrid, 'Enable','on')
        set(handles.FloodTest, 'Enable','on')
        set(handles.EnergyTest, 'Enable','on')
        set(handles.TimeTest, 'Enable','on')
        set(handles.editParams, 'Enable','on')
        set(handles.recharge, 'Enable','on')
        set(handles.syncTime, 'String',syncTime)
        set(handles.numTX, 'String',numTx)
        set(handles.numRX, 'String',numRx)
        set(handles.droppedTX, 'String',dropTx)
        set(handles.statusText, 'String','Synchronization complete.')
        networkSyncF = 
    end
 
    for i = 1 : numSims
        for j = 1 : size(energy,2)
            if (energy(i,j) == 0)
                energy(i,j) = energy(i,j-1)
            end
        end
    end
 
    figure
    for i = 1 : numSims
        plot(energy(i,:), 'k.', 'LineStyle','none')
        hold on
    end
    plot(mean(energy), '-b', 'Marker','none', 'LineWidth',2)
    hold off
    xlabel('Receiver Threshold Cutoff Value')
    ylabel('Energy Usage')
    title(sprintf('Average synchronization with %d sensors', nodeCount))
    set(gca, 'XGrid', 'on')
    set(gca, 'XTick', 1:2:size(energy,2))
    xScale = get(gca, 'XLim')
    yScale = get(gca, 'YLim')
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    line(xScale, [mean(hybridEnergy) mean(hybridEnergy)], 'Color','green', 
'LineStyle','--', 'LineWidth',2)
    text(mean(xScale), (mean(hybridEnergy)+yScale(1))/2, 'Hybrid Energy Usage', 
'FontSize',10, 'FontWeight','bold', 'HorizontalAlignment','center')
    line(xScale, [mean(TPSNEnergy) mean(TPSNEnergy)], 'Color','red', 'LineStyle','--', 
'LineWidth',2)
    text(1, mean(TPSNEnergy)+yScale(2)/100, 'TPSN Energy Usage', 'FontSize',10, 
'FontWeight','bold', 'HorizontalAlignment','left')
    line(xScale, [mean(RBSEnergy) mean(RBSEnergy)], 'Color','red', 'LineStyle','--', 
'LineWidth',2)
    text(xScale(2), mean(RBSEnergy)+yScale(2)/100, 'RBS Energy Usage', 'FontSize',10, 
'FontWeight','bold', 'HorizontalAlignment','right')
end
 
function TimeTest_Callback(hObject, eventdata, handles)
    GlobalVars()  clc
    numSims = 
    numSets = 
    syncTimeHybrid = []
    syncTimeTPSN = []
    syncTimeRBS = []
    for i = 1 : numSims
        nodeCount = i * 
        setSyncTimeHybrid = []
        setSyncTimeTPSN = []
        setSyncTimeRBS = []
        for j = 1 : numSets
            fname = strcat('Flood', num2str(nodeCount), '_', num2str(pathLossCoeff), '_', 
num2str(j), '.mat')
            cd('../Data/')
            filevars = {'parent', 'nodeLevel', 'maxGens', 'nodePower', ...
                'nodeList', 'children', 'numChildren', 'receiver_threshold', ...
                'nodesDispersedF', 'networkChangedF', 'networkLvlDiscF', 'dataLoadedF'}
            load(fname, filevars{:})
            cd('../WSN Simulation/')
 
            UpdateGridAxes(handles)
            PlotGrid()
            DrawFlooding(0)
            set(handles.plotGrid, 'Enable','off')
            set(handles.clearGrid, 'Enable','off')
            set(handles.flood, 'Enable','off')
            set(handles.synchronize, 'Enable','off')
            set(handles.syncType_RBS, 'Enable','off')
            set(handles.syncType_TPSN, 'Enable','off')
            set(handles.syncType_Source, 'Enable','off')
            set(handles.syncType_Hybrid, 'Enable','off')
            set(handles.FloodTest, 'Enable','off')
            set(handles.EnergyTest, 'Enable','off')
            set(handles.TimeTest, 'Enable','off')
            set(handles.editParams, 'Enable','off')
            set(handles.recharge, 'Enable','off')
            set(handles.statusText, 'String','Synchronizing network...')
            pause(0.001)
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            runSyncTimeHybrid = []
            runSyncTimeTPSN = []
            runSyncTimeRBS = []
            for k = 1 : 3
                numTx = 
                numRx = 
                UpdateGridAxes(handles)
                DrawFlooding(0)
                PlotGrid()
                s = cputime
                TimeSyncHybrid()
                syncTime = cputime - s
                runSyncTimeHybrid(k) = syncTime
                set(handles.numTX, 'String',numTx)
                set(handles.numRX, 'String',numRx)
                set(handles.syncTime, 'String',syncTime)
 
                numTx = 
                numRx = 
                UpdateGridAxes(handles)
                DrawFlooding(0)
                PlotGrid()
                recharge_Callback(hObject, eventdata, handles)
                s = cputime
                TimeSyncTPSN('all')
                syncTime = cputime - s
                runSyncTimeTPSN(k) = syncTime
                set(handles.numTX, 'String',numTx)
                set(handles.numRX, 'String',numRx)
                set(handles.syncTime, 'String',syncTime)
 
                numTx = 
                numRx = 
                UpdateGridAxes(handles)
                DrawFlooding(0)
                PlotGrid()
                recharge_Callback(hObject, eventdata, handles)
                s = cputime
                TimeSyncRBS('all')
                syncTime = cputime - s
                runSyncTimeRBS(k) = syncTime
                set(handles.numTX, 'String',numTx)
                set(handles.numRX, 'String',numRx)
                set(handles.syncTime, 'String',syncTime)
            end
            setSyncTimeHybrid(j) = mean(runSyncTimeHybrid)
            setSyncTimeTPSN(j) = mean(runSyncTimeTPSN)
            setSyncTimeRBS(j) = mean(runSyncTimeRBS)
 
            UpdatePowerAxes(handles)
            UpdateAnalyzedNode(handles, closestNode)
            UpdateNodeStatus(handles)
            set(handles.plotGrid, 'Enable','on')
            set(handles.clearGrid, 'Enable','on')
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            set(handles.flood, 'Enable','on')
            set(handles.synchronize, 'Enable','on')
            set(handles.syncType_RBS, 'Enable','on')
            set(handles.syncType_TPSN, 'Enable','on')
            set(handles.syncType_Source, 'Enable','on')
            set(handles.syncType_Hybrid, 'Enable','on')
            set(handles.FloodTest, 'Enable','on')
            set(handles.EnergyTest, 'Enable','on')
            set(handles.TimeTest, 'Enable','on')
            set(handles.editParams, 'Enable','on')
            set(handles.recharge, 'Enable','on')
            set(handles.droppedTX, 'String',dropTx)
            set(handles.statusText, 'String','Synchronization complete.')
            networkSyncF = 
        end
        syncTimeHybrid(i) = mean(setSyncTimeHybrid)
        syncTimeTPSN(i) = mean(setSyncTimeTPSN)
        syncTimeRBS(i) = mean(setSyncTimeRBS)
    end
 
    figure
    plot(syncTimeHybrid, '-g+')
    hold on
    plot(syncTimeTPSN, '-.ro')
    hold on
    plot(syncTimeRBS, ':bx')
    hold off
 
    legend('Hybrid', 'TPSN', 'RBS', 'Location','NorthWest')
    xlabel('Number of sensors')
    ylabel('Synchronization Time (sec)')
    title('Synchronization speeds')
    set(gca, 'XGrid', 'on')
    set(gca, 'XTick', 1:1:numSims)
end
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% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas
 
function varargout = ParamEdit(varargin)
    gui_Singleton = 
    gui_State = struct('gui_Name', mfilename, 'gui_Singleton', gui_Singleton, 
'gui_OpeningFcn', @ParamEdit_OpeningFcn, 'gui_OutputFcn', @ParamEdit_OutputFcn, 
'gui_LayoutFcn', [], 'gui_Callback', [])
    if (nargin && ischar(varargin{1}))
        gui_State.gui_Callback = str2func(varargin{1})
    end
    if (nargout)
        [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:})
    else
        gui_mainfcn(gui_State, varargin{:})
    end
end % End initialization code
 
% --- Executes just before the editor is made visible.
function ParamEdit_OpeningFcn(hObject, eventdata, handles, varargin)
    GlobalVars()
    handles.output = hObject  guidata(hObject, handles)
    SetSamples(handles, 'load', 'show')
end
 
% --- Outputs from this function are returned to the command line.
function varargout = ParamEdit_OutputFcn(hObject, eventdata, handles) 
    varargout{1} = handles.output
end
 
function gridParams_Callback(hObject, eventdata, handles)
    GlobalVars()
    if (str2double(get(handles.xDist, 'String')) == 0)
        set(hObject, 'String', xDistance)
    end
    if (str2double(get(handles.yDist, 'String')) == 0)
        set(hObject, 'String', yDistance)
    end
    if (str2double(get(handles.nodeCount, 'String')) == 0)
        set(hObject, 'String', nodeCount)
    end
 
    if (str2double(get(handles.xDist, 'String')) ~= xDistance || ...
            str2double(get(handles.yDist, 'String')) ~= yDistance || ...
            str2double(get(handles.nodeCount, 'String')) ~= nodeCount)
        networkChangedF = 
    end
end
 
function gridMode_Callback(hObject, eventdata, handles)
    GlobalVars()
    set(handles.gridMode, 'Value', 1)
    set(handles.randMode, 'Value', 0)
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end
 
function randMode_Callback(hObject, eventdata, handles)
    GlobalVars()
    set(handles.gridMode, 'Value', 0)
    set(handles.randMode, 'Value', 1)
end
 
function signalParams_Callback(hObject, eventdata, handles)
    GlobalVars()
    pathLossCoeffTemp = str2double(get(handles.pathLossCoeff, 'String'))
    PtLTemp = str2double(get(handles.TxPwrLow, 'String'))
    PtWLTemp = 10^(PtLTemp/10) /  % Convert to watts
    PrThresholdLTemp = str2double(get(handles.RxThreshLow, 'String'))
    PrThresholdWLTemp = 10^(PrThresholdLTemp/10) /  % Convert to watts
    set(handles.maxTxDistLow, 'String', nthroot(PtWLTemp/PrThresholdWLTemp, 
pathLossCoeffTemp))
 
    PtHTemp = str2double(get(handles.TxPwrHigh, 'String'))
    PtWHTemp = 10^(PtHTemp/10) /  % Convert to watts
    PrThresholdHTemp = str2double(get(handles.RxThreshHigh, 'String'))
    PrThresholdWHTemp = 10^(PrThresholdHTemp/10) /  % Convert to watts
    set(handles.maxTxDistHigh, 'String', nthroot(PtWHTemp/PrThresholdWHTemp, 
pathLossCoeffTemp))
end
 
function resetParams_Callback(hObject, eventdata, handles)
    GlobalVars()
    SetSamples(handles, 'mica2dot433', 'show')
    close
end
 
function cancelParams_Callback(hObject, eventdata, handles)
    networkChangedF = 
    close
end
 
function saveParams_Callback(hObject, eventdata, handles)
    GlobalVars()
    if (xDistance ~= str2double(get(handles.xDist, 'String')) ...
            || yDistance ~= str2double(get(handles.yDist, 'String')) ...
            || nodeCount ~= str2double(get(handles.nodeCount, 'String')))
        networkChangedF = 
    else
        networkChangedF = 
    end
 
    xDistance = str2double(get(handles.xDist, 'String'))
    yDistance = str2double(get(handles.yDist, 'String'))
    nodeCount = str2double(get(handles.nodeCount, 'String'))
    if (get(handles.gridMode, 'Value'))
        nodeDistribMode = 'grid'
    else
        nodeDistribMode = 'rand'
    end
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    PtLow = str2double(get(handles.TxPwrLow, 'String'))
    PtWLow = 10^(PtLow/10) / 
    PrThresholdLow = str2double(get(handles.RxThreshLow, 'String'))
    PrThresholdWLow = 10^(PrThresholdLow/10) / 
    PtHigh = str2double(get(handles.TxPwrHigh, 'String'))
    PtWHigh = 10^(PtHigh/10) / 
    PrThresholdHigh = str2double(get(handles.RxThreshHigh, 'String'))
    PrThresholdWHigh = 10^(PrThresholdHigh/10) / 
    pathLossCoeff = str2double(get(handles.pathLossCoeff, 'String'))
    maxDistanceLow = nthroot(PtWLow/PrThresholdWLow, pathLossCoeff)
    maxDistanceHigh = nthroot(PtWHigh/PrThresholdWHigh, pathLossCoeff)
    guarDistance = str2double(get(handles.guarDist, 'String'))
    pauseInt = str2double(get(handles.pauseInt, 'String'))
    moteClockSpd = str2double(get(handles.moteCPU, 'String'))
    radioFreq = str2double(get(handles.radioFreq, 'String'))
 
    TXCurDraw = str2double(get(handles.TXCurDraw, 'String'))
    RXCurDraw = str2double(get(handles.RXCurDraw, 'String'))
    RXtoTXratio = RXCurDraw / TXCurDraw
    receiver_threshold = (3 + sqrt(9 + 8/RXtoTXratio)) /  % Calculate point at which 
hybrid sync'ing switches from RBS to TPSN
 
    nodePowerMax = str2double(get(handles.nodePowerMax, 'String'))
    nodePowerWarn = str2double(get(handles.nodePowerWarn, 'String'))
    refloodLimit = str2double(get(handles.refloodLimit, 'String'))
    close
end
 
% ------------------- SAMPLE FUNCTIONS -------------------
function Menu_mica2dot433_Callback(hObject, eventdata, handles)
    SetSamples(handles, 'mica2dot433', 'show')
    SetSamples(handles, 'initArrays', 'hide')
end
 
function Menu_mica2dot916_Callback(hObject, eventdata, handles)
    SetSamples(handles, 'mica2dot916', 'show')
    SetSamples(handles, 'initArrays', 'hide')
end
 
function Menu_micaz_Callback(hObject, eventdata, handles)
    SetSamples(handles, 'micaz', 'show')
    SetSamples(handles, 'initArrays', 'hide')
end
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% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas
 
function UpdateNodePower()
    GlobalVars()
    for i = 1 : nodeCount
        if (nodePower(i) <= 0) % Node i has run out of energy
            if (parent(i) ~= 0)
                parent(i) =  % Set i to orphaned node
                nodeLevel(i) = 
            end
        end
    end
end
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% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas
 
function [d] = trace(n, draw)
% Recursive function to draw the transmission path from the source to the selected node
    GlobalVars()
    if (parent(n) ~= 0)
        if (n ~= sourceNode)
            x1 = nodeList(n,1)
            y1 = nodeList(n,2)
            x2 = nodeList(parent(n),1)
            y2 = nodeList(parent(n),2)
            if (draw)
                line([x1 x2], [y1 y2], 'Color', 'black', 'LineWidth', 3)
            end
            if (nodePower(parent(n)) <= 0)
                d =  % Parent node is dead so traceback fails
            else
                d = Traceback(parent(n), draw)
            end
        else
            if (nodePower(n) <= 0)
                d =  % Root node is dead so traceback fails
            else
                d =  % Root node is dead so traceback fails
            end
        end
    else
        d =  % Traceback from orphaned node automatically fails
    end
end
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% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas
 
function [s] = TimeSyncTPSN(method, startNode, endNode)
% Function synchronizes the network using TPSN according to which method was chosen:
% Method 'all' synchronizes the entire network, from the top -> down
% Method 'children' synchronizes the children of the given node
% Method 'toNode' synchronizes only between two nodes
    GlobalVars()
    switch (method)
        case 'toNode' % Synchronize from one node back to the root node
            s =  % Flag for synchronization success
            if (endNode ~= startNode && nodePower(parent(startNode)) >= 1 && nodePower
(startNode) > 0)
                curDropTx = 
                prevGenNode = parent(startNode)
                x1 = nodeList(startNode,1)
                y1 = nodeList(startNode,2)
                x2 = nodeList(parent(startNode),1)
                y2 = nodeList(parent(startNode),2)
                dist = CalcDistance(x1, y1, x2, y2)
                numTx = numTx + 
                nodePower(parent(startNode)) = nodePower(parent(startNode)) - 
                while (~IsReceived(dist, 'sync') && curDropTx < 5)
                    curDropTx = curDropTx + 
                    dropTx = dropTx + 
                    disp(sprintf('Dropped packet from node %g to node %g', startNode, 
parent(startNode)))
                    numTx = numTx + 
                    nodePower(parent(startNode)) = nodePower(parent(startNode)) - 
                end
                if (curDropTx < 5)
                    numRx = numRx + 
                    nodePower(startNode) = nodePower(startNode) - RXtoTXratio
                    drawLine(x1, x2, y1, y2, 'Tx')
                    s = TimeSyncTPSN('toNode', prevGenNode, endNode)  % Recursively 
synchronize
                    drawLine(x2, x1, y2, y1, 'Rx')
                    drawLine(x1, x2, y1, y2, 'complete')
                else
                    s =  % Traceback sync failed
                end
            end
        case 'children' % Synchronize all of the children to the given start node
            if (children(startNode) ~= 0)
                UpdateNodePower()
                SyncReqTPSN(startNode)  % Transmitter sends sync_req packet
 
                UpdateNodePower()
                SyncAck(startNode)  % Receivers send sync_ack packets
 
                UpdateNodePower()
                SyncComp(startNode)  % Successful synchronization
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            end
        case 'all' % Synchronize the entire network
            for i = 1 : maxGens - 1
                UpdateNodePower()
                for j = 1 : nodeCount
                    if (nodeLevel(j) == i)
                        SyncReqTPSN(j)
                    end
                end
                if (pauseInt ~= 0)
                    pause(pauseInt)
                end
 
                UpdateNodePower()
                for j = 1 : nodeCount
                    if (nodeLevel(j) == i)
                        SyncAck(j)
                    end
                end
                if (pauseInt ~= 0)
                    pause(pauseInt)
                end
 
                UpdateNodePower()
                for j = 1 : nodeCount
                    if (nodeLevel(j) == i)
                        SyncComp(j)
                    end
                end
            end
            PlotGrid()
        otherwise
    end
end
 
function SyncReqTPSN(parentNode)
% Send sync packets from the given node to all of its children
    GlobalVars()
    orphanNodes = orphanNodes - 
    transmittedF = 
    for i = 1 : numChildren(parentNode)
        if (nodePower(parentNode) >= 1 && nodePower(children(parentNode,i)) > 0)
            transmittedF = 
            x1 = nodeList(parentNode,1)
            y1 = nodeList(parentNode,2)
            x2 = nodeList(children(parentNode,i),1)
            y2 = nodeList(children(parentNode,i),2)
            nodePower(children(parentNode,i)) = nodePower(children(parentNode,i)) - 
RXtoTXratio
            drawLine(x1, x2, y1, y2, 'Tx')
            numRx = numRx + 
        end
    end
    if (transmittedF)
        numTx = numTx + 
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        nodePower(parentNode) = nodePower(parentNode) - 
    end
end
 
function SyncAck(parentNode)
% Send ack packets from given the given node's children back to the given node
    GlobalVars()
    transmittedF = 
    for i = 1 : numChildren(parentNode)
        if (nodePower(children(parentNode,i)) >= 1 && nodePower(parentNode) > 0)
            x1 = nodeList(parentNode,1)
            y1 = nodeList(parentNode,2)
            x2 = nodeList(children(parentNode,i),1)
            y2 = nodeList(children(parentNode,i),2)
            nodePower(parentNode) = nodePower(parentNode) - 
            nodePower(children(parentNode,i)) = nodePower(children(parentNode,i)) - 
RXtoTXratio
            drawLine(x2, x1, y2, y1, 'Rx')
            numRx = numRx + 
            numTx = numTx + 
        end
    end
end
 
function SyncComp(node)
% Send ack packets from given the given node's children to the given node
    GlobalVars()
    for i = 1 : numChildren(node)
        if (nodePower(children(node,i)) > 0)
            x1 = nodeList(node,1)
            y1 = nodeList(node,2)
            x2 = nodeList(children(node,i),1)
            y2 = nodeList(children(node,i),2)
            drawLine(x2, x1, y2, y1, 'complete')
        end
    end
end
 
function drawLine(startX, endX, startY, endY, direction)
    GlobalVars()
    switch (direction)
        case 'Tx'
            lineColor = 'cyan'
        case 'Rx'
            lineColor = 'yellow'
        case 'complete'
            lineColor = 'green'
        otherwise
    end
    line([startX endX], [startY endY], 'Color',lineColor, 'LineWidth',2)
end
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% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas
 
function TimeSyncRBS(method, startNode)
% Function synchronizes the network using RBS
% Method 'all' synchronizes the entire network, from the top -> down
%   (parent node sends sync_req, then children exchange observations)
% Method 'children' uses RBS to synchronize the given node's receivers
    GlobalVars()
    switch (method)
        case 'children' % Synchronize all of the children to the given start node
            UpdateNodePower()
            SyncReqRBS(startNode)  % Transmitter sends sync_req packet
 
            UpdateNodePower()
            ExObservations(startNode)  % Receivers exchange observations
        case 'all' % Synchronize the entire network
            for i = 1 : maxGens - 1
                for j = 1 : nodeCount % Transmitter node
                    if (nodeLevel(j) == i)
                        UpdateNodePower()
                        SyncReqRBS(j)
                    end
                end
                if (pauseInt ~= 0)
                    pause(pauseInt)
                end
 
                for j = 1 : nodeCount
                    if (nodeLevel(j) == i)
                        ExObservations(j)
                    end
                end
                if (pauseInt ~= 0)
                    pause(pauseInt)
                end
            end
            PlotGrid()
        otherwise
    end
end
 
function SyncReqRBS(parentNode)
% Send sync packets from the given node to all of its children
    GlobalVars()
    orphanNodes = orphanNodes - 
    transmittedF = 
    for i = 1 : numChildren(parentNode)
        if (nodePower(parentNode) >= 1 && nodePower(children(parentNode,i)) > 0)
            transmittedF = 
            x1 = nodeList(parentNode,1)
            y1 = nodeList(parentNode,2)
            x2 = nodeList(children(parentNode,i),1)
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            y2 = nodeList(children(parentNode,i),2)
            nodePower(children(parentNode,i)) = nodePower(children(parentNode,i)) - 
RXtoTXratio
            drawLine(x1, x2, y1, y2, 'TxRx')
            numRx = numRx + 
        end
    end
    if (transmittedF)
        numTx = numTx + 
        nodePower(parentNode) = nodePower(parentNode) - 
    end
end
 
function ExObservations(parentNode)
% Receiver-receiver transmissions to compare observations
    GlobalVars()
    for i = 1 : numChildren(parentNode) % Transmitting child node
        transmittedF = 
        for j = i+1 : numChildren(parentNode) % Receiving child node
            if (nodePower(children(parentNode,i)) >= 1 && nodePower(children(parentNode,
j)) > 0)
            % Transmit data between non-depleted nodes with the same parent (skip orphans 
and the source node)
                transmittedF = 
                numRx = numRx + 
                x1 = nodeList(children(parentNode,i),1)
                y1 = nodeList(children(parentNode,i),2)
                x2 = nodeList(children(parentNode,j),1)
                y2 = nodeList(children(parentNode,j),2)
                nodePower(children(parentNode,i)) = nodePower(children(parentNode,i)) - 
RXtoTXratio
                drawLine(x1, x2, y1, y2, 'RxRx')
            end
        end
        if (transmittedF) % Transmitter only transmits once
            numTx = numTx + 
            nodePower(children(parentNode,i)) = nodePower(children(parentNode,i)) - 
        end
    end
end
 
function drawLine(startX, endX, startY, endY, type)
    GlobalVars()
    switch (type)
        case 'TxRx'
            lineColor = 'green'
            style = '-'
        case 'RxRx'
            lineColor = 'red'
            style = '--'
        otherwise
    end
    line([startX endX], [startY endY], 'Color',lineColor, 'LineWidth',2, 'LineStyle',
style)
end
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% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas
 
function TimeSyncHybrid()
% Function synchronizes the network using the hybrid method
    GlobalVars()
    for i = 1 : maxGens - 1
        for j = 1 : nodeCount
            UpdateNodePower()
            if (nodeLevel(j) == i)
                if (numChildren(j) < receiver_threshold && numChildren(j) ~= 0)
                    TimeSyncRBS('children', j)  % Use RBS
                else
                    TimeSyncTPSN('children', j)  % Use TPSN
                end
            end
        end
        if (pauseInt ~= 0)
            pause(pauseInt)
        end
    end
    PlotGrid()
end
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% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas
 
function SetSamples(handles, sampleID, visibility)
    GlobalVars()
    switch sampleID
        case 'initAll'
            SetSamples(handles, 'mica2dot433', 'hide')  % Set default values
            propSpd = 
            pauseInt = 
            xDistance = 
            yDistance = 
            nodeCount = 
            nodeDistribMode = 'rand'
            pathLossCoeff = 
            nodePowerMax = 
            nodePowerWarn = 
            refloodLimit = 
            syncType = 'hybrid'
 
        % Set flags and source node
            dataLoadedF = 
            nodesDispersedF = 
            networkChangedF = 
            networkLvlDiscF = 
            networkSyncF = 
            viewNodeIDF = 
            changeSourceNodeF = 
            selectNodeF = 
            tracebackF = 
            continuousF = 
            sourceNode = 
 
            SetSamples(handles, 'initArrays', 'hide')
        case 'initArrays'
            nodeList = []
            parent = []
            numChildren = []
            children = []
            deadNodeList = []
            deadNodes = 
            orphanNodes = 
            numTx = 
            numRx = 
            dropTx = 
            RXtoTXratio = RXCurDraw / TXCurDraw
            receiver_threshold = (3 + sqrt(9 + 8/RXtoTXratio)) /  % Calculate point at 
which hybrid sync'ing switches from RBS to TPSN
            nodePower = nodePowerMax .* ones(1, nodeCount)  % Set the power of each node 
to max
            gridPower = [1]  % Set the grid's initial normalized power to 1 (sum of all 
fully charged nodes)
            closestNode = sourceNode
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            PtWLow = 10 ^ (PtLow/10)  % Convert to watts
            PrThresholdWLow = 10 ^ (PrThresholdLow/10)  % Convert to watts
            maxDistanceLow = nthroot(PtWLow/PrThresholdWLow, pathLossCoeff)
            PtWHigh = 10 ^ (PtHigh/10)  % Convert to watts
            PrThresholdWHigh = 10 ^ (PrThresholdHigh/10)  % Convert to watts
            maxDistanceHigh = nthroot(PtWHigh/PrThresholdWHigh, pathLossCoeff)
 
            if (nodeDistribMode == 'rand') % Random distribution
                nodeList = rand([nodeCount 2])
                for i = 1 : nodeCount
                    nodeList(i,1) = nodeList(i,1) * xDistance
                    nodeList(i,2) = nodeList(i,2) * yDistance
                end
            elseif (nodeDistribMode == 'grid') % Uniform grid distribution
                dist = sqrt(xDistance*yDistance / nodeCount)
                xCount = floor(xDistance / dist)
                yCount = floor(yDistance / dist)
                if (xCount*yCount < nodeCount)
                    if (xDistance > yDistance)
                        xCount = xCount + 
                        if (xCount*yCount < nodeCount)
                            yCount = yCount + 
                        end
                    else
                        yCount = yCount + 
                        if (xCount*yCount < nodeCount)
                            xCount = xCount + 
                        end
                    end
                end
                dist = min(xDistance/xCount, yDistance/yCount)
                for j = 1 : yCount
                    for i = 1 : xCount
                        nodeList = [nodeList  i*dist - 0.5*dist j*dist - 0.5*dist]
                    end
                end
            end
        case 'mica2dot433'
            moteClockSpd = 
            radioFreq = 
            TXCurDraw = 
            RXCurDraw = 
            PtLow = 
            PrThresholdLow = 
            PtHigh = 
            PrThresholdHigh = 
            guarDistance = 
        case 'mica2dot916'
            moteClockSpd = 
            radioFreq = 
            TXCurDraw = 
            RXCurDraw = 
            PtLow = 
            PrThresholdLow = 
            PtHigh = 
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            PrThresholdHigh = 
            guarDistance = 
        case 'micaz'
            moteClockSpd = 
            radioFreq = 
            TXCurDraw = 
            RXCurDraw = 
            PtLow = 
            PrThresholdLow = 
            PtHigh = 
            PrThresholdHigh = 
            guarDistance = 
        case 'load' % Leave variables as they are
        otherwise
    end
 
    if (visibility == 'show')
        set(handles.xDist, 'String', xDistance)
        set(handles.yDist, 'String', yDistance)
        set(handles.nodeCount, 'String', nodeCount)
        if (nodeDistribMode == 'grid')
            set(handles.gridMode, 'Value',1)
            set(handles.randMode, 'Value',0)
        elseif (nodeDistribMode == 'rand')
            set(handles.randMode, 'Value',1)
            set(handles.gridMode, 'Value',0)
        end
 
        set(handles.TxPwrLow, 'String',PtLow)
        set(handles.RxThreshLow, 'String',PrThresholdLow)
        set(handles.TxPwrHigh, 'String',PtHigh)
        set(handles.RxThreshHigh, 'String',PrThresholdHigh)
        set(handles.pathLossCoeff, 'String',pathLossCoeff)
        set(handles.guarDist, 'String',guarDistance)
        set(handles.pauseInt, 'String',pauseInt)
        set(handles.maxTxDistLow, 'String',maxDistanceLow)
        set(handles.maxTxDistHigh, 'String',maxDistanceHigh)
 
        set(handles.moteCPU, 'String',moteClockSpd)
        set(handles.radioFreq, 'String',radioFreq)
        set(handles.TXCurDraw, 'String',TXCurDraw)
        set(handles.RXCurDraw, 'String',RXCurDraw)
        set(handles.nodePowerMax, 'String',nodePowerMax)
        set(handles.nodePowerWarn, 'String',nodePowerWarn)
        set(handles.refloodLimit, 'String',refloodLimit)
    end
end
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% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas
 
function PlotGrid()
% Plot each of the nodes according to their role and status in the network
    GlobalVars()
    for i = 1 : nodeCount
        s = sprintf('%d', i)
        if (i == sourceNode) % Source node
            nodeColor = checkNodePwrLevel(i, 'b')
            if (viewNodeIDF)
                plot(nodeList(i,1), nodeList(i,2), '.', 'MarkerEdgeColor',nodeColor, 
'LineWidth',2)
                text(nodeList(i,1) + xDistance/100, nodeList(i,2), s, 'FontSize',8, 
'FontWeight','bold', 'HorizontalAlignment','left', 'Color',nodeColor)
            else
                plot(nodeList(i,1), nodeList(i,2), '^', 'MarkerEdgeColor',nodeColor, 
'LineWidth',2)
            end
        elseif (numel(parent) ~= 0 && parent(i) == 0) % Orphaned node
            nodeColor = checkNodePwrLevel(i, 'm')
            if (viewNodeIDF)
                plot(nodeList(i,1), nodeList(i,2), '.', 'MarkerEdgeColor',nodeColor, 
'LineWidth',2)
                text(nodeList(i,1) + xDistance/100, nodeList(i,2), s, 'FontSize',8, 
'HorizontalAlignment','left', 'Color',nodeColor)
            else
                plot(nodeList(i,1), nodeList(i,2), 'o', 'MarkerEdgeColor',nodeColor, 
'LineWidth',2)
            end
        elseif (i == closestNode) % Closest node to clicked area
            nodeColor = checkNodePwrLevel(i, 'g')
            if (viewNodeIDF)
                plot(nodeList(i,1), nodeList(i,2), '.', 'MarkerEdgeColor',nodeColor, 
'LineWidth',2)
                text(nodeList(i,1) + xDistance/100, nodeList(i,2), s, 'FontSize',8, 
'HorizontalAlignment','left', 'Color',nodeColor)
            else
                plot(nodeList(i,1), nodeList(i,2), 'o', 'MarkerEdgeColor',nodeColor, 
'LineWidth',2)
            end
        else % Non-orphaned node
            nodeColor = checkNodePwrLevel(i, 'k')
            if (viewNodeIDF)
                plot(nodeList(i,1), nodeList(i,2), '.', 'MarkerEdgeColor',nodeColor, 
'LineWidth',2)
                text(nodeList(i,1) + xDistance/100, nodeList(i,2), s, 'FontSize',8, 
'HorizontalAlignment','left', 'Color',nodeColor)
            else
                plot(nodeList(i,1), nodeList(i,2), 'o', 'MarkerEdgeColor',nodeColor, 
'LineWidth',2)
            end
        end
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    end
end
 
function [color] = checkNodePwrLevel(curNode, stdColor)
% Change the node's color if its power level has decreased below the warning level
    GlobalVars()
    if (nodePower(curNode) > nodePowerWarn)
        color = stdColor
    elseif (nodePower(curNode) <= nodePowerWarn && nodePower(curNode) > 0)
        color = 'y'  % Yellow for warning
    else
        color = 'r'  % Red for depleted
    end
end
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% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas
 
function [r] = IsReceived(dist, packetType)
% Return 1 for successful TX or 0 for failed TX
    GlobalVars()
    r = 
    if (strcmp(packetType, 'flood'))
        maxDist = maxDistanceLow
    else
        maxDist = maxDistanceHigh
    end
    gDist = min(guarDistance, maxDist)  % Guaranteed TX distance
 
    if (dist <= gDist)
        r = 
    elseif (dist <= maxDist)
        prob = 1 - (dist - gDist) / (maxDist - gDist)
        if (rand() < prob)
            r = 
        end
    end
end
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% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas
 
global verDate  % Version number for the simulator
global propSpd  % Speed of light (in m/s)
 
% Grid Parameters
global xDistance  % Length of x-axis on grid
global yDistance  % Length of y-axis on grid
global nodeCount  % Number of nodes in the grid
global nodeDistribMode  % Type of grid distribution for nodes (grid or random)
 
% Hardware Parameters
global moteClockSpd  % Speed of mote's CPU (in MHz)
global radioFreq  % Throughput of mote's transceiver (in Kbps)
global TXCurDraw  % Current draw for a transmission (in mA)
global RXCurDraw  % Current draw for a reception (in mA)
global receiver_threshold  % Number of receivers needed where TPSN becomes more efficient 
than RBS
global nodePowerMax  % Max power for each node
global nodePowerWarn  % Power where node shows low-power warning
global nodePower  % [1 x nodeCount] array holding power for each node
global gridPower  % [1 x *] array holding the grid's total power (index is number of 
energy-consuming events)
global deadNodes  % Number of total dead nodes in the network
 
% Flood Parameters
global PtLow  % Transmission power (in dB) for flood packets
global PtWLow  % Transmission power (in W) for flood packets
global PrThresholdLow  % Threshold power (in dB) for flood packets
global PrThresholdWLow  % Threshold power (in W) for flood packets
global PtHigh  % Transmission power (in dB) for sync packets
global PtWHigh  % Transmission power (in W) for sync packets
global PrThresholdHigh  % Threshold power (in dB) for sync packets
global PrThresholdWHigh  % Threshold power (in W) for sync packets
global pathLossCoeff  % Path loss coefficient for transmission equation
global guarDistance  % Guaranteed distance for successful transmission
global maxDistanceLow  % Maximum distance nodes are capable of transmitting a flood packet
global maxDistanceHigh  % Maximum distance nodes are capable of transmitting a sync packet
global RXtoTXratio  % Ratio of reception power to transmission power
global pauseInt  % Length of time between plotting generations
 
% Flood Variables
global nodeList  % nodeCount x nodeCount array holding x and y coordinates for each node
global parent  % [1 x nodeCount] array showing parent node (i.e. parent(6) returns the 
parent node of node 6)
global numChildren  % [1 x nodeCount] array showing a node's number of children
global children  % [nodeCount x nodeCount] array showing each node's children
global nodeLevel  % [1 x nodeCount] array showing the generation of a given node (-1 means 
it is an orphan)
global maxGens  % Maximum number of generations possible in the flood
global sourceNode  % Root node for transmissions
global closestNode  % Closest node user clicked to
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global orphanNodes  % Variable to keep track of the number of orphaned nodes
global floodTime  % Time used to flood the network
 
% Time Sync Variables
global syncType  % Type of synchronization being used
global numTx  % Number of transmissions used to perform synchronization
global numRx  % Number of receptions used to perform synchronization
global dropTx  % Number of transmissions used to perform synchronization
global refloodLimit  % Percentage of dead nodes at which network must reflood
global syncTime  % Time used to synchronize the network
 
% Flags
global dataLoadedF  % =1 when the parameters are loaded from a .mat file
global nodesDispersedF  % =1 when the nodes have been plotted
global networkChangedF  % =1 when the xDist, yDist, or nodeCount are changed and the plot 
has not been updated
global continuousF  % =1 when the "Continuous" checkbox is selected
global changeSourceNodeF  % =1 when the "Change Source" checkbox is selected
global tracebackF  % =1 when the "Trace back to Root" checkbox is selected
global viewNodeIDF  % =1 when the "View Node IDs" menu item is selected
global networkLvlDiscF  % =1 when the network has done the level discovery (flooding)
global networkSyncF  % =1 when the network has been completely synchronized
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% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas
 
function DrawFlooding(delay)
% Draw the flooding lines
    GlobalVars
    Color_Map = [
                    0.0 0.0 0.0
                ]
    for i = 1 : maxGens
        [Color_Map_Rows, Color_Map_Cols] = size(Color_Map)
        current_color = Color_Map(mod(i,Color_Map_Rows) + 1, :)
        for j = 1 : nodeCount
            UpdateNodePower()
            if (nodeLevel(j) == i)
                if (Traceback(j,0)) % Check for valid traceback only when the parent is 
found
                    orphanNodes = orphanNodes - 
                    x1 = nodeList(parent(j),1)
                    y1 = nodeList(parent(j),2)
                    x2 = nodeList(j,1)
                    y2 = nodeList(j,2)
                    line([x1 x2], [y1 y2], 'Color', current_color, 'LineWidth', 2)
                else
                    parent(j) =  % If traceback fails, one of the parent nodes is 
depleted, making this node an orphan
                    nodeLevel(j) = 
                end
            end
        end
        if (delay ~= 0)
            pause(delay)
        end
    end
end
 



9/22/06 2:52 AM D:\School Archives\UNT Master's Thesis\WSN Simu...\CalcDistance.m 1 of 1

% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas
 
function [d] = dist(x1, y1, x2, y2)
    d = sqrt(double((x1-x2)^2 + (y1-y2)^2))
end
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% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas
 
function BasicDecayFlooding (handles)
    GlobalVars()
    parent = zeros(1, nodeCount)
    numChildren = zeros(1, nodeCount)
    nodeLevel = zeros(1, nodeCount) - 
    parent(sourceNode) = sourceNode
    nodeLevel(sourceNode) = 
    transmit_list(1) = sourceNode
    current_transmitter = 
    maxGens = 
 
    while (length(transmit_list) > 0)
        childList = []
        maxGens = maxGens + 
        while (current_transmitter <= length(transmit_list))
            i = transmit_list(current_transmitter)  % Transmitter node
            if (nodeLevel(i) > 0 && nodeLevel(i) < maxGens) % Make sure that already 
linked nodes are not re-used
                numTx = numTx + 
                nodePower(i) = nodePower(i) - 
                for j = 1 : nodeCount % Receiver node
                    if (parent(j) == 0 && nodePower(i) >= 1 && nodePower(j) >= 
RXtoTXratio)
                        dist = CalcDistance(nodeList(i,1), nodeList(i,2), nodeList(j,1), 
nodeList(j,2))
                        PrWLow = PtWLow / (dist ^ pathLossCoeff)  % Calculate reception 
power
                        if (IsReceived(dist, 'flood')) % If successful connection is made
                            numRx = numRx + 
                            nodePower(j) = nodePower(j) - RXtoTXratio
                            numChildren(i) = numChildren(i) + 
                            children(i, numChildren(i)) = j
                            parent(j) = i
                            nodeLevel(j) = maxGens
                            childList = [childList j]
                        end
                    end
                end
            end
            current_transmitter = current_transmitter + 
        end
        transmit_list = [Shuffle(childList)]
        current_transmitter = 
    end
    maxGens = maxGens - 
end
 
function [out_list] = Shuffle(in_list)
   p = randperm(length(in_list))
   out_list = []
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   for i = 1 : length(p)
       out_list(i) = in_list(p(i))
   end    
end
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