

ENERGY-AWARE TIME SYNCHRONIZATION IN

WIRELESS SENSOR NETWORKS

Yanos Saravanos, B.S.

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

December 2006

APPROVED:

Robert Akl, Major Professor
Armin Mikler, Committee Member and Graduate

Program Coordinator
Steve Tate, Committee Member
Krishna Kavi, Chair of the Department of Computer

Science and Engineering
Oscar N. Garcia, Dean of the College of

Engineering
Sandra L. Terrell, Dean of the Robert B. Toulouse

School of Graduate Studies

Saravanos, Yanos. Energy-Aware Time Synchronization in Wireless Sensor Networks.

Master of Science (Computer Engineering), December 2006, 102 pp., 6 tables, 16 figures,

references, 33 titles.

I present a time synchronization algorithm for wireless sensor networks that aims to

conserve sensor battery power. The proposed method creates a hierarchical tree by flooding the

sensor network from a designated source point. It then uses a hybrid algorithm derived from the

timing-sync protocol for sensor networks (TSPN) and the reference broadcast synchronization

method (RBS) to periodically synchronize sensor clocks by minimizing energy consumption.

In multi-hop ad-hoc networks, a depleted sensor will drop information from all other

sensors that route data through it, decreasing the physical area being monitored by the network.

The proposed method uses several techniques and thresholds to maintain network connectivity.

A new root sensor is chosen when the current one’s battery power decreases to a designated

value.

I implement this new synchronization technique using Matlab and show that it can

provide significant power savings over both TPSN and RBS.

 ii

Copyright 2006

by

Yanos Saravanos

 iii

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Robert Akl for his encouragement and advice. The

research and studies I have done with Dr. Rob have been wonderful learning experiences for me.

I also would like to thank my committee members Dr. Armin Mikler and Dr. Steve Tate

not only for their insight and thoughts into my research, but also for their encouragement during

my studies while at the University of North Texas. Thanks also go to all my friends for helping

me smile and relax, regardless of how stressful the day has been. I am fortunate to be surrounded

by such a caring and fun-loving group.

Finally, I want to thank my parents for their continuous love and support throughout my

life. I am very lucky to have had their leadership and values shape my character, and I hope that

someday I develop the wisdom and patience that they have shown with me.

 iv

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ...iii

LIST OF TABLES.. v

LIST OF FIGURES ... vi

Chapter

1. INTRODUCTION .. 1
Wireless Sensor Network Overview... 1
Objectives ... 3
Organization.. 4

2. RELATED WORK IN WSN.. 5

NTP... 8
GPS ... 9
Media Access Control Issues .. 10

3. WSN TIME SYNCHRONIZATION ALGORITHMS 13

RBS... 13
RBS Algorithm and Analysis ... 14
RBS Issues .. 17
TPSN... 18
TPSN Algorithm and Analysis ... 19
TPSN Issues .. 22

4. ENERGY-AWARE TIME SYNCHRONIZATION .. 24

Hybrid Flooding.. 26
Hybrid Synchronization.. 28
Energy Depletion .. 32

5. RESULTS AND ANALYSIS... 34

Hybrid Algorithm Validation.. 34
Synchronization Power Reduction.. 39

6. CONCLUSIONS... 51

Summary ... 51
Future Work. ... 53

APPENDIX: MATLAB SIMULATION CODE.. 55

BIBLIOGRAPHY... 100

 v

LIST OF TABLES

Page

1. Average Number of Transmissions .. 40

2. Standard Deviation for Transmissions.. 41

3. Average Number of Receptions.. 41

4. Standard Deviation for Receptions ... 42

5. Average Energy Consumption.. 43

6. Standard Deviation of Energy Consumption .. 44

 vi

LIST OF FIGURES

Page

1. RBS synchronization of a wireless sensor network.. 17

2. TPSN synchronization of a wireless sensor network.. 22

3. Uniformly distributed sensors with high transmission power (left) and with lower
transmission power (right) .. 24

4. Randomly distributed sensors with high transmission power (left) and with lower
transmission power (right) .. 25

5. Flooding a wireless sensor network: a sync_req packet is initially transmitted by the root
node and is then re-transmitted by each receiver.. 28

6. Hybrid synchronization of a wireless sensor network .. 32

7. Mica2DOT synchronization comparison.. 35

8. MicaZ synchronization comparison.. 37

9. Synchronization comparison for architecture with n=6.. 38

10. Synchronization comparison for architecture with n=10.. 39

11. Synchronization comparison for 250 sensors ... 45

12. Synchronization comparison for 500 sensors ... 46

13. Synchronization comparison for 750 sensors ... 47

14. Synchronization comparison for 1000 sensors ... 48

15. Synchronization comparison for 1250 sensors ... 49

16. Synchronization comparison for 1500 sensors ... 50

 1

CHAPTER 1

INTRODUCTION

Time synchronization is a crucial aspect of any networked system. The majority

of research in this field has concentrated on traditional high-speed computer networks

with few power restraints, leading to the global positioning system (GPS) [1] and the

network time protocol (NTP) [2]. These conventional networks are effective for

communication of large amounts of data, typical of local area networks (LAN).

Wireless Sensor Network Overview

Over the past few years, applications have been developed to monitor

environmental properties such as temperature and humidity; they can also be used to

analyze motion of animals or vehicles. One of the most important requirements for these

monitoring applications is unobtrusiveness; this creates a need for wireless ad-hoc

networks using very small sensing nodes. These special networks are called wireless

sensor networks (WSN). These networks are built from many wireless sensors in a high-

density configuration to provide redundancy and to monitor a large physical area.

WSNs can be used to detect traffic patterns within a city by tracking the number

of vehicles using a designated street. If an emergency arises, the network can relay the

information to the city hall and notify police, fire, and ambulance drivers of congested

streets. An application could even be designed that suggests the fastest route to the

emergency area.

 2

Another emergency condition could arise should a chemical plant be damaged

and develop a leak, creating a toxic fume cloud that could endanger an entire city [3].

Sensors could be deployed from the safety of a plane above the cloud. As the sensors fall

through the fumes, they could determine the size of the cloud, as well as the wind speed

which propels the cloud. The sensors could then relay this information either to the plane

or to a unit on the ground, which could then suggest evacuations according to the cloud’s

projected path. Changes in wind speed and direction could be detected from the plane

above the cloud, so the projected path could be updated in real-time as well.

When compared to computer terminals in LANs, wireless sensors must operate on

very low capacity batteries to minimize their size to about that of a quarter. The nodes

use slow processing units to conserve battery power. A typical sensor node such as

Crossbow’s Mica2DOT operates at 4 MHz with 4 Kb of memory and has a radio

transceiver operating at up to 15 Kbps [4]. Radio transmissions consume by far the

majority of the battery’s energy, so even with this low-power hardware, a sensor can

easily be depleted within a few hours if it is continuously sending transmissions.

With the emergence of WSNs, current LAN synchronization methods will not

work efficiently. GPS provides good synchronization accuracy, but requires a very large

amount of power from the sensors. In a power-constrained sensor, this synchronization is

infeasible. NTP is also infeasible since it is designed for traditional computer networks

and will not scale well for wireless sensor networks. Some new synchronization methods

have been developed specifically for sensor networks, such as the timing-sync protocol

for sensor networks (TPSN) and the reference broadcast synchronization method (RBS).

 3

Objectives

RBS and TPSN both achieve accurate clock synchronization within a few

microseconds of uncertainty. However, they are both designed for networks with a small

number of sensors and are not specifically geared towards energy conservation; although

these algorithms will work for larger networks, their energy consumption becomes

inefficient and network connectivity is not maintained once nodes begin losing power.

Simulating each of these methods shows that synchronizing a large sensor network

requires an unnecessarily large number of transmissions, which will quickly deplete

sensors and reduce the network’s coverage area.

This work concentrates on the following aspects of WSNs:

1. Design a hybrid method between RBS and TPSN to reduce the number of

transmissions required to synchronize an entire network.

2. Extend single-hop synchronization methods to operate in large multi-hop

networks.

3. Verify that the hybrid method operates as desired by simulating against RBS

and TPSN.

4. Maintain network connectivity and coverage.

 4

Organization

Chapter 0 explores wireless sensor networks in more detail. Applications for

WSN time synchronization, such as routing and localization, are listed and described in

detail. Previous research in these areas is also outlined in this chapter.

Chapter 0 describes in detail how RBS and TPSN operate. Both of these

algorithms provide high accuracy, but do not concentrate on energy efficiency in large

multi-hop networks. This chapter will provide a benchmark to which the presented

method can be compared to.

Chapter 0 discusses the details of the hybrid method. An efficient

synchronization method is used depending on the number of receivers for each sensor.

Once the source sensor’s battery power drops below an established threshold, a new

source node is chosen and the network is re-established. Assumptions will also be

described in this chapter.

Chapter 0 presents the energy-consumption data and simulation results from our

method. Our data is then compared to RBS and TPSN as tested in various network

topologies.

Chapter 0 provides conclusions and summaries of the advantages of the hybrid

method and comparisons to established sensor network synchronization methods. This

chapter will also highlight future work that could be done to further improve upon power

consumption.

The Matlab source code for all simulations is provided in the appendix.

 5

CHAPTER 2

RELATED WORK IN WSN

When wireless sensor networks were first being developed, the main topic of

research involved reliability and routing. WSNs are usually deployed in relatively

inaccessible environments such as heavily forested areas or within buildings, where using

wired networks are impractical. Consequently, transmissions are unreliable and lost

packets are common. Equation (2.1) shows how signal power fades as it travels further

from the transmitter:

 T
R c

PP
d

= , (2.1)

where PT is the power of the transmitted signal, d is the distance from the transmitter, and

c is the path loss coefficient, which usually varies from between 2 and 5. These typical

environments have large path loss coefficients because of signal fading from diffractions,

reflections, and scattering off of walls and foliage. SCALE (Simple Connectivity

Assessment in Lossy Environments) is a tool developed for Mica2 sensors to measures

packet delivery [5]. Using SCALE, research has verified the above fading effects on

sensor networks. It was shown that outdoor urban environments with large buildings

disrupt wireless signals more so than do doors and walls from within buildings. Flooding

algorithms such as the ones described in [6] and [7] have been used to study multi-hop

routing in WSNs. Unreliable networks have several issues that were uncovered with this

algorithm:

• Backward links: a link that transmits flood packets back towards the source.

 6

• Long links: a link that is significantly longer than would be expected given the

transmission power level.

• Stragglers: sensors that do not receive flood packets, despite having a high

probability of reception from a neighboring transmitter.

• Clustering: a node that connects to a very large number of receivers.

Span is an algorithm that reduces a network’s energy consumption while

maintaining its topology as well as its sensing effectiveness [8]. Each node determines

whether it should sleep or become a coordinating node that forwards packets. This

decision is based on an estimation of the number of neighbors that would benefit from the

node’s state. The network’s lifetime increases as more nodes are deployed and as the

sleep time for each node is increased.

ASCENT is an algorithm that changes the network’s topology in an effort to

maximize the lifetime of each sensor [9], [10]. In this case, each node will self-configure

itself based upon its connectivity and its participation in the network’s topology. Timers

are used to switch a sensor’s state between sleep, passive, test, and active. A sleeping

sensor’s radio is turned off to save power, while an active sensor’s radio is turned on to

allow the sensor to communicate with its neighbors. A sensor in the test phase monitors

the number of neighbors and its data loss rate to determine whether it is beneficial to join

the network; if one of these parameters is not above a certain threshold, then the node

will become passive, otherwise it will become active. A passive node will transition back

to the test phase if the data loss rate is low, the number of neighbors is below a threshold,

or if a help packet is received. If none of these parameters are met, the node goes to sleep

and transitions back to the passive phase once a timer expires. When the thresholds and

 7

timer lengths are set correctly, ASCENT has reduced packet loss while decreasing energy

consumption. The algorithm must still be tested for large networks to determine its

scalability.

One of the most common uses for wireless sensor networks is for localization and

tracking. Tracking of a single object is relatively simple since data can be handed-off

from sensor to sensor as the object moves through the network. Information-driven

sensor query (IDSQ) is one tracking method that works well, even for multiple targets

[11]. It defines a “belief state,” which contains the position and velocity of each target.

Previous tracking methods scaled very poorly since every sensor would update its belief

state, requiring a large amount of network communication. With IDSQ, only nodes that

have useful and non-redundant information will have their belief state updated.

Furthermore, IDSQ tracks multiple targets more efficiently by splitting up the network

into sub-sections, each of which is assigned a leader node that keeps track of when

objects enter and leave the area. Contour tracking at the boundaries can be accomplished

by using triangulation and a contour threshold [12].

Sensor networks have also been used to monitor conservation habitats for wildlife

[13], [14], [15]. Sensors area being used to monitor the nesting habits of a coastal bird on

Great Duck Island, 10 miles off of the coast of Maine. In the past, researchers would

have to go to the island and physically disrupt the nests to count eggs and to measure

temperature and humidity. Now however, small sensors are able to do these same

observations without disrupting the birds’ nesting habits.

Localization and tracking are also used when attempting to locate a sniper’s

location from the gun’s muzzle blast [16]. Each sensor will detect the blast noise at

 8

unique times but within microseconds of each other, so the only way to accurately

compare observations is if all of the sensors are well-synchronized [17]. If the sensors

know their locations relative to one another, then the path of the bullet can be reproduced

from the observations of the blast noise, ultimately finding the point of origin.

Target tracking applications such as the ones just described require some degree

of synchronization amongst nodes to provide useful observation comparisons. A

significant distinction between each application is the degree of synchronization that is

required; when tracking an animal or a vehicle, up to one millisecond of accuracy could

be required, whereas in the case of sniper localization, the sensors must be synchronized

to within a few microseconds. A high-accuracy algorithm will require more

communication amongst nodes, thereby using more energy, whereas a less accurate

method will usually require less energy. Some of the synchronization algorithms are

discussed in Sections Error! Reference source not found., 0, and 0.

NTP

One of the first synchronization protocols used for computer systems is the

network time protocol (NTP), first developed in 1985. This protocol uses a relatively

large amount of memory to store data for synchronization sources, authentication codes,

monitoring options, and access options [18], [19]. As mentioned earlier, typical wireless

sensor nodes have limited onboard memory; for example, Crossbow’s popular Mica2 and

Mica2DOT sensors each have 4KB of configurable memory. A large sensor network will

require large files for synchronization sources and codes. Even if these configuration

files can be programmed into each node, it would leave very little memory to hold the

 9

data monitored by the sensor, limiting NTP’s use for WSNs. Furthermore, NTP’s

synchronization accuracy is within 10 ms over the Internet, and up to 200 μs in a LAN;

these specifications are usually adequate for computer networks, but do not meet the

requirements for most sensor network applications.

GPS

Global positioning system (GPS) is another accurate and commonly used

synchronization protocol. The Department of Defense (DoD) began launching

NAVSTAR (Navigation Signal Timing and Ranging) GPS satellites in 1978 to allow the

U.S. military to localize any object on the ground to within a few feet [20]. Although

commercial applications could use GPS when it was first created, the technology was

classified so unauthorized users would have inaccurate results, usually to an accuracy of

100 meters at best. This technology was de-classified in 2000, leading to the

development of commercial GPS navigation systems with an accuracy of a few

centimeters. The NAVSTAR GPS currently consists of 24 active satellites which

continuously transmit their own position and a time code in the microwave spectrum at

1.5 GHz. By measuring the relative arrival times of signals from several satellites and

using triangulation, a GPS receiver can determine its own position. The radio signals are

electromagnetic waves traveling at the speed of light, so the propagation delay is only 50

ms from an altitude of 10,000 miles, so GPS's triangulation method requires very precise

time information from the satellites. The master clock on each satellite is therefore kept

within 1 μs of the U.S. Naval Observatory's Master Clock [21], [22].

 10

At first glance, GPS would seem to be an ideal candidate for time synchronization

for wireless sensor networks since the algorithm is wireless and the local node clocks will

always synchronize to 1 μs of each other. However, there are a few requirements that

GPS fails to meet. The receiver is 4.5 inches in diameter, more than 4 times the size of a

typical sensor node, and also requires an external power source [23]. These two traits

counteract the goal of using small and mobile nodes to create a wireless sensor network.

In addition, the GPS receiver draws 120 mA while the Mica2DOT wireless sensor only

uses 25 mA when transmitting at maximum power. Lastly, signal attenuation from

scattering and diffraction is significant since GPS operates at a high frequency, which

forces the receiver to have an unobstructed view of a large portion of the sky to

accurately receive the satellite signals. This line-of-sight requirement cripples GPS’s use

for sensor networks dispersed within a building or in a heavily forested area.

Media Access Control Issues

A significant amount of research has been done on the medium access control

(MAC) layer. These protocols control how sensors access the radio channel to

communicate with neighbors, so energy can be saved by using the channel more

efficiently. Two of the classic MAC protocols are ALOHA [24] and carrier-sense

multiple access (CSMA) [25]. In ALOHA, packets can either be transmitted immediately

after they are generated or on the next available slot. Dropped packets from collisions are

simply re-transmitted later. In CSMA, a sensor will listen to the MAC layer before it

transmits a packet. This MAC protocol is currently being used in many wireless

 11

technologies, including 802.11. Both of these protocols use energy very inefficiently, so

new energy-aware modifications to the MAC layer have been created.

Packet collisions are one of the most wasteful phenomena in wireless

communication, since these packets must be re-transmitted in full. One way to greatly

reduce collisions is by using time division multiple access (TDMA), where each sensor

would be given a unique time slot in which to transmit information. Low-energy

adaptive clustering hierarchy (LEACH) is an application of TDMA towards wireless

sensor networks [26]. It organizes nodes into clusters with one head node, and applies

TDMA within each cluster. Bluetooth uses a similar approach [27], using clusters called

piconets, where devices are given the right to transmit only when their time slot becomes

available. Since each sensor requires a unique transmission time slot, LEACH and other

TDMA-type algorithms do not scale very well with larger networks. In addition, sensors

are not allowed to directly communicate with each other, so very accurate time

synchronization is required to ensure that one sensor’s transmissions do not spill over

into another sensor’s time slot.

Instead of using TDMA, contention-based algorithms allow sensors to

communicate directly with each other, removing the dependency on accurate time-

synchronization. S-MAC is a modification to the MAC protocol designed specifically for

WSNs to increase energy efficiency [28]. To do this, a low duty-cycle is first obtained by

scheduling the nodes to transmit depending on their remaining battery life. When

transmitting a packet, the S-MAC adds a duration field to notify other nodes how long of

a packet transmission is needed. The nodes will therefore immediately know for how

long they must refrain from sending their own data, even without requiring

 12

synchronization. T-MAC improves upon S-MAC by adding the ability for a variable

duty-cycle to compensate for inconsistent data rates [29].

 13

CHAPTER 3

WSN TIME SYNCHRONIZATION ALGORITHMS

Although traditional synchronization methods are effective for computer

networks, they are ineffective in sensor networks. New synchronization algorithms

specifically designed for wireless sensor networks have been developed and can be used

for several applications.

RBS

Clearly GPS and NTP are not very effective in wireless sensor applications. One

of the first major research attempts to create a time synchronization algorithm specifically

tailored for sensor networks led to the development of reference broadcast

synchronization (RBS) in 2002 [30]. This algorithm defines the critical path, which is the

portion of the network where a significant amount of clock uncertainty exists. A long

critical path results in high uncertainty and low accuracy in the synchronization. RBS

improves upon NTP by reducing the length of the critical path, which can improve the

accuracy of the synchronization to 7 μs in light traffic. There are four main sources of

delays that must be accounted for to have accurate time synchronization:

• Send time: this is the time to create the message packet.

• Access time: this is a delay when the transmission medium is busy, forcing

the message to wait.

• Propagation time: this is the delay required for the message to traverse the

transmission medium from sender to receiver.

 14

• Receive time: similar to the send time, this is the amount of time required

for the message to be processed once it is received.

RBS Algorithm and Analysis

The RBS algorithm can be split into three major events:

1. Flooding: a transmitter broadcasts a synchronization request packet.

2. Recording: the receivers record their local clock time when they initially

pick up the sync signal from the transmitter.

3. Exchange: the receivers exchange their observations with each other.

RBS synchronizes each set of receivers with each other as opposed to traditional

algorithms that synchronize receivers with senders. These latter algorithms have a long

critical path, starting from the initial send time until the receive time. For this reason,

NTP’s accuracy is severely limited, as discussed previously. RBS uses a relative time

reference between nodes, eliminating the send and access time uncertainties. The

propagation delay of signals is extremely fast from point-to-point; a set of nodes

separated by 100 meters will have a propagation delay of 340 ns, so this delay can be

ignored when dealing in the microsecond scale. Lastly, the receive time is reduced since

RBS uses a relative difference in times between receivers. Also, the time of reception is

taken when the packet is first received in the MAC layer, eliminating uncertainties

introduced by the sensor’s processing unit.

The authors of RBS reported 11.2 μs for the synchronization error on the MICA2

wireless sensors. However, the motes have an integrated transmitter with a processor,

requiring additional CPU cycles and yielding this relatively inaccurate precision (this

 15

hypothesis was verified when RBS was tested using much more powerful IPAQs units,

where the errors were 6.3 μs in light traffic and 8.4 μs in heavy traffic). By comparison,

the errors for NTP using the IPAQs were 51 μs in light traffic and 1542 μs in heavy

traffic. RBS clearly outperforms NTP, even on vastly inferior hardware.

There are two unique implementations of RBS. The simplest method is designed

for very high accuracy for sparse networks, where transmitters have at most two

receivers. The transmitter can broadcast a synchronization request to the two receivers,

which will record the times at which they receive the request, just as the algorithm

describes. However, the receivers will exchange their observations with each other

multiple times, using a linear regression to lower the clock offset. After 30 exchanges,

the accuracy is improved from 11 μs to 1.6 μs.

The other version of the RBS algorithm involves the following steps: the

transmitter sends a reference packet to two receivers; each receiver checks the time when

it receives the reference packet; the receivers exchange their recorded times. The main

problems with this scheme are the nondeterminism of the receiver, as well as clock skew.

The receiver’s nondeterminism can be resolved by simply sending more reference

packets. The clock skew is resolved by using the slope of a least-squares linear

regression line to match the timing of the crystal oscillators.

RBS can be adapted to work in multihop environments as well. Assuming a

network has grouped clusters with some overlapping receivers, linear regression can be

used to synchronize between receivers that are not immediate neighbors. However, it is

more complicated than the single-hop scenario since there will be timestamp conversions

 16

as the packet is relayed through nodes. This extra complication is manifested in larger

synchronization errors.

Figure 1 shows how a sensor network is synchronized by using RBS.

 17

Figure 1: RBS synchronization of a wireless sensor network.
The initial solid dark lines represent the network’s topology after flooding; the solid light lines represent
transmitter-to-receivers communication; the dashed lines represent receiver-to-receiver transmissions.

RBS Issues

There are some issues with the RBS synchronization algorithm that must be

addressed in an energy-aware sensor network. First, the receiver-to-receiver

synchronization method is effective at reducing the critical path to increase the accuracy,

but RBS scales poorly with dense networks where there are many receivers for each

 18

transmitter. Given n receivers for a single transmitter, the number of transmissions

increases linearly with n, but the number of receptions increases as O(n2). The following

numbers of transmissions and receptions exist:

 RBSTX n= , (3.1)

21

1

(1)
2 2

n

RBS
i

n n n nRX n i n
−

=

− +
= + = + =∑ . (3.2)

For a large number of receivers per transmitter, this method becomes infeasible due to

energy constraints.

Lastly, RBS does not account for lost network coverage when nodes begin losing

power. Should a transmitting node be depleted, all of its receivers will be dropped from

the network, so measures should be taken to re-establish connectivity when the coverage

decreases beyond some threshold value.

TPSN

The timing-sync protocol for sensor networks (TSPN) was developed in 2003 in

an attempt to further refine time synchronization beyond RBS’s capabilities [31], [32].

TPSN uses the same sources of uncertainty as RBS does (send, access, propagation, and

receive), with the addition of two more:

• Transmission time: the time for the packet to be processed and sent

through the RF transceiver during transmission.

• Access time: the time for each bit to be processed from the RF transceiver

during signal reception.

 19

TPSN Algorithm and Analysis

The TPSN works in two phases:

1. Level discovery phase: this is a very similar approach to the flooding

phase in RBS, where a hierarchical tree is created beginning from a root

node.

2. Synchronization phase: in this phase, pair-wise synchronization is

performed between each transmitter and receiver.

In the level discovery phase, each sensor node is assigned a level according to the

hierarchical tree. A pre-determined root node is assigned as level 0 and broadcasts a

level_discovery packet. Sensors that receive this packet are assigned as children to the

transmitter and are set as level 1 (they will ignore subsequent level_discovery packets).

Each of these nodes broadcasts a level_discovery packet, and the pattern continues with

the level 2 nodes.

In the synchronization phase, pair-wise synchronization is performed between the

transmitter and receiver nodes using a 2-way handshake. Given a parent node A and a

child node B, node A sends a synchronization_pulse to B, timestamped at T1. Once node

B receives the pulse, it timestamps at T2, then sends an ack packet back to A at T3. The

parent node receives the ack packet and timestamps one last time at T4. These 4

timestamps provide estimates for clock drift (3.3) and propagation delay (3.4):

 () ()2 1 4 3
2

T T T T− − −
Δ = , (3.3)

 () ()2 1 4 3
2

T T T T
d

− + −
= . (3.4)

 20

The synchronization error can be calculated from the clock drift between the two nodes

as well as the drift at T4:

 4
A B

tError D →= Δ − . (3.5)

The following equations characterize T2 and T4:

 12 1 A B
A A B B tT T S P R D →

→= + + + + , (3.6)

 34 3 B A
B B A A tT T S P R D →

→= + + + + ,

 44 3 A B
B B A A tT T S P R D →

→≈ + + + − , (3.7)

where SA, A BP → , and RB refer to the time to send the packet at node A (send time + access

time + transmission time), the propagation time between nodes A and B, and the time to

receive the packet at node B, respectively.

Equations (3.6) and (3.7) can be combined and used in (3.5) to get the theoretical

error for TPSN:

 1 4
4 2 2 2 2

A BUC UC UC
A B t t

TPSN t
RDS P RError D

→
→ →= Δ − = + + + . (3.8)

By contrast, the error for RBS as claimed by the TPSN authors is:

 4 1 4
A B UC UC A B

RBS t D t tError D P R RD→ →
→= Δ − = + + . (3.9)

In equations (3.8) and (3.9), SUC, PUC, and RUC refer to the uncertainty in the send time,

propagation time, and receive time respectively. RD is the relative drift between nodes A

and B from time T1 through T4.

Although RBS removes the uncertainty at the sender by exchanging times

amongst receivers, TPSN reduces the remaining uncertainties by a factor of 2 due to the

handshake process that averages the clock drift and propagation delay. However,

 21

TPSN’s uncertainty at the sender can be reduced to an insignificant delay by

timestamping at the MAC layer just before the bits are sent through the transceiver.

Figure 2 shows how a sensor network is synchronized by using TPSN.

 22

Figure 2: TPSN synchronization of a wireless sensor network.
The initial solid dark lines represent the network’s topology after flooding; the subsequent light lines
represent successful transmitter-to-receiver synchronizations.

TPSN Issues

TPSN is a great improvement over RBS in terms of accuracy. Using a 2-way

handshake reduces uncertainty in half since the average of the time differences is used.

The algorithm can be easily applied to multi-hop situations since it scales very well to

dense networks:

 23

 1TPSNTX n= + , (3.10)

 2TPSNRX n= . (3.11)

The main disadvantage that TPSN faces is its energy consumption in sparse networks; a

2-way handshake requires each node to receive a packet and to send one in response. For

a parent node A with two children B and C, node A broadcasts the level_discovery packet,

and then a synchronization_pulse packet. Nodes B and C receive both packets, and then

transmit an ack packet back to node A. This example uses 4 transmissions and 4

receptions for TPSN. In contrast, the same situation would only require 2 transmissions

and 3 receptions when using RBS; node A broadcasts a synchronization request packet

with a timestamp, and then node B sends a second transmission to node C with its

observation (node C can also transmit to node B with the same end result).

In addition, TPSN has the same problem as RBS with respect to lost network

coverage when nodes begin losing power. A dead transmitter node will drop all of its

receivers from the network, lowering the WSN’s coverage area. Network restructuring is

not included in the TPSN algorithm.

 24

CHAPTER 4

ENERGY-AWARE TIME SYNCHRONIZATION

The timing-sync protocol for sensor networks (TPSN) and reference broadcast

synchronization (RBS) are some of the first efforts in creating synchronization algorithms

tailored towards low-power sensor networks. They both have unique strengths when

dealing with energy consumption. RBS is most effective in networks where transmitting

sensors have few receivers, while TPSN excels when transmitters have many receivers.

As previously shown in (2.1), the signal’s power increases linearly with the transmitter’s

power and decreases with an inverse power law with respect to distance. This means that

a transmitter will have more children if it transmits at higher power or if the receivers

have higher sensitivity to pick up weaker signals. These properties can be verified by

building a network from uniformly distributed sensors and by changing the transmitter

power or the reception power threshold, as shown in Figure 3.

Figure 3: Uniformly distributed sensors with high transmission power (left) and with lower transmission
power (right).

 25

However, the sensors are most often randomly distributed and not uniformly

spaced. Manually deploying sensors in a uniform grid is time-consuming and non-covert.

Covertness is critical in battlefield and animal tracking scenarios. It would be best to

drop the wireless sensors from an airplane to avoid disturbing the environment; however,

the sensors would be distributed non-uniformly once they land. Even within buildings,

WSNs are usually non-uniform; nodes can be distributed with uniform distances from

each other, but the path loss is very variable in such an environment, mostly due to

scattering. This property results in a large variance in the number of receivers for each

transmitter, effectively creating a non-uniform sensor distribution. Figure 4 shows how

power affects the flooding in a network with randomly distributed sensors.

Figure 4: Randomly distributed sensors with high transmission power (left) and with lower transmission
power (right).

The work presented in this thesis combines the efforts in various areas of research

presented in the previous chapters to create a hybrid time synchronization algorithm that

minimizes power usage by reducing the number of transmissions between sensors.

 26

Although this method works for both uniform and non-uniform sensor deployment

scenarios, many of the details are derived to best accommodate random sensor placement.

Hybrid Flooding

Before the sensors can be synchronized, a network topology must be created.

Algorithm 1 is used by each sensor node to efficiently flood the network.

Algorithm 1: Hybrid Flooding Algorithm

Accept flood_packets

Set receiver_threshold to low_power

Set num_receivers to 0

If current_node is root node

Broadcast flood_packet

Else If current_node receives flood_packet and is accepting them

Set parent of current_node to source of broadcast

Set current_node level to parent’s node level + 1

Rebroadcast flood request with current_node ID and level

Broadcast ack_packet with current_node ID

Ignore subsequent flood_packets

Else If current_node receives ack_packet

Increment num_receivers

Each sensor is initially set to accept flood_packets, but will ignore subsequent ones in

order not to be continuously reassigned as the flood broadcast propagates. The

 27

num_receivers variable keeps track of the node’s receivers and is used in the

synchronization algorithm. Figure 5 shows the implementation of Algorithm 1.

 28

Figure 5: Flooding a wireless sensor network: a sync_req packet is initially transmitted by the root node
and is then re-transmitted by each receiver.

Hybrid Synchronization

Once the network flooding has been completed, the network can be synchronized

using the determined hierarchy. In networks where the sensors are dispersed at random,

there will be patches of high density node distribution interspersed with lower density

regions. As shown in Figure 4, a transmitter in a high density area will usually have a

 29

large number of receivers, while another transmitter in a lower density section will

usually have 1 or 2 receivers at most. As discussed in section 0, RBS excels when the

transmitter has few receivers. In contrast, TPSN excels with many receivers connected to

each transmitter, as discussed in section 0.

The hybrid algorithm minimizes power regardless of the network’s topology by

choosing the best synchronization technique depending on the number of children

connected to the transmitter. Since the energy required for reception usually differs from

that of a transmission, the ratio of the reception power to the transmission power is

needed in order to find the optimal point at which to switch from receiver-receiver

synchronization to transmitter-receiver synchronization. Equations (3.1), (3.2), (3.10),

and (3.11) are combined below, where α is the ratio of reception-to-transmission power:

 RBS RBS TPSN TPSNTX RX TX RXα α+ × = + × . (4.1)

For example, assume that a reception uses approximately half the power of a

transmission, so α = ½.

 1 1
2 2RBS RBS TPSN TPSNTX RX TX RX+ × = + × , (4.2)

 ()
21 11 2

2 2 2
n nn n n

⎛ ⎞+
+ = + +⎜ ⎟

⎝ ⎠
, (4.3)

2

2 1
4

n nn n+
+ = + , (4.4)

 2 3 4 0n n− − = , (4.5)

 ()()4 1 0n n− + = . (4.6)

Equation (4.6) shows that the energies used by RBS and TPSN on this example platform

are equal when there are 4 receivers per transmitter, so the receiver_threshold value from

 30

the previous algorithm is set to 4 (negative values for receiver_threshold are not

applicable here). With fewer than 4 receivers, the RBS algorithm is more efficient, while

TPSN is better with more receivers. Since the ratio of reception-to-transmission power

can vary for different platforms, the current draws for both reception and transmission are

stored as variables and the receiver_threshold value is calculated at every sensor. This

value is assumed to remain constant throughout the network. In general, the following

equation can be used to determine the receiver_threshold:

 2 23 0n n
α

− − = . (4.7)

Algorithm 2 describes the algorithm used for the hybrid algorithm.

Algorithm 2: Hybrid Synchronization Algorithm

Set receiver_threshold to high_power

If num_receivers < receiver_threshold // Use RBS algorithm

Transmitter broadcasts sync_request

For each receiver

Record local time of reception for sync_request

Broadcast observation_packet

Receive observation_packet from other receivers

Else // Use TPSN algorithm

Transmitter broadcasts sync_request

For each receiver

Record local time of reception for sync_request

Broadcast ack_packet to transmitter with local time

 31

Figure 6 shows the implementation of Algorithm 2 in a wireless sensor network which

has already been flooded.

 32

Figure 6: Hybrid synchronization of a wireless sensor network.
The initial solid dark lines represent the network’s topology after flooding; the solid light lines represent
transmitter-to-receivers communication; the dashed lines represent receiver-to-receiver transmissions.

Energy Depletion

Another issue that the hybrid algorithm addresses when synchronizing a sensor

network is the effect that a depleted sensor has on the topology. Once the battery is

exhausted, the node will be dropped from the network, but so will all of the receivers

depending on it. This loss of connectivity cascades through each receiver, so a drastic

 33

restructuring can occur when a high-level sensor is drained. The hybrid algorithm keeps

track of the number of powered nodes. Once this number decreases below another user-

defined threshold, the network is re-flooded according using the flooding algorithm

described earlier in this section. Should the source node lose power, a new source node is

chosen from the original one’s receivers. These receivers communicate their power

levels with each other and the one with the most remaining energy is elected as the new

root node, as show in Algorithm 3.

Algorithm 3: Root Node Election Algorithm

If cur_node_level == 1 and cur_node_power allows 1 more TX

Broadcast elect_packet with cur_node_ID

If cur_node_level == 2

Broadcast elect_packet with cur_node_ID, cur_node_power

If cur_node receives elect_packet and elect_packet_power >= cur_node_power

Set elect_packet_ID to root node

In addition, receivers will only analyze the sync_request packets from their

respective transmitters when using the TPSN-style synchronization. This saves

additional battery power since the receivers do not have to analyze packets they overhear

from other broadcasting transmitters. Lastly, the dropped packets are monitored. This is

a useful statistic since it keeps track of algorithm efficiency and wasted energy. Dropped

packets also allow us to compare various network topologies and determine which ones

allow for the most energy conservation.

 34

CHAPTER 5

RESULTS AND ANALYSIS

Several simulations were run to compare the power consumption of the timing-

sync protocol for sensor networks (TSPN), the reference broadcast synchronization

(RBS), and the hybrid algorithm developed in chapter 0.

Hybrid Algorithm Validation

The first set of simulations were run to validate (4.7), which is the basis for the

hybrid algorithm’s behavior. Using this equation, a transmitting sensor can dynamically

switch between RBS and TPSN by simply comparing the number of connected receivers

to the reception/transmission power ratio. In this experiment, this ratio is changed in

order to observe how each of the algorithms is affected. All other parameters are kept

constant: 20 simulations are run over a 1000m x 1000m area which is randomly

populated with 500 sensors, and the path loss coefficient is set to 3.5. In each simulation,

the receiver_threshold value is changed from 1 to the largest number of receivers

connected to a sensor. The hybrid synchronization algorithm is executed for each of

these receiver_threshold values and the energy consumption is stored and compared to

the consumption of TPSN, RBS, and the optimal hybrid synchronization algorithm. Each

of the data points is plotted, along with a line representing the average from all of the

simulations.

For the MICA2Dot platform, a reception uses approximately 24 mW of power,

while a transmission requires 75 mW at -5 dBm [4], so:

 35

 24 0.32
75

α = = (5.1)

Equation (4.7) is solved with this value for α to get:

 2 2
24
75

2 253 3 0
4

n n n n− − = − − = (5.2)

 3 9 25 4.42
2

n + +
= ≈ (5.3)

The hybrid algorithm will use the least amount of energy when the receiver_threshold is

set to 4.42. This means that transmitters with 4 or fewer sensors will use RBS for

synchronization while those with 5 or more receivers will use TPSN. Figure 7 illustrates

how changes in the receiver_threshold value affect the hybrid algorithm.

Figure 7: Mica2DOT synchronization comparison.

 36

The energy consumption from the hybrid algorithm when using the optimal

receiver_threshold value is lower than both TPSN and RBS. As expected from (5.3), the

minimum value is found between values of 4 and 5. Lastly, the spread amongst data

points increases dramatically as the receiver threshold increases beyond 13.

More importantly, setting the receiver_threshold value to 1 will force a

transmitter to use TPSN, as shown in Algorithm 2. The hybrid algorithm in this case will

have the same energy consumption as TPSN. On the other hand, a receiver_threshold set

to the largest number of receivers connected to a transmitter will force a transmitter to

use RBS, so this algorithm will consume the same amount of energy as the hybrid one.

The hybrid synchronization algorithm is very dynamic and will adapt itself to

multiple equipment specifications. The power requirements for the MicaZ sensor

platform are drastically different from the Mica2DOT platform; MicaZ uses 59.1 mW for

a reception, but only uses 42 mW for each transmission at -5 dBm [33], so:

 59.1 1.407
42

α = ≈ (5.4)

Solving equation (4.7) just as before, the following receiver_threshold value is found:

 3.42n ≈ (5.5)

Not only does the MicaZ platform have a higher α value, it actually uses more power to

receive information than to transmit it. In order to minimize energy consumption, the

hybrid algorithm will automatically adjust the sensors so that any transmitter with 3 or

fewer receivers will use RBS, while those with 4 or more receivers will use TPSN.

Figure 8 shows the hybrid algorithm’s performance when using the MicaZ platform.

 37

Figure 8: MicaZ synchronization comparison.

When using MicaZ, the optimal receiver_threshold value is 3.42. This property is

reflected in the above graph, where the local minimum has shifted further to the left when

compared to the Mica2DOT platform.

Despite the differences in architecture, both of the above examples yield relatively

similar values for the optimal receiver_threshold. Assume that there is an improvement

in the Mica2DOT platform which allows for much lower power in receiving mode. Each

transmission still requires 75 mW at -5 dBm, but only 8 mW is needed for a reception.

The reception/transmission power ratio now becomes:

 8 0.107
75

α = ≈ (5.6)

 38

The optimal receiver_threshold value now becomes:

 6.08n ≈ (5.7)

Figure 9 illustrates the energy usage when the receiver_threshold changes.

Figure 9: Synchronization comparison for architecture with n=6.

In this example architecture, the hybrid algorithm produces a local minimum

when using the optimal receiver_threshold, as was expected. It is also interesting to note

that now, RBS becomes more energy efficient than TPSN.

Another example would be an architecture which uses 75 mW for transmitting

and 2 mW for receiving, so α=0.0267 and n=10.29. This new threshold will move the

graph’s local minimum further to the right, as shown in Figure 10.

 39

Figure 10: Synchronization comparison for architecture with n=10.

Once again, the hybrid algorithm correctly predicts the minimum for energy

consumption.

Synchronization Power Reduction

The next set of simulations demonstrates the algorithm’s reduction in power

consumption in several network sizes. The number of sensors was changed from 250 up

to 1500, in increments of 250. Just as before, 20 simulations were run over a 1000m x

1000m area which was randomly populated with 500 sensors, and the path loss

 40

coefficient was set to 3.5. The Mica2DOT platform was used and the ratio of

reception/transmission power remained fixed.

The receiver_threshold value is once again changed from 1 to the largest number

of receivers connected to a sensor. The hybrid synchronization algorithm is executed for

each of these receiver_threshold values and the energy consumption is stored and

compared to the consumption of TPSN, RBS, and the optimal hybrid synchronization

algorithm. Each of the data points is plotted, along with a line representing the average

from all of the simulations.

Table 1: Average Number of Transmissions
Sensors 250 500 750 1000 1250 1500

RBS 249 499 749 999 1249 1499
TPSN 351 664 955 1245 1531 1810
Hybrid 261 533 800 1065 1331 1593

 RBS Savings -5.06 % -6.76 % -6.84 % -6.59 % -6.59 % -6.26 %
TPSN Savings 25.58 % 19.72 % 16.20 % 14.50 % 13.06 % 12.01 %

Table 1 shows that RBS requires the fewest number of transmissions, while TPSN

uses the most. The results for RBS and for TPSN both increase linearly with network

size, as was expected from (3.1) and (3.10), respectively. The hybrid algorithm is up to

6.8% less efficient than RBS. However, when compared to TPSN, the hybrid algorithm

performs very well. For small networks, there is up to a 25% savings in energy. As the

number of sensors is increased, the hybrid algorithm efficiency drops to a 12% advantage

over TPSN.

Table 2 shows the standard deviation in the number of transmissions for each of

the synchronization algorithms. These results are important in determining how sensitive

an algorithm is to modifications in the network’s topology and sensor density.

 41

Table 2: Standard Deviation for Transmissions
Sensors 250 500 750 1000 1250 1500

RBS 0.37
0.15%

0.00
0.00 %

0.00
0.00 %

0.00
0.00 %

0.00
0.00 %

0.00
0.00 %

TPSN 7.59
2.16 %

8.88
1.34 %

14.31
1.50 %

14.48
1.16 %

18.22
1.19 %

22.09
1.22 %

Hybrid 1.61
0.61 %

2.29
0.43 %

1.89
0.24 %

5.02
0.47 %

4.29
0.32 %

4.24
0.27 %

It is interesting to note that the standard deviation for RBS transmissions is

usually 0, which shows that the number of transmissions is strictly dependent on the

number of sensors in a network, regardless of network topology. The only exception

occurred when 250 sensors were used, and was most likely caused when some sensors

that did not receive a flood_packet and were therefore not used for synchronization.

The table shows that there is very little variation in the number of transmissions

for TPSN. In fact, the largest standard deviation for TPSN comes from smaller networks.

Similar results appeared when the hybrid algorithm was simulated, but with even less

variability. Both of these algorithms are therefore only slightly affected by changes in

sensor placement and sensor density.

Table 3 shows results for the number of receptions when using each of the

algorithms.

Table 3: Average Number of Receptions
Sensors 250 500 750 1000 1250 1500

RBS 615 1709 3421 5510 7833 11128
TPSN 498 998 1498 1998 2498 2998
Hybrid 447 924 1415 1898 2386 2879

RBS Savings 27.44 % 45.94 % 58.65 % 65.55 % 69.54 % 74.13 %
TPSN Savings 10.27 % 7.43 % 5.57 % 4.99 % 4.47 % 3.97 %

Although the number of receptions when using TPSN increases linearly with

network size, as would be expected from (3.11), this number increases much more

 42

quickly when using RBS, as illustrated in (3.2). The hybrid algorithm greatly reduces the

number of receptions when compared to RBS; for small networks, the advantage is 27%,

but it increases to over 74% in networks with a large number of sensors. In contrast, the

hybrid algorithm has a large advantage over TPSN in small networks, but that advantage

decreases as more sensors are added.

Table 1 and Table 3 both show that the hybrid algorithm mimics RBS’s behavior

for small networks. However, the hybrid algorithm changes its behavior as more sensors

are included and begins resembling TPSN for very large networks.

Table 4 shows the standard deviation in the number of receptions for each of the

synchronization algorithms. Similar to Table 2, these results help to determine how

sensitive an algorithm is to modifications in the network’s topology and sensor density.

Table 4: Standard Deviation for Receptions
Sensors 250 500 750 1000 1250 1500

RBS 54.71
8.89 %

150.09
8.78 %

365.43
10.68 %

524.32
9.52 %

614.26
7.84 %

1129.50
10.15 %

TPSN 0.73
0.15 %

0.00
0.00 %

0.00
0.00 %

0.00
0.00 %

0.00
0.00 %

0.00
0.00 %

Hybrid 11.73
2.63 %

13.16
1.42 %

15.89
1.12 %

14.75
0.78 %

15.99
0.67 %

16.77
0.58 %

The table shows that there is very large variation in the number of receptions for

RBS, meaning that the number of receptions when using RBS is highly dependent on the

topology of the network. The table also shows that the deviation in receptions when

using TPSN is usually 0, with the exception once again in the 250 sensor network. Just

as before, this exception is due to orphaned nodes which do not participate in the

synchronization. The hybrid algorithm has a relatively low deviation, which decreases

 43

further with large numbers of sensors. This behavior is attributed to the hybrid algorithm

behaving similarly to TPSN when the network is large.

It is important to compare the number of transmissions and receptions amongst

algorithms to understand each one’s advantages and drawbacks, but the ultimate goal in

these experiments is to minimize the total amount of energy expended when

synchronizing the network. Since the transmitted packets are the same size for every

algorithm, the radio and processor will be operating for a constant length of time, so the

energy consumption can be calculated as follows:

 energy numTx numRxα= + × . (5.8)

Table 5 compares the energy values amongst algorithms.

Table 5: Average Energy Consumption
Sensors 250 500 750 1000 1250 1500

RBS 446 1046 1844 2762 3756 5060
TPSN 511 983 1434 1885 2331 2770
Hybrid 404 828 1253 1672 2095 2514

RBS Savings 9.29% 20.79% 32.04% 39.46% 44.22% 50.31%
TPSN Savings 20.80% 15.73% 12.65% 11.28% 10.11% 9.23%

Table 2 shows that all of the standard deviations for transmissions are relatively

low, while RBS usually has a constant number. In contrast, Table 4 shows that while the

standard deviations for receptions when using RBS are very high, TPSN usually has a

constant number of receptions. Finally, Table 6 compares the standard deviation for each

of the algorithms.

 44

Table 6: Standard Deviation of Energy Consumption
Sensors 250 500 750 1000 1250 1500

RBS 17.38
3.90%

48.03
4.59%

116.94
6.34%

167.78
6.07%

196.56
5.23%

361.44
7.14%

TPSN 7.67
1.50%

8.88
0.90%

14.31
1.00%

14.48
0.77%

18.22
0.78%

22.09
0.80%

Hybrid 4.00
0.99%

4.72
0.57%

5.23
0.42%

6.85
0.41%

6.33
0.30%

6.84
0.27%

Although the standard deviations usually fluctuate with network size, larger

networks generally increase the variance in RBS while decreasing the variance in TPSN.

Furthermore, the deviation for RBS is relatively large, while that for TPSN is much

lower. However, the variance for the hybrid algorithm is always lower than the other

two, and it constantly decreases with larger networks.

These results show that not only is RBS’s energy consumption highly dependent

on network topology, it becomes even more so as the network becomes larger. In

contrast, TPSN and the hybrid algorithm are less affected by the network layout, and both

become even more independent as more sensors are introduced into a given area. The

graphs below show how the energy consumption of all three algorithms compares with

various network sizes.

 45

Figure 11: Synchronization comparison for 250 sensors.

As mentioned before, the hybrid algorithm can adapt accordingly to transmission

and reception power usages. TPSN and RBS become special cases of the algorithm. A

receiver_threshold value of 1 will force a transmitter to use TPSN, whereas a

receiver_threshold set to the largest number of receivers connected to a transmitter will

force a transmitter to use RBS. These traits are shown in Figure 11.

For a relatively small network of 250 sensors, TPSN is the most inefficient

algorithm of the three used in this study, followed by RBS. The hybrid algorithm

outperforms TPSN by over 20%, while outperforming RBS by over 9%, as shown in

Table 5.

 46

Figure 12: Synchronization comparison for 500 sensors.

One major difference observed when the network grows from 250 sensors to 500

sensors is that RBS becomes less energy efficient than TPSN. The hybrid algorithm

outperforms TPSN by 15.7%, while outperforming RBS by 20.8%.

 47

Figure 13: Synchronization comparison for 750 sensors.

Once the network grows to 750 sensors, RBS clearly becomes less efficient than

TPSN. The hybrid algorithm still outperforms TPSN by 12.7%. Since RBS consumes

more energy, the hybrid algorithm now outperforms it by 32%.

 48

Figure 14: Synchronization comparison for 1000 sensors.

 49

Figure 15: Synchronization comparison for 1250 sensors.

 50

Figure 16: Synchronization comparison for 1500 sensors.

As more sensors are introduced into the network, RBS becomes dramatically less

feasible for a wireless sensor network. As shown in Table 5, the hybrid algorithm’s

energy savings over RBS increases from 39% with 1000 sensors to over 50% when the

network uses 1500 sensors.

In contrast, as the network becomes large, the hybrid algorithm mimics TPSN’s

behavior, but uses less energy. The difference is 11% with 1000 sensors and 9% with

1500 sensors.

 51

CHAPTER 6

CONCLUSIONS

Summary

Wireless sensor networks have tremendous advantages for monitoring object

movement and environmental properties; their small size makes them very stealthy and

ideal for covert observations. Their size also makes it easy to drop them into a

designated area by plane. Sensors can be deployed within a congested city to monitor

traffic patterns. They can be used to monitor the migration patterns of animals. Should a

chemical plant begin leaking toxic fumes, wireless sensors can monitor the movement

and size of the fume cloud. They can also be deployed within a city or battlefield and can

determine the location of a sniper from a rifle’s blast noise.

All of these applications require some degree of synchronization to achieve the

best results. Tracking animal movement does not require a high degree of accuracy, so

the synchronization between clocks can be kept within a second. The same

synchronization accuracy can be used to monitor traffic congestion patterns and the

movement of a toxic chemical cloud. Determining a bullet’s point of origin from a rifle

blast, however, is much more challenging. The blast will propagate uniformly from the

sniper’s location, so sensors closest to the shot will detect the shock wave first, while

those further away will detect it later. To accurately determine the point of origin, the

sensor clocks should be synchronized within a few microseconds of each other. The

work developed in this thesis not only includes an algorithm for synchronizing each

 52

sensor, but also includes algorithms for flooding and electing a new root node when the

current root’s battery is depleted.

The hybrid synchronization algorithm was designed to switch between timing-

sync protocol for sensor networks (TPSN) and the reference broadcast synchronization

algorithm (RBS). These two algorithms allow all the sensors in a network to synchronize

themselves within a few microseconds of each other, while at the same time using the

least amount of energy possible. The savings in energy varies upon the density of the

sensors as well as the reception-to-transmission ratio of energy usage; networks which

are saturated with sensors, for example 1500 sensors in a 1 km2 area, will favor TPSN

over RBS. TPSN also becomes more favorable as receptions consume more power.

The hybrid algorithm compromises between both of these previous algorithms.

The energy savings over RBS can range from 9.3% in small networks of 250 sensors, to

over 50% for large networks using 1500 sensors. In contrast, the hybrid algorithm’s

savings over TPSN range from 20.8% in the same small networks down to 9% in the

large networks. Furthermore, analysis of the standard deviation for each of the

algorithms shows RBS’s energy consumption can vary dramatically, from nearly 4% to

over 7%, generally increasing for larger networks. In contrast, the standard deviation for

TPSN’s energy usage decreases from 1.5% to less than 1%, generally decreasing for

larger networks. The hybrid algorithm’s deviation is always less than 1% and

continuously decreases down to 0.3% as more sensors are used.

 53

Future Work

There are a few improvements that can be implemented to the hybrid system in

order to further decrease energy consumption.

• Physical implementation: although the system is designed from algorithms

that have been researched and implemented on physical sensors, the work

presented in this study has only been simulated using Matlab. Physically

testing an algorithm on a sensor network comprised of 1500 sensors is a very

difficult task; even testing a network with 250 sensors is not an easy feat. A

study should be conducted to ensure that the algorithms developed in chapter

0 work correctly.

• Localized re-flooding: in the hybrid algorithm presented in this study, the

entire network is re-flooded once the percentage of unused sensors reaches a

given threshold. This threshold value is important since energy is wasted if

the network topology is continuously updated whenever a sensor’s battery

dies. At the same time, the physical area being monitored decreases as the

algorithm waits for the threshold value to be met. The best way to maintain

network connectivity while using the least amount of energy is to re-flood

only some areas of the network instead of the entire WSN. The hybrid

algorithm is well-suited for localized floods since each transmitting sensor

knows its receivers; when one of its receivers loses power, the transmitter can

send a localized flood packet to re-establish the network’s topology without

disrupting the rest of the WSN.

 54

• Non-uniform path loss coefficient: the research conducted here assumes that

the path loss coefficient remains constant over the entire monitored area. This

assumption may be valid in the case where sensors are dropped from a plane

into a dangerous chemical cloud, but the path loss coefficient can drastically

change in urban and heavily forested areas. When simulating a WSN that will

monitor traffic patterns in an area surrounded by tall glass buildings,

deflections and refractions will change the path loss coefficient; the only way

to accurately portray this behavior in a simulation is to allow for a variance in

path loss.

• Network layer modifications: sensor networks are quite different from the

typical computer network being used today. The 5-layer internet architecture

has been adapted to work with wireless sensor networks, but should be

modified as it can be inefficient. Experiments should be conducted to find the

best applicable network layer for sensor networks.

 55

APPENDIX

MATLAB SIMULATION CODE

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\WSNSim.m 1 of 20

% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas

function varargout = WSNSIM(varargin)
 gui_Singleton =
 gui_State = struct('gui_Name', mfilename, 'gui_Singleton', gui_Singleton,
'gui_OpeningFcn', @WSNSIM_OpeningFcn, 'gui_OutputFcn', @WSNSIM_OutputFcn, 'gui_LayoutFcn',
[], 'gui_Callback', [])
 if (nargin && ischar(varargin{1}))
 gui_State.gui_Callback = str2func(varargin{1})
 end
 if (nargout)
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:})
 else
 gui_mainfcn(gui_State, varargin{:})
 end
end % End initialization code

% --- Executes just before WSNSim is made visible.
function WSNSIM_OpeningFcn(hObject, eventdata, handles, varargin)
 GlobalVars()
 clear workspace clc
 handles.output = hObject guidata(hObject, handles)
 axes(handles.GridAxes) cla
 sensorLogoHandle = imshow('sensorLogo.jpg')
 axis([get(sensorLogoHandle, 'XData') get(sensorLogoHandle, 'YData')])
 SetSamples(handles, 'initAll', 'hide') % Set default values
 if (nodesDispersedF)
 ClearHandles(handles)
 end

 set(handles.syncType_RBS, 'Value',0)
 set(handles.syncType_TPSN, 'Value',0)
 set(handles.syncType_Source, 'Value',0)
 set(handles.syncType_Hybrid, 'Value',0)
 switch syncType
 case 'RBS'
 set(handles.syncType_RBS, 'Value',1)
 case 'TPSN'
 set(handles.syncType_TPSN, 'Value',1)
 case 'source'
 set(handles.syncType_Source, 'Value',1)
 case 'hybrid'
 set(handles.syncType_Hybrid, 'Value',1)
 end
 simFileInfo = dir('WSNSim.m')
 set(handles.clearGrid, 'String','Quit')
 set(handles.statusText, 'String','Enter Grid parameters...')
 set(handles.sourceNodeID, 'String','')
 set(handles.curLocX, 'String','')
 set(handles.curLocY, 'String','')
 set(handles.analyzedNode, 'String','')
 set(handles.pwrRem, 'String','')

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\WSNSim.m 2 of 20

 set(handles.WSNSim, 'Name', sprintf('WSN Simulator 2.0 - %s', simFileInfo.date))
end

% --- Outputs from this function are returned to the command line.
function varargout = WSNSIM_OutputFcn(hObject, eventdata, handles)
 varargout{1} = handles.output
 reqVer = '7.1.0.246 (R14) Service Pack 3'
 if (version ~= reqVer) % Incorrect Matlab version detected
 msgbox('Matlab R14 SP3 is required to ensure proper GUI performance.')
 end
end

% ================= BUTTON FUNCTIONS =================
function editParams_Callback(hObject, eventdata, handles)
 ParamEdit()
end

function recharge_Callback(hObject, eventdata, handles)
 GlobalVars()
 if (nodesDispersedF)
 nodePower = nodePowerMax .* ones(1, nodeCount) % Maximize the power of each node
 deadNodes =
 set(handles.depletedNodes, 'String',sprintf('%g / %.3g%%', deadNodes,
100*deadNodes/nodeCount))
 UpdateAnalyzedNode(handles, closestNode)
 UpdatePowerAxes(handles, 'noCalc')
 axes(handles.GridAxes)
 PlotGrid() % Redraw the nodes to refresh their color
 end
end

function clearGrid_Callback(hObject, eventdata, handles)
 GlobalVars()
 if (networkSyncF) % Clear the sync lines first
 set(handles.syncTime, 'String','')
 set(handles.numTX, 'String','')
 set(handles.numRX, 'String','')
 set(handles.droppedTX, 'String','')
 UpdateGridAxes(handles)
 DrawFlooding(0)
 PlotGrid()
 networkSyncF =
 elseif (networkLvlDiscF) % Clear the lvl-disc lines if no sync has been performed
 parent = []
 closestNode = sourceNode
 ClearHandles(handles)
 UpdateGridAxes(handles)
 PlotGrid()
 set(handles.orphNodes, 'String','')
 set(handles.statusText, 'String','Enter Flood parameters...')
 networkLvlDiscF =
 elseif (nodesDispersedF) % Clear nodes and reset to the opening screen
 WSNSIM_OpeningFcn(hObject, eventdata, handles, 1)
 axes(handles.PwrAxes) cla axis([0 1 0 1])
 set(handles.orphNodes, 'String','')

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\WSNSim.m 3 of 20

 set(handles.depletedNodes, 'String','')
 set(handles.sourceNodeID, 'String','')
 set(handles.curLocX, 'String','')
 set(handles.curLocY, 'String','')
 set(handles.analyzedNode, 'String','')
 set(handles.pwrRem, 'String','')
 set(handles.clearGrid, 'String','Quit')
 nodesDispersedF =
 else
 close
 end
end

function plotGrid_Callback(hObject, eventdata, handles)
 GlobalVars() clc
 set(handles.clearGrid, 'String','Clear Grid')
 set(handles.statusText, 'String','Initializing Network...')
 if (~dataLoadedF) % Set variables here to avoid disrupting loaded values
 SetSamples(handles, 'initArrays', 'hide') % Set default values
 networkChangedF =
 nodesDispersedF =
 networkLvlDiscF =
 networkSyncF =
 closestNode = sourceNode
 else
 dataLoadedF =
 end
 UpdateGridAxes(handles)
 PlotGrid()
 if (~networkChangedF && networkLvlDiscF)
 % Needed in case the data has been loaded and we want the flooding lines...
NetworkChangedF flag must be 0 to redraw the flooding lines
 DrawFlooding(0)
 end
 UpdatePowerAxes(handles, 'noCalc')

 ClearHandles(handles)
 set(handles.depletedNodes, 'String',sprintf('%g / %.3g%%', deadNodes,
100*deadNodes/nodeCount))
 set(handles.statusText, 'String','Enter Flood parameters...')
 set(handles.analyzedNode, 'String',sourceNode)
 set(handles.pwrRem, 'String',nodePower(sourceNode))
 set(handles.flood, 'Enable','on')
 set(handles.synchronize, 'Enable','on')
end

function flood_Callback(hObject, eventdata, handles)
 GlobalVars() clc
 if (networkChangedF || ~nodesDispersedF || dataLoadedF)
 plotGrid_Callback(hObject, eventdata, handles)
 end

 if (nodePower(sourceNode) < 2)
 % If source node can only transmit one more time, elect a new source
 ElectNewSource(handles, sourceNode)

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\WSNSim.m 4 of 20

 tempStr = get(handles.statusText, 'String')
 tempColor = get(handles.statusText, 'BackgroundColor')
 set(handles.statusText, 'String',sprintf('Source node is depleted. New source node
is %g', sourceNode))
 set(handles.statusText, 'BackgroundColor','red')
 pause(2)
 set(handles.statusText, 'String',tempStr)
 set(handles.statusText, 'BackgroundColor',tempColor)
 end
 parent = []
 maxDistanceLow = nthroot(PtWLow/PrThresholdWLow, pathLossCoeff)
 maxDistanceHigh = nthroot(PtWHigh/PrThresholdWHigh, pathLossCoeff)
 closestNode = sourceNode

 set(handles.statusText, 'String','Simulating flooding...')
 set(handles.plotGrid, 'Enable','off')
 set(handles.clearGrid, 'Enable','off')
 set(handles.flood, 'Enable','off')
 set(handles.synchronize, 'Enable','off')
 set(handles.syncType_RBS, 'Enable','off')
 set(handles.syncType_TPSN, 'Enable','off')
 set(handles.syncType_Source, 'Enable','off')
 set(handles.syncType_Hybrid, 'Enable','off')
 set(handles.FloodTest, 'Enable','off')
 set(handles.EnergyTest, 'Enable','off')
 set(handles.TimeTest, 'Enable','off')
 set(handles.editParams, 'Enable','off')
 set(handles.recharge, 'Enable','off')
 pause(0.001)
 UpdateGridAxes(handles)
 PlotGrid()

 s = cputime
 BasicDecayFlooding(handles)
 floodTime = cputime - s

 DrawFlooding(pauseInt)
 ClearHandles(handles)
 PlotGrid()
 UpdatePowerAxes(handles)
 UpdateAnalyzedNode(handles, closestNode)
 UpdateNodeStatus(handles)
 set(handles.plotGrid, 'Enable','on')
 set(handles.clearGrid, 'Enable','on')
 set(handles.flood, 'Enable','on')
 set(handles.synchronize, 'Enable','on')
 set(handles.syncType_RBS, 'Enable','on')
 set(handles.syncType_TPSN, 'Enable','on')
 set(handles.syncType_Source, 'Enable','on')
 set(handles.syncType_Hybrid, 'Enable','on')
 set(handles.FloodTest, 'Enable','on')
 set(handles.EnergyTest, 'Enable','on')
 set(handles.TimeTest, 'Enable','on')
 set(handles.editParams, 'Enable','on')
 set(handles.recharge, 'Enable','on')

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\WSNSim.m 5 of 20

 set(handles.floodTime, 'String',floodTime)
 set(handles.numTX, 'String',numTx)
 set(handles.numRX, 'String',numRx)
 if (tracebackF)
 Traceback(closestNode,1)
 end
 networkLvlDiscF =
 networkSyncF =
 set(handles.statusText, 'String','Flooding complete.')
end

function synchronize_Callback(hObject, eventdata, handles)
 GlobalVars() clc
 networkSyncF =
 if (networkChangedF || ~networkLvlDiscF)
 flood_Callback(hObject, eventdata, handles)
 if (continuousF)
 pause(1)
 end
 end

 if (nodePower(sourceNode) < 2)
 % If source node can only transmit one more time, re-flood network (new source is
automatically elected)
 flood_Callback(hObject, eventdata, handles)
 end
 set(handles.plotGrid, 'Enable','off')
 set(handles.clearGrid, 'Enable','off')
 set(handles.flood, 'Enable','off')
 set(handles.synchronize, 'Enable','off')
 set(handles.syncType_RBS, 'Enable','off')
 set(handles.syncType_TPSN, 'Enable','off')
 set(handles.syncType_Source, 'Enable','off')
 set(handles.syncType_Hybrid, 'Enable','off')
 set(handles.FloodTest, 'Enable','off')
 set(handles.EnergyTest, 'Enable','off')
 set(handles.TimeTest, 'Enable','off')
 set(handles.editParams, 'Enable','off')
 set(handles.recharge, 'Enable','off')
 set(handles.statusText, 'String','Synchronizing network...')
 pause(0.001)
 UpdateGridAxes(handles)
 DrawFlooding(0)
 PlotGrid()

 initUsedNodes = nodeCount - orphanNodes
 initOrphNodes = orphanNodes
 newOrphNodes = initOrphNodes - orphanNodes
 numTx =
 numRx =
 dropTx =
 s = cputime

 switch (syncType)
 case 'hybrid'

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\WSNSim.m 6 of 20

 TimeSyncHybrid()
 case 'TPSN'
 TimeSyncTPSN('all')
 case 'RBS'
 TimeSyncRBS('all')
 case 'source'
 if (parent(closestNode) == 0) % Only synchronize with non-orphaned nodes
 syncTime = 'Failed'
 else
 traceSuccessF = Traceback(closestNode, 1)
 if (traceSuccessF) % Traceback is successful
 pause(1)
 s = cputime
 syncSuccess = TimeSyncTPSN('toNode', closestNode, sourceNode)
 if (syncSuccess)
 syncTime = cputime - s
 else
 syncTime = 'Failed'
 end
 set(handles.statusText, 'String','Synchronization complete.')
 else % Traceback failed (one of the intermediate nodes is dead)
 syncTime = 'Failed'
 set(handles.statusText, 'String','Synchronization failed.')
 end
 end
 otherwise
 end
 syncTime = cputime - s

 if (~strcmp(syncType, 'source')) % Only continuously synchronize with RBS, TPSN, and
hybrid
 % Continuously synchronize
 while (continuousF && deadNodes/nodeCount <= 0.9)
 pause(1)
 UpdateGridAxes(handles)
 DrawFlooding(0)
 PlotGrid()
 UpdatePowerAxes(handles)
 pause(1)

 % Re-flood when:
 % - Only 1 node is used
 % - Source node can only transmit one more time
 % - Number of orphaned nodes reaches threshold percentage
 if (initUsedNodes <= 1 || nodePower(sourceNode) < 2 ||
100*newOrphNodes/initUsedNodes >= refloodLimit)
 flood_Callback(hObject, eventdata, handles)
 initUsedNodes = nodeCount - orphanNodes
 initOrphNodes = orphanNodes
 newOrphNodes = orphanNodes - initOrphNodes
 end
 numTx =
 numRx =
 dropTx =
 UpdateGridAxes(handles)

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\WSNSim.m 7 of 20

 DrawFlooding(0)
 PlotGrid()
 s = cputime

 switch (syncType)
 case 'hybrid'
 TimeSyncHybrid()
 case 'TPSN'
 TimeSyncTPSN('all')
 case 'RBS'
 TimeSyncRBS('all')
 otherwise
 end

 syncTime = cputime - s
 newOrphNodes = orphanNodes - initOrphNodes % Update the number of orphaned
nodes from this iteration
 UpdateAnalyzedNode(handles, closestNode)
 UpdateNodeStatus(handles)
 networkSyncF =
 end
 end

 UpdatePowerAxes(handles)
 UpdateAnalyzedNode(handles, closestNode)
 UpdateNodeStatus(handles)
 set(handles.plotGrid, 'Enable','on')
 set(handles.clearGrid, 'Enable','on')
 set(handles.flood, 'Enable','on')
 set(handles.synchronize, 'Enable','on')
 set(handles.syncType_RBS, 'Enable','on')
 set(handles.syncType_TPSN, 'Enable','on')
 set(handles.syncType_Source, 'Enable','on')
 set(handles.syncType_Hybrid, 'Enable','on')
 set(handles.FloodTest, 'Enable','on')
 set(handles.EnergyTest, 'Enable','on')
 set(handles.TimeTest, 'Enable','on')
 set(handles.editParams, 'Enable','on')
 set(handles.recharge, 'Enable','on')
 set(handles.syncTime, 'String',syncTime)
 set(handles.numTX, 'String',numTx)
 set(handles.numRX, 'String',numRx)
 set(handles.droppedTX, 'String',dropTx)
 set(handles.statusText, 'String','Synchronization complete.')
end

% ------------------- NON-BUTTON CALLBACKS -------------------
function continuous_Callback(hObject, eventdata, handles)
 GlobalVars()
 continuousF = get(gco,'Value')
end

function changeSourceNode_Callback(hObject, eventdata, handles)
 GlobalVars()
 changeSourceNodeF = get(gco,'Value')

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\WSNSim.m 8 of 20

end

function traceback_Callback(hObject, eventdata, handles)
 GlobalVars()
 tracebackF = get(gco,'Value')
 if (networkLvlDiscF)
 handles = guidata(hObject)
 UpdateGridAxes(handles)
 DrawFlooding(0)
 PlotGrid()
 if (tracebackF && networkLvlDiscF && parent(closestNode) ~= 0) % Traceback only on
non-orphaned nodes
 traceSuccessF = Traceback(closestNode,1) % Create a traceback to the source
node
 if (traceSuccessF)
 set(handles.statusText, 'String','Traceback Successful.')
 else
 set(handles.statusText, 'String','Traceback Failed.')
 end
 else
 set(handles.statusText, 'String','')
 end
 end
end

function syncType_RBS_Callback(hObject, eventdata, handles)
 GlobalVars()
 set(handles.syncType_RBS, 'Value',1)
 set(handles.syncType_TPSN, 'Value',0)
 set(handles.syncType_Source, 'Value',0)
 set(handles.syncType_Hybrid, 'Value',0)
 syncType = 'RBS'
end

function syncType_TPSN_Callback(hObject, eventdata, handles)
 GlobalVars()
 set(handles.syncType_RBS, 'Value',0)
 set(handles.syncType_TPSN, 'Value',1)
 set(handles.syncType_Source, 'Value',0)
 set(handles.syncType_Hybrid, 'Value',0)
 syncType = 'TPSN'
end

function syncType_Source_Callback(hObject, eventdata, handles)
 GlobalVars()
 set(handles.syncType_RBS, 'Value',0)
 set(handles.syncType_TPSN, 'Value',0)
 set(handles.syncType_Source, 'Value',1)
 set(handles.syncType_Hybrid, 'Value',0)
 syncType = 'source'
end

function syncType_Hybrid_Callback(hObject, eventdata, handles)
 GlobalVars()
 set(handles.syncType_RBS, 'Value',0)

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\WSNSim.m 9 of 20

 set(handles.syncType_TPSN, 'Value',0)
 set(handles.syncType_Source, 'Value',0)
 set(handles.syncType_Hybrid, 'Value',1)
 syncType = 'hybrid'
end

function GridAxes_ButtonDownFcn(hObject, eventdata, handles)
 GlobalVars()
% Check to make sure that the nodes have been plotted and the user has either performed
network level discovery or wants to change the source node
 if (networkChangedF || dataLoadedF)
 plotGrid_Callback(hObject, eventdata, handles)
 tempStr = get(handles.statusText, 'String')
 tempColor = get(handles.statusText, 'BackgroundColor')
 set(handles.statusText, 'String','Network parameters changed')
 set(handles.statusText, 'BackgroundColor','red')
 pause(2)
 set(handles.statusText, 'String',tempStr)
 set(handles.statusText, 'BackgroundColor',tempColor)
 networkChangedF =
 dataLoadedF =
 elseif (nodesDispersedF)
 pt = get(gca,'currentpoint') % Find the nearest node to the mouse-click
 closestDist = xDistance
 for i = 1 : nodeCount
 d = CalcDistance(pt(1,1), pt(1,2), nodeList(i,1), nodeList(i,2))
 if (d < closestDist)
 closestNode = i % Nearest node to mouse-click after loop is complete
 closestDist = d
 end
 end

 if (changeSourceNodeF) % Change source node
 sourceNode = closestNode
 set(handles.sourceNodeID, 'String',sourceNode)
 set(handles.curLocX, 'String',sprintf('X = %g', nodeList(sourceNode, 1)))
 set(handles.curLocY, 'String',sprintf('Y = %g', nodeList(sourceNode, 2)))
 parent = []
 closestNode = sourceNode
 ClearHandles(handles)

 axes(handles.GridAxes)
 cla axis([0 xDistance 0 yDistance]) axis on axis xy axis fill axis
manual hold all
 PlotGrid()
 set(handles.orphNodes, 'String','')
 set(handles.statusText, 'String','Enter Flood parameters...')
 networkLvlDiscF =
 networkSyncF =
 UpdateAnalyzedNode(handles, closestNode)
 else % Analyze node's properties
 PlotGrid()
 UpdateAnalyzedNode(handles, closestNode)
 if (networkLvlDiscF)
 PlotGrid()

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\WSNSim.m 10 of 20

 if (tracebackF && parent(closestNode) ~= 0)
 UpdateGridAxes(handles)
 DrawFlooding(0)
 PlotGrid()
 Traceback(closestNode, 1) % Create a traceback to the source node
 end
 end
 end
 end
end

function PwrAxes_ButtonDownFcn(hObject, eventdata, handles)
 GlobalVars()
 pt = get(gca,'currentpoint') % Find the nearest node to the mouse-click
 closestDist = length(gridPower)
 for i = 1 : length(gridPower)
 d = CalcDistance(pt(1,1), pt(1,2), i, gridPower(i))
 if (d < closestDist)
 closestPt = i % Nearest event to mouse-click after loop is complete
 closestDist = d
 end
 end
end

% =================== MENU FUNCTIONS ===================
function Menu_LoadPar_Callback(hObject, eventdata, handles) % FILE FUNCTIONS
 GlobalVars()
 [fname pname]= uigetfile('*.mat', 'Open')
 if ((ischar(fname))& (ischar(pname)))
 curdir = pwd
 cd(pname)
 load(fname) % Load the entire workspace
 cd(curdir)
 SetSamples(handles, 'load','hide')
 dataLoadedF =
 msgbox('Parameters loaded succesfully!')
 end
end

function Menu_SavePar_Callback(hObject, eventdata, handles)
 GlobalVars()
 [fname pname] = uiputfile('parameters.mat', 'Save As')
 if ((ischar(fname))& (ischar(pname)))
 curdir = pwd
 cd(pname)
 fid = fopen(fname,'wt')
 save(fname, '*') % Save the entire workspace
 fclose(fid)
 cd(curdir)
 networkLvlDiscF
 msgbox(sprintf('%s%s', 'Parameters successfully saved to ', fname))
 end
end

function Menu_Exit_Callback(hObject, eventdata, handles)

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\WSNSim.m 11 of 20

 clear all
 if (isdeployed)
 close all
 quit force
 else
 close all
 end
end

function Menu_View_NodeIDs_Callback(hObject, eventdata, handles) % VIEW FUNCTIONS
 GlobalVars()
 if strcmp(get(gcbo,'Checked'),'on')
 viewNodeIDF =
 set(gcbo, 'Checked','off')
 else
 viewNodeIDF =
 set(gcbo, 'Checked','on')
 end
 if (nodesDispersedF) % Update the grid axes only if the nodes have been dispersed
 UpdateGridAxes(handles)
 if (networkLvlDiscF) % Draw flooding lines only if network has already been lvl-
discovered
 DrawFlooding(0)
 end
 PlotGrid()
 end
end

function Menu_MatlabVer_Callback(hObject, eventdata, handles) % HELP FUNCTIONS
 msgbox(sprintf('Current Matlab Version:\n%s', version), 'Matlab Version')
end

function Menu_Info_Callback(hObject, eventdata, handles)
 titleStr = 'WSN Clock Synchronization Simulator'
 authorStr = sprintf('%s\n%s', 'Dr. Robert Akl, Ph.D.', 'Yanos Saravanos, M.S.')
 simFileInfo = dir('WSNSim.m')
 msgbox(sprintf('%s\n%s\n\nLast Updated on %s', titleStr, authorStr, simFileInfo.date),
'Info')
end

% =================== OTHER FUNCTIONS ===================
function ElectNewSource(handles, currentSource)
 GlobalVars()
 axes(handles.GridAxes)
 TimeSyncRBS('children', currentSource)
 maxPower = max(nodePower(children(currentSource,1:numChildren(currentSource))))
 for i = 1 : numChildren(currentSource)
 if (nodePower(children(currentSource,i)) == maxPower)
 sourceNode = children(currentSource,i)
 end
 end
end

function UpdateAnalyzedNode(handles, node)
 GlobalVars()

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\WSNSim.m 12 of 20

 set(handles.analyzedNode, 'String',node)
 set(handles.pwrRem, 'String',nodePower(node))
 if (networkLvlDiscF) % Output flooding details
 set(handles.level, 'String',nodeLevel(node))
 if (parent(node) == 0)
 set(handles.parentNode, 'String','Orphan')
 else
 set(handles.parentNode, 'String',num2str(parent(node)))
 end
 if (numChildren(node) == 0)
 set(handles.childNodes, 'String','')
 else
 set(handles.childNodes, 'String',num2str(children(node, 1:numChildren
(node))))
 end
 if (nodePower(node) <= 0)
 set(handles.pwrRem, 'String','Depleted')
 else
 set(handles.pwrRem, 'String',num2str(nodePower(node)))
 end
 end
end

function UpdateNodeStatus(handles)
 GlobalVars()
 deadNodes =
 orphanNodes =
 for i = 1 : nodeCount
 if (nodePower(i) <= 0)
 deadNodes = deadNodes +
 end
 if (parent(i) == 0)
 orphanNodes = orphanNodes +
 end
 end
 set(handles.depletedNodes, 'String',sprintf('%g / %.3g%%', deadNodes,
100*deadNodes/nodeCount))
 set(handles.orphNodes, 'String',sprintf('%g / %.3g%%', orphanNodes,
100*orphanNodes/nodeCount))
end

function UpdateGridAxes(handles)
 GlobalVars()
 axes(handles.GridAxes) cla
 axis([0 xDistance 0 yDistance])
 axis on axis xy axis fill axis manual hold all
end

function UpdatePowerAxes(handles, x)
 GlobalVars()
 if (nargin == 2 & x == 'noCalc')
 gridPower = [1]
 else
 gridPower = [gridPower sum(nodePower)/(nodePowerMax*nodeCount)] % Calculate new
normalized grid power

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\WSNSim.m 13 of 20

 end
 axes(handles.PwrAxes) cla
 axis([1 length(gridPower)+1 0 1]) set(handles.PwrAxes, 'YGrid','on',
'YMinorGrid','on')
 axis on axis xy axis fill axis manual hold all
 plot(gridPower, '-b*')
end

function ClearHandles(handles)
 GlobalVars()
 set(handles.analyzedNode, 'String','')
 set(handles.parentNode, 'String','')
 set(handles.childNodes, 'String','')
 set(handles.level, 'String','')
 set(handles.pwrRem, 'String','')
 set(handles.floodTime, 'String','')
 set(handles.syncTime, 'String','')
 set(handles.numTX, 'String','')
 set(handles.numRX, 'String','')
 set(handles.droppedTX, 'String','')
 if (sourceNode > nodeCount)
 sourceNode =
 end
 set(handles.sourceNodeID, 'String',sourceNode)
 set(handles.curLocX, 'String',sprintf('X = %g', nodeList(sourceNode,1)))
 set(handles.curLocY, 'String',sprintf('Y = %g', nodeList(sourceNode,2)))
end

% =================== TEST FUNCTIONS ===================
function FloodTest_Callback(hObject, eventdata, handles)
 GlobalVars() clc
 nodeCount =
 i =
 while (i<20)
 i = i + 1
 plotGrid_Callback(hObject, eventdata, handles)
 networkLvlDiscF =
 networkSyncF =
 if (nodePower(sourceNode) < 2)
 % If source node can only transmit one more time, elect a new source
 ElectNewSource(handles, sourceNode)
 tempStr = get(handles.statusText, 'String')
 tempColor = get(handles.statusText, 'BackgroundColor')
 set(handles.statusText, 'String',sprintf('Source node is depleted. New source
node is %g', sourceNode))
 set(handles.statusText, 'BackgroundColor','red')
 pause(2)
 set(handles.statusText, 'String',tempStr)
 set(handles.statusText, 'BackgroundColor',tempColor)
 end
 parent = []
 maxDistanceLow = nthroot(PtWLow/PrThresholdWLow, pathLossCoeff)
 maxDistanceHigh = nthroot(PtWHigh/PrThresholdWHigh, pathLossCoeff)
 closestNode = sourceNode

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\WSNSim.m 14 of 20

 set(handles.plotGrid, 'Enable','off')
 set(handles.clearGrid, 'Enable','off')
 set(handles.flood, 'Enable','off')
 set(handles.synchronize, 'Enable','off')
 set(handles.syncType_RBS, 'Enable','off')
 set(handles.syncType_TPSN, 'Enable','off')
 set(handles.syncType_Source, 'Enable','off')
 set(handles.syncType_Hybrid, 'Enable','off')
 set(handles.FloodTest, 'Enable','off')
 set(handles.EnergyTest, 'Enable','off')
 set(handles.TimeTest, 'Enable','off')
 set(handles.editParams, 'Enable','off')
 set(handles.recharge, 'Enable','off')
 set(handles.statusText, 'String','Simulating flooding...')
 pause(0.001)

 UpdateGridAxes(handles)
 PlotGrid()
 s = cputime
 BasicDecayFlooding(handles)
 floodTime = cputime - s
 DrawFlooding(pauseInt)
 ClearHandles(handles)
 PlotGrid()

 UpdatePowerAxes(handles)
 UpdateAnalyzedNode(handles, closestNode)
 UpdateNodeStatus(handles)
 set(handles.statusText, 'String','Flooding complete.')
 set(handles.plotGrid, 'Enable','on')
 set(handles.clearGrid, 'Enable','on')
 set(handles.flood, 'Enable','on')
 set(handles.synchronize, 'Enable','on')
 set(handles.syncType_RBS, 'Enable','on')
 set(handles.syncType_TPSN, 'Enable','on')
 set(handles.syncType_Source, 'Enable','on')
 set(handles.syncType_Hybrid, 'Enable','on')
 set(handles.FloodTest, 'Enable','on')
 set(handles.EnergyTest, 'Enable','on')
 set(handles.TimeTest, 'Enable','on')
 set(handles.editParams, 'Enable','on')
 set(handles.recharge, 'Enable','on')

 set(handles.floodTime, 'String',floodTime)
 set(handles.numTX, 'String',numTx)
 set(handles.numRX, 'String',numRx)

 fname = strcat('Flood', num2str(nodeCount), '_', num2str(pathLossCoeff), '_',
num2str(i), '.mat')
 save(fname, '*') % Save the entire workspace

 recharge_Callback(hObject, eventdata, handles)
 syncType = 'hybrid'
 synchronize_Callback(hObject, eventdata, handles)
 fname = strcat('Hybrid', num2str(nodeCount), '_', num2str(pathLossCoeff), '_',

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\WSNSim.m 15 of 20

num2str(i), '.mat')
 save(fname, '*') % Save the entire workspace

 recharge_Callback(hObject, eventdata, handles)
 syncType = 'TPSN'
 synchronize_Callback(hObject, eventdata, handles)
 fname = strcat('TPSN', num2str(nodeCount), '_', num2str(pathLossCoeff), '_',
num2str(i), '.mat')
 save(fname, '*') % Save the entire workspace

 recharge_Callback(hObject, eventdata, handles)
 syncType = 'RBS'
 synchronize_Callback(hObject, eventdata, handles)
 fname = strcat('RBS', num2str(nodeCount), '_', num2str(pathLossCoeff), '_',
num2str(i), '.mat')
 save(fname, '*') % Save the entire workspace
 end
end

function EnergyTest_Callback(hObject, eventdata, handles)
 GlobalVars() clc
 nodeCount =
 energy = []
 numSims =
 for j = 1 : numSims
 j
 fname = strcat('Flood', num2str(nodeCount), '_', num2str(pathLossCoeff), '_',
num2str(j), '.mat')
 cd('../Data/')
 filevars = {'parent', 'nodeLevel', 'maxGens', 'nodePower', ...
 'nodeList', 'children', 'numChildren', 'receiver_threshold', ...
 'nodesDispersedF', 'networkChangedF', 'networkLvlDiscF', 'dataLoadedF'}
 load(fname, filevars{:})
 cd('../WSN Simulation/')
 setEnergy = []
 numSets = max(numChildren) +
 RXtoTXratio =
 receiver_threshold = (3 + sqrt(9 + 8/RXtoTXratio)) /

 if (dataLoadedF)
 plotGrid_Callback(hObject, eventdata, handles)
 end
 if (networkChangedF || ~networkLvlDiscF)
 flood_Callback(hObject, eventdata, handles)
 end
 set(handles.plotGrid, 'Enable','off')
 set(handles.clearGrid, 'Enable','off')
 set(handles.flood, 'Enable','off')
 set(handles.synchronize, 'Enable','off')
 set(handles.syncType_RBS, 'Enable','off')
 set(handles.syncType_TPSN, 'Enable','off')
 set(handles.syncType_Source, 'Enable','off')
 set(handles.syncType_Hybrid, 'Enable','off')
 set(handles.FloodTest, 'Enable','off')
 set(handles.EnergyTest, 'Enable','off')

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\WSNSim.m 16 of 20

 set(handles.TimeTest, 'Enable','off')
 set(handles.editParams, 'Enable','off')
 set(handles.recharge, 'Enable','off')
 set(handles.statusText, 'String','Synchronizing network...')
 pause(0.001)

 initUsedNodes = nodeCount - orphanNodes
 initOrphNodes = orphanNodes
 newOrphNodes = initOrphNodes - orphanNodes
 numTx =
 numRx =
 dropTx =
 s = cputime

 numTx =
 numRx =
 UpdateGridAxes(handles)
 DrawFlooding(0)
 PlotGrid()
 TimeSyncHybrid()
 hybridEnergy(j) = numTx + numRx * RXtoTXratio
 set(handles.numTX, 'String',numTx)
 set(handles.numRX, 'String',numRx)

 numTx =
 numRx =
 UpdateGridAxes(handles)
 DrawFlooding(0)
 PlotGrid()
 recharge_Callback(hObject, eventdata, handles)
 TimeSyncTPSN('all')
 TPSNEnergy(j) = numTx + numRx * RXtoTXratio
 set(handles.numTX, 'String',numTx)
 set(handles.numRX, 'String',numRx)

 numTx =
 numRx =
 UpdateGridAxes(handles)
 DrawFlooding(0)
 PlotGrid()
 recharge_Callback(hObject, eventdata, handles)
 TimeSyncRBS('all')
 RBSEnergy(j) = numTx + numRx * RXtoTXratio
 set(handles.numTX, 'String',numTx)
 set(handles.numRX, 'String',numRx)

 for k = 1 : numSets
 numTx =
 numRx =
 UpdateGridAxes(handles)
 DrawFlooding(0)
 PlotGrid()
 recharge_Callback(hObject, eventdata, handles)
 UpdateGridAxes(handles)
 DrawFlooding(0)

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\WSNSim.m 17 of 20

 PlotGrid()
 receiver_threshold = k
 TimeSyncHybrid()
 setEnergy(k) = numTx + numRx * RXtoTXratio
 energy(j,k) = setEnergy(k)
 set(handles.numTX, 'String',numTx)
 set(handles.numRX, 'String',numRx)
 end

 UpdatePowerAxes(handles)
 UpdateAnalyzedNode(handles, closestNode)
 UpdateNodeStatus(handles)
 set(handles.plotGrid, 'Enable','on')
 set(handles.clearGrid, 'Enable','on')
 set(handles.flood, 'Enable','on')
 set(handles.synchronize, 'Enable','on')
 set(handles.syncType_RBS, 'Enable','on')
 set(handles.syncType_TPSN, 'Enable','on')
 set(handles.syncType_Source, 'Enable','on')
 set(handles.syncType_Hybrid, 'Enable','on')
 set(handles.FloodTest, 'Enable','on')
 set(handles.EnergyTest, 'Enable','on')
 set(handles.TimeTest, 'Enable','on')
 set(handles.editParams, 'Enable','on')
 set(handles.recharge, 'Enable','on')
 set(handles.syncTime, 'String',syncTime)
 set(handles.numTX, 'String',numTx)
 set(handles.numRX, 'String',numRx)
 set(handles.droppedTX, 'String',dropTx)
 set(handles.statusText, 'String','Synchronization complete.')
 networkSyncF =
 end

 for i = 1 : numSims
 for j = 1 : size(energy,2)
 if (energy(i,j) == 0)
 energy(i,j) = energy(i,j-1)
 end
 end
 end

 figure
 for i = 1 : numSims
 plot(energy(i,:), 'k.', 'LineStyle','none')
 hold on
 end
 plot(mean(energy), '-b', 'Marker','none', 'LineWidth',2)
 hold off
 xlabel('Receiver Threshold Cutoff Value')
 ylabel('Energy Usage')
 title(sprintf('Average synchronization with %d sensors', nodeCount))
 set(gca, 'XGrid', 'on')
 set(gca, 'XTick', 1:2:size(energy,2))
 xScale = get(gca, 'XLim')
 yScale = get(gca, 'YLim')

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\WSNSim.m 18 of 20

 line(xScale, [mean(hybridEnergy) mean(hybridEnergy)], 'Color','green',
'LineStyle','--', 'LineWidth',2)
 text(mean(xScale), (mean(hybridEnergy)+yScale(1))/2, 'Hybrid Energy Usage',
'FontSize',10, 'FontWeight','bold', 'HorizontalAlignment','center')
 line(xScale, [mean(TPSNEnergy) mean(TPSNEnergy)], 'Color','red', 'LineStyle','--',
'LineWidth',2)
 text(1, mean(TPSNEnergy)+yScale(2)/100, 'TPSN Energy Usage', 'FontSize',10,
'FontWeight','bold', 'HorizontalAlignment','left')
 line(xScale, [mean(RBSEnergy) mean(RBSEnergy)], 'Color','red', 'LineStyle','--',
'LineWidth',2)
 text(xScale(2), mean(RBSEnergy)+yScale(2)/100, 'RBS Energy Usage', 'FontSize',10,
'FontWeight','bold', 'HorizontalAlignment','right')
end

function TimeTest_Callback(hObject, eventdata, handles)
 GlobalVars() clc
 numSims =
 numSets =
 syncTimeHybrid = []
 syncTimeTPSN = []
 syncTimeRBS = []
 for i = 1 : numSims
 nodeCount = i *
 setSyncTimeHybrid = []
 setSyncTimeTPSN = []
 setSyncTimeRBS = []
 for j = 1 : numSets
 fname = strcat('Flood', num2str(nodeCount), '_', num2str(pathLossCoeff), '_',
num2str(j), '.mat')
 cd('../Data/')
 filevars = {'parent', 'nodeLevel', 'maxGens', 'nodePower', ...
 'nodeList', 'children', 'numChildren', 'receiver_threshold', ...
 'nodesDispersedF', 'networkChangedF', 'networkLvlDiscF', 'dataLoadedF'}
 load(fname, filevars{:})
 cd('../WSN Simulation/')

 UpdateGridAxes(handles)
 PlotGrid()
 DrawFlooding(0)
 set(handles.plotGrid, 'Enable','off')
 set(handles.clearGrid, 'Enable','off')
 set(handles.flood, 'Enable','off')
 set(handles.synchronize, 'Enable','off')
 set(handles.syncType_RBS, 'Enable','off')
 set(handles.syncType_TPSN, 'Enable','off')
 set(handles.syncType_Source, 'Enable','off')
 set(handles.syncType_Hybrid, 'Enable','off')
 set(handles.FloodTest, 'Enable','off')
 set(handles.EnergyTest, 'Enable','off')
 set(handles.TimeTest, 'Enable','off')
 set(handles.editParams, 'Enable','off')
 set(handles.recharge, 'Enable','off')
 set(handles.statusText, 'String','Synchronizing network...')
 pause(0.001)

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\WSNSim.m 19 of 20

 runSyncTimeHybrid = []
 runSyncTimeTPSN = []
 runSyncTimeRBS = []
 for k = 1 : 3
 numTx =
 numRx =
 UpdateGridAxes(handles)
 DrawFlooding(0)
 PlotGrid()
 s = cputime
 TimeSyncHybrid()
 syncTime = cputime - s
 runSyncTimeHybrid(k) = syncTime
 set(handles.numTX, 'String',numTx)
 set(handles.numRX, 'String',numRx)
 set(handles.syncTime, 'String',syncTime)

 numTx =
 numRx =
 UpdateGridAxes(handles)
 DrawFlooding(0)
 PlotGrid()
 recharge_Callback(hObject, eventdata, handles)
 s = cputime
 TimeSyncTPSN('all')
 syncTime = cputime - s
 runSyncTimeTPSN(k) = syncTime
 set(handles.numTX, 'String',numTx)
 set(handles.numRX, 'String',numRx)
 set(handles.syncTime, 'String',syncTime)

 numTx =
 numRx =
 UpdateGridAxes(handles)
 DrawFlooding(0)
 PlotGrid()
 recharge_Callback(hObject, eventdata, handles)
 s = cputime
 TimeSyncRBS('all')
 syncTime = cputime - s
 runSyncTimeRBS(k) = syncTime
 set(handles.numTX, 'String',numTx)
 set(handles.numRX, 'String',numRx)
 set(handles.syncTime, 'String',syncTime)
 end
 setSyncTimeHybrid(j) = mean(runSyncTimeHybrid)
 setSyncTimeTPSN(j) = mean(runSyncTimeTPSN)
 setSyncTimeRBS(j) = mean(runSyncTimeRBS)

 UpdatePowerAxes(handles)
 UpdateAnalyzedNode(handles, closestNode)
 UpdateNodeStatus(handles)
 set(handles.plotGrid, 'Enable','on')
 set(handles.clearGrid, 'Enable','on')

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\WSNSim.m 20 of 20

 set(handles.flood, 'Enable','on')
 set(handles.synchronize, 'Enable','on')
 set(handles.syncType_RBS, 'Enable','on')
 set(handles.syncType_TPSN, 'Enable','on')
 set(handles.syncType_Source, 'Enable','on')
 set(handles.syncType_Hybrid, 'Enable','on')
 set(handles.FloodTest, 'Enable','on')
 set(handles.EnergyTest, 'Enable','on')
 set(handles.TimeTest, 'Enable','on')
 set(handles.editParams, 'Enable','on')
 set(handles.recharge, 'Enable','on')
 set(handles.droppedTX, 'String',dropTx)
 set(handles.statusText, 'String','Synchronization complete.')
 networkSyncF =
 end
 syncTimeHybrid(i) = mean(setSyncTimeHybrid)
 syncTimeTPSN(i) = mean(setSyncTimeTPSN)
 syncTimeRBS(i) = mean(setSyncTimeRBS)
 end

 figure
 plot(syncTimeHybrid, '-g+')
 hold on
 plot(syncTimeTPSN, '-.ro')
 hold on
 plot(syncTimeRBS, ':bx')
 hold off

 legend('Hybrid', 'TPSN', 'RBS', 'Location','NorthWest')
 xlabel('Number of sensors')
 ylabel('Synchronization Time (sec)')
 title('Synchronization speeds')
 set(gca, 'XGrid', 'on')
 set(gca, 'XTick', 1:1:numSims)
end

9/22/06 2:50 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\ParamEdit.m 1 of 3

% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas

function varargout = ParamEdit(varargin)
 gui_Singleton =
 gui_State = struct('gui_Name', mfilename, 'gui_Singleton', gui_Singleton,
'gui_OpeningFcn', @ParamEdit_OpeningFcn, 'gui_OutputFcn', @ParamEdit_OutputFcn,
'gui_LayoutFcn', [], 'gui_Callback', [])
 if (nargin && ischar(varargin{1}))
 gui_State.gui_Callback = str2func(varargin{1})
 end
 if (nargout)
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:})
 else
 gui_mainfcn(gui_State, varargin{:})
 end
end % End initialization code

% --- Executes just before the editor is made visible.
function ParamEdit_OpeningFcn(hObject, eventdata, handles, varargin)
 GlobalVars()
 handles.output = hObject guidata(hObject, handles)
 SetSamples(handles, 'load', 'show')
end

% --- Outputs from this function are returned to the command line.
function varargout = ParamEdit_OutputFcn(hObject, eventdata, handles)
 varargout{1} = handles.output
end

function gridParams_Callback(hObject, eventdata, handles)
 GlobalVars()
 if (str2double(get(handles.xDist, 'String')) == 0)
 set(hObject, 'String', xDistance)
 end
 if (str2double(get(handles.yDist, 'String')) == 0)
 set(hObject, 'String', yDistance)
 end
 if (str2double(get(handles.nodeCount, 'String')) == 0)
 set(hObject, 'String', nodeCount)
 end

 if (str2double(get(handles.xDist, 'String')) ~= xDistance || ...
 str2double(get(handles.yDist, 'String')) ~= yDistance || ...
 str2double(get(handles.nodeCount, 'String')) ~= nodeCount)
 networkChangedF =
 end
end

function gridMode_Callback(hObject, eventdata, handles)
 GlobalVars()
 set(handles.gridMode, 'Value', 1)
 set(handles.randMode, 'Value', 0)

9/22/06 2:50 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\ParamEdit.m 2 of 3

end

function randMode_Callback(hObject, eventdata, handles)
 GlobalVars()
 set(handles.gridMode, 'Value', 0)
 set(handles.randMode, 'Value', 1)
end

function signalParams_Callback(hObject, eventdata, handles)
 GlobalVars()
 pathLossCoeffTemp = str2double(get(handles.pathLossCoeff, 'String'))
 PtLTemp = str2double(get(handles.TxPwrLow, 'String'))
 PtWLTemp = 10^(PtLTemp/10) / % Convert to watts
 PrThresholdLTemp = str2double(get(handles.RxThreshLow, 'String'))
 PrThresholdWLTemp = 10^(PrThresholdLTemp/10) / % Convert to watts
 set(handles.maxTxDistLow, 'String', nthroot(PtWLTemp/PrThresholdWLTemp,
pathLossCoeffTemp))

 PtHTemp = str2double(get(handles.TxPwrHigh, 'String'))
 PtWHTemp = 10^(PtHTemp/10) / % Convert to watts
 PrThresholdHTemp = str2double(get(handles.RxThreshHigh, 'String'))
 PrThresholdWHTemp = 10^(PrThresholdHTemp/10) / % Convert to watts
 set(handles.maxTxDistHigh, 'String', nthroot(PtWHTemp/PrThresholdWHTemp,
pathLossCoeffTemp))
end

function resetParams_Callback(hObject, eventdata, handles)
 GlobalVars()
 SetSamples(handles, 'mica2dot433', 'show')
 close
end

function cancelParams_Callback(hObject, eventdata, handles)
 networkChangedF =
 close
end

function saveParams_Callback(hObject, eventdata, handles)
 GlobalVars()
 if (xDistance ~= str2double(get(handles.xDist, 'String')) ...
 || yDistance ~= str2double(get(handles.yDist, 'String')) ...
 || nodeCount ~= str2double(get(handles.nodeCount, 'String')))
 networkChangedF =
 else
 networkChangedF =
 end

 xDistance = str2double(get(handles.xDist, 'String'))
 yDistance = str2double(get(handles.yDist, 'String'))
 nodeCount = str2double(get(handles.nodeCount, 'String'))
 if (get(handles.gridMode, 'Value'))
 nodeDistribMode = 'grid'
 else
 nodeDistribMode = 'rand'
 end

9/22/06 2:50 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\ParamEdit.m 3 of 3

 PtLow = str2double(get(handles.TxPwrLow, 'String'))
 PtWLow = 10^(PtLow/10) /
 PrThresholdLow = str2double(get(handles.RxThreshLow, 'String'))
 PrThresholdWLow = 10^(PrThresholdLow/10) /
 PtHigh = str2double(get(handles.TxPwrHigh, 'String'))
 PtWHigh = 10^(PtHigh/10) /
 PrThresholdHigh = str2double(get(handles.RxThreshHigh, 'String'))
 PrThresholdWHigh = 10^(PrThresholdHigh/10) /
 pathLossCoeff = str2double(get(handles.pathLossCoeff, 'String'))
 maxDistanceLow = nthroot(PtWLow/PrThresholdWLow, pathLossCoeff)
 maxDistanceHigh = nthroot(PtWHigh/PrThresholdWHigh, pathLossCoeff)
 guarDistance = str2double(get(handles.guarDist, 'String'))
 pauseInt = str2double(get(handles.pauseInt, 'String'))
 moteClockSpd = str2double(get(handles.moteCPU, 'String'))
 radioFreq = str2double(get(handles.radioFreq, 'String'))

 TXCurDraw = str2double(get(handles.TXCurDraw, 'String'))
 RXCurDraw = str2double(get(handles.RXCurDraw, 'String'))
 RXtoTXratio = RXCurDraw / TXCurDraw
 receiver_threshold = (3 + sqrt(9 + 8/RXtoTXratio)) / % Calculate point at which
hybrid sync'ing switches from RBS to TPSN

 nodePowerMax = str2double(get(handles.nodePowerMax, 'String'))
 nodePowerWarn = str2double(get(handles.nodePowerWarn, 'String'))
 refloodLimit = str2double(get(handles.refloodLimit, 'String'))
 close
end

% ------------------- SAMPLE FUNCTIONS -------------------
function Menu_mica2dot433_Callback(hObject, eventdata, handles)
 SetSamples(handles, 'mica2dot433', 'show')
 SetSamples(handles, 'initArrays', 'hide')
end

function Menu_mica2dot916_Callback(hObject, eventdata, handles)
 SetSamples(handles, 'mica2dot916', 'show')
 SetSamples(handles, 'initArrays', 'hide')
end

function Menu_micaz_Callback(hObject, eventdata, handles)
 SetSamples(handles, 'micaz', 'show')
 SetSamples(handles, 'initArrays', 'hide')
end

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN S...\UpdateNodePower.m 1 of 1

% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas

function UpdateNodePower()
 GlobalVars()
 for i = 1 : nodeCount
 if (nodePower(i) <= 0) % Node i has run out of energy
 if (parent(i) ~= 0)
 parent(i) = % Set i to orphaned node
 nodeLevel(i) =
 end
 end
 end
end

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\Traceback.m 1 of 1

% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas

function [d] = trace(n, draw)
% Recursive function to draw the transmission path from the source to the selected node
 GlobalVars()
 if (parent(n) ~= 0)
 if (n ~= sourceNode)
 x1 = nodeList(n,1)
 y1 = nodeList(n,2)
 x2 = nodeList(parent(n),1)
 y2 = nodeList(parent(n),2)
 if (draw)
 line([x1 x2], [y1 y2], 'Color', 'black', 'LineWidth', 3)
 end
 if (nodePower(parent(n)) <= 0)
 d = % Parent node is dead so traceback fails
 else
 d = Traceback(parent(n), draw)
 end
 else
 if (nodePower(n) <= 0)
 d = % Root node is dead so traceback fails
 else
 d = % Root node is dead so traceback fails
 end
 end
 else
 d = % Traceback from orphaned node automatically fails
 end
end

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simu...\TimeSyncTPSN.m 1 of 3

% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas

function [s] = TimeSyncTPSN(method, startNode, endNode)
% Function synchronizes the network using TPSN according to which method was chosen:
% Method 'all' synchronizes the entire network, from the top -> down
% Method 'children' synchronizes the children of the given node
% Method 'toNode' synchronizes only between two nodes
 GlobalVars()
 switch (method)
 case 'toNode' % Synchronize from one node back to the root node
 s = % Flag for synchronization success
 if (endNode ~= startNode && nodePower(parent(startNode)) >= 1 && nodePower
(startNode) > 0)
 curDropTx =
 prevGenNode = parent(startNode)
 x1 = nodeList(startNode,1)
 y1 = nodeList(startNode,2)
 x2 = nodeList(parent(startNode),1)
 y2 = nodeList(parent(startNode),2)
 dist = CalcDistance(x1, y1, x2, y2)
 numTx = numTx +
 nodePower(parent(startNode)) = nodePower(parent(startNode)) -
 while (~IsReceived(dist, 'sync') && curDropTx < 5)
 curDropTx = curDropTx +
 dropTx = dropTx +
 disp(sprintf('Dropped packet from node %g to node %g', startNode,
parent(startNode)))
 numTx = numTx +
 nodePower(parent(startNode)) = nodePower(parent(startNode)) -
 end
 if (curDropTx < 5)
 numRx = numRx +
 nodePower(startNode) = nodePower(startNode) - RXtoTXratio
 drawLine(x1, x2, y1, y2, 'Tx')
 s = TimeSyncTPSN('toNode', prevGenNode, endNode) % Recursively
synchronize
 drawLine(x2, x1, y2, y1, 'Rx')
 drawLine(x1, x2, y1, y2, 'complete')
 else
 s = % Traceback sync failed
 end
 end
 case 'children' % Synchronize all of the children to the given start node
 if (children(startNode) ~= 0)
 UpdateNodePower()
 SyncReqTPSN(startNode) % Transmitter sends sync_req packet

 UpdateNodePower()
 SyncAck(startNode) % Receivers send sync_ack packets

 UpdateNodePower()
 SyncComp(startNode) % Successful synchronization

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simu...\TimeSyncTPSN.m 2 of 3

 end
 case 'all' % Synchronize the entire network
 for i = 1 : maxGens - 1
 UpdateNodePower()
 for j = 1 : nodeCount
 if (nodeLevel(j) == i)
 SyncReqTPSN(j)
 end
 end
 if (pauseInt ~= 0)
 pause(pauseInt)
 end

 UpdateNodePower()
 for j = 1 : nodeCount
 if (nodeLevel(j) == i)
 SyncAck(j)
 end
 end
 if (pauseInt ~= 0)
 pause(pauseInt)
 end

 UpdateNodePower()
 for j = 1 : nodeCount
 if (nodeLevel(j) == i)
 SyncComp(j)
 end
 end
 end
 PlotGrid()
 otherwise
 end
end

function SyncReqTPSN(parentNode)
% Send sync packets from the given node to all of its children
 GlobalVars()
 orphanNodes = orphanNodes -
 transmittedF =
 for i = 1 : numChildren(parentNode)
 if (nodePower(parentNode) >= 1 && nodePower(children(parentNode,i)) > 0)
 transmittedF =
 x1 = nodeList(parentNode,1)
 y1 = nodeList(parentNode,2)
 x2 = nodeList(children(parentNode,i),1)
 y2 = nodeList(children(parentNode,i),2)
 nodePower(children(parentNode,i)) = nodePower(children(parentNode,i)) -
RXtoTXratio
 drawLine(x1, x2, y1, y2, 'Tx')
 numRx = numRx +
 end
 end
 if (transmittedF)
 numTx = numTx +

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simu...\TimeSyncTPSN.m 3 of 3

 nodePower(parentNode) = nodePower(parentNode) -
 end
end

function SyncAck(parentNode)
% Send ack packets from given the given node's children back to the given node
 GlobalVars()
 transmittedF =
 for i = 1 : numChildren(parentNode)
 if (nodePower(children(parentNode,i)) >= 1 && nodePower(parentNode) > 0)
 x1 = nodeList(parentNode,1)
 y1 = nodeList(parentNode,2)
 x2 = nodeList(children(parentNode,i),1)
 y2 = nodeList(children(parentNode,i),2)
 nodePower(parentNode) = nodePower(parentNode) -
 nodePower(children(parentNode,i)) = nodePower(children(parentNode,i)) -
RXtoTXratio
 drawLine(x2, x1, y2, y1, 'Rx')
 numRx = numRx +
 numTx = numTx +
 end
 end
end

function SyncComp(node)
% Send ack packets from given the given node's children to the given node
 GlobalVars()
 for i = 1 : numChildren(node)
 if (nodePower(children(node,i)) > 0)
 x1 = nodeList(node,1)
 y1 = nodeList(node,2)
 x2 = nodeList(children(node,i),1)
 y2 = nodeList(children(node,i),2)
 drawLine(x2, x1, y2, y1, 'complete')
 end
 end
end

function drawLine(startX, endX, startY, endY, direction)
 GlobalVars()
 switch (direction)
 case 'Tx'
 lineColor = 'cyan'
 case 'Rx'
 lineColor = 'yellow'
 case 'complete'
 lineColor = 'green'
 otherwise
 end
 line([startX endX], [startY endY], 'Color',lineColor, 'LineWidth',2)
end

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simul...\TimeSyncRBS.m 1 of 3

% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas

function TimeSyncRBS(method, startNode)
% Function synchronizes the network using RBS
% Method 'all' synchronizes the entire network, from the top -> down
% (parent node sends sync_req, then children exchange observations)
% Method 'children' uses RBS to synchronize the given node's receivers
 GlobalVars()
 switch (method)
 case 'children' % Synchronize all of the children to the given start node
 UpdateNodePower()
 SyncReqRBS(startNode) % Transmitter sends sync_req packet

 UpdateNodePower()
 ExObservations(startNode) % Receivers exchange observations
 case 'all' % Synchronize the entire network
 for i = 1 : maxGens - 1
 for j = 1 : nodeCount % Transmitter node
 if (nodeLevel(j) == i)
 UpdateNodePower()
 SyncReqRBS(j)
 end
 end
 if (pauseInt ~= 0)
 pause(pauseInt)
 end

 for j = 1 : nodeCount
 if (nodeLevel(j) == i)
 ExObservations(j)
 end
 end
 if (pauseInt ~= 0)
 pause(pauseInt)
 end
 end
 PlotGrid()
 otherwise
 end
end

function SyncReqRBS(parentNode)
% Send sync packets from the given node to all of its children
 GlobalVars()
 orphanNodes = orphanNodes -
 transmittedF =
 for i = 1 : numChildren(parentNode)
 if (nodePower(parentNode) >= 1 && nodePower(children(parentNode,i)) > 0)
 transmittedF =
 x1 = nodeList(parentNode,1)
 y1 = nodeList(parentNode,2)
 x2 = nodeList(children(parentNode,i),1)

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simul...\TimeSyncRBS.m 2 of 3

 y2 = nodeList(children(parentNode,i),2)
 nodePower(children(parentNode,i)) = nodePower(children(parentNode,i)) -
RXtoTXratio
 drawLine(x1, x2, y1, y2, 'TxRx')
 numRx = numRx +
 end
 end
 if (transmittedF)
 numTx = numTx +
 nodePower(parentNode) = nodePower(parentNode) -
 end
end

function ExObservations(parentNode)
% Receiver-receiver transmissions to compare observations
 GlobalVars()
 for i = 1 : numChildren(parentNode) % Transmitting child node
 transmittedF =
 for j = i+1 : numChildren(parentNode) % Receiving child node
 if (nodePower(children(parentNode,i)) >= 1 && nodePower(children(parentNode,
j)) > 0)
 % Transmit data between non-depleted nodes with the same parent (skip orphans
and the source node)
 transmittedF =
 numRx = numRx +
 x1 = nodeList(children(parentNode,i),1)
 y1 = nodeList(children(parentNode,i),2)
 x2 = nodeList(children(parentNode,j),1)
 y2 = nodeList(children(parentNode,j),2)
 nodePower(children(parentNode,i)) = nodePower(children(parentNode,i)) -
RXtoTXratio
 drawLine(x1, x2, y1, y2, 'RxRx')
 end
 end
 if (transmittedF) % Transmitter only transmits once
 numTx = numTx +
 nodePower(children(parentNode,i)) = nodePower(children(parentNode,i)) -
 end
 end
end

function drawLine(startX, endX, startY, endY, type)
 GlobalVars()
 switch (type)
 case 'TxRx'
 lineColor = 'green'
 style = '-'
 case 'RxRx'
 lineColor = 'red'
 style = '--'
 otherwise
 end
 line([startX endX], [startY endY], 'Color',lineColor, 'LineWidth',2, 'LineStyle',
style)
end

9/22/06 2:49 AM D:\School Archives\UNT Master's Thesis\WSN Simul...\TimeSyncRBS.m 3 of 3

9/22/06 2:50 AM D:\School Archives\UNT Master's Thesis\WSN Si...\TimeSyncHybrid.m 1 of 1

% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas

function TimeSyncHybrid()
% Function synchronizes the network using the hybrid method
 GlobalVars()
 for i = 1 : maxGens - 1
 for j = 1 : nodeCount
 UpdateNodePower()
 if (nodeLevel(j) == i)
 if (numChildren(j) < receiver_threshold && numChildren(j) ~= 0)
 TimeSyncRBS('children', j) % Use RBS
 else
 TimeSyncTPSN('children', j) % Use TPSN
 end
 end
 end
 if (pauseInt ~= 0)
 pause(pauseInt)
 end
 end
 PlotGrid()
end

9/22/06 2:50 AM D:\School Archives\UNT Master's Thesis\WSN Simula...\SetSamples.m 1 of 3

% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas

function SetSamples(handles, sampleID, visibility)
 GlobalVars()
 switch sampleID
 case 'initAll'
 SetSamples(handles, 'mica2dot433', 'hide') % Set default values
 propSpd =
 pauseInt =
 xDistance =
 yDistance =
 nodeCount =
 nodeDistribMode = 'rand'
 pathLossCoeff =
 nodePowerMax =
 nodePowerWarn =
 refloodLimit =
 syncType = 'hybrid'

 % Set flags and source node
 dataLoadedF =
 nodesDispersedF =
 networkChangedF =
 networkLvlDiscF =
 networkSyncF =
 viewNodeIDF =
 changeSourceNodeF =
 selectNodeF =
 tracebackF =
 continuousF =
 sourceNode =

 SetSamples(handles, 'initArrays', 'hide')
 case 'initArrays'
 nodeList = []
 parent = []
 numChildren = []
 children = []
 deadNodeList = []
 deadNodes =
 orphanNodes =
 numTx =
 numRx =
 dropTx =
 RXtoTXratio = RXCurDraw / TXCurDraw
 receiver_threshold = (3 + sqrt(9 + 8/RXtoTXratio)) / % Calculate point at
which hybrid sync'ing switches from RBS to TPSN
 nodePower = nodePowerMax .* ones(1, nodeCount) % Set the power of each node
to max
 gridPower = [1] % Set the grid's initial normalized power to 1 (sum of all
fully charged nodes)
 closestNode = sourceNode

9/22/06 2:50 AM D:\School Archives\UNT Master's Thesis\WSN Simula...\SetSamples.m 2 of 3

 PtWLow = 10 ^ (PtLow/10) % Convert to watts
 PrThresholdWLow = 10 ^ (PrThresholdLow/10) % Convert to watts
 maxDistanceLow = nthroot(PtWLow/PrThresholdWLow, pathLossCoeff)
 PtWHigh = 10 ^ (PtHigh/10) % Convert to watts
 PrThresholdWHigh = 10 ^ (PrThresholdHigh/10) % Convert to watts
 maxDistanceHigh = nthroot(PtWHigh/PrThresholdWHigh, pathLossCoeff)

 if (nodeDistribMode == 'rand') % Random distribution
 nodeList = rand([nodeCount 2])
 for i = 1 : nodeCount
 nodeList(i,1) = nodeList(i,1) * xDistance
 nodeList(i,2) = nodeList(i,2) * yDistance
 end
 elseif (nodeDistribMode == 'grid') % Uniform grid distribution
 dist = sqrt(xDistance*yDistance / nodeCount)
 xCount = floor(xDistance / dist)
 yCount = floor(yDistance / dist)
 if (xCount*yCount < nodeCount)
 if (xDistance > yDistance)
 xCount = xCount +
 if (xCount*yCount < nodeCount)
 yCount = yCount +
 end
 else
 yCount = yCount +
 if (xCount*yCount < nodeCount)
 xCount = xCount +
 end
 end
 end
 dist = min(xDistance/xCount, yDistance/yCount)
 for j = 1 : yCount
 for i = 1 : xCount
 nodeList = [nodeList i*dist - 0.5*dist j*dist - 0.5*dist]
 end
 end
 end
 case 'mica2dot433'
 moteClockSpd =
 radioFreq =
 TXCurDraw =
 RXCurDraw =
 PtLow =
 PrThresholdLow =
 PtHigh =
 PrThresholdHigh =
 guarDistance =
 case 'mica2dot916'
 moteClockSpd =
 radioFreq =
 TXCurDraw =
 RXCurDraw =
 PtLow =
 PrThresholdLow =
 PtHigh =

9/22/06 2:50 AM D:\School Archives\UNT Master's Thesis\WSN Simula...\SetSamples.m 3 of 3

 PrThresholdHigh =
 guarDistance =
 case 'micaz'
 moteClockSpd =
 radioFreq =
 TXCurDraw =
 RXCurDraw =
 PtLow =
 PrThresholdLow =
 PtHigh =
 PrThresholdHigh =
 guarDistance =
 case 'load' % Leave variables as they are
 otherwise
 end

 if (visibility == 'show')
 set(handles.xDist, 'String', xDistance)
 set(handles.yDist, 'String', yDistance)
 set(handles.nodeCount, 'String', nodeCount)
 if (nodeDistribMode == 'grid')
 set(handles.gridMode, 'Value',1)
 set(handles.randMode, 'Value',0)
 elseif (nodeDistribMode == 'rand')
 set(handles.randMode, 'Value',1)
 set(handles.gridMode, 'Value',0)
 end

 set(handles.TxPwrLow, 'String',PtLow)
 set(handles.RxThreshLow, 'String',PrThresholdLow)
 set(handles.TxPwrHigh, 'String',PtHigh)
 set(handles.RxThreshHigh, 'String',PrThresholdHigh)
 set(handles.pathLossCoeff, 'String',pathLossCoeff)
 set(handles.guarDist, 'String',guarDistance)
 set(handles.pauseInt, 'String',pauseInt)
 set(handles.maxTxDistLow, 'String',maxDistanceLow)
 set(handles.maxTxDistHigh, 'String',maxDistanceHigh)

 set(handles.moteCPU, 'String',moteClockSpd)
 set(handles.radioFreq, 'String',radioFreq)
 set(handles.TXCurDraw, 'String',TXCurDraw)
 set(handles.RXCurDraw, 'String',RXCurDraw)
 set(handles.nodePowerMax, 'String',nodePowerMax)
 set(handles.nodePowerWarn, 'String',nodePowerWarn)
 set(handles.refloodLimit, 'String',refloodLimit)
 end
end

9/22/06 2:50 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\PlotGrid.m 1 of 2

% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas

function PlotGrid()
% Plot each of the nodes according to their role and status in the network
 GlobalVars()
 for i = 1 : nodeCount
 s = sprintf('%d', i)
 if (i == sourceNode) % Source node
 nodeColor = checkNodePwrLevel(i, 'b')
 if (viewNodeIDF)
 plot(nodeList(i,1), nodeList(i,2), '.', 'MarkerEdgeColor',nodeColor,
'LineWidth',2)
 text(nodeList(i,1) + xDistance/100, nodeList(i,2), s, 'FontSize',8,
'FontWeight','bold', 'HorizontalAlignment','left', 'Color',nodeColor)
 else
 plot(nodeList(i,1), nodeList(i,2), '^', 'MarkerEdgeColor',nodeColor,
'LineWidth',2)
 end
 elseif (numel(parent) ~= 0 && parent(i) == 0) % Orphaned node
 nodeColor = checkNodePwrLevel(i, 'm')
 if (viewNodeIDF)
 plot(nodeList(i,1), nodeList(i,2), '.', 'MarkerEdgeColor',nodeColor,
'LineWidth',2)
 text(nodeList(i,1) + xDistance/100, nodeList(i,2), s, 'FontSize',8,
'HorizontalAlignment','left', 'Color',nodeColor)
 else
 plot(nodeList(i,1), nodeList(i,2), 'o', 'MarkerEdgeColor',nodeColor,
'LineWidth',2)
 end
 elseif (i == closestNode) % Closest node to clicked area
 nodeColor = checkNodePwrLevel(i, 'g')
 if (viewNodeIDF)
 plot(nodeList(i,1), nodeList(i,2), '.', 'MarkerEdgeColor',nodeColor,
'LineWidth',2)
 text(nodeList(i,1) + xDistance/100, nodeList(i,2), s, 'FontSize',8,
'HorizontalAlignment','left', 'Color',nodeColor)
 else
 plot(nodeList(i,1), nodeList(i,2), 'o', 'MarkerEdgeColor',nodeColor,
'LineWidth',2)
 end
 else % Non-orphaned node
 nodeColor = checkNodePwrLevel(i, 'k')
 if (viewNodeIDF)
 plot(nodeList(i,1), nodeList(i,2), '.', 'MarkerEdgeColor',nodeColor,
'LineWidth',2)
 text(nodeList(i,1) + xDistance/100, nodeList(i,2), s, 'FontSize',8,
'HorizontalAlignment','left', 'Color',nodeColor)
 else
 plot(nodeList(i,1), nodeList(i,2), 'o', 'MarkerEdgeColor',nodeColor,
'LineWidth',2)
 end
 end

9/22/06 2:50 AM D:\School Archives\UNT Master's Thesis\WSN Simulation\PlotGrid.m 2 of 2

 end
end

function [color] = checkNodePwrLevel(curNode, stdColor)
% Change the node's color if its power level has decreased below the warning level
 GlobalVars()
 if (nodePower(curNode) > nodePowerWarn)
 color = stdColor
 elseif (nodePower(curNode) <= nodePowerWarn && nodePower(curNode) > 0)
 color = 'y' % Yellow for warning
 else
 color = 'r' % Red for depleted
 end
end

9/22/06 2:50 AM D:\School Archives\UNT Master's Thesis\WSN Simula...\IsReceived.m 1 of 1

% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas

function [r] = IsReceived(dist, packetType)
% Return 1 for successful TX or 0 for failed TX
 GlobalVars()
 r =
 if (strcmp(packetType, 'flood'))
 maxDist = maxDistanceLow
 else
 maxDist = maxDistanceHigh
 end
 gDist = min(guarDistance, maxDist) % Guaranteed TX distance

 if (dist <= gDist)
 r =
 elseif (dist <= maxDist)
 prob = 1 - (dist - gDist) / (maxDist - gDist)
 if (rand() < prob)
 r =
 end
 end
end

9/22/06 2:51 AM D:\School Archives\UNT Master's Thesis\WSN Simula...\GlobalVars.m 1 of 2

% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas

global verDate % Version number for the simulator
global propSpd % Speed of light (in m/s)

% Grid Parameters
global xDistance % Length of x-axis on grid
global yDistance % Length of y-axis on grid
global nodeCount % Number of nodes in the grid
global nodeDistribMode % Type of grid distribution for nodes (grid or random)

% Hardware Parameters
global moteClockSpd % Speed of mote's CPU (in MHz)
global radioFreq % Throughput of mote's transceiver (in Kbps)
global TXCurDraw % Current draw for a transmission (in mA)
global RXCurDraw % Current draw for a reception (in mA)
global receiver_threshold % Number of receivers needed where TPSN becomes more efficient
than RBS
global nodePowerMax % Max power for each node
global nodePowerWarn % Power where node shows low-power warning
global nodePower % [1 x nodeCount] array holding power for each node
global gridPower % [1 x *] array holding the grid's total power (index is number of
energy-consuming events)
global deadNodes % Number of total dead nodes in the network

% Flood Parameters
global PtLow % Transmission power (in dB) for flood packets
global PtWLow % Transmission power (in W) for flood packets
global PrThresholdLow % Threshold power (in dB) for flood packets
global PrThresholdWLow % Threshold power (in W) for flood packets
global PtHigh % Transmission power (in dB) for sync packets
global PtWHigh % Transmission power (in W) for sync packets
global PrThresholdHigh % Threshold power (in dB) for sync packets
global PrThresholdWHigh % Threshold power (in W) for sync packets
global pathLossCoeff % Path loss coefficient for transmission equation
global guarDistance % Guaranteed distance for successful transmission
global maxDistanceLow % Maximum distance nodes are capable of transmitting a flood packet
global maxDistanceHigh % Maximum distance nodes are capable of transmitting a sync packet
global RXtoTXratio % Ratio of reception power to transmission power
global pauseInt % Length of time between plotting generations

% Flood Variables
global nodeList % nodeCount x nodeCount array holding x and y coordinates for each node
global parent % [1 x nodeCount] array showing parent node (i.e. parent(6) returns the
parent node of node 6)
global numChildren % [1 x nodeCount] array showing a node's number of children
global children % [nodeCount x nodeCount] array showing each node's children
global nodeLevel % [1 x nodeCount] array showing the generation of a given node (-1 means
it is an orphan)
global maxGens % Maximum number of generations possible in the flood
global sourceNode % Root node for transmissions
global closestNode % Closest node user clicked to

9/22/06 2:51 AM D:\School Archives\UNT Master's Thesis\WSN Simula...\GlobalVars.m 2 of 2

global orphanNodes % Variable to keep track of the number of orphaned nodes
global floodTime % Time used to flood the network

% Time Sync Variables
global syncType % Type of synchronization being used
global numTx % Number of transmissions used to perform synchronization
global numRx % Number of receptions used to perform synchronization
global dropTx % Number of transmissions used to perform synchronization
global refloodLimit % Percentage of dead nodes at which network must reflood
global syncTime % Time used to synchronize the network

% Flags
global dataLoadedF % =1 when the parameters are loaded from a .mat file
global nodesDispersedF % =1 when the nodes have been plotted
global networkChangedF % =1 when the xDist, yDist, or nodeCount are changed and the plot
has not been updated
global continuousF % =1 when the "Continuous" checkbox is selected
global changeSourceNodeF % =1 when the "Change Source" checkbox is selected
global tracebackF % =1 when the "Trace back to Root" checkbox is selected
global viewNodeIDF % =1 when the "View Node IDs" menu item is selected
global networkLvlDiscF % =1 when the network has done the level discovery (flooding)
global networkSyncF % =1 when the network has been completely synchronized

9/22/06 2:51 AM D:\School Archives\UNT Master's Thesis\WSN Simu...\DrawFlooding.m 1 of 1

% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas

function DrawFlooding(delay)
% Draw the flooding lines
 GlobalVars
 Color_Map = [
 0.0 0.0 0.0
]
 for i = 1 : maxGens
 [Color_Map_Rows, Color_Map_Cols] = size(Color_Map)
 current_color = Color_Map(mod(i,Color_Map_Rows) + 1, :)
 for j = 1 : nodeCount
 UpdateNodePower()
 if (nodeLevel(j) == i)
 if (Traceback(j,0)) % Check for valid traceback only when the parent is
found
 orphanNodes = orphanNodes -
 x1 = nodeList(parent(j),1)
 y1 = nodeList(parent(j),2)
 x2 = nodeList(j,1)
 y2 = nodeList(j,2)
 line([x1 x2], [y1 y2], 'Color', current_color, 'LineWidth', 2)
 else
 parent(j) = % If traceback fails, one of the parent nodes is
depleted, making this node an orphan
 nodeLevel(j) =
 end
 end
 end
 if (delay ~= 0)
 pause(delay)
 end
 end
end

9/22/06 2:52 AM D:\School Archives\UNT Master's Thesis\WSN Simu...\CalcDistance.m 1 of 1

% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas

function [d] = dist(x1, y1, x2, y2)
 d = sqrt(double((x1-x2)^2 + (y1-y2)^2))
end

9/22/06 2:52 AM D:\School Archives\UNT Master's Thesis\WS...\BasicDecayFlooding.m 1 of 2

% Yanos Saravanos
% Energy-Aware Synchronization in Wireless Sensor Networks
% Master of Science Thesis
% University of North Texas

function BasicDecayFlooding (handles)
 GlobalVars()
 parent = zeros(1, nodeCount)
 numChildren = zeros(1, nodeCount)
 nodeLevel = zeros(1, nodeCount) -
 parent(sourceNode) = sourceNode
 nodeLevel(sourceNode) =
 transmit_list(1) = sourceNode
 current_transmitter =
 maxGens =

 while (length(transmit_list) > 0)
 childList = []
 maxGens = maxGens +
 while (current_transmitter <= length(transmit_list))
 i = transmit_list(current_transmitter) % Transmitter node
 if (nodeLevel(i) > 0 && nodeLevel(i) < maxGens) % Make sure that already
linked nodes are not re-used
 numTx = numTx +
 nodePower(i) = nodePower(i) -
 for j = 1 : nodeCount % Receiver node
 if (parent(j) == 0 && nodePower(i) >= 1 && nodePower(j) >=
RXtoTXratio)
 dist = CalcDistance(nodeList(i,1), nodeList(i,2), nodeList(j,1),
nodeList(j,2))
 PrWLow = PtWLow / (dist ^ pathLossCoeff) % Calculate reception
power
 if (IsReceived(dist, 'flood')) % If successful connection is made
 numRx = numRx +
 nodePower(j) = nodePower(j) - RXtoTXratio
 numChildren(i) = numChildren(i) +
 children(i, numChildren(i)) = j
 parent(j) = i
 nodeLevel(j) = maxGens
 childList = [childList j]
 end
 end
 end
 end
 current_transmitter = current_transmitter +
 end
 transmit_list = [Shuffle(childList)]
 current_transmitter =
 end
 maxGens = maxGens -
end

function [out_list] = Shuffle(in_list)
 p = randperm(length(in_list))
 out_list = []

9/22/06 2:52 AM D:\School Archives\UNT Master's Thesis\WS...\BasicDecayFlooding.m 2 of 2

 for i = 1 : length(p)
 out_list(i) = in_list(p(i))
 end
end

 100

BIBLIOGRAPHY

[1] US Coast Guard Navigation Center, http://www.gps.gov/.

[2] NTP: The Network Time Protocol, http://www.ntp.org/.

[3] F. Zhao, L. Guibas. “Wireless Sensor Networks: An Information Processing Approach,” Morgan

Kaufmann Publishers, pp. 12-13, 2004.

[4] Crossbow MICA2Dot Wireless Microsensor Mote, Document Part Number 6020-0043-05 Rev A,

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2DOT_Datasheet.pdf.

[5] A. Cerpa, N. Busek, D. Estrin. “SCALE: A tool for Simple Connectivity Assessment in Lossy

Environments,” CENS Technical Report #21, September 5, 2003.

[6] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin and S. Wicker. “Complex Behavior at

Scale: An Experimental Study of Low-Power Wireless Sensor Networks,” Technical Report

UCLA/CSD-TR 02-0013, 2002.

[7] M. Maroti, B. Kusy, G. Simon, A. Ledeczi. “The Flooding Time Synchronization Protocol,”

Proceedings of the Second ACM Conference on Embedded Networked Sensor Systems (Sensys),

November 2004.

[8] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. “Span: An Energy-Efficient Coordination

Algorithm for Topology Maintenance in Ad Hoc Wireless Networks,” ACM Wireless Networks

Journal, Volume 8, Section 5, September 2002.

[9] A. Cerpa, D. Estrin. “ASCENT: Adaptive Self-Configuring sEnsor Networks Topologies,”

INFOCOM 2002, Proceedings of the IEEE, Volume 3, June 23-27 2002.

[10] D. Estrin, R. Govindan, J. Heidemann. “Special Issue on Embedding the Internet,” Communications.

of the ACM, Volume 43, Number 5, May 2000.

[11] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich. “Collaborative Signal and Information Processing: An

Information Directed Approach,” Proceedings of the IEEE, Volume 91, Issue 8, August 2003.

[12] J. Liu, P. Cheung, L. Guibas, and F. Zhao. “A dual-space approach to tracking and sensor

management in wireless sensor networks,” Proceedings of 1st ACM Int’l Workshop on Wireless Sensor

Networks and Applications, pp. 131-139, April 2002.

 101

[13] F. Zhao, L. Guibas. “Wireless Sensor Networks: An Information Processing Approach,” Morgan

Kaufmann Publishers, pp. 10-12, 2004.

[14] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. “Wireless sensor networks for

habitat monitoring,” Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks

and Applications, pages 88-97, Atlanta, 2002.

[15] F. Zhao, J. Brown. “Ecological computing,” B. Olson and D. Rejeski editors, The Environmental

Future: Environmental Policy for a New World. Island Press.

[16] G. Simon, A. Ledeczi, and M. Maroti, “Sensor Network-Based Countersniper Systems,” ACM SenSys

‘04, 2004.

[17] A. Mahajan, M. Walworth. “3-D Position Sensing Using the Differences in the Time-of-Flights from a

Wave Source to Various Receivers,” IEEE Trans. on Robotics and Automation, Vol. 17, No. 1,

February 2001, pp. 91-94.

[18] Time Synchronization with NTP, http://www.akadia.com/services/ntp_synchronize.html.

[19] D. Mills. “Internet time synchronization: The Network Time Protocol,” Global States and Time in

Distributed Systems. IEEE Computer Society Press, 1994.

[20] Navstar Global Positioning System, http://www.globalsecurity.org/space/systems/gps.htm.

[21] Elliott D. Kaplan. “Understanding GPS: Principles and Applications,” Artech House, 1996.

[22] J. Mannermaa, K. Kalliomaki, T. Mansten, and S. Turunen. “Timing performance of various GPS

receivers,” Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and

the IEEE International Frequency Control Symposium, pp. 287–290, April 1999.

[23] GPS Clock Synchronization Clock, http://www.gpsclock.com/specs.html.

[24] N. Abramson. “Development of the ALOHANET,” IEEE Transactions on Information Theory,

Volume 31, Number 2, March 1985.

[25] L. Kleinrock, F. Tobagi. “Packet Switching in Radio Channels: Part I - Carrier Sense Multiple Access

Modes and their Throughput Delay Characteristics,” IEEE Transactions on Communications, Volume

23, Number 12, December 1975.

 102

[26] W. Heinzelman, A. Chandrakasan, H. Balakrishnan. “Energy-Efficient Communication Protocols for

Wireless Microsensor Networks,” Proceedings of the Hawaii International Conference on Systems

Sciences, January 2000.

[27] J. Haartsen, “The Bluetooth Radio System,” IEEE Personal Communications Magazine, February

2000.

[28] W Ye, J. Heidemann, D. Estrin, “An Energy-Efficient MAC Protocol for Wireless Sensor Networks,”

Proceedings of the IEEE Infocom, New York, NY, June 2002.

[29] T. van Dam, K. Langendoen. “An Adaptive Energy Efficient MAC Protocol for Wireless Sensor

Networks,” ACM SenSys ’03, 2003.

[30] J. Elson, L. Girod, D. Estrin. “Fine-Grained Network Time Synchronization using Reference

Broadcasts,” Proceedings of the Fifth Symposium on Operating Systems Design and Implementation

(OSDI 2002), December 2002.

[31] S. Ganeriwal, R. Kumar, M. Srivastava. ”Timing Sync Protocol for Sensor Networks,” ACM SenSys

’03, 2003.

[32] S. Ganeriwal, M. Srivastava, “Timing-sync Protocol for Sensor Networks (TPSN) on Berkeley

Motes”, NESL, 2003.

[33] Crossbow MICAz Wireless Measurement System, Document Part Number 6020-0060-03 Rev A,

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf.

