
MEDIATION ON XQUERY VIEWS 

Xiaobo Peng 

Dissertation Prepared for the Degree of 

DOCTOR OF PHILOSOPHY 

UNIVERSITY OF NORTH TEXAS 
 

December 2006 

APPROVED: 
 
Robert Brazile, Major Professor 
Kathleen M. Swigger, Committee Member 
Yan Huang, Committee Member 
Armin Mikler, Program Coordinator 
Krishna M. Kavi, Chair of Department of 

Computer Science and Engineering 
Oscar Garcia, Dean of the College of 

Engineering 
Sandra L. Terrell, Dean of the Robert B. 

Toulouse School of Graduate Studies 
 



Peng, Xiaobo, Mediation on XQuery Views. Doctor of Philosophy (Computer 

Science), December 2006, 141 pp., 3 tables, 15 illustrations, bibliography, 90 titles. 

The major goal of information integration is to provide efficient and easy-to-use 

access to multiple heterogeneous data sources with a single query. At the same time, 

one of the current trends is to use standard technologies for implementing solutions to 

complex software problems. In this dissertation, I used XML and XQuery as the 

standard technologies and have developed an extended projection algorithm to provide 

a solution to the information integration problem. 

In order to demonstrate my solution, I implemented a prototype mediation system 

called Omphalos based on XML related technologies. The dissertation describes the 

architecture of the system, its metadata, and the process it uses to answer queries. The 

system uses XQuery expressions (termed metaqueries) to capture complex mappings 

between global schemas and data source schemas. The system then applies these 

metaqueries in order to rewrite a user query on a virtual global database (representing 

the integrated view of the heterogeneous data sources) to a query (termed an 

outsourced query) on the real data sources. An extended XML document projection 

algorithm was developed to increase the efficiency of selecting the relevant subset of 

data from an individual data source to answer the user query. The system applies the 

projection algorithm to decompose an outsourced query into atomic queries which are 

each executed on a single data source. I also developed an algorithm to generate 

integrating queries, which the system uses to compose the answers from the atomic 

queries into a single answer to the original user query. I present a proof of both the 

extended XML document projection algorithm and the query integration algorithm. An 



analysis of the efficiency of the new extended algorithm is also presented. Finally I 

describe a collaborative schema-matching tool that was implemented to facilitate 

maintaining metadata. 



 ii

ACKNOWLEDGEMENTS 
 

I would like to thank my defense committee members: Dr. Robert Brazile, Dr. 

Kathleen M. Swigger and Dr. Yan Huang for their guidance and encouragement in my 

pursuit of Ph. D. study. I would never have accomplished it without their help. 

My deepest gratitude goes to my major professor Dr. Robert Brazile for his 

excellent guidance and many fruitful discussions on my research subject. He is the most 

important mentor in my academic development and taught me how to do research. I am 

indebted to Dr. Kathleen M. Swigger and Dr. Robert Brazile for their many insights on 

conducting research and generous financial support. They have provided an excellent 

work environment for me to work on my research. Their kind encouragement and 

patience enabled me to overcome many difficult times. I thank Dr. Robert Brazile, Dr. 

Kathleen M. Swigger and Dr. Yan Huang for much good advice on how to write 

research papers and my dissertation. Without their critical comments and patiently 

correcting my writing, this dissertation could never reach the current quality. I highly 

appreciate the enormous time they spent for me. 

I would like to thank my wife Zhiqi Chen not only for her long term spirit support, 

but also the creation of most test data and some diagrams. 

Finally, I would like to thank my fellow student Brian Harrington for many 

discussions on the research subject and programming issues. 

 



CONTENTS

ACKNOWLEDGMENTS ii

LIST OF TABLES vii

LIST OF FIGURES viii

CHAPTER 1. INTRODUCTION 1

1.1. Introduction 1

1.2. Information Integration 3

1.3. Information Integration Approaches 4

1.4. Mediation 5

1.5. XML Technologies 6

1.6. Related Work 8

1.7. Outline 11

CHAPTER 2. THE OMPHALOS INFORMATION INTEGRATION SYSTEM 12

2.1. Overview 12

2.2. Creating an Information Integration System 14

2.3. An Example Scenario 16

2.3.1. The Data Sources 17

2.3.2. The Global Database Schema 19

2.4. Collaborative Schema Matching Tool 19

2.5. XQuery Expressions 23

2.6. Metaquery 24

iii



2.7. Metadata 25

2.7.1. DTD for the Metadata File 26

2.7.2. An Instance of the Metadata File 27

2.8. Omphalos's Solution to the Example User Query 29

2.8.1. The Example User Query over the Global Document 29

2.8.2. The Example Outsourced Query over the Local Documents 30

2.8.3. The Atomic Query to the Chemistry Department Wrapper 32

2.8.4. The Atomic Query to the Computer Science Department Wrapper 33

2.8.5. The Atomic Query to the College Wrapper 34

2.8.6. The Integrating Query 35

2.8.7. Executing the Atomic Queries 36

2.8.8. Integrated Results 38

CHAPTER 3. QUERY DECOMPOSITION ALGORITHM 39

3.1. Projection Paths 39

3.2. Environment and Store 41

3.2.1. Returned Paths, Used Paths and Constructed Nodes 41

3.2.2. Environment 44

3.2.3. Store 46

3.3. Projection Judgment 47

3.4. XQuery Core Subset 53

3.5. Inference Rules 55

3.5.1. Literal Values 55

3.5.2. Empty Sequence 55

3.5.3. Root Path 55

3.5.4. Sequence Expressions 56

3.5.5. Function Calls 56

iv



3.5.6. Variable References 59

3.5.7. for Expressions 60

3.5.8. let Expressions 64

3.5.9. XPath Steps 65

3.5.10. Conditional Expressions 70

3.5.11. Element Constructors with QNames 71

3.5.12. Element Constructors with Name Expressions 73

3.5.13. Attribute Constructors with QNames 74

3.5.14. Attribute Constructors with Name Expressions 75

3.5.15. Document Constructors 76

3.5.16. Text Constructors 77

3.5.17. Wrapping Up 77

3.6. Soundness 79

CHAPTER 4. COMPARISON WITH THE ORIGINAL XML DOCUMENT

PROJECTION 95

4.1. Marian and Siméon's Projection Algorithm 95

4.2. Improvement Achieved by my Extended Projection Algorithm 95

4.2.1. Evaluation on the First Outsourced Query 97

4.2.2. Evaluation on the Second Outsourced Query 101

4.2.3. Evaluation on the Third Outsourced Query 105

4.2.4. Summary 110

CHAPTER 5. CONCLUSION 112

5.1. Contributions 113

5.2. Future Work 115

5.3. Summary 116

v



APPENDIX A. COLLEGE DIRECTORY dir.xml 118

APPENDIX B. GLOBAL SCHEMA INSTANCE personnel.xsd 122

APPENDIX C. THE XML PARSE TREE FOR personnel.xsd 127

BIBLIOGRAPHY 133

vi



LIST OF TABLES

2.1 Oracle Database Table: lecturers 18

2.2 MySQL Database Table: faculty 19

4.1 Savings Summary of the Number of Nodes Returned 111

vii



LIST OF FIGURES

2.1 Mediation Architecture 13

2.2 Query Processing 14

2.3 Omphalos Information Integration System 17

2.4 W3C XML Schema Transformation 20

2.5 Collaborative Schema Matching 21

2.6 Query Decomposition 32

4.1 Comparing the Numbers of Element Nodes for the First Query 97

4.2 Comparing the Numbers of Text Nodes for the First Query 98

4.3 Comparing the Projection Sizes for the First Query 99

4.4 Comparing the Numbers of Element Nodes for the Second Query 101

4.5 Comparing the Numbers of Text Nodes for the Second Query 102

4.6 Comparing the Projection Sizes for the Second Query 103

4.7 Comparing the Numbers of Element Nodes for the Third Query 106

4.8 Comparing the Numbers of Text Nodes for the Third Query 107

4.9 Comparing the Projection Sizes for the Third Query 108

viii



CHAPTER 1

INTRODUCTION

1.1. Introduction

The information explosion that began in the last century has made information integration

one of the key technologies for enterprises in this decade. In an information integration

scenario, there are multiple data sources that contain information that is of interest to many

users. Unfortunately, these data sources are often autonomous and heterogeneous and must

be integrated into a single view. One way to integrate autonomous data sources is to use

a mediator, which is a software component that provides a logical database system on top

of existing data sources. The mediator does not store the data. Rather it requests the

relevant data from its member sources and uses that data to formulate a response to a user's

query. Therefore, one of the major challenges for mediator systems is capturing the mappings

between the mediated schema and the local schemas identi�ed with the heterogeneous data

sources. Another major challenge is creating ways to translate user queries into atomic

queries.

To respond to these challenges, this research sought to provide e�cient and easy-to-use

access to multiple heterogeneous data sources with a single query. This research achieves

this goal by 1) representing the mappings between the global schema and the local schemas

as XQuery expressions and 2) using a decomposition algorithm based on extended XML

document projection. Rather than using a programming language or fabricated logic, this

research uses XQuery to represent the mappings between data sources because of its power

in processing and modeling the data. XQuery alone, without the help from other programming

languages, can capture the complex data extraction, transformation, and restructuring that

are required for expressing mappings. An extension of the Marian and Simeon algorithm

1



was then implemented as a method for rewriting user queries into atomic queries. The

resulting system was then evaluated and the outcome of this evaluation is presented. The

resulting system gives users a powerful information integration system that allows �exible

partial integration, scales well, and is easy to administer.

Thus the most important contributions of this work are 1) using XML technologies to

describe mappings between a global schema and local data sources, and 2) extending the

Marian and Simeon projection algorithm for use with information integration. An important

part of the metadata of my solution to the information integration problem is the set of

XQuery expressions that capture mappings between mediated schemas and local schemas of

heterogeneous data sources. These XQuery expressions de�ne mediated data as views on

local source data. XQuery is a declarative and functional language. Thus the mediated views

in the �nal system are easy to understand and maintain. XQuery is also powerful enough

to express complicated data extraction, transformation, and restructuring during information

integration. Moreover, the XQuery expressions represented in the metadata make it easy

to rewrite a user query on the mediated schema into a query (which is termed outsourced

query ) on local schemas. An algorithm can simply substitute mapping expressions from the

metadata into the user query on the global virtual data base, thus creating a query on local

(real) data sources.

Once the metadata is represented, the next major challenge is translating outsourced

user queries into atomic queries and integrating those queries. This problem was solved

by extending the Marian and Simeon projection algorithm. In their previous work, Marian

and Siméon developed a projection algorithm for XML documents to enable memory-based

XQuery engines to process signi�cantly larger documents [52]. However, their algorithm

does not analyze navigation on constructed elements, which play a key role in my information

integration solution. This research extends projection analysis onto constructed elements with

literal or computed names and applies it to information integration. The extended projection

2



algorithm enables the mediation system to pinpoint the relevant data needed to answer a

user query from local data sources signi�cantly more accurately than the Marian and Siméon

algorithm. Thus my algorithm signi�cantly reduces the amount of data transmitted over a

network. The projection paths produced by this extended projection algorithm can be used

directly as atomic queries of the mediation system or they can be converted to XQuery atomic

queries. The Marian and Simeon algorithm was designed to reduce the amount of memory

required by XQuery engines. This research extended that algorithm so that it could be used

by an information integration system, in order to reduce the amount of data transmitted

across a network.

The following sections contain an extensive survey of the published literature. The review

begins with an overview of information integration, approaches that are used in information

integration, and a description of mediator systems. The review then continues with an

overview of XML technologies. Finally, the literature that relates to this speci�c research is

presented.

1.2. Information Integration

In an information integration scenario, there are multiple data sources that contain infor-

mation that is of interest to users. These data sources are usually autonomous and heteroge-

neous. The data sources can be databases, e.g. legacy databases, relational databases, XML

databases, etc.; They can be web pages or XML �les that are available through the Internet;

They can be �le repositories, e.g. text �les, Microsoft R
1 Word �les, PDF �les, postscript

�les, etc. Because users do not have the time or desire to learn how to search every di�erent

data source, they need an information integration system that can provide an integrated view

of all the information available in all the local data sources. Moreover, information integration

systems have the potential to answer user queries that may be unsolvable by any single data

source. Information integration systems have the ability to access relevant data scattered

1Microsoft Corporation, www.microsoft.com

3



across di�erent data sources, process them to reconcile any discrepancy among them, and

restructure them or derive new data.

The various applications of information integration occur in any area that needs to col-

lect and process a signi�cant amount of data in di�erent formats and/or places, such as

businesses, government agencies, researchers in physics, chemistry, bioinformatics, geoinfor-

matics, etc. The acronym EII is a popular buzzword for enterprise information integration,

which provides uniform data services by mediating the heterogeneous data sources within an

enterprise. These types of systems are increasingly impacting our everyday lives, as we use

them in Internet applications such as shopping carts, travel aggregators, etc.

1.3. Information Integration Approaches

There are essentially three approaches that are used to provide integrated services among

multiple autonomous and heterogeneous data sources: federation, warehousing, and media-

tion [27, 30]. The federated approach integrates data by de�ning mappings between all pairs

of schemas of the member databases [30]. If a user query cannot be answered by a member

database, that database will, in turn, query other member databases to compute the answer.

Although the federated systems are relatively easy to implement, they do not scale well. For

example, if you have n member databases, you will need n(n � 1) mappings. If you add one

new member, you will need to add 2n new mappings.

In the second approach, data from the local data sources are imported into a single

database called a data warehouse [9]. With this method, the underlying data sources are

still operational since the data is replicated for the warehouse. Data warehouses are usually

not updated immediately after a local data source has changed. Generally, they are either

totally reconstructed, which is very time consuming, or incrementally updated. Thus, data

warehouses do not contain the most recent data. Data warehouses are more e�ective as long-

term repositories for critical data or as storehouses for historical data that can be processed

4



and mined [27]. Decision-making support is one of the important application areas of data

warehouses.

The mediator approach has emerged as a popular solution to the problem of integration

of heterogeneous databases. A mediator is a software component that provides a logical

database system on top of existing data sources. The mediator does not store the data.

Rather it requests the relevant data from its member sources and uses that data to formulate

a response to a user's query. A considerable number of mediated query systems have been

proposed including TSIMMIS [15, 28], DIOM [50], Sybil [42], and HERMES [78]. There are

also many mediation systems discussed in [34, 38, 21]. The major advantage of this type

of approach is that it provides the user with the most current information and it scales well.

Mediation systems are able to provide users with the most recent information because the

system accesses the local data sources, not a cached copy. It scales well mainly for two

reasons. First, it can be easily extended to include additional data sources, since one only

needs to add one mapping for each new data source; namely the one between the mediator

and the new data source. Second, mediators can be stacked into a hierarchy of mediators.

This hierarchy structure allows partial integration of the repositories, which facilitates the

incremental integration of a high number of data sources.

1.4. Mediation

In a mediation system, users post their queries on the virtual global data source, which

is exported by the mediator. The mediator's schema is called the global schema or mediated

schema. In order to answer user queries on a virtual global data source, the queries must be

transformed on real local data sources according to some relationship or mapping speci�ed

between the global and local schemas. The major problem is capturing the complex schema

mappings. The approaches that have been suggested for capturing the mappings are global-

as-view (GAV) [48], local-as-view (LAV) [48], and global-and-local-as-view (GLAV) [26, 46],

which combines GAV and LAV. In the GAV approach, the global schema is de�ned as views

5



on local schemas. For example, the global relations are expressed by horn rules as views on

the local relations [48]. The advantages of the GAV approach is that it is easier to rewrite

user queries posted on the global schema to queries on the local data source because you

just substitute the relations of the global schema in user queries with the corresponding view

de�nitions. Its weakness is that it is more di�cult to scale than the LAV approach because

whenever a new data source is added, all the views must be re-examined and subsequently

might need to be rewritten. In contrast to the GAV technique, the LAV approach describes the

contents of local data sources as queries, i.e. views over the relations in the global schema.

This makes the LAV approach easier to scale than GAV because adding a new data source is

completely independent of other existing data sources. It is also easier to specify constraints

on the contents of data sources. However, it is more di�cult to answer user queries in the

LAV approach because it requires the use of more complicated and time consuming algorithms

such as the Bucket algorithm [49], the model elimination theorem prover [22], the Inverse-

rules algorithm [70, 23], or the MiniCon algorithm [69]. The data sources can be considered

as materialized answers to queries over a global schema. Thus, the problem of processing

user queries is to answer user queries using only views. It is a problem that is studied in the

area of query optimization, which is found in traditional database research.

1.5. XML Technologies

XML [84] is a very �exible format for data representation, data storage, and data ex-

change. The W3C XML Schema [85] supports rich data types and other constraints to

restrict XML document content. XQuery [87, 88, 86] is a powerful language to search and

transform XML data. XML was originally designed for narrative-centric applications. It is a

simpli�ed version of the very complicated Standardized General Markup Language (SGML).

The Document Type De�nition (DTD) has been used to de�ne and validate the structures

of XML documents.

6



XML has found widespread applications in a data-centric world and has become a de

facto standard for data exchange. For example, Microsoft R
 BizTalkTM is a framework that

enables business processes to communicate with each other using messages in XML [81].

Web services use XML based standards such as SOAP, WSDL and UDDI to de�ne and

provide services.

XML is also a superior long-term data storage language. In the past, many people stored

data in non-standard or binary formats, many of which are no longer understandable. For

example, much of the moon landing data cannot be read because no one remembers its

format [36]. Java previously used binary format to serialize objects, but they now recommend

using XML for long-term storage. Leading relational databases including Oracle R
2 9iTM,

Microsoft R
3 SQL ServerTM 2000, IBM R
4 DB2 R
, and MySQL R
5 all support XML. There

are also native XML databases, e.g. eXist, Xindice and TaminoTM. A good discussion of this

problem can be found in [13].

In data-centric applications, however, richer data types and other constraints are needed

to restrict the contents of documents. Since DTDs do not have these features, other schema

de�nition languages are designed for this purpose. W3C XML Schema [85] is the one that

is de�ned and recommended by W3C. It provides 44 built-in data types and allows new data

types to be de�ned; It supports uniqueness and referential constraints; It also provides better

occurrence constraints than DTD. Other signi�cant XML Schema languages include Relax

NG [59, 17] and Schematron [40, 39]. Relax NG was based on two other earlier XML Schema

proposals: TREX (Tree Regular Expressions for XML) [18] and RELAX (REgular LAnguage

description for XML) [58]. RELAX NG is relatively simpler than W3C XML Schema. Rick

Jelli�e, the author of Schematron, described Schematron as �a feather duster for the furthest

2ORACLE CORPORATION, www.oracle.com

3Microsoft Corporation, www.microsoft.com

4IBM, www.ibm.com

5MySQL AB, www.mysql.com

7



corners of a room where the vacuum cleaner (DTD) cannot reach.� Both Relax NG and

Schematron later became parts of ISO/IEC 19757 - DSDL Document Schema De�nition

Languages [37].

1.6. Related Work

Researchers have developed a variety of languages to describe mappings and to write

queries. For example, Levy discussed Logic-Based Techniques In Data Integration [48, 47].

Restricted forms of �rst-order formulas are used to describe mappings. Queries are expressed

by Horn rules. For systems that use the GAV approach, user queries can be reformulated

by unfolding, using mapping rules. For systems that use the LAV approach, the bucket

algorithm or the inverse-rules algorithm which are much more complicated are used for query

reformulation.

Some examples of information integration systems that use the GAV approach are the

TSIMMIS mediation system [29, 15], MIX [3], MOMIS [4], HERMES [78], Gestalt [71],

Garlic [34], Amos II [72], COIN [33], Disco [80], IBIS [8], Observer, Squirrel[90], SilkRoute

[25], XPERANTO [10], and YAT [16]. Systems that use the LAV approach are Agora [51],

the Information Manifold [43] and Infomaster [22].

A variety of di�erent languages are used to represent mappings and express queries. For

example, the TSIMMIS mediation system, which uses the GAV approach, is based on an object

model called the object exchange model (OEM). The query language for the TSIMMIS's

mediator and wrapper is MSL, a logic language similar to datalog but with the power to express

semi-structured data [29]. The MSL queries are �rst normalized and then reformulated into

queries using matching and uni�cation [62, 63]. The TSIMMIS system generates mediators

and wrappers from their MSL speci�cations. The Agora data integration system, a LAV

system, accepts user queries in XQuery [51]. However, its wrappers export all data sources

as SQL data sources. It translates XQuery queries into SQL queries on the virtual generic

schema and then rewrites the SQL queries on the generic schema into SQL queries on the

8



real data sources using translation rules. The Information Manifold system uses a Descriptive

Logic to specify global schemas. The e-XMLMedia integrates data sources with XML and

XQuery [31, 32]; however, the mapping is not expressed in XQuery. The MIX mediator

accepts queries in the XMAS query language, and its resolution module uses a mediator view

de�nition in the XMAS language to rewrite a user query into a set of queries on the wrapper

views [2].

There are a number of systems that use the object-oriented model. For example, Garlic

[34] is based on the ODMG object-oriented data model, and it uses dynamic programming for

query optimization. Disco [80] is built around the ODMG object-oriented data model, and its

query language is OQL. Disco also describes its schemas using the ODL language. MOMIS

[4] is built around ODMG CORBA technologies. MOMIS uses ODMI3 common data model

and the OQLI3 query language. It supports semi-automatic generation of a global schema

called the Global Virtual View (GVV) from the ODLI3 descriptions that it receives from its

wrappers. ODMI3, ODLI3 and OQLI3 are all subsets of corresponding ones in ODMG. The

Query Manager for the MOMIS mediator is responsible for processing the queries. It accepts

user queries on the global schema and produces atomic queries in OQLI3 for the wrappers.

The mediators and wrappers of MOMIS cooperate with each other through CORBA. The

data model for Amos II [72] is an object-oriented extension of the functional data model

DAPLEX. Amos II uses an object-oriented query language called AMOSQL, which provides

the select-from-where clause. Amos II also supports distributed query compilation among

mediators and translators. The communication among Amos II modules is through TCP/IP

sockets.

The Infomaster [22] system represents both global and local schemas as relations, which

are called interface and site relations respectively. It then introduces a virtual middle layer

called base relations, which express the relationships between interface and site relations.

Base relations are intended to be �the basic building blocks of the application domain at

9



hand,� so that it is easy to add new data sources and adapt to changes in the existing data

sources. Both interface and site relations are views de�ned on base relations. User queries

are posted on interface relations. User queries are unfolded by substituting interface relations

with their view de�nitions. This step is called reduction. The next step is called abduction,

which uses a standard model elimination theorem prover to translate queries on base relations

to queries on site relations. The queries on site relations are what others refer to as atomic

queries. These queries are executed after they have been optimized. The query language

used in the Infomaster system is a �rst order logic language called knowledge interchange

format (KIF), which has Lisp-like syntax. The relations are described in KIF also.

As previously stated, Marian and Siméon's work on document projection [52] is particularly

relevant to the research described in this dissertation. The authors developed a special pro-

jection algorithm for XML documents that enable memory-based XQuery engines to process

signi�cantly larger documents [52]. This work has been cited by several other researchers.

For example, XMChecker [1] is a system that applies a model checking technique to evalu-

ate XPath queries. XStreamQuery [24] is an event-based XQuery interpreter based on SAX

pipelines. FluX [45, 44] extends XQuery by making use of ordering constraints from DTDs,

which requires less bu�ering. FluX reduces main memory consumption and facilitates event-

based query processing on structured data streams. In another project, the XSQuirrel system

[74] proposed a new language that facilitates queries to manipulate sub-documents, which

are parts of original documents. XSQuirrel has the same syntax as XPath, although it is

semantically di�erent. A path in XPath selects the nodes at the end of the path and all its

descendants, while a path in XSQuirrel is de�ned as the ancestors of the node at the end of

a path, in addition to all those selected by XPath. A path in XSQuirrel actually represents

a subtree beginning at the root of the document. Sub-documents are parts of documents

selected by subtrees from the root to its leaves. The set of all the sub-documents of a original

document is a subset of the set of all the projection documents of that original document. If

10



a set of projection paths all end with #, then the union of those projection paths without # is

a legal XSQuirrel query that returns, not surprisingly, the corresponding projection document.

A small change to the loading algorithm of Marian and Siméon will be a implementation of

the main part of XSQuirrel. The small change is to treat every XSQuirrel path as a projection

path having # at the end.

1.7. Outline

The rest of this thesis is organized as follows. The next chapter introduces the basic

system architecture and presents the di�erent units that constitute the Omphalos mediation

system. The metadata, wrappers and mediators are discussed. A simple information integra-

tion example scenario in Section 2.3 is used to explain the details of the Omphalos system.

A collaborative schema matching tool is introduced in Section 2.4. Chapter 3 presents a

description of the extended XML document projection algorithm, which is used as the query

decomposition algorithm. The concepts and notations are introduced in the �rst few sec-

tions. Then the algorithm is presented as inference rules, following the syntax of an XQuery

core subset. Finally, a proof of the soundness of the algorithm is presented. Chapter 4 is

an evaluation of the algorithm. Both my algorithm and the original projection algorithm are

applied on the evaluation queries that are typical to the Omphalos mediation system. Then

the outcome of the comparison is presented. Chapter 5 concludes this thesis with a discussion

of its contributions and future work. The appendices include some materials related to this

thesis.

11



CHAPTER 2

THE OMPHALOS INFORMATION INTEGRATION SYSTEM

The two major contributions of this work are 1) its use of XQuery to represent mappings

between the global schema and individual data sources, and 2) an extended XML document

projection algorithm that identi�es a subset of the source data needed to answer a user query

on the global schema. By retrieving only a subset of the data, the query process is able to

execute more e�ciently than if all the data were retrieved. The next section provides a brief

overview of the mediator system used in this dissertation. A more detailed description of the

two contributions along with an example then follows.

2.1. Overview

For this research, a mediation approach was used to integrate data, because it can provide

up to date information and scales well. Moreover, XML and Java related technologies were

used to implement the mediation system. XML related technologies [84, 85, 87, 86] provide a

platform independent data representation, a de facto data exchange standard, and a powerful

query language (XQuery). Furthermore, by using XML technologies, this research is able

to develop an extended XML document projection algorithm to reduce the amount of data

retrieved from the real data sources to answer a user query.

The basic architecture of the system is presented in Figure 2.1 on page 13 and is similar

to that developed in [38, 78]. A general mediation system consists of mediators, wrappers

and metadata. A wrapper hides the heterogeneity of a data source and presents �a common

information model� to a mediator [15]. A mediator accepts user queries and decomposes

them into atomic and integrating queries [31]. An atomic query is one that can be answered

by a single data source. The mediator then passes atomic queries to the corresponding

12



GeneratorMetadata

Matadata
XQuery, XML

Mediator

wrapper wrapper wrapper Automatic

Query

Data
Source

Data
Source

Data
Source

Figure 2.1. Mediation Architecture

wrappers for each of the relevant data sources. Each wrapper executes the atomic query

against its associated data source and returns the results to the mediator. The mediator

then runs the integrating query against the data collected from the wrappers and computes

the �nal answer and passes that back to the user.

Query processing is represented in Figure 2.2 on page 14. A user query is parsed and

normalized into a core XQuery query [88]. The core XQuery query is then decomposed into

atomic and integrating queries [31]. Each relevant wrapper then runs its atomic query on its

data and produces an XML stream. Finally, the mediator runs the integrating query on those

XML streams and generates the answer.

The prototype system developed for this dissertation uses XML related technologies to

wrap di�erent data sources as well as represent the mappings among di�erent data sources.

XML [84] is a very �exible format for data representation, data storage, and data exchange.

13



XQuery

Parse &
Normalize

Core
XQuery

Decompose
& Optimize

Atomic
XQuery

Integrating Atomic
XQuery

Evaluate on
a wrapper Data

Data
Evaluate on
a wrapper

Evaluate on
the mediator

XML stream

Answer

XML stream

User
XQuery

Figure 2.2. Query Processing

XML Schema [85] supports rich data types and other constraints in order to restrict XML

document content. XQuery [87, 88, 86] is a powerful language to search and transform

XML data. Thus, XQuery expressions are used to express the global data as views on local

data. These expressions are able to capture very complex transformations that reconcile dis-

crepancies between di�erent schemas. The mediators and wrappers in the prototype system

currently use Saxon-B XQuery engine developed by Michael Kay to execute atomic queries

and integrating queries. They accept XQuery queries or sets of XPath paths and return

responses in XML.

2.2. Creating an Information Integration System

This section describes the steps that are necessary to create an information integration

system using the proposed approach. In order to create an information integration system,

the data integrator must �rst identify the various data sources that are to be integrated as

well as the schemas that describe these data sources. The next step is to de�ne a global

schema that represents the data items that can be queried. These data items may be de�ned

directly or constructed from the real data sources. These two steps are then followed by a

third step, which is to decide how the data items from the real data sources relate to the

14



data items in the global schema. The results of these decisions are represented as mappings

between the global schema and the data source schemas.

These initial steps are, for the most part, generic and not unique to any particular ap-

proach. However, this dissertation suggests that the mappings developed in the third step to

be expressed as XQuery expressions. To facilitate this process, it was necessary to develop

a graphical schema matching tool. This tool presents XML Schemas in a way that allows a

user to indicate the mappings between the schemas by simply clicking on the selected entries.

XQuery expressions can be entered by the user to represent the mappings. This implies that

the global schema and the data source schemas are described using XML Schema. The

data sources are wrapped and exported as XML documents, even though they may be in

some other format. Expressing all components of the system as XML or XQuery allows

the information integration system to use the extended XML document projection algorithm

(described later in this dissertation).

After wrapping all data sources as XML sources, the next step is to combine the various

XQuery mapping expressions into an XQuery query that can produce the global database from

the individual data sources, i.e. de�ne the global database as a view on the data sources.

This query is referred to as a metaquery. Currently this metaquery must be coded manually.

The information integrator must write the metaquery using the mapping expressions and

the schemas. This metaquery is then placed into the metadata �le. There should be a

metaquery in the metadata �le for each global XML document that the integrator wants to

make available to users.

Whenever a user query is received by the system, it is combined with the metaquery to form

what this research calls an outsourced query. This combination is necessary because the user

query refers to the global database, which is a virtual database and does not exist physically.

Therefore, the references to the global database are replaced by the metaqueries that can

generate the global database from the real data sources. The creation of the outsourced

15



query is automatic. The outsourced query could produce an answer to the original user

query, but it would be very ine�cient, because it would mean that the entire contents of

data sources would have to be transmitted. For most queries, only a small subset of the

data within data sources is needed to answer the query. The approach that was used in this

dissertation was to use an extended XML document projection algorithm (describe below) to

retrieve only the appropriate subset of data from the real data sources.

Therefore, the next step is to decompose the outsourced query into atomic queries, which

may be answered by a single data source. The extended XML document projection algorithm

reads the outsourced query and uses the inference rules from the algorithm to produce the

atomic queries in such a way that they retrieve only the data that is required to answer the

user query. Details of the algorithm and the proof of its correctness are given in the next

chapter. Once the data is retrieved, the mediator then integrates the results from the atomic

queries into an answer and presents that to the user.

The following sections describe a more detailed example of how the system uses XML

technologies to integrate disparate data sources.

2.3. An Example Scenario

In order to demonstrate the e�ectiveness of using XQuery for the mappings and the

correctness of the extended projection algorithm, an information integration system called

Omphalos [64, 65] was created. Figure2.3 on page 17 shows a client accessing the Omphalos

information integration system. The top window shows a query on the global database, and

the bottom window shows the result of the query.

The Omphalos information integration system was populated with three data sources,

which are used as examples throughout this dissertation. In this simpli�ed version of an inte-

gration system, every data source has just one resource of interest. A real world information

integration application usually has many more data sources and many more resources per

16



Figure 2.3. Omphalos Information Integration System

data source; however, for the purpose of verifying the ideas presented in this dissertation, a

simpli�ed version serves equally well.

2.3.1. The Data Sources

The three data sources used by the system contain di�erent forms of information items

associated with a college and its chemistry department, and its computer science department.

The college has a directory listing as an XML document named dir.xml (see Listing 2.1). The

chemistry department has a relation called lecturers on an Oracle database server (see table

2.1). The computer science department has a relation called faculty on a MySQL database

server (see table2.2). All three data sources are independently managed. For the convenience

of the responsible personnel in the college, the Omphalos mediation system integrates these

17



Name Rank Start_year Room Pay_rate Monthly_hours

Mark Russell Assistant Professor 1995 CH235 38 120

Logan Nixon Assistant Professor 1990 CH236 40 110

Darren Einstein Full Professor 1976 CH238 80 80

Table 2.1. Oracle Database Table: lecturers

three data sources so that they can search for information of interest from all data sources.

The system presents an integrated view of these three data sources to users as a virtual

database that has a single virtual document named personnel.xml (see Listing 2.2).

Listing 2.1. Abridged dir.xml (see unabridged version in Appendix A)

<?xml version ="1.0" encoding ="UTF -8" ?>

<Directory >

<Person Name=" Frank Kerry">

<Phone >456 -677 -8007 </ Phone >

<Email >frank_kerry@unt.edu </Email >

<Address >

<Street >560 Bryan St </Street >

<City >Denton </City >

<State >Texas </State >

</Address >

</Person >

<Person Name=" Daisy Henry">

<Phone >456 -666 -6591 </ Phone >

<Email >daisy_henry@unt.edu </Email >

<Address >

<Street >1400 Caroll Blvd </Street >

<City >Denton </City >

<State >Texas </State >

</Address >

</Person >

</Directory >

18



FName LName O�ce Title Salary Web_site

Daisy Henry CS123 Assistant Professor 56000 http://www.csci.unt.edu/~henry

Samuel Justin CS122 Full Professor 70000 http://www.csci.unt.edu/~justin

Frank Kerry CS111 Assistant Professor 50000 http://www.csci.unt.edu/~kerry

Table 2.2. MySQL Database Table: faculty

2.3.2. The Global Database Schema

The document personnel.xml (see Listing 2.2) does not actually exist. What really exists

is its W3C XML Schema instance personnel.xsd (see Appendix B), which is included in the

global database schema.

The global schema has items that are transferred directly from the data sources, such as

the �Name� �eld which maps to the �Name� �eld in the lecturers table. It also has items that

are generated from two or more items in the data sources, such as the �Name� �eld in the

global database which also maps to the concatenation of the �FName� and the �LName� �elds

in the faculty table. A data item must be generated whenever that data item is not found

in the original data sources. Generated data items occur frequently in real-world database

applications. An example of generated data items is the department name, where �Chemistry�

is created as the department name for people in the lecturers table and �Computer Science�

is created as the department name for people in the faculty table. The objects in the global

database are composed of data that are combined from the directory and the lecturers table,

or from the directory and the faculty table using the name as a match key. Now that the

global database schema and the data sources are identi�ed, the mappings between them must

be discovered and de�ned.

2.4. Collaborative Schema Matching Tool

One of the major tasks of data integration and many other database applications is to

identify the matching elements among schemas. Data integrators generally rely on assistance

19



Listing 2.2. personnel.xml Presented by the Mediator

<Personnel xmlns="..." xmlns:xsi="..."

xsi:schemaLocation="..." >

<Person >

<Name>Samuel Justin </Name>

<Department >COMPUTER SCIENCE </Department >

<Salary >70000</Salary >

<Rank>Full Professor </Rank>

<Office >CS122</Office >

<Contacts >

<Phone>456 -666 -6592</Phone >

<Email>samuel_justin@unt.edu</Email>

</Contacts >

<Address >

<Street >360 La vista St</Street >

<City>Dallas </City>

<State>Texas</State >

</Address >

</Person >

...

</Personnel >

XML
Parse

WXS
Transform

XML
Schema
Instance

XML
Parse
Tree

WXS
Russian
Doll Tree

Figure 2.4. W3C XML Schema Transformation

from domain experts to accomplish schema-matching tasks [19]. This is also true in Om-

phalos, but it also o�ers a special tool to support the schema matching process. The tool is

able to show schemas in graphic form to facilitate the manual matching process.

The Figure 2.4 shows the process by which a W3C XML Schema instance is transformed

into a tree representation that can be more easily visualized. This tree is called a Russian

Doll tree since all the references have been replaced with nested structures. The Figure 2.5

shows the GUI interface of the Omphalos collaborative schema matching tool. The right

20



Figure 2.5. Collaborative Schema Matching

panel shows a view of the global schema as target schema, and the left panel shows a view of

a local schema as source schema. A user indicates the mappings between schema elements

by simply clicking on the matched items. The mappings can be in the form of many to many

relationship and can be associated with mapping expressions. The tool will produce schema

matching �les encoded in XML (see Listing 2.3 for an example), which are then used by the

information integration implementer to write the appropriate metaquery.

Listing 2.4 is the Russian Doll tree for the W3C XML Schema instance personnel.xsd.

It is obviously much easier for the user to understand this representation as opposed to the

original schema, since it shows the nested structures directly while hiding any details.

What makes the Omphalos schema matching tool special is that it is a collaborative

tool. It can run as a plug-in of ICE [6, 79], which is a platform independent collaborative

environment developed by our lab. Users can run the tool as plug-in in the ICE on di�erent

machines that are connected by networks. The tool will communicate schema-matching

information between the machines. When a user creates a match at one machine, other

21



Listing 2.3. Schema Matching Output File

<?xml version="1.0" encoding="UTF -8"?>

<schema_match >

<source name="faculty.xsd" ID="1" />

<target name="personnel.xsd" ID="1" />

<match ID="1" similarity="1.0" >

<source_element sourceID="1" xpath="/Faculty/Row/FName" />

<source_element sourceID="1" xpath="/Faculty/Row/LName" />

<target_element targetID="1" xpath="/Personnel/Person/Name" />

<mapping_expr ><![CDATA[

/Personnel/Person/Name =

string -join ((/ Faculty/Row/FName ,

/Faculty/Row/LName), " ") ]]>

</mapping_expr >

</match>

<match ...>

...

</match>

...

</schema_match >

Listing 2.4. The Russian Doll Tree for personnel.xsd

Personnel (1~1)

Person (0~1)

Name (1~1)[xs:token]

Department (1~1)[DepartmentType[xs:token ]]

Salary (1~1)[NonNegativeDecimal[xs:decimal ]]

Rank (1~1)[RankType[xs:token ]]

Office (1~1)[xs:token]

Contacts (1~1)[ContactsType]

Phone (1~1)[PhoneNumberType[xs:string ]]

Email (1~1)[EmailType[xs:token]]

Address (1~1)[AddressType]

Street (1~1)[xs:token]

City (1~1)[xs:token]

State (1~1)[xs:NMTOKEN]

users will see the match instantly at their machines. This way, the tool helps experts who are

separated by distance.

22



2.5. XQuery Expressions

To provide a uniform interface between the mediators and the data sources, every non-

XML data source is wrapped as an XML data source. Wrappers use the W3C XML Schema

to export XML data from data sources to the mediator. That is, the wrappers hide the

di�erent formats so that they can present uniform data to the mediator.

Listing 2.5. lecturers.xml Presented by the Chemistry Department Wrapper

<?xml version ="1.0" encoding ="UTF -8" ?>

<Lecturers >

<Row >

<Name >Mark Russell </Name >

<Rank >Assistant Professor </Rank >

<Room >CH235 </Room >

<Pay_rate >38</ Pay_rate >

<Monthly_hours >120</ Monthly_hours >

</Row >

<Row >

<Name >Logan Nixon </Name >

<Rank >Assistant Professor </Rank >

<Room >CH236 </Room >

<Pay_rate >40</ Pay_rate >

<Monthly_hours >110</ Monthly_hours >

</Row >

<Row >

<Name >Darren Einstein </Name >

<Rank >Full Professor </Rank >

<Room >CH238 </Room >

<Pay_rate >80</ Pay_rate >

<Monthly_hours >80</ Monthly_hours >

</Row >

</Lecturers >

For the example scenario, the tables in the databases are trivially wrapped. The chemistry

department wrapper presents its data as lecturers.xml (see Listing 2.5); The computer science

department wrapper presents its data as faculty.xml (see Listing 2.6); The college wrapper

simply presents its data as is (see Listing 2.1 or Appendix A). Note that wrappers do not export

any local data that is not of interest to the user. Those local data have no correspondences

23



Listing 2.6. faculty.xml Presented by the Computer Science Department Wrapper

<?xml version ="1.0" encoding ="UTF -8" ?>

<Faculty >

<Row >

<FName >Daisy </FName >

<LName >Henry </LName >

<Office >CS123 </Office >

<Title >Assistant Professor </Title >

<Salary >56000 </ Salary >

</Row >

<Row >

<FName >Samuel </FName >

<LName >Justin </LName >

<Office >CS122 </Office >

<Title >Full Professor </Title >

<Salary >70000 </ Salary >

</Row >

<Row >

<FName >Frank </FName >

<LName >Kerry </LName >

<Office >CS111 </Office >

<Title >Assistant Professor </Title >

<Salary >50000 </ Salary >

</Row >

</Faculty >

in the global documents. For example, the computer science department wrapper does not

export its faculty websites.

Therefore, the mappings between the global schema and the schemas of the data sources

are expressed as XQuery expressions, even though the data sources themselves are not nec-

essarily XML �les.

2.6. Metaquery

Mediators present integrated data that users can query. The integrated data include all

data in the data sources that is of interest to the user. The example system has one mediator.

It presents the data in Listing 2.2 to users as personnel.xml. This document is never actually

generated. What really exists is the W3C XML Schema personnel.xsd (see Appendix B),

24



which is stored in the metadata. The mediator acts as if it had an XML document called

personnel.xml, which combines data from all three data sources. In order to access data from

the data sources, the mediator must create the converted query (see Listing 2.8). This query

is called a metaquery and is written by the information integrator using the XQuery expressions

that represent the mappings between the global and local schemas. This metaquery is stored

in the metadata �le described in the next section.

2.7. Metadata

The integrated view presented by Omphalos' mediator is perceived by users as an XML

database that consists of XML documents. These XML documents are virtual, however,

since they are not actually real.

To answer user queries, the mediator needs to determine how to extract relevant data

from local data sources and process them, i.e. decompose user queries into atomic and

integrating queries. The mediator accomplishes the task by consulting the metadata.

Omphalos' metadata includes the following four parts:

(1) The mediated schema, i.e. the global schema (personnel.xsd)

(2) The schemas of local data sources (lecturers.xsd, faculty.xsd, and directory.xsd)

(3) The mappings between the global schema and the local schemas (the metaqueries)

(4) The locations of the wrappers (the host names and the TCP port numbers)

The mediated schema consists of a W3C XML Schema instance for each virtual XML doc-

ument. The schemas of data sources include all W3C XML Schema instances exported by

the wrappers. A local data source is not necessarily an XML database or repository because

its wrapper hides the source's representation by wrapping it as an XML source.

Omphalos uses the Global As View (GAV) approach [48]. The XQuery metaqueries

in the metadata express ways to generate virtual global XML documents from local data

sources. The metaqueries capture all the complex data extractions, transformations, and

restructuring that need to take place. There is one XQuery metaquery for each virtual global

25



XML document. These XQuery metaqueries collectively de�ne the virtual global database as

a view on local data sources. The mediator uses these XQuery metaqueries to convert user

queries over the global database to queries over the data sources.

2.7.1. DTD for the Metadata File

The Omphalos metadata is represented by XML documents. The global and local schemas

consist of W3C XML Schema instances and thus are already XML documents. Listing 2.7

presents the DTD for the metadata �le, which constitutes the third and fourth parts of the

metadata. An instance of the metadata �le is shown in Listing 2.8.

Listing 2.7. DTD for the Metadata File con�g.dtd

<?xml version="1.0" encoding="UTF -8" ?>

<!ELEMENT om:mediator ( om:data -sources , om:global -as-views ) >

<!ATTLIST om:mediator xmlns:om CDATA #FIXED

"http: //mars.csci.unt.edu/dbgroup/omphalos/mediator/config/" >

<!ELEMENT om:data -sources ( om:source+ )>

<!ELEMENT om:source ( om:resource+ )>

<!ATTLIST om:source host CDATA #REQUIRED

port CDATA #REQUIRED >

<!ELEMENT om:resource EMPTY>

<!ATTLIST om:resource name CDATA #REQUIRED >

<!ELEMENT om:global -as -views ( om:gav+ ) >

<!ELEMENT om:gav ( #PCDATA )>

<!ATTLIST om:gav name CDATA #REQUIRED >

The root element is om:mediator. It includes one om:data-source element and one

om:global-as-view element. An om:data-sources element includes one or more om:source

elements. Every om:source element has information about one wrapped data source: what

om:resource (i.e. local XML documents) the wrapper has exported and how to communicate

26



with this wrapper. A om:global-as-view element includes one or more om:gav elements. Ev-

ery om:gav element speci�es how to generate one global XML document from relevant local

XML documents.

2.7.2. An Instance of the Metadata File

Listing 2.8 shows the metadata �le of the Omphalos mediator that integrates the three

data sources in the example system (see Section 2.3). Each data source is wrapped as having

just one resource, i.e. a local XML document. The �rst data source resides on the host

mars.csci.unt.edu and is wrapped as having dir.xml. The second resides on last.csci.unt.edu

and is wrapped as having lecturers.xml. The third is located on poseidon.csci.unt.edu and

is wrapped as having faculty.xml. The actual characteristics of the data are not obvious by

looking at this metadata �le. For example, faculty.xml is actually generated by the wrapper

from a table in a MySQL database, while lecturers.xml is generated from a table in an Oracle

database. All three wrappers provide services to the mediator through TCP port 8889.

This mediator has just one global document personnel.xml, which can be queried by users.

This document is virtual. Only its W3C XML Schema instance personnel.xsd really exists, as

previously discussed in Subsection 2.3.2. An XQuery expression (metaquery) is included in

the metadata to express the mapping between the global schema and the three local schemas

exported by the wrappers.

Listing 2.8. An Instance of the Metadata File con�g.xml
<?xml version='1.0' encoding="UTF -8" ?>

<!DOCTYPE om:mediator SYSTEM "config.dtd">

<om:mediator xmlns:om=

"http: //mars.csci.unt.edu/dbgroup/omphalos/mediator/config/">

<om:data -sources >

<om:source host="mars.csci.unt.edu" port="8889" >

<om:resource name="dir.xml" />

</om:source >

<om:source host="last.csci.unt.edu" port="8889" >

<om:resource name="lecturers.xml" />

</om:source >

27



<om:source host="poseidon.csci.unt.edu" port="8889" >

<om:resource name="faculty.xml" />

</om:source >

</om:data -sources >

<om:global -as -views >

<om:gav name="personnel.xml" >

<![CDATA[

document {

<Personnel >

{ (

for $x in doc(" lecturers.xml")/Lecturers/Row ,

$y in doc("dir.xml")/Directory/Person

where $x/Name = $y/@Name

return

<Person >

{$x/Name}

<Department >CHEMISTRY </Department >

<Salary > {($x/Pay_rate) * ($x/Monthly_hours) * 12}

</Salary >

{$x/Rank}

<Office >{$x/Room/text()}</Office >

<Contacts >

{$y/Phone}

{$y/Email}

</Contacts >

{$y/Address}

</Person > )

union (

for $x in doc(" faculty.xml")/Faculty/Row ,

$y in doc("dir.xml")/Directory/Person

let $xname := string -join (($x/FName , $x/LName), " ")

where $xname = $y/@Name

return

<Person >

<Name >{$ xname}</Name >

<Department >COMPUTER SCIENCE </Department >

{$x/Salary}

<Rank >{$x/Title/text()}</Rank >

{$x/Office}

<Contacts >

{$y/Phone}

{$y/Email}

28



</Contacts >

{$y/Address}

</Person > )

}

</Personnel >

}

]]>

</om:gav >

</om:global -as -views >

</om:mediator >

2.8. Omphalos's Solution to the Example User Query

2.8.1. The Example User Query over the Global Document

For this example, Omphalos has just one global document called personnel.xml. The user

queries the following:

for each person in the college with an income over $60000, list his or her full name,

salary and phone number inside a Fellow element. Enclose all the fellow elements inside a

High_income element.

The corresponding XQuery query is shown in Listing 2.9.

Listing 2.9. The User XQuery Query over Global Virtual Database

<High_income >

{

for $x in doc("personnel.xml")/Personnel/Person[Salary > 60000]

return

<Fellow Department="{$x/Department}" >

{$x/Name}

{$x/Salary}

{$x/Contacts/Phone}

</Fellow >

}

</High_income >

29



2.8.2. The Example Outsourced Query over the Local Documents

Using the metadata, the mediator transforms the user query over the virtual global data-

base into a query over local data sources (outsourced query) as shown in Listing 2.10.

Basically, the transformation unfolds the global document references in the query using their

corresponding metaqueries from the metadata. In other words, the transformation replaces

the global document references with their corresponding mappings.

Listing 2.10. The Outsourced Query
<High_income >

{

let $z := document {

<Personnel >

{ (

for $x in doc("lecturers.xml")/Lecturers/Row ,

$y in doc("dir.xml")/Directory/Person

where $x/Name = $y/@Name

return

<Person >

{$x/Name}

<Department >CHEMISTRY </Department >

<Salary > {($x/Pay_rate) * ($x/Monthly_hours) * 12}

</Salary >

{$x/Rank}

<Office >{$x/Room/text()}</Office >

<Contacts >

{$y/Phone}

{$y/Email}

</Contacts >

{$y/Address}

</Person > )

union (

for $x in doc("faculty.xml")/Faculty/Row ,

$y in doc("dir.xml")/Directory/Person

let $xname := string -join(($x/FName , $x/LName), " ")

where $xname = $y/@Name

return

<Person >

<Name >{ $xname}</Name >

<Department >COMPUTER SCIENCE </Department >

30



{$x/Salary}

<Rank >{$x/Title/text()}</Rank >

{$x/Office}

<Contacts >

{$y/Phone}

{$y/Email}

</Contacts >

{$y/Address}

</Person > )

}

</Personnel >

}

for $x in $z/Personnel/Person[ Salary gt 60000 ]

return

<Fellow Department="{$x/Department}" >

{$x/Name}

{$x/Salary}

{$x/Contacts/Phone}

</Fellow >

}

</High_income >

Figure 2.6 on page 32 illustrates the query decomposition process in Omphalos. A user

XQuery query is unfolded into an outsourced XQuery query, which is normalized into an

XQuery core query. Then the outsourced XQuery core query goes through the extended

projection analysis which generates projection paths. From the outsourced XQuery core query

and its projection paths, Omphalos produces the integrating query (IQ). The projection paths

are converted to or used directly as atomic queries (AQ's). Generally, there can be multiple

decompositions for any given outsource query. Each decomposition has its advantages and

disadvantages. Omphalos's decomposition places a low requirement on the capabilities of

the wrappers when projection paths are used directly as atomic queries. The wrappers do

not need to be full-�edged XQuery engines, but only need to be able to process XPath paths.

Another advantage of using projection paths directly is that they can be stream processed.

If necessary, a set of projection paths can be converted to a single XQuery query using the

algorithm presented by Arnaud Sahuguet and Bogdan Alexe [74].

31



Unfold
Normalize

IQ
Extraction Ext. Project

GAV

User
XQuery

Outsourced
XQuery

Core
Outsourced

Prj. Paths
as AQ

IQ

Figure 2.6. Query Decomposition

The next four subsections show the atomic queries and the integrating query produced by

Omphalos from the decomposition of the example outsourced query. There are three atomic

queries since the outsourced user query needs data from all the three wrappers.

2.8.3. The Atomic Query to the Chemistry Department Wrapper

Given the example query, the relevant data in the chemistry data source are names, pay

rates and monthly hours of lecturers. So the atomic query should retrieve only those data.

Since the wrapper can accept sets of projection paths, the Omphalos mediator sends the

following set of projection paths as the atomic query:

fdoc("lecturers.xml")=Lecturers=Row ;

doc("lecturers.xml")=Lecturers=Row=Name ;

doc("lecturers.xml")=Lecturers=Row=Pay_rate ;

doc("lecturers.xml")=Lecturers=Row=Monthly_hoursg

32



The set of projection paths can be converted to a single XQuery query in Listing 2.11

using an algorithm presented in the paper [74] if the wrapper only accepts an XQuery query

as input.

Listing 2.11. Atomic Query Sent to the Chemistry Department Wrapper
<Lecturers >

{

for $x in doc("lecturers.xml")/Lecturers/Row

return

<Row >

{$x/Name}

{$x/Pay_rate}

{$x/Monthly_hours}

</Row >

}

</Lecturers >

2.8.4. The Atomic Query to the Computer Science Department Wrapper

Again referring to the example query, the relevant data in the computer Science data

source are �rst names, last names and salaries of faculty. So the atomic query should only

retrieve those data. Therefore, the Omphalos mediator just sends the following set of pro-

jection paths as the atomic query:

fdoc("faculty.xml")=Faculty=Row ;

doc("faculty.xml")=Faculty=Row=FName ;

doc("faculty.xml")=Faculty=Row=LName ;

doc("faculty.xml")=Faculty=Row=Salaryg

The Omphalos mediator can send the XQuery query in Listing 2.12 to the wrapper if it

only accepts an XQuery query as input.

33



Listing 2.12. Atomic Query Sent to the Computer Department Wrapper
<Faculty >

{

for $x in doc("faculty.xml")/Faculty/Row[Salary gt 60000]

return

<Row >

{$x/$FName}

{$x/$LName}

{$x/Salary}

</Row >

}

</Faculty >

2.8.5. The Atomic Query to the College Wrapper

The relevant data for the example query in the college data source are names and phone

numbers. The Omphalos mediator sends the following set of projection paths as atomic

query:

fdoc("dir.xml")=Directory=Person ;

doc("dir.xml")=Directory=Person=Name ;

doc("dir.xml")=Directory=Person=Phoneg

The Omphalos mediator can send the XQuery query in Listing 2.13 to the wrapper if it

only accepts an XQuery query as input.

Listing 2.13. Atomic Query Sent to the College Wrapper
<Directory >

{

for $x in doc("dir.xml")/Directory/Person

return

<Person >

{$x/@Name}

{$x/Phone}

</Person >

}

34



</Directory >

2.8.6. The Integrating Query

The Listing 2.14 shows the integrating query that Omphalos generates. The external

variables $chemStream, $csciStream and $collStream in Listing 2.14 represent the three XML

streams returned by the three wrappers. Note that the Omphalos decomposition eliminates

the unnecessary construction of the contents of the following elements: Rank, O�ce, Email

and Address.

Listing 2.14. The Integrating Query
declare variable $chemStream external;

declare variable $csciStream external;

declare variable $collStream external;

<High_income >

{

let $z := document {

<Personnel >

{ (

for $x in doc("lecturers.xml")/Lecturers/Row ,

$y in doc("dir.xml")/Directory/Person

where $x/Name = $y/@Name

return

<Person >

{$x/Name}

<Department >CHEMISTRY </Department >

<Salary > {($x/Pay_rate) * ($x/Monthly_hours) * 12}

</Salary >

<Office />

<Contacts >

{$y/Phone}

</Contacts >

</Person > )

union (

for $x in doc("faculty.xml")/Faculty/Row ,

$y in doc("dir.xml")/Directory/Person

let $xname := string -join(($x/FName , $x/LName), " ")

where $xname = $y/@Name

return

35



<Person >

<Name >{ $xname}</Name >

<Department >COMPUTER SCIENCE </Department >

{$x/Salary}

<Rank />

<Contacts >

{$y/Phone}

</Contacts >

</Person > )

}

</Personnel >

}

for $x in $z/Personnel/Person[ Salary gt 60000 ]

return

<Fellow Department="{$x/Department}" >

{$x/Name}

{$x/Salary}

{$x/Contacts/Phone}

</Fellow >

}

</High_income >

2.8.7. Executing the Atomic Queries

The atomic queries are then sent to their corresponding wrappers, and the resulted data

streams are returned to the mediator.

The chemistry department wrapper returns the XML stream shown in Listing 2.15 to the

mediator.

Listing 2.15. The XML Stream Returned by the Chemistry Department Wrapper
<?xml version="1.0" encoding="UTF -8" ?>

<Lecturers >

<Row>

<Name>Mark Russell </Name>

<Pay_rate >38</Pay_rate >

<Monthly_hours >120</Monthly_hours >

</Row>

<Row>

<Name>Logan Nixon </Name>

<Pay_rate >40</Pay_rate >

36



<Monthly_hours >110</Monthly_hours >

</Row>

<Row>

<Name>Darren Einstein </Name>

<Pay_rate >80</Pay_rate >

<Monthly_hours >80</Monthly_hours >

</Row>

</Lecturers >

The computer department wrapper returns the XML stream shown in Listing 2.16 to the

mediator.

Listing 2.16. The XML Stream Returned by the Computer Department Wrapper
<?xml version="1.0" encoding="UTF -8" ?>

<Faculty >

<Row>

<FName>Daisy</FName >

<LName>Henry</LName >

<Salary >56000</Salary >

</Row>

<Row>

<FName>Samuel </FName >

<LName>Justin </LName >

<Salary >70000</Salary >

</Row>

<Row>

<FName>Frank</FName >

<LName>Kerry</LName >

<Salary >50000</Salary >

</Row>

</Faculty >

The college wrapper returns the XML stream shown in Listing 2.17 to the mediator.

Listing 2.17. The XML Stream Returned by the College Wrapper
<?xml version="1.0" encoding="UTF -8" ?>

<Directory >

<Person Name="Frank Kerry">

<Phone>456 -677 -8007</Phone >

</Person >

<Person Name="Mark Russell">

37



<Phone>456 -677 -8006</Phone >

</Person >

<Person Name="Logan Nixon">

<Phone>456 -666 -6595</Phone >

</Person >

<Person Name="Darren Einstein">

<Phone>456 -688 -6596</Phone >

</Person >

<Person Name="Samuel Justin">

<Phone>456 -666 -6592</Phone >

</Person >

<Person Name="Daisy Henry">

<Phone>456 -666 -6591</Phone >

</Person >

</Directory >

2.8.8. Integrated Results

The mediator executes the integrating query after it receives the XML streams returned

by the individual wrappers. It returns the XML stream shown in Listing 2.18 as the answer

to the original user query.

Listing 2.18. The XML Stream Returned to the User as the Answer
<?xml version="1.0" encoding="UTF -8"?>

<High_income >

<Fellow Department="CHEMISTRY">

<Name>Darren Einstein </Name>

<Salary >76800</Salary >

<Phone>456 -688 -6596</Phone >

</Fellow >

<Fellow Department="COMPUTER SCIENCE">

<Name>Samuel Justin </Name>

<Salary >70000</Salary >

<Phone>456 -666 -6592</Phone >

</Fellow >

</High_income >

38



CHAPTER 3

QUERY DECOMPOSITION ALGORITHM

As discussed in Chapter 2, it takes several steps to process user queries on the virtual

global data sources and create the atomic queries that operate on individual data sources.

First, a user XQuery query is combined with a metaquery from the metadata �le to form an

outsourced query, as discussed in the previous chapter. XQuery query decomposition then

translates the outsourced query into either atomic or integrating queries. The atomic queries

are executed immediately by the wrappers, and the results are sent back to the mediators.

Integrating queries are executed by mediators that compute the �nal response based on the

results of atomic queries. The query decomposition algorithm that is used in this research is

called Omphalos and is based on an extension to the XML document projection algorithm.

One of the challenges of any decomposition algorithm is to retrieve the minimum data from

the data sources that are required to answer user queries. The algorithm used in this research

attempts to meet this challenge. A more detailed description of the extended XML document

projection algorithm is presented below.

3.1. Projection Paths

Omphalos uses the de�nition of projection paths that was �rst developed by Marian and

Siméon [52]. Intuitively, the projection paths of an XQuery query are those XPath paths that

select only the nodes from the input documents that are relevant to a particular query. The

selected portion of the input document is called its projection document. To keep things

simple, Marian and Siméon restrict the form of projection paths to only forward navigation

without predicates. So the syntax for a projection path is a subset of XPath. Note, however,

XPath paths with reverse axes can be transformed to reverse-axis-free paths [61]. Thus, this

39



restriction does not appear to result in the loss of the algorithm's generality in any signi�cant

way.

The projection path grammar used in this thesis is presented in Listing 3.1. This grammar

was adapted from the one described by Marian and Siméon [52]. The `'()|?* characters are

meta symbols.

Listing 3.1. The Grammar of Projection Paths

ProjectionPath ::= doc `(' URL `)' #?

| doc `(' URL `)' / RelativePath #?

| "

RelativePath ::= ForwardStep

| RelativePath / ForwardStep

ForwardStep ::= Axis NodeTest

Axis ::= child::

| self::

| descendant ::

| descendant -or-self::

| attribute ::

NodeTest ::= (( NCName | *):)?( NCName | *)

| node `('`)'

| text `('`)'

A projection path normally starts with an input document and includes a series of forward

steps. If the path ends with a �#,� it selects the nodes in the subtree that are rooted at

its end. If it does not end with a �#,� the path does not select that subtree. The special

case, �"� is de�ned as an empty projection path, which is used in the inference rules of

conditional expressions (refer to subsection 3.5.10 on page 70) and for-expressions (refer to

subsection 3.5.7 on page 60).

To distinguish between the nodes identi�ed with input documents from those that were

newly constructed by XQuery queries, the former are called source nodes, because input

documents are data sources, and the latter are called constructed nodes for obvious reasons.

40



3.2. Environment and Store

3.2.1. Returned Paths, Used Paths and Constructed Nodes

As mentioned previously, the projection paths of an XQuery query select the source nodes

that are relevant to a speci�c query and are of two types. The �rst type, called returned

projection paths or simply returned paths, selects source nodes that appear directly in the

result of a query. The other, called used projection paths or simply used paths, selects source

nodes that contribute indirectly to the result of a query.

For example, consider the XQuery expression in Listing 3.2 that lists the names of all full

professors.

Listing 3.2. List the Names of All Full Professors

1 let $x := doc("lecturers.xml")/Lecturers/Row

2 return

3 if $x/Rank = "Full Professor"

4 then

5 $x/Name

6 else ( )

The source nodes selected by the projection path $x/Name on line 5 , i.e.,

doc("lecturers.xml")/Lecturers/Row/Name

appear in the �nal result, while the source nodes selected by the projection path $x/Rank on

line 3 , i.e.,

doc("lecturers.xml")/Lecturers/Row/Rank

a�ect the result but do not appear directly in the result. So the projection path

doc("lecturers.xml")/Lecturers/Row/Name

is one of the returned paths, and the projection path

doc("lecturers.xml")/Lecturers/Row/Rank

is one of the used paths for the expression. These two projection paths are said to be related

as a path pair. In a path pair, it is said that the returned path uses the used path. A returned

41



path may use a set of used paths, and itself may function as a used path in a higher level

expression. However, a used path may never function as a returned path. For example the

projection path

doc("lecturers.xml")/Lecturers/Row/Rank

is a returned path for the expression $x/Rank on line 3, if the expression is analyzed as a

standalone.

The expression on line 1

doc("lecturers.xml")/Lecturers/Row

is a subexpression of the expression in Listing 3.2. Its value is bound to the variable x during

query evaluation. The returned path of this subexpression is

doc("lecturers.xml")/Lecturers/Row

and this returned path is said to be bound to the variable name x during the query's projection

analysis.

Listing 3.3 shows an XQuery expression that answers the following question

How much does Dr. Mark Russell earn yearly?

Listing 3.3. Dr. Mark Russell's Salary

1 let $x := doc("lecturers.xml")/Lecturers/Row

2 return

3 if $x/Name="Mark Russell"

4 then

5 ($x/Pay_rate)*($x/Monthly_hours)*12

6 else ()

If there is no such person, nothing will result. Otherwise it prints out the yearly income.

The following two projection paths

doc("lecturers.xml")/Lecturers/Row/Pay_rate

doc("lecturers.xml")/Lecturers/Row/Monthly_hours

42



look like the returned paths for the whole expression, but they are actually used paths. The

source nodes that were selected by them a�ect the result, but they do not appear in the result.

You cannot �nd any occurrences of those source nodes in the result, since the multiplication

operator returns a number and not a node.

Next, consider an XQuery expression with element constructors. The expression in List-

ing 3.4 lists all people living in Denton.

Listing 3.4. List People Living in Denton

1 for $y in doc("dir.xml")/Directory/Person

2 return

3 if ($y/Adddress/City = "Denton")

4 then

5 element Dentonese {

6 element FullName {$y/@Name},

7 $y/Phone

8 }

9 else ()

The returned path of the subexpression �$y/@Name� on line 6 is

doc("dir.xml")/Directory/Person/@Name

The subexpression on line 6

element FullName {$y/@Name}

constructs a new node with the name Ful lName. The content of this new node is

doc("dir.xml")/Directory/Person/@Name

Constructed nodes are identi�ed by their identi�ers. Let fN be the new node identi�er assigned

to this new node. The higher level subexpression on lines 5 to 7

element Dentonese

{ element FullName {$y/@Name}, $y/Phone }

43



constructs a new node with the name Dentonese. Let dN be the new node identi�er assigned

to this new node. This node has as its children: a constructed node fN and some source

nodes selected from the input document by the path

doc("dir.xml")/Directory/Person/Phone

It is obvious that the projection path

doc("dir.xml")/Directory/Person/Address/City

controls whether or not a Dentonese element will actually be created. The projection path

doc("dir.xml")/Directory/Person

controls how many Dentonese elements will be created. These two paths are called the

control paths of the constructed node dN in this dissertation.

3.2.2. Environment

The techniques used to describe the algorithm used in this research are derived from

structural operational semantics (SOS), which was originally developed by Gordon Plotkin in

1981 in his notes on A Structural Approach to Operational Semantics [67]. They are also

discussed in many books [76, 56, 66, 83, 11], particularly in [11].

An environment called Env is used to record the mappings between variable names and

their properties. Di�erent properties are kept in their corresponding components in the envi-

ronment.

The following are the environment components used by the inference rules in the research

system:

� VarRtnPathSet records bindings between variable names and their returned paths.

� VarConNodeSet records bindings between variable names and their constructed

nodes.

44



� VarValue records bindings between variable names and their assigned values. This

is only used for determining whether or not the result of an expression will be an

empty sequence when some of its variables are bound to empty sequences.

The notations used in this dissertation are similar to those used in [11] and in the XQuery

1.0 and XPath 2.0 Formal Semantics speci�cation that appears on the W3C website [88].

Suppose Comp is a component of an environment Env . This fact is denoted as Env :Comp.

The notation

Env :Comp (Var 1 ) Val1; � � � ;Var n ) Valn)

denotes an environment component that maps a variable name Var k to a value Valk for

k = 1; � � � ; n.

The notation dom (Env :Comp) denotes the domain of Env :Comp, i.e., the set of variable

names mapped in Env :Comp. In the above formula, the following assignment is made:

dom (Env :Comp) = fVar 1; � � � ;Var ng

The notation Env :Comp (Var) denotes the value mapped to the variable name Var in the

environment component Env :Comp. If the value Val is its value, the equation is written

Env :Comp (Var) = Val

The notation Env +Comp (Var ) Val) denotes an environment that is the same as Env

, except that its Env :Comp component maps the variable name Var to the value Val . When

the formula is long, for convenience, the new state of the environment is given a new name,

e.g. Env 2. This equation is written as:

Env 2 = Env + Comp (Var ) Val)

Note that the extra Env : pre�x is omitted from the notation Env :Comp, because the Env

in the �rst term on the right can indicate which data structure is being changed (i.e., an

environment or a store - see the next section).

45



The symbol ; is used to denote the empty set.

For example, the environment includes the following at one point of the projection analysis

of the expression in Listing 3.2:

Env :VarRtnPathSet(x) =fdoc("lecturers.xml")=Lecturers=Rowg

Env :VarConNodeSet(x) = ;

Note if the variable x were bound to the result of the whole expression in Listing 3.4, then

Env :VarRtnPathSet(x) = ;

Env :VarConNodeSet(x) = fdNg

3.2.3. Store

A store (i.e., Store ) is used to record mappings between node identi�ers and their di�erent

properties.

The store used by the inference rules in this dissertation has the following components:

� NodeName records the node name of a node, which is a mapping from a node

identi�er to a name.

� NodeKind records the kind of the node identi�ed by a node identi�er.

� Parent records the mapping from a node identi�er to the node identi�er of that

node's parent. If the parent is unknown, the special value nil is used.

� ConstructedChildren records the mapping from a node identi�er to the node identi-

�ers of that node's children, which are also constructed nodes.

� SourcePathPairSet If a constructed node has some source nodes as its children, this

component records the mapping from the node identi�er to those children. Every

child is represented as a path pair: a returned and a used projection path. If a

returned path uses many used paths, the returned path is associated with the set of

those used paths.

46



� CtrlPathSet records the mapping from the node identi�er to the projection paths

that control how the node is constructed. These paths control the occurrences of

constructed nodes.

The notations for using the di�erent store components are similar to those de�ned for envi-

ronment components.

The following are in the store at the end of the projection analysis of the expression in

Listing 3.4:

Store:NodeName(fN) = "FullName"

Store:NodeKind(fN) = "element"

Store:Parent(fN) = dN

Store:ConstructedChildren(fN) = ;

Store:SourcePathPairSet(fN) =

fhdoc("dir.xml")=Directory=Person=@Name; ;ig

Store:CtrlPathSet(fN) = ;

Store:NodeName(dN) = "Dentonese"

Store:NodeKind(dN) = "element"

Store:Parent(dN) = nil

Store:ConstructedChildren(dN) = ffNg

Store:SourcePathPairSet(dN) =

fhdoc("dir.xml")=Directory=Person=Phone; ;ig

Store:CtrlPathSet(dN) =

fdoc("dir.xml")=Directory=Person=Adddress=City ;

doc("dir.xml")=Directory=Persong

3.3. Projection Judgment

Calligraphic letters are used to represent sets, and normal upper case letters are used to

represent elements of sets.

47



The projection judgment is de�ned as:

Store0;Env ` Expr ) hP , Ni ;Store1

This is interpreted as, �given an old store Store0 and environment Env , the projection analysis

of Expr yields an ordered pair of sets hP , Ni with new store Store1.� The set P is a set of

ordered pairs of projection paths, and the set N is a set of node identi�ers of constructed

nodes. Store1 keeps all the nodes that are constructed along with their properties during the

projection analysis. Before the projection analysis of any whole query, the initial environment

and store are both represented as ;. Judgments are inferred by applying the rules described

in section 3.5.

The set of ordered path pairs P is in the form:

fhRi ;Uii j i = 1; : : : ; mg or fhRi ;Uii j i = 1; : : : ; ng

The latter form is a shorthand that merges path pairs with the same �rst elements; Conse-

quently the second elements become sets. In the former form fhRi ;Uii j i = 1; : : : ; mg , the

�rst path element Ri is a returned path. The source nodes in an input document selected

by the Ripath appear directly as a result of evaluating Expr . The second path element Ui

is a used path. The source nodes selected by the path Ui contribute indirectly to the result

of the evaluation of Expr . The ordered path pairhRi ;Uii denotes that the path Ui is a used

path of the returned path Ri .

For example, the projection analysis of the following subexpression in Listing 3.2

if $x/Rank = "Full Professor"

then $x/Name else ( )

will yield the path pair

hdoc("lecturers.xml")=Lecturers=Row=Name ;

48



doc("lecturers.xml")=Lecturers=Row=Ranki

For convenience and clarity, if two path pairs hR1;U1i and hR2;U2i have the same �rst

element , i.e., R1 = R2, the shorthand notation hR1; fU1;U2giis used. In fact, the notation

fhRi ;Uii j i = 1; : : : ; ng is used to denote the set P throughout the explanation of the infer-

ence rules, which are presented in section 3.5, where Ui is the set of all paths used by the

returned path Ri .

As a special case, the returned path Ri can be ", i.e., an empty path. The ordered

path pair h"; Uii deals with cases where the expression Expr returns no nodes from input

documents, e.g. literals. For example, consider the following question:

Is Dr. Mark Russell a full professor?

The XQuery expression in the Listing 3.5 returns a �yes� or �no� to this question. If there is

no such person, then nothing will be returned from the query.

Listing 3.5. Is Dr. Mark Russell a Full Professor?

1 let $x := doc("lecturers.xml")/Lecturers/Row

2 return

3 if $x/Name="Mark Russell"

4 then

5 if $x/Rank = "Full Professor"

6 then "Yes"

7 else "No"

8 else ()

The projection analysis of the subexpression on line 5 to 7 of Listing 3.5

if $x/Rank = "Full Professor" then "Yes" else "No"

will yield the path pair

h"; doc("lecturers.xml")=Lecturers=Row=Ranki

No nodes from the input document appear in the �nal result.

49



The set of constructed nodes N is in the form

fNj j j = 1; : : : ; lg

Each Nj is a node identi�er of a top level node constructed by the expression Expr . Lower level

nodes constructed by Expr , and nodes constructed by other expressions, are all memorized

in the �Store.�

As previously mentioned, the properties of constructed nodes are recorded in the com-

ponents of a data structure called store. The forms of most components of the store are

simple. However, SourcePathPairSet component records the path pairs of returned and used

paths that contribute to the immediate content of a constructed node. The elements of the

set calledStore:SourcePathPairSet(Nj) are in the form:

hSj ;Hii

This means that the source nodes selected by the paths Sj and Hj a�ect the immediate

content of the newly constructed node directly and indirectly. The relationship between the

Sj and the Hi paths of a path pair hSj ;Hii are the same as the one between the path Ri

and the Ui paths of a path pair hRi ;Uii. In fact, every path pair hSj ;Hii is originally a

path pair hRi ;Uii of some subexpression. When that subexpression becomes part of the

content of a XQuery constructor expression, its path pair hRi ;Uii becomes an element of the

Store:SourcePathPairSet(Nj) set, if the newly constructed node has the Njnode identi�er

The following shorthand form that merges path pairs with the same �rst elements is also

used:

hSj , Hji

The set of paths Hj includes all the paths used by the path Sj .

Consider a slightly more complex example in the Listing 3.6

The result of this expression includes not only the source nodes of the input document

selected by $x/Name, i.e.,

50



Listing 3.6. List Salaries of Professors

1 let $x := doc("lecturers.xml")/Lecturers/Row

2 return

3 if $x/Rank = "Full Professor"

4 then (

5 $x/Name ,

6 <Salary >

7 {($x/Pay_rate)*($x/Monthly_hours)*12}

8 </Salary > )

9 else ( )

doc("lecturers.xml")/Lecturers/Row/Name

but also the newly created nodes of Salary, denoted by sN. The contents of the new nodes

of Salary are related to the nodes of the input document selected by $x/Pay_rate, i.e.,

doc("lecturers.xml")/Lecturers/Row/Pay_rate,

and $x/Monthly_hours, i.e.,

doc("lecturers.xml")/Lecturers/Row/Monthly_hours

The projection analysis of this expression yields an ordered pair of sets hP , Ni as

hfhdoc("lecturers.xml")=Lecturers=Row=Name;

fdoc("lecturers.xml")=Lecturers=Row ;

doc("lecturers.xml")=Lecturers=Row=Rankg ;

ig ; fsNgi

with a store including the following content:

51



Store:NodeName(sN) = "Salary"

Store:NodeKind(sN) = "element"

Store:Parent(sN) = nil

Store:ConstructedChildren(sN) = ;

Store:SourcePathPairSet(sN) =

fh"; fdoc("lecturers.xml")=Lecturers=Row=Pay_rate#;

doc("lecturers.xml")=Lecturers=Row=Monthly_hours#gig

Store:CtrlPathSet(sN) =

fdoc("lecturers.xml")=Lecturers=Row ;

doc("lecturers.xml")=Lecturers=Row=Rankg

After processing with the extended XML document projection algorithm, the �nal projec-

tion path set of the example that is presented in Listing 3.6 is

fdoc("lecturers.xml")=Lecturers=Row=Name#;

doc("lecturers.xml")=Lecturers=Row;

doc("lecturers.xml")=Lecturers=Row=Rank;

doc("lecturers.xml")=Lecturers=Row=Pay_rate#;

doc("lecturers.xml")=Lecturers=Row=Monthly_hours# g

In order to make the inference rules easier to understand, the following shorthands or

operations are de�ned: Let P = fhRi ;Uii j i = 1; : : : ; ng and N = fNj j j = 1; : : : ; lg. The

set N is implicitly a set of nodes under a store. The store provides the parent and children

information about a node. For simplicity, the store is omitted in the following notations.

� RtnPathSet(P) = RtnPathSet(fhRi ;Uii j i = 1; : : : ; ng) = fRi j i = 1; : : : ; ng

� UsedPathSet(P) = UsedPathSet(fhRi ;Uii j i = 1; : : : ; ng) = [n
i=1Ui

52



� RtnUsedPathSet(P) = RtnPathSet(P) [ UsedPathSet(P)

� Ancestors(N ) =
⋃

N2N (fParent(N)g [ Ancestors (Parent(N)))

� Descendants(N ) =
⋃

N2N (ConstructedChildren(N)[

Descendants (ConstructedChildren(N))

� UpCtrlPathSet(N ) = [N2N[Ancestors(N )CtrlPathSet(N)

� AllCtrlPathSet(N ) = [N2N[Ancestors(N )[Descendants(N )CtrlPathSet(N)

� TreePathPairSet(N ) = [N2N[Descendants(N )SourcePathPairSet(N)

� BasePathSet(N ) = AllCtrlPathSet(N )[

RtnPathSet(TreePathPairSet(N ))[

UsedPathSet(TreePathPairSet(N ))

� FinalizedRtnPathSet(P) = [R2RtnPathSet(P) fR#g

� FinalizedPathSet(P; N ) = [R2RtnPathSet(P) fR#g[

[U2UsedPathSet(P) fUg[

[S2RtnPathSet(TreePathPairSet(N )) fS#g[

[H2UsedPathSet(TreePathPairSet(N )) fHg[

AllCtrlPathSet(N )

3.4. XQuery Core Subset

An XQuery core subset is used to demonstrate the techniques described in this disserta-

tion. It is similar to the one used by Marian and Siméon [52]. This grammar can provide full

support for XPath 1.0 and all important XQuery features, including FLWR expressions that

could pose signi�cant challenges to the application of the techniques implemented in this

research. The symbols `'()|?* are meta symbols. Symbols beginning with upper case letter

are grammatical symbols, while symbols in lower cases are keywords.

The Listing 3.7 shows the grammar used in this system.

53



Listing 3.7. The Grammar of the Subset of XQuery Core

VarName ::= QName

Expr ::= Literal

| `(' `)'

| /

| Expr , Expr

| QName `(' (Expr (, Expr) * ) ? `)'

| doc `(' URL `)'

| Expr (= | >) Expr

| Expr (+ | *) Expr

| Expr union Expr

|$VarName

| for $VarName in Expr return Expr

| let $VarName := Expr return Expr

| Axis NodeTest

| if `(' Expr `)' then Expr else Expr

| (element | attribute) QName {Expr}

| (element | attribute) {Expr} {Expr}

| document {Expr}

| text {String}

54



3.5. Inference Rules

The following is a description of the inference rules that are used in my extended projection

algorithm. The notations are similar to those used in [11, 88]. Each rule has zero or more

judgements above the line, called hypotheses or premises, and one judgement below the line,

called the conclusion [76, 56, 66, 83, 11]. The conclusion holds if all the hypotheses hold.

The rationale behind every rule is that the projection paths need to be able to retrieve

all the necessary data from the source documents that are required to compute an XQuery

expression. The di�erent types of rules available in the system are presented below.

3.5.1. Literal Values

Literal values do not reference any data in input documents or create any new nodes.

Thus, they do not contribute any projection paths nor constructed nodes. No changes are

made to the store either.

Store0;Env`Literal )h;; ;i, Store0

3.5.2. Empty Sequence

Similar to Literals, an empty sequence does not refer to any data in source documents or

create any new nodes, and thus they contribute zero projection paths and zero constructed

nodes. No changes are made to the store either.

Store0;Env`( ))h;; ;i, Store0

3.5.3. Root Path

A root path expression requires that the root path be kept as a projection path. It does

not construct any new elements, and it does not change the store.

Store0;Env`=) hfh=; ;ig ; ;i, Store0

55



3.5.4. Sequence Expressions

The source data that is needed to compute a sequence expression is the union of the

source data that is required to compute its subexpressions. Thus, the sets of projection path

pairs and the sets of constructed nodes are propagated from the subexpressions to the higher

level expression. In addition, subexpressions sometimes change the store.

Store0;Env`Expr 1)hP1; N1i, Store1

Store1;Env`Expr 2)hP2; N2i, Store2

Store0;Env`Expr 1;Expr 2

)hP1 [ P2; N1 [N2i, Store2

3.5.5. Function Calls

There are inference rules that call user de�ned functions, as well as inference rules that

call important or typical built-in functions. The inference rules that call user de�ned functions

are described �rst. Generally, built-in functions must be analyzed on a case by case basis[52].

3.5.5.1. Calls to User De�ned Functions

The system currently only analyzes non-recursive functions. First, the function declaration

is retrieved. The environment Env 0 de�ned by the module of the function declaration is also

retrieved. Next, the actual argument expressions are analyzed under the current environment

Env in which the function is called. The results are bound to the formal parameter variables

and added to Env 0 to form a new environment Env 00. Finally, the function body is analyzed

under the environment Env 00. The store as well as the function body might have been changed

by the actual argument expressions.

The projection analysis of a call to a user de�ned function with no parameter QName()

is equivalent to the projection analysis of the corresponding function body. Thus, the system

has the following rule.

56



declare function QName(� � � ) {Expr 0}

Store0;Env 0`Expr 0)hP0; N0i, Store1

Store0;Env`QName())hP0; N0i, Store1

The system also accepts user de�ned functions with parameters. Suppose the function

declaration of a user de�ned function that requires some parameters is

declare function QName($VarName1; � � � ; $VarNamen)fExpr 0g

The projection analysis of a call to this function QName(Expr 1; � � � ;Expr n) is equivalent

to the projection analysis of the expression in Listing 3.8.

Listing 3.8. An Equivalent Expression to a Function Call for Projection Analysis

let $V arName1 := Expr1 return

...

let $V arNamen := Expr
n

return

Expr0

Thus, the system has the following rule. (Please refer to the analysis of let expressions

in 3.5.8.)

57



declare function QName($VarName1; � � � ; $VarNamen)fExpr 0g

Store0;Env`Expr 1)hP1; N1i, Store1
...

Storen�1;Env`Expr n)hPn; Nni, Storen

Env 00 =Env 0+
∑n

k=1 VarRtnPathSet(VarNamek ) RtnPathSet(Pk))

+
∑n

k=1 VarConNodeSet(VarNamek ) Nk)

Storen;Env
0
0`Expr 0)hfhR0;i ; U0;ii j i = 1; : : : ; n0g ; fN0;j j j = 1; : : : ; l0gi, Storen+1

Storen+2 =Storen+1+
∑l0

j=1 CtrlPathSet(N0;j ) CtrlPathSet(N0;j)[

[n
k=1(UsedPathSet(Pk) [ UpCtrlPathSet(Nk))

Store0;Env`QName(Expr 1; � � � ;Expr n)

) hfhR0;i ; U0;i [ [
n
k=1(UsedPathSet(Pk) [ UpCtrlPathSet(Nk))i j i = 1; : : : ; n0g ,

fN0;j j j = 1; : : : ; l0gi, Storen+2

3.5.5.2. Input Functions

Similar to a root path expression, an input function expression doc(URL) brings forward

a whole source document, but it does not construct any new elements nor change the store.

Store0;Env`doc(URL))hfhdoc(URL); ;ig ; ;i,Store0

3.5.5.3. Comparison Expressions

Comparison expressions are implemented by internal functions. Comparison expressions

do not return any source nodes or construct any new nodes. However, they do use source

nodes to accomplish the comparison. Their subexpressions might change the store. Marian

and Siméon [52] simply add all returned paths without # from both subexpressions to the

set of used paths. However, the system described in this dissertation appends # to the end

of every returned path because the atomization of document nodes and element nodes might

need their descendant text nodes [87].

58



Store0,Env `Expr 1)hP1; N1i, Store1

Store1,Env `Expr 2)hP2; N2i, Store2

Store0,Env `Expr 1 (= j >) Expr 2)

hfh", FinalizedPathSet(P1; N1) [ FinalizedPathSet(P2; N2)ig ; ;i, Store2

3.5.5.4. Arithmetic Expressions

Arithmetic expressions are also implemented by internal functions. The analysis done

on them is similar to the one done on comparison expressions. They do not return any

source nodes or construct any new nodes. They only use source nodes to accomplish the

computation. Their subexpressions might change the store.

Store0,Env `Expr 1)hP1; N1i, Store1

Store1,Env `Expr 2)hP2; N2i, Store2

Store0,Env `Expr 1 (+j�) Expr 2)

hfh", FinalizedPathSet(P1; N1) [ FinalizedPathSet(P2; N2)ig ; ;i, Store2

3.5.5.5. Union Expressions

Union expressions are implemented by internal functions and are similar to sequence ex-

pressions. The sets of projection path pairs and the sets of constructed nodes are propagated

from the subexpressions to the higher level expressions. In addition, the subexpressions might

change the store.

Store0;Env`Expr 1)hP1; N1i, Store1

Store1;Env`Expr 2)hP2; N2i, Store2

Store0;Env`Expr 1 union Expr 2

)hP1 [ P2; N1 [N2i, Store2

3.5.6. Variable References

Variable reference expressions are cited in the set of projection paths and the set of

constructed nodes they are bound to.

59



Env :varRtnPathSet(VarName) = fRi ji = 1; : : : ; ng

Env :VarConNodeSet(VarName) = N

Store0;Env`$VarName)hfhRi ; ;i j i = 1; : : : ; ng ; Ni, Store0

3.5.7. for Expressions

The system uses two inference rules for for expressions. The �rst rule is an unoptimized

rule, whereas the second rule is an optimized rule that may result in smaller projection doc-

uments. To use the optimized rule, you need to know whether the expression in the return

clause of a for expression will be evaluated to an empty sequence when the binding variable

is bound to an empty sequence. In order to do that, the system could have included rules

that would test for every di�erent case. This was not done for this system, however, because

it would have resulted in more complicated rules. Thus, a new, high level judgement was in-

troduced to avoid this problem. The new judgement is called the empty sequence judgement

and is in the following form:

Env ` Expr is ()

This judgement holds true when, given the Envenvironment, the evaluation of the expression

Expr yields an empty sequence. Since this judgement has nothing to do with the store, the

store is omitted.

The system also contains an unoptimized rule for for expressions. According to this rule,

the for expression preserves all projection paths of its subexpressions. The set of projec-

tion paths need to be preserved from the input expression Expr 1 is RtnUsedPathSet(P1) [

UpCtrlPathSet(N1). This set of paths becomes part of the used paths of every returned

path R2;i ; i = 1; : : : ; n2, and part of the control paths of every returned top level constructed

node N2;j ; j = 1; : : : ; l2.

The Env 00 `not(Expr 2 is ( )) premise is what tells the system that the Expr 2 expression in

the body of the for expression is not necessarily evaluated to an empty sequence under the

60



Env 00 environment, which maps the binding VarName variable to an empty sequence. Note

that the path pair h"; RtnUsedPathSet(P1) [ UpCtrlPathSet(N1)i accommodates special

cases where the expression Expr 2 is a literal, such as a string or an integer, which projects to

h;; ;i. Admittedly contrived, an example expression is

for $x in doc("lecturers.xml")=Lecturers=Row return "Lecturer Found"

This expression prints "Lecturer Found" every time that it is found, depending on the path

doc("lecturers.xml")/Lecturers/Row

If the path pair h"; RtnUsedPathSet(P1) [ UpCtrlPathSet(N1)i is omitted from the rule, the

projection analysis of the above example expression will produce h;; ;i instead of

hfh"; doc("lecturers.xml")=Lecturers=Rowig ; ;i

Consequently, the system will be unable to generate the required number of "Lecturers Found".

When the Expr 2 expression is an empty sequence, it also projects to h;; ;i. However, the

system does not need to remember how many empty sequences are created, since the result

is still a single empty sequence.

61



Store0;Env`Expr 1)hP1; N1i, Store1

Env 0 =Env+VarRtnPathSet(VarName ) RtnPathSet(P1))

+VarConNodeSet(VarName ) N1)

Store1,Env
0 `Expr 2)hfhR2;i ; U2;ii j i = 1; : : : ; n2g ; fN2;j j j = 1; : : : ; l2gi, Store2

Store3 =Store2+
∑l2

j=1 CtrlPathSet(N2;j )

CtrlPathSet(N2;j) [ RtnUsedPathSet(P1)[UpCtrlPathSet(N1))

Env 00 =Env+VarValue(VarName ) ( ))

Env 00 `not(Expr 2 is ( ))

Store0,Env `for $VarName in Expr 1 return Expr 2)

hfhR2;i ; U2;i [ RtnUsedPathSet(P1) Artichoke Leaf Extract

[UpCtrlPathSet(N1)i j i = 1; : : : ; n2g⋃
fh"; RtnUsedPathSet(P1) [ UpCtrlPathSet(N1)ig,

fN2;j j j = 1; : : : ; l2gi, Store3

The unoptimized rule could have been broken into several rules. For example, if one adds

a premise to tell the system whether the expression Expr 2 is a literal, the path pair

h"; RtnUsedPathSet(P1) [ UpCtrlPathSet(N1)i

will need to appear in the rule only when the premise is true. If one adds a rule that has a

premise that tells the system that the projection path R2;i is generated whenever the binding

variable VarName is bound to RtnPathSet(P1), the system will not need to add the projection

paths UpCtrlPathSet(N1) as used paths of the path R2;i . However, this seemed to make the

system more complicated and was not added at this time.

The second forrule deals with cases in which optimization can be applied. The purpose

of optimization is to avoid unnecessary intermediate projection paths. The techniques used

in this research are similar to those presented in Marian and Siméon [52, 53].

The premise of optimization is:

62



Env 00 `Expr 2 is ( )

This declares that the expression Expr 2 in the body of the for expression is always evalu-

ated to an empty sequence under the environment Env 00, which maps the binding variable

VarName to an empty sequence. Under this premise, the projection paths in the path set

RtnPathSet(P1) can be omitted, because the nodes selected are either kept by the projection

paths in the RtnUsedPathSet(P2) set or they produce no observable e�ects. Also, the path

pair h"; RtnUsedPathSet(P1) [ UpCtrlPathSet(N1)iare not included in this rule. This was

required when the expression Expr 2 was a literal, but since Env 00 ` Expr 2 is ( ), we know

that the the expression Expr 2 could never return just a literal. For example, the following

expression

for $x in doc("lecturers.xml")=Lecturers=Row return "Lecturer Found"

violates the judgement Env 00 `Expr 2 is ( ).

Store0;Env`Expr 1)hP1; N1i, Store1

Env 0 =Env+VarRtnPathSet(VarName ) RtnPathSet(P1))

+VarConNodeSet(VarName ) N1)

Store1,Env
0 `Expr 2)hfhR2;i ; U2;ii j i = 1; : : : ; n2g ; fN2;j j j = 1; : : : ; l2gi, Store2

Store3 =Store2+
∑l2

j=1 CtrlPathSet(N2;j )

CtrlPathSet(N2;j) [ UsedPathSet(P1)[UpCtrlPathSet(N1))

Env 00 =Env+VarValue(VarName ) ( ))

Env 00 `Expr 2 is ( )

Store0,Env `for $VarName in Expr 1 return Expr 2)

hfhR2;i ; U2;i [ UsedPathSet(P1) [ UpCtrlPathSet(N1)i j i = 1; : : : ; n2g ;

fN2;j j j = 1; : : : ; l2gi, Store3

This rule does not need to include the path set UpCtrlPathSet(N1), because the necessary

projection paths among them have already been bound to the sets U2;i or

63



UpCtrlPathSet(fN2;j j j = 1; : : : ; l2g). Nevertheless, they are included n this rule because

the algorithm's correctness is di�cult to prove without them.

3.5.8. let Expressions

The let expression has a rule that is similar to the one used for for expressions. If the

nodes selected by the projection paths in the RtnPathSet(P1) set result in observable output

that is not contained in one of the constructed nodes, then those nodes have already been

assigned to the RtnUsedPathSet(fhR2;i ; U2;ii j i = 1; : : : ; n2g) set. The nodes selected by

the projection paths in the RtnPathSet(P1) set might also produce observable output as the

content of some constructed nodes, so the projection path UsedPathSet(P1) set must be

added to CtrlPathSet(N2;j).

The optimized rule for thelet expression does not include the path set UpCtrlPathSet(N1)

because the necessary projection paths among them have already been bound to the sets

U2;i or UpCtrlPathSet(fN2;j j j = 1; : : : ; l2g). Nevertheless, these are included because the

algorithm's correctness is di�cult to prove without them.

The contributing projection paths in the projection path set UpCtrlPathSet(N1) have

already been inherited by P2 and N2.

Store0;Env`Expr 1)hP1; N1i, Store1

Env 0 =Env+VarRtnPathSet(VarName ) RtnPathSet(P1))

+VarConNodeSet(VarName ) N1)

Store1,Env
0 `Expr 2)hfhR2;i ; U2;ii j i = 1; : : : ; n2g ; fN2;j j j = 1; : : : ; l2gi, Store2

Store3 =Store2+
∑l2

j=1 CtrlPathSet(N2;j )

CtrlPathSet(N2;j) [ UsedPathSet(P1)[UpCtrlPathSet(N1))

Store0,Env `let $VarName in Expr 1 return Expr 2)

hfhR2;i ; U2;i [ UsedPathSet(P1) [ UpCtrlPathSet(N1)i j i = 1; : : : ; n2g ,

fN2;j j j = 1; : : : ; l2gi, Store3

64



3.5.9. XPath Steps

The algorithm is now ready to harvest the fruits of building a forest of constructed ele-

ments or documents in memory. First, it is necessary to introduce a new judgement called a

step judgement:

Store;Env ` N1=Axis NodeTest = hP2; N2i

This judgement states that, �given store Store and environment Env , the evaluation of step

Axis NodeTest on the set of constructed nodes N1 yields hP2; N2i�. Note this is not a

projection judgement. To signify the di�erence, the symbol = is used instead of ).

The step operations are de�ned to mimic the semantics of XPath steps.

Suppose N1 is

fN1;j j j = 1; : : : ; l1g

As an example, an explanation of the how to evaluate the operation when the axis is

�child::� is provided. Note that only constructed documents and element nodes can have

children. Thus, any other constructed nodes in the setN1 should be thrown away immediately.

It is assumed that the set N1only includes constructed document nodes and element nodes

in the discussion of this subsection.

(1) N2 =
{
N 2

⋃l1
j=1 ConstructedChildren(N1 ;j) j N satis�es NodeTest

}
The system must now decide how �N satis�es NodeTest�. There are two cases to

discuss.

(a) If NodeTest is NameTest, the system checks if NodeName(N) satis�es Name-

Test.

(i) The NameTest is the wildcard *.

Any element node will satisfy the NameTest.

(ii) The NameTest has the form NCName:*.

Any element node N will satisfy the NameTest if the namespace URI of

65



its NodeName(N) is the same as the namespace URI corresponding to

NCName.

(iii) The NameTest has the form *:NCName.

Any element node N will satisfy the NameTest if the local name of its

NodeName(N) is the same as NCName.

(iv) The NameTest has the form NCName:NCName.

Any element node N will satisfy the NameTest if the expanded quali�ed

name of the node is equal to the expanded quali�ed name speci�ed by

the NameTest, i.e. the namespace URI of the NodeName(N) is the same

as the namespace URI corresponding to the �rst NCName and the local

name of the NodeName(N) is the same as the second NCName.

(v) The NameTest has the form NCName

This subcase is the same as the above except that the namespace URI

corresponding to the NCName is the default one or none.

Note that any element node N with the special node name unknown satis-

�es all the above NameTest variations. The special node called unknown is

reserved for the nodes constructed by element or attribute constructors with

name expressions (refer to subsections 3.5.12 and 3.5.14). Namespaces were

not processed by the prototype system, because they do not increase the com-

plexity the problem.

(b) If NodeTest is KindTest, the system checks if NodeKind(N) satis�es KindTest

(i) The KindTest is node()

Any node will satisfy this KindTest.

(ii) The KindTest is text()

Any node N will satisfy the KindTest if its NodeKind(N) is "text".

66



The grammar of the projection paths includes only the two kind tests above,

although other types of tests are not di�cult to add.

(2) To compute P2, consider each projection path pair

hS , Hi 2

l1⋃
j=1

SourcePathPairSet(N1 ;j) and S is not "

There exist two cases that need to be discussed depending on whether the system

is able to know that the projection path S satis�es NodeTest. The information

that is available during the projection analysis is the XQuery query and possibly the

schemas of the input documents).

(a) The system is able to know that the projection path S satis�es NodeTest or

not.

This case can be divided into the following subcases. In each subcase, check

the last step L of the projection path S to decide if it satis�es NodeTest.

(i) The NodeTest is the wildcard *.

The projection path S satis�es NodeTest if the step L selects element

nodes.

The projection path S does not satisfy NodeTest if the step L selects

document nodes or attribute nodes or text nodes.

(ii) The NodeTest has the form NCName:*.

The projection path S satis�es NodeTest if the step L selects element

nodes whose namespace URI's are the same as the namespace URI cor-

responding to NCName.

The projection path S does not satisfy NodeTest if

(A) the step L selects element nodes whose namespace URI's are di�er-

ent from the namespace URI corresponding to NCName.

(B) the step L selects document nodes or attribute nodes or text nodes.

67



(iii) The NodeTest has the form *:NCName.

The projection path S satis�es NodeTest if the step L selects element

nodes whose local names are the same as NCName.

The projection path S does not satisfy NodeTest if

(A) the step L selects element nodes whose whose local names are dif-

ferent from NCName.

(B) let expression the step L selects document nodes or attribute nodes

or text nodes.

(iv) The NodeTest has the form NCName:NCName.

The projection path S satis�es NodeTest if the step L selects element

nodes whose namespace URI's are the same as the namespace URI cor-

responding to the �rst NCName and whose local names are the same as

the second NCName.

The projection path S does not satisfy NodeTest if

(A) the step L selects element nodes whose namespace URI's are di�er-

ent from the namespace URI corresponding to the �rst NCName or

whose local names are di�erent from the second NCName.

(B) the step L selects document nodes or attribute nodes or text nodes.

(v) The NodeTest has the form NCName

This subcase is the same as the above except that the namespace URI

corresponding to the NCName is the default or nothing is used.

(vi) The NodeTest is node()

The projection path S always satis�es this NodeTest.

(vii) The NodeTest is text()

The projection path S satis�es this NodeTest if its last step L selects text

nodes, that is the NodeTest of step L is text().

68



The projection path S does not satisfy NodeTest if the step L selects

document nodes or attribute nodes or element nodes.

The system is unable to utilize schemas at this time. If it could, then it would

be able to recognize when the projection path S satis�ed NodeTest more often.

However, the following actions are performed for each path pair hS , Hi.

(i) If the system is able to know that the projection path S satis�es NodeTest,

then it adds the projection path pair hS , H [ AllCtrlPathSet(N1;j)i to the

path pair set P2. Denote

P2;1 = fhS , H [ AllCtrlPathSet(N1;j)i j

hS , Hi 2 [l1
j=1SourcePathPairSet(N1 ;j) and

S is not " and know S satis�es NodeTestg

(ii) If the system is able to know that the projection path S does not satisfy

NodeTest, then the system will not add any projection path pair to the

path pair set P2 for the path pair hS , Hi.

(b) If the system does not know that the projection path S satis�es NodeTest or

not.

This is the unoptimized and default case. The system concludes that the

projection path S might or might not satisfy NodeTest. The system adds

the projection path pair hS=Self ::NodeTest , H [ AllCtrlPathSet(N1;j)ito the

path pair set P2. Denote

P2;2 = fhS=Self ::NodeTest , H [ AllCtrlPathSet(N1;j)i j

hS , Hi 2 [l1
j=1SourcePathPairSet(N1 ;j) and

69



S is not " and I do not know if S satis�es NodeTestg

Finally, P2 = P2;1 + P2;2

Other axes can be similarly de�ned. Note that XPath paths with reverse axes can be trans-

formed into reverse-axis-free ones [60]. The following is the inference rule for XPath steps.

Env :VarRtnPathSet(:) = fR1; � � � ;Rng

Env :VarConNodeSet(:) = N1

Store;Env ` N1=Axis NodeTest = hP2; N2i

Store,Env `Axis NodeTest)

h[n
i=1 fhRi=Axis NodeTest; ;i j Ri is not "g [ P2; N2i ;Store

3.5.10. Conditional Expressions

The result of a conditional expression combines the results of the then-expression and the

else-expression. The projection path pairs from the test expression Expr 0 are used to compute

the result. The test expression Expr 0 might yield a non-empty set of constructed nodes N0.

The system does not need to preserve the contents of the constructed nodes in the set N0.

As long as they exist, the truth value is true, so the system only preserves the set of projection

paths UpCtrlPathSet(N0). Note that the path pair h"; RtnUsedPathSet(P0) [ UpCtrlPathSet(N0)i

accommodates special cases when both the then- and the else-expression are either literals

or empty sequences. Admittedly contrived, an example expression is

i f ($x=Address=City = "Denton") then "living in Denton" else "not living in Denton"

This expression prints "living in Denton" or "not living in Denton," depending on the path

doc("dir.xml")/Directory/Person/Address/City

Suppose the variable x is bound to doc("dir.xml")/Directory/Person. If the path pair

h"; RtnUsedPathSet(P0) [ UpCtrlPathSet(N0)i is omitted from the rule, than the projec-

tion analysis of the above example expression will produce h;; ;i instead of

hfh"; doc("dir.xml")=Directory=Person=Address=Cityig ; ;i

70



Consequently, the system will always print "not living in Denton".

3.5.11. Element Constructors with QNames

In order to process element constructors with QNames, a new judgement called a copy

judgement is introduced:

Store1 ` copy N to N 0; Store2

Both N and N 0 denote sets of constructed nodes. This judgement does not use the envi-

ronment Env , so it is omitted. The copy operation works as follows:

For each N 2 N ,

(1) if N has no parent i.e. Store1:Parent(N) = nil ,

(a) no need to make a copy.

(b) record N as a member of N 0.

(2) if N has parent i.e. Store1:Parent(N) 6= nil ,

(a) make a copy of the subtree rooted at N.

(b) allocate fresh node identi�ers to all the nodes in the copy.

The new store Store2 includes the old store Store1 plus the newly copied sub-

tree.

(c) call the copy of the node N as N 0. set

Store2:Parent(N
0) = nil .

(d) In order to remember all the projection paths needed to construct N 0, set

Store2:CtrlPathSet(N
0) = Store1:CtrlPathSet(N) +

Store1:UpCtrlPathSet(N)

(e) Record N 0 as a member of N 0.

The copy judgement is used in the inference rule of element constructors because the same

previously constructed nodes could be used to construct di�erent new nodes. For example,

71



consider the XQuery expression in Listing 3.9.If the copy judgement is omitted, the con-

Listing 3.9. The Copy Judgement is Needed in the Inference Rule of Element Constructors

let $z := document {

let $x := <H>foo bar </H>

return

<A>

<B>

let $y := doc("C.xml")/C

return

<C> {$y/D, $x} </C>

</B>

<E>

let $y := doc("F.xml")/F

return

<F> {$y/G, $x} </F>

</E>

</A>

}

return $z/A/E/F

structed node H will have to remember two parents. Consequently, the system will be unable

to determine which of the following two projection paths should be excluded from the �nal

set of projection paths.

(1) doc("C.xml")/C/D

(2) doc("F.xml")/F/G

The following is the inference rule of element constructors with QNames.

72



Store0,Env `Expr)hP; Ni, Store1

Store1 ` copy N to fNj j j = 1; : : : ; lg ; Store2

eN =2 dom (Store2) Create a new element node.

Store3 =Store2+NodeName(eN ) QName)

+NodeKind(eN ) "element")+Parent(eN ) nil)

+CtrlPathSet(eN ) ;)

+ConstructedChildren (eN ) fNj; j j = 1; : : : ; lg)

+SourcePathPairSet (eN ) P)

+
∑l

j=1 Parent(Nj ) eN)

Store0,Env `element QName fExprg)h;; feNgi, Store3

3.5.12. Element Constructors with Name Expressions

Since the names are computed by a name expression, it is generally impossible to know

the name of the element node that is being constructed without actually executing the

corresponding XQuery query. The system assigns a special value unknown to the node name

in this situation. No further navigation can be done on the projection paths of a name

expression. The system needs to remember only the set of all projection paths that are

needed to compute the name expression, which is FinalizedPathSet(P0; N0). The system

could remember the set as used paths of each returned path in the set RtnPathSet(P1)

and control paths of each node in the set fNj j j = 1; : : : ; lg. However, it is more e�cient

to remember the set as control paths of the newly created node eN. The following is the

inference rule of element constructors with name expressions. Please refer to the previous

subsection that discusses the copy judgement.

73



Store0,Env `Expr 0)hP0; N0i, Store1

Store1,Env ` Expr 1)hP1; N1i, Store2

Store2 ` copy N1 to fNj j j = 1; : : : ; lg ; Store3

eN =2 dom (Store3) Create a new element node.

Store4 =Store3+NodeName(eN ) unknown)

+NodeKind(eN ) "element")+Parent(eN ) nil)

+CtrlPathSet(eN ) FinalizedPathSet(P0; N0))

+ConstructedChildren (eN ) fNj; j j = 1; : : : ; lg)

+SourcePathPairSet (eN ) P1)

+
∑l

j=1 Parent(Nj ) eN)

Store0,Env `element fExpr 0gfExpr 1g)h;; feNgi, Store4

3.5.13. Attribute Constructors with QNames

The system does not make a copy of the nodes constructed by the corresponding content

expression since no further navigation can be done on an attribute node. Thus, there is no

need to use the copy judgement in the inference rule of attribute constructors with QNames.

The system needs to remember all the projection paths that are required to compute the

content expression, using the following set.

P [ TreePathPairSet(N ) [ fh"; AllCtrlPathSet(N )ig

The above set could be replaced by the one below.

P [ fhS , H [ AllCtrlPathSet(N)i j hS , Hi 2 TreePathPairSet(N )g

However, the former is more e�cient, although the latter is more natural.

The inference rule for attribute constructors with QNames is as follows.

74



Store0,Env `Expr)hP; Ni, Store1

aN =2 dom (Store1) Create a new attribute node.

Store2 =Store1+NodeName(aN ) QName)

+NodeKind(aN ) "attribute")+Parent(aN ) nil)

+CtrlPathSet(aN ) ;)

+ConstructedChildren (aN ) ;)

+SourcePathPairSet (aN ) P [ TreePathPairSet(N )

[fh"; AllCtrlPathSet(N )ig)

Store0,Env `attribute QName fExprg)h;; faNgi, Store2

Since no further navigation analysis should be done on an attribute node, the rule could

be simpli�ed as follows.

Store0,Env `Expr)hP; Ni, Store1

aN =2 dom (Store1) Create a new attribute node.

Store2 =Store1+NodeName(aN ) QName)

+NodeKind(aN ) "attribute")+Parent(aN ) nil)

+CtrlPathSet(aN ) ;)

+ConstructedChildren (aN ) ;)

+SourcePathPairSet (aN ) fh"; FinalizedPathSet(P; N )ig)

Store0,Env `attribute QName fExprg)h;; faNgi, Store2

3.5.14. Attribute Constructors with Name Expressions

Similar to the inference rule of element constructors with name expressions, it is generally

impossible to know the name of the attribute node being constructed without actually exe-

cuting the corresponding XQuery query. Again, the system assigns a special value unknown

to the node name in this situation. No further navigation can be done on an attribute node.

The inference rule of attribute constructors with name expressions is similar to the inference

75



rule of attribute constructors with QNames. The di�erence is that system also needs to re-

member the set of all the projection paths that are needed to compute the name expression,

which is FinalizedPathSet(P0; N0), in addition to the set of the projection paths that are

needed to compute the content expression.

The inference rule for attribute constructors with name expressions is as follows.

Store0,Env `Expr 0)hP0; N0i, Store1

Store1,Env ` Expr 1)hP1; N1i, Store2

aN =2 dom (Store2) Create a new attribute node.

Store3 =Store2+NodeName(aN ) unknown)

+NodeKind(aN ) "attribute")+Parent(aN ) nil)

+CtrlPathSet(aN ) FinalizedPathSet(P0; N0))

+ConstructedChildren (aN ) ;)

+SourcePathPairSet (aN ) fh"; FinalizedPathSet(P1; N1)ig)

Store0,Env `element fExpr 0gfExpr 1g)h;; faNgi, Store3

3.5.15. Document Constructors

The inference rule for document constructors is similar to the inference rule of element

constructors with QNames. This rule needs to have the copy judgement for the same reason

that the inference rule of element constructors needs it. A constructed document node has

no name, so the system assigns an empty string as its node name.

76



Store0,Env `Expr)hP; Ni, Store1

Store1 ` copy N to fNj j j = 1; : : : ; lg ; Store2

dN =2 dom (Store2) Create a new document node.

Store3 =Store2+NodeName(dN ) "")

+NodeKind(dN ) "document")+Parent(dN ) nil)

+CtrlPathSet(dN ) ;)

+ConstructedChildren (dN ) fNj; j j = 1; : : : ; lg)

+SourcePathPairSet (dN ) P)

+
∑l

j=1 Parent(Nj ) dN)

Store0,Env `document fExprg)h;; fdNgi, Store3

3.5.16. Text Constructors

A text constructor creates a text node without using any source nodes from the data

sources. Since a text node has no name, the system assigns an empty string as its node

name. The inference rule of text constructors is as follows.

tN =2 dom (Store0) Create a new text node.

Store1 =Store0+NodeName(tN ) "")

+NodeKind(tN ) "text")+Parent(tN ) nil)

+CtrlPathSet(tN ) ;)

+ConstructedChildren(tN ) ;)

+SourcePathPairSet(tN ) ;)

Store0,Env `text fStirngg)h;; ftNgi, Store1

3.5.17. Wrapping Up

At the end of the inference procedure, the system encounters the following rule:

Store0;Env ` Expr ) hP; Ni ; Store1

77



The �nal projected document is represented by the set of all projection paths both in P

and N , i.e. FinalizedPathSet(P; N ). Note that the system has appended a # to every

R 2 RtnPathSet(P) and S 2 RtnPathSet(TreePathPairSet(N )) to signify that it needs to

retrieve their descendants.

78



3.6. Soundness

The language used to present the extended XML doument projection algorithm is called

structural operational semantics [67]. The inference rules are based on the syntax of the

XQuery core expressions that are used by the system. The inference rules actually constitute

a proof system. Every proof of this system veri�es that some judgement holds in the form:

Store0;Env ` Expr ) hP , Ni ;Store1

The speci�c interpretation of this judgement is explained in the section 3.3 on page 47.

In order to show the correctness of the extended projection algorithm, I need to prove the

soundness of my proof system. That is, I need to show that any judgement proved by the

proof system has the following properties:

(1) The projection path set FinalizedRtnPathSet(P) includes all the source nodes that

are part of the answer to the corresponding expression Expr .

(2) The constructed node set N includes all the constructed nodes that are part of the

answer to the corresponding expression Expr .

(3) The projection path set FinalizedPathSet(P; N ) includes all the source nodes that

are needed to answer the corresponding expression Expr .

Note that the projection path sets might include more source nodes than necessary, but they

should never omit any required nodes.

The technique I use to prove the soundness of the inference rules used by the system

is structural induction [76]. The more familiar natural-number induction is a special form

of structural induction, while structural induction is a special form of well-founded induction

[56]. Well-founded induction is induction on a well-founded relation. A well-founded relation

is a binary relation R on a set S with the following property: any non-empty subset of the

set S has a minimal element under the relation R [56, 82, 41]. The subexpression relation on

79



the set of all XQuery core expressions is a well-founded relation, as is the subproof relation

on the set of all the proofs generated by my inference rules.

Marian and Siméon proved the correctness of their algorithm by induction on the inference

rules for each expression. The �nal set of projection paths generated for an XQuery expression

by the system described in this dissertation excludes some paths from the �nal set, only

when the algorithm concludes that those paths will not a�ect the �nal results. In a sense,

the algorithm used in the research system does a double projection. It does projection on

both real input documents and virtual constructed elements or documents simultaneously,

while the Marian and Siméon algorithm does projection on only real input documents. It is

the projection on the virtual constructed elements or documents that enable the extended

algorithm to exclude some unnecessary paths that are included by the Marian and Siméon

algorithm. The extended algorithm is able to do projection on the virtual constructed elements

or documents because their structures are represented by a forest of constructed nodes in

memory. Intuitively, the fundamental ideas of the extended algorithm can never be wrong if

the algorithm of Marian and Siméon is correct.

The inference rules by the system constitute a proof system. So the structural induction

is induction on proofs or inference rules. It takes two steps to apply structural induction to

prove a property. First, one must prove that the property holds for the base cases, and then,

by the induction steps, show that the property is correct. The base cases for the extended

proof system are the inference rules for atomic expressions. The induction steps deal with

the inference rules for compound expressions.

Theorem. If the inference rules of projection analysis prove that

Store0;Env ` Expr ) hP, Ni ;Store1

then the following properties hold:

80



(1) The projection path set FinalizedRtnPathSet(P) includes all the source nodes that

are part of the answer to the corresponding expression Expr .

(2) The constructed node set N includes all the constructed nodes that are part of the

answer to the corresponding expression Expr .

(3) The projection path set FinalizedPathSet(P; N ) includes all the source nodes that

are needed to answer the corresponding expression Expr .

Proof. I just need to prove the properties for every inference rule that is in the system.

Note that every symbol in the following proof refers to the same entity as the corresponding

inference rule presented in the section 3.5.

Literal Values: A literal value expression evaluates to the literal value.

(1) The answer to a literal value expression includes no source node. Thus the

projection path set FinalizedRtnPathSet(;) = ; includes all the source nodes

that are part of the answer to the literal value expression.

(2) The answer to a literal value expression includes no constructed node. Thus

the constructed node set ; includes all the constructed nodes that are part of

the answer to the literal value expression.

(3) The evaluation of a literal value expression does not need any source nodes.

Thus the projection path set FinalizedPathSet(;; ;) = ; includes all the source

nodes that are needed to answer the literal value expression.

Empty Sequence: An empty sequence expression evaluates to an empty sequence.

Similar to the arguments given for a literal value expression, all three properties hold

for an empty sequence expression.

Root Path: A root path expression evaluates to the root node.

(1) The answer to a root path expression includes just the root node. Thus the pro-

jection path set FinalizedRtnPathSet(fh=; ;ig) = f=#g includes all the source

nodes that are part of the answer to the root path expression.

81



(2) The answer to a root path expression includes no constructed node. Thus the

constructed node set ; includes all the constructed nodes that are part of the

answer to the root path expression.

(3) The evaluation of a root path expression needs only the whole source tree.

Thus the projection path set

FinalizedPathSet(fh=; ;ig ; ;) = f=#g

includes all the source nodes that are needed to answer the root path expression.

Sequence Expressions: A sequence expression evaluates to a sequence of the nodes

returned by either subexpression.

(1) The answer to a sequence expression includes only the source nodes that are

part of the answer to either subexpression. We have

FinalizedRtnPathSet(P1 [ P2) = FinalizedRtnPathSet(P1) [

FinalizedRtnPathSet(P2)

By the induction hypothesis, the sets FinalizedRtnPathSet(P1) and

FinalizedRtnPathSet(P2) include all the source nodes that are part of the an-

swers to the corresponding subexpressions Expr 1 and Expr 2 respectively. Thus

the projection path set FinalizedRtnPathSet(P1 [ P2) includes all the source

nodes that are part of the answer to the sequence expression.

(2) The answer to a sequence expression includes only the constructed nodes that

are part of the answer to either subexpression. By the induction hypothesis, the

sets N1 and N2 include all the constructed nodes that are part of the answers

to the corresponding subexpressions Expr 1 and Expr 2 respectively. Thus the

constructed node set N1 [ N2 includes all the constructed nodes that are part

of the answer to the sequence expression.

82



(3) The evaluation of a sequence expression needs only the source data required by

its subexpressions. By the induction hypothesis, the projection path sets

FinalizedPathSet(P1; N1)

and

FinalizedPathSet(P2; N2)

include all the source nodes that are needed to answer the subexpressions Expr 1

and Expr 2 respectively. The �nal expression is

FinalizedPathSet(P1 [ P2; N1 [N2) = FinalizedPathSet(P1; N1) [

FinalizedPathSet(P2; N2)

Thus the above projection path set includes all the source nodes that are needed

to answer the sequence expression.

Function Calls:

Calls to User De�ned Functions: The evaluation of a call to a user de�ned func-

tion without any parameter is equivalent to the evaluation of the expression

inside the function body. Thus, if the three properties hold for the judgement

corresponding to the function body expression Expr 0, the three properties hold

for the judgement corresponding to the function call.

In a previous section 3.5.5.1 on page 56 , I show that a user de�ned func-

tion with parameters is equivalent to a series of nested let expressions in the

subsection. The reader should refer to the proof for the inference rule of let

expressions for the proof for a call to a user de�ned function with parameters.

Input Functions: An input function expression evaluates to the corresponding

document node.

83



(1) The answer to an input function expression includes just the document

node. Thus the projection path set

FinalizedRtnPathSet(fhdoc(URL); ;ig) = fdoc(URL)#g

includes all the source nodes that are part of the answer to the input

function expression.

(2) The answer to an input function expression includes no constructed node.

Thus the constructed node set ; includes all the constructed nodes that

are part of the answer to the input function expression.

(3) The evaluation of an input function expression needs only the document

tree. Thus the projection path set

FinalizedPathSet(fhdoc(URL); ;ig ; ;) = fdoc(URL)#g

includes all the source nodes that are needed to answer the input function

expression.

Comparison Expressions: A comparison expression evaluates to a Boolean value.

For convenience, let

A = FinalizedPathSet(P1; N1) [ FinalizedPathSet(P2; N2)

(1) The answer to a comparison expression includes no source node. Thus

the projection path set FinalizedRtnPathSet(fh";Aig) = f"#g = ; in-

cludes all the source nodes that are part of the answer to the comparison

expression.

(2) The answer to a comparison expression includes no constructed node.

Thus the constructed node set ; includes all the constructed nodes that

are part of the answer to the comparison expression.

84



(3) The evaluation of a comparison expression needs only the source data

needed by its subexpressions. By the induction hypothesis, the projection

path sets

FinalizedPathSet(P1; N1)

and

FinalizedPathSet(P2; N2)

include all the source nodes that are needed to answer the subexpressions

Expr 1 and Expr 2 respectively. The �nal expression is

FinalizedPathSet(fh";Aig ; ;)

= f"#g [ A

=A

=FinalizedPathSet(P1; N1) [ FinalizedPathSet(P2; N2)

Thus the above projection path set includes all the source nodes that are

needed to answer the comparison expression.

Arithmetic Expressions: An arithmetic expression evaluates to an atomic value,

e.g. an integer, a double, a date, etc.. Similar to the arguments given for a

comparison expression, all three properties hold for an arithmetic expression.

Union Expressions: A union expression evaluates to the union of the nodes re-

turned by either subexpression. Similar to the arguments given for a sequence

expression, all three properties hold for a union expression.

Variable References: A variable reference expression evaluates to the source nodes

and constructed nodes that are bound to the variable. A variable may be bound

in two types of expressions: for expressions or let expressions. It is bound to

the nodes in the answers of the binding subexpressions Expr 1's of for expressions

85



or let expressions. Both rules bind the variable to the set of projection paths

RtnPathSet(P1) and the set of constructed nodes N1. By the induction hypothesis,

the sets RtnPathSet(P1) and N1 include all the nodes that are part of the answers

to the binding subexpressions Expr 1's. In the inference rule of variable references,

those nodes are retrieved. Thus,

� The set fRi ji = 1; : : : ; ng in the inference rule of variable references is equivalent

to the set RtnPathSet(P1) in the inference rules of for expressions or let

expressions.

� The set N in the inference rule of variable references is equivalent to the set

N1 in the inference rules of for expressions or let expressions.

(1) The projection path set FinalizedRtnPathSet(fhRi ; ;i j i = 1; : : : ; ng) =

fRi# j i = 1; : : : ; ng includes all the source nodes that are part of the answer

to the variable reference expression.

(2) The constructed node set N includes all the constructed nodes that are part

of the answer to the variable reference expression.

(3) The projection path set FinalizedPathSet(fhRi ; ;i j i = 1; : : : ; ng ; N ) includes

all the source nodes that are needed to answer the variable reference expression.

f or Expressions: A f or expression evaluates to a sequence of the nodes returned

by the subexpression in the return clause. I will prove the properties hold for the

optimized rule of f or expressions. If that is successful, the properties should hold for

the unoptimized rule of f or expressions, since the unoptimized rule always includes

more projection paths or nodes. For convenience, let

A = UsedPathSet(P1) [ UpCtrlPathSet(N1)

86



(1) The answer to a f or expression includes only the source nodes that are part of

the answer to the subexpression in the return clause. This produces

FinalizedRtnPathSet(fhR2;i ; U2;i [ Ai j i = 1; : : : ; n2g)

= fR2;i# j i = 1; : : : ; n2g

= FinalizedRtnPathSet(fR2;i j i = 1; : : : ; n2g)

By the induction hypothesis, the set FinalizedRtnPathSet(fR2;i j i = 1; : : : ; n2g)

includes all the source nodes that are part of the answer to the subexpression

in the return clause. Thus the projection path set FinalizedRtnPathSet(fhR2;i ;

U2;i [ Ai j i = 1; : : : ; n2g) includes all the source nodes that are part of the

answer to the f or expression.

(2) The answer to a f or expression includes only the constructed nodes that are

part of the answer to the subexpression in the return clause. By the induction

hypothesis, the set fN2;j j j = 1; : : : ; l2g includes all the constructed nodes that

are part of the answer to the subexpression in the return clause. Thus the

constructed node set fN2;j j j = 1; : : : ; l2g includes all the constructed nodes

that are part of the answer to the f or expression.

(3) By the induction hypothesis, the projection path sets

FinalizedPathSet(P1; N1)

and

FinalizedPathSet(fhR2;i ; U2;ii j i = 1; : : : ; n2g ; fN2;j j j = 1; : : : ; l2g)

include all the source nodes that are needed to answer the subexpressions Expr 1

and Expr 2 as standalone expressions respectively. This produces the expression

FinalizedPathSet(fhR2;i ; U2;ii j i = 1; : : : ; n2g ; fN2;j j j = 1; : : : ; l2g)

87



� FinalizedPathSet(fhR2;i ; U2;i [ Ai j i = 1; : : : ; n2g ; fN2;j j j = 1; : : : ; l2g)

Thus the algorithm has included all the source nodes that are needed to an-

swer the subexpression in the return clause. Now consider the source nodes

that are needed to answer the binding subexpression. First, the path set

RtnPathSet(P1) can be omitted for the reasons given by Marian and Siméon

[53]. Second,N1needs to remember only the paths in the set UpCtrlPathSet(N1).

If the binding variable does not appear in the the subexpression in the return

clause, obviously other paths remembered by N1 are not needed. If the bind-

ing variable does appear in the the subexpression in the return clause, then

that or the binding variable references will cause the necessary paths to enter

the sets fR2;i j i = 1; : : : ; n2g or fU2;i j i = 1; : : : ; n2g or fN2;j j j = 1; : : : ; l2g.

Thus only the paths in the set UsedPathSet(P1)[UpCtrlPathSet(N1) need to

be remembered, and they are. Therefore the path set

FinalizedPathSet(fhR2;i ; U2;i [ Ai j i = 1; : : : ; n2g ; fN2;j j j = 1; : : : ; l2g)

includes all the source nodes that are needed to answer the f or expression.

let Expressions: A let expression evaluates to a sequence of the nodes returned by

the subexpression in the return clause. Similar to the arguments given for a f or

expression, all three properties hold for a let expression.

XPath steps: An XPath step expression evaluates to the source nodes and constructed

nodes returned by the step that is being applied to the current context node. Its

already been proved that the variables are bound to the correct source nodes and

constructed nodes by for expressions or let expressions. Thus the current context

node is correctly bound to the projection path set fR1; � � � ;Rng and constructed

node set N1.

88



(1) The answer to an XPath step includes only the source nodes returned by the

step that is being applied to the current context node. Thus the projection

path set

FinalizedRtnPathSet([n
i=1 fhRi=Axis NodeTest; ;i j Ri is not "g [ P2)

includes all the source nodes that are part of the answer to the XPath step

expression.

(2) The answer to an XPath step expression includes only constructed nodes re-

turned by the step that is being applied to the current context node. Applying

the step to projection paths of fR1; � � � ;Rng will not result in any constructed

nodes. All the constructed nodes are the result of applying the step to the con-

structed nodes of the set N1. Thus the constructed node set N2 includes all

the constructed nodes that are part of the answer to the XPath step expression.

(3) This algorithm does not exclude any paths in the set fR1; � � � ;Rng that are not

the special empty path ". It does exclude some constructed nodes in the set

N1, but only when it is absolutely certain that those nodes will produce only

empty sequences when this step is applied. Thus the projection path set

FinalizedPathSet([n
i=1 fhRi=Axis NodeTest; ;i j Ri is not "g [ P2; N2)

includes all the source nodes that are needed to answer the XPath step expres-

sion.

Conditional Expressions: A conditional expression evaluates to a sequence of the

nodes returned by either the then-expression or the else-expression.The arguments

for the then-expression and the else-expression are similar to the ones for sequence

expressions. For convenience, let

89



P = [2
k=1 [

nk
i=1 fhRk;i ; Uk;i [ RtnUsedPathSet(P0) [ UpCtrlPathSet(N0)ig

[ fh"; RtnUsedPathSet(P0) [ UpCtrlPathSet(N0)ig

N = fN1;j j j = 1; : : : ; l1g [ fN2;j j j = 1; : : : ; l2g

(1) The answer to a conditional expression includes only the source nodes that are

part of the answer to either the then-expression or the else-expression. Thus,

the expression is

FinalizedRtnPathSet(P)

= [n1
i=1 fR1;i#g [ [

n2
i=1 fR2;i#g [ f"#g

=FinalizedRtnPathSet([n1
i=1 fhR1;i ; U1;iig) [ FinalizedRtnPathSet([n2

i=1 fhR2;i ; U2;iig)

By the induction hypothesis, the sets FinalizedRtnPathSet([n1
i=1 fhR1;i ; U1;iig)

and FinalizedRtnPathSet([n2
i=1 fhR2;i ; U2;iig) include all the source nodes that

are part of the answers to the then-expression and the else-expression respec-

tively. Thus the projection path set FinalizedRtnPathSet(P) includes all the

source nodes that are part of the answer to the conditional expression.

(2) The answer to a conditional expression includes only the constructed nodes that

are part of the answer to either the then-expression or the else-expression. By

the induction hypothesis, the sets fN1;j j j = 1; : : : ; l1g and fN2;j j j = 1; : : : ; l2g

include all the constructed nodes that are part of the answers to the then-

expression or the else-expression respectively. Thus the constructed node set N

includes all the constructed nodes that are part of the answer to the conditional

expression.

90



(3) The evaluation of a conditional expression needs all the source data needed by

its subexpressions. By the induction hypothesis, the projection path sets

FinalizedPathSet(fhR1;i ; U1;ii j i = 1; : : : ; n1g ; fN1;j j j = 1; : : : ; l1g)

and

FinalizedPathSet(fhR2;i ; U2;ii j i = 1; : : : ; n2g ; fN2;j j j = 1; : : : ; l2g)

include all the source nodes that are needed to answer the then-expression or

the else-expression respectively. The union of the above two sets are obviously

included in the set FinalizedPathSet(P; N ). It remains to show that the set

FinalizedPathSet(P; N ) also includes all the source nodes that are needed by

the test-expression. If the test-expression is a stand-alone expression, one will

need the path set FinalizedPathSet(P0; N0). As part of a conditional expres-

sion, however, it is su�cient to include only the set RtnUsedPathSet(P0) [

UpCtrlPathSet(N0), because the test-expression returns only a Boolean value,

i.e. it does not return source nodes. Thus the projection path set

FinalizedPathSet(P; N ) includes all the source nodes that are needed to answer

the conditional expression.

Element Constructors with QNames: An element constructor with a QName eval-

uates to a constructed element node.

(1) The answer to an element constructor with a QName includes no source nodes

at the top level. Thus the projection path set FinalizedRtnPathSet(;) = ;

includes all the source nodes that are part of the answer to the element con-

structor with a QName.

(2) The answer to an element constructor with a QName includes just this con-

structed node. Thus the constructed node set feNg includes all the constructed

nodes that are part of the answer to the element constructor with a QName.

91



(3) The evaluation of a element constructor with a QName needs only the source

data needed by its content expression. By the induction hypothesis, the pro-

jection path set FinalizedPathSet(P; N ) includes all the source nodes that

are needed to answer the content expression. This algorithm copies N to

fNj j j = 1; : : : ; lg ; which preserves all projection paths remembered by N .

The sets P and fNj j j = 1; : : : ; lg are remembered respectively by the sets

SourcePathPairSet (eN) and ConstructedChildren (eN) of this constructed node.

Therefore, the projection path set FinalizedPathSet(;; feNg) includes all the

source nodes that are needed to answer the content expression and, subse-

quently, the whole element constructor with a QName.

Element Constructors with Name Expressions: An element constructor with a name

expression evaluates to a constructed element node. The arguments are similar to

the ones given for an element constructor with a QName. The only di�erence is

that one needs to deal with the name expression when proving the third property.

(1) The answer to an element constructor with a name expression includes zero

source nodes at the top level. Thus the projection path set FinalizedRtnPathSet(;)

= ; includes all the source nodes that are part of the answer to the element

constructor with a name expression.

(2) The answer to an element constructor with a name expression includes just

the constructed node. Thus the constructed node set feNg includes all the

constructed nodes that are part of the answer to the element constructor with

a name expression.

(3) The arguments are the same as those for an element constructor with a QName,

when proving the projection path set FinalizedPathSet(;; feNg) includes all

the source nodes that are needed to answer the content expression. And all

the source nodes needed to answer the name expression are in the path set

92



FinalizedPathSet(P0; N0), which are remembered by the set CtrlPathSet (eN)

of the constructed node. Therefore, the projection path set

FinalizedPathSet(;; feNg) includes all the source nodes that are needed to

answer the element constructor with a name expression.

Attribute Constructors with QNames: An attribute constructor with a QName eval-

uates to a constructed attribute node. The arguments are similar to the ones given

for an element constructor with a QName. The only di�erence is that the source

nodes that are required to answer the content expression are remembered in a dif-

ferent way. All the projection paths remembered in various places are collected and

then remembered by the set SourcePathPairSet (aN) of this constructed node. This

is done because there is no further navigation on an attribute node.

Attribute Constructors with Name Expressions: An attribute constructor with a name

expression evaluates to a constructed attribute node. The arguments are similar to

the ones given for an element constructor with a name expression. The di�erence

between the two is the same as the one between an attribute constructor with a

QName and an element constructor with a QName.

Document Constructors: A document constructor evaluates to a constructed docu-

ment node. The arguments are the same as the ones given for an element construc-

tor with a QName.

Text Constructors: A text constructor evaluates to a constructed text node.

(1) The answer to a text constructor includes no source node. Thus the projection

path set FinalizedRtnPathSet(;) = ; includes all the source nodes that are part

of the answer to the text constructor.

(2) The answer to a text constructor includes just the constructed node. Thus the

constructed node set ftNg includes all the constructed nodes that are part of

the answer to the text constructor.

93



(3) No source nodes are required in the evaluation of a text constructor. Thus

the projection path set FinalizedPathSet(;; ftNg) = ; includes all the source

nodes that are needed to answer the text constructor.

�

94



CHAPTER 4

COMPARISON WITH THE ORIGINAL XML DOCUMENT PROJECTION

4.1. Marian and Siméon's Projection Algorithm

An XML document projection algorithm was �rst published by Amélie Marian and Jérôme

Siméon at VLDB 2003 [52]. Their technical report gives the complete analysis [53]. The

intuition behind the research was that most XQuery queries can be answered by examining

only part of the original XML document. The authors de�ne this subset of the document

as the projection document. The corresponding XPath paths that select the projection part

of the original XML document are called projection paths. Only forward navigation without

predicates are allowed in projection paths, so the syntax used for projection paths is a subset

of XPath.

The authors also developed inference rules to produce the set of projection paths given in

response to an XQuery query. Their loading algorithm scans original documents and generates

projection documents for an XQuery query according to the corresponding set of projection

paths. They then tested their algorithm on the benchmark XMark [75] and showed that their

projection enabled main-memory XQuery engines to evaluate queries on signi�cantly larger

documents.

4.2. Improvement Achieved by my Extended Projection Algorithm

In 2003, this researcher thought of an idea that was similar to the projection concept

de�ned by Amélie Marian and Jérôme Siméon prior to reading the papers in this area. The

ideas presented in this dissertation are the result of work related to developing a procedure

to decompose an outsourced user query into atomic and integrating queries for a mediation

system. After reading the papers by Amélie Marian and Jérôme Siméon, this researcher

95



was able to see how to extend the original algorithm and show how this could be applied to

information integration problems.

Although Marian and Siméon's algorithm is very e�ective, it was not intended for query

processing for information integration systems. Their algorithm deals with most XQuery

features, including FLWR expressions and full support for XPath 1.0. In Amélie Marian and

Jérôme Siméon's opinion [52], however,

if a new element is constructed, further navigation does not apply to the

input document and must not be taken into account.

The work presented in this dissertation indicates that this statement is incorrect. For ex-

ample, the projection results from the three evaluation outsourced queries generated by the

mediation system developed for this research demonstrate that further navigation analysis

of constructed elements or documents can help make projection documents even smaller,

although the algorithm may become more complex.

Note that if the 'extended' algorithm is run on XMark benchmark[75], it will get the

same results as the Amélie Marian and Jérôme Siméon algorithm since those benchmark

queries contain no projections on constructed elements. For outsourced queries in the system

developed for this dissertation, however, the extended algorithm always generates better

results than the Marian and Siméon algorithm, because the queries generate projections on

constructed elements.

Below is a description of the analysis performed for three di�erent sample queries. The

�rst evaluation query is the one that was used throughout the dissertation to explain how

the algorithm works. The second and third evaluation queries are designed to show how the

algorithm operates when a di�erent number of documents are required to answer the query

(large vs. small). Each query was executed using both the Marian and Siméon algorithm

(M&S) and the extended projection algorithm on three di�erent data sources: two were

relational databases (data was wrapped as lectures.xml and faculty.xml) and one was an

96



Figure 4.1. Comparing the Numbers of Element Nodes for the First Query

XML �le (dir.xml). The analysis program then determined the projection e�ciency for each

algorithm by measuring the number of element and text nodes retrieved as well as the sizes

of the projection documents. This analysis is described in more detail below.

4.2.1. Evaluation on the First Outsourced Query

The outsourced query presented in Listing 2.10 of Section 2.8.2 is the �rst evaluation

query. The reader will recall that this query was presented in previous chapters, and that the

exact listing was also presented at that time. The following �gures compare the projection

paths returned by Marian and Siméon's algorithm and by the extended algorithm. Figure

4.1 on page 97 compares the numbers of element nodes retrieved. Figure 4.2 on page 98

compares the numbers of text nodes retrieved. Figure 4.3 on page 99 compares the sizes of

the projection documents retrieved.

(1) The projection paths for lecturers.xml at chemistry department wrapper

97



Figure 4.2. Comparing the Numbers of Text Nodes for the First Query

(a) Marian and Siméon's algorithm returns:

(i) /Lecturers/Row

(ii) /Lecturers/Row/Name#

(iii) /Lecturers/Row/Pay_rate#

(iv) /Lecturers/Row/Monthly_hours#

(v) /Lecturers/Row/Rank#

(vi) /Lecturers/Row/Room/text()#

(b) The extended algorithm returns:

(i) /Lecturers/Row

(ii) /Lecturers/Row/Name#

(iii) /Lecturers/Row/Pay_rate#

(iv) /Lecturers/Row/Monthly_hours#

98



Figure 4.3. Comparing the Projection Sizes for the First Query

(2) The projection paths for faculty.xml at computer science department wrapper

(a) Marian and Siméon's algorithm returns:

(i) /Faculty/Row

(ii) /Faculty/Row/Fname#

(iii) /Faculty/Row/Lname#

(iv) /Faculty/Row/Salary#

(v) /Faculty/Row/Title/text()#

(vi) /Faculty/Row/O�ce#

(b) The extended algorithm returns:

(i) /Faculty/Row

(ii) /Faculty/Row/Fname#

(iii) /Faculty/Row/Lname#

99



(iv) /Faculty/Row/Salary#

(3) The projection paths for dir.xml at the college wrapper

(a) Marian and Siméon's algorithm returns:

(i) /Directory/Person

(ii) /Directory/Person/@Name

(iii) /Directory/Person/Phone#

(iv) /Directory/Person/Email#

(v) /Directory/Person/Address#

(b) The extended algorithm returns:

(i) /Directory/Person

(ii) /Directory/Person/@Name

(iii) /Directory/Person/Phone#

The # at the end of a projection path is a shorthand notation that indicates that all the

descendants of the corresponding nodes in the projection document should be included. If it

is missing this symbol, then the descendants of the corresponding nodes are not included.

The following projection paths are the extra paths that are returned by Marian and

Siméon's algorithm:

/Lecturers/Row/Rank#

/Lecturers/Row/Room/text()#

/Faculty/Row/Title/text()#

/Faculty/Row/O�ce#

/Directory/Person/Email#

/Directory/Person/Address#

However, the user is not interested in this information, so the extended algorithm excludes

them. The total number of element nodes in the data sources is 3412. The number retrieved

by the M&S algorithm is 3032, which is a saving of 11 percent. The number retrieved by

100



Figure 4.4. Comparing the Numbers of Element Nodes for the Second Query

the extended algorithm is 1737, which is a savings of 49 percent. Similar savings occur for

the number of text nodes (12 percent versus 55 percent). For the �gures showing the sizes

of the projection documents for the M&S and the extended algorithm, the savings are 13

percent and 53 percent respectively.

4.2.2. Evaluation on the Second Outsourced Query

Consider the outsourced query in Listing 4.1 that show the names of all people living in

Denton. This is a much simpler query and requires information from fewer documents. The

following charts compare the projection paths returned by Marian and Siméon's algorithm and

by the extended algorithm. The Figure 4.4 on page 101 compares the numbers of element

nodes retrieved. The Figure 4.5 on page 102 compares the numbers of text nodes retrieved.

The Figure 4.6 on page 103 compares the sizes of the projection documents retrieved.

(1) The projection paths for lecturers.xml at chemistry department wrapper

101



Figure 4.5. Comparing the Numbers of Text Nodes for the Second Query

(a) Marian and Siméon's algorithm returns:

(i) /Lecturers/Row

(ii) /Lecturers/Row/Name#

(iii) /Lecturers/Row/Pay_rate#

(iv) /Lecturers/Row/Monthly_hours#

(v) /Lecturers/Row/Rank#

(vi) /Lecturers/Row/Room/text()#

(b) The extended algorithm returns:

(i) /Lecturers/Row

(ii) /Lecturers/Row/Name#

(2) The projection paths for faculty.xml at the computer science department wrapper

(a) Marian and Siméon's algorithm returns:

102



Figure 4.6. Comparing the Projection Sizes for the Second Query

(i) /Faculty/Row

(ii) /Faculty/Row/Fname#

(iii) /Faculty/Row/Lname#

(iv) /Faculty/Row/Salary#

(v) /Faculty/Row/Title/text()#

(vi) /Faculty/Row/O�ce#

(b) The extended algorithm returns:

(i) /Faculty/Row

(ii) /Faculty/Row/Fname#

(iii) /Faculty/Row/Lname#

(3) The projection paths for dir.xml at the college wrapper

(a) Marian and Siméon's algorithm returns:

103



(i) /Directory/Person

(ii) /Directory/Person/@Name

(iii) /Directory/Person/Phone#

(iv) /Directory/Person/Email#

(v) /Directory/Person/Address#

(b) The extended algorithm returns:

(i) /Directory/Person

(ii) /Directory/Person/@Name

(iii) /Directory/Person/Address/City#

The extended algorithm excludes many projection paths that are included by Marian and

Siméon's algorithm, because there are not of interest to the user. Again, there are consider-

able di�erences in the number of documents retrieved by the two algorithms.

Listing 4.1. The Outsourced Query of Listing All People Living in Denton
<DentonPeople >

{

let $z := document {

<Personnel >

{ (

for $x in doc("lecturers.xml")/Lecturers/Row ,

$y in doc("dir.xml")/Directory/Person

where $x/Name = $y/@Name

return

<Person >

{$x/Name}

<Department >CHEMISTRY </Department >

<Salary > {($x/Pay_rate) * ($x/Monthly_hours) * 12}

</Salary >

{$x/Rank}

<Office >{$x/Room/text()}</Office >

<Contacts >

{$y/Phone}

{$y/Email}

</Contacts >

{$y/Address}

104



</Person > )

union (

for $x in doc("faculty.xml")/Faculty/Row ,

$y in doc("dir.xml")/Directory/Person

let $xname := string -join(($x/FName , $x/LName), " ")

where $xname = $y/@Name

return

<Person >

<Name >{ $xname}</Name >

<Department >COMPUTER SCIENCE </Department >

{$x/Salary}

<Rank >{$x/Title/text()}</Rank >

{$x/Office}

<Contacts >

{$y/Phone}

{$y/Email}

</Contacts >

{$y/Address}

</Person > )

}

</Personnel >

}

for $x in $z/Personnel/Person

where $x/Adddress/City = "Denton"

return

$x/Name

}

</DentonPeople >

4.2.3. Evaluation on the Third Outsourced Query

Consider the outsourced query in Listing 4.2 that list the names and email addresses

of all full professors. This is a much more complex query and requires the examination of

more documents than the previous query. The following �gures compare the projection paths

returned by Marian and Siméon's algorithm and by the extended algorithm. The Figure 4.7

on page 106 compares the numbers of element nodes retrieved. The Figure4.8 on page 107

compares the numbers of text nodes retrieved. The Figure 4.9 on page 108 compares the

sizes of the projection documents retrieved.

105



Figure 4.7. Comparing the Numbers of Element Nodes for the Third Query

(1) The projection paths for lecturers.xml at the chemistry department wrapper

(a) Marian and Siméon's algorithm returns:

(i) /Lecturers/Row

(ii) /Lecturers/Row/Name#

(iii) /Lecturers/Row/Pay_rate#

(iv) /Lecturers/Row/Monthly_hours#

(v) /Lecturers/Row/Rank#

(vi) /Lecturers/Row/Room/text()#

(b) My extended algorithm returns:

(i) /Lecturers/Row

(ii) /Lecturers/Row/Name#

(iii) /Lecturers/Row/Rank#

106



Figure 4.8. Comparing the Numbers of Text Nodes for the Third Query

(2) The projection paths for faculty.xml at the computer science department wrapper

(a) Marian and Siméon's algorithm returns:

(i) /Faculty/Row

(ii) /Faculty/Row/Fname#

(iii) /Faculty/Row/Lname#

(iv) /Faculty/Row/Salary#

(v) /Faculty/Row/Title/text()#

(vi) /Faculty/Row/O�ce#

(b) My extended algorithm returns:

(i) /Faculty/Row

(ii) /Faculty/Row/Fname#

(iii) /Faculty/Row/Lname#

(iv) /Faculty/Row/Title/text()#

107



Figure 4.9. Comparing the Projection Sizes for the Third Query

(3) The projection paths for dir.xml at the college wrapper

(a) Marian and Siméon's algorithm returns:

(i) /Directory/Person

(ii) /Directory/Person/@Name

(iii) /Directory/Person/Phone#

(iv) /Directory/Person/Email#

(v) /Directory/Person/Address#

(b) My extended algorithm returns:

(i) /Directory/Person

(ii) /Directory/Person/@Name

(iii) /Directory/Person/Email#

108



The extended algorithm excludes many projection paths that are included by Marian and

Siméon's algorithm, because they are not of interest to the user.

Listing 4.2. The Outsourced Query of Listing the Emails of All Full Professors
<ProfessorEmails >

{

let $z := document {

<Personnel >

{ (

for $x in doc("lecturers.xml")/Lecturers/Row ,

$y in doc("dir.xml")/Directory/Person

where $x/Name = $y/@Name

return

<Person >

{$x/Name}

<Department >CHEMISTRY </Department >

<Salary > {($x/Pay_rate) * ($x/Monthly_hours) * 12}

</Salary >

{$x/Rank}

<Office >{$x/Room/text()}</Office >

<Contacts >

{$y/Phone}

{$y/Email}

</Contacts >

{$y/Address}

</Person > )

union (

for $x in doc("faculty.xml")/Faculty/Row ,

$y in doc("dir.xml")/Directory/Person

let $xname := string -join(($x/FName , $x/LName), " ")

where $xname = $y/@Name

return

<Person >

<Name >{ $xname}</Name >

<Department >COMPUTER SCIENCE </Department >

{$x/Salary}

<Rank >{$x/Title/text()}</Rank >

{$x/Office}

<Contacts >

{$y/Phone}

{$y/Email}

109



</Contacts >

{$y/Address}

</Person > )

}

</Personnel >

}

for $x in $z/Personnel/Person

where $x/Rank = "Full Professor"

return

<Professor >

{$x/Name}

{$x/Contacts/Email}

</Professor >

}

</ProfessorEmails >

4.2.4. Summary

In summary, the extended projection algorithm created for this dissertation performed

consistently better on the three queries than either no projection or the Marian and Siméon

algorithm was applied. The table 4.1 shows the performance and savings for each query for

each type of algorithm on all three data sources. Because both the original and the Marian

and Siméon algorithm retrieve the same numbers of nodes (or projection document sizes)

for all three queries, these numbers are not repeated. The average savings on the element

nodes is 11 percent for the M&S algorithm and 56 percent for the extended algorithm on the

average for all three queries. These same savings can be seen in the case of text nodes, 12

percent versus a savings of 65 percent. Note that the Address element is a complex element,

because it has three nested elements: Street, City and State. Therefore, the extended project

algorithm is able to exclude more than two thirds of the document in the dir.xml data source

in the �rst evaluation query, which results in savings of 53 percent. One can easily imagine

other examples that would incur even larger savings. For simplicity and clarity, I selected only

a few columns for the lecturer and faculty tables. If these data sources contained many more

columns, the extended algorithm would exclude those extra columns while the Marian and

110



Element Nodes Returned Lecturer.xml Faculty.xml Dir.xml Total Nodes Percent Savings

Original 1233 1429 750 3412

M&S 1057 1225 750 3032 11

Extended Query 1 705 817 215 1735 49

Extended Query 2 353 613 215 1181 65

Extended Query 3 529 817 215 1561 54

Table 4.1. Savings Summary of the Number of Nodes Returned

Siméon algorithm would retain them. The case for dir.xml is similar. The conclusion is that

the more projective a user query is on the mediated data the more the savings. In conclusion,

the extended projection generates smaller projection documents and hence fetches less data

from the original documents. The reason that this occurs is that my algorithm can remember

and recall constructed elements or documents and apply projection analysis on them.

111



CHAPTER 5

CONCLUSION

The major goal of this research was to develop a more e�cient method for translating

user queries into atomic queries. The motivation for such a goal was to provide more e�cient

and easier access to multiple heterogeneous data sources through a single query. In this type

of scenario, information is requested with a single query that may require data from many

di�erent data sources. The query must be decomposed into many so-called atomic queries;

one for each data source. The emergence of XML standards and the development of a

projection algorithm for XML documents helped solve some of the problems related to this

research. This previous work, therefore, formed the basis of this dissertation by revealing a

technique for processing the XQuery language. As a result, this research built a database

system that uses the mediator approach for accessing distributed heterogeneous data sources.

This means that the atomic queries are distributed by a mediator to di�erent wrappers, each

of which provides the query interface to a speci�c data source. The wrappers process the

atomic query and return their results to the mediator, which integrates the results into a

single answer to the user's original query. For e�ciency's sake, it is important that only

the data necessary to answer the user query be returned to the mediator. Therefore, it

was necessary to develop an algorithm and representation language for the metadata that

would allow the database system to decompose the original query into atomic queries so

that only a subset of the data would be returned to the mediator. The Amélie Marian and

Jérôme Siméon XML document projection algorithm is an example that allows a subset of

data from an XML document to be used to answer a query, so that larger XML documents

can be processed in memory. For the system used in this research, the Amélie Marian and

Jérôme Siméon algorithm was extended so that it would work with an information integration

112



application; It was determined that XQuery expressions could be used for the metadata and

that an improved notation could be used to describe the resulting algorithm.

Following the completion of this task, a study was performed to test whether the extended

algorithm was an improvement over the Marian and Siméon algorithm. Three di�erent eval-

uation queries were run against the system. These queries were analyzed by determining the

projection e�ciency for each algorithm. This was done by counting the numbers of element

and text nodes retrieved as well as measuring the sizes of the projection documents for each

algorithm. The extended XML document projection algorithm created for this dissertation

performed consistently better.

5.1. Contributions

The contributions of this dissertation are:

(1) The development of a query decomposition algorithm based on extended XML doc-

ument projection.

This algorithm generates atomic queries that fetch only relevant data from data

sources. Thus network tra�c is reduced and system performance is improved.

Amélie Marian and Jérôme Siméon presented a static analysis on how to project

XML documents [52]. However, their projection does not analyze navigations in

constructed elements because they concluded that these navigations did not apply

to the input documents. This research demonstrates that those navigations apply

to the input documents and extend the projection analysis to constructors. First,

this extension enables memory-based XQuery engines to process larger documents

whenever there are projections on constructed elements or documents. Second, user

queries in the mediation system developed for this research are based on virtual me-

diated documents which are all constructed by metaqueries. The extension enables

the system to pinpoint the relevant data from the data sources.

113



This research also Improved the notation for presenting projection inference rules.

Amélie Marian and Jérôme Siméon use the notation: �Paths1 using Paths2�. While

this notation appears to be appropriate for the algorithm presented in their research,

it made the extended algorithm developed for this research more di�cult to un-

derstand. The static analysis required in the extended XML document projection

research is more complicated than theirs and requires a better notation. This new

notation is based on ordered pairs, and it is better for describing more complicated

XML document projection using inference rules.

(2) The use of XQuery expressions to represent mappings between global schema and

local schemas.

This research shows that data integrators do not have to use proprietary or spe-

cial languages to represent the mappings between data sources. The standard and

powerful XQuery is su�cient to describe complicated mappings.

(3) The implementation of a prototype mediation system called Omphalos to demon-

strate the extended algorithms.

The research system is based on XML related standards. It uses XML and W3C

XML Schema as the data model and data exchange format, and XQuery to describe

mapping expressions in the metadata. Developers need not learn proprietary tech-

nologies that are not widely used. Also XQuery is strongly typed, making it more

user friendly and easier to debug.

The XML content model allows the creation of very �exible structures, and the W3C

XML Schema supports very rich types. Because XML is rapidly expanding, there

is a trend to take the data that is in other formats and wrap or transform them

to XML. Therefore many data sources are already in XML format, which will allow

information integrators to build mediation systems faster. And if a data source is

wrapped, it is more likely to be reused by other applications.

114



A hierarchy of mediators can be easily built, since one can use XML and XQuery as

the uni�ed interface between mediators and wrappers.

(4) The implementation of a collaborative schema-matching tool.

The schema-matching tool running in a collaborative environment can improve the

e�ectiveness and e�ciency of the cooperation among data integration and domain

experts when they are separated by distance. It also makes it easier to create the

XML metaqueries. This tool is able to plug-in schema-matching algorithms to semi-

automatically generate mappings.

5.2. Future Work

While this dissertation contributes to the problem of representing and processing metadata

in mediator database systems, it does not provide a complete solution. The complexity of

this problem implies that there is a vast amount of work that must be done before a �nal

solution will be available. Some future areas of work are now outlined below.

(1) Automatic Metaquery Generation

The XQuery views used in the metadata for this research are called XQuery metaque-

ries. They are XQuery expressions that capture mappings/correspondences between

mediated schema and data source schemas. Currently these XQuery metaqueries

are created manually, which tends to be error prone and time consuming. Future

work will include incorporating a back end to the collaborative schema matching tool

in order to generate these XQuery views automatically.

The IBM R
1 Clio project has developed a tool to generate XQuery queries that

can transform the source data in nested relational data model to the target data

in a nested relational data model [68]. The Microsoft R
2 BizTalkTM Mapper can

generate XSLT code to translate one XML document to another XML document

1IBM, www.ibm.com

2Microsoft Corporation, www.microsoft.com

115



according to their W3C XML Schema instances [54, 81]. Similar techniques can be

applied and implemented in the collaborative tool.

The generation of metaqueries automatically will make the research system more

�exible and it should scale well. It will be easier to build and maintain data inte-

gration systems. It will be easier to accommodate changes in data source schemas

or mediated schemas. Moreover, it will be easier to add or remove data sources.

Productivity will increase since there will be fewer human errors.

(2) A graphical query language.

A graphical query language will broaden the user base. It will not only enable non-

professionals to use the system, but it will also lead to more e�cient development.

(3) A benchmark specially designed for testing mediation systems.

There are a number of XML and data integration benchmarks or testbeds including

The Amalgam Schema and Data Integration Test Suite [55], Clio Sample Schemas

[20], The Michigan Benchmark [73], NIST XQuery Test Suite [57], THALIA [35],

The UIUC web integration repository [12], XBench [89], XMach-1 [5], Xmark [75],

XMLBench [77], and XOO7 [7]. These benchmarks, however, were not found to

be suitable for evaluating mediation systems. A benchmark specially designed for

testing mediation systems would be a real contribution to this �eld.

5.3. Summary

This research o�ers insight into representing a mapping between a global schema and

local data source schemas and translating user queries into atomic queries in mediator data-

base systems. It shows that it is possible to use XQuery to describe mappings between a

global schema and local data sources. Moreover, it shows that it is possible to extend an

XML document projection algorithm to be used in information integration applications and

increase the accuracy and e�ciency of the original algorithm. This research extended the

projection analysis onto constructed elements and showed how it could operate on multiple

116



data sources. A prototype mediation system called Omphalos was then developed to demon-

strate the techniques and algorithms discussed in this thesis. Combining the capability of a

metaquery generation tool, this system provides users with a powerful information integra-

tion system that allows �exible partial integration, scales well, and is easy to administer and

maintain.

117



APPENDIX A

COLLEGE DIRECTORY DIR.XML

118



The college directory dir.xml.

<?xml version="1.0" encoding="UTF-8" ?>

<Directory>

<Person Name="Frank Kerry">

<Phone>456-677-8007</Phone>

<Email>frank_kerry@unt.edu</Email>

<Address>

<Street>560 Bryan St</Street>

<City>Denton</City>

<State>Texas</State>

</Address>

</Person>

<Person Name="Mark Russell">

<Phone>456-677-8006</Phone>

<Email>mark_russell@unt.edu</Email>

<Address>

<Street>903 Ponder St</Street>

<City>Denton</City>

<State>Texas</State>

</Address>

</Person>

<Person Name="Logan Nixon">

<Phone>456-666-6595</Phone>

<Email>logan_nixon@unt.edu</Email>

<Address>

<Street>123 Scripture St</Street>

119



<City>Denton</City>

<State>Texas</State>

</Address>

</Person>

<Person Name="Darren Einstein">

<Phone>456-688-6596</Phone>

<Email>darren_einstein@unt.edu</Email>

<Address>

<Street>567 Oram St</Street>

<City>Dallas</City>

<State>Texas</State>

</Address>

</Person>

<Person Name="Samuel Justin">

<Phone>456-666-6592</Phone>

<Email>samuel_justin@unt.edu</Email>

<Address>

<Street>360 La vista St</Street>

<City>Dallas</City>

<State>Texas</State>

</Address>

</Person>

<Person Name="Daisy Henry">

<Phone>456-666-6591</Phone>

<Email>daisy_henry@unt.edu</Email>

<Address>

120



<Street>1400 Caroll Blvd</Street>

<City>Denton</City>

<State>Texas</State>

</Address>

</Person>

</Directory>

121



APPENDIX B

GLOBAL SCHEMA INSTANCE PERSONNEL.XSD

122



The global schema instance personnel.xsd.

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema

targetNamespace="http://mars.csci.unt.edu/dbgroup/ditest/personnel"

xmlns:psn="http://mars.csci.unt.edu/dbgroup/ditest/personnel"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="quali�ed"

attributeFormDefault="unquali�ed">

<xs:element name="Personnel">

<xs:annotation>

<xs:documentation xml:lang="en">

personnel.xml top level element.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element ref="psn:Person"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:key name="PersonName">

<xs:selector xpath="psn:Person"/>

<xs:�eld xpath="psn:Name"/>

</xs:key>

</xs:element>

<xs:element name="Person">

123



<xs:complexType>

<xs:annotation>

<xs:documentation xml:lang="en">

element Name represents a full name.

</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="Name" type="xs:token"/>

<xs:element name="Department" type="psn:DepartmentType" />

<xs:element name="Salary" type="psn:NonNegativeDecimal" />

<xs:element name="Rank" type="psn:RankType" />

<xs:element name="O�ce" type="xs:token" />

<xs:element name="Contacts" type="psn:ContactsType" />

<xs:element name="Address" type="psn:AddressType" />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:simpleType name="DepartmentType">

<!� 'COMPUTER SCIENCE' has a space and is not xs:NMTOKEN �>

<xs:restriction base="xs:token">

<xs:enumeration value="COMPUTER SCIENCE"/>

<xs:enumeration value="CHEMISTRY"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="NonNegativeDecimal">

<xs:restriction base="xs:decimal">

124



<xs:minInclusive value="0"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="RankType">

<xs:restriction base="xs:token">

<xs:enumeration value="Assistant Professor"/>

<xs:enumeration value="Assocate Professor"/>

<xs:enumeration value="Full Professor"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="ContactsType">

<xs:sequence>

<xs:element name="Phone" type="psn:PhoneNumberType" />

<xs:element name="Email" type="psn:EmailType" />

</xs:sequence>

</xs:complexType>

<xs:simpleType name="PhoneNumberType">

<xs:annotation>

<xs:documentation xml:lang="en">

I don't care 2 hyphens or one hyphen or no hyphen.

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:pattern value="[1-9][0-9]{2}(-| )?[0-9]{3}(-| )?[0-9]{4}"/>

</xs:restriction>

</xs:simpleType>

125



<xs:simpleType name="EmailType" >

<xs:restriction base="xs:token">

<xs:pattern value=

"([\.a-zA-Z0-9_-])+@([a-zA-Z0-9_-])+(([a-zA-Z0-9_-])*\.([a-zA-Z0-9_-])+)+"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="AddressType">

<xs:sequence>

<xs:element name="Street" type="xs:token"/>

<!� 'El Paso' has a space. So City can not be xs:NMTOKEN �>

<xs:element name="City" type="xs:token"/>

<xs:element name="State" type="xs:NMTOKEN"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

126



APPENDIX C

THE XML PARSE TREE FOR PERSONNEL.XSD

127



The XML parse tree for personnel.xsd.

An XML parser reads in an XML document and produces a parse tree explicitly (DOM

parser) or implicitly (SAX parser). The following is the XML parse tree for personnel.xsd.

The empty text nodes between elements have been omitted for clarity.

DOCUMENT_NODE: #document

ELEMENT_NODE: xs:schema

ATTRIBUTE_NODE: targetNamespace="http://mars.csci.unt.edu/ ..."

ATTRIBUTE_NODE: xmlns:psn="http://mars.csci.unt.edu/ ..."

ATTRIBUTE_NODE: xmlns:xs="http://www.w3.org/2001/XMLSchema"

ATTRIBUTE_NODE: elementFormDefault="quali�ed"

ATTRIBUTE_NODE: attributeFormDefault="unquali�ed"

ELEMENT_NODE: xs:element

ATTRIBUTE_NODE: name="Personnel"

ELEMENT_NODE: xs:annotation

ELEMENT_NODE: xs:documentation

ATTRIBUTE_NODE: xml:lang="en"

TEXT_NODE: #text="personnel.xml top level element."

ELEMENT_NODE: xs:complexType

ELEMENT_NODE: xs:sequence

ELEMENT_NODE: xs:element

ATTRIBUTE_NODE: ref="psn:Person"

ATTRIBUTE_NODE: minOccurs="0"

ATTRIBUTE_NODE: maxOccurs="unbounded"

ELEMENT_NODE: xs:key

ATTRIBUTE_NODE: name="PersonName"

ELEMENT_NODE: xs:selector

128



ATTRIBUTE_NODE: xpath="psn:Person"

ELEMENT_NODE: xs:�eld

ATTRIBUTE_NODE: xpath="psn:Name"

ELEMENT_NODE: xs:element

ATTRIBUTE_NODE: name="Person"

ELEMENT_NODE: xs:complexType

ELEMENT_NODE: xs:annotation

ELEMENT_NODE: xs:documentation

ATTRIBUTE_NODE: xml:lang="en"

TEXT_NODE: #text="element Name represents a full name."

ELEMENT_NODE: xs:sequence

ELEMENT_NODE: xs:element

ATTRIBUTE_NODE: name="Name"

ATTRIBUTE_NODE: type="xs:token"

ELEMENT_NODE: xs:element

ATTRIBUTE_NODE: name="Department"

ATTRIBUTE_NODE: type="psn:DepartmentType"

ELEMENT_NODE: xs:element

ATTRIBUTE_NODE: name"Salary"

ATTRIBUTE_NODE: type="psn:NonNegativeDecimal"

ELEMENT_NODE: xs:element

ATTRIBUTE_NODE: name="Rank"

ATTRIBUTE_NODE: type="psn:RankType"

ELEMENT_NODE: xs:element

ATTRIBUTE_NODE: name="O�ce"

ATTRIBUTE_NODE: type="xs:token"

129



ELEMENT_NODE: xs:element

ATTRIBUTE_NODE: name="Contacts"

ATTRIBUTE_NODE: type="psn:ContactsType"

ELEMENT_NODE: xs:element

ATTRIBUTE_NODE: name="Address"

ATTRIBUTE_NODE: type="psn:AddressType"

ELEMENT_NODE: xs:simpleType

ATTRIBUTE_NODE: name="DepartmentType"

COMMENT_NODE: #comment

ELEMENT_NODE: xs:restriction

ATTRIBUTE_NODE: base="xs:token"

ELEMENT_NODE: xs:enumeration

ATTRIBUTE_NODE: value="COMPUTER SCIENCE"

ELEMENT_NODE: xs:enumeration

ATTRIBUTE_NODE: value="CHEMISTRY"

ELEMENT_NODE: xs:simpleType

ATTRIBUTE_NODE: name="NonNegativeDecimal"

ELEMENT_NODE: xs:restriction

ATTRIBUTE_NODE: base="xs:decimal"

ELEMENT_NODE: xs:minInclusive

ATTRIBUTE_NODE: value="0"

ELEMENT_NODE: xs:simpleType

ATTRIBUTE_NODE: name="RankType"

ELEMENT_NODE: xs:restriction

ATTRIBUTE_NODE: base="xs:token"

ELEMENT_NODE: xs:enumeration

130



ATTRIBUTE_NODE: value="Assistant Professor"

ELEMENT_NODE: xs:enumeration

ATTRIBUTE_NODE: value="Assocate Professor"

ELEMENT_NODE: xs:enumeration

ATTRIBUTE_NODE: value="Full Professor"

ELEMENT_NODE: xs:complexType

ATTRIBUTE_NODE: name="ContactsType"

ELEMENT_NODE: xs:sequence

ELEMENT_NODE: xs:element

ATTRIBUTE_NODE: name="Phone"

ATTRIBUTE_NODE: type="psn:PhoneNumberType"

ELEMENT_NODE: xs:element

ATTRIBUTE_NODE: name="Email"

ATTRIBUTE_NODE: type="psn:EmailType"

ELEMENT_NODE: xs:simpleType

ATTRIBUTE_NODE: name="PhoneNumberType"

ELEMENT_NODE: xs:annotation

ELEMENT_NODE: xs:documentation

ATTRIBUTE_NODE: xml:lang="en"

TEXT_NODE: #text="I don't care 2 hyphens or one hyphen ..."

ELEMENT_NODE: xs:restriction

ATTRIBUTE_NODE: base="xs:string"

ELEMENT_NODE: xs:pattern

ATTRIBUTE_NODE: value="[1-9][0-9]{2}(-| )?[0-9]{3}(-| )? ..."

ELEMENT_NODE: xs:simpleType

ATTRIBUTE_NODE: name="EmailType"

131



ELEMENT_NODE: xs:restriction

ATTRIBUTE_NODE: base="xs:token"

ELEMENT_NODE: xs:pattern

ATTRIBUTE_NODE: value=

"([\.a-zA-Z0-9_-])+@([a-zA-Z0-9_-])+(([a-zA-Z0-9_-])*\.([a-zA-Z0-9_-])+)+"

ELEMENT_NODE: xs:complexType

ATTRIBUTE_NODE: name="AddressType"

ELEMENT_NODE: xs:sequence

ELEMENT_NODE: xs:element

ATTRIBUTE_NODE: name="Street"

ATTRIBUTE_NODE: type="xs:token"

COMMENT_NODE: #comment

ELEMENT_NODE: xs:element

ATTRIBUTE_NODE: name="City"

ATTRIBUTE_NODE: type="xs:token"

ELEMENT_NODE: xs:element

ATTRIBUTE_NODE: name="State"

ATTRIBUTE_NODE: type="xs:NMTOKEN"

132



BIBLIOGRAPHY

[1] L. Afanasiev, M. Franceschet, M. Marx, and M. de Rijke, �Ctl model checking for processing simple xpath

queries,� in Proceedings of the 11th TIME, 2004. [Online]. Available: citeseer.ist.psu.edu/678107.html

[2] C. Baru, A. Gupta, B. Ludäscher, R. Marciano, Y. Papakonstantinou, P. Velikhov, and V. Chu,

�XML-based information mediation with MIX,� in SIGMOD 1999, Proceedings ACM SIGMOD

International Conference on Management of Data, June 1-3, 1999, 1999, pp. 597�599. [Online].

Available: citeseer.ist.psu.edu/baru99xmlbased.html

[3] C. K. Baru, B. Ludäscher, Y. Papakonstantinou, P. Velikhov, and V. Vianu, �Features and requirements for

an XML view de�nition language: Lessons from XML information mediation,� in Proceedings of QL'98 The

Query Languages Workshop, 1998. [Online]. Available: http://www.db.ucsd.edu/publications/xmas.html

[4] D. Beneventano, S. Bergamaschi, C. Castano, A. Corni, R. Guidetti, M. Malvezzi, M. Melchiori, and

M. Vincini, �Information integration: The MOMIS project demonstration,� in VLDB 2000, Proceedings

of 26th International Conference on Very Large Data Bases, September 10�14, 2000, Cairo, Egypt,

A. El Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel, G. Schlageter, and K.-Y. Whang,

Eds. Los Altos, CA 94022, USA: Morgan Kaufmann Publishers, 2000, pp. 611�614. [Online]. Available:

http://www.vldb.org/dblp/db/conf/vldb/BeneventanoBCCGMMV00.html

[5] T. Böhme and E. Rahm, �XMach-1: A benchmark for XML data management,� in In Proceedings of

German database conference BTW2001, Oldenburg, 7.-9. March, 2001, Springer, Berlin., 2001.

[6] R. Brazile, K. Swigger, B. Harrington, B. Harrington, and X. Peng, �The international collaborative en-

vironment,� in In Proceedings of the Computer Applications in Industry and Engineering (CAINE) 2002

Conference, San Diego, California, November 2002.

[7] S. Bressan, M. L. Lee, Y. G. Li, Z. Lacroix, and U. Nambiar, �The xoo7 benchmark,� in Proceedings of

the �rst VLDB Workshop on E�ciency and E�ectiveness of XML Tools, and Techniques (EEXTT), Hong

Kong, China, August 2002.

[8] A. Calì, D. Calvanese, G. De Giacomo, and M. Lenzerini, �Data integration under integrity constraints,�

in Proc. of the 14th Int. Conf. on Advanced Information Systems Engineering (CAiSE 2002), ser. Lecture

Notes in Computer Science, vol. 2348. Springer, 2002, pp. 262�279.

133



[9] J. P. Callan and M. E. Connell, �Query-based sampling of text databases,� Information Systems, vol. 19,

no. 2, pp. 97�130, 2001. [Online]. Available: citeseer.ist.psu.edu/callan99querybased.html

[10] M. J. Carey, J. Kiernan, J. Shanmugasundaram, E. J. Shekita, and S. N. Subramanian, �XPERANTO:

Middleware for publishing object-relational data as XML documents,� in The VLDB Journal, 2000, pp.

646�648. [Online]. Available: citeseer.ist.psu.edu/article/carey00xperanto.html

[11] D. Chamberlin, D. Draper, M. Fernandez, M. Kay, J. Robie, M. Rys, J. Simeon, J. Tivy, and P. Wadler,

XQuery from the Experts: A Guide to the W3C XML Query Language, 1st ed., H. Katz, Ed. Addison-

Wesley, September 2003.

[12] K. C.-C. Chang, B. He, C. Li, and Z. Zhang, �The UIUC web integration repository,� Computer Science

Department, University of Illinois at Urbana-Champaign. http://metaquerier.cs.uiuc.edu/repository, 2003.

[13] A. B. Chaudhri, A. Rashid, and R. Zicari, Eds., XML data management : native XML and XML-enabled

database systems, 1st ed. Addison Wesley Professional, 2003.

[14] A. B. Chaudhri, R. Unland, C. Djeraba, and W. Lindner, Eds., XML-Based Data Management and Mul-

timedia Engineering - EDBT 2002 Workshops, EDBT 2002 Workshops XMLDM, MDDE, and YRWS,

Prague, Czech Republic, March 24-28, 2002, Revised Papers, ser. Lecture Notes in Computer Science,

vol. 2490. Springer, 2002.

[15] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. D. Ullman, and

J. Widom, �The TSIMMIS project: Integration of heterogeneous information sources,� in In Proceedings

of the 16th Meeting of the Information Processing Society of Japan, Tokyo, Japan, 1994, pp. 7�18.

[Online]. Available: citeseer.ist.psu.edu/chawathe94tsimmis.html

[16] V. Christophides, S. Cluet, and J. Simèon, �On wrapping query languages and e�cient XML integration,�

in In Proceedings of ACM SIGMOD Conference on Management of Data, Dallas, Texas, May 2000, pp.

141�152. [Online]. Available: citeseer.ist.psu.edu/christophides00wrapping.html

[17] J. Clark, �RELAX NG home page,� http://www.relaxng.org/. [Online]. Available: http://www.relaxng.

org/

[18] ��, �TREX - tree regular expressions for XML,� http://www.thaiopensource.com/trex/. [Online].

Available: http://www.thaiopensource.com/trex/

[19] C. Clifton, E. Housman, and A. Rosenthal, �Experience with a combined approach to attribute-matching

across heterogeneous databases,� in DS-7, 1997, pp. 0�. [Online]. Available: citeseer.ist.psu.edu/

clifton97experience.html

134



[20] �Clio sample schemas,� http://www.cs.toronto.edu/db/clio/testSchemas.html, Clio Group at the

University of Toronto and IBM's Almaden Research Center. [Online]. Available: http://www.cs.toronto.

edu/db/clio/testSchemas.html

[21] I. F. Cruz and K. M. James, �A user interface for distributed multimedia database querying with

mediator supported re�nement,� in Proceedings of ACM SIGMOD, Philadelphia, Apr. 16 1999, pp.

590�592. [Online]. Available: http://citeseer.ist.psu.edu/371510.html;http://www.cs.wpi.edu/~beez/

Papers/IDEAS99.ps

[22] O. Duschka and M. Genesereth, �Infomaster - an information integration tool,� in In Proceedings of

the International Workshop on Intelligent Information Integration, Freiburg, Germany, September 1997.

[Online]. Available: citeseer.ist.psu.edu/duschka97infomaster.html

[23] O. M. Duschka, M. R. Genesereth, and A. Y. Levy, �Recursive query plans for data

integration,� Journal of Logic Programming, vol. 43, no. 1, pp. 49�73, 2000. [Online]. Available:

citeseer.ist.psu.edu/duschka99recursive.html

[24] L. Fegaras, �The joy of sax,� in Informal Proceedings of the 1st XIME-P, 2004. [Online]. Available:

citeseer.ist.psu.edu/648806.html

[25] M. Fernandez, W. Tan, and D. Suciu, �SilkRoute: Trading between relational and xml,� in In Proc. of the

Int. WWW Conf., May 2000.

[26] M. Friedman, A. Y. Levy, and T. D. Millstein, �Navigational plans for data integration,� in AAAI/IAAI,

1999, pp. 67�73. [Online]. Available: citeseer.ist.psu.edu/article/friedman99navigational.html

[27] H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and J. Widom, �Integrating

and accessing heterogeneous information sources in tsimmis,� in In Proceedings of the AAAI

Symposium on Information Gathering, Stanford, California, Mar. 1995, pp. 61�64. [Online]. Available:

citeseer.ist.psu.edu/article/garcia-molina95integrating.html

[28] H. Garcia-Molina, J. Ulman, and J. Widom., Database Implementation. New Jersey: Prentice Hall, 2000.

[29] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. D. Ullman,

V. Vassalos, and J. Widom, �The TSIMMIS approach to mediation: Data models and languages,�

Journal of Intelligent Information Systems, vol. 8, no. 2, pp. 117�132, 1997. [Online]. Available:

citeseer.ist.psu.edu/article/garcia-molina97tsimmis.html

[30] H. Garcia-Molina, J. D. Ullman, and J. Widom, Database Systems: The Complete Book. Prentice Hall,

2002, pp. 1047�1100.

135



[31] G. Gardarin, A. Mensch, T. Tuyet Dang-Ngoc, and L. Smit, �Integrating heterogeneous data sources

with XML and XQuery,� in Proceedings of 13th International Workshop on Database and Expert Systems

Applications, September 02 - 06, 2002, Aix-en-Provence, France, Sept. 2002, pp. 839� 844.

[32] G. Gardarin, A. Mensch, T. Tuyet Dang-Ngoc, L. Smit, and e XMLMedia, �Integrating heterogeneous data

sources with XML and XQuery,� http://www.e-xmlmedia.fr/HDI-XML&XQuery.pdf, e-XMLMedia.

[Online]. Available: http://www.e-xmlmedia.fr/HDI-XML&XQuery.pdf

[33] C. H. Goh, S. Bressan, S. Madnick, and M. Siegel, �Context interchange: new features and formalisms

for the intelligent integration of information,� ACM Transactions on Information Systems, vol. 17, no. 3,

pp. 270�270, 1999. [Online]. Available: citeseer.ist.psu.edu/3111.html

[34] L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang, �Optimizing queries across diverse data

sources,� in Proceedings of the Twenty-third International Conference on Very Large Databases.

Athens, Greece: VLDB Endowment, Saratoga, Calif., 1997, pp. 276�285. [Online]. Available:

citeseer.ist.psu.edu/article/haas97optimizing.html

[35] J. Hammer, M. Stonebraker, and O. Topsakal, �THALIA: Test harness for the assessment of legacy

information integration approaches,� in The 21st International Conference on Data Engineering (ICDE

2005). Tokyo, Japan: National Center of Sciences, Tokyo, Japan, April 2005. [Online]. Available:

http://icde2005.is.tsukuba.ac.jp/

[36] E. R. Harold and W. S. Means, XML in a nutshell, 2nd ed. O'Reilly, 2002.

[37] �ISO/IEC 19757 - DSDL document schema de�nition languages,� http://dsdl.org/, ISO/IEC JTC 1/SC

34 WG 1. [Online]. Available: http://dsdl.org/

[38] R. Jakobovits, �Integrating heterogeneous autonomous information sources,� University of Washington�

Tech. Rep. TR-97-12-05, 1997.

[39] R. Jelli�e, �The schematron assertion language 1.5,� http://xml.ascc.net/resource/schematron/

Schematron2000.html, Academia Sinica Computing Centre. [Online]. Available: http://xml.ascc.net/

resource/schematron/Schematron2000.html

[40] ��, �The schematron home page,� http://xml.ascc.net/resource/schematron/, Academia Sinica

Computing Centre. [Online]. Available: http://xml.ascc.net/resource/schematron/

[41] W. Just and M. Weese, Discovering modern set theory, ser. Graduate studies in mathematics ; v. 8,

18. American Mathematical Society, 1996, vol. 1, no. SBN/ISSN 0821802666, includes bibliographical

references and indexes. 1. The basics � 2. Set-theoretic tools for every mathematician.

136



[42] R. King, M. Novak, C. Och, and F. Velez, �Sybil: Supporting heterogeneous database interoperability

with lightweight alliance,� in Next Generation Information Technologies and Systems, 1997, pp. 0�.

[Online]. Available: citeseer.ist.psu.edu/king97sybil.html

[43] T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava, �The information manifold,� in In Proc. of

the AAAI Spring Symposium on Information Gathering in Distributed Heterogeneous Environments,

C. Knoblock and A. Levy, Eds., Stanford University, Stanford, California, 1995. [Online]. Available:

citeseer.ist.psu.edu/16242.html

[44] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier, �Schema-based scheduling of event

processors and bu�er minimization for queries on structured data streams,� in Proceedings of the 30th

VLDB, 2004. [Online]. Available: citeseer.ist.psu.edu/article/koch04schemabased.html

[45] ��, �Fluxquery: An optimizing xquery processor for streaming xml data,� in Proceedings of the 30th

VLDB, 2004. [Online]. Available: citeseer.ist.psu.edu/koch04�uxquery.html

[46] M. Lenzerini, �Data integration: a theoretical perspective,� in Proceedings of the 21st ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems (PODS02). New York, NY, USA: ACM

Press, 2002, pp. 233�246.

[47] A. Y. Levy, �Logic-based techniques in data integration,� in Workshop on Logic-Based Arti�cial

Intelligence, Washington, DC, June 14�16, 1999, J. Minker, Ed. College Park, Maryland: Computer

Science Department, University of Maryland, 1999. [Online]. Available: citeseer.ist.psu.edu/391746.html

[48] ��, �Logic-based techniques in data integration,� in Logic-Based Arti�cial Intelligence, J. Minker, Ed.

Dordrecht: Kluwer Academic Publishers, 2000, pp. 575�595.

[49] A. Y. Levy, A. Rajaraman, and J. J. Ordille, �Querying heterogeneous information sources using

source descriptions,� in Proceedings of the Twenty-second International Conference on Very Large

Databases. Bombay, India: VLDB Endowment, Saratoga, Calif., 1996, pp. 251�262. [Online]. Available:

citeseer.ist.psu.edu/levy96querying.html

[50] L. Liu and C. Pu, �The distributed interoperable object model and its application to large-scale

interoperable database systems,� in CIKM, 1995, pp. 105�112. [Online]. Available: citeseer.ist.psu.edu/

liu95distributed.html

[51] I. Manolescu, D. Florescu, and D. K. Kossmann, �Answering XML queries over heterogeneous data

sources,� in Proceedings of 27th International Conference on Very Large Databases, Roma, Italy, Sept.

2001, pp. 241�250. [Online]. Available: citeseer.ist.psu.edu/manolescu01answering.html

137



[52] A. Marian and J. Siméon, �Projecting XML documents,� in Proceedings of VLDB 2003, 2003. [Online].

Available: citeseer.ist.psu.edu/marian03projecting.html

[53] ��, �Projecting XML documents,� Computer Science Department, Columbia University, Tech. Rep.,

February 2003. [Online]. Available: http://www.cs.columbia.edu/~library/

[54] J. Matranga, S. Tranchida, and B. Preecs, Understanding BizTalk, 1st ed. SAMS, 2000, indianapolis,

Ind.

[55] R. J. Miller, D. Fisla, M. Huang, D. Kalmuk, F. Ku, and V. Lee, �The amalgam schema and data integration

test suite,� http://www.cs.toronto.edu/ miller/amalgam/.

[56] J. C. Mitchell, Foundations for Programming Languages, ser. Foundations of Computing. Cambridge,

Massachusetts: The MIT Press, 1996.

[57] C. Montanez, �NIST XQuery test suite,� http://xw2k.sdct.itl.nist.gov/brady/xmlQuery.zip, NIST,

Information Technology Laboratory, Software Diagnostics and Conformance Testing Division. [Online].

Available: http://xw2k.sdct.itl.nist.gov/BRADY/xmlquery/testSuite/NIST/�les/readme.html

[58] M. MURATA, �RELAX (regular language description for XML),� http://www.xml.gr.jp/relax/. [Online].

Available: http://www.xml.gr.jp/relax/

[59] �RELAX NG speci�cation,� http://www.oasis-open.org/committees/relax-ng/spec-20011203.html,

OASIS (Organization for the Advancement of Structured Information Standards), 2001,

OASIS Technical Committee Speci�cation: 3 December 2001. [Online]. Available:

http://www.oasis-open.org/committees/relax-ng/spec-20011203.html

[60] D. Olteanu, H. Meuss, et al., �Xpath: Looking forward.� in EDBT Workshops, ser. Lecture Notes in

Computer Science, A. B. Chaudhri, R. Unland, C. Djeraba, and W. Lindner, Eds., vol. 2490. Springer,

2002, pp. 109�127.

[61] D. Olteanu, H. Meuss, T. Furche, and F. Bry, �Xpath: Looking forward.� in EDBT Workshops, ser.

Lecture Notes in Computer Science, A. B. Chaudhri, R. Unland, C. Djeraba, and W. Lindner, Eds., vol.

2490. Springer, 2002, pp. 109�127.

[62] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina, �Object fusion in mediator systems,� in

Proceedings of the Twenty-second International Conference on Very Large Databases, 1996, pp. 413�424.

[Online]. Available: citeseer.ist.psu.edu/papakonstantinou96object.html

[63] Y. Papakonstantinou, H. García-Molina, and J. Ullman, �Medmaker: A mediation system based on

declarative speci�cations,� in Proceedings of the 12th International Conference on Data Engineering,

New Orleans, La., 1996. [Online]. Available: citeseer.ist.psu.edu/papakonstantinou95medmaker.html

138



[64] X. Peng, R. Brazile, and K. M. Swigger, �Using XQuery to describe mappings from global schemas to

local data sources,� in In Proceedings of the 2004 IEEE International Conference on Information Reuse

and Integration, A. M. Memon, Ed. IEEE Systems, Man, and Cybernetics Society, Novemeber 2004, pp.

97�102.

[65] ��, �Extending XML document projection for data integration,� in In Proceedings of the 2005 IEEE

International Conference on Information Reuse and Integration, D. Zhang, Ed. Las Vegas, Nevada, USA:

IEEE Systems, Man, and Cybernetics Society, August 2005, pp. 138�143.

[66] B. C. Pierce, Types and Programming Languages. Cambridge, Massachusetts: The MIT Press, 2002.

[67] G. D. Plotkin, �A Structural Approach to Operational Semantics,� University of Aarhus, Tech. Rep.

DAIMI FN-19, 1981. [Online]. Available: citeseer.ist.psu.edu/plotkin81structural.html

[68] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and R. Fagin, �Translating web data,�

in Proceedings of VLDB 2002, Hong Kong SAR, China, 2002, pp. 598�609. [Online]. Available:

citeseer.ist.psu.edu/popa02translating.html

[69] R. Pottinger and A. Halevy, �MiniCon: A scalable algorithm for answering queries using views,�

VLDB Journal: Very Large Data Bases, vol. 10, no. 2�3, pp. 182�198, 2001. [Online]. Available:

citeseer.ist.psu.edu/pottinger01minicon.html

[70] X. Qian, �Query folding,� in 12th Int. Conference on Data Engineering, S. Y. Su, Ed., New Orleans,

Louisiana, 1996, pp. 48�55. [Online]. Available: citeseer.ist.psu.edu/qian96query.html

[71] R. Ramakrishnan and A. Silberschatz, �Scalable integration of data collections on the web,� Univ. of

Wiscosin-Madison, Tech. Rep., 1998.

[72] T. Risch and V. Josifovski, �Distributed data integration by object-oriented mediator servers,�

Concurrency and Computation: Practice and Experience, vol. 13, no. 11, pp. 933�953, Sept. 2001.

[Online]. Available: http://www3.interscience.wiley.com/cgi-bin/fulltext?ID=85012147&PLACEBO=

IE.pdf;http://www3.interscience.wiley.com/cgi-bin/abstract/85012147/START

[73] K. Runapongsa, J. M. Patel, H. V. Jagadish, Y. Chen, and S. Al-Khalifa, �The michigan benchmark:

Towards XML query performance diagnostics,� in Proceedings of the 29th VLDB Conference, Berlin,

Germany, 2003.

[74] A. Sahuguet and B. Alexe, �Sub-document queries over xml with xsquirrel,� in In Proceedings of

the 14th International World Wide Web Conference. Chiba, Japan: The International World Wide

Web Conference Committee (IW3C2), May 2005. [Online]. Available: citeseer.ist.psu.edu/article/

sahuguet05subdocument.html

139



[75] A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu, and R. Busse, �Xmark: A benchmark for XML

data management,� in Proceedings of International Conference on Very Large Databases (VLDB), Hong

Kong, China, Aug. 2002, pp. 974�985. [Online]. Available: citeseer.ist.psu.edu/schmidt02xmark.html

[76] K. Slonneger and B. L. Kurtz, Formal Syntax and Semantics of Programming languages: A Laboratory

Based Approach, T. Stone, Ed. Addison-Wesley, 1995.

[77] �XMLBench document model benchmark,� Sosnoski Software Solutions, Inc. http://www.sosnoski.com/

opensrc/xmlbench/, Sosnoski Software Solutions, Inc.

[78] V. Subrahmanian, S. Adali, A. Brink, J. J. Lu, A. Rajput, T. J. Rogers, R. Ross, and C. Ward, �HERMES:

A heterogeneous reasoning and mediator system,� University of Maryland, Tech. Rep., 1996. [Online].

Available: http://www.cs.umd.edu/projects/hermes/overview/paper/

[79] K. Swigger, R. Brazile, X. Peng, and B. Harrington, �Computer-supported collaboration and the e�ects

of culture,� in In Proceedings of the 6th International Conference on the Design of Cooperative Systems,

COOP'04, Hyeres, France, May 2004.

[80] A. Tomasic, L. Raschid, and P. Valduriez, �Scaling access to heterogeneous data sources with

DISCO,� Knowledge and Data Engineering, vol. 10, no. 5, pp. 808�823, 1998. [Online]. Available:

citeseer.ist.psu.edu/tomasic98scaling.html

[81] C. F. Vasters, BizTalk Server 2000: A Beginner's Guide. McGraw-Hill Companies, June 2001.

[82] �Well-founded relation,� http://en.wikipedia.org/wiki/Well-founded_relation, The Wikimedia

Foundation, Inc., July 2006, wikipedia, the free encyclopedia. [Online]. Available:

http://en.wikipedia.org/wiki/Well-founded_relation

[83] G. Winskel, The Formal Semantics of Programming Languages: An Introduction, ser. Foundations of

Computing. Cambridge, Massachusetts: The MIT Press, 1993.

[84] �Extensible markup language (XML) 1.1,� http://www.w3.org/TR/2004/REC-xml11-20040204/, The

world wide Web Consortium, w3C Recommendation. [Online]. Available: http://www.w3.org/TR/2004/

REC-xml11-20040204/

[85] �XML schema part 0: Primer,� http://www.w3.org/TR/xmlschema-0/, The world wide Web

Consortium, w3C Recommendation. [Online]. Available: http://www.w3.org/TR/xmlschema-0/

[86] �XML syntax for XQuery 1.0 (XQueryX),� http://www.w3.org/TR/xqueryx/, The world wide Web

Consortium, w3C working draft. [Online]. Available: http://www.w3.org/TR/xqueryx/

[87] �XQuery 1.0: An XML query language,� http://www.w3.org/TR/xquery/, The world wide Web

Consortium, w3C working draft. [Online]. Available: http://www.w3.org/TR/xquery/

140



[88] �XQuery 1.0 and xpath 2.0 formal semantics,� http://www.w3.org/TR/xquery-semantics/, The

world wide Web Consortium, w3C working draft. [Online]. Available: http://www.w3.org/TR/

xquery-semantics/

[89] B. B. Yao, M. T. zsu, and N. Khandelwal, �Xbench benchmark and performance testing of XML DBMSs,�

in In Proceedings of the 20th International Conference on Data Engineering, Boston, MA, March 2004,

pp. 621�632.

[90] G. Zhou, R. Hull, R. King, and J.-C. Franchitti, �Using object matching and materialization to integrate

heterogeneous databases,� pp. 59�76, 1999.

141


