

APPROVED:

Krishna M. Kavi, Major Professor and Chair of

the Department of Computer Science
and Engineering

Robert Akl, Committee Member
Phil Sweany, Committee Member
Armin R. Mikler, Graduate Coordinator
Oscar N. Garcia, Dean of the College of

Engineering
Sandra L. Terrell, Dean of the Robert B.

Toulouse School of Graduate Studies

GROUP-EDF: A NEW APPROACH AND AN EFFICIENT NON-PREEMPTIVE

ALGORITHM FOR SOFT REAL-TIME SYSTEMS

Wenming Li, B.S., M.S.

Dissertation Prepared for the Degree of

DOCTOR OF PHILOSOPHY

UNIVERSITY OF NORTH TEXAS

August 2006

Li, Wenming, Group-EDF: A new approach and an efficient non-preemptive

algorithm for soft real-time systems. Doctor of Philosophy (Computer Science),

August 2006, 124 pp., 7 tables, 49 illustrations, references, 48 titles.

Hard real-time systems in robotics, space and military missions, and control

devices are specified with stringent and critical time constraints. On the other

hand, soft real-time applications arising from multimedia, telecommunications,

Internet web services, and games are specified with more lenient constraints.

Real-time systems can also be distinguished in terms of their implementation into

preemptive and non-preemptive systems. In preemptive systems, tasks are often

preempted by higher priority tasks. Non-preemptive systems are gaining interest

for implementing soft-real applications on multithreaded platforms.

In this dissertation, I propose a new algorithm that uses a two-level

scheduling strategy for scheduling non-preemptive soft real-time tasks. Our goal

is to improve the success ratios of the well-known earliest deadline first (EDF)

approach when the load on the system is very high and to improve the overall

performance in both underloaded and overloaded conditions. Our approach,

known as group-EDF (gEDF), is based on dynamic grouping of tasks with

deadlines that are very close to each other, and using a shortest job first (SJF)

technique to schedule tasks within the group. I believe that grouping tasks

dynamically with similar deadlines and utilizing secondary criteria, such as

minimizing the total execution time can lead to new and more efficient real-time

scheduling algorithms. I present results comparing gEDF with other real-time

algorithms including, EDF, best-effort, and guarantee scheme, by using randomly

generated tasks with varying execution times, release times, deadlines and

tolerances to missing deadlines, under varying workloads. Furthermore, I

implemented the gEDF algorithm in the Linux kernel and evaluated gEDF for

scheduling real applications.

ACKNOWLEDGEMENTS

First, I am deeply grateful to Dr. Kavi, my major professor, for his consistent

assistance and brilliant supervision since 2002. Without which, I would not have

achieved significant progress. He enlightened me to choose a new approach that

I initially used in developing a real-time extension of the Scheduled Dataflow

Architecture. He encouraged me to develop the innovative idea into a complete

real-time algorithm.

I would like to thank Dr. Akl for providing the modeling and simulation tools,

and his participation in weekly research meetings for the last three years. I would

like to thank Dr. Akl and Dr. Sweany for their suggestions and supervision on my

doctoral study and dissertation.

I truly appreciate all the professors, staff, and students in the Department of

Computer Science and Engineering at the University of North Texas, who have

given me much help since 1999.

Last but not least, I owe my parents, my wife, and my daughter so much. I

particularly thank them for their strong support during these years.

ii

LIST OF CONTENTS

ACKNOWLEDGEMENTS..ii

LIST OF TABLES ..vii

LIST OF FIGURES... viii

CHAPTER 1 INTRODUCTION.. 1

CHAPTER 2 RELATED WORK... 5

2.1 Overview .. 5

2.2 FIFO/FCFS, RR, SJF: Basic Real-Time Scheduling 8

2.3 Static Priority Scheduling: Rate-Monotonic .. 9

2.4 Dynamic Priority Scheduling: EDF ... 10

2.5 Non-preemptive Scheduling ... 13

2.6 Real-Time Algorithm Metrics .. 13

2.7 Real-Time Systems.. 14

2.7.1 Hard Real-Time Systems .. 15

2.7.2 Soft Real-Time Systems ... 15

2.7.3 Scheduling in Real-Time System .. 16

2.7.4 Priority in the EDF Scheduling .. 17

2.8 Real-Time Operating Systems ... 18

2.8.1 The Requirements of RTOS.. 18

2.8.2 POSIX 1003.1 for RTOS ... 18

iii

2.8.3 RTOS Examples ... 20

CHAPTER 3 REAL-TIME SYSTEM MODEL... 23

3.1 Definitions .. 23

3.2 gEDF Algorithm.. 32

3.2.1 Description and Pseudo Code .. 32

3.2.2 Complexity of the gEDF Algorithm .. 33

3.2.3 Analysis of the gEDF Algorithm... 33

CHAPTER 4 NUMERICAL RESULTS... 36

4.1 Comparison of gEDF and EDF... 36

4.1.1 Experiment 1 – Effect of Deadline Tolerance (Tr) 37

4.1.2 Experiment 2 - Effect of Deadline on Success Rates (γ) 44

4.1.3 Experiment 3 - Effect of Group Range .. 52

4.1.4 Experiment 4 – Effect of the Values of Single µe on γ 56

4.1.5 Experiment 5 – Effect of Tr on Response Time (ℜ) 59

4.1.6 Experiment 6 - The Effect of Tight Deadlines on ℜ 63

4.1.7 Experiment 7 - The Effect of Single µe on ℜ 66

4.2 The Effect of Multiple Expected Execution Times 68

4.2.1 Experiment 8 – The Effect of Multiple µes on γ 68

4.2.2 Experiment 9 – The Effect of Percentage of Small Jobs on γ........ 71

4.3 Comparisons of gEDF, Best-Effort, and Guarantee Algorithms 75

4.3.1 Experiment 10 - Comparison of γ of gEDF and Best-Effort 75

iv

4.3.2 Experiment 11 – Comparison of ℜ of gEDF and Best-Effort 78

4.3.3 Experiment 12 – Comparison of γ of gEDF and Guarantee 81

4.3.4 Experiment 13 – Comparison of ℜ of gEDF & Guarantee............. 83

CHAPTER 5 IMPLEMENTATION OF gEDF IN THE LINUX KERNEL 86

5.1 Enhancing Linux with the gEDF Scheduling Scheme 86

5.2 Modification of the Linux Kernel ... 88

5.2.1 Modification of Structure task_struct in the Linux Kernel............... 88

5.2.2 Adding a New System Call.. 91

5.2.3 Adding a New Structure and Several New Functions.................... 91

5.3 The Complexity of gEDF in the Linux Kernel.. 97

5.4 Real-Time Benchmark Testing... 98

CHAPTER 6 CONCLUSIONS ... 106

APPENDIX A BUILDING THE LINUX KERNEL .. 110

A1 The Linux Kernel Source and Configuration....................................... 111

A2 Compiling the Linux Kernel .. 112

APPENDIX B RUNNING REAL-TIME APPLICATIONS WITH gEDF POLICY 115

B1 Typical Real-Time Applications .. 116

B2 Compiling Environment .. 116

B3 Real-Time Program Interface ... 116

B4 POSIX Extension of EDF and gEDF Scheduling Policy 117

v

B5 Real-time Applications with gEDF Scheduling Policy 118

BIBLIOGRAPHY... 120

vi

LIST OF TABLES

Table 4.1: Success-ratio performance factor .. 42

Table 4.2: The performance change (success ratio of gEDF/success ratio of EDF)

for different percentages of small jobs... 73

Table 5.1: Real-time benchmark suite 1 ... 100

Table 5.2: Real-time benchmark suite 1 – time constraints 100

Table 5.3: Real-time benchmark suite 1 - performances of EDF/gEDF............ 102

Table 5.4: Real-time benchmark suite 2 – time constraints 103

Table 5.5: Real-time benchmark suite 2 - performances of EDF/gEDF............ 104

vii

LIST OF FIGURES

Figure 2.1: The taxonomy of real-time scheduling. Our EDF/gEDF algorithm is

applicable to the shaded region... 17

Figure 3.1: The terminologies of the real-time system model. 24

Figure 3.2: Example 1 – (a) Four jobs with the same deadlines. (b) EDF

Scheduling using FIFO. (c) EDF Scheduling using SJF. 26

Figure 3.3: (a) Four jobs with different deadlines. (b) EDF Scheduling with FIFO.

(c) EDF Scheduling with SJF... 28

Figure 3.4: (a) Four jobs with different deadlines. (b) EDF Scheduling with FIFO

when soft tolerance is allowed. (c) EDF Scheduling with SJF when soft

tolerance is allowed... 30

Figure 4.1: Success rates when deadline tolerance is 0.2.................................. 37

Figure 4.2: Success rates when deadline tolerance is 0.5.................................. 38

Figure 4.3: Success rates when deadline tolerance is 1.0.................................. 39

Figure 4.4: Success-ratio performance factor when Tr = 0.2, 0.5, and 1.0. 41

Figure 4.5: for EDF, X-axis is ρ, Y-axis is Tr, Z-axis is success ratio.................. 43

Figure 4.6: for gEDF, X-axis is ρ, Y-axis is Tr, Z-axis is success ratio................ 44

Figure 4.7: Tight deadline µD = µe and Tr = 0.. 45

Figure 4.8: Tight deadline µD = µe and Tr = 1.0... 46

Figure 4.9: Looser deadline µD = 5µe and Tr = 0 and 0.2.................................... 47

viii

Figure 4.10: Looser deadline µD = 5µe and Tr = 0.5 and 1.0............................... 48

Figure 4.11: Success ratio of EDF when µD = µe, 2µe, 5µe, 10µe, and 15µe 49

Figure 4.12: Success ratio of gEDF when µD = µe, 2µe, 5µe, 10µe, and 15µe. 50

Figure 4.13: ηγ when µD = µe, 2µe, 5µe, 10µe, and 15µe. 51

Figure 4.14: Group Range: Gr = 0.1, 0.2, 0.5, 1.0 (Tr = 0.1). 53

Figure 4.15: Group Range: Gr = 0.1, 0.2, 0.5, 1.0 (Tr = 0.5). 54

Figure 4.16: Group Window Size = µe /4. ... 55

Figure 4.17: Group Window Size = 4*µe. .. 56

Figure 4.18: Success ratios of EDF and gEDF when µe = 40, 20, and 12. 57

Figure 4.19: Success Ratio of EDF and gEDF when µe = 130, 100, 80, 40, 20, 12,

and 8. .. 58

Figure 4.20: Response time when deadline tolerance Tr = 0. 60

Figure 4.21: Response time when deadline tolerance Tr = 0.5. 61

Figure 4.22: Response time when deadline tolerance Tr =1.0. 62

Figure 4.23: The ratio of response time of gEDF vs. response time of EDF....... 62

Figure 4.24: Response time of EDF when µD = µe, 2µe, 5µe, and 10µe................ 64

Figure 4.25: Response time of gEDF when µD = µe, 2µe, 5µe, and 10µe.............. 65

Figure 4.26: The ratio of response time of gEDF vs. response time of EDF when

µD = µe, 2µe, 5µe, and 10µe. .. 66

Figure 4.27: Response-time Ratio of EDF when µe = 40, 20, and 12. 67

Figure 4.28: Response-time Ratio of gEDF when µe = 40, 20, and 12. 68

ix

Figure 4.29: Success ratio of gEDF/success ratio of EDF when Tr = 0. 70

Figure 4.30: Success ratio of gEDF/success ratio of EDF when Tr = 0.2. 70

Figure 4.31: Success ratio of gEDF/success ratio of EDF when Tr = 0.5. 71

Figure 4.32: Success ratio of gEDF/success ratio of EDF Tr = 0.5. 74

Figure 4.33: Success rates when deadline tolerance is 0.2................................ 76

Figure 4.34: Success rates when deadline tolerance is 0.5................................ 77

Figure 4.35: Success rates when deadline tolerance is 1.0................................ 78

Figure 4.36: Response time when deadline tolerance is 0. 79

Figure 4.37: Response time when deadline tolerance is 0.2. 80

Figure 4.38: Response time when deadline tolerance is 0.5. 81

Figure 4.39: Success ratio when deadline tolerance is 0.2................................. 82

Figure 4.40: Success ratio when deadline tolerance is 0.5................................. 83

Figure 4.41: Response times when deadline tolerance is 0.2. 84

Figure 4.42: Response times when deadline tolerance is 0.5. 85

Figure 5.1: Performance comparison of EDF and gEDF in success ratio when ρ =

1.00, 1.13, 1.31, 1.41, and 1.63... 104

Figure 5.2: ηγ = γgEDF / γEDF = 100%, 101%, 107%, 117%, and 114% when ρ =

1.00, 1.13, 1.31, 1.41, and 1.63... 105

x

CHAPTER 1

INTRODUCTION

The earliest deadline first (EDF) algorithm is the most widely used scheduling

algorithm for real-time systems on uniprocessors and multiprocessors [1, 2]. All

the discussions in this dissertation will focus on uniprocessors instead of

multiprocessors, although our approach can be extended to multiprocessors.

Real-time applications can be characterized as hard real-time or soft real-time

systems. Hard real-time applications require that all time constraints be met,

while soft real-time systems permit some tolerance in meeting time constraints.

Real-time systems are also distinguished based on their implementation. In

preemptive systems, tasks may be preempted by higher priority tasks, while non-

preemptive systems do not permit preemption. It is easier to design preemptive

scheduling algorithms for real-time systems. It is our contention, however, that

non-preemptive scheduling is more efficient, particularly for soft real-time

applications and applications designed for multithreaded systems, than the

preemptive approach since the non-preemptive model reduces the overhead

needed for switching among tasks or threads [3, 4]. For a set of preemptive tasks

(be periodic, aperiodic, or sporadic), EDF will find a schedule if a schedule is

possible [5]. The application of EDF for non-preemptive tasks is not as widely

studied. EDF is optimal for sporadic non-preemptive tasks, but EDF may not find

1

an optimal schedule for periodic and aperiodic non-preemptive tasks. It has been

shown that scheduling periodic and aperiodic non-preemptive tasks is NP-hard

(Non-deterministic Polynomial-time hard) [6, 7, 8]. However, non-preemptive

EDF techniques have produced near optimal schedules for periodic and

aperiodic tasks, particularly when the system is lightly loaded. When the system

is overloaded, it has been shown that the EDF approach leads to very poor

performance (i.e., low success rates) [9]. In this dissertation, a system load or

utilization is used to refer to the ratio of the sum of the execution times of pending

tasks and the time available to complete the tasks. The poor performance of EDF

is due to the fact that, as tasks that are scheduled based on their deadlines miss

their deadlines, other tasks waiting for their turn are likely to miss their deadlines

also – an outcome sometimes known as the domino effect. It should also be

remembered that worst-case execution time (WCET) estimates for tasks are

used in most real-time systems. We believe that, in practice, WCET estimates

are very conservative, and more aggressive scheduling scheme based on

average execution times for soft real-time systems using either EDF or hybrid

algorithms can lead to higher resource utilizations.

The major contributions of my research are described here. I propose a new

approach for scheduling soft real-time systems. To our knowledge we are the

first research team to propose grouping of task dynamically into deadline groups

and then use a two level scheduling to schedule tasks. I use EDF for scheduling

2

groups and use a different technique (e.g., shortest job first) for scheduling tasks

within a group.

While investigating scheduling algorithms, I have analyzed a variation of EDF

that can improve the success ratio (that is, the number of tasks that have been

successfully scheduled to meet their deadlines), particularly in overloaded

conditions. The new algorithm can also decrease the average response time for

tasks. We call the algorithm group-EDF, or gEDF, where the tasks with “similar”

deadlines are grouped together (i.e., deadlines that are very close to one

another), and the shortest job first (SJF) algorithm is used for scheduling tasks

within a group. It should be noted that our approach is different from adaptive

schemes that switch between different scheduling strategies based on system

load; gEDF is used in overloaded as well as underloaded conditions. The

computational complexity of gEDF is approximately the same as that of EDF. In

this dissertation, I will evaluate the performance of gEDF using randomly

generated tasks with varying execution times, release times, deadlines and

tolerances to missing deadlines, under varying loads. I have also implemented

the gEDF algorithm in the Linux kernel. I will present performance results of our

implementation for some real-time benchmarks.

We believe that gEDF is particularly useful for soft real-time systems as well

as applications known as “anytime algorithms” and “approximate algorithms,”

where applications generate more accurate results or rewards with increased

execution times [10 , 11]. Examples of such applications include search

3

algorithms, neural-net based learning in AI (Artificial Intelligence), FFT (Fast

Fourier Transform) and block-recursive filters used for audio and image

processing. I model such applications using a tolerance parameter that describes

by how much a task can miss its deadline, or by how much the task’s execution

time can be truncated when the deadline is approaching.

This dissertation is organized as follows. In chapter 2, I present related work.

In chapter 3, I present the real-time system model and a formal description of the

gEDF algorithm. Extensive experiments and numerical results for evaluating the

performance of gEDF are presented in chapter 4. The implementation of the

gEDF algorithm in Linux operating system is presented in chapter 5. Conclusions

are given in chapter 6. In appendices A and B, I provide guidelines on how to

implement new real-time scheduling algorithms in the modified Linux kernel.

4

CHAPTER 2

RELATED WORK

2.1 Overview

The earliest deadline first (EDF) algorithm schedules real-time tasks based

on their deadlines. Because of its optimality for periodic, aperiodic, and sporadic

preemptive tasks, its optimality for sporadic non-preemptive tasks, and its

acceptable performance for periodic and aperiodic non-preemptive tasks, EDF is

widely studied as a dynamic priority-driven scheduling scheme [6]. EDF is more

efficient than many other scheduling algorithms, including the static rate-

monotonic (RM) scheduling algorithm [12]. For preemptive tasks, when the

system is lightly loaded, EDF is able to reach the maximum possible processor

utilization. Although finding an optimal schedule for periodic and aperiodic non-

preemptive tasks is NP-hard [7, 8], our experiments have shown that EDF can

achieve very good utilization even for non-preemptive tasks when the system is

lightly loaded. However, when the processor is over-loaded (i.e., the combined

requirements of pending tasks exceed the capabilities of the system) EDF

performs poorly. Researchers have proposed several adaptive techniques for

handling heavily loaded situations, but they require the detection of the overload

condition.

5

A best-effort algorithm [9] is based on the assumption that the arrival

probability of a high value-density task is low. The value-density is defined by

V/C, where V is the value of a task and C is its worst-case execution time. Given

a set of tasks with defined values if completed successfully, it can be shown that

a sequence of tasks in decreasing order by value-density will produce the

maximum value when compared to any other scheduling technique. The best-

effort algorithm admits tasks based on their value-densities and schedules them

using the EDF policy. When higher value tasks are admitted, some lower value

tasks may be deleted from the schedule or delayed until no other tasks with

higher value exist. One key consideration in implementing such a policy is the

estimation of current workload, which is either very difficult or very inaccurate in

most practical systems that utilize worst-case execution time (WCET)

estimations. WCET estimation requires complex analysis of tasks [13, 14], and

the estimates are significantly larger than average execution times of tasks. Thus

the best-effort algorithm that uses WCET to estimate loads may lead to sub-

optimal value realization. Best-effort has been used as an overload control

strategy for EDF: that is, EDF is used when a system is underloaded but best-

effort is used when the overload condition is detected. One integrated real-time

scheduler including best-effort strategy for general-purpose operating systems

has been proposed in [15]. However, this approach relies on preemptive

scheduling and uses best-effort as an overload control strategy.

6

Other approaches for detecting overload and rejecting tasks were reported in

[16, 17]. In the guarantee scheme [16], the load on the processor is controlled by

acceptance tests on new tasks entering the system. If the new task is found

schedulable under worst-case assumptions, it is accepted; otherwise, the arriving

task is rejected. In the Robust scheme [17], if the system is underloaded, the

acceptance test is based on EDF; if the system is overloaded, one or more tasks

may be rejected based on their importance. Because the guarantee and Robust

algorithms also rely on computing the schedules of tasks that are based on

worst-case estimates, they usually lead to underutilization of resources. Thus

best-effort, guarantee, or Robust scheduling algorithms are not good for soft real-

time systems or applications that are generally referred to as “anytime” or

“approximate” algorithms [11]. For these algorithms, the quality of results (or

accuracy) improves when more computation time is allowed.

The combination of SJF and EDF, referred to as SCAN-EDF for disk

scheduling, was proposed in [18]. In this work, SJF is only used to break a tie

between tasks with identical deadlines. The research reported in [19, 20] is very

closely related to our idea of groups. This approach quantizes deadlines into

deadline bins and places tasks into these bins. However, tasks within a bin (or

group) are scheduled using first come first served (FCFS) policy. The gEDF

groups that I use are created dynamically instead of statically as done in [19, 20].

In the following sections, I will introduce the milestone events and the key

algorithms in the development of real-time systems, especially those that are

7

related to our approach. In section 2.7, I will introduce the development of real-

time systems. In section 2.8, I will introduce real-time operating systems.

2.2 FIFO/FCFS, RR, SJF: Basic Real-Time Scheduling

First come first served (FCFS) scheduling uses a simple “first in, first out”

queue. It is simple to implement but it has several deficiencies. Its average wait

times are typically long. It is a non-preemptive scheduling technique, and it is

subject to the negative effect if there are many I/O bound processes mixed with a

few CPU bound processes. In such cases, there can be large amounts of idle

times as the I/O bound processes sit idle waiting for the CPU bound process to

complete.

Round robin (RR) scheduling is similar to FCFS scheduling but preemption is

added, so that on each time quantum a new process receives access to the

system resources. This way, each process gets a share of the system resources

without having to wait for all processes ahead of it to run to completion. The

average waiting time is typically long and its performance is proportional to the

size of the time quantum. Round robin scheduling is the degenerative case of

priority scheduling when all priorities are equal.

Shortest job first (SJF) scheduling is probably optimal but requires

clairvoyance, profiling, or expected execution time to fully implement. SJF can be

implemented either preemptively or non-preemptively. SJF has low average

waiting time. In fact, SJF is optimal with respect to average waiting time.

8

It is very easy to prove this claim by comparing it with other real-time

algorithms. A formal proof can be found in [21, 22].

Although FIFO/FCFS, RR, and SJF are very basic real-time scheduling

schemes, they are widely implemented in real-time systems.

2.3 Static Priority Scheduling: Rate-Monotonic

Classical scheduling theory deals with static scheduling. Static scheduling

refers to the fact that the scheduling algorithm has complete information

regarding the task set including knowledge of deadlines, execution times,

precedence constraints, and release times.

In rate-monotonic (RM) scheduling, the shorter the period of a task, the

higher is its priority. If there is a set of n independent periodic tasks, and a task τi

(1 ≤ i ≤ n) is characterized by a period Pi (1 ≤ i ≤ n) and a worst-case execution

time ei, we have the following result.

A set of n independent, periodic jobs can be scheduled by the rate monotonic

policy if e1/P1 + e2/P2 + … + en/Pn ≤ n (21/n - 1). However, by this formula, the

upper bound on utilization is only ln2 = 0.69 as n approaches infinity.

The detailed description and proof can be found in [5]. A better result was

provided in [23], which claims that the upper bound on utilization of RM is 88%.

In deadline-monotonic (DM) scheduling, the shorter the relative deadline (i.e.

the difference between the deadline and the current time, also known as the

laxity) of a task, the higher is its priority. This approach investigates schedulability

9

tests for sets of periodic tasks whose deadlines are permitted to be less than

their period. Such a relaxation enables sporadic tasks to be directly incorporated

with periodic tasks [24, 25]. For arbitrary relative deadlines, DM outperforms RM

in terms of utilization.

I use dynamic scheduling approaches in my work. However, I also include a

description of static scheduling methods for the sake of completeness.

2.4 Dynamic Priority Scheduling: EDF

Earliest deadline first (EDF) scheduling is one of the first dynamic priority-

driven scheduling algorithms proposed. As the name implies, tasks are selected

for execution in the order of their deadlines. It provides the basis for many of the

real-time algorithms. EDF suffers significantly when the system is overloaded.

Compared to static priority driven scheduling such as RM with approximate 69%

utilization, EDF can approach 100% utilization for periodic jobs.

In the convention of the scheduling theory [22], I first give the specification of

scheduling problems. Classes of scheduling problems are specified in terms of a

three tuple: α | β | γ where α specifies the machine environment, β specifies the

job characteristics, and γ denotes the objective criterion. The value is either = 1,

for uniprocessor environment or P, for a multiprocessor environment with P

processors. The job characteristics are specified by β containing the elements

such as pmtn (i.e. preemptive scheduling) or nonpmtn (i.e. non-preemptive

scheduling), release time ri (i.e. arriving time of a job), independent tasks,

10

precedence constrained tasks, etc. The objective criteria can be minimize

maximum lateness Lmax = max {Li | i = 1, …, n} = max {Ci - di | i = 1, …, n}, where,

max is the function of maximum, di is defined as a due date or deadline of jobτi,

Ci is defined as completion time of jobτi, or minimizing the makespan max{Ci | i =

1, …, n}.

Suppose that there are n independent jobs. The problem: 1 | nonpmtn | Lmax,

(where, 1 stands for a uniprocessor, nonpmtn stands for non-preemptive

scheduling, and Lmax stands for the objective that is to minimize Lmax = max {Li | i

= 1, …, n}) has a solution: Any sequence of jobs in nondecreasing order of due

dates di, results in an optimal schedule [26].

Another important result is that if ri is the release time of a job, then the

scheduling problem {1 | nonpmtn, ri | Lmax} is NP-hard [27].

This result is important to our approach because the gEDF algorithm deals

with non-preemptive scheduling of tasks based on release times. I will introduce

the gEDF algorithm in detail in a later chapter. Since generating an optimal

schedule is NP-hard, I conducted extensive experiments to analyze the

performance of heuristic gEDF algorithm.

If job preemption is allowed at any instant, the problem: {1 | pmtn, ri | Lmax}

has a polynomial solution. Any technique that at any instant schedules a job with

the earliest deadline among all the eligible jobs (i.e. those with release time less

than or equal to the current times) is optimal with respect to minimizing maximum

11

lateness [29], since a currently running task can be preempted in favor of

scheduling another task with a shorter relative deadline.

This result is the basis of preemptive EDF and least laxity first (LLF)

algorithms. That is because the value of minimized maximum lateness can be

any value. We can let Lmax = max {Ci - di | i = 1, …, n} = 0, that is, all deadlines of

tasks must be met. According to the result, it implies that there is always an

optimal schedule. In fact, specifically, for a set of n independent periodic

processes, EDF scheduling shows that 100% processor utilization is achievable

if and only if e1/P1 + e2/P2 + … + en/Pn = 1 [5].

EDF can be applied to periodic, aperiodic, and sporadic real-time jobs.

However, EDF performs poorly in overloaded conditions [28]. LLF behaves

similar to EDF except that LLF needs to compute execution times of jobs when

scheduling.

It should be noted that dynamic scheduling doesn’t mean online scheduling.

An online scheduling algorithm has only complete knowledge of the currently

active set of tasks, and no knowledge of any new arriving tasks. Likewise, offline

scheduling is not the same as static scheduling. Offline includes pre-analysis of

scheduling regardless of whether the runtime algorithm is static or dynamic. Our

gEDF algorithm is a dynamic one, which can be either online or offline,

depending on the selection of the types of real-time jobs involved. Usually, offline

scheduling has higher performance than online scheduling but may lead to

poorer utilization.

12

2.5 Non-preemptive Scheduling

In many practical real-time scheduling problems such as I/O scheduling,

properties of device hardware and software make preemption either impossible

or prohibitively expensive. Non-preemptive scheduling algorithms are easier to

implement than preemptive algorithms, and can exhibit dramatically lower

overhead at run-time. The overhead of preemptive algorithms is more difficult to

characterize and predict than that of non-preemptive algorithms. Non-preemptive

scheduling on a uniprocessor naturally guarantees exclusive access to shared

resources and data, thus eliminating both the need for synchronization and its

associated overhead. The problem of scheduling all tasks without preemption

forms the theoretical basis for more general tasking models that include sharing

of resources.

EDF scheduling for aperiodic jobs is NP-complete. However, for sporadic

jobs, non-preemptive EDF scheduling is optimal; for the scheduling of periodic

jobs, it is NP-hard [6].

2.6 Real-Time Algorithm Metrics

The most important metric of a real-time system is the success ratio of

system deadlines. By success ratio we mean the percentage of jobs completed

before their deadlines. However, other metrics, such as the minimized total (or

weighted sum) of the execution times of real-time jobs, the minimized average

response time, the minimized maximum lateness or tardiness of real-time jobs,

and the minimized number of processors required for real-time jobs, may be

13

important for real-time systems, especially for soft real-time systems. Because

missing a few deadlines is not critical in soft real-time systems, the overall

performance becomes important. Using these metrics (in addition to success

ratios) is often overlooked in many real-time systems. Minimizing total or average

execution time has secondary importance in helping minimize resource

requirements for a system. However, minimizing execution time does not directly

address the fact that individual tasks have deadlines. In fact, there is no direct

relation between preventing missing deadlines and maximizing or minimizing

these values. For instance, minimizing the maximum lateness metrics can be

useful at design time where resources can be continually added until the

maximum lateness ≤ 0 (i.e., no deadline is missed). In this particular case, no

tasks miss their deadlines. However, generally, the metric is not always useful

because minimizing the maximum lateness doesn’t necessarily prevent tasks

from missing their deadlines. Some related work and algorithms can be found in

[29].

Another concept that often appears in the real-time literature is the optimality

of an algorithm. We say that a scheduling algorithm is optimal if no other

scheduling algorithm can find a better solution for the same scheduling problem.

2.7 Real-Time Systems

In this section and section 2.8, I will introduce real-time systems and real-

time operating systems (RTOS). Although I intend to focus only on scheduling in

real-time systems, an overview of real-time systems and RTOS will be helpful to

14

the implementation of a new scheduling algorithm in real-time systems and

RTOS.

Before I discuss real-time operating systems, I first define a real-time system.

According to the IEEE (Institute of Electrical and Electronics Engineers), a real-

time system is a system whose correctness includes its response time as well as

its functional correctness.

2.7.1 Hard Real-Time Systems

Hard real-time means that the system must be designed to guarantee all time

constraints. Every resource management system such as the scheduler, I/O

manager, and communications, must work in the correct order to meet time

constraints. Military applications and space missions are typical instances of hard

real-time systems.

Here are some applications with real-time requirements: telecom switching,

car navigation, the medical instruments with the critical time constraints, rocket

and satellite control, aircraft control and navigation, industrial automation and

control, and robotics.

2.7.2 Soft Real-Time Systems

Soft real-time systems are similar to hard real-time systems in their

infrastructure requirements, but it is not necessary that every time constraint be

met. In other words, some time constraints are not strict but they are nonetheless

15

important. Soft real-time is not equivalent to non-real-time, since the goal of the

systems is still to meet as many deadlines as possible.

Here are some applications with soft real-time requirements: web services

such as real-time query, call admittance in voice over IP and cell phone, digital

TV transmissions, cable and digital TV set-top-boxes, video conferencing, TV

broadcasting, games, and gaming equipment. Even in some typical hard real-

time systems, some functions have soft real-time constraints. For instance, in

Apollo 11 mission, there are two sets of real-time subsystems, one with hard

real-time, and one with soft real-time deadlines.

2.7.3 Scheduling in Real-Time System

Figure 2.1 shows the taxonomy of real-time scheduling in real time systems.

EDF/gEDF algorithms studied in this research are applicable to the shaded

region (i.e., soft, dynamic, and non-preemptive).

16

Soft

Dynamic

Static

Dynamic

Non-preemptive

Preemptive

Preemptive

Non-preemptive

Preemptive

Non-preemptive

Preemptive

Non-preemptive

Static

Hard

Figure 2.1: The taxonomy of real-time scheduling. Our EDF/gEDF algorithm is
applicable to the shaded region.

2.7.4 Priority in the EDF Scheduling

EDF usually is implemented as a dynamic priority driven scheduling scheme.

Usually, the number of priority levels in real-time systems should be at least 32.

As we know, EDF schedules real-time jobs based on deadlines. Because the

number of different deadline values could be a large number, we cannot use a

priority level to represent each different deadline. One solution is to use a base

priority and several dynamic priorities. The latter is dependent on the deadline of

a real-time job. The base priority can be assigned statically or dynamically by the

programmer or the system. The deadline of a real-time job determines its priority

17

among all the real-time jobs with the same level of base priority. Thus, actually,

there are two kinds of priorities for EDF based for real-time jobs.

2.8 Real-Time Operating Systems

2.8.1 The Requirements of RTOS

A real-time operating system (RTOS) [30] is not simply a real-time system. It

is the core part of any real-time system. A real-time system includes all the

system elements such as hardware, middleware, applications, communications

and I/O devices. All the elements are needed to meet the system requirements.

However, RTOS provides sufficient functionality to enable a real-time application

to meet its requirements. It is also important to distinguish between a fast

operating system and a RTOS. Speed, although useful for meeting the overall

requirements, by itself is not sufficient to determine whether a system meets the

requirements for an RTOS.

2.8.2 POSIX 1003.1 for RTOS

The IEEE computer society’s portable application standards committee

(PASC) defined a standard for Portable Operating System Interface (POSIX) [31,

32]. This IEEE Standard 1003.1 includes IEEE Standard 1003.1a, IEEE Standard

1003.1b, and 1003.1c, IEEE Standard 1003.1d/j/q, and IEEE Standard 1003.13.

IEEE Standard 1003.1a is the base for all the POSIX standards. IEEE Standard

1003.1b (formerly POSIX 1003.4) defines the needed real-time extensions. IEEE

Standard 1003.1c defines the functionality of threads. These various standards

18

have been combined by the Austin Group in producing IEEE standard 1003.1-

2001. The latest version is now known as the IEEE 1003.1 2004 Edition.

POSIX 1003.1b provides the standard criteria for RTOS services and is

designed to allow programmers to write applications that can easily be ported to

any operating systems (OS) that is POSIX compliant. The basic RTOS services

covered by POSIX 1003.1b include asynchronous I/O, synchronous I/O, memory

locking, semaphores, shared memory, timers, inter-process communication

(IPC), real-time files, real-time threads, and scheduling.

Real-time scheduling is the most important feature of a RTOS. POSIX

1003.1b specifies the following scheduling policies.

SCHED FIFO - Priority based preemptive scheduling, FIFO is used among

tasks with the same priority.

SCHED RR - Processes with same priority use Round Robin policy. A

process executes for a quantum of time; and then it is moved to the end of the

queue corresponding to its priority level. Higher priority tasks can preempt tasks.

The size of the quantum can be fixed, configurable, or specific for each priority

level.

SCHED OTHER - Availability required but not defined by the standard.

Usually SCHED OTHER is implemented as a classical time-sharing policy.

As additions to IEEE POSIX scheduling policies, I implemented SCHED EDF

and SCHED gEDF policies for non-preemptive real-time tasks on the Linux

kernel to evaluate our scheduling techniques.

19

2.8.3 RTOS Examples

a. Microsoft Windows CE – Non-Linux Based Commercial RTOS

Microsoft Windows CE is designed as a general-purpose and portable real-

time operating system for small memory, 32-bit mobile devices. Windows CE

slices CPU time among threads and provides 256 priority levels. To optimize

performance, all threads are enabled to run in kernel mode. All non-preemptive

portions of the kernel are broken into small sections reducing the duration of non-

preemptive code. Windows CE incurs long latencies for tasks.

b. VxWorks – Commercial RTOS

VxWorks, by Wind River Systems, is a real-time operating system. It runs

currently on its own kernel. However, its development is done on a host machine

such as Linux or Windows. Its cross-compiled target software can be run on

various target CPU architectures. VxWorks runs in supervisor mode, and does

not use traps for system calls. VxWorks supports priority interrupt-driven

preemption and optional round-robin time slicing. The micro kernel supports 256

priority levels. VxWorks supports some of the IEEE POSIX 1003.1 functions.

c. LynxOS – POSIX Compatible Commercial RTOS

LynxOS is a POSIX compatible, multithreaded OS designed for complex real-

time applications that require fast, deterministic response. It is scalable from

small, embedded products to large switching systems. The micro-kernel can

schedule, dispatch interrupts, and synchronize tasks. It uses scheduling policies

such as prioritized FIFO, dynamic deadline monotonic (DDM, the shorter the

20

dynamic deadline, the higher is its priority) scheduling, time-slicing, etc. It has

512-priority levels and supports remote console and remote monitoring. For

instance, LynxOS can be used as a hard real-time system for controlling gas

levels in chemical plants remotely.

d. RTLinux – Open Source Linux-Based RTOS

RTLinux [33] is a hard real-time operating system that runs Linux as its

lowest priority thread. The Linux thread is completely preemptible so that real-

time threads and interrupt handlers are never delayed by non-real-time

operations. Real-time applications can make use of all the powerful, non-real-

time services of Linux. RTLinux scheduling policies supports EDF. RTLinux,

originally developed at the New Mexico Institute of Technology, is an open-

source product. RTLinux-specific components are released under the GNU (a

recursive acronym for “GNU's Not UNIX”) General Public License (GPL), and

Linux components are released under the standard Linux license. The source

code is freely distributed. Non-GPL versions of the RTLinux components are

available from FSMLabs [33].

e. RED-Linux – Open Source Linux-Based RTOS

RED-Linux [34] is an open-source real-time and embedded version of Linux

version 2.2.14. In addition to the original Linux capability, it improves the real-

time behaviors of the Linux kernel in many ways. RED-Linux supports a short

kernel blocking time, a quick task response time and, modularized runtime

21

general scheduler interface (GSI) so that different scheduling methods can be

selected depending on the application.

f. KURT-Linux – Open Source Linux-Based RTOS

KU real-time Linux (KURT) [35] is a Linux system with real-time modifications

to allows scheduling of real-time events at 10's of microseconds resolution.

Rather than relying on priority based scheduling or strictly periodic schedules,

KURT relies on application specified schedules. KURT can function in two

modes: focused mode, where only real-time processes are allowed to run; and

mixed mode, where the execution of real-time processes still takes precedence,

but non-real-time processes are allowed to run when real-time tasks are not

running. KURT was developed by the Information and Telecommunication

Technology Center (ITTC) at the University of Kansas. KURT may be used and

distributed according to the terms of the GNU Public License.

In this chapter, I reviewed research and technologies that are closely related

to our research. In particular, I presented some well known real-time scheduling

techniques, the underlying limitations of the algorithms, and practical real-time

operating systems that are currently available.

In the next chapter, I will introduce our real-time scheduling algorithm.

22

CHAPTER 3

REAL-TIME SYSTEM MODEL

3.1 Definitions

A job in a real-time system, a thread in multithreading processing, or a task in

single threaded systems, τi, is defined as τi = (ri, ei, Di, Pi); where ri is its release

time (or its arrival time); ei is either its estimated worst-case or its estimated

average execution time; and Di is its deadline. We also maintain a dynamic

deadline di with an initial value ri + Di, which tracks the absolute time before the

deadline expires. In other words Di is the relative deadline of the job with respect

to the arrival time and di is the absolute (wall clock) deadline.

If modeling periodic jobs, Pi defines a task’s periodicity. Note that aperiodic

and sporadic jobs can be modeled by setting Pi appropriately. For instance, an

aperiodic job can be modeled by setting Pi to a variable; a sporadic job by setting

Pi to a variable that is greater than a minimum value.

Figure 3.1 graphically shows the relationship among the various parameters

used in our task model.

23

 di – t

 task τi taskτi

 (remaining time to deadline)

 ei (execution time) laxity

 Di (static or relative deadline)

 Pi (period)

 ri (arrival time) t (current time) di (dynamic deadline)

Figure 3.1: The relationship among the real-time task parameters.

For the experiments in this work, I have generated a fixed number (N) of jobs

with randomly generated arrivals, execution times and deadlines. We assume

that jobs are mutually independent. Each experiment is terminated when the

predetermined experimental time T has expired. This permitted us to investigate

the sensitivity of the various task parameters on the success rates (i.e. success

ratios, we use these two terms interchangeably) of EDF and gEDF. I use random

distributions available in MATLAB to generate the necessary parameters for

tasks.

A group in the gEDF algorithm depends on a group range parameter Gr. A

job τj belongs to the same group as job τi if di ≤ dj ≤ (di + Gr*(di – t))1, where t is

1 We are using the remaining time to a task deadline (called dynamic deadlines) in forming
groups. We found that using static deadlines for defining groups did not significantly change the
results.

24

the current time, 1 ≤ i, j ≤ N. In other words, we group jobs with deadlines that are

very close to each other. I schedule groups based on EDF (all jobs in a group

with an earlier deadline will be considered for scheduling before jobs in a group

with later deadlines), but schedule jobs within a group using shortest job first

(SJF) approach. Since SJF results in more (albeit shorter) jobs completing,

intuitively gEDF should lead to a higher success rate than pure EDF.

Let’s take look at some examples.

Example 1:

There are four jobs τ0 = (0, 5, 14, P0), τ1 = (0, 3, 14, P1), τ2 = (0, 6, 14, P2), τ3

= (0, 2, 14, P3). They arrive at the same time 0 and have the same deadline, i.e.

14. In the following bars, the gray part represents expected execution time of a

job. The clear part represents laxity2 time of a job. P0, P1, P2, and P3 can be

constant (for periodic job), variable (for aperiodic job), or variable with a minimum

value (for sporadic job). To simplify the analysis, Pi, i = 0, 1, 2, and 3, will be

ignored in this example and the following two examples. That is, we assume that

there is only one instance for each task. Therefore, the four jobs become τ0 = (0,

5, 14), τ1 = (0, 3, 14), τ2 = (0, 6, 14), τ3 = (0, 2, 14). These four jobs are shown

as four separate bars in Figure 3.2 (a). The length of the shaded part of each bar

represents execution time. The length of each bar represents the deadline. The

result scheduled by EDF and FIFO is shown in Figure 3.2 (b). The result

scheduled by EDF and SJF is shown in Figure 3.2 (c).

2 Laxity is the remaining time before the deadline expires.

25

(a)

τ3

τ1

τ0

τ2

τ1 τ2 τ3τ0

(b)

 τ2τ0τ1τ3

(c)

Figure 3.2: Example 1 – (a) Four jobs with the same deadlines. (b) EDF
Scheduling using FIFO. (c) EDF Scheduling using SJF.

As in (a), the four jobs have the same deadlines. If using EDF with FIFO,

success ratio is 3/4. The average response time of the completed jobs is ((0+5) +

(5+3) + (8+6)) / 3 = 9. In (c), we use SJF with EDF and now the success ratio is

3/4. However, τ2 completes partially before the deadline. If it is soft real-time

system, which allows some tolerance of missing deadline, the success ratio

26

could be 4/4. By comparison, the average response time of the first three

completed jobs in (c) is ((0+2) + (2+3) + (5+6)) / 3 = 6. The average response

time of all the completed jobs in (c) is ((0+2) + (2+3) + (5+6) + (10+6)) / 4 = 8.5.

Example 2:

In example 1, one can use shortest job first (SJF) scheduling instead of first-

in-first-out (FIFO) scheduling since we can group all the four jobs in a single

group as the deadlines are the same for the jobs. Often jobs fall into different

groups since jobs have different deadlines. Consider the following set of τ0 = (0,

5, 11), τ1 = (0, 3, 10), τ2 = (0, 6, 9), τ3 = (0, 2, 12). These four jobs are shown as

four separate bars in Figure 3.3 (a). Four jobs have different execution times as

shown by the shaded areas. The four jobs also have different deadlines as

shown by the length of the bars. The result of EDF scheduling using FIFO is

shown in Figure 3.3 (b); the EDF scheduling using SJF is shown Figure 3.3 (c).

27

(a)

τ3

τ1

τ0

τ2

τ1 τ0τ2

τ3

(b)

 τ2τ0τ1τ3

(c)

Figure 3.3: (a) Four jobs with different deadlines. (b) EDF Scheduling with FIFO.
(c) EDF Scheduling with SJF.

As in (a), the four jobs have different deadlines. We still can apply the SJF

scheme in EDF. For this example we will use deadline groups to schedule jobs

with deadline that are very close to each other. In this example we will group all 4

jobs into a single group. If we use EDF scheduling using FIFO, as shown in (a)

the success ratio is 2/4 and the average response time of the completed jobs is

28

((0+6) + (6+3))/2 = 7.5. If we use SJF for the jobs in a group, the success ratio is

3/4. By comparison, the average response time of the first two completed jobs in

(c) is ((0+2) + (2+3)) / 2 = 3.5. The average response time of all the completed

jobs in (c) is ((0+2) + (2+3) + (5+6)) / 3 = 6.

Example 3:

In the previous examples, we assumed that jobs have strict deadlines. In

other words, if a task misses its deadline, the task is considered failed. However,

for soft real-time jobs, deadlines are defined with some grace period and a task is

allowed to miss its deadline as long as it can complete within its specified grace

period. We use the term “deadline tolerance” to specify grace periods. As can be

expected, success rates can increase with larger deadline tolerances. Then,

consider the set of jobs τ0 = (0, 5, 14), τ1 = (0, 3, 13), τ2 = (0, 6, 15), τ3 = (0, 2,

15). Let us assume that the deadline tolerance is 20%. For example, τ0 is allowed

to complete within the deadline 14 + 2.8 = 16.8 time units from its arrival time.

The four jobs are shown in Figure 3.4 (a). The result scheduled by EDF and

FIFO is shown in Figure 3.4 (b). The result scheduled by EDF and SJF is shown

in Figure 3.4 (c).

29

(a)

(b)

τ3

τ1

τ0

τ2

τ1 τ3τ0 τ2

 τ2τ0τ1τ3

(c)

Figure 3.4: (a) Four jobs with different deadlines. (b) EDF Scheduling with FIFO
when soft tolerance is allowed. (c) EDF Scheduling with SJF when soft tolerance

is allowed.

As before we can group the tasks based on their deadlines. In part (b), with

the EDF scheduling using FIFO only three jobs can be completed (It misses 1/2

of its deadline, and exceeds the 20% deadline tolerance allowed). Success ratio

is thus 3/4. The average response time of the completed jobs is ((0+3) + (3+5) +

(8+6) = 8.3. If we use SJF with a group of jobs, and using the 20% deadline

30

tolerance, we can complete all 4 tasks, giving us a success ratio of 4/4. The

average response time of the first three completed jobs in (c) is ((0+2) + (2+3) +

(5+6)) /3 = 6. The average response time of all the completed jobs in (c) is ((0+2)

+ (2+3) + (5+6) + (10+6)) / 4 = 8.5.

Nomenclature:

We use the following notations for the various parameters and computed

values:

ρ: is the utilization of the system, ρ = Σei / T. This is also called the load.

γ: is the success ratio, γ = the number of jobs completed successfully / N.

Tr: is the deadline tolerance for soft real-time systems. A job τ is successful if

τ finishes before the time (1 + Tr) * D, where Tr ≥ 0.

µe: is used either as the average execution time or the worst-case execution

time, and defines the expected value of the exponential distribution used for this

purpose.

µr: is used to generate arrival times of jobs, and is the expected value of the

exponential distribution used for this purpose.

µD: is the expected value of the random distribution used to generate task

deadlines. We set this parameter as a multiple of µe. We use only the generated

values if they are larger than the execution time of a job.

ℜ: is the average response time of the jobs. This is a computed value.

∂: is the response-time ratio, ∂ = ℜ / µe.

31

ηγ: is the success-ratio performance factor, ηγ = γgEDF / γEDF. This is used to

compare gEDF with EDF.

η∂: is the response-time performance factor, η∂ = ∂EDF / ∂gEDF. This is used to

compare gEDF with EDF.

3.2 gEDF Algorithm

3.2.1 Description and Pseudo Code

We assume a uniprocessor system. QgEDF is a queue for gEDF scheduling.

The current time is represented by t. |QgEDF| represents the length of the queue

QgEDF. τ = (r, e, D, P) is the job at the head of the queue.

We define a group in our gEDF algorithm as follows:

gEDF Group = {τk | τk ∈ QgEDF, dk – d1 ≤ D1 * Gr, 1 ≤ k ≤ m, where m ≤ |QgEDF|},
and D1 is the deadline of the first job in a group.

Algorithm:

Function Enqueue (QgEDF, τ)
 if (τ’s deadline d > t) then
 insert job τ into QgEDF by earliest deadline first, i.e. di ≤ di+1 ≤ di+2,
 where τi, τi+1, τi+2 ∈ QgEDF, 1 ≤ i ≤ |QgEDF| - 2;
 end

Function Dequeue (QgEDF)
 if QgEDF ≠ φ then
 find a job τmin with emin = min {ek | τk ∈ QgEDF,
 dk – d1 ≤ Gr*D1, 1 ≤ k ≤ m, where
 m ≤ |QgEDF|};
 run it and delete τmin from QgEDF;
 end

Enqueue is invoked on job arrivals and Dequeue is called when the

processor becomes idle.

32

3.2.2 Complexity of the gEDF Algorithm

Here I outline the complexity of gEDF. Assume that there are n jobs to be

scheduled. Standard EDF needs O(n) to find a job schedule since it must find a

job with the earliest deadline. Our gEDF effectively performs similar search within

a group to find a job with shortest execution time. Note that, although the

asymptotic complexity of gEDF is O(n), the number of jobs in a group is much

smaller than n. Now I analyze the complexity of gEDF. Assume there are n jobs

to be scheduled. EDF needs Ο(n) for one schedule. The gEDF needs to find the

shortest job from m (m ≤ n) jobs within a group. Assuming that there are k

groups, the overall complexity is given by

O(mii

k∑)

Since the total number of jobs in all groups is still n, the time complexity of gEDF

is also O(n).

3.2.3 Analysis of the gEDF Algorithm

To argue that gEDF is better than EDF, we first define w, which represents a

set of jobs τi ∈ w (1 ≤ i ≤ |w|) that are ready for scheduling at time t and are

sharing the same deadline d (the jobs have to finish before the time d). In

addition, δ represents the time needed for the scheduling and v represents an

associated set of jobs τj ∈ v (1 ≤ j ≤ |w|) that share the deadlines window of d + δ.

In addition, we define γw as the success ratio of |w| jobs in the time slot w

with the deadline d. We assume that there is no interval between the scheduled

33

jobs if the jobs are available. Lw represents the laxity time of all the jobs after

scheduling in a time slot w. Ev represents the sum of the execution time of |v|

jobs with the largest deadline d < dv ≤ d + δ. We can obtain the following result.

If, i) there are |w| jobs sharing the same deadline d in a time slot w = d – t

(starting from the time current time t and ends at the time d); and ii) there are |v|

jobs in the time δ that is to be added to the time slot w for scheduling, we can

conclude that γw+δ ≥ γw under any of the following situations.

1. δ = 0

2. Tr ≥ δ

3. Lw ≥ Ev

For case 1, if utilization ρ ≤ 1 (or more precisely speaking Lw ≥ 0 because we

refer ρ as an average value), there will be no change in the success ratios

because the sum of execution time that can be completed by the deadline will not

change. If ρ > 1 or Lw = 0, because SJF places jobs with longer execution times

closer to the end of queue, there should be fewer jobs rejected. For case 2, if we

set the soft real-time tolerance Tr large enough, gEDF should be able schedule

even longer jobs towards the end of the queue, provided the scheduling

overhead δ time is smaller than the deadline tolerance for all jobs Tr ≥ δ. For

case 3, if there is large enough laxity time left for the jobs of v without making the

jobs of w unscheduled, gEDF success rate will be greater than EDF using FIFO.

34

Thus we argue that the performance of gEDF is equal to or better than that of

EDF under the conditions listed above.

Furthermore, we analyze the performance of gEDF under the remaining

situations, namely, the situation when δ ≠ 0, Tr < δ, and Lw < Ev. First, we assume

w2 ∈ w is the set of jobs unscheduled after the jobs of v1 ∈ v are scheduled in

time d – t. The success ratio by EDF is γw+γv. The success ratio by gEDF is γw-

w2+v1 + γv+w2-v1. It is apparent that γw-w2+v1 ≥ γw if SJF is used. In addition, by

comparing γv with γv+w2-v1, the former should be larger than the latter. However,

usually, this difference is not as large as that of γw-w2+v1 and γw. Therefore, we are

able to conclude gEDF is better than EDF.

In the following experiments, conducted with various data distributions, we

can observe the above features of gEDF. Moreover, we can see how much of a

performance increase gEDF can obtain for the different parameters and the

various data distributions. I will analyze each behavior of gEDF. In addition,

average response time, another important metric of gEDF for real-time systems,

will be analyzed.

35

CHAPTER 4

NUMERICAL RESULTS

MATLAB [36] is used to generate tasks based on various random

distributions and the generated tasks are scheduled using EDF, gEDF, and other

scheduling algorithms. For each chosen set of parameters, I have repeated each

experiment 100 times (each time, generating N tasks using the random

probability distributions and scheduling the generated tasks) and computed the

average success rates. In what follows, I report the results and analyze the

sensitivity of gEDF to the various parameters used in the experiments, the effects

of the percentage of small jobs on the success ratios, and how well gEDF

performs when compared to a best-effort algorithm. Note that I use the non-

preemptive task model. Non-preemptive scheduling algorithms are easier to

implement than preemptive algorithms, and can exhibit dramatically lower

overhead at run-time resulting from fewer context switches.

4.1 Comparison of gEDF and EDF

First I will show that the gEDF algorithm achieves higher success rates in

scheduling real-time tasks than the well-known EDF algorithm, particularly when

the system is heavily loaded.

36

4.1.1 Experiment 1 – Effect of Deadline Tolerance (Tr)

Figures 4.1 - 4.3 show that gEDF achieves higher success rate than EDF

when the deadline tolerance (i.e., soft real-time nature of the jobs) is varied from

20%, 50% to 100% (that is, a task can miss its deadline by 20%, 50% and

100%).

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

EDF: Tr=0.2
gEDF: Tr=0.2

Figure 4.1: Success rates when deadline tolerance is 0.2.

With utilization ρ ≤ 1.0, the difference in the success ratios of EDF and gEDF

is not significant. When the load is very light, all the jobs can be scheduled by

EDF and gEDF; when the load becomes heavier but is still less than 1.0, a few

jobs could not be scheduled by EDF or gEDF. Therefore, the success ratios of

EDF and gEDF become lower (as low as 0.93). When ρ ≤ 1.0, gEDF doesn’t

37

perform any better than EDF because most jobs can be scheduled by either

method. Since I use a non-preemptive real-time model, instead of preemptive

periodic job model, the success ratio of EDF or gEDF will fall below 100% as ρ

reaches 1.0. As this load is reached, the success ratios of EDF and gEDF start

showing differences. The success ratio of EDF decreases more quickly than that

of gEDF. For instance, the success ratio of EDF becomes 0.65 when ρ = 2.7;

however, the success ratio of gEDF is still high at 0.72. In other words, the

success ratio of gEDF is about 11% higher than that of EDF when ρ = 2.7. I

experimented with utilization values between 0 and 3. The deadline tolerance in

Figure 4.1 is 20%.

0.50

0.60

0.70

0.80

0.90

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

EDF: Tr=0.5
gEDF: Tr=0.5

Figure 4.2: Success rates when deadline tolerance is 0.5.

38

When deadline tolerance increases to 50%, the success ratio of gEDF

improves; while the success ratio of EDF worsens. Even when ρ < 1.0

(underloaded), the success ratio of gEDF is higher than that of EDF. For

instance, when ρ = 1.0, the success ratio of gEDF is 0.97; and the success ratio

of EDF is 0.91. In contrast, the success ratios of gEDF and EDF in Figure 4.1

(20% deadline tolerance) were both 0.93. EDF suffers “the domino effect” (since

as jobs at the front of the queue miss their deadlines, so do other jobs in the

queue) when ρ > 1.0. Since gEDF uses SJF, the jobs at the front of the queue

are less likely to miss their deadlines, diminishing the domino effect.

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

EDF: Tr=1.0
gEDF: Tr=1.0

Figure 4.3: Success rates when deadline tolerance is 1.0.

39

When deadline tolerance increases to 100%, gEDF behaves even better; but

EDF’s success rates do not increase significantly. For instance, when ρ < 1.0, the

success ratio of gEDF is close to 100%. In addition, when ρ = 1.1 (lightly

overloaded), the success ratio of gEDF is still as high as 0.95. However, the

success ratio of EDF worsens quickly.

For these experiments, I generated tasks by fixing expected execution times

and deadline parameters based on probability distributions, but varied the arrival

rate parameter to change the system load. The group range for these

experiments is fixed at Gr = 0.4 (i.e., all jobs whose deadlines fall within 40% of

the deadline of current job are in the same group). It should be noted that gEDF

consistently performs as well as EDF under light loads (utilization less than 1),

but outperforms EDF under heavy loads (utilization greater than 1; see the X-

axis). Both EDF and gEDF achieve higher success rates when tasks are

provided with greater deadline tolerance. The tolerance benefits gEDF more than

EDF, particularly under heavy loads. Thus, gEDF is better suited for soft real-

time tasks.

Figure 4.4 summarizes these results by showing the percent improvement in

success ratios achieved by gEDF when compared to EDF. The Y-axis shows that

higher success rates are achieved by gEDF when compared to EDF for different

system loads and different deadline tolerance parameters.

40

100%

110%

120%

130%

140%

150%

160%

170%

180%

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

-r
at

io
 Im

pr
ov

em
en

t

Tr=0.2
Tr=0.5
Tr=1.0

Figure 4.4: Success-ratio performance factor when Tr = 0.2, 0.5, and 1.0.

I use success-ratio performance factor, i.e., ηγ = γgEDF / γEDF, to express the

performance increase. Individually, γgEDF is the success ratio of gEDF and γEDF is

the success ratio of EDF. When ρ is varied from 0 to 3.0 and deadline tolerance

is 20%, success-ratio performance factor ηγ is between 100% and 112%,

indicating that gEDF can achieve 12% higher success rates. This ratio becomes

even larger at higher system loads and larger deadline tolerance values.

41

Table 4.1: Success-ratio performance factor

Success-ratio improvement (%) Utilization
ρ Tr = 0.2 Tr = 0.5 Tr = 1.0

0.1 100 100 100
0.2 100 100 100
0.3 100 100 100
0.4 100 100 100
0.5 100 100 100
0.6 100 100 100
0.7 100 100 101
0.8 100 101 101
0.9 100 102 103
1.0 100 103 105
1.1 101 104 108
1.2 101 106 111
1.3 102 108 116
1.4 103 110 120
1.5 104 111 125
1.6 104 113 129
1.7 105 115 134
1.8 106 117 138
1.9 106 119 142
2.0 107 120 146
2.1 108 121 150
2.2 108 123 155
2.3 109 125 157
2.4 109 125 161
2.5 110 127 166
2.6 110 128 168
2.7 111 129 170
2.8 111 131 174
2.9 111 131 178
3.0 112 132 179

Table 4.1 shows the values of success-ratio performance factor ηγ = γgEDF /

γEDF (i.e., success-ratio improvement) when ρ = 1.0 to 3.0.

42

Figure 4.5: for EDF, X-axis is ρ, Y-axis is Tr, Z-axis is success ratio.

Figure 4.5 shows the relationship between utilization, deadline tolerance, and

the success ratio of EDF; with X-axis representing utilization ρ, Y-axis

representing deadline tolerance Tr, and Z-axis representing success ratio of EDF

γEDF. It is interesting to note that as the tolerance increases, the success ratios do

not show concomitant increases.

43

Figure 4.6: for gEDF, X-axis is ρ, Y-axis is Tr, Z-axis is success ratio.

Figure 4.6 shows the relation of utilization, deadline tolerance, and success

ratio of gEDF. As before X-axis represents utilization ρ, Y-axis deadline tolerance

Tr, and Z-axis represents success ratio of gEDF γgEDF, Unlike EDF, gEDF shows

improved success ratios with increasing deadline tolerances.

4.1.2 Experiment 2 - Effect of Deadline on Success Rates (γ)

In the next experiment, I explore the performance of EDF and gEDF when

the deadlines are very tight (deadline = execution time) and when the deadlines

are loose (deadline = 5 * execution time). Note that the deadlines generated

using an exponential distribution with mean values set to 1 and 5 times the mean

execution time µe. I varied the soft real-time parameter (Tr, or tolerance to

44

deadline) in these experiments also, but all other parameters are kept the same

as in the previous experiment. As can be seen in Figures 4.7 and 4.8, all

scheduling algorithms perform poorly for tight deadlines3, except under extremely

light loads. Even under very tight deadlines, as in Figure 4.8, the deadline

tolerance favors gEDF more than EDF. With looser deadlines (or more laxity), as

in Figures 4.9 and 4.10, both EDF and gEDF achieve better performance.

However, gEDF outperforms EDF consistently for all values of the deadline

tolerance, Tr.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

EDF: Tr=0
gEDF: Tr=0

Figure 4.7: Tight deadline µD = µe and Tr = 0.

3 It should be noted that when µD = µe, any job should be scheduled immediately upon arrival, lest
it misses its deadline. The impact of using least laxity first approach is indirectly reflected by EDF
when the deadlines are very tight.

45

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io
EDF: Tr=1.0

gEDF: Tr=1.0

Figure 4.8: Tight deadline µD = µe and Tr = 1.0.

When deadline tolerance Tr = 1.0, the gEDF scheduling algorithm can

outperform the EDF scheduling algorithm under both underloaded and

overloaded conditions, even with tight deadlines.

46

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

EDF: Tr=0
gEDF: Tr=0
EDF: Tr=0.2
gEDF: Tr=0.2

Figure 4.9: Looser deadline µD = 5µe and Tr = 0 and 0.2.

With looser deadlines of µD = 5µe, for Tr = 0 or 0.2, gEDF performs slightly

better than EDF. For instance, when ρ = 1.0 (underloaded) and Tr = 0.2, gEDF

performs as well as EDF; when ρ = 2.0 (overloaded) and Tr = 0.2, gEDF

outperforms EDF by 6%.

47

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

EDF: Tr=0.5

gEDF: Tr=0.5

EDF: Tr=1.0

gEDF: Tr=1.0

Figure 4.10: Looser deadline µD = 5µe and Tr = 0.5 and 1.0.

With µD = 5µe, for higher deadline tolerance values of Tr, gEDF performs

better than EDF. For instance, when ρ = 1.0 (underloaded) and Tr = 1.0, gEDF

outperforms EDF by 4%; when ρ = 2.0 (overloaded) and Tr = 1.0, gEDF

outperforms EDF by 47%.

Figures 4.11 and 4.12 respectively, highlight the effect of deadline laxities on

both EDF and gEDF. To more clearly evaluate how these approaches perform

when the deadlines are very tight and loose, I set the deadlines to 1, 2, 5, 10 and

15 times the execution time of a task. I set µe = 40, Tr = 0.2, (for gEDF Gr = 0.4).

48

When µD = µe and 2µe, the success ratios of EDF and gEDF show no appreciable

differences. However, when µD becomes reasonably large, such as 5µe, 10µe,

and 15µe, the success ratio of gEDF is better than that of EDF.

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
0.

1
0.

3
0.

5
0.

7
0.

9
1.

1
1.

3
1.

5
1.

7
1.

9
2.

1
2.

3
2.

5
2.

7
2.

9

Utilization

S
uc

ce
ss

 R
at

io

D=1
D=2
D=5
D=10
D=15

Figure 4.11: Success ratio of EDF when µD = µe, 2µe, 5µe, 10µe, and 15µe.

When µD changes from µe, 2µe, to 5µe, the success ratio of EDF increases

sharply. For instance, when ρ = 1.0 and µD = µe, the success ratio of EDF is 0.51;

when ρ = 1.0 and µD = 2µe, the success ratio of EDF is 0.74. However, when µD

continues to increase to be 10µe, and 15µe, the success ratio of EDF doesn’t see

49

further improvements. For instance, when ρ < 1.5 (underloaded or lightly

overloaded), the success ratio of EDF increases; however, when ρ > 1.8, the

success ratio of EDF decreases slightly.

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
0.

1
0.

3
0.

5
0.

7
0.

9
1.

1
1.

3
1.

5
1.

7
1.

9
2.

1
2.

3
2.

5
2.

7
2.

9
Utilization

S
uc

ce
ss

 R
at

io

D=1
D=2
D=5
D=10
D=15

Figure 4.12: Success ratio of gEDF when µD = µe, 2µe, 5µe, 10µe, and 15µe.

The gEDF scheduling algorithm exhibits similar behavior for different values

of µD. However, gEDF shows improvements for a wider range of values of µD.

When µD = µe, both gEDF and EDF exhibit almost the same performance. When

µD = 2µe, 5µe, 10µe, and 15µe, gEDF performs better than EDF. For instance,

when µD = 5µe and ρ = 3.0, the success ratio of gEDF is 0.69; the success ratio

50

of EDF is 0.62. As in the Figure 4.1.1.1-4, success-ratio performance factors, that

is, ηγ = γgEDF / γEDF are shown in Figure 4.13 for µD = µe, 2µe, 5µe, 10µe, and 15µe.

100%

105%

110%

115%

120%

125%
0.

1
0.

3
0.

5
0.

7
0.

9
1.

1
1.

3
1.

5
1.

7
1.

9
2.

1
2.

3
2.

5
2.

7
2.

9

Utilization

S
uc

ce
ss

-r
at

io
 Im

pr
ov

em
en

t

D=1
D=2
D=5
D=10
D=15

Figure 4.13: ηγ when µD = µe, 2µe, 5µe, 10µe, and 15µe.

When µD = 2µe and ρ is large (heavily overloaded), Success-ratio

performance factor ηγ increases slightly. The biggest jump occurs when µD

changes from 2µe to 5µe. When µD =10µe and 15µe, ηγ increases gradually. It

should be noted that the laxity (as represented by µD) depends on the workload

and application domain.

51

4.1.3 Experiment 3 - Effect of Group Range

In our third experiment, I vary the group range parameter Gr for grouping

tasks into a single group. Note that in the following figures I do not include EDF

data since the concepts of groups is not applicable to EDF. I set µD = 5µe

(Deadline = 5* Execution Time) and maintain the same values for other

parameters as in the previous experiments. I set the deadline tolerance

parameter Tr to 0.1 (10% tolerance in missing deadlines) in Figure 4.14, and to

0.5 (50% tolerance in missing deadlines) in Figure 4.15. The data shows that by

increasing the size of a group, gEDF achieves higher success rates. In the limit,

by setting the group range parameter to a very large value, gEDF behaves more

like SJF; and by setting the group range value to zero, gEDF behaves like EDF.

There is a threshold value for the group size for achieving optimal success rates

and the threshold depends on the execution time, tightness of deadlines (or

deadline laxity) and deadline tolerance parameters. For the experiments, I used a

single exponential distribution for generating all task execution times. However, if

we were to use a mix of tasks created using different exponential distributions

with different mean values, thus creating tasks with widely varying execution

times, the group range parameter will have more pronounced effect on the

success rates (see Section 4.2).

52

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io
Gr:0.1
Gr:0.2
Gr:0.5
Gr:1.0

Figure 4.14: Group Range: Gr = 0.1, 0.2, 0.5, 1.0 (Tr = 0.1).

Success rates when Gr is varied from 0.2 to 1.0 are shown in Figure 4.14.

The differences may not be significant here because I set the deadline tolerance

to a small value (of 10%). The next figure (Figure 4.15) shows that success rates

do show more significant differences when the tolerance is set to 0.4.

53

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

Gr:0.1
Gr:0.2
Gr:0.5
Gr:1.0

Figure 4.15: Group Range: Gr = 0.1, 0.2, 0.5, 1.0 (Tr = 0.5).

Instead of creating groups dynamically as jobs arrive, it is possible to define

deadline bins and create groups based on these deadlines. Figure 4.16 shows

the results based on statically defined groups, a window of µe/4, while Figure

4.17 uses a window of 4*µe. These fixed windows do not produce success rates

as high since the number of jobs in most of the windows will be very small.

Creating groups dynamically allows us to create equal sized groups.

54

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io
EDF
gEDF

Figure 4.16: Group Window Size = µe /4.

55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io
EDF

gEDF

Figure 4.17: Group Window Size = 4*µe.

4.1.4 Experiment 4 – Effect of the Values of Single µe on γ

In this section I change the mix of tasks by using different execution times,

generated using exponential distributions with means (i.e. µe). The following

figures show the effect of different values of µe on the success rates achieved by

gEDF and EDF. The values of µe are listed in absolute values.

56

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

EDF 40
EDF 20
EDF 12
gEDF 40
gEDF 20
gEDF 12

Figure 4.18: Success ratios of EDF and gEDF when µe = 40, 20, and 12.

In Figure 4.18, there is no apparent difference in the success ratios when µe

changes from 40, 20, to 12 either for EDF or gEDF. The lower three curves

represent data for the EDF algorithm; the upper three curves represent data for

the gEDF algorithm.

57

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

EDF 130
gEDF 130
EDF 100
gEDF 100
EDF 80
gEDF 80
EDF 40
gEDF 40
EDF 20
gEDF 20
EDF 12
gEDF 12
EDF 8
gEDF 8

Figure 4.19: Success Ratio of EDF and gEDF when µe = 130, 100, 80, 40, 20, 12,
and 8.

In Figure 4.19, there is no obvious difference in the success ratios of gEDF

when µe changes from 130, 100, 80, 40, 20, 12, to 8. This data indicates that the

58

success rates of EDF and gEDF are sensitive to the load which is given by (µr

/µe) but not to the execution time parameter µe alone.

4.1.5 Experiment 5 – Effect of Tr on Response Time (ℜ)

Thus far I have shown that gEDF results in higher success rates than EDF,

particularly when the system is overloaded. Next, I will compare the average

response times achieved using gEDF with those resulting from EDF. Intuitively,

completing shorter jobs first should result in faster response times 4 . Our

experiments support this. I set µe = 40, µD = 5µe, Gr = 0.4. Figures 4.20, 4.21,

and 4.22 show that gEDF can yield faster response times than the response time

when using EDF, and when soft real-time tolerance parameter Tr is changed

from 0 to 0.5 to 1.0, respectively.

4 Of course, this can be viewed as an unfair schedule since longer jobs will less likely be
scheduled for execution.

59

0

50

100

150

200

250

300

350

400

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e
Ti

m
e EDF: Tr=0

gEDF: Tr=0

Figure 4.20: Response time when deadline tolerance Tr = 0.

As can be seen from these figures, gEDF outperforms EDF in terms of the

response time, when the system is lightly loaded (about ρ = 0.5) and when the

system is heavily loaded (ρ = 3.0). In this experiment, when deadline tolerance Tr

is 0 (i.e. hard real-time), gEDF outperforms EDF. For instance, when ρ = 1.0,

gEDF yields 24% faster response times when compared to the response times

using EDF; when ρ = 2.0, gEDF yields 63% faster response times than EDF.

Likewise, with a deadline tolerance Tr of 0.5, gEDF results in faster response

time under both lightly loaded and heavily loaded situations. For example when ρ

= 1.0, gEDF yields 33% faster response time than EDF; when ρ = 2.0, gEDF

yields 59% faster response time than EDF. This is also the case when deadline

60

tolerance Tr is 1.0. For instance, when ρ = 1.0, gEDF yields 20% faster response

times than EDF; when ρ = 2.0, gEDF yields 35% faster response time than EDF.

Simply increasing Tr cannot guarantee higher performance of gEDF. With larger

values of tolerance Tr, as previously noted both gEDF and EDF achieve higher

success rates. Thus the performance gains achieved by gEDF over that of EDF

will become less pronounced for larger deadline tolerance parameters. In the

limit, when Tr is set to a very large value, the system is no longer a real-time

system and both EDF and gEDF can achieve 100% success rates, since

deadlines are no longer meaningful. In such cases, gEDF does not show any

performance improvements over that of EDF.

0

50

100

150

200

250

300

350

400

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e
Ti

m
e

EDF: Tr=0.5
gEDF: Tr=0.5

Figure 4.21: Response time when deadline tolerance Tr = 0.5.

61

0

50

100

150

200

250

300

350

400

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e
Ti

m
e

EDF: Tr=1.0
gEDF: Tr=1.0

Figure 4.22: Response time when deadline tolerance Tr =1.0.

50%

60%

70%

80%

90%

100%

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e-
tim

e
Im

pr
ov

em
en

t

Tr=0
Tr=0.5
Tr=1.0

Figure 4.23: The ratio of response time of gEDF vs. response time of EDF.

62

Figure 4.23 above summarizes the response time improvements achieved by

gEDF when compared with the response times of EDF. Note that that Y-axis

shows the relative response times (and smaller numbers are better).

4.1.6 Experiment 6 - The Effect of Tight Deadlines on ℜ

I set µr = µe/ρ, µe = 40, Gr = 0.4, Tr = 0.1. Figures 4.24 and 4.25 show the

change in response time of EDF and gEDF when µD is varied from µe, 2µe, 5µe,

and 10µe. Like the success ratios of EDF and gEDF, when µD is very small such

as µe and 2µe, there is no difference between EDF and gEDF. This is because

both EDF and gEDF will have very low success rates. However, as µD is

increased, gEDF results in faster response times when compared with EDF.

63

0

50

100

150

200

250

300

350

400

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e
Ti

m
e

D=1
D=2
D=5
D=10

Figure 4.24: Response time of EDF when µD = µe, 2µe, 5µe, and 10µe.

The response times of EDF do not show significant differences for µD = µe

and 2µe. However, as µD is set to 5µe and 10µe, EDF shows improved response

times.

64

0

50

100

150

200

250

300

350

400

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e
Ti

m
e

D=1
D=2
D=5
D=10

Figure 4.25: Response time of gEDF when µD = µe, 2µe, 5µe, and 10µe.

Similar behavior can be observed with gEDF; the response times when µD =

µe and 2µe are about the same, but the response times show more dramatic

improvements for µD = 5µe and 10µe.

65

50%

60%

70%

80%

90%

100%

110%

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e-
tim

e
Im

pr
ov

em
en

t

D=1
D=2
D=5
D=10

Figure 4.26: The ratio of response time of gEDF vs. response time of EDF when
µD = µe, 2µe, 5µe, and 10µe.

Figure 4.26 above summarizes the improvements in response time achieved

by gEDF when compared with EDF. Note that the Y-axis shows the relative

response times (and smaller numbers are better).

4.1.7 Experiment 7 - The Effect of Single µe on ℜ

To understand the properties of response time ℜ, at some specific ρ, I

defined response-time ratio ∂ = average response Time / µe. The following

figures show the result when µe = 40, 20, and 12 for EDF (Figure 4.27) and for

gEDF (for Figure 4.28). The results show that µe has little effect on response-time

ratio ∂. The system load plays more critical role on response times.

66

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e
Ti

m
e

R
at

io

40
20
12

Figure 4.27: Response-time Ratio of EDF when µe = 40, 20, and 12.

67

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e
Ti

m
e

R
at

io
40
20
12

Figure 4.28: Response-time Ratio of gEDF when µe = 40, 20, and 12.

4.2 The Effect of Multiple Expected Execution Times

4.2.1 Experiment 8 – The Effect of Multiple µes on γ

The jobs generated for all the experiments thus far were generated using a

single exponential distribution. To evaluate the impact of the case when jobs

come from different classes, I generated tasks using different exponential

distributions with different mean values.

68

I designate job classes using (m, n) where m represent the mean value of the

distribution used to generate execution times of tasks, and n represents the

fraction of all jobs (out of N) that are generated with the mean m.

Set-1: This is the base line consisting of jobs drawn from a single exponential distribution.
I generate N jobs using an exponential distribution with a mean µe to represent average
(or worst case expected) execution time. I will designate this set of jobs as (µe, N).

Set-2: Here we have two types of jobs, one generated using a mean of (1/2)*µe, and the
second with a mean of µe. Sixty-six percent of the jobs have a mean execution time of
(1/2)µe. This set is designated by (1/2µe, 2/3N) and (µe, 1/3N).

Set-3: This set contains three classes of jobs generated using mean execution times of
1/4µe, 1/2µe, and µe. I designate this set as (1/4µe, 4/7N), (1/2µe, 2/7N), and (µe, 1/7N).
Remember that the second number in each tuple represents the fraction of total number
of jobs of each class.

Figure 4.29 shows that, when Tr is 0 (hard real-time), the different classes of

jobs, even when there are more small jobs do not improve the success ratios.

The difference in the performance among the different sets of job classes is less

than 1%.

However, when dealing with soft real-time jobs (with a deadline tolerance Tr

of 0.2 and 0.5), job classes do impact performance gains of gEDF as shown in

Figures 4.30 and Figure 4.31. Note that Set 2 and Set 3 have more small jobs

than Set 1. As expected gEDF results in higher success rates over EDF when

there are more small jobs. For example for Tr = 0.2 and ρ = 2.0, Set-3 can result

in 3% performance improvement than Set-2; Set-2 can result in 3% more

performance improvement than Set-1. When Tr = 0.5 and, when ρ = 2.0, Set-3

can result in 15% performance improvement than Set-2; Set-2 can result in 15%

more performance improvement than Set-1.

69

0.99

1.00

1.01

1.02

1.03

1.04

1.05

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Load

gE
D

F'
s

S
R

/E
D

F'
s

S
R Set-1

Set-2
Set-3

Figure 4.29: Success ratio of gEDF/success ratio of EDF when Tr = 0.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Load

gE
D

F'
s

S
R

/E
D

F'
s

S
R

Set-1
Set-2
Set-3

Figure 4.30: Success ratio of gEDF/success ratio of EDF when Tr = 0.2.

70

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Load

gE
D

F'
s

S
R

/E
D

F'
s

S
R

Set-1
Set-2
Set-3

Figure 4.31: Success ratio of gEDF/success ratio of EDF when Tr = 0.5.

4.2.2 Experiment 9 – The Effect of Percentage of Small Jobs on γ

Previously, I analyzed the effect of data sets with different job classes on

success rates and observed that a workload with more small jobs show higher

success rates with gEDF over that of EDF. In this section, I will analyze the

success ratios where I use two different job classes (with two different µes) but

change the percentage of small jobs in the mix.

Distribution 1: 1/2 jobs with µe, 1/2 jobs with µe.
Distribution 2: 1/2 jobs with µe, 1/2 jobs with 1/2 µe.
Distribution 3: 2/5 jobs with µe, 3/5 jobs with 1/3 µe.
Distribution 4: 1/5 jobs with µe, 4/5 jobs with 1/8 µe.

71

I set Tr = 0.5. Table 1 presents the success ratio of gEDF/success ratio of

EDF. Table 4.2 and Figure 4.32 show that the distribution with a larger

percentage of small jobs obtains higher success ratio of gEDF when compared to

the success ratio of EDF. Note that Distribution 4 has the most small jobs of any

other distribution, and the data shows that gEDF benefits from this fact.

72

Table 4.2: The performance change (success ratio of gEDF/success ratio of EDF)

for different percentages of small jobs

Load Distribution 1 Distribution 2 Distribution 3 Distribution 4
0.1 1.000067 1.000274 0.999868 0.999877
0.2 1.000168 1.000265 1.000204 1.000363
0.3 1.000302 1.000253 1.000657 1.001042
0.4 1.000336 1.000864 1.001237 1.001779
0.5 1.000556 1.001620 1.003070 1.002737
0.6 1.002016 1.003082 1.005708 1.006286
0.7 1.003893 1.006661 1.010871 1.009740
0.8 1.007126 1.013990 1.019568 1.017424
0.9 1.014541 1.026174 1.035230 1.032902
1.0 1.025803 1.042502 1.055736 1.057957
1.1 1.040473 1.067228 1.084512 1.093741
1.2 1.058057 1.088816 1.120055 1.140386
1.3 1.071179 1.118099 1.167916 1.203977
1.4 1.093686 1.151395 1.208859 1.289895
1.5 1.114320 1.180786 1.252292 1.381070
1.6 1.132359 1.214086 1.311561 1.472425
1.7 1.153179 1.245111 1.353332 1.579499
1.8 1.164161 1.279391 1.407337 1.696627
1.9 1.185979 1.307189 1.459737 1.811491
2.0 1.202503 1.342744 1.512752 1.941354
2.1 1.213558 1.361546 1.551537 2.070311
2.2 1.230223 1.397064 1.592382 2.169966
2.3 1.251887 1.418970 1.636869 2.297082
2.4 1.260878 1.446233 1.681175 2.411978
2.5 1.272357 1.478179 1.722826 2.572307
2.6 1.282948 1.492337 1.774248 2.665443
2.7 1.289757 1.524958 1.820086 2.799853
2.8 1.309416 1.554312 1.867880 2.969026
2.9 1.330402 1.575254 1.900146 3.039547
3.0 1.323816 1.593459 1.942890 3.210040

73

1.00

1.50

2.00

2.50

3.00

3.50

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Load

gE
D

F'
s

S
R

/E
D

F'
s

S
R

Distribution 1
Distribution 2

Distribution 3
Distribution 4

Figure 4.32: Success ratio of gEDF/success ratio of EDF Tr = 0.5.

For instance, Distribution 4, which has the most small jobs of any other

distribution, shows that gEDF can achieve 200% higher success ratios than EDF.

In comparison, Distribution 1, which has the fewest smaller jobs of any other

distribution, shows only 120% higher success ratios than EDF.

74

4.3 Comparisons of gEDF, Best-Effort, and Guarantee Algorithms

4.3.1 Experiment 10 - Comparison of γ of gEDF and Best-Effort

Our gEDF method is not only an EDF-based overload strategy, it can also be

used in underloaded conditions. I have shown that gEDF not only shows better

performance than EDF when the system is overloaded, but performs as well as

EDF when the system is underloaded. Thus, there is no need to switch between

EDF and gEDF based on system load5. Researchers have explored adaptive

algorithms to control the performance when the system is overloaded. One such

algorithm is called the best-effort algorithm. In this dissertation, I will use the

same best effort criteria (i.e., value-density: V/C) that Locke [9] used. To achieve

a fair comparison of gEDF with best-effort, I set the same environments for gEDF

and best-effort. For our experiments here the value-density V/C is set equal for

all jobs. According to Locke’s best-effort, depending on the utilization, if the

system is not overloaded (utilization ≤ 1.0), best-effort becomes EDF; if the

system is overloaded (utilization > 1.0), best-effort will schedule jobs with high

V/C ratios in an attempt to maximize the overall value of the system.

The best-effort requires an estimation or prediction of utilization for switching

between EDF algorithm and the best-effort. While it may be possible to predict

the system load when the system processes only periodic jobs, it is very difficult

to compute the system load if the system processes a mixture of periodic,

aperiodic, and sporadic jobs. Recently, synthetic utilization bound has been

5 It should be noted that gEDF does favor smaller jobs and thus cannot guarantee fairness.

75

proposed to measure real utilization. For the EDF-based schemes, however,

synthetic utilization is very close to real utilization [37] and is an appropriate

choice. Moreover, the estimated loads are imprecise because most real-time

systems rely on worst-case execution times (WCET), while in most cases, the

actual execution times are lower than these estimates. Switching to best-effort

based on such imprecise load estimations can lead to inefficient utilization of the

resources. In this dissertation, I use a clairvoyant scheme or profiling based on

actual execution times of the real-time jobs. Thus, the comparisons shown are

present most optimistic scenarios as far as the best-effort algorithm is concerned.

I set µr = µe/ρ, µe = 20, µD = 5µe, Gr = 0.4. Figures 4.33 and 4.34 show that

gEDF achieves higher success rates than best-effort when the deadline

tolerance is varied to Tr = 0.2, 0.5, and 1.0.

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

Best-effort

gEDF

Figure 4.33: Success rates when deadline tolerance is 0.2.

76

Although the improvement of success ratios of gEDF are not significant,

considering the difficulty of predicting the precise utilization required by best-

effort, any improvements gained by gEDF should be viewed in a positive light.

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

Best-effort

gEDF

Figure 4.34: Success rates when deadline tolerance is 0.5.

The performance gains (i.e. success ratios) achieved by gEDF are even

greater when the deadline tolerance is very lenient say 50%, as shown in Figure

4.34.

77

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

Best-effort

gEDF

Figure 4.35: Success rates when deadline tolerance is 1.0.

When deadline tolerance is 100%, as shown in Figure 4.35, gEDF is better

than best-effort for most loads except when the system is very heavily loaded but

it should be noted that both gEDF and best-effort achieve very low success rates

at such loads.

4.3.2 Experiment 11 – Comparison of ℜ of gEDF and Best-Effort

I have shown that gEDF results in higher success rates when compared with

best-effort, particularly when the system is overloaded and the deadline

tolerances are very lenient. Here I will compare the average response times

achieved using gEDF with those achieved using best-effort. I set µr = µe/ρ, µe =

78

20, µD = 5µe, Gr = 0.4. Figures 4.36, 4.37, and 4.38 show that gEDF can yield

faster response times than best-effort (except when the loads are very high in

Figure 4.38).

20
30
40
50
60
70
80
90

100
110
120

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e
Ti

m
e

Best-effort
gEDF

Figure 4.36: Response time when deadline tolerance is 0.

When Tr = 0 (i.e. hard real-time), gEDF can yield faster response times than

best-effort in underloaded and overloaded conditions. For instance, gEDF can

yield 30% faster response times than best-effort when ρ = 1.0; and gEDF can

yield 20% faster response times than best-effort when ρ = 2.0.

79

20
30
40
50
60
70
80
90

100
110
120

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e
Ti

m
e

Best-effort
gEDF

Figure 4.37: Response time when deadline tolerance is 0.2.

When Tr = 0.2, gEDF can result in even faster response times than best-

effort in underloaded and overloaded situations.

80

20
30
40
50
60
70
80
90

100
110
120
130

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e
Ti

m
e

Best-effort

gEDF

Figure 4.38: Response time when deadline tolerance is 0.5.

When Tr = 0.5, gEDF can still yield faster response times than best-effort

until the system load reaches 1.7. It shows that choosing an appropriate deadline

tolerance has a positive effect on average response time when using gEDF.

4.3.3 Experiment 12 – Comparison of γ of gEDF and Guarantee

The guarantee algorithm is inappropriate for soft real-time systems. However,

I include the guarantee scheme algorithm (referred as guarantee) here only for

the sake of completeness. When the system is underloaded, guarantee uses

EDF for scheduling; when the system is overloaded, guarantee uses a specific

81

policy to choose real-time jobs and guarantees execution of the jobs by their

deadlines. In the simulations used here, incoming jobs are chosen for inclusion in

the guarantee if they can be scheduled by their deadlines, without discarding any

jobs already guaranteed.

I set µr = µe/ρ, µe = 20, µD = 5µe, Gr = 0.4. Figures 4.39 and 4.40 show the

success ratios of all the real-time scheduling algorithms discussed in this

dissertation, including the guarantee algorithm, best-effort, EDF, and gEDF. Note

that for guarantee algorithm, the success rate drops precipitously because tasks

are rejected at a higher rate as the system load increases beyond 100%.

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

Guarantee
Best-effort
EDF
gEDF

Figure 4.39: Success ratio when deadline tolerance is 0.2.

82

When Tr = 0.2, gEDF yields the highest success ratios than all the other

methods when the system is overloaded.

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
0.

1
0.

3
0.

5
0.

7
0.

9
1.

1
1.

3
1.

5
1.

7
1.

9
2.

1
2.

3
2.

5
2.

7
2.

9

Utilization

S
uc

ce
ss

 R
at

io

Guarantee
Best-effort
EDF
gEDF

Figure 4.40: Success ratio when deadline tolerance is 0.5.

Our gEDF also outperforms all other methods when Tr = 0.5, and when the

system is overloaded.

4.3.4 Experiment 13 – Comparison of ℜ of gEDF & Guarantee

In the final experiments, I summarize the response time performance of

gEDF, EDF, best-effort and guarantee scheduling methods. I set µr = µe/ρ, µe =

20, µD = 5µe, Gr = 0.4. Figures 4.41 and 4.42 show the results.

83

0

20

40

60

80

100

120

140

160

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e
Ti

m
e

Guarantee
Best-effort
EDF
gEDF

Figure 4.41: Response times when deadline tolerance is 0.2.

When Tr = 0.2, gEDF outperforms all other methods. For instance, when ρ =

1.0, gEDF yields about 35% faster response time than best-effort, EDF, and

guarantee. Best-effort has the same performance as EDF and guarantee in

underloaded but outperforms them in overloaded conditions.

84

0

20

40

60

80

100

120

140

160

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e
Ti

m
e

Guarantee
Best-effort
EDF
gEDF

Figure 4.42: Response times when deadline tolerance is 0.5.

Our gEDF has faster response time than EDF and guarantee schemes when

Tr = 0.5. Our gEDF outperforms the best-effort method when the system is not

heavily loaded, but has slower response times than the best-effort technique

when the system load exceeds 1.7.

85

CHAPTER 5

IMPLEMENTATION OF gEDF IN THE LINUX KERNEL

In this chapter, I will introduce practical and commercial real-time operating

systems. I will show how our gEDF can be implemented in Linux systems and

evaluate gEDF using a real workload.

5.1 Enhancing Linux with the gEDF Scheduling Scheme

The real-time operating system must deal with scheduling of jobs to meet

timing constraints, and achieve desired response time, particularly in systems

that are designed to process a mix of real-time and non real-time tasks.

Linux, as the most popular open source platform, fully supports POSIX

1003.1a and POSIX 1003.1c, but only partially supports the real-time extension

of POSIX 1003.1b [31, 32]. For example, Linux doesn’t support real-time features

such as system timers or message queues. It only supports a few simple

scheduling policies, such as round robin (RR) and FIFO. In spite of that, most

commercial and open source real-time operating systems (RTOS) are Linux-

based.

In chapter 2, I introduced some examples of real-time operating systems

based on the Linux kernel [37, 38]. Various scheduling policies are implemented

in different RTOS, but EDF is not a common algorithm implemented in

commercial systems. Since EDF is known for its efficiency in scheduling real-

86

time tasks, some recent RTOS systems are providing for EDF based extensions

to basic scheduling policies.

In our research, it is not our goal to provide a complete and full real-time OS,

but only to compare EDF with gEDF in a realistic real-time environment, to

complement our experiments described in the previous chapter. I also wanted to

explore how difficult it would be to implement gEDF (and EDF) in a practical

system. For this purpose, I implemented gEDF in the Linux kernel. Some typical

real-time benchmarks are executed on the modified Linux kernel. The results

show that gEDF can achieve (task completion) success ratios that are at least as

good as or better than EDF success ratios. In addition, gEDF produces better

response times to real-time tasks than EDF, both when the system is

underloaded and overloaded. These results are in line with our observations from

experiments described in Chapter 4. In this chapter I will focus on success rates

of gEDF and EDF only. I will also provide a general framework for implementing

EDF based algorithms that require additional parameters to describe task

execution times and deadlines.

To support EDF and gEDF in the Linux kernel, two parameters for EDF and

gEDF will be created. The related structures, particularly task structure, will be

extended to support EDF and gEDF. Separate new runqueue for EDF and gEDF

will be created without affecting the original runqueue for non real-time tasks of

the Linux kernel. Because POSIX 1003.1b doesn’t support EDF or gEDF, I also

need system calls to define the EDF or gEDF policies for real-time tasks. New

87

scheduling functions to implement EDF and gEDF are also added to the Linux

kernel. Inserting a new active task into the runqueue is the same for EDF and

gEDF. However, selecting a task for scheduling from the runqueue is different for

EDF and gEDF. The EDF algorithm is simple and straightforward; it selects the

task at the head of the runqueue since the queue is already sorted by deadlines.

The gEDF algorithm requires more computation to select the shortest task

among a group of tasks. I will introduce these algorithms in more detail in the

next section.

5.2 Modification of the Linux Kernel

5.2.1 Modification of Structure task_struct in the Linux Kernel

A normal process executes in its user space. When it executes a system call

or triggers an exception, the kernel space is entered. If a higher priority process

has become runnable in the interim, the Linux scheduler is invoked to select the

higher priority task for running. Otherwise, it exits the kernel upon finishing the

system call or exception ending.

Each task can be in one of six states.

TASK_RUNNING 0
TASK_INTERRUPTIBLE 1
TASK_UNINTERRUPTIBLE 2
TASK_STOPPED 4
TASK_ZOMBIE 8
TASK_DEAD 16

88

All processes in Linux are descendents of the init process, whose PID

(process ID) is 1. The kernel starts init in the last step of the boot process. The

existing task uses the fork() call to create a new process and enter

TASK_RUNNING state. The Linux kernel scheduler dispatches tasks in

runqueue to run. The running task may be preempted by a higher priority task

with a call to context_switch(), executed by schedule(). Since we rely on non-

preemptive scheduling, to implement non-preemptive scheduling, I modified the

kernel to disable preemption between our real-time tasks.

TASK_INTERRUPTIBLE (waiting for event) and TASK_UNINTERRUPTIBLE

(waiting for event but does not wake up by a signal) states are for tasks in waiting

status. If a task exists via do_exit(), it enters a TASK_ZOMBIE state. However,

the process descriptor remains until the parent calls wait4().

Before I introduce structure task_struct, I need to discuss another structure,

thread_info. Prior to Linux 2.6, task_struct was stored at the end of the kernel

stack of each process. This allowed architectures with few registers, such as x86,

to calculate the location of the process descriptor via the stack pointer without

using an extra register to store the location. Since Linux 2.6, the process

descriptor is dynamically created via the slab allocator; a new structure,

thread_info, was created that lives at the bottom of the stack if it grows

downwards or at the top of the stack if it grows upwards. The new structure

makes it easier to calculate the offset of values needed for thread scheduling.

89

On x86 machines, the thread_info structure is defined in

<asm/thread_info.h>.

struct thread_info {
 struct task_struct *task;

/* other definitions */
}

The task element of the structure is a pointer to the task's actual task_struct.

If we want to find the current process descriptor, for instance in x86, we can

mask out the least significant 13 bits of the stack pointer to obtain the thread_info

structure. Assuming the stack size is 8KB, it is implemented by the following

assembly code (a part of the current_thread_info() function):

movl $-8192, %eax
andl %esp, %eax

Thus, the current structure task_struct can be obtained by

current_thread_info()->task; For the MIPS-based architectures, current (the

pointer that points to the current structure task_struct) can be obtained with the

value in register r2.

The following structure task_struct includes our added definitions for

implementing an EDF/gEDF runqueue and real-time task parameters. The

structure task_struct is defined in a header file that can be found at

include/linux/sched.h.

90

 struct task_struct {
 /* other definitions */
 struct thread_info *thread_info;
 int prio, static_prio;
 struct list_head run_list;
 prio_array_t *array;
 unsigned long policy;
 /* new pointer to EDF/gEDF runqueue */
 edf_queue_t *edf_queue;
 /* deadline of task, period of task, and execution time of task in ticks */
 unsigned long edf_deadline, edf_period, edf_length;
 struct list_head tasks;
 pid_t pid;
 unsigned long rt_priority;
 / other definitions */
 }

5.2.2 Adding a New System Call

The file entry.S contains all system-calls and low-level fault handling routines.

It also contains the timer-interrupt handler, as well as all interrupts and faults that

can result in a task-switch. A new system call is added in arch/i386/kernel/entry.S

as follows.

.long sys_sched_setscheduler_plus

5.2.3 Adding a New Structure and Several New Functions

Constants SCHED_EDF and SCHED_gEDF are defined to implement EDF

and gEDF scheduling policies. A new structure edf_param is created for

specifying real-time parameters, such as policy, period, length (i.e., execution

91

time), and deadline. Structure runqueue is modified to create a new queue called

edf_queue specifically for EDF/gEDF scheduling.

#define SCHED_NORMAL 0
#define SCHED_FIFO 1
#define SCHED_RR 2

Earliest deadline first real-time scheduling policies are defined as follows.

#define SCHED_EDF 3
#define SCHED_gEDF 4

The real-time task parameters are included in the new structure edf_param.

For our purposes here, the period of a real-time task is assumed to be the same

as its deadline.

struct edf_param {
 unsigned long policy;
 unsigned long period;

 unsigned long length;
 }

struct sched_param {
 int sched_priority
}

struct runqueue {
 spinlock_t lock
 unsigned long nr_running, nr_switches, expired_timestamp, nr_uninterruptible
 task_t *curr, *idle
 struct mm_struct *prev_mm
 prio_array_t *active, *expired, arrays[2]
 /* edf_queue is defined for running EDF and gEDF tasks. */

 edf_queue_t edf_queue
 /* other definitions */
 }

92

The new function dequeue_edf_task implements moving a task from

EDF/gEDF task queue for scheduling.

static inline void dequeue_edf_task (struct task_struct *p, edf_queue_t *edf_queue)
begin
 edf_queue->nr_active--
 list_del(&p->run_list)
end

Function enqueue_edf_task() adds a new task to the gEDF/EDF runtime

queue. Its main function is to insert a real-time task edf_queue based on

deadlines.

static inline void enqueue_edf_task(struct task_struct *p, edf_queue_t *edf_queue)
begin
 struct list_head *rt_queue = &edf_queue->queue
 if (list_empty(rt_queue)) then
 list_add_tail(&p->run_list, &edf_queue->queue)
 else
 unsigned long deadline = p->edf_deadline
 struct task_struct *tsk = 0, *n = 0
 struct list_head *tmp, *nxt
 list_for_each_safe(tmp, nxt, rt_queue) do
 tsk = list_entry(tmp, struct task_struct, run_list)
 if (deadline < tsk->edf_deadline) then break
 n = tsk
 enddo
 if (n) then
 list_add(&p->run_list, &n->run_list)
 else
 list_add_tail(&p->run_list, &tsk->run_list)
 endif
 endif
 edf_queue->nr_active++
 p->edf_queue = edf_queue
end

93

In the above enqueue_edf_task() function, I use linked-list structure of the

Linux kernel API (Application Programming Interface) for implementing queues. It

is possible to improve the performance of the implementation using heaps (or a

binary tree structure) so that tasks with earliest deadline and tasks with shortest

jobs can appear at the top of the heap(s. Heap structures can be implemented

with dynamic memory allocation with kmalloc() function of Linux kernels.

Compared with the original Linux or other RTOS scheduling functions, the

modified schedule() is rewritten with the new gEDF scheduling feature. Usually,

in schedule(), the task at the head of the queue has the minimum deadline and is

selected for execution. In our gEDF approach, this function must perform

additional computation to identify a task with the shortest execution time. While it

is possible that the additional computation can increase the scheduling overhead,

since we anticipate very small number of jobs in each group (or our gEDF

groups), the actual search to find the shortest job should not consume excessive

computing resources. Context switching in the Linux kernel is performed by the

function schedule(). In addition, function schedule() needs to perform several

other comparisons to determine if a new task needs to be scheduled. Thus, I feel

that the added overhead of finding a shortest job by gEDF adds a very small

amount of computing time.

Depending upon the length of jiffy (i.e. the duration of one tick of the system

timer interrupt. Usually, it is 10ms or 1ms in Linux), the function schedule() may

be called more than once during a task execution. Therefore, for the multiple

94

callings, the schedule() function can be optimized to improve its performance.

When a new real-time task arrives, the selection of the task with the minimum

execution time within a group is invoked. Otherwise, the task selected previously

is used. The key part of the function is shown as pseudo code.

 asmlinkage void schedule(void)
begin

/* other definitions */
array = rq->active

 edf_queue = &rq->edf_queue
 int pick_edf_one = 0
 if (unlikely(edf_queue->nr_active)) then
 q = &edf_queue->queue
 list_for_each_safe(tmp, nxt, q) do
 tsk = list_entry(tmp, task_t, run_list)
 if ((tsk->edf_deadline + Tr*tsk->edf_period) < (jiffies + tsk->edf_length)) then
 deactivate_task(tsk, rq)

else
 pick_edf_one = 1

 if (tsk->policy == SCHED_gEDF) then
 if (first_element == 1) then
 first_element = 0
 d1 = tsk->edf_deadline
 D1 = tsk->edf_deadline - jiffies
 min_edf_length = tsk->edf_length
 min_task = tsk
 endif
 if ((tsk->edf_deadline - d1) > (Gr*D1)) then break
 if (tsk->edf_length < min_edf_length) then
 min_edf_length = tsk->edf_length
 min_task = tsk
 endif
 endif
 endif
 enddo
 if (pick_edf_one == 1) then
 if (prev->policy == SCHED_gEDF) then
 next = min_task
 else
 next = list_entry(edf_queue->queue.next, task_t, run_list)
 endif
 goto switch_tasks
 endif
 endif
 /* other part */
 switch_tasks:
 /* other part */
 end

95

As stated above, heap structures can be used instead of linked lists to

improve implementation performance of our algorithms.

A new system call, sys_sched_setscheduler_plus, is available to run real-

time applications. In this system call, structures task_struct, sched_param, and

edf_param are used. In addition, a variable edf_queue of type edf_queue is

defined. A variable array of real-time priority queue prio_array is defined for other

Linux real-time tasks. A variable rq of runqueue is defined. In the following

function, the parameters defined in the structure edf_param are copied to

structure task_struct.

asmlinkage int sys_sched_setscheduler_plus(pid_t pid,
 struct edf_param __user *edf, struct sched_param __user *param)
begin

 struct task_struct *p
 struct sched_param lp
 struct edf_param ep
 edf_queue_t *edf_queue
 prio_array_t *array
 runqueue_t *rq
 /* other definitions */
 p = find_process_by_pid(pid)
 rq = task_rq_lock(p, &flags)

/* other preparation */
edf_queue = p->edf_queue

 array = p->array
 if (edf_queue || array) then
 deactivate_task(p, task_rq(p))
 endif
 if (array) p->array = NULL
 p->rt_priority = lp.sched_priority

p->static_prio = p->prio = (int) (MAX_USER_RT_PRIO - 1 - p->rt_priority)
p->policy = ep.policy

 p->time_slice = task_timeslice(p)
 p->edf_period = period_ticks
 p->edf_length = NS_TO_JIFFIES(ep.length)
 p->edf_deadline = jiffies + p->edf_period
 if (edf_queue || array) then

96

 __activate_task(p, task_rq(p))
 endif
 /* others */
end

5.3 The Complexity of gEDF in the Linux Kernel

Ingo Molnar [39] introduced an O(1) scheduler, as a patch for Linux 2.4. This

is now accepted by most Linux 2.6 systems. It provides an O(1) scheduling

algorithm and it can handle loads more smoothly. The approach is to use two

split arrays, an active array, and an expired array. The active array contains all

tasks that are affined to the CPU, and the expired array contains all tasks that

have used up their time slices.

On the other hand, EDF and gEDF cannot guarantee O(1) complexity, since

these algorithms require O(n) search to Enqueue newly arriving jobs. Although

EDF and gEDF appear to have higher complexity, I feel that in most practical

real-time systems, n is not large and thus the actual execution overheads

associated with our new algorithms are not excessive. In addition, as I discussed

in Section 5.3, if heap data structures, instead of list, are used for the EDF and

gEDF queue operations, the algorithm complexity of EDF and gEDF will

decrease to O(log(n)).

97

5.4 Real-Time Benchmark Testing

For the experiments I use Red Hat Inc. Fedora Core/Linux 2.6 with our EDF

and gEDF enhancements running on a desktop CPU using AMD (Advanced

Micro Devices) Athlon XP 1800+.

Soft real-time tolerance Tr is set to 10%. Group range of gEDF, that is, Gr, is

set to 0.4. The applications for benchmarking are chosen from the embedded

applications benchmark suite, called MiBench [40, 41], which is similar to the

Embedded Microprocessor Benchmarking Consortium (EEMBC) [42].

Typical hard real-time applications, such as proportional, integral, and

derivative (PID) control, are used in control systems. Soft real-time applications

can be found in many areas. Multimedia and telecommunication are examples of

soft real-time applications. Four well-known real-time applications are selected

for as our first set of experiments. I designate these benchmarks as test suite 1.

These programs are MPEG (Moving Picture Experts Group), GSM (Global

Standards for Mobile) encode and GSM decode, and APCM (Adaptive

Differential Pulse Code Modulation). MPEG Decode, Mad for short, is a high-

quality MPEG audio decoder. It currently supports MPEG-1 and the MPEG-2

extensions at lower sampling frequencies, as well as the MPEG 2.5 format. All

three audio layers (Layer I, Layer II, and Layer III or MP3) are fully implemented.

Typically, thirty frames per second are needed for normal operation. Therefore,

the deadline is set to 30 milliseconds in our experiments. GSM encode and

decode are the Global Standards for Mobile (GSM) communications used in

98

Europe and other continents. It uses a combination of time- and frequency-

division multiple access (TDMA/FDMA) to encode or decode data streams.

According to the standard, GSM decode and encode have 20 or 40 milliseconds

deadlines. Adaptive differential pulse code modulation (ADPCM) is a variation of

the well-known standard pulse code modulation (PCM). A common

implementation takes 16-bit linear PCM samples and converts them into 4-bit

samples, yielding a compression rate of 4:1. ADPCM is the core part of

G.726/VoIP technology. The deadline is set to 20 milliseconds.

 The average execution times of the selected benchmarks are shown in

Table 5.1. The executions times are derived by executing the programs on our

target computing platform.

99

Table 5.1: Real-time benchmark suite 1

Benchmark Name

Deadline Di (ms)

Average

Execution Time ei
(ms)

MPEG Decode 33 6

GSM Encode 20/40 12

GSM Decode 20/40 5

ADPCM Encode

20 8

Table 5.2: Real-time benchmark suite 1 – time constraints

Load

Benchmark

Di (ms)

ei (ms)

MPEG Decode 33 6
GSM Encode 40 12
GSM Decode 40 5

Case 1, ρ 6= 1.00

ADPCM Encode 20 8
MPEG Decode 33 6
GSM Encode 40 12
GSM Decode 20 5

Case 2, ρ = 1.13

ADPCM Encode 20 8
MPEG Decode 33 6
GSM Encode 20 12
GSM Decode 40 5

Case 3, ρ = 1.31

ADPCM Encode 20 8
MPEG Decode 33 6
GSM Encode 20 12
GSM Decode 20 5

Case 4, ρ = 1.43

ADPCM Encode 20 8

6 ρ = Σei / Di, the utilization or load of the system (when Di = Pi, where Pi is the period of a task).

100

Based on the deadlines of the applications in test suite 1, there are actually

four cases representing four different system loads. I use (VET, VD) to describe

each application, the first value VET represents the average execution time of the

real-time application and the second value VD represents the deadline of the real-

time application. The following lists the four cases. ρ is the load or utilization. As I

claim, EDF performs poorly in overload (ρ > 1) situations. I validated this claim in

experiments.

Case 1 (ρ = 1.00):
MPEG Decode: (6, 33)
GSM Encode: (12, 40)
GSM Decode: (5, 40)
ADPCM Encode: (8, 20)

Case 2 (ρ = 1.13):
MPEG Decode: (6, 33)
GSM Encode: (12, 40)
GSM Decode: (5, 20)
ADPCM Encode: (8, 20)

Case 3 (ρ = 1.31):
MPEG Decode: (6, 33)
GSM Encode: (12, 20)
GSM Decode: (5, 40)
ADPCM Encode: (8, 20)

Case 4 (ρ = 1.43):
MPEG Decode: (6, 33)
GSM Encode: (12, 20)
GSM Decode: (5, 20)
ADPCM Encode: (8, 20)

The results of our first experiment are shows in Table 5.3.

101

Table 5.3: Real-time benchmark suite 1 - performances of EDF/gEDF

Load

Success Ratio of

EDFγEDF

Success Ratio of
gEDFγgEDF

Success-Ratio

Performance Factor
ηγ = γgEDF / γEDF

Case 1, ρ = 1.00 0.981061 0.981061 100%
Case 2, ρ = 1.13 0.878981 0.885350 101%
Case 3, ρ = 1.31 0.770701 0.824841 107%
Case 4, ρ = 1.43 0.681319 0.793956 117%

When the load is 1, the success ratio of EDF and the success ratio of gEDF

are about the same. When the system is slightly overloaded (1.13), gEDF

outperforms EDF slightly. It should be noted that our test environment contains

only 4 programs and thus the success rates are limited by this number. When the

load increases to 1.31 and 1.43, gEDF shows even higher success rates than

EDF and results in 107% and 117% improvements. I am confident that with more

jobs in the suite, gEDF will consistently outperform EDF in overloaded conditions.

In the second experiment, I added more benchmark programs to our suite of

benchmarks and I refer to this set as test suite 2. I added JPEG, CRC32 and

Lame. JPEG is a standard, lossy compression algorithm. It is included in

MiBench because it is a representative algorithm for image compression and

decompression and is commonly used for viewing images embedded in

documents. The deadline is set to 30 milliseconds. CRC32 benchmark performs

a 32-bit cyclic redundancy check (CRC). CRC checks are often used to detect

102

errors in data transmission. Assuming 15 frames per second are needed to

transfer, the deadline is set to 67 milliseconds. Lame is a GNU general public

licensed MP3 encoder that supports constant, average and variable bit-rate

encoding. Assuming that 5 wave clips per second are needed to play, I set the

deadline to 200 milliseconds.

Table 5.4: Real-time benchmark suite 2 – time constraints

Benchmark Name

Di (ms)

ei (ms)

MPEG Decode 33 6

GSM Encode 40 12

GSM Decode 40 5

ADPCM Encode

20 8

JPEG Decode 30 2

JPEG Encode 30 6

CRC32 67 11

MP3 Encode 200 38

103

Table 5.5: Real-time benchmark suite 2 - performances of EDF/gEDF

Load

Success Ratio of

EDFγEDF

Success Ratio of
gEDFγgEDF

Success-Ratio

Performance Factor
ηγ = γgEDF / γEDF

ρ = 1.63 0.558659 0.639020 114%

The test results from our second experiment are shown in Table 5.5. As can

be seen, the success ratio of gEDF is 114% higher than that of EDF.

The following two figures, Figures 5.1 and 5.2, present the results

graphically.

0

0.2

0.4

0.6

0.8

1

1 1.13 1.31 1.43 1.63

Load

S
uc

ce
ss

 R
at

io

EDF
gEDF

Figure 5.1: Performance comparison of EDF and gEDF in success ratio when ρ =
1.00, 1.13, 1.31, 1.41, and 1.63.

104

90 100 110 120

1

1.13

1.31

1.43

1.63

Lo
ad

gEDF's Success Ratio/EDF's Success Ratio

Percentage

Figure 5.2: ηγ = γgEDF / γEDF = 100%, 101%, 107%, 117%, and 114% when ρ =
1.00, 1.13, 1.31, 1.41, and 1.63.

105

CHAPTER 6

CONCLUSIONS

In this dissertation, I presented a new real-time scheduling algorithm that

combines shortest job first scheduling approach with the earliest deadline first

scheduling algorithm. We grouped together tasks with deadlines that are very

close to each other, and scheduled jobs within a group based on using SJF

scheduling. Based on the experimental results included in this dissertation, I

conclude that group EDF results in higher success rates (that is, the number of

jobs that have completed successfully before their deadlines) as well as in faster

response times.

It has been known that while EDF produces an optimum schedule (if one is

available) for systems using preemptive scheduling, EDF is not as widely used

for non-preemptive systems. I believe that for soft real-time systems that are

implemented on multithreaded processors, non-preemptive scheduling is more

efficient. Although EDF produces practically acceptable performance even for

non-preemptive systems when the system is underloaded, EDF performs very

poorly when the system is heavily loaded. Our gEDF algorithm performs as well

as EDF in terms of success ratios when a system is underloaded. Even on

systems that are underloaded, gEDF shows higher success rates than EDF

106

when dealing with soft real-time tasks (using higher deadline tolerances). In

addition, gEDF consistently outperforms EDF in overloaded systems.

In this dissertation, I also compared gEDF with schemes that using adaptive

scheduling algorithms often used in conjunction with EDF when the system is

overloaded. Among these I considered the best-effort and the guarantee

algorithms. In general, gEDF, which can be used under all system loads,

performs as well as or better than EDF and adaptive algorithms such as best-

effort and guarantee schemes. It should be remembered that these adaptive

algorithms require the ability to accurately measure system loads so that the

overloaded conditions can be detected. In most practical workloads this is very

difficult, particularly if the workload consists of periodic, aperiodic and sporadic

jobs, or if the system consists of both real-time and non-real-time jobs. Moreover,

estimating system load based on worst-case execution times leads to under-

utilizations of the system resources. These problems are not encountered by

gEDF, since there is no need to estimate system load or to switch between EDF

and an adaptive method in overloaded conditions.

Last, I modified the Linux kernel scheduler to implement gEDF scheduling

policy for real-time processes. I tested several real benchmarks and our test

results show that gEDF can be used effectively in real world systems.

The group range (Gr) is an important factor in the gEDF algorithm. For

instance, when Gr is very large to include all the tasks, gEDF degenerates to be

SJF; and if Gr is set to 0, gEDF degenerates to be EDF. Figure 4.14 and Figure

107

4.15 show when deadline tolerance (Tr) is 0.1 and 0.5, and Gr is between 0.2 to

1.0, gEDF obtains the near optimal performance. However, the optimal value for

Gr depends on several factors that depend on the application. These factors

include the variations among task execution times, inter-arrival times and task

deadlines. It may be possible to derive analytical models that show the

dependence of Gr on these parameters (specified as mean values of underlying

probability distributions).

I have shown that the gEDF algorithm can be applied in uniprocessor

systems for soft real-time systems. In our future work, I will explore the

applicability of gEDF algorithm for multi-processors systems as well as

decoupled architectures such as the scheduled dataflow (SDF) architecture,

which contains a SP that accesses memory and an EP that executes

computations [4].

Because EDF is not optimal for multiprocessor real-time systems [43], I will

explore if gEDF can be used to obtain acceptable (and near optimal) results for

multiprocessor systems with soft real-time tasks. While the EDF scheme can be

used to schedule dynamic groups on multiprocessors, an optimal or near optimal

algorithm may be adopted to schedule jobs distributed on different processors

within each dynamic group. I hope to show that gEDF results in higher, success

ratios and response times in underloaded and overloaded situations.

In fact, exploring different scheduling scheme applied within each gEDF

group is another promising research of applying the gEDF scenario. Scheme

108

other than SJF may be used appropriately for the real-time systems depending

an application domain. For example it may be necessary to reduce overall power

consumption and one may need to explore a scheduling scheme that minimizes

the power consumed by tasks in a group, accounting for any power consumed by

tasks waiting in a queue.

109

 110

APPENDIX A

BUILDING THE LINUX KERNEL

A1 The Linux Kernel Source and Configuration

The Linux kernels are written and maintained by Linus Torvalds with

assistance from a loosely-knit team of hackers across the Net. The latest stable

version of the Linux kernel can be downloaded from the Linux kernel archives

website [44] and all the previous versions can be found on the mirror web sites

listed under the directory [45]. I downloaded Linux kernel 2.6.0 from a mirror

kernel web site [46]. The Linux distributions can be downloaded free from the

web site [47]. I use the distribution, i.e., Fedora core, from Red Hat Inc. All the

Fedora versions can also be found on the mirror web sites [48]. I downloaded

Fedora core 1/kernel v2.4 and then upgraded it to kernel v2.6. The kernel tarball

is distributed in both GNU zip (gzip) and bzip2 format. Bzip2 is the preferred

format.

Assuming the old kernel with the Linux distribution is v2.4.22, and the

downloaded kernel is located at /usr/src directory,

$ su root
cd /usr/src
tar xvjf linux-2.6.0.tar.bz2
cd linux-2.6.0
make mrproper

It’s a smart idea to use an old configuration of the distribution as a head start

because it could take dozens of minutes to go through all of the configurations

diligently.

cp /boot/config-2.4.22-1.2115.nptl .config
make menuconfig

111

Then, make sure to choose the correct processor type, and to check the

Linux kernel hacking option. Finally, save and exit.

A2 Compiling the Linux Kernel

After successful configuration, open Makefile. The first four statements

should be:

VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 0
EXTRAVERSION = -x

In the fourth statement, x can be set to an appropriate name. For instance, it

can be set as EXTRAVERSION = -edf or EXTRAVERSION = -gedf when a new

version with EDF scheduling policy or gEDF scheduling policy of the Linux kernel

is to be generated, while the older versions that generated before are also

needed to be kept. If the new version of the Linux kernel has some critical

problem or crashes, the older version can be rolled back to run instead of

destroying the whole system.

make bzImage
make modules
make modules_install
/sbin/mkinitrd /boot/initrd-2.6.0-x.img 2.6.0-x
make install

If the modification of the Linux kernel that does not affect the modules and

the related structures, and if the same kernel version is to be generated, it may

not be necessary to execute all the steps above. The most time-consuming

“make modules” and “make modules_install” steps may not execute. That is a

112

very efficient way to change and debug the kernel without waiting for a long

compiling time.

After compiling the Linux kernel, /boot/grub/grub.conf, the GRUB (Grand

Unified Bootloader) configuration file, will be the following,

Note that you do not have to rerun grub after making changes to this file
NOTICE: You have a /boot partition. This means that
all kernel and initrd paths are relative to /boot/, eg.
root (hd0,0)
kernel /vmlinuz-version ro root=/dev/hda2
initrd /initrd-version.img
#boot=/dev/hda
default=5
timeout=10
splashimage=(hd0,0)/grub/splash.xpm.gz
title Fedora Core (2.6.0-gedf)

root (hd0,0)
kernel /vmlinuz-2.6.0-gedf ro root=LABEL=/ hdc=ide-scsi rhgb
initrd /initrd-2.6.0-gedf.img

title Fedora Core (2.6.0-edf)
 root (hd0,0)
 kernel /vmlinuz-2.6.0-edf ro root=LABEL=/ hdc=ide-scsi rhgb
 initrd /initrd-2.6.0-edf.img
title Fedora Core (2.6.0)
 root (hd0,0)
 kernel /vmlinuz-2.6.0 ro root=LABEL=/ hdc=ide-scsi rhgb
 initrd /initrd-2.6.0.img
title Fedora Core (2.4.22-1.2115.nptl)
 root (hd0,0)
 kernel /vmlinuz-2.4.22-1.2115.nptl ro root=LABEL=/ hdc=ide-scsi rhgb
 initrd /initrd-2.4.22-1.2115.nptl.img

In our configuration of the Linux kernel, to make it suitable for our goal,

usually, the minimum configuration is set. However, it will be convenient to use

Universal Serial Bus (USB) or CD-ROM (Compact Disc-Read-Only Memory).

The following are the parameters in our system.

In the /etc/fstab file:

/dev/cdrom /mnt/cdrom udf,iso9600 noauto,owner, kudzu, ro 0 0
/dev/sda1 /mnt/usbstick vfat user,noauto,umask=0 0 0

113

For instance, for using USB device, use the command: mount /dev/sda1

/mnt/usbstick.

To debug the kernel bugs, it is straightforward and efficient to use printk(),

the kernel’s formatted print function, which is similar as printf() in C library. For

displaying the messages that printed by printk() in the Linux kernel, command

dmesg can be called. However, because the log buffer’s default size is 16KB, we

need to set the parameter CONFIG_LOG_BUF_SHIFT to 17 (i.e., 128KB) from

the original value 14 (i.e., 16KB).

114

 115

APPENDIX B

RUNNING REAL-TIME APPLICATIONS WITH gEDF POLICY

B1 Typical Real-Time Applications

The most common fixed-priority scheduling policies are:

FIFO - a task executes until it is finished, or a higher priority task wants to

run, but is never preempted by a task with the same priority.

Round robin - as above, a task is preempted if a higher priority task wants to

run. If there are several tasks of the same priority, each gets to run a predefined

amount of time and is then put last in the queue in order to allow the next task to

execute.

B2 Compiling Environment

I use GNU gcc. Its version is 3.3.2 20031022 (Red Hat Linux 3.3.2-1)

We also need to evacuate c header files in the directories /usr/include/asm

and usr/include/linux. Then, set up the Linux kernel header files to the above two

directories.

ln -s /usr/src/linux-2.6.0/include/asm-i386 /usr/include/asm
ln -s /usr/src/linux-2.6.0/include/linux /usr/include/linux

B3 Real-Time Program Interface

The following system calls are common real-time program interfaces: the

definitions for POSIX 1003.1b-1993 (aka POSIX.4) scheduling interface (1996-

2003, part of the GNU C Library).

Set scheduling parameters for a process,

extern int sched_setparam (__pid_t __pid, __const struct sched_param *__param)
 __THROW;

116

Retrieve scheduling parameters for a particular process,

extern int sched_getparam (__pid_t __pid, struct sched_param *__param) __THROW;

Set scheduling algorithm and/or parameters for a process,

extern int sched_setscheduler (__pid_t __pid, int __policy,
 __const struct sched_param *__param) __THROW;

Retrieve scheduling algorithm for a particular purpose,

extern int sched_getscheduler (__pid_t __pid) __THROW;

Yield the processor,

extern int sched_yield (void) __THROW;

Get maximum priority value for a scheduler.

extern int sched_get_priority_max (int __algorithm) __THROW;

Get minimum priority value for a scheduler.

extern int sched_get_priority_min (int __algorithm) __THROW;

Get the SCHED_RR interval for the named process.

extern int sched_rr_get_interval (__pid_t __pid, struct timespec *__t) __THROW;

B4 POSIX Extension of EDF and gEDF Scheduling Policy

Because the function sched_setscheduler_plus is not in the standard library

of POSIX yet, it is defined in the header file edf.h, which must be included in the

real-time applications with the gEDF policy.

#ifndef EDF_H
#define EDF_H
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>
#include <errno.h>
#include <sched.h>

117

struct edf_param {
 unsigned long policy;
 unsigned long period;
 unsigned long length;
}
inline int sched_setscheduler_plus (pid_t pid, struct edf_param *gedf,
 struct sched_param *param)
{

 long ret;
 __asm__ volatile ("int $0x80" : "=a" (ret) : "a" (__NR_sched_setscheduler_plus),
 "b" (pid), "c" (gedf), "d" (param));
 if ((unsigned long) ret >= (unsigned long) -125) {
 errno = -ret;
 ret = -1;
 }
 return (int) ret;
}
#endif
#endif

B5 Real-time Applications with gEDF Scheduling Policy

The following is a sample code in C style. Three processes of the real-time

applications are created and scheduled by the gEDF scheduling policy.

118

#include <sched.h>
#include "edf.h"
#define SCHED_EDF 3
#define SCHED_gEDF 4
struct sched_param schp;
struct edf_param edfp;
int main (int argc, char *argv[])
{
 /* set parameters of real-time applications */
 memset(&schp, 0, sizeof(schp));
 schp.sched_priority = sched_get_priority_max(<POLICY>);
 memset(&edfp, 0, sizeof(edfp));
 edfp.policy = <POLICY>;

/* skip some details of the definition here*/
/* create some processes continuously */
if (fork() == 0) {

 edfp.period = <PERIOD>;
 edfp.length = <ET>;
 sched_setscheduler_plus(0, &edfp, &schp);
 if (fork() == 0) {

 edfp.period = <PERIOD>;
 edfp.length = <ET>;
 sched_setscheduler_plus(0, &edfp, &schp);
 if (fork() == 0) {
 edfp.period = <PERIOD>;
 edfp.length = <ET>;
 sched_setscheduler_plus(0, &edfp, &schp);
 if (fork() == 0) {} else execl(<EXEP>);
 }
 else execl(<EXEP>);
 }
 else execl(<EXEP>);
 }
 /* other work */
 }

Note: <POLICY>: SCHED_gEDF/SCHED_EDF
<PERIOD>: Real-Time Period or Deadline
<ET>: Average Execution Time
<EXEP>: Executable Program

119

BIBLIOGRAPHY

[1] F. Balarin, L. Lavagno, P. Murthy, and A. S. Vincentelli, “Scheduling for

Embedded Real-Time Systems”, IEEE Design & Test of Computer,
January-March, 1998.

[2] J. H. Anderson, V. Bud, U. C. Devi, “An EDF-based Scheduling Algorithm

for Multiprocessor Soft Real-Time Systems”, 17th Euromicro Conference on
Real-Time Systems, 2005.

[3] R. Jain, C. J. Hughes, and S. V. Adve, “Soft Real-Time Scheduling on

Simultaneous Multithreaded Processors”, In Proceedings of the 23rd IEEE
International Real-Time Systems Symposium, December 2002.

[4] K. M. Kavi, R. Giorgi, and J. Arul, “Scheduled Dataflow: Execution

Paradigm, Architecture, and Performance Evaluation”, IEEE Transactions
on Computers, Vol. 50, No. 8, August 2001.

[5] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogramming in

a Hard-Real-Time Environment”, Journal of the ACM, Vol. 20. No. 1, pp. 46-
61.

[6] K. Jeffay and C. U. Martel, “On Non-Preemptive Scheduling of Periodic and

Sporadic Tasks”, Proceedings of the 12th IEEE Real-Time Systems
Symposium, San Antonio, Texas, December 1991, IEEE Computer Society
Press, pp. 129-139.

[7] M. R. Garey, D. S. Johnson, “Computer and Intractability, a Guide to the

Theory of NP-Completeness”, W. H. Freeman Company, San Francisco,
1979.

[8] L. Georges, P. Muehlethaler, N. Rivierre, “A Few Results on Non-

Preemptive Real-time Scheduling”, INRIA Research Report nRR3926,
2000.

[9] C. D. Locke, “Best-Effort Decision Making for Real-Time Scheduling”, CMU-

CS-86-134 (PhD Thesis), Computer Science Department, Carnegie-Mellon
University, 1986.

120

[10] J. K. Dey, J. Kurose, and D. Towsley, “Online Processor Scheduling for a

Class of IRIS (Increasing Reward with Increasing Service) Real-Time
Tasks”, Tech. Rep. 93-09, Department of Computer Science, University of
Massachusetts, Amherst, Jan 1993.

[11] S. Zilberstein, “Using Anytime Algorithms in Intelligent Systems”, AI

Magazine, fall 1996, pp.71-83.

[12] T. Abdelzaher, V. Sharma, and C. Lu, “A Utilization Bound for Aperiodic

Tasks and Priority Driven Scheduling”, IEEE Trans. On Computers, March
2004.

[13] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm, “The Influence

of Processor Architecture on the Design and the Results of WCET Tools”,
Proceedings of IEEE July 2003, Special Issue on Real-time Systems.

[14] G. Bernat, A. Collin, and S. M. Petters, “WCET Analysis of Probabilistic

Hard Real-Time Systems”, IEEE Real-Time Systems Symposium 2002,
279-288.

[15] J. Nieh and M. S. Lam, “A SMART Scheduler for Multimedia Applications”,

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

[16] G. Buttazzo, M. Spuri, and F. Sensini, Scuola Normale Superiore, Pisa,

Italy, “Value vs. Deadline Scheduling in Overload Conditions”, 16th IEEE
Real-Time Systems Symposium (RTSS’95) December 05-07, 1995.

[17] S. K. Baruah and J. R. Haritsa, “Scheduling for Overload in Real-Time

Systems”, IEEE Transactions on Computers, Vol. 46, No. 9, September
1997.

[18] A. L. N. Reddy and J. Wyllie, “Disk Scheduling in Multimedia I/O system”, In

Proceedings of ACM multimedia’93, Anaheim, CA, 225-234, August 1993.

[19] B. D. Doytchinov, J. P. Lehoczky, and S. E. Shreve, “Real-Time Queues in

Heavy Traffic with Earliest-Deadline-First Queue Discipline”, Annals of
Applied Probability, No. 11, 2001.

[20] J. P. Hansen, H. Zhu, J. P. Lehoczky, and R. Rajkumar, “Quantized EDF

Scheduling in a Stochastic Environment”, Proceedings of the International
Parallel and Distributed Processing Symposium, 2002.

121

[21] W. T. Chan, T. W Lam, K. S. Liu, P. W. H. Wong, “Resource augmentation

analysis of SRPT and SJF for minimizing total stretch in multiprocessor
scheduling”, University of Liverpool, UK.

[22] P. Brucker, “Scheduling Algorithms”, Third Edition, Springer, 2001.

[23] J. P. Lehoczky, L. Sha, and Y. Ding, “The Rate Monotonic Scheduling

Algorithms – Exact Characterization and Average-Case Behavior”,
Proceedings IEEE Real-Time Systems Symposium, Santa Monica,
California, 1989.

[24] N. C. Audsley, A. Burns, M. F. Richardson, A. J. Wellings “Hard Real-Time

Scheduling: The Deadline-Monotonic Approach (1991)”, Proceedings 8th
IEEE Workshop on Real-Time Operating Systems and Software

[25] L. Sha, R. Rajkumar, and S. S. Sathaye, “Generalized Rate-Monotonic

Scheduling Theory: A Framework for Developing Real-Time Systems”,
Proceedings of the IEEE, Jan. 1994.

[26] J. R. Jackson, “Scheduling a Production Line to Minimize Maximum

Tardiness”, Research Report 43, Management Science Research Project,
University of California, Los Angels, 1955.

[27] J. K. Lenstra and A. H. G. Rinnooy Kan, “Optimization and Approximation in

Deterministic Sequencing and Scheduling: A Survey”, Discrete Math, No. 5,
1977, pp. 287-326.

[28] G. Buttazzo, M. Spuri, F. Sensini, “Value vs. Deadline Scheduling in

Overload Conditions”, Proceedings of the 16th IEEE Real-Time Systems
Symposium (RTSS 1995), Pisa, Italy, pp. 90-99, December 5-7, 1995.

[29] J. A. Stankovic, M. Spuri, M. D. Natale, G. C. Buttazzo, “Implications of

Classical Scheduling Results for Real-Time Systems”, Computer, Volume
28, Number 6, June 1995.

[30] S. Baskiyar, N. Meghanathan, “A Survey of Contemporary Real-Time

Operating Systmes”, Informatica 29 (2005) 233-240.

[31] IEEE Information technology - Portable Operating System Interface (POSIX)

- Part 1: Base Definitions; Part 2: System Interfaces; Part 3: Shell and
Utilities; Part 4: Rationale.

 http://standards.ieee.org/catalog/olis/posix.html

122

[32] IEEE Information Technology – Portable Operating System Interface

(POSIX): IEEE/ANSI Std 1003.1, 1996 Edition.

[33] http://www.fsmlabs.com

[34] K. Lin, Y. C. Wang, “The Design and Implementation of Real-Time

Schedulers in RED-Linux”, Proceedings of the IEEE, Vol. 91, No. 7, July
2003.

[35] W. Dinkel, D. Niehaus, M. Frisbie, J. Woltersdorf, “KURT-Linux User

Manual”, Information and Telecommunication Technology Center, University
of Kansas, 2002.

[36] MATLAB Software and Documents, http://www.mathworks.com.

[37] M. Beck, H. Bohme, M. Dziadzka, U. Kunitz, R. Magnus, D. Verworner,

“Linux Kernel Internals”, Second Edition, Addison Wesley Longman 1998.

[38] R. Love, “Linux Kernel Development”, 2nd Edition, Novell Press, 2005.

[39] I. Molnar, “Goals, Design and Implementation of the New Ultra-Scalable

O(1) Scheduler”, 2002.

[40] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, “MiBench: A free,

Commercially Representative Embedded Benchmark Suite”, IEEE 4th
Annual Workshop on Workload Characterization, 2001

[41] http://www.eecs.umich.edu/mibench/.

[42] EDN Embedded Microprocessor Benchmark Consortium,

http://www.eembc.org

[43] J. H. Anderson, V. Bud, U. C. Devi, “An EDF-based Scheduling Algorithm

for Multiprocessor Soft Real-time Systems”, Proceedings of 17th Euromicro
Conference on Real-Time Systems, 2005 (ECRTS 2005).

[44] http://www.kernel.org

[45] The Previous Versions of the Linux Kernel:

http://www.kernel.org/mirrors/

[46] One Mirror Web Site for the Linux Kernel:

http://mirror.doit.wisc.edu/mirrors/linux/kernel/v2.6/

123

http://www.fsmlabs.com/
http://www.kernel.org/
http://www.kernel.org/mirrors/
http://mirror.doit.wisc.edu/mirrors/linux/kernel/v2.6/

[47] The Linux Distributions: http://www.linux.org

[48] Red Hat Inc. Linux Distributions, Fedora Cores:

http://fedora.redhat.com/download/mirrors.html

124

http://www.linux.org/
http://fedora.redhat.com/download/mirrors.html

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	1. INTRODUCTION
	2. RELATED WORK
	2.1 Overview
	2.2 FIFO/FCFS, RR, SJF: Basic Real-Time Scheduling
	2.3 Static Priority Scheduling: Rate-Monotonic
	2.4 Dynamic Priority Scheduling: EDF
	2.5 Non-preemptive Scheduling
	2.6 Real-Time Algorithm Metrics
	2.7 Real-Time Systems
	2.7.1 Hard Real-Time Systems
	2.7.2 Soft Real-Time Systems
	2.7.3 Scheduling in Real-Time System
	2.7.4 Priority in the EDF Scheduling

	2.8 Real-Time Operating Systems
	2.8.1 The Requirements of RTOS
	2.8.2 POSIX 1003.1 for RTOS
	2.8.3 RTOS Examples

	3. REAL-TIME SYSTEM MODEL
	3.1 Definitions
	3.2 gEDF Algorithm
	3.2.1 Description and Pseudo Code
	3.2.2 Complexity of the gEDF Algorithm
	3.2.3 Analysis of the gEDF Algorithm

	4. NUMERICAL RESULTS
	4.1 Comparison of gEDF and EDF
	4.1.1 Experiment 1 – Effect of Deadline Tolerance (Tr)
	4.1.2 Experiment 2 - Effect of Deadline on Success Rates (()
	4.1.3 Experiment 3 - Effect of Group Range
	4.1.4 Experiment 4 ¨C Effect of the Value
	4.1.5 Experiment 5 ¨C Effect of Tr on Res
	4.1.6 Experiment 6 - The Effect of Tight Deadlines on (
	4.1.7 Experiment 7 - The Effect of Single (e on (

	4.2 The Effect of Multiple Expected Execution Times
	4.2.1 Experiment 8 ¨C The Effect of Multi
	4.2.2 Experiment 9 ¨C The Effect of Perce

	4.3 Comparisons of gEDF, Best-Effort, and Guarantee Algorith
	4.3.1 Experiment 10 - Comparison of (of gEDF and Best-Effort
	4.3.2 Experiment 11 ¨C Comparison of \(
	4.3.3 Experiment 12 ¨C Comparison of \(
	4.3.4 Experiment 13 ¨C Comparison of \(

	5. IMPLEMENTATION OF gEDF IN THE LINUX KERNEL
	5.1 Enhancing Linux with the gEDF Scheduling Scheme
	5.2 Modification of the Linux Kernel
	5.2.1 Modification of Structure task_struct in the Linux Ker
	5.2.2 Adding a New System Call
	5.2.3 Adding a New Structure and Several New Functions

	5.3 The Complexity of gEDF in the Linux Kernel
	5.4 Real-Time Benchmark Testing

	6. CONCLUSIONS
	APPENDICES
	A: BUILDING THE LINUX KERNEL
	B: RUNNING REAL-TIME APPLICATIONS WITH gEDF POLICY

	BIBLIOGRAPHY

