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Hard real-time systems in robotics, space and military missions, and control 

devices are specified with stringent and critical time constraints. On the other 

hand, soft real-time applications arising from multimedia, telecommunications, 

Internet web services, and games are specified with more lenient constraints. 

Real-time systems can also be distinguished in terms of their implementation into 

preemptive and non-preemptive systems. In preemptive systems, tasks are often 

preempted by higher priority tasks. Non-preemptive systems are gaining interest 

for implementing soft-real applications on multithreaded platforms. 

In this dissertation, I propose a new algorithm that uses a two-level 

scheduling strategy for scheduling non-preemptive soft real-time tasks. Our goal 

is to improve the success ratios of the well-known earliest deadline first (EDF) 

approach when the load on the system is very high and to improve the overall 

performance in both underloaded and overloaded conditions. Our approach, 

known as group-EDF (gEDF), is based on dynamic grouping of tasks with 

deadlines that are very close to each other, and using a shortest job first (SJF) 

technique to schedule tasks within the group. I believe that grouping tasks 

dynamically with similar deadlines and utilizing secondary criteria, such as 

minimizing the total execution time can lead to new and more efficient real-time 



scheduling algorithms. I present results comparing gEDF with other real-time 

algorithms including, EDF, best-effort, and guarantee scheme, by using randomly 

generated tasks with varying execution times, release times, deadlines and 

tolerances to missing deadlines, under varying workloads. Furthermore, I 

implemented the gEDF algorithm in the Linux kernel and evaluated gEDF for 

scheduling real applications.  
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CHAPTER 1 

INTRODUCTION 

The earliest deadline first (EDF) algorithm is the most widely used scheduling 

algorithm for real-time systems on uniprocessors and multiprocessors [1, 2]. All 

the discussions in this dissertation will focus on uniprocessors instead of 

multiprocessors, although our approach can be extended to multiprocessors. 

Real-time applications can be characterized as hard real-time or soft real-time 

systems. Hard real-time applications require that all time constraints be met, 

while soft real-time systems permit some tolerance in meeting time constraints. 

Real-time systems are also distinguished based on their implementation. In 

preemptive systems, tasks may be preempted by higher priority tasks, while non-

preemptive systems do not permit preemption. It is easier to design preemptive 

scheduling algorithms for real-time systems. It is our contention, however, that 

non-preemptive scheduling is more efficient, particularly for soft real-time 

applications and applications designed for multithreaded systems, than the 

preemptive approach since the non-preemptive model reduces the overhead 

needed for switching among tasks or threads [3, 4]. For a set of preemptive tasks 

(be periodic, aperiodic, or sporadic), EDF will find a schedule if a schedule is 

possible [5]. The application of EDF for non-preemptive tasks is not as widely 

studied. EDF is optimal for sporadic non-preemptive tasks, but EDF may not find 
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an optimal schedule for periodic and aperiodic non-preemptive tasks. It has been 

shown that scheduling periodic and aperiodic non-preemptive tasks is NP-hard 

(Non-deterministic Polynomial-time hard) [6, 7, 8]. However, non-preemptive 

EDF techniques have produced near optimal schedules for periodic and 

aperiodic tasks, particularly when the system is lightly loaded. When the system 

is overloaded, it has been shown that the EDF approach leads to very poor 

performance (i.e., low success rates) [9]. In this dissertation, a system load or 

utilization is used to refer to the ratio of the sum of the execution times of pending 

tasks and the time available to complete the tasks. The poor performance of EDF 

is due to the fact that, as tasks that are scheduled based on their deadlines miss 

their deadlines, other tasks waiting for their turn are likely to miss their deadlines 

also – an outcome sometimes known as the domino effect. It should also be 

remembered that worst-case execution time (WCET) estimates for tasks are 

used in most real-time systems. We believe that, in practice, WCET estimates 

are very conservative, and more aggressive scheduling scheme based on 

average execution times for soft real-time systems using either EDF or hybrid 

algorithms can lead to higher resource utilizations.  

The major contributions of my research are described here. I propose a new 

approach for scheduling soft real-time systems. To our knowledge we are the 

first research team to propose grouping of task dynamically into deadline groups 

and then use a two level scheduling to schedule tasks. I use EDF for scheduling 
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groups and use a different technique (e.g., shortest job first) for scheduling tasks 

within a group.  

While investigating scheduling algorithms, I have analyzed a variation of EDF 

that can improve the success ratio (that is, the number of tasks that have been 

successfully scheduled to meet their deadlines), particularly in overloaded 

conditions. The new algorithm can also decrease the average response time for 

tasks. We call the algorithm group-EDF, or gEDF, where the tasks with “similar” 

deadlines are grouped together (i.e., deadlines that are very close to one 

another), and the shortest job first (SJF) algorithm is used for scheduling tasks 

within a group. It should be noted that our approach is different from adaptive 

schemes that switch between different scheduling strategies based on system 

load; gEDF is used in overloaded as well as underloaded conditions. The 

computational complexity of gEDF is approximately the same as that of EDF. In 

this dissertation, I will evaluate the performance of gEDF using randomly 

generated tasks with varying execution times, release times, deadlines and 

tolerances to missing deadlines, under varying loads. I have also implemented 

the gEDF algorithm in the Linux kernel. I will present performance results of our 

implementation for some real-time benchmarks. 

We believe that gEDF is particularly useful for soft real-time systems as well 

as applications known as “anytime algorithms” and “approximate algorithms,” 

where applications generate more accurate results or rewards with increased 

execution times [ 10 , 11 ]. Examples of such applications include search 
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algorithms, neural-net based learning in AI (Artificial Intelligence), FFT (Fast 

Fourier Transform) and block-recursive filters used for audio and image 

processing. I model such applications using a tolerance parameter that describes 

by how much a task can miss its deadline, or by how much the task’s execution 

time can be truncated when the deadline is approaching.  

This dissertation is organized as follows. In chapter 2, I present related work. 

In chapter 3, I present the real-time system model and a formal description of the 

gEDF algorithm. Extensive experiments and numerical results for evaluating the 

performance of gEDF are presented in chapter 4. The implementation of the 

gEDF algorithm in Linux operating system is presented in chapter 5. Conclusions 

are given in chapter 6. In appendices A and B, I provide guidelines on how to 

implement new real-time scheduling algorithms in the modified Linux kernel. 

4 



 

CHAPTER 2 

RELATED WORK 

2.1 Overview 

The earliest deadline first (EDF) algorithm schedules real-time tasks based 

on their deadlines. Because of its optimality for periodic, aperiodic, and sporadic 

preemptive tasks, its optimality for sporadic non-preemptive tasks, and its 

acceptable performance for periodic and aperiodic non-preemptive tasks, EDF is 

widely studied as a dynamic priority-driven scheduling scheme [6]. EDF is more 

efficient than many other scheduling algorithms, including the static rate-

monotonic (RM) scheduling algorithm [ 12 ]. For preemptive tasks, when the 

system is lightly loaded, EDF is able to reach the maximum possible processor 

utilization. Although finding an optimal schedule for periodic and aperiodic non-

preemptive tasks is NP-hard [7, 8], our experiments have shown that EDF can 

achieve very good utilization even for non-preemptive tasks when the system is 

lightly loaded. However, when the processor is over-loaded (i.e., the combined 

requirements of pending tasks exceed the capabilities of the system) EDF 

performs poorly. Researchers have proposed several adaptive techniques for 

handling heavily loaded situations, but they require the detection of the overload 

condition. 
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A best-effort algorithm [9] is based on the assumption that the arrival 

probability of a high value-density task is low. The value-density is defined by 

V/C, where V is the value of a task and C is its worst-case execution time. Given 

a set of tasks with defined values if completed successfully, it can be shown that 

a sequence of tasks in decreasing order by value-density will produce the 

maximum value when compared to any other scheduling technique. The best-

effort algorithm admits tasks based on their value-densities and schedules them 

using the EDF policy. When higher value tasks are admitted, some lower value 

tasks may be deleted from the schedule or delayed until no other tasks with 

higher value exist. One key consideration in implementing such a policy is the 

estimation of current workload, which is either very difficult or very inaccurate in 

most practical systems that utilize worst-case execution time (WCET) 

estimations. WCET estimation requires complex analysis of tasks [13, 14], and 

the estimates are significantly larger than average execution times of tasks. Thus 

the best-effort algorithm that uses WCET to estimate loads may lead to sub-

optimal value realization. Best-effort has been used as an overload control 

strategy for EDF: that is, EDF is used when a system is underloaded but best-

effort is used when the overload condition is detected. One integrated real-time 

scheduler including best-effort strategy for general-purpose operating systems 

has been proposed in [ 15 ]. However, this approach relies on preemptive 

scheduling and uses best-effort as an overload control strategy.  
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Other approaches for detecting overload and rejecting tasks were reported in 

[16, 17]. In the guarantee scheme [16], the load on the processor is controlled by 

acceptance tests on new tasks entering the system. If the new task is found 

schedulable under worst-case assumptions, it is accepted; otherwise, the arriving 

task is rejected. In the Robust scheme [17], if the system is underloaded, the 

acceptance test is based on EDF; if the system is overloaded, one or more tasks 

may be rejected based on their importance. Because the guarantee and Robust 

algorithms also rely on computing the schedules of tasks that are based on 

worst-case estimates, they usually lead to underutilization of resources. Thus 

best-effort, guarantee, or Robust scheduling algorithms are not good for soft real-

time systems or applications that are generally referred to as “anytime” or 

“approximate” algorithms [11]. For these algorithms, the quality of results (or 

accuracy) improves when more computation time is allowed.    

The combination of SJF and EDF, referred to as SCAN-EDF for disk 

scheduling, was proposed in [18]. In this work, SJF is only used to break a tie 

between tasks with identical deadlines. The research reported in [19, 20] is very 

closely related to our idea of groups. This approach quantizes deadlines into 

deadline bins and places tasks into these bins. However, tasks within a bin (or 

group) are scheduled using first come first served (FCFS) policy. The gEDF 

groups that I use are created dynamically instead of statically as done in [19, 20]. 

In the following sections, I will introduce the milestone events and the key 

algorithms in the development of real-time systems, especially those that are 
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related to our approach. In section 2.7, I will introduce the development of real-

time systems. In section 2.8, I will introduce real-time operating systems.   

2.2 FIFO/FCFS, RR, SJF: Basic Real-Time Scheduling  

First come first served (FCFS) scheduling uses a simple “first in, first out” 

queue. It is simple to implement but it has several deficiencies. Its average wait 

times are typically long. It is a non-preemptive scheduling technique, and it is 

subject to the negative effect if there are many I/O bound processes mixed with a 

few CPU bound processes. In such cases, there can be large amounts of idle 

times as the I/O bound processes sit idle waiting for the CPU bound process to 

complete.  

Round robin (RR) scheduling is similar to FCFS scheduling but preemption is 

added, so that on each time quantum a new process receives access to the 

system resources. This way, each process gets a share of the system resources 

without having to wait for all processes ahead of it to run to completion. The 

average waiting time is typically long and its performance is proportional to the 

size of the time quantum. Round robin scheduling is the degenerative case of 

priority scheduling when all priorities are equal. 

Shortest job first (SJF) scheduling is probably optimal but requires 

clairvoyance, profiling, or expected execution time to fully implement. SJF can be 

implemented either preemptively or non-preemptively. SJF has low average 

waiting time. In fact, SJF is optimal with respect to average waiting time.  
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It is very easy to prove this claim by comparing it with other real-time 

algorithms. A formal proof can be found in [21, 22]. 

Although FIFO/FCFS, RR, and SJF are very basic real-time scheduling 

schemes, they are widely implemented in real-time systems.   

2.3 Static Priority Scheduling: Rate-Monotonic 

Classical scheduling theory deals with static scheduling. Static scheduling 

refers to the fact that the scheduling algorithm has complete information 

regarding the task set including knowledge of deadlines, execution times, 

precedence constraints, and release times.  

In rate-monotonic (RM) scheduling, the shorter the period of a task, the 

higher is its priority. If there is a set of n independent periodic tasks, and a task τi 

(1 ≤ i ≤ n) is characterized by a period Pi (1 ≤ i ≤ n) and a worst-case execution 

time ei, we have the following result.  

A set of n independent, periodic jobs can be scheduled by the rate monotonic 

policy if e1/P1 + e2/P2 + … + en/Pn ≤ n (21/n  - 1). However, by this formula, the 

upper bound on utilization is only ln2 = 0.69 as n approaches infinity. 

The detailed description and proof can be found in [5]. A better result was 

provided in [23], which claims that the upper bound on utilization of RM is 88%. 

In deadline-monotonic (DM) scheduling, the shorter the relative deadline (i.e. 

the difference between the deadline and the current time, also known as the 

laxity) of a task, the higher is its priority. This approach investigates schedulability 
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tests for sets of periodic tasks whose deadlines are permitted to be less than 

their period. Such a relaxation enables sporadic tasks to be directly incorporated 

with periodic tasks [24, 25]. For arbitrary relative deadlines, DM outperforms RM 

in terms of utilization. 

I use dynamic scheduling approaches in my work. However, I also include a 

description of static scheduling methods for the sake of completeness. 

2.4 Dynamic Priority Scheduling: EDF 

Earliest deadline first (EDF) scheduling is one of the first dynamic priority-

driven scheduling algorithms proposed. As the name implies, tasks are selected 

for execution in the order of their deadlines. It provides the basis for many of the 

real-time algorithms. EDF suffers significantly when the system is overloaded. 

Compared to static priority driven scheduling such as RM with approximate 69% 

utilization, EDF can approach 100% utilization for periodic jobs.  

In the convention of the scheduling theory [22], I first give the specification of 

scheduling problems. Classes of scheduling problems are specified in terms of a 

three tuple: α | β | γ where α specifies the machine environment, β specifies the 

job characteristics, and γ denotes the objective criterion. The value is either = 1, 

for uniprocessor environment or P, for a multiprocessor environment with P 

processors. The job characteristics are specified by β containing the elements 

such as pmtn (i.e. preemptive scheduling) or nonpmtn (i.e. non-preemptive 

scheduling), release time ri (i.e. arriving time of a job), independent tasks, 
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precedence constrained tasks, etc. The objective criteria can be minimize 

maximum lateness Lmax = max {Li | i = 1, …, n} = max {Ci - di | i = 1, …, n}, where, 

max is the function of maximum, di is defined as a due date or deadline of jobτi, 

Ci is defined as completion time of jobτi, or minimizing the makespan max{Ci | i = 

1, …, n}. 

Suppose that there are n independent jobs. The problem: 1 | nonpmtn | Lmax, 

(where, 1 stands for a uniprocessor, nonpmtn stands for non-preemptive 

scheduling, and Lmax stands for the objective that is to minimize Lmax = max {Li | i 

= 1, …, n}) has a solution: Any sequence of jobs in nondecreasing order of due 

dates di, results in an optimal schedule [26].  

Another important result is that if ri is the release time of a job, then the 

scheduling problem {1 | nonpmtn, ri | Lmax} is NP-hard [27]. 

This result is important to our approach because the gEDF algorithm deals 

with non-preemptive scheduling of tasks based on release times. I will introduce 

the gEDF algorithm in detail in a later chapter. Since generating an optimal 

schedule is NP-hard, I conducted extensive experiments to analyze the 

performance of heuristic gEDF algorithm.  

If job preemption is allowed at any instant, the problem: {1 | pmtn, ri | Lmax} 

has a polynomial solution. Any technique that at any instant schedules a job with 

the earliest deadline among all the eligible jobs (i.e. those with release time less 

than or equal to the current times) is optimal with respect to minimizing maximum 
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lateness [29], since a currently running task can be preempted in favor of 

scheduling another task with a shorter relative deadline.  

This result is the basis of preemptive EDF and least laxity first (LLF) 

algorithms. That is because the value of minimized maximum lateness can be 

any value. We can let Lmax = max {Ci - di | i = 1, …, n} = 0, that is, all deadlines of 

tasks must be met. According to the result, it implies that there is always an 

optimal schedule. In fact, specifically, for a set of n independent periodic 

processes, EDF scheduling shows that 100% processor utilization is achievable 

if and only if e1/P1 + e2/P2 + … + en/Pn = 1 [5]. 

EDF can be applied to periodic, aperiodic, and sporadic real-time jobs. 

However, EDF performs poorly in overloaded conditions [ 28 ]. LLF behaves 

similar to EDF except that LLF needs to compute execution times of jobs when 

scheduling. 

It should be noted that dynamic scheduling doesn’t mean online scheduling. 

An online scheduling algorithm has only complete knowledge of the currently 

active set of tasks, and no knowledge of any new arriving tasks. Likewise, offline 

scheduling is not the same as static scheduling. Offline includes pre-analysis of 

scheduling regardless of whether the runtime algorithm is static or dynamic. Our 

gEDF algorithm is a dynamic one, which can be either online or offline, 

depending on the selection of the types of real-time jobs involved. Usually, offline 

scheduling has higher performance than online scheduling but may lead to 

poorer utilization.   
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2.5 Non-preemptive Scheduling 

In many practical real-time scheduling problems such as I/O scheduling, 

properties of device hardware and software make preemption either impossible 

or prohibitively expensive. Non-preemptive scheduling algorithms are easier to 

implement than preemptive algorithms, and can exhibit dramatically lower 

overhead at run-time. The overhead of preemptive algorithms is more difficult to 

characterize and predict than that of non-preemptive algorithms. Non-preemptive 

scheduling on a uniprocessor naturally guarantees exclusive access to shared 

resources and data, thus eliminating both the need for synchronization and its 

associated overhead. The problem of scheduling all tasks without preemption 

forms the theoretical basis for more general tasking models that include sharing 

of resources.  

EDF scheduling for aperiodic jobs is NP-complete. However, for sporadic 

jobs, non-preemptive EDF scheduling is optimal; for the scheduling of periodic 

jobs, it is NP-hard [6]. 

2.6 Real-Time Algorithm Metrics 

The most important metric of a real-time system is the success ratio of 

system deadlines. By success ratio we mean the percentage of jobs completed 

before their deadlines. However, other metrics, such as the minimized total (or 

weighted sum) of the execution times of real-time jobs, the minimized average 

response time, the minimized maximum lateness or tardiness of real-time jobs, 

and the minimized number of processors required for real-time jobs, may be 
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important for real-time systems, especially for soft real-time systems. Because 

missing a few deadlines is not critical in soft real-time systems, the overall 

performance becomes important. Using these metrics (in addition to success 

ratios) is often overlooked in many real-time systems. Minimizing total or average 

execution time has secondary importance in helping minimize resource 

requirements for a system. However, minimizing execution time does not directly 

address the fact that individual tasks have deadlines. In fact, there is no direct 

relation between preventing missing deadlines and maximizing or minimizing 

these values. For instance, minimizing the maximum lateness metrics can be 

useful at design time where resources can be continually added until the 

maximum lateness ≤ 0 (i.e., no deadline is missed). In this particular case, no 

tasks miss their deadlines. However, generally, the metric is not always useful 

because minimizing the maximum lateness doesn’t necessarily prevent tasks 

from missing their deadlines. Some related work and algorithms can be found in 

[29].  

Another concept that often appears in the real-time literature is the optimality 

of an algorithm. We say that a scheduling algorithm is optimal if no other 

scheduling algorithm can find a better solution for the same scheduling problem. 

2.7 Real-Time Systems 

In this section and section 2.8, I will introduce real-time systems and real-

time operating systems (RTOS). Although I intend to focus only on scheduling in 

real-time systems, an overview of real-time systems and RTOS will be helpful to 
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the implementation of a new scheduling algorithm in real-time systems and 

RTOS.  

Before I discuss real-time operating systems, I first define a real-time system. 

According to the IEEE (Institute of Electrical and Electronics Engineers), a real-

time system is a system whose correctness includes its response time as well as 

its functional correctness.  

2.7.1 Hard Real-Time Systems 

Hard real-time means that the system must be designed to guarantee all time 

constraints. Every resource management system such as the scheduler, I/O 

manager, and communications, must work in the correct order to meet time 

constraints. Military applications and space missions are typical instances of hard 

real-time systems.  

Here are some applications with real-time requirements: telecom switching, 

car navigation, the medical instruments with the critical time constraints, rocket 

and satellite control, aircraft control and navigation, industrial automation and 

control, and robotics. 

2.7.2 Soft Real-Time Systems 

Soft real-time systems are similar to hard real-time systems in their 

infrastructure requirements, but it is not necessary that every time constraint be 

met. In other words, some time constraints are not strict but they are nonetheless 
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important. Soft real-time is not equivalent to non-real-time, since the goal of the 

systems is still to meet as many deadlines as possible. 

Here are some applications with soft real-time requirements: web services 

such as real-time query, call admittance in voice over IP and cell phone, digital 

TV transmissions, cable and digital TV set-top-boxes, video conferencing, TV 

broadcasting, games, and gaming equipment. Even in some typical hard real-

time systems, some functions have soft real-time constraints. For instance, in 

Apollo 11 mission, there are two sets of real-time subsystems, one with hard 

real-time, and one with soft real-time deadlines. 

2.7.3 Scheduling in Real-Time System 

Figure 2.1 shows the taxonomy of real-time scheduling in real time systems. 

EDF/gEDF algorithms studied in this research are applicable to the shaded 

region (i.e., soft, dynamic, and non-preemptive). 
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Figure 2.1: The taxonomy of real-time scheduling. Our EDF/gEDF algorithm is 
applicable to the shaded region. 

 

2.7.4 Priority in the EDF Scheduling 

EDF usually is implemented as a dynamic priority driven scheduling scheme. 

Usually, the number of priority levels in real-time systems should be at least 32. 

As we know, EDF schedules real-time jobs based on deadlines. Because the 

number of different deadline values could be a large number, we cannot use a 

priority level to represent each different deadline. One solution is to use a base 

priority and several dynamic priorities. The latter is dependent on the deadline of 

a real-time job. The base priority can be assigned statically or dynamically by the 

programmer or the system. The deadline of a real-time job determines its priority 
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among all the real-time jobs with the same level of base priority. Thus, actually, 

there are two kinds of priorities for EDF based for real-time jobs.  

2.8 Real-Time Operating Systems 

2.8.1 The Requirements of RTOS 

A real-time operating system (RTOS) [30] is not simply a real-time system. It 

is the core part of any real-time system. A real-time system includes all the 

system elements such as hardware, middleware, applications, communications 

and I/O devices. All the elements are needed to meet the system requirements. 

However, RTOS provides sufficient functionality to enable a real-time application 

to meet its requirements. It is also important to distinguish between a fast 

operating system and a RTOS. Speed, although useful for meeting the overall 

requirements, by itself is not sufficient to determine whether a system meets the 

requirements for an RTOS. 

2.8.2 POSIX 1003.1 for RTOS 

The IEEE computer society’s portable application standards committee 

(PASC) defined a standard for Portable Operating System Interface (POSIX) [31, 

32]. This IEEE Standard 1003.1 includes IEEE Standard 1003.1a, IEEE Standard 

1003.1b, and 1003.1c, IEEE Standard 1003.1d/j/q, and IEEE Standard 1003.13. 

IEEE Standard 1003.1a is the base for all the POSIX standards. IEEE Standard 

1003.1b (formerly POSIX 1003.4) defines the needed real-time extensions. IEEE 

Standard 1003.1c defines the functionality of threads. These various standards 
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have been combined by the Austin Group in producing IEEE standard 1003.1-

2001. The latest version is now known as the IEEE 1003.1 2004 Edition. 

POSIX 1003.1b provides the standard criteria for RTOS services and is 

designed to allow programmers to write applications that can easily be ported to 

any operating systems (OS) that is POSIX compliant. The basic RTOS services 

covered by POSIX 1003.1b include asynchronous I/O, synchronous I/O, memory 

locking, semaphores, shared memory, timers, inter-process communication 

(IPC), real-time files, real-time threads, and scheduling.  

Real-time scheduling is the most important feature of a RTOS. POSIX 

1003.1b specifies the following scheduling policies.  

SCHED FIFO - Priority based preemptive scheduling, FIFO is used among 

tasks with the same priority. 

SCHED RR - Processes with same priority use Round Robin policy. A 

process executes for a quantum of time; and then it is moved to the end of the 

queue corresponding to its priority level. Higher priority tasks can preempt tasks. 

The size of the quantum can be fixed, configurable, or specific for each priority 

level. 

SCHED OTHER - Availability required but not defined by the standard. 

Usually SCHED OTHER is implemented as a classical time-sharing policy. 

As additions to IEEE POSIX scheduling policies, I implemented SCHED EDF 

and SCHED gEDF policies for non-preemptive real-time tasks on the Linux 

kernel to evaluate our scheduling techniques.   
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2.8.3 RTOS Examples 

a. Microsoft Windows CE – Non-Linux Based Commercial RTOS 

Microsoft Windows CE is designed as a general-purpose and portable real-

time operating system for small memory, 32-bit mobile devices. Windows CE 

slices CPU time among threads and provides 256 priority levels. To optimize 

performance, all threads are enabled to run in kernel mode. All non-preemptive 

portions of the kernel are broken into small sections reducing the duration of non-

preemptive code. Windows CE incurs long latencies for tasks.  

b. VxWorks – Commercial RTOS 

VxWorks, by Wind River Systems, is a real-time operating system. It runs 

currently on its own kernel. However, its development is done on a host machine 

such as Linux or Windows. Its cross-compiled target software can be run on 

various target CPU architectures. VxWorks runs in supervisor mode, and does 

not use traps for system calls. VxWorks supports priority interrupt-driven 

preemption and optional round-robin time slicing. The micro kernel supports 256 

priority levels. VxWorks supports some of the IEEE POSIX 1003.1 functions. 

c. LynxOS – POSIX Compatible Commercial RTOS 

LynxOS is a POSIX compatible, multithreaded OS designed for complex real-

time applications that require fast, deterministic response. It is scalable from 

small, embedded products to large switching systems. The micro-kernel can 

schedule, dispatch interrupts, and synchronize tasks. It uses scheduling policies 

such as prioritized FIFO, dynamic deadline monotonic (DDM, the shorter the 
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dynamic deadline, the higher is its priority) scheduling, time-slicing, etc. It has 

512-priority levels and supports remote console and remote monitoring. For 

instance, LynxOS can be used as a hard real-time system for controlling gas 

levels in chemical plants remotely.  

d. RTLinux – Open Source Linux-Based RTOS 

RTLinux [33] is a hard real-time operating system that runs Linux as its 

lowest priority thread. The Linux thread is completely preemptible so that real-

time threads and interrupt handlers are never delayed by non-real-time 

operations. Real-time applications can make use of all the powerful, non-real-

time services of Linux. RTLinux scheduling policies supports EDF. RTLinux, 

originally developed at the New Mexico Institute of Technology, is an open-

source product. RTLinux-specific components are released under the GNU (a 

recursive acronym for “GNU's Not UNIX”) General Public License (GPL), and 

Linux components are released under the standard Linux license. The source 

code is freely distributed. Non-GPL versions of the RTLinux components are 

available from FSMLabs [33]. 

e. RED-Linux – Open Source Linux-Based RTOS 

RED-Linux [34] is an open-source real-time and embedded version of Linux 

version 2.2.14. In addition to the original Linux capability, it improves the real-

time behaviors of the Linux kernel in many ways. RED-Linux supports a short 

kernel blocking time, a quick task response time and, modularized runtime 
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general scheduler interface (GSI) so that different scheduling methods can be 

selected depending on the application.  

f. KURT-Linux – Open Source Linux-Based RTOS 

KU real-time Linux (KURT) [35] is a Linux system with real-time modifications 

to allows scheduling of real-time events at 10's of microseconds resolution. 

Rather than relying on priority based scheduling or strictly periodic schedules, 

KURT relies on application specified schedules. KURT can function in two 

modes: focused mode, where only real-time processes are allowed to run; and 

mixed mode, where the execution of real-time processes still takes precedence, 

but non-real-time processes are allowed to run when real-time tasks are not 

running. KURT was developed by the Information and Telecommunication 

Technology Center (ITTC) at the University of Kansas. KURT may be used and 

distributed according to the terms of the GNU Public License. 

In this chapter, I reviewed research and technologies that are closely related 

to our research. In particular, I presented some well known real-time scheduling 

techniques, the underlying limitations of the algorithms, and practical real-time 

operating systems that are currently available. 

In the next chapter, I will introduce our real-time scheduling algorithm. 
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CHAPTER 3 

REAL-TIME SYSTEM MODEL 

3.1 Definitions 

A job in a real-time system, a thread in multithreading processing, or a task in 

single threaded systems, τi, is defined as τi = (ri, ei, Di, Pi); where ri is its release 

time (or its arrival time); ei is either its estimated worst-case or its estimated 

average execution time; and Di is its deadline. We also maintain a dynamic 

deadline di with an initial value ri + Di, which tracks the absolute time before the 

deadline expires. In other words Di is the relative deadline of the job with respect 

to the arrival time and di is the absolute (wall clock) deadline. 

If modeling periodic jobs, Pi defines a task’s periodicity. Note that aperiodic 

and sporadic jobs can be modeled by setting Pi appropriately. For instance, an 

aperiodic job can be modeled by setting Pi to a variable; a sporadic job by setting 

Pi to a variable that is greater than a minimum value. 

Figure 3.1 graphically shows the relationship among the various parameters 

used in our task model. 
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                                                 di – t 

       task τi        taskτi

                            (remaining time to deadline) 

 ei (execution time)                   laxity 
 

                             Di (static or relative deadline) 
 

                       Pi (period) 
 

 ri (arrival time)  t (current time)                                 di (dynamic deadline) 
 

Figure 3.1: The relationship among the real-time task parameters. 
 

For the experiments in this work, I have generated a fixed number (N) of jobs 

with randomly generated arrivals, execution times and deadlines. We assume 

that jobs are mutually independent. Each experiment is terminated when the 

predetermined experimental time T has expired. This permitted us to investigate 

the sensitivity of the various task parameters on the success rates (i.e. success 

ratios, we use these two terms interchangeably) of EDF and gEDF. I use random 

distributions available in MATLAB to generate the necessary parameters for 

tasks.   

A group in the gEDF algorithm depends on a group range parameter Gr. A 

job τj belongs to the same group as job τi if di ≤ dj ≤ (di + Gr*(di – t))1, where t is 

                                                 
1 We are using the remaining time to a task deadline (called dynamic deadlines) in forming 
groups. We found that using static deadlines for defining groups did not significantly change the 
results. 
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the current time, 1 ≤ i, j ≤ N. In other words, we group jobs with deadlines that are 

very close to each other. I schedule groups based on EDF (all jobs in a group 

with an earlier deadline will be considered for scheduling before jobs in a group 

with later deadlines), but schedule jobs within a group using shortest job first 

(SJF) approach. Since SJF results in more (albeit shorter) jobs completing, 

intuitively gEDF should lead to a higher success rate than pure EDF.   

Let’s take look at some examples. 

Example 1:   

There are four jobs τ0 = (0, 5, 14, P0), τ1 = (0, 3, 14, P1), τ2 = (0, 6, 14, P2), τ3 

= (0, 2, 14, P3). They arrive at the same time 0 and have the same deadline, i.e. 

14. In the following bars, the gray part represents expected execution time of a 

job. The clear part represents laxity2 time of a job. P0, P1, P2, and P3 can be 

constant (for periodic job), variable (for aperiodic job), or variable with a minimum 

value (for sporadic job). To simplify the analysis, Pi, i = 0, 1, 2, and 3, will be 

ignored in this example and the following two examples. That is, we assume that 

there is only one instance for each task. Therefore, the four jobs become τ0 = (0, 

5, 14), τ1 = (0, 3, 14), τ2 = (0, 6, 14), τ3 = (0, 2, 14).   These four jobs are shown 

as four separate bars in Figure 3.2 (a). The length of the shaded part of each bar 

represents execution time. The length of each bar represents the deadline. The 

result scheduled by EDF and FIFO is shown in Figure 3.2 (b). The result 

scheduled by EDF and SJF is shown in Figure 3.2 (c).  

                                                 
2 Laxity is the remaining time before the deadline expires. 
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Figure 3.2: Example 1 – (a) Four jobs with the same deadlines. (b) EDF 
Scheduling using FIFO. (c) EDF Scheduling using SJF. 

 

As in (a), the four jobs have the same deadlines. If using EDF with FIFO, 

success ratio is 3/4. The average response time of the completed jobs is ((0+5) + 

(5+3) + (8+6)) / 3 = 9. In (c), we use SJF with EDF and now the success ratio is 

3/4. However, τ2 completes partially before the deadline.  If it is soft real-time 

system, which allows some tolerance of missing deadline, the success ratio 
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could be 4/4. By comparison, the average response time of the first three 

completed jobs in (c) is ((0+2) + (2+3) + (5+6)) / 3 = 6. The average response 

time of all the completed jobs in (c) is ((0+2) + (2+3) + (5+6) + (10+6)) / 4 = 8.5. 

Example 2: 

In example 1, one can use shortest job first (SJF) scheduling instead of first-

in-first-out (FIFO) scheduling since we can group all the four jobs in a single 

group as the deadlines are the same for the jobs. Often jobs fall into different 

groups since jobs have different deadlines. Consider the following set of τ0 = (0, 

5, 11), τ1 = (0, 3, 10), τ2 = (0, 6, 9), τ3 = (0, 2, 12). These four jobs are shown as 

four separate bars in Figure 3.3 (a). Four jobs have different execution times as 

shown by the shaded areas. The four jobs also have different deadlines as 

shown by the length of the bars. The result of EDF scheduling using FIFO is 

shown in Figure 3.3 (b); the EDF scheduling using SJF is shown Figure 3.3 (c).  

27 



 
           

 
 
 
 
 
 
 
 
 

(a) 
 

 
   

τ3

τ1

τ0

τ2

τ1  τ0τ2

 

τ3
 

(b) 

 

   τ2τ0τ1τ3 

(c) 

 

Figure 3.3:  (a) Four jobs with different deadlines. (b) EDF Scheduling with FIFO. 
(c) EDF Scheduling with SJF. 

 

As in (a), the four jobs have different deadlines. We still can apply the SJF 

scheme in EDF. For this example we will use deadline groups to schedule jobs 

with deadline that are very close to each other. In this example we will group all 4 

jobs into a single group. If we use EDF scheduling using FIFO, as shown in (a) 

the success ratio is 2/4 and the average response time of the completed jobs is 
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((0+6) + (6+3))/2 = 7.5. If we use SJF for the jobs in a group, the success ratio is 

3/4. By comparison, the average response time of the first two completed jobs in 

(c) is ((0+2) + (2+3)) / 2 = 3.5. The average response time of all the completed 

jobs in (c) is ((0+2) + (2+3) + (5+6)) / 3 = 6.  

Example 3: 

In the previous examples, we assumed that jobs have strict deadlines. In 

other words, if a task misses its deadline, the task is considered failed. However, 

for soft real-time jobs, deadlines are defined with some grace period and a task is 

allowed to miss its deadline as long as it can complete within its specified grace 

period. We use the term “deadline tolerance” to specify grace periods. As can be 

expected, success rates can increase with larger deadline tolerances. Then, 

consider the set of jobs τ0 = (0, 5, 14), τ1 = (0, 3, 13), τ2 = (0, 6, 15), τ3 = (0, 2, 

15). Let us assume that the deadline tolerance is 20%. For example, τ0 is allowed 

to complete within the deadline 14 + 2.8 = 16.8 time units from its arrival time. 

The four jobs are shown in Figure 3.4 (a). The result scheduled by EDF and 

FIFO is shown in Figure 3.4 (b). The result scheduled by EDF and SJF is shown 

in Figure 3.4 (c).  

29 



 
       
 
 
 
 
 
 
 
 
 

(a) 
 

 
 

(b) 

 

   
    

τ3

τ1

τ0

τ2

τ1 τ3τ0 τ2

 

 τ2τ0τ1τ3

(c) 
 

Figure 3.4: (a) Four jobs with different deadlines. (b) EDF Scheduling with FIFO 
when soft tolerance is allowed. (c) EDF Scheduling with SJF when soft tolerance 

is allowed. 
 

As before we can group the tasks based on their deadlines. In part (b), with 

the EDF scheduling using FIFO only three jobs can be completed (It misses 1/2 

of its deadline, and exceeds the 20% deadline tolerance allowed). Success ratio 

is thus 3/4. The average response time of the completed jobs is ((0+3) + (3+5) + 

(8+6) = 8.3. If we use SJF with a group of jobs, and using the 20% deadline 
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tolerance, we can complete all 4 tasks, giving us a success ratio of 4/4. The 

average response time of the first three completed jobs in (c) is ((0+2) + (2+3) + 

(5+6)) /3 = 6. The average response time of all the completed jobs in (c) is ((0+2) 

+ (2+3) + (5+6) + (10+6)) / 4 = 8.5. 

Nomenclature: 

We use the following notations for the various parameters and computed 

values:  

ρ: is the utilization of the system, ρ = Σei  / T. This is also called the load. 

γ: is the success ratio, γ = the number of jobs completed successfully / N. 

Tr: is the deadline tolerance for soft real-time systems. A job τ is successful if 

τ finishes before the time (1 + Tr) * D, where Tr ≥ 0. 

µe: is used either as the average execution time or the worst-case execution 

time, and defines the expected value of the exponential distribution used for this 

purpose. 

µr: is used to generate arrival times of jobs, and is the expected value of the 

exponential distribution used for this purpose. 

µD: is the expected value of the random distribution used to generate task 

deadlines. We set this parameter as a multiple of µe. We use only the generated 

values if they are larger than the execution time of a job. 

ℜ: is the average response time of the jobs. This is a computed value. 

∂:  is the response-time ratio, ∂ = ℜ / µe. 
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ηγ: is the success-ratio performance factor, ηγ = γgEDF / γEDF. This is used to 

compare gEDF with EDF.  

η∂: is the response-time performance factor, η∂ = ∂EDF / ∂gEDF. This is used to 

compare gEDF with EDF. 

3.2  gEDF Algorithm 

3.2.1 Description and Pseudo Code 

We assume a uniprocessor system. QgEDF is a queue for gEDF scheduling. 

The current time is represented by t. |QgEDF| represents the length of the queue 

QgEDF. τ = (r, e, D, P) is the job at the head of the queue. 

We define a group in our gEDF algorithm as follows: 

gEDF Group = {τk | τk ∈ QgEDF, dk – d1 ≤ D1 * Gr, 1 ≤ k ≤ m, where m ≤ |QgEDF|}, 
and D1 is the deadline of the first job in a group. 

 
Algorithm: 

Function Enqueue (QgEDF, τ) 
       if  ( τ’s deadline d > t ) then 
              insert job τ into QgEDF by earliest deadline first, i.e. di ≤ di+1 ≤ di+2,  
              where τi, τi+1, τi+2 ∈ QgEDF, 1 ≤ i ≤ |QgEDF| - 2; 
       end 

 
Function Dequeue (QgEDF) 
      if  QgEDF ≠ φ then 
             find a job τmin with emin = min {ek | τk ∈ QgEDF, 
             dk – d1 ≤ Gr*D1, 1 ≤ k ≤ m, where 
             m ≤ |QgEDF|}; 
             run it and delete τmin from QgEDF; 
      end 

Enqueue is invoked on job arrivals and Dequeue is called when the 

processor becomes idle.  
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3.2.2 Complexity of the gEDF Algorithm 

Here I outline the complexity of gEDF. Assume that there are n jobs to be 

scheduled. Standard EDF needs O(n) to find a job schedule since it must find a 

job with the earliest deadline. Our gEDF effectively performs similar search within 

a group to find a job with shortest execution time. Note that, although the 

asymptotic complexity of gEDF is O(n), the number of jobs in a group is much 

smaller than n. Now I analyze the complexity of gEDF. Assume there are n jobs 

to be scheduled. EDF needs Ο(n) for one schedule. The gEDF needs to find the 

shortest job from m (m ≤ n) jobs within a group. Assuming that there are k 

groups, the overall complexity is given by  

O( mii

k∑ )   

Since the total number of jobs in all groups is still n, the time complexity of gEDF 

is also O(n).   

3.2.3 Analysis of the gEDF Algorithm 

To argue that gEDF is better than EDF, we first define w, which represents a 

set of jobs τi ∈ w (1 ≤ i ≤ |w|) that are ready for scheduling at time t and are 

sharing the same deadline d (the jobs have to finish before the time d). In 

addition, δ represents the time needed for the scheduling and v represents an 

associated set of jobs τj ∈ v (1 ≤ j ≤ |w|) that share the deadlines window of d + δ.   

In addition, we define γw as the success ratio of |w| jobs in the time slot w 

with the deadline d. We assume that there is no interval between the scheduled 

33 



jobs if the jobs are available. Lw represents the laxity time of all the jobs after 

scheduling in a time slot w. Ev represents the sum of the execution time of |v| 

jobs with the largest deadline d < dv ≤ d + δ. We can obtain the following result. 

If, i) there are |w| jobs sharing the same deadline d in a time slot w = d – t 

(starting from the time current time t and ends at the time d); and ii) there are |v| 

jobs in the time δ that is to be added to the time slot w for scheduling, we can 

conclude that γw+δ ≥ γw under any of the following situations. 

1. δ = 0 

2. Tr ≥ δ 

3. Lw ≥ Ev 

 
For case 1, if utilization ρ ≤ 1 (or more precisely speaking Lw ≥ 0 because we 

refer ρ as an average value), there will be no change in the success ratios 

because the sum of execution time that can be completed by the deadline will not 

change. If ρ > 1 or Lw = 0, because SJF places jobs with longer execution times 

closer to the end of queue, there should be fewer jobs rejected. For case 2, if we 

set the soft real-time tolerance Tr large enough, gEDF should be able schedule 

even longer jobs towards the end of the queue, provided the scheduling 

overhead δ time is smaller than the deadline tolerance for all jobs Tr ≥ δ. For 

case 3, if there is large enough laxity time left for the jobs of v without making the 

jobs of w unscheduled, gEDF success rate will be greater than EDF using FIFO. 
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Thus we argue that the performance of gEDF is equal to or better than that of 

EDF under the conditions listed above.   

Furthermore, we analyze the performance of gEDF under the remaining 

situations, namely, the situation when δ ≠ 0, Tr < δ, and Lw < Ev. First, we assume 

w2 ∈ w is the set of jobs unscheduled after the jobs of v1 ∈ v are scheduled in 

time d – t. The success ratio by EDF is γw+γv. The success ratio by gEDF is γw-

w2+v1 + γv+w2-v1. It is apparent that γw-w2+v1 ≥ γw if SJF is used. In addition, by 

comparing γv with γv+w2-v1, the former should be larger than the latter. However, 

usually, this difference is not as large as that of γw-w2+v1 and γw. Therefore, we are 

able to conclude gEDF is better than EDF. 

In the following experiments, conducted with various data distributions, we 

can observe the above features of gEDF. Moreover, we can see how much of a 

performance increase gEDF can obtain for the different parameters and the 

various data distributions. I will analyze each behavior of gEDF. In addition, 

average response time, another important metric of gEDF for real-time systems, 

will be analyzed.  
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CHAPTER 4 

NUMERICAL RESULTS  

MATLAB [ 36 ] is used to generate tasks based on various random 

distributions and the generated tasks are scheduled using EDF, gEDF, and other 

scheduling algorithms. For each chosen set of parameters, I have repeated each 

experiment 100 times (each time, generating N tasks using the random 

probability distributions and scheduling the generated tasks) and computed the 

average success rates. In what follows, I report the results and analyze the 

sensitivity of gEDF to the various parameters used in the experiments, the effects 

of the percentage of small jobs on the success ratios, and how well gEDF 

performs when compared to a best-effort algorithm. Note that I use the non-

preemptive task model. Non-preemptive scheduling algorithms are easier to 

implement than preemptive algorithms, and can exhibit dramatically lower 

overhead at run-time resulting from fewer context switches. 

4.1 Comparison of gEDF and EDF  

First I will show that the gEDF algorithm achieves higher success rates in 

scheduling real-time tasks than the well-known EDF algorithm, particularly when 

the system is heavily loaded. 
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4.1.1 Experiment 1 – Effect of Deadline Tolerance (Tr) 

Figures 4.1 - 4.3 show that gEDF achieves higher success rate than EDF 

when the deadline tolerance (i.e., soft real-time nature of the jobs) is varied from 

20%, 50% to 100% (that is, a task can miss its deadline by 20%, 50% and 

100%).  
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Figure 4.1: Success rates when deadline tolerance is 0.2. 
 

With utilization ρ ≤ 1.0, the difference in the success ratios of EDF and gEDF 

is not significant. When the load is very light, all the jobs can be scheduled by 

EDF and gEDF; when the load becomes heavier but is still less than 1.0, a few 

jobs could not be scheduled by EDF or gEDF. Therefore, the success ratios of 

EDF and gEDF become lower (as low as 0.93). When ρ ≤ 1.0, gEDF doesn’t 
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perform any better than EDF because most jobs can be scheduled by either 

method. Since I use a non-preemptive real-time model, instead of preemptive 

periodic job model, the success ratio of EDF or gEDF will fall below 100% as ρ 

reaches 1.0. As this load is reached, the success ratios of EDF and gEDF start 

showing differences. The success ratio of EDF decreases more quickly than that 

of gEDF. For instance, the success ratio of EDF becomes 0.65 when ρ = 2.7; 

however, the success ratio of gEDF is still high at 0.72. In other words, the 

success ratio of gEDF is about 11% higher than that of EDF when ρ = 2.7. I 

experimented with utilization values between 0 and 3. The deadline tolerance in 

Figure 4.1 is 20%. 
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Figure 4.2: Success rates when deadline tolerance is 0.5. 
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When deadline tolerance increases to 50%, the success ratio of gEDF 

improves; while the success ratio of EDF worsens. Even when ρ < 1.0 

(underloaded), the success ratio of gEDF is higher than that of EDF. For 

instance, when ρ = 1.0, the success ratio of gEDF is 0.97; and the success ratio 

of EDF is 0.91. In contrast, the success ratios of gEDF and EDF in Figure 4.1 

(20% deadline tolerance) were both 0.93. EDF suffers “the domino effect” (since 

as jobs at the front of the queue miss their deadlines, so do other jobs in the 

queue) when ρ > 1.0. Since gEDF uses SJF, the jobs at the front of the queue 

are less likely to miss their deadlines, diminishing the domino effect.    
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Figure 4.3: Success rates when deadline tolerance is 1.0. 
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When deadline tolerance increases to 100%, gEDF behaves even better; but 

EDF’s success rates do not increase significantly. For instance, when ρ < 1.0, the 

success ratio of gEDF is close to 100%. In addition, when ρ = 1.1 (lightly 

overloaded), the success ratio of gEDF is still as high as 0.95. However, the 

success ratio of EDF worsens quickly.    

For these experiments, I generated tasks by fixing expected execution times 

and deadline parameters based on probability distributions, but varied the arrival 

rate parameter to change the system load. The group range for these 

experiments is fixed at Gr = 0.4 (i.e., all jobs whose deadlines fall within 40% of 

the deadline of current job are in the same group). It should be noted that gEDF 

consistently performs as well as EDF under light loads (utilization less than 1), 

but outperforms EDF under heavy loads (utilization greater than 1; see the X-

axis). Both EDF and gEDF achieve higher success rates when tasks are 

provided with greater deadline tolerance. The tolerance benefits gEDF more than 

EDF, particularly under heavy loads. Thus, gEDF is better suited for soft real-

time tasks.  

Figure 4.4 summarizes these results by showing the percent improvement in 

success ratios achieved by gEDF when compared to EDF. The Y-axis shows that 

higher success rates are achieved by gEDF when compared to EDF for different 

system loads and different deadline tolerance parameters. 
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Figure 4.4: Success-ratio performance factor when Tr = 0.2, 0.5, and 1.0. 
 

I use success-ratio performance factor, i.e., ηγ = γgEDF / γEDF, to express the 

performance increase. Individually, γgEDF is the success ratio of gEDF and γEDF is 

the success ratio of EDF. When ρ is varied from 0 to 3.0 and deadline tolerance 

is 20%, success-ratio performance factor ηγ is between 100% and 112%, 

indicating that gEDF can achieve 12% higher success rates. This ratio becomes 

even larger at higher system loads and larger deadline tolerance values. 
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Table 4.1: Success-ratio performance factor 

 

Success-ratio improvement (%) Utilization 
ρ Tr = 0.2 Tr = 0.5 Tr = 1.0 

0.1 100 100 100 
0.2 100 100 100 
0.3 100 100 100 
0.4 100 100 100 
0.5 100 100 100 
0.6 100 100 100 
0.7 100 100 101 
0.8 100 101 101 
0.9 100 102 103 
1.0 100 103 105 
1.1 101 104 108 
1.2 101 106 111 
1.3 102 108 116 
1.4 103 110 120 
1.5 104 111 125 
1.6 104 113 129 
1.7 105 115 134 
1.8 106 117 138 
1.9 106 119 142 
2.0 107 120 146 
2.1 108 121 150 
2.2 108 123 155 
2.3 109 125 157 
2.4 109 125 161 
2.5 110 127 166 
2.6 110 128 168 
2.7 111 129 170 
2.8 111 131 174 
2.9 111 131 178 
3.0 112 132 179 

 
 

Table 4.1 shows the values of success-ratio performance factor ηγ = γgEDF / 

γEDF (i.e., success-ratio improvement) when ρ = 1.0 to 3.0.  
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Figure 4.5: for EDF, X-axis is ρ, Y-axis is Tr, Z-axis is success ratio. 
 

Figure 4.5 shows the relationship between utilization, deadline tolerance, and 

the success ratio of EDF; with X-axis representing utilization ρ, Y-axis 

representing deadline tolerance Tr, and Z-axis representing success ratio of EDF 

γEDF. It is interesting to note that as the tolerance increases, the success ratios do 

not show concomitant increases.   
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Figure 4.6: for gEDF, X-axis is ρ, Y-axis is Tr, Z-axis is success ratio. 
 

Figure 4.6 shows the relation of utilization, deadline tolerance, and success 

ratio of gEDF. As before X-axis represents utilization ρ, Y-axis deadline tolerance 

Tr, and Z-axis represents success ratio of gEDF γgEDF, Unlike EDF, gEDF shows 

improved success ratios with increasing deadline tolerances.   

4.1.2 Experiment 2 - Effect of Deadline on Success Rates (γ) 

In the next experiment, I explore the performance of EDF and gEDF when 

the deadlines are very tight (deadline = execution time) and when the deadlines 

are loose (deadline = 5 * execution time). Note that the deadlines generated 

using an exponential distribution with mean values set to 1 and 5 times the mean 

execution time µe. I varied the soft real-time parameter (Tr, or tolerance to 

44 



deadline) in these experiments also, but all other parameters are kept the same 

as in the previous experiment. As can be seen in Figures 4.7 and 4.8, all 

scheduling algorithms perform poorly for tight deadlines3, except under extremely 

light loads. Even under very tight deadlines, as in Figure 4.8, the deadline 

tolerance favors gEDF more than EDF. With looser deadlines (or more laxity), as 

in Figures 4.9 and 4.10, both EDF and gEDF achieve better performance. 

However, gEDF outperforms EDF consistently for all values of the deadline 

tolerance, Tr. 
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Figure 4.7: Tight deadline µD = µe and Tr = 0. 

                                                 
3 It should be noted that when µD = µe, any job should be scheduled immediately upon arrival, lest 
it misses its deadline. The impact of using least laxity first approach is indirectly reflected by EDF 
when the deadlines are very tight.  
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Figure 4.8: Tight deadline µD = µe and Tr = 1.0. 
 

When deadline tolerance Tr = 1.0, the gEDF scheduling algorithm can 

outperform the EDF scheduling algorithm under both underloaded and 

overloaded conditions, even with tight deadlines.  
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Figure 4.9: Looser deadline µD = 5µe and Tr = 0 and 0.2. 
 

With looser deadlines of µD = 5µe, for Tr = 0 or 0.2, gEDF performs slightly 

better than EDF. For instance, when ρ = 1.0 (underloaded) and Tr = 0.2, gEDF 

performs as well as EDF; when ρ = 2.0 (overloaded) and Tr = 0.2, gEDF 

outperforms EDF by 6%. 
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Figure 4.10: Looser deadline µD = 5µe and Tr = 0.5 and 1.0. 
 

With µD = 5µe, for higher deadline tolerance values of Tr, gEDF performs 

better than EDF. For instance, when ρ = 1.0 (underloaded) and Tr = 1.0, gEDF 

outperforms EDF by 4%; when ρ = 2.0 (overloaded) and Tr = 1.0, gEDF 

outperforms EDF by 47%. 

Figures 4.11 and 4.12 respectively, highlight the effect of deadline laxities on 

both EDF and gEDF. To more clearly evaluate how these approaches perform 

when the deadlines are very tight and loose, I set the deadlines to 1, 2, 5, 10 and 

15 times the execution time of a task. I set µe = 40, Tr = 0.2, (for gEDF Gr = 0.4). 
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When µD = µe and 2µe, the success ratios of EDF and gEDF show no appreciable 

differences.  However, when µD becomes reasonably large, such as 5µe, 10µe, 

and 15µe, the success ratio of gEDF is better than that of EDF.  
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Figure 4.11: Success ratio of EDF when µD = µe, 2µe, 5µe, 10µe, and 15µe. 
 

When µD changes from µe, 2µe, to 5µe, the success ratio of EDF increases 

sharply. For instance, when ρ = 1.0 and µD = µe, the success ratio of EDF is 0.51; 

when ρ = 1.0 and µD = 2µe, the success ratio of EDF is 0.74.  However, when µD 

continues to increase to be 10µe, and 15µe, the success ratio of EDF doesn’t see 
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further improvements. For instance, when ρ < 1.5 (underloaded or lightly 

overloaded), the success ratio of EDF increases; however, when ρ > 1.8, the 

success ratio of EDF decreases slightly.   
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Figure 4.12: Success ratio of gEDF when µD = µe, 2µe, 5µe, 10µe, and 15µe. 
 

The gEDF scheduling algorithm exhibits similar behavior for different values 

of µD. However, gEDF shows improvements for a wider range of values of µD. 

When µD = µe, both gEDF and EDF exhibit almost the same performance. When 

µD = 2µe, 5µe, 10µe, and 15µe, gEDF performs better than EDF. For instance, 

when µD = 5µe and ρ = 3.0, the success ratio of gEDF is 0.69; the success ratio 
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of EDF is 0.62. As in the Figure 4.1.1.1-4, success-ratio performance factors, that 

is, ηγ = γgEDF / γEDF are shown in Figure 4.13 for µD = µe, 2µe, 5µe, 10µe, and 15µe.  
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Figure 4.13: ηγ  when µD = µe, 2µe, 5µe, 10µe, and 15µe. 
 

When µD = 2µe and ρ is large (heavily overloaded), Success-ratio 

performance factor ηγ increases slightly. The biggest jump occurs when µD 

changes from 2µe to 5µe. When µD =10µe and 15µe, ηγ increases gradually. It 

should be noted that the laxity (as represented by µD) depends on the workload 

and application domain. 
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4.1.3 Experiment 3 - Effect of Group Range 

In our third experiment, I vary the group range parameter Gr for grouping 

tasks into a single group. Note that in the following figures I do not include EDF 

data since the concepts of groups is not applicable to EDF. I set µD = 5µe 

(Deadline = 5* Execution Time) and maintain the same values for other 

parameters as in the previous experiments. I set the deadline tolerance 

parameter Tr to 0.1 (10% tolerance in missing deadlines) in Figure 4.14, and to 

0.5 (50% tolerance in missing deadlines) in Figure 4.15. The data shows that by 

increasing the size of a group, gEDF achieves higher success rates. In the limit, 

by setting the group range parameter to a very large value, gEDF behaves more 

like SJF; and by setting the group range value to zero, gEDF behaves like EDF. 

There is a threshold value for the group size for achieving optimal success rates 

and the threshold depends on the execution time, tightness of deadlines (or 

deadline laxity) and deadline tolerance parameters. For the experiments, I used a 

single exponential distribution for generating all task execution times. However, if 

we were to use a mix of tasks created using different exponential distributions 

with different mean values, thus creating tasks with widely varying execution 

times, the group range parameter will have more pronounced effect on the 

success rates (see Section 4.2).  
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Figure 4.14: Group Range: Gr = 0.1, 0.2, 0.5, 1.0 (Tr = 0.1). 
 

Success rates when Gr is varied from 0.2 to 1.0 are shown in Figure 4.14. 

The differences may not be significant here because I set the deadline tolerance 

to a small value (of 10%). The next figure (Figure 4.15) shows that success rates 

do show more significant differences when the tolerance is set to 0.4.  
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Figure 4.15: Group Range: Gr = 0.1, 0.2, 0.5, 1.0 (Tr = 0.5). 
 

Instead of creating groups dynamically as jobs arrive, it is possible to define 

deadline bins and create groups based on these deadlines. Figure 4.16 shows 

the results based on statically defined groups, a window of µe/4, while Figure 

4.17 uses a window of 4*µe. These fixed windows do not produce success rates 

as high since the number of jobs in most of the windows will be very small. 

Creating groups dynamically allows us to create equal sized groups.  

 

54 



0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io
EDF
gEDF

 
 

Figure 4.16: Group Window Size = µe /4. 
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Figure 4.17: Group Window Size = 4*µe. 
 

4.1.4 Experiment 4 – Effect of the Values of Single µe on γ  

In this section I change the mix of tasks by using different execution times, 

generated using exponential distributions with means (i.e. µe). The following 

figures show the effect of different values of µe on the success rates achieved by 

gEDF and EDF. The values of µe are listed in absolute values.  
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Figure 4.18: Success ratios of EDF and gEDF when µe = 40, 20, and 12. 
 

In Figure 4.18, there is no apparent difference in the success ratios when µe 

changes from 40, 20, to 12 either for EDF or gEDF. The lower three curves 

represent data for the EDF algorithm; the upper three curves represent data for 

the gEDF algorithm. 
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Figure 4.19: Success Ratio of EDF and gEDF when µe = 130, 100, 80, 40, 20, 12, 
and 8. 

 

In Figure 4.19, there is no obvious difference in the success ratios of gEDF 

when µe changes from 130, 100, 80, 40, 20, 12, to 8. This data indicates that the 
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success rates of EDF and gEDF are sensitive to the load which is given by (µr 

/µe) but not to the execution time parameter µe alone.  

4.1.5 Experiment 5 – Effect of Tr on Response Time (ℜ) 

Thus far I have shown that gEDF results in higher success rates than EDF, 

particularly when the system is overloaded. Next, I will compare the average 

response times achieved using gEDF with those resulting from EDF. Intuitively, 

completing shorter jobs first should result in faster response times 4 . Our 

experiments support this. I set µe = 40, µD = 5µe, Gr = 0.4. Figures 4.20, 4.21, 

and 4.22 show that gEDF can yield faster response times than the response time 

when using EDF, and when soft real-time tolerance parameter Tr is changed 

from 0 to 0.5 to 1.0, respectively. 

 

                                                 
4 Of course, this can be viewed as an unfair schedule since longer jobs will less likely be 
scheduled for execution. 
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Figure 4.20:  Response time when deadline tolerance Tr = 0. 
 

As can be seen from these figures, gEDF outperforms EDF in terms of the 

response time, when the system is lightly loaded (about ρ = 0.5) and when the 

system is heavily loaded (ρ = 3.0). In this experiment, when deadline tolerance Tr 

is 0 (i.e. hard real-time), gEDF outperforms EDF. For instance, when ρ = 1.0, 

gEDF yields 24% faster response times when compared to the response times 

using EDF; when ρ = 2.0, gEDF yields 63% faster response times than EDF. 

Likewise, with a deadline tolerance Tr of 0.5, gEDF results in faster response 

time under both lightly loaded and heavily loaded situations. For example when ρ 

= 1.0, gEDF yields 33% faster response time than EDF; when ρ = 2.0, gEDF 

yields 59% faster response time than EDF. This is also the case when deadline 
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tolerance Tr is 1.0. For instance, when ρ = 1.0, gEDF yields 20% faster response 

times than EDF; when ρ = 2.0, gEDF yields 35% faster response time than EDF. 

Simply increasing Tr cannot guarantee higher performance of gEDF. With larger 

values of tolerance Tr, as previously noted both gEDF and EDF achieve higher 

success rates. Thus the performance gains achieved by gEDF over that of EDF 

will become less pronounced for larger deadline tolerance parameters. In the 

limit, when Tr is set to a very large value, the system is no longer a real-time 

system and both EDF and gEDF can achieve 100% success rates, since 

deadlines are no longer meaningful. In such cases, gEDF does not show any 

performance improvements over that of EDF. 
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Figure 4.21: Response time when deadline tolerance Tr = 0.5. 
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Figure 4.22: Response time when deadline tolerance Tr =1.0. 
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Figure 4.23: The ratio of response time of gEDF vs. response time of EDF. 
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Figure 4.23 above summarizes the response time improvements achieved by 

gEDF when compared with the response times of EDF. Note that that Y-axis 

shows the relative response times (and smaller numbers are better). 

4.1.6 Experiment 6 - The Effect of Tight Deadlines on ℜ 

I set µr = µe/ρ, µe = 40, Gr = 0.4, Tr = 0.1. Figures 4.24 and 4.25 show the 

change in response time of EDF and gEDF when µD is varied from µe, 2µe, 5µe, 

and 10µe. Like the success ratios of EDF and gEDF, when µD is very small such 

as µe and 2µe, there is no difference between EDF and gEDF. This is because 

both EDF and gEDF will have very low success rates. However, as µD is 

increased, gEDF results in faster response times when compared with EDF.  
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Figure 4.24: Response time of EDF when µD = µe, 2µe, 5µe, and 10µe. 
 

The response times of EDF do not show significant differences for µD = µe 

and 2µe. However, as µD is set to 5µe and 10µe, EDF shows improved response 

times.  
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Figure 4.25: Response time of gEDF when µD = µe, 2µe, 5µe, and 10µe. 
 

Similar behavior can be observed with gEDF; the response times when µD = 

µe and 2µe are about the same, but the response times show more dramatic 

improvements for µD = 5µe and 10µe.  
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Figure 4.26: The ratio of response time of gEDF vs. response time of EDF when 
µD = µe, 2µe, 5µe, and 10µe. 

 
Figure 4.26 above summarizes the improvements in response time achieved 

by gEDF when compared with EDF. Note that the Y-axis shows the relative 

response times (and smaller numbers are better). 

4.1.7 Experiment 7 - The Effect of Single µe on ℜ 

To understand the properties of response time ℜ, at some specific ρ, I 

defined response-time ratio ∂ = average response Time / µe. The following 

figures show the result when µe = 40, 20, and 12 for EDF (Figure 4.27) and for 

gEDF (for Figure 4.28). The results show that µe has little effect on response-time 

ratio ∂. The system load plays more critical role on response times. 
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Figure 4.27: Response-time Ratio of EDF when µe = 40, 20, and 12. 
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Figure 4.28: Response-time Ratio of gEDF when µe = 40, 20, and 12. 
 

4.2 The Effect of Multiple Expected Execution Times 

4.2.1 Experiment 8 – The Effect of Multiple µes on γ 

The jobs generated for all the experiments thus far were generated using a 

single exponential distribution. To evaluate the impact of the case when jobs 

come from different classes, I generated tasks using different exponential 

distributions with different mean values.   
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I designate job classes using (m, n) where m represent the mean value of the 

distribution used to generate execution times of tasks, and n represents the 

fraction of all jobs (out of N) that are generated with the mean m.  

Set-1: This is the base line consisting of jobs drawn from a single exponential distribution. 
I generate N jobs using an exponential distribution with a mean µe to represent average 
(or worst case expected) execution time. I will designate this set of jobs as (µe, N). 
 
Set-2: Here we have two types of jobs, one generated using a mean of (1/2)*µe, and the 
second with a mean of µe. Sixty-six percent of the jobs have a mean execution time of 
(1/2)µe. This set is designated by  (1/2µe, 2/3N) and (µe, 1/3N). 
 
Set-3: This set contains three classes of jobs generated using mean execution times of 
1/4µe, 1/2µe, and µe.  I designate this set as (1/4µe, 4/7N), (1/2µe, 2/7N), and (µe, 1/7N). 
Remember that the second number in each tuple represents the fraction of total number 
of jobs of each class.  
 

Figure 4.29 shows that, when Tr is 0 (hard real-time), the different classes of 

jobs, even when there are more small jobs do not improve the success ratios. 

The difference in the performance among the different sets of job classes is less 

than 1%.  

However, when dealing with soft real-time jobs (with a deadline tolerance Tr 

of 0.2 and 0.5), job classes do impact performance gains of gEDF as shown in 

Figures 4.30 and Figure 4.31. Note that Set 2 and Set 3 have more small jobs 

than Set 1. As expected gEDF results in higher success rates over EDF when 

there are more small jobs. For example for Tr = 0.2 and ρ = 2.0, Set-3 can result 

in 3% performance improvement than Set-2; Set-2 can result in 3% more 

performance improvement than Set-1. When Tr = 0.5 and, when ρ = 2.0, Set-3 

can result in 15% performance improvement than Set-2; Set-2 can result in 15% 

more performance improvement than Set-1. 
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Figure 4.29: Success ratio of gEDF/success ratio of EDF when Tr = 0. 
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Figure 4.30: Success ratio of gEDF/success ratio of EDF when Tr = 0.2. 
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Figure 4.31: Success ratio of gEDF/success ratio of EDF when Tr = 0.5. 
 

4.2.2 Experiment 9 – The Effect of Percentage of Small Jobs on γ 

Previously, I analyzed the effect of data sets with different job classes on 

success rates and observed that a workload with more small jobs show higher 

success rates with gEDF over that of EDF. In this section, I will analyze the 

success ratios where I use two different job classes (with two different µes) but 

change the percentage of small jobs in the mix.  

Distribution 1:  1/2 jobs with µe, 1/2 jobs with µe. 
Distribution 2:  1/2 jobs with µe, 1/2 jobs with 1/2 µe. 
Distribution 3:  2/5 jobs with µe, 3/5 jobs with 1/3 µe. 
Distribution 4:  1/5 jobs with µe, 4/5 jobs with 1/8 µe. 
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I set Tr = 0.5. Table 1 presents the success ratio of gEDF/success ratio of 

EDF. Table 4.2 and Figure 4.32 show that the distribution with a larger 

percentage of small jobs obtains higher success ratio of gEDF when compared to 

the success ratio of EDF. Note that Distribution 4 has the most small jobs of any 

other distribution, and the data shows that gEDF benefits from this fact. 
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Table 4.2: The performance change (success ratio of gEDF/success ratio of EDF) 

for different percentages of small jobs 

 

Load Distribution 1 Distribution 2 Distribution 3 Distribution 4
0.1 1.000067 1.000274 0.999868 0.999877
0.2 1.000168 1.000265 1.000204 1.000363
0.3 1.000302 1.000253 1.000657 1.001042
0.4 1.000336 1.000864 1.001237 1.001779
0.5 1.000556 1.001620 1.003070 1.002737
0.6 1.002016 1.003082 1.005708 1.006286
0.7 1.003893 1.006661 1.010871 1.009740
0.8 1.007126 1.013990 1.019568 1.017424
0.9 1.014541 1.026174 1.035230 1.032902
1.0 1.025803 1.042502 1.055736 1.057957
1.1 1.040473 1.067228 1.084512 1.093741
1.2 1.058057 1.088816 1.120055 1.140386
1.3 1.071179 1.118099 1.167916 1.203977
1.4 1.093686 1.151395 1.208859 1.289895
1.5 1.114320 1.180786 1.252292 1.381070
1.6 1.132359 1.214086 1.311561 1.472425
1.7 1.153179 1.245111 1.353332 1.579499
1.8 1.164161 1.279391 1.407337 1.696627
1.9 1.185979 1.307189 1.459737 1.811491
2.0 1.202503 1.342744 1.512752 1.941354
2.1 1.213558 1.361546 1.551537 2.070311
2.2 1.230223 1.397064 1.592382 2.169966
2.3 1.251887 1.418970 1.636869 2.297082
2.4 1.260878 1.446233 1.681175 2.411978
2.5 1.272357 1.478179 1.722826 2.572307
2.6 1.282948 1.492337 1.774248 2.665443
2.7 1.289757 1.524958 1.820086 2.799853
2.8 1.309416 1.554312 1.867880 2.969026
2.9 1.330402 1.575254 1.900146 3.039547
3.0 1.323816 1.593459 1.942890 3.210040
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Figure 4.32: Success ratio of gEDF/success ratio of EDF Tr = 0.5. 

 

For instance, Distribution 4, which has the most small jobs of any other 

distribution, shows that gEDF can achieve 200% higher success ratios than EDF. 

In comparison, Distribution 1, which has the fewest smaller jobs of any other 

distribution, shows only 120% higher success ratios than EDF. 
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4.3 Comparisons of gEDF, Best-Effort, and Guarantee Algorithms 

4.3.1 Experiment 10 - Comparison of γ of gEDF and Best-Effort 

Our gEDF method is not only an EDF-based overload strategy, it can also be 

used in underloaded conditions. I have shown that gEDF not only shows better 

performance than EDF when the system is overloaded, but performs as well as 

EDF when the system is underloaded. Thus, there is no need to switch between 

EDF and gEDF based on system load5. Researchers have explored adaptive 

algorithms to control the performance when the system is overloaded. One such 

algorithm is called the best-effort algorithm. In this dissertation, I will use the 

same best effort criteria (i.e., value-density: V/C) that Locke [9] used. To achieve 

a fair comparison of gEDF with best-effort, I set the same environments for gEDF 

and best-effort. For our experiments here the value-density V/C is set equal for 

all jobs. According to Locke’s best-effort, depending on the utilization, if the 

system is not overloaded (utilization ≤ 1.0), best-effort becomes EDF; if the 

system is overloaded (utilization > 1.0), best-effort will schedule jobs with high 

V/C ratios in an attempt to maximize the overall value of the system.    

The best-effort requires an estimation or prediction of utilization for switching 

between EDF algorithm and the best-effort. While it may be possible to predict 

the system load when the system processes only periodic jobs, it is very difficult 

to compute the system load if the system processes a mixture of periodic, 

aperiodic, and sporadic jobs. Recently, synthetic utilization bound has been 
                                                 
5 It should be noted that gEDF does favor smaller jobs and thus cannot guarantee fairness. 
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proposed to measure real utilization. For the EDF-based schemes, however, 

synthetic utilization is very close to real utilization [37] and is an appropriate 

choice. Moreover, the estimated loads are imprecise because most real-time 

systems rely on worst-case execution times (WCET), while in most cases, the 

actual execution times are lower than these estimates. Switching to best-effort 

based on such imprecise load estimations can lead to inefficient utilization of the 

resources. In this dissertation, I use a clairvoyant scheme or profiling based on 

actual execution times of the real-time jobs. Thus, the comparisons shown are 

present most optimistic scenarios as far as the best-effort algorithm is concerned. 

I set µr = µe/ρ, µe = 20, µD = 5µe, Gr = 0.4. Figures 4.33 and 4.34 show that 

gEDF achieves higher success rates than best-effort when the deadline 

tolerance is varied to Tr = 0.2, 0.5, and 1.0.  
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Figure 4.33: Success rates when deadline tolerance is 0.2. 
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Although the improvement of success ratios of gEDF are not significant, 

considering the difficulty of predicting the precise utilization required by best-

effort, any improvements gained by gEDF should be viewed in a positive light. 
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Figure 4.34: Success rates when deadline tolerance is 0.5. 
 

The performance gains (i.e. success ratios) achieved by gEDF are even 

greater when the deadline tolerance is very lenient say 50%, as shown in Figure 

4.34. 
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Figure 4.35: Success rates when deadline tolerance is 1.0. 
 

When deadline tolerance is 100%, as shown in Figure 4.35, gEDF is better 

than best-effort for most loads except when the system is very heavily loaded but 

it should be noted that both gEDF and best-effort achieve very low success rates 

at such loads.  

4.3.2 Experiment 11 – Comparison of ℜ of gEDF and Best-Effort 

I have shown that gEDF results in higher success rates when compared with 

best-effort, particularly when the system is overloaded and the deadline 

tolerances are very lenient. Here I will compare the average response times 

achieved using gEDF with those achieved using best-effort. I set µr = µe/ρ, µe = 
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20, µD = 5µe, Gr = 0.4. Figures 4.36, 4.37, and 4.38 show that gEDF can yield 

faster response times than best-effort (except when the loads are very high in 

Figure 4.38).   
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Figure 4.36: Response time when deadline tolerance is 0. 
 

When Tr = 0 (i.e. hard real-time), gEDF can yield faster response times than 

best-effort in underloaded and overloaded conditions. For instance, gEDF can 

yield 30% faster response times than best-effort when ρ = 1.0; and gEDF can 

yield 20% faster response times than best-effort when ρ = 2.0. 
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Figure 4.37: Response time when deadline tolerance is 0.2. 
 

When Tr = 0.2, gEDF can result in even faster response times than best-

effort in underloaded and overloaded situations. 
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Figure 4.38: Response time when deadline tolerance is 0.5. 
 

When Tr = 0.5, gEDF can still yield faster response times than best-effort 

until the system load reaches 1.7. It shows that choosing an appropriate deadline 

tolerance has a positive effect on average response time when using gEDF.  

4.3.3 Experiment 12 – Comparison of γ of gEDF and Guarantee   

The guarantee algorithm is inappropriate for soft real-time systems. However, 

I include the guarantee scheme algorithm (referred as guarantee) here only for 

the sake of completeness. When the system is underloaded, guarantee uses 

EDF for scheduling; when the system is overloaded, guarantee uses a specific 
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policy to choose real-time jobs and guarantees execution of the jobs by their 

deadlines. In the simulations used here, incoming jobs are chosen for inclusion in 

the guarantee if they can be scheduled by their deadlines, without discarding any 

jobs already guaranteed. 

I set µr = µe/ρ, µe = 20, µD = 5µe, Gr = 0.4.  Figures 4.39 and 4.40 show the 

success ratios of all the real-time scheduling algorithms discussed in this 

dissertation, including the guarantee algorithm, best-effort, EDF, and gEDF. Note 

that for guarantee algorithm, the success rate drops precipitously because tasks 

are rejected at a higher rate as the system load increases beyond 100%. 
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Figure 4.39: Success ratio when deadline tolerance is 0.2. 
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When Tr = 0.2, gEDF yields the highest success ratios than all the other 

methods when the system is overloaded.  
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Figure 4.40: Success ratio when deadline tolerance is 0.5. 
 

Our gEDF also outperforms all other methods when Tr = 0.5, and when the 

system is overloaded.   

4.3.4 Experiment 13 – Comparison of ℜ of gEDF & Guarantee  

In the final experiments, I summarize the response time performance of 

gEDF, EDF, best-effort and guarantee scheduling methods. I set µr = µe/ρ, µe = 

20, µD = 5µe, Gr = 0.4. Figures 4.41 and 4.42 show the results.  
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Figure 4.41: Response times when deadline tolerance is 0.2. 
 

When Tr = 0.2, gEDF outperforms all other methods. For instance, when ρ = 

1.0, gEDF yields about 35% faster response time than best-effort, EDF, and 

guarantee. Best-effort has the same performance as EDF and guarantee in 

underloaded but outperforms them in overloaded conditions. 
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Figure 4.42: Response times when deadline tolerance is 0.5. 
 

Our gEDF has faster response time than EDF and guarantee schemes when 

Tr = 0.5. Our gEDF outperforms the best-effort method when the system is not 

heavily loaded, but has slower response times than the best-effort technique 

when the system load exceeds 1.7.  
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CHAPTER 5 

IMPLEMENTATION OF gEDF IN THE LINUX KERNEL 

In this chapter, I will introduce practical and commercial real-time operating 

systems. I will show how our gEDF can be implemented in Linux systems and 

evaluate gEDF using a real workload. 

5.1 Enhancing Linux with the gEDF Scheduling Scheme 

The real-time operating system must deal with scheduling of jobs to meet 

timing constraints, and achieve desired response time, particularly in systems 

that are designed to process a mix of real-time and non real-time tasks. 

Linux, as the most popular open source platform, fully supports POSIX 

1003.1a and POSIX 1003.1c, but only partially supports the real-time extension 

of POSIX 1003.1b [31, 32]. For example, Linux doesn’t support real-time features 

such as system timers or message queues. It only supports a few simple 

scheduling policies, such as round robin (RR) and FIFO. In spite of that, most 

commercial and open source real-time operating systems (RTOS) are Linux-

based.  

In chapter 2, I introduced some examples of real-time operating systems 

based on the Linux kernel [37, 38]. Various scheduling policies are implemented 

in different RTOS, but EDF is not a common algorithm implemented in 

commercial systems. Since EDF is known for its efficiency in scheduling real-
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time tasks, some recent RTOS systems are providing for EDF based extensions 

to basic scheduling policies.  

In our research, it is not our goal to provide a complete and full real-time OS, 

but only to compare EDF with gEDF in a realistic real-time environment, to 

complement our experiments described in the previous chapter. I also wanted to 

explore how difficult it would be to implement gEDF (and EDF) in a practical 

system. For this purpose, I implemented gEDF in the Linux kernel. Some typical 

real-time benchmarks are executed on the modified Linux kernel. The results 

show that gEDF can achieve (task completion) success ratios that are at least as 

good as or better than EDF success ratios. In addition, gEDF produces better 

response times to real-time tasks than EDF, both when the system is 

underloaded and overloaded. These results are in line with our observations from 

experiments described in Chapter 4. In this chapter I will focus on success rates 

of gEDF and EDF only. I will also provide a general framework for implementing 

EDF based algorithms that require additional parameters to describe task 

execution times and deadlines.  

To support EDF and gEDF in the Linux kernel, two parameters for EDF and 

gEDF will be created. The related structures, particularly task structure, will be 

extended to support EDF and gEDF. Separate new runqueue for EDF and gEDF 

will be created without affecting the original runqueue for non real-time tasks of 

the Linux kernel. Because POSIX 1003.1b doesn’t support EDF or gEDF, I also 

need system calls to define the EDF or gEDF policies for real-time tasks. New 
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scheduling functions to implement EDF and gEDF are also added to the Linux 

kernel. Inserting a new active task into the runqueue is the same for EDF and 

gEDF. However, selecting a task for scheduling from the runqueue is different for 

EDF and gEDF. The EDF algorithm is simple and straightforward; it selects the 

task at the head of the runqueue since the queue is already sorted by deadlines. 

The gEDF algorithm requires more computation to select the shortest task 

among a group of tasks. I will introduce these algorithms in more detail in the 

next section.     

5.2 Modification of the Linux Kernel 

5.2.1 Modification of Structure task_struct in the Linux Kernel 

A normal process executes in its user space. When it executes a system call 

or triggers an exception, the kernel space is entered. If a higher priority process 

has become runnable in the interim, the Linux scheduler is invoked to select the 

higher priority task for running. Otherwise, it exits the kernel upon finishing the 

system call or exception ending. 

Each task can be in one of six states. 

 

TASK_RUNNING   0 
TASK_INTERRUPTIBLE  1 
TASK_UNINTERRUPTIBLE  2 
TASK_STOPPED   4 
TASK_ZOMBIE    8 
TASK_DEAD    16 
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All processes in Linux are descendents of the init process, whose PID 

(process ID) is 1. The kernel starts init in the last step of the boot process. The 

existing task uses the fork() call to create a new process and enter 

TASK_RUNNING state. The Linux kernel scheduler dispatches tasks in 

runqueue to run. The running task may be preempted by a higher priority task 

with a call to context_switch(), executed by schedule(). Since we rely on non-

preemptive scheduling, to implement non-preemptive scheduling, I modified the 

kernel to disable preemption between our real-time tasks. 

TASK_INTERRUPTIBLE (waiting for event) and TASK_UNINTERRUPTIBLE 

(waiting for event but does not wake up by a signal) states are for tasks in waiting 

status. If a task exists via do_exit(), it enters a TASK_ZOMBIE state. However, 

the process descriptor remains until the parent calls wait4(). 

Before I introduce structure task_struct, I need to discuss another structure, 

thread_info. Prior to Linux 2.6, task_struct was stored at the end of the kernel 

stack of each process. This allowed architectures with few registers, such as x86, 

to calculate the location of the process descriptor via the stack pointer without 

using an extra register to store the location. Since Linux 2.6, the process 

descriptor is dynamically created via the slab allocator; a new structure, 

thread_info, was created that lives at the bottom of the stack if it grows 

downwards or at the top of the stack if it grows upwards. The new structure 

makes it easier to calculate the offset of values needed for thread scheduling. 
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On x86 machines, the thread_info structure is defined in 

<asm/thread_info.h>. 

 

struct thread_info { 
    struct task_struct  *task; 

/* other definitions */ 
} 

 

The task element of the structure is a pointer to the task's actual task_struct. 

If we want to find the current process descriptor, for instance in x86, we can 

mask out the least significant 13 bits of the stack pointer to obtain the thread_info 

structure. Assuming the stack size is 8KB, it is implemented by the following 

assembly code (a part of the current_thread_info() function):  

 

movl $-8192, %eax 
andl %esp, %eax  

 

Thus, the current structure task_struct can be obtained by 

current_thread_info()->task; For the MIPS-based architectures, current (the 

pointer that points to the current structure task_struct) can be obtained with the 

value in register r2.  

The following structure task_struct includes our added definitions for 

implementing an EDF/gEDF runqueue and real-time task parameters. The 

structure task_struct is defined in a header file that can be found at 

include/linux/sched.h.  
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       struct task_struct { 
     /* other definitions */ 
     struct thread_info *thread_info; 
     int prio, static_prio; 
     struct list_head run_list; 
     prio_array_t *array; 
     unsigned long policy; 
     /* new pointer to EDF/gEDF runqueue */ 
                edf_queue_t *edf_queue;  
     /* deadline of task, period of task, and execution time of task in ticks */ 
                unsigned long edf_deadline, edf_period, edf_length; 
                struct list_head tasks; 
     pid_t pid; 
     unsigned long rt_priority; 
     / other definitions */ 
       } 

5.2.2 Adding a New System Call 

The file entry.S contains all system-calls and low-level fault handling routines. 

It also contains the timer-interrupt handler, as well as all interrupts and faults that 

can result in a task-switch. A new system call is added in arch/i386/kernel/entry.S 

as follows. 

 

.long sys_sched_setscheduler_plus 

 

5.2.3 Adding a New Structure and Several New Functions 

Constants SCHED_EDF and SCHED_gEDF are defined to implement EDF 

and gEDF scheduling policies. A new structure edf_param is created for 

specifying real-time parameters, such as policy, period, length (i.e., execution 
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time), and deadline. Structure runqueue is modified to create a new queue called 

edf_queue specifically for EDF/gEDF scheduling. 

 

#define SCHED_NORMAL 0 
#define SCHED_FIFO  1 
#define SCHED_RR  2 

 

Earliest deadline first real-time scheduling policies are defined as follows. 

 

#define SCHED_EDF  3 
#define SCHED_gEDF  4 

 

The real-time task parameters are included in the new structure edf_param. 

For our purposes here, the period of a real-time task is assumed to be the same 

as its deadline. 

 

struct edf_param { 
    unsigned long policy; 
    unsigned long period; 

          unsigned long length; 
             } 
 

struct sched_param { 
    int sched_priority 
} 

 
struct runqueue { 
    spinlock_t lock 
    unsigned long nr_running, nr_switches, expired_timestamp, nr_uninterruptible 
    task_t *curr, *idle 
    struct mm_struct *prev_mm 
    prio_array_t *active, *expired, arrays[2] 
    /* edf_queue is defined for running EDF and gEDF tasks. */ 

          edf_queue_t edf_queue 
        /* other definitions */   
 } 
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The new function dequeue_edf_task implements moving a task from 

EDF/gEDF task queue for scheduling.  

 

static inline void dequeue_edf_task (struct task_struct *p, edf_queue_t *edf_queue) 
begin 
    edf_queue->nr_active-- 
    list_del(&p->run_list) 
end 

 

Function enqueue_edf_task() adds a new task to the gEDF/EDF runtime 

queue. Its main function is to insert a real-time task edf_queue based on 

deadlines. 

  

static inline void enqueue_edf_task(struct task_struct *p, edf_queue_t *edf_queue)  
begin 
    struct list_head *rt_queue = &edf_queue->queue 
    if (list_empty(rt_queue)) then 
        list_add_tail(&p->run_list, &edf_queue->queue) 
    else  
        unsigned long deadline = p->edf_deadline 
        struct task_struct *tsk = 0, *n = 0 
        struct list_head *tmp, *nxt 
        list_for_each_safe(tmp, nxt, rt_queue) do  
            tsk = list_entry(tmp, struct task_struct, run_list) 
            if (deadline < tsk->edf_deadline) then break 
            n = tsk 
        enddo 
        if (n) then 
            list_add(&p->run_list, &n->run_list) 
        else  
            list_add_tail(&p->run_list, &tsk->run_list) 
        endif 
    endif 
    edf_queue->nr_active++ 
    p->edf_queue = edf_queue 
end 
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In the above enqueue_edf_task() function, I use linked-list structure of the  

Linux kernel API (Application Programming Interface) for implementing queues. It 

is possible to improve the performance of the implementation using heaps (or a 

binary tree structure) so that tasks with earliest deadline and tasks with shortest 

jobs can appear at the top of the heap(s. Heap structures can be implemented 

with dynamic memory allocation with kmalloc() function of  Linux kernels.  

Compared with the original Linux or other RTOS scheduling functions, the 

modified schedule() is rewritten with the new gEDF scheduling feature. Usually, 

in schedule(), the task at the head of the queue has the minimum deadline and is 

selected for execution. In our gEDF approach, this function must perform 

additional computation to identify a task with the shortest execution time. While it 

is possible that the additional computation can increase the scheduling overhead, 

since we anticipate very small number of jobs in each group (or our gEDF 

groups), the actual search to find the shortest job should not consume excessive 

computing resources. Context switching in the Linux kernel is performed by the 

function schedule(). In addition, function schedule() needs to perform several 

other comparisons to determine if a new task needs to be scheduled. Thus, I feel 

that the added overhead of finding a shortest job by gEDF adds a very small 

amount of computing time.  

Depending upon the length of jiffy (i.e. the duration of one tick of the system 

timer interrupt. Usually, it is 10ms or 1ms in Linux), the function schedule() may 

be called more than once during a task execution. Therefore, for the multiple 
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callings, the schedule() function can be optimized to improve its performance. 

When a new real-time task arrives, the selection of the task with the minimum 

execution time within a group is invoked. Otherwise, the task selected previously 

is used. The key part of the function is shown as pseudo code. 

         asmlinkage void schedule(void) 
begin 

/* other definitions */ 
array = rq->active 

    edf_queue = &rq->edf_queue 
    int pick_edf_one = 0 
    if (unlikely(edf_queue->nr_active)) then 
        q = &edf_queue->queue 
        list_for_each_safe(tmp, nxt, q) do 
            tsk = list_entry(tmp, task_t, run_list) 
            if ((tsk->edf_deadline + Tr*tsk->edf_period) < (jiffies + tsk->edf_length)) then 
                deactivate_task(tsk, rq) 

else  
    pick_edf_one = 1 

                             if ( tsk->policy == SCHED_gEDF) then 
                                 if (first_element == 1 ) then 
                                     first_element = 0 
                                     d1 = tsk->edf_deadline 
                                     D1 = tsk->edf_deadline - jiffies 
                                     min_edf_length = tsk->edf_length 
                                     min_task = tsk 
                                 endif 
                                 if ((tsk->edf_deadline - d1) > (Gr*D1)) then break 
                                 if (tsk->edf_length < min_edf_length) then 
                                     min_edf_length = tsk->edf_length 
                                     min_task = tsk  
                                 endif 
                             endif 
                         endif 
                     enddo 
                     if (pick_edf_one == 1) then 
                         if ( prev->policy == SCHED_gEDF) then 
                             next = min_task 
                         else  
                             next = list_entry(edf_queue->queue.next, task_t, run_list) 
                         endif 
                         goto switch_tasks 
                     endif 
                 endif 
                 /* other part */ 
                 switch_tasks: 
                 /* other part */ 
             end 
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As stated above, heap structures can be used instead of linked lists to  

improve implementation performance of our algorithms.  

A new system call, sys_sched_setscheduler_plus, is available to run real-

time applications. In this system call, structures task_struct, sched_param, and 

edf_param are used. In addition, a variable edf_queue of type edf_queue is 

defined. A variable array of real-time priority queue prio_array is defined for other 

Linux real-time tasks. A variable rq of runqueue is defined. In the following 

function, the parameters defined in the structure edf_param are copied to 

structure task_struct.   

 

asmlinkage int sys_sched_setscheduler_plus(pid_t pid,  
    struct edf_param __user *edf, struct sched_param __user *param)  
begin 

                 struct task_struct *p 
                 struct sched_param lp 
                 struct edf_param ep 
                 edf_queue_t *edf_queue 
                 prio_array_t *array 
                 runqueue_t *rq 
     /* other definitions */ 
                 p = find_process_by_pid(pid) 
                 rq = task_rq_lock(p, &flags) 

/* other preparation */ 
edf_queue = p->edf_queue 

    array = p->array 
    if (edf_queue || array) then 
        deactivate_task(p, task_rq(p)) 
    endif 
    if (array) p->array = NULL 
    p->rt_priority = lp.sched_priority 

p->static_prio = p->prio = (int) (MAX_USER_RT_PRIO - 1 - p->rt_priority) 
p->policy = ep.policy   

    p->time_slice = task_timeslice(p) 
    p->edf_period = period_ticks 
    p->edf_length = NS_TO_JIFFIES(ep.length) 
    p->edf_deadline = jiffies + p->edf_period 
    if (edf_queue || array) then 
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        __activate_task(p, task_rq(p)) 
    endif 
    /* others */ 
end 

 

5.3 The Complexity of gEDF in the Linux Kernel 

Ingo Molnar [39] introduced an O(1) scheduler, as a patch for Linux 2.4. This 

is now accepted by most Linux 2.6 systems. It provides an O(1) scheduling 

algorithm and it can handle loads more smoothly. The approach is to use two 

split arrays, an active array, and an expired array. The active array contains all 

tasks that are affined to the CPU, and the expired array contains all tasks that 

have used up their time slices.  

On the other hand, EDF and gEDF cannot guarantee O(1) complexity, since 

these algorithms require O(n) search to Enqueue newly arriving jobs. Although 

EDF and gEDF appear to have higher complexity, I feel that in most practical 

real-time systems, n is not large and thus the actual execution overheads 

associated with our new algorithms are not excessive. In addition, as I discussed 

in Section 5.3, if heap data structures, instead of list, are used for the EDF and 

gEDF queue operations, the algorithm complexity of EDF and gEDF will 

decrease to O(log(n)). 
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5.4 Real-Time Benchmark Testing 

For the experiments I use Red Hat Inc. Fedora Core/Linux 2.6 with our EDF 

and gEDF enhancements running on a desktop CPU using AMD (Advanced 

Micro Devices) Athlon XP 1800+. 

Soft real-time tolerance Tr is set to 10%. Group range of gEDF, that is, Gr, is 

set to 0.4. The applications for benchmarking are chosen from the embedded 

applications benchmark suite, called MiBench [40, 41], which is similar to the 

Embedded Microprocessor Benchmarking Consortium (EEMBC) [42].  

Typical hard real-time applications, such as proportional, integral, and 

derivative (PID) control, are used in control systems. Soft real-time applications 

can be found in many areas. Multimedia and telecommunication are examples of 

soft real-time applications. Four well-known real-time applications are selected 

for as our first set of experiments. I designate these benchmarks as test suite 1. 

These programs are MPEG (Moving Picture Experts Group), GSM (Global 

Standards for Mobile) encode and GSM decode, and APCM (Adaptive 

Differential Pulse Code Modulation). MPEG Decode, Mad for short, is a high-

quality MPEG audio decoder. It currently supports MPEG-1 and the MPEG-2 

extensions at lower sampling frequencies, as well as the MPEG 2.5 format. All 

three audio layers (Layer I, Layer II, and Layer III or MP3) are fully implemented. 

Typically, thirty frames per second are needed for normal operation. Therefore, 

the deadline is set to 30 milliseconds in our experiments. GSM encode and 

decode are the Global Standards for Mobile (GSM) communications used in 
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Europe and other continents. It uses a combination of time- and frequency-

division multiple access (TDMA/FDMA) to encode or decode data streams. 

According to the standard, GSM decode and encode have 20 or 40 milliseconds 

deadlines. Adaptive differential pulse code modulation (ADPCM) is a variation of 

the well-known standard pulse code modulation (PCM). A common 

implementation takes 16-bit linear PCM samples and converts them into 4-bit 

samples, yielding a compression rate of 4:1. ADPCM is the core part of 

G.726/VoIP technology. The deadline is set to 20 milliseconds. 

 The average execution times of the selected benchmarks are shown in 

Table 5.1. The executions times are derived by executing the programs on our 

target computing platform. 
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Table 5.1: Real-time benchmark suite 1 

 

 
Benchmark Name 

 
Deadline Di (ms) 

 
Average 

Execution Time ei 
(ms) 

 
MPEG Decode 33 6 

GSM Encode 20/40 12 

GSM Decode 20/40 5 

ADPCM Encode 
 

20 8 

 
 

Table 5.2: Real-time benchmark suite 1 – time constraints  

 

 
Load 

 

 
Benchmark 

 
Di (ms) 

 
ei (ms) 

MPEG Decode 33 6 
GSM Encode 40 12 
GSM Decode 40 5 

 
Case 1, ρ 6= 1.00 
 

ADPCM Encode 20 8 
MPEG Decode 33 6 
GSM Encode 40 12 
GSM Decode 20 5 

 
Case 2, ρ = 1.13 
 

ADPCM Encode 20 8 
MPEG Decode 33 6 
GSM Encode 20 12 
GSM Decode 40 5 

 
Case 3, ρ = 1.31 
 

ADPCM Encode 20 8 
MPEG Decode 33 6 
GSM Encode 20 12 
GSM Decode 20 5 

 
Case 4, ρ = 1.43 
 

ADPCM Encode 20 8 
 

                                                 
6 ρ = Σei  / Di, the utilization or load of the system (when Di = Pi, where Pi is the period of a task). 
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Based on the deadlines of the applications in test suite 1, there are actually 

four cases representing four different system loads. I use (VET, VD) to describe 

each application, the first value VET represents the average execution time of the 

real-time application and the second value VD represents the deadline of the real-

time application. The following lists the four cases. ρ is the load or utilization. As I 

claim, EDF performs poorly in overload (ρ > 1) situations. I validated this claim in 

experiments. 

 

Case 1 (ρ = 1.00): 
MPEG Decode: (6, 33) 
GSM Encode: (12, 40) 
GSM Decode: (5, 40) 
ADPCM Encode: (8, 20) 

Case 2 (ρ = 1.13): 
MPEG Decode: (6, 33) 
GSM Encode: (12, 40) 
GSM Decode: (5, 20) 
ADPCM Encode: (8, 20) 

Case 3 (ρ = 1.31): 
MPEG Decode: (6, 33) 
GSM Encode: (12, 20) 
GSM Decode: (5, 40) 
ADPCM Encode: (8, 20) 

Case 4 (ρ = 1.43): 
MPEG Decode: (6, 33) 
GSM Encode: (12, 20) 
GSM Decode: (5, 20) 
ADPCM Encode: (8, 20) 

 

The results of our first experiment are shows in Table 5.3. 
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Table 5.3: Real-time benchmark suite 1 - performances of EDF/gEDF 
 

 
Load 

 
Success Ratio of 

EDFγEDF

 
Success Ratio of 
gEDFγgEDF

 

 
Success-Ratio 

Performance Factor 
ηγ  = γgEDF / γEDF

 
Case 1, ρ = 1.00 0.981061 0.981061 100%
Case 2, ρ = 1.13 0.878981 0.885350 101%
Case 3, ρ = 1.31 0.770701 0.824841 107%
Case 4, ρ = 1.43 0.681319 0.793956 117%

 

When the load is 1, the success ratio of EDF and the success ratio of gEDF 

are about the same. When the system is slightly overloaded (1.13), gEDF 

outperforms EDF slightly. It should be noted that our test environment contains 

only 4 programs and thus the success rates are limited by this number. When the 

load increases to 1.31 and 1.43, gEDF shows even higher success rates than 

EDF and results in 107% and 117% improvements. I am confident that with more 

jobs in the suite, gEDF will consistently outperform EDF in overloaded conditions. 

In the second experiment, I added more benchmark programs to our suite of 

benchmarks and I refer to this set as test suite 2. I added JPEG, CRC32 and 

Lame. JPEG is a standard, lossy compression algorithm. It is included in 

MiBench because it is a representative algorithm for image compression and 

decompression and is commonly used for viewing images embedded in 

documents. The deadline is set to 30 milliseconds. CRC32 benchmark performs 

a 32-bit cyclic redundancy check (CRC). CRC checks are often used to detect 
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errors in data transmission. Assuming 15 frames per second are needed to 

transfer, the deadline is set to 67 milliseconds. Lame is a GNU general public 

licensed MP3 encoder that supports constant, average and variable bit-rate 

encoding. Assuming that 5 wave clips per second are needed to play, I set the 

deadline to 200 milliseconds. 

 

Table 5.4: Real-time benchmark suite 2 – time constraints 
 

 
 

Benchmark Name  
 

 
Di (ms) 

 
ei (ms) 

MPEG Decode 33 6 

GSM Encode 40 12 

GSM Decode 40 5 

ADPCM Encode 
 

20 8 

JPEG Decode 30 2 

JPEG Encode 30 6 

CRC32 67 11 

MP3 Encode 200 38 
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Table 5.5: Real-time benchmark suite 2 - performances of EDF/gEDF 
 

 
Load 

 
Success Ratio of 

EDFγEDF

 
Success Ratio of 
gEDFγgEDF

 

 
Success-Ratio 

Performance Factor 
ηγ  = γgEDF / γEDF

 
ρ = 1.63 0.558659 0.639020 114%

 

The test results from our second experiment are shown in Table 5.5. As can 

be seen, the success ratio of gEDF is 114% higher than that of EDF.  

The following two figures, Figures 5.1 and 5.2, present the results 

graphically.  
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Figure 5.1: Performance comparison of EDF and gEDF in success ratio when ρ = 
1.00, 1.13, 1.31, 1.41, and 1.63. 
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Figure 5.2: ηγ  = γgEDF  / γEDF  = 100%, 101%, 107%, 117%, and 114% when ρ = 
1.00, 1.13, 1.31, 1.41, and 1.63. 
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CHAPTER 6 

CONCLUSIONS 

In this dissertation, I presented a new real-time scheduling algorithm that 

combines shortest job first scheduling approach with the earliest deadline first 

scheduling algorithm. We grouped together tasks with deadlines that are very 

close to each other, and scheduled jobs within a group based on using SJF 

scheduling. Based on the experimental results included in this dissertation, I 

conclude that group EDF results in higher success rates (that is, the number of 

jobs that have completed successfully before their deadlines) as well as in faster 

response times. 

It has been known that while EDF produces an optimum schedule (if one is 

available) for systems using preemptive scheduling, EDF is not as widely used 

for non-preemptive systems. I believe that for soft real-time systems that are 

implemented on multithreaded processors, non-preemptive scheduling is more 

efficient. Although EDF produces practically acceptable performance even for 

non-preemptive systems when the system is underloaded, EDF performs very 

poorly when the system is heavily loaded. Our gEDF algorithm performs as well 

as EDF in terms of success ratios when a system is underloaded. Even on 

systems that are underloaded, gEDF shows higher success rates than EDF 
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when dealing with soft real-time tasks (using higher deadline tolerances). In 

addition, gEDF consistently outperforms EDF in overloaded systems.  

In this dissertation, I also compared gEDF with schemes that using adaptive 

scheduling algorithms often used in conjunction with EDF when the system is 

overloaded. Among these I considered the best-effort and the guarantee 

algorithms. In general, gEDF, which can be used under all system loads, 

performs as well as or better than EDF and adaptive algorithms such as best-

effort and guarantee schemes. It should be remembered that these adaptive 

algorithms require the ability to accurately measure system loads so that the 

overloaded conditions can be detected. In most practical workloads this is very 

difficult, particularly if the workload consists of periodic, aperiodic and sporadic 

jobs, or if the system consists of both real-time and non-real-time jobs. Moreover, 

estimating system load based on worst-case execution times leads to under-

utilizations of the system resources. These problems are not encountered by 

gEDF, since there is no need to estimate system load or to switch between EDF 

and an adaptive method in overloaded conditions. 

Last, I modified the Linux kernel scheduler to implement gEDF scheduling 

policy for real-time processes. I tested several real benchmarks and our test 

results show that gEDF can be used effectively in real world systems. 

The group range (Gr) is an important factor in the gEDF algorithm. For 

instance, when Gr is very large to include all the tasks, gEDF degenerates to be 

SJF; and if Gr is set to 0, gEDF degenerates to be EDF. Figure 4.14 and Figure 
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4.15 show when deadline tolerance (Tr) is 0.1 and 0.5, and Gr is between 0.2 to 

1.0, gEDF obtains the near optimal performance. However, the optimal value for 

Gr depends on several factors that depend on the application. These factors 

include the variations among task execution times, inter-arrival times and task 

deadlines. It may be possible to derive analytical models that show the 

dependence of Gr on these parameters (specified as mean values of underlying 

probability distributions).  

I have shown that the gEDF algorithm can be applied in uniprocessor 

systems for soft real-time systems. In our future work, I will explore the 

applicability of gEDF algorithm for multi-processors systems as well as 

decoupled architectures such as the scheduled dataflow (SDF) architecture, 

which contains a SP that accesses memory and an EP that executes 

computations [4].  

Because EDF is not optimal for multiprocessor real-time systems [43], I will 

explore if gEDF can be used to obtain acceptable (and near optimal) results for 

multiprocessor systems with soft real-time tasks. While the EDF scheme can be 

used to schedule dynamic groups on multiprocessors, an optimal or near optimal 

algorithm may be adopted to schedule jobs distributed on different processors 

within each dynamic group. I hope to show that gEDF results in higher, success 

ratios and response times in underloaded and overloaded situations. 

In fact, exploring different scheduling scheme applied within each gEDF 

group is another promising research of applying the gEDF scenario. Scheme 
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other than SJF may be used appropriately for the real-time systems depending 

an application domain. For example it may be necessary to reduce overall power 

consumption and one may need to explore a scheduling scheme that minimizes 

the power consumed by tasks in a group, accounting for any power consumed by 

tasks waiting in a queue.  
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APPENDIX A 
 

BUILDING THE LINUX KERNEL



 

A1 The Linux Kernel Source and Configuration 

The Linux kernels are written and maintained by Linus Torvalds with 

assistance from a loosely-knit team of hackers across the Net. The latest stable 

version of the Linux kernel can be downloaded from the Linux kernel archives 

website [44] and all the previous versions can be found on the mirror web sites 

listed under the directory [45]. I downloaded Linux kernel 2.6.0 from a mirror 

kernel web site [46]. The Linux distributions can be downloaded free from the 

web site [47]. I use the distribution, i.e., Fedora core, from Red Hat Inc. All the 

Fedora versions can also be found on the mirror web sites [48]. I downloaded 

Fedora core 1/kernel v2.4 and then upgraded it to kernel v2.6. The kernel tarball 

is distributed in both GNU zip (gzip) and bzip2 format. Bzip2 is the preferred 

format. 

Assuming the old kernel with the Linux distribution is v2.4.22, and the 

downloaded kernel is located at /usr/src directory, 

$ su root 
# cd /usr/src 
# tar xvjf linux-2.6.0.tar.bz2 
# cd linux-2.6.0 
# make mrproper 

It’s a smart idea to use an old configuration of the distribution as a head start 

because it could take dozens of minutes to go through all of the configurations 

diligently.   

# cp /boot/config-2.4.22-1.2115.nptl  .config 
# make menuconfig 
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Then, make sure to choose the correct processor type, and to check the 

Linux kernel hacking option. Finally, save and exit. 

A2 Compiling the Linux Kernel 

After successful configuration, open Makefile. The first four statements 

should be:  

VERSION = 2 
PATCHLEVEL = 6 
SUBLEVEL = 0 
EXTRAVERSION = -x 

In the fourth statement, x can be set to an appropriate name. For instance, it 

can be set as EXTRAVERSION = -edf or EXTRAVERSION = -gedf when a new 

version with EDF scheduling policy or gEDF scheduling policy of the Linux kernel 

is to be generated, while the older versions that generated before are also 

needed to be kept. If the new version of the Linux kernel has some critical 

problem or crashes, the older version can be rolled back to run instead of 

destroying the whole system.   

# make bzImage 
# make modules 
# make modules_install 
# /sbin/mkinitrd /boot/initrd-2.6.0-x.img  2.6.0-x 
# make install 

If the modification of the Linux kernel that does not affect the modules and 

the related structures, and if the same kernel version is to be generated, it may 

not be necessary to execute all the steps above. The most time-consuming 

“make modules” and “make modules_install” steps may not execute. That is a 
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very efficient way to change and debug the kernel without waiting for a long 

compiling time. 

After compiling the Linux kernel, /boot/grub/grub.conf, the GRUB (Grand 

Unified Bootloader) configuration file, will be the following, 

# Note that you do not have to rerun grub after making changes to this file 
# NOTICE:  You have a /boot partition.  This means that 
#          all kernel and initrd paths are relative to /boot/, eg. 
#          root (hd0,0) 
#          kernel /vmlinuz-version ro root=/dev/hda2 
#          initrd /initrd-version.img 
#boot=/dev/hda 
default=5 
timeout=10 
splashimage=(hd0,0)/grub/splash.xpm.gz 
title Fedora Core (2.6.0-gedf) 

root (hd0,0) 
kernel /vmlinuz-2.6.0-gedf ro root=LABEL=/ hdc=ide-scsi rhgb 
initrd /initrd-2.6.0-gedf.img 

title Fedora Core (2.6.0-edf) 
 root (hd0,0) 
 kernel /vmlinuz-2.6.0-edf ro root=LABEL=/ hdc=ide-scsi rhgb 
 initrd /initrd-2.6.0-edf.img 
title Fedora Core (2.6.0) 
 root (hd0,0) 
 kernel /vmlinuz-2.6.0 ro root=LABEL=/ hdc=ide-scsi rhgb 
 initrd /initrd-2.6.0.img 
title Fedora Core (2.4.22-1.2115.nptl) 
 root (hd0,0) 
 kernel /vmlinuz-2.4.22-1.2115.nptl ro root=LABEL=/ hdc=ide-scsi rhgb 
 initrd /initrd-2.4.22-1.2115.nptl.img 

 
In our configuration of the Linux kernel, to make it suitable for our goal, 

usually, the minimum configuration is set. However, it will be convenient to use 

Universal Serial Bus (USB) or CD-ROM (Compact Disc-Read-Only Memory). 

The following are the parameters in our system. 

In the /etc/fstab file: 

/dev/cdrom   /mnt/cdrom    udf,iso9600 noauto,owner, kudzu, ro 0 0  
/dev/sda1   /mnt/usbstick  vfat  user,noauto,umask=0 0 0 
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For instance, for using USB device, use the command: mount  /dev/sda1 

/mnt/usbstick.  

To debug the kernel bugs, it is straightforward and efficient to use printk(), 

the kernel’s formatted print function, which is similar as printf() in C library. For 

displaying the messages that printed by printk() in the Linux kernel, command 

dmesg can be called. However, because the log buffer’s default size is 16KB, we 

need to set the parameter CONFIG_LOG_BUF_SHIFT to 17 (i.e., 128KB) from 

the original value 14 (i.e., 16KB).  
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APPENDIX B 
 

RUNNING REAL-TIME APPLICATIONS WITH gEDF POLICY 



 

B1 Typical Real-Time Applications 

The most common fixed-priority scheduling policies are: 

FIFO - a task executes until it is finished, or a higher priority task wants to 

run, but is never preempted by a task with the same priority. 

Round robin - as above, a task is preempted if a higher priority task wants to 

run. If there are several tasks of the same priority, each gets to run a predefined 

amount of time and is then put last in the queue in order to allow the next task to 

execute. 

B2 Compiling Environment 

I use GNU gcc. Its version is 3.3.2 20031022 (Red Hat Linux 3.3.2-1) 

We also need to evacuate c header files in the directories /usr/include/asm 

and usr/include/linux. Then, set up the Linux kernel header files to the above two 

directories. 

ln -s /usr/src/linux-2.6.0/include/asm-i386  /usr/include/asm  
ln -s /usr/src/linux-2.6.0/include/linux  /usr/include/linux  

B3 Real-Time Program Interface 

The following system calls are common real-time program interfaces: the 

definitions for POSIX 1003.1b-1993 (aka POSIX.4) scheduling interface (1996-

2003, part of the GNU C Library). 

Set scheduling parameters for a process,  

extern int sched_setparam (__pid_t __pid, __const struct sched_param *__param) 
      __THROW; 
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Retrieve scheduling parameters for a particular process,  

extern int sched_getparam (__pid_t __pid, struct sched_param *__param) __THROW; 
 

Set scheduling algorithm and/or parameters for a process,  

extern int sched_setscheduler (__pid_t __pid, int __policy, 
          __const struct sched_param *__param) __THROW; 
 

Retrieve scheduling algorithm for a particular purpose, 

extern int sched_getscheduler (__pid_t __pid) __THROW; 
 

Yield the processor,  

extern int sched_yield (void) __THROW; 
 

Get maximum priority value for a scheduler.  

extern int sched_get_priority_max (int __algorithm) __THROW; 
 

Get minimum priority value for a scheduler. 

extern int sched_get_priority_min (int __algorithm) __THROW; 
 

Get the SCHED_RR interval for the named process. 

extern int sched_rr_get_interval (__pid_t __pid, struct timespec *__t) __THROW; 

B4 POSIX Extension of EDF and gEDF Scheduling Policy 

Because the function sched_setscheduler_plus is not in the standard library 

of POSIX yet, it is defined in the header file edf.h, which must be included in the 

real-time applications with the gEDF policy. 

 

#ifndef EDF_H 
#define EDF_H 
#include <sys/syscall.h> 
#include <sys/types.h> 
#include <unistd.h> 
#include <errno.h> 
#include <sched.h> 
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struct edf_param { 
    unsigned long policy; 
    unsigned long period; 
    unsigned long length; 
} 
inline int sched_setscheduler_plus (pid_t pid, struct edf_param *gedf, 
           struct sched_param *param)  
{  

                long ret; 
   __asm__ volatile ("int $0x80" : "=a" (ret) : "a" (__NR_sched_setscheduler_plus), 
     "b" (pid), "c" (gedf), "d" (param) ); 
   if ((unsigned long) ret >= (unsigned long) -125) { 
      errno = -ret; 
      ret = -1; 
   } 
   return (int) ret; 
} 
#endif 
#endif 
 

B5 Real-time Applications with gEDF Scheduling Policy 

The following is a sample code in C style. Three processes of the real-time 

applications are created and scheduled by the gEDF scheduling policy. 
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#include <sched.h> 
#include "edf.h" 
#define SCHED_EDF 3 
#define SCHED_gEDF 4 
struct sched_param schp; 
struct edf_param edfp; 
int main (int argc, char *argv[]) 
{ 
    /* set parameters of real-time applications */ 
    memset(&schp, 0, sizeof(schp)); 
    schp.sched_priority = sched_get_priority_max(<POLICY>); 
    memset(&edfp, 0, sizeof(edfp)); 
    edfp.policy = <POLICY>; 

/* skip some details of the definition here*/ 
/* create some processes continuously */ 
if (fork() == 0) { 

        edfp.period = <PERIOD>; 
        edfp.length = <ET>;  
        sched_setscheduler_plus(0, &edfp, &schp); 
        if (fork() == 0) { 

                         edfp.period = <PERIOD>; 
                  edfp.length = <ET>;  
                         sched_setscheduler_plus(0, &edfp, &schp); 
                         if (fork() == 0) { 
                   edfp.period = <PERIOD>; 
                             edfp.length = <ET>;  
               sched_setscheduler_plus(0, &edfp, &schp); 
                             if (fork() == 0) {} else execl(<EXEP>); 
                         } 
                         else  execl(<EXEP>); 
                     } 
                     else execl(<EXEP>); 
                 }     
                 /* other work */  
             } 

 

Note:  <POLICY>: SCHED_gEDF/SCHED_EDF 
<PERIOD>: Real-Time Period or Deadline 
<ET>: Average Execution Time 
<EXEP>: Executable Program 
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