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CHAPTER 1

INTRODUCTION

1.1. Homeomorphic Measures

Two measures µ and ν defined on the family of Borel subsets of a topological space X are

said to be homeomorphic or topologically equivalent provided there exists a homeomorphism

h of X onto X such that µ is the image measure of ν under h: µ = νh−1. This means

µ(E) = ν(h−1(E)) for each Borel subset E of X.

One may be interested in the structure of these equivalence classes of measures or in a

particular equivalence class. For example, a probability measure µ on [0, 1] is topologically

equivalent to Lebesgue measure if and only if µ gives every point measure 0 and every non-

empty open set positive measure. (The distribution function of µ is a homeomorphism on

[0, 1] witnessing this equivalence.) This is a special case of a result of Oxtoby and Ulam [15],

who characterized those probability measures µ on finite dimensional cubes [0, 1]n which are

homeomorphic to Lebesgue measure. For this to be so, µ must give points measure 0, non-

empty open sets positive measure, and the boundary of the cube measure 0. Later Oxtoby

and Prasad [14] extended this result to the Hilbert cube. These results have been extended

and applied to various manifolds. The book of Alpern and Prasad [2] is an excellent source

for these developments. Oxtoby [13] also characterized those probability measures on the

space of irrational numbers in [0, 1] which are homeomorphic to Lebesgue measure as those

which give points measure zero and open sets positive measure.

It turns out that the Cantor space is more rigid than the above spaces for measure

homeomorphisms – it is not true that two probability measures on C = {0, 1}N which give

points measure 0 and non-empty open sets positive measure are homeomorphic. Since C has

countably many clopen sets, the set of values taken on clopen sets by such a measure will

1



be a countable dense subset of [0, 1]. We will refer to this set as the clopen values set of such

a measure. Even two well behaved measures on C will typically have different clopen values

sets, and so cannot be homeomorphic. A first conjecture at getting around this may be to

ask whether any two measures on C with the same clopen values sets are homeomorphic.

This turns out to fail, and it appears unlikely that adding additional conditions will provide

a satisfactory theorem, as in some sense there are just too many measures possible. We

therefore restrict our attention to a particular class of measures which arise frequently.

1.2. Bernoulli Trial Measure

Regard C = {0, 1}N as the set of all infinite words on the alphabet {0, 1}, and for

e = e1e2 . . . en a finite word, we let [e] denote the set of all infinite words beginning with e.

We refer to such sets as cylinder sets, and note they form a basis for C. We say the length

of such a set is the length of the word e.

If 0 ≤ r ≤ 1, we let µr denote Bernoulli trial measure with probability r of success,

sometimes called coin tossing measure. To be specific, µr is the unique measure for which

the sets {π−1
n (1)}n≥1 are independent, and each has measure r. Note that if e is a word of

length n having i occurences of the letter 1, then µr([e]) = ri(1− r)n−i.

When the measures µr and µs are homeomorphic, we write r ∼top s. In 1979, Oxtoby

began to publish papers investigating this equivalence relation on [0, 1]. In this paper we

give a complete characterization of when two such measures are homeomorphic, answering

Oxtoby’s question.

In Chapter 2 we define terminology, review some previous results, and prove a few prelim-

inary lemmas, finally stating our main result, that four statements are equivalent. Chapters 3

through 5 prove this result, each addressing one of the three non-trivial implications. Chap-

ter 6 provides some examples and additional results, and raises some questions for further

research.
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CHAPTER 2

THE MAIN THEOREM

2.1. Terminology

When discussing Bernoulli trial measures on C, the following notation used by Austin [3]

is valuable.

Definition 2.1. A polynomial p is said to be a partition polynomial if it is expressible in

the form

p(x) =
n∑

i=0

ai xi(1− x)n−i,

where n is a non-negative integer and each ai is an integer with 0 ≤ ai ≤
(

n
i

)
. The class of

all partition polynomials will be denoted as P .

Any clopen set C in C is expressible as a finite union of basic open (clopen) sets of the

same length, say n, and the µr measure of one of these basic open sets [ej] is ri(1 − r)n−i,

where i is the number of 1’s in the string ej defining this cylinder set. The maximum number

of cylinder sets of length n in C having i 1’s is
(

n
i

)
. This leads to the observation that, for

any clopen set C in C, there is a polynomial p ∈ P such that µr(C) = p(r) for all r ∈ [0, 1].

Likewise for any p ∈ P , there are many clopen sets which have this relationship. We will

describe such a clopen set as associated with p, or say that this is the polynomial associated

with this clopen set. For r ∈ [0, 1], we will let P(r) denote {p(r) : p ∈ P}. So P(r) is the

clopen values set for the measure µr.

Note that if 0 < r < 1, and C a clopen set in C, we may leave C fixed and vary r, in

which case, µr(C) is the partition polynomial associated with C. On the other hand, we

may leave r fixed and vary C, in which case we get the clopen values set for the measure
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µr. When we aren’t giving a name to the partition polynomial of C, we may refer to it as

µx(C).

Definition 2.2. Let 0 < r, s < 1. The number s is said to be binomially reducible to r

when there is a partition polynomial p such that s = p(r).

It is known that µs is continuously reducible to, or is a continuous image of, the measure

µr (i.e., µs = µr ◦ g−1 for some continuous g : C → C) if and only if s is binomially

reducible to r [10]. Note that this property is transitive, giving us that binomial reducibility

is transitive as well. (Theorem 2.6 will make it clear that partition polynomials are closed

under composition for a more transparent argument of this fact.) Transitivity tells us that

if s is binomially reducible to r, then every element of P(s) is as well. We collect these facts

in the following theorem.

Theorem 2.3. Let 0 ≤ r, s ≤ 1. The following are equivalent:

(i) s is binomially reducible to r.

(ii) s ∈ P(r).

(iii) P(s) ⊆ P(r).

(iv) µs is continously reducible to µr.

Thus, we have another natural equivalence relation on [0, 1].

Definition 2.4. Let 0 ≤ r, s ≤ 1. Then r is binomially equivalent to s, denoted r ∼bin s,

provided r is binomially reducible to s and s is binomially reducible to r, or, equivalently,

each of the measures µr and µs is a continuous image of the other.

Recalling the previous theorem, and that P(r) is the clopen values set for the measure

µr, we have that r and s are binomially equivalent if and only if the measures µr and µs

have the same clopen values set. Hence it is clear that binomial equivalence is a necessary

condition for topological equivalence. (In symbols, r ∼top s =⇒ r ∼bin s.) In a paper
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to appear, [3] Austin provided a particular example witnessing that it is not sufficient. We

discuss this example further in Chapter 6.

Notice that x and 1−x are partition polynomials, so that if r = s or if r = 1− s (and so

s = 1−r), then r and s are binomially equivalent. Also, r and s are topologically equivalent,

in the first case by the identity homeomorphism, and in the second by the homeomorphism

which switches 0’s and 1’s. When r = s or r = 1 − s, we will say that r and s are trivially

binomially equivalent, and are trivially topologically equivalent. We will also say µr and µs

are trivially homeomorphic, even though there are many homeomorphisms witnessing their

equivalence. (For example, any permutation of indices.)

Many cases of this problem have already been settled. If r and s are binomially equivalent,

then there are partition polynomials f and g such that r = f(s), and s = g(r). If r 6= s

and r 6= 1 − s, then f is non-linear, as the only linear partition polynomials are x and

1− x. (This can be argued directly, but will be clear after Theorem 2.6 which characterizes

partition polynomials.) Hence f ◦ g is non-linear, and in particular is not the identity. So

r = f ◦ g(r) is a non-trivial polynomial relation satisfied by r, and hence r and s must be

algebraic. Also, in this case r and s have the same algebraic degree. Moreover, r is an

algebraic integer if and only if s is. Huang [8] showed that if r is an algebraic integer of

degree 2, and r ∼bin s, then r = s or r = 1− s. In fact, Navarro-Bermudez [11] showed that

if r is rational or transcendental and r ∼bin s, then r = s or r = 1− s. We gather these facts

in the following theorem.

Theorem 2.5 (various authors). For r rational, transcendental, or an algebraic integer of

degree 2, the ∼top equivalence class containing r and the ∼bin equivalence class containing r

are both equal to {r, 1− r}.

On the other hand, it is known that for every n ≥ 3, there are algebraic integers r of

degree n such that the ∼bin equivalence class containing r has at least 4 elements [8]. (In

fact, Pinch [16] showed that, if n = 2k+1, then there is an algebraic integer r of degree n

with at least 2k distinct numbers binomially equivalent to it.) One example of these is the
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solution of

r3 + r2 − 1 = 0

lying in the open interval (0, 1). For this value of r, it turns out that s = r2 ∼bin r,

and Navarro-Bermudez and Oxtoby [12] proved that r ∼top s via a simple homeomorphism.

(Actually, a block code map.) This was the first nontrivial example of topologically equivalent

Bernoulli trial measures.

Further examples were found by Dougherty, Mauldin and Yingst in [18], where it was

argued that if r and s are binomially equivalent, and satisfy an additional property called

refinability, then r and s are topologically equivalent. A simple algebraic characterization of

refinability was proved, and this was used to provide examples of algebraic integers which

are topologically equivalent to at least n distinct numbers, for any large n. These examples

are reviewed in Chapter 6.

2.2. Partition Polynomials

Recall that partition polynomials are those of the form
∑n

i=0 aix
i(1 − x)n−i, for some n

and some integers 0 ≤ ai ≤
(

n
i

)
. Further recall that partition polynomials correspond with

clopen sets in C in the sense that if U is clopen, p(x) = µx(U) is a partition polynomial.

The partition polynomials can be manipulated in much the same way as their associated

clopen sets. A clopen set in C has a natural minimal length at which it can be written as a

finite union of cylinder sets each of the same length, but can be refined into a finite union of

smaller cylinder sets having a common larger length. Likewise, a partition polynomial has

what we can call its partition degree, the smallest n for which it can be expressed in “partition

form,” (the form of the definition) but can be represented for larger n by multiplying through

by (x) + (1− x).

Consider the matrix A = (aij)
n
i,j=0 where aij is the coefficient of xj in the expansion of

xi(1− x)n−i. The matrix A is triangular with 1’s on the diagonal. This matrix is invertible,

so we have {xi(1 − x)n−i}n
i=0 is a basis of the space of polynomials of degree ≤ n. Further,

this is an integer matrix with determinant 1, so such a polynomial has integer coefficients if
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and only if it has integer coefficients when expressed as a linear combination of this basis. We

therefore have that any polynomial p ∈ Z[x] of degree n or less can be expressed uniquely as

an integer linear combination of these. However, even if p is a partition polynomial, we can

have no expectation that for this smallest possible choice of n, the coefficients will fall into

the legal ranges for a partition polynomial. One example is p(x) = 3x(1 − x). This would

appear not to be a partition polynomial, as 3 >
(
2
1

)
, but we may multiply by (x) + (1 − x)

once and write p(x) = 3x(1 − x)2 + 3x2(1 − x), revealing that p actually is a partition

polynomial. Indeed, the partition degree of a partition polynomial can be much larger than

its actual degree. For example, the polynomial q(x) = 6x2(1− x) is a partition polynomial,

but its coefficients will not be in the correct ranges until expressed taking n = 14. Because

of these difficulties, the following theorem characterizing partition polynomials is especially

valuable. This theorem and the following one appeared previously in [18].

Theorem 2.6. If p is a polynomial with integer coefficients, then p is a partition polynomial

if and only if p maps (0, 1) into (0, 1), or p equals 0 or 1.

This theorem follows easily from a result of Hausdorff (originally in [7], but it may be

easier to find in [17], part 6 #49) that any polynomial which is positive on (−1, 1) can be

expressed as a finite sum
∑

ci(1+x)j(1−x)k with positive coefficients ci. The argument we

present includes a modification of the proof in [17].

Proof. If p(x) =
∑n

i=0 aix
i(1 − x)n−i is a partition polynomial, then either p = 0, or one

of the coefficients is positive, in which case p is positive on (0, 1). The same is true of

(1 − p)(x) =
∑n

i=0(
(

n
i

)
− ai)x

i(1 − x)n−i, so that either p < 1 on (0, 1), or p = 1. So one

direction is concluded.

Now, let p be a polynomial with integer coefficients which is positive on (0, 1). Then p can

be factored into linear and quadratic polynomials with real coefficients which are irreducible

over R[x]. None of these factors can have a root in (0, 1), so by changing signs of pairs if

necessary, we may assume each is positive on (0, 1). We first argue that for each of these,
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there is an n for which it can be written as a linear combination of {xi(1− x)n−i}n
i=0 using

non-negative (real) coefficients.

If f is a linear factor of p, say f(x) = ax + b. Then f(x) = (a + b)x + b(1− x). Since f

is positive on (0, 1), we will have that f(0) = b and f(1) = a + b are non-negative on [0, 1].

If f is a quadratic factor of p, say f(x) = ax2 + bx + c. Since f is irreducible over R[x],

we know that 0 and 1 aren’t roots of f . Therefore, f is positive on [0, 1]. We may find ε > 0

such that f is greater than ε on [0, 1]. We multiply each term of f by a binomial expansion

of 1:

f(x) =

(
ax2

n−2∑
i=0

(
n− 2

i

)
xn−2−i(1− x)i

)
+

(
bx

n−1∑
i=0

(
n− 1

i

)
xn−1−i(1− x)i

)
+

+

(
c

n∑
i=0

(
n

i

)
xn−i(1− x)i

)
=

=

[
n−2∑
i=0

(
a

(
n− 2

i

)
+ b

(
n− 1

i

)
+ c

(
n

i

))
xn−i(1− x)i

]
+(b + nc) x1(1−x)n−1+cx0(1−x)n.

We have that c = f(0) > 0, so that the final two coefficients will be non-negative for any

sufficiently large n. For the remaining coefficients:

a

(
n− 2

i

)
+ b

(
n− 1

i

)
+ c

(
n

i

)
=

(
n

i

)(
a
(n− i)(n− 1− i)

n(n− 1)
+ b

n− i

n
+ c

)
=

=

(
n

i

)[
f(

n− i

n
) + a

n− i

n

(
n− 1− i

n− 1
− n− i

n

)]
=

(
n

i

)[
f(

n− i

n
)− a

n− i

n

i

n

1

n− 1

]
>

>

(
n

i

)[
f(

n− i

n
)− |a|

n− 1

]
,

which will be positive for all i if n is so large that |a|
n−1

< ε.

Now note that if g1 is a non-negative linear combination of elements of Bn = {xi(1 −

x)n−i}n
i=0, and if g2 is a non-negative linear combination of Bm, then g1g2 is naturally a

non-negative linear combination of Bm+n. Thus p is expressible as a non-negative linear

combination of BN for some large N , as we have so written the factors of p. Now, if p maps

(0, 1) into (0, 1), then 1 − p is also positive on (0, 1), and by the same argument we may
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express 1 − p as a linear combination of elements of BM for some large M . By repeatedly

multiplying one of these by (x) + (1− x), we may assume M = N .

We have written p(x) =
∑N

i=0 aix
i(1− x)N−i, and (1− p)(x) =

∑N
i=0 bix

i(1− x)N−i, with

ai, bi ≥ 0. But p(x) = 1− (1− p)(x) =
∑N

i=0(
(

N
i

)
− bi)x

i(1− x)N−i. By linear independence,

we must have ai =
(

N
i

)
− bi, and so 0 ≤ ai ≤

(
N
i

)
. As mentioned before, p will have integer

coefficients in the usual sense if and only if ai is an integer for 0 ≤ i ≤ N . �

It’s clear that if C2 ⊆ C1 are clopen sets in C, then the measure properties of µr will give

that the associated partition polynomials satisfy p2 ≤ p1 on (0,1). With the above result,

we verify a sort of converse to this.

Theorem 2.7. If C2 is a clopen set in C whose associated polynomial is p2, and if p1 is a

polynomial with integer coefficients such that 0 < p1 < p2 on (0, 1), then there is a clopen

set C1 ⊂ C2 whose associated polynomial is p1.

Proof. Both p1 and p2 − p1 are partition polynomials. Let n be greater than the minimal

length of C1, and the partition degrees of p1, p2 and p2 − p1. So when written in partition

form at level n (as a linear combination of {xi(1−x)n−i}), the coefficients of p1 and of p2−p1

add to make the coefficients of p2. In particular, the coefficients of p1 are less than or equal

to the coefficients of p2. But the terms of this expression of p2 correspond with cylinder sets

in the partition of C2 into basic open sets of length n. So we may construct C1 by collecting

some of these sets, the number of each type to be determined by the coefficients of p1. �

2.3. The Main Theorem

Note that the partition polynomials x and 1−x are somewhat special. They are the only

linear partition polynomials, and further, if r and s are binomially equivalent via partition

polynomials from the set {x, 1− x}, then r and s are topologically equivalent. Strangely, it

appears that the important properties of x and 1− x are their behavior at 0 and 1.
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Definition 2.8. We say that a partition polynomial f is x-like when:

f(0) = 0, f ′(0) = 1, f(1) = 1, f ′(1) = 1.

We say that a partition polynomial f is (1− x)-like when:

f(0) = 1, f ′(0) = −1, f(1) = 0, f ′(1) = −1.

We refer to the collection of all x-like partition polynomials as Px, and we refer to the

collection of all (1− x)-like partition polynomials as P1−x.

Hence, Px and P1−x are rather small subsets of P . It is worth noting that the sets Px

and Px ∪ P1−x are each closed under composition, just as P is.

Two numbers were said to be binomially equivalent when they were expressible as par-

tition polynomials in each other. It will be shown that if we restrict this to x-like and

(1 − x)-like partition polynomials, then we find a complete characterization of topological

equivalence. We will prove the following theorem at the end of the chapter.

Theorem 2.9. Let 0 ≤ r, s ≤ 1. Then r and s are topologically equivalent if and only if

there are partition polynomials f and g, each of which is either x-like or (1 − x)-like, such

that r = f(s), and s = g(r).

In this case, we will actually be able to construct a homeomorphism with some additional

special properties, which require a definition.

Definition 2.10. A homeomorphism h of C is said to count 0’s if whenever w is a word in

C which is eventually 1, we have that h(w) is eventually 1, and that w and h(w) have the

same finite number of 0’s. We say h counts 1’s if h acts similarly on the set of words which

are eventually 0.

We say a homeomorphism h of C switch-counts 0’s and 1’s if h sends words which are

eventually 1 to words which are eventually 0, and sends words which are eventually 0 to words

which are eventually 1, while similarly preserving the number of exceptional characters.
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We now state the main result of this paper, which will be proved over the next three

chapters.

Theorem 2.11. Let r and s be algebraic numbers in (0, 1), and let R and S be their irre-

ducible polynomials. Further, suppose f and g are partition polynomials such that r = f(s)

and s = g(r). Then the following are equivalent:

(i) The measures µr and µs are homeomorphic.

(ii) If R(0) 6= ±1 and g(0) = 0, or if R(1) 6= ±1 and g(1) = 1, then

(a) R(0)|g′(0)− 1

(b) R(1)|g′(1)− 1

(c) S(0)|f ′(0)− 1

(d) S(1)|f ′(1)− 1

If R(0) 6= ±1 and g(0) = 1, or if R(1) 6= ±1 and g(1) = 0, then

(a) R(0)|g′(0) + 1

(b) R(1)|g′(1) + 1

(c) S(0)|f ′(0) + 1

(d) S(1)|f ′(1) + 1

(iii) There are partition polynomials f̂ and ĝ, either both x-like or both (1−x)-like, such

that r = f̂(s) and s = ĝ(r).

(iv) There is a homeomorphism h of C which either counts 0’s and 1’s or switch-counts

0’s and 1’s, such that µr = µs ◦ h.

In this paper, when we refer to the irreducible polynomial of an algebraic number, r, we

mean irreducible over the ring Z[x]. (That is, we mean the integer polynomial of minimal

degree which r solves, whose coefficients have a greatest common divisor of 1. This polyno-

mial is unique up to sign.) This implies that if R is the irreducible polynomial of r and if p

is some integer polynomial with p(r) = 0, then p = QR for some integer polynomial Q. We

will frequently use this fact without comment in the arguments of this paper.
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The above theorem gives us two tools for examining homeomorphisms. We may use the

third statement to generate examples of topologically equivalent numbers by finding x-like

partition polynomials f and g so that f ◦ g = id has non-trivial solutions in (0, 1). On the

other hand, if given two binomially equivalent numbers (and given partition polynomials

witnessing this), we may use the second statement to check whether they are topologically

equivalent. Of course, this test only holds if we already know that r and s are binomially

equivalent and we have partition polynomials witnessing this fact. Theorem 6.11 provides

some clarification of this issue, telling us if given some f and g with integer coefficients

having r = f(s) and s = g(r), when f and g can be replaced by partition polynomials. From

this point, statement two tells us when they can be further replaced by x-like or (1− x)-like

partition polynomials, and hence when r ∼top s.

It is clear that the fourth statement implies the first. The other three necessary implica-

tions require many lemmas, and each has one of the three following chapters devoted to its

proof.

We now prove Theorem 2.9 assuming Theorem 2.11.

Proof. If f and g are either both x-like or both (1 − x)-like, then the third part of The-

orem 2.11 applies and we directly have that r and s are topologically equivalent. If one is

x-like and the other is (1 − x)-like, then we have that (f ◦ g − id)(r) = 0, so R|f ◦ g − id.

In particular, we have R(0)|f(g(0))− 0 = 1 and R(1)|f(g(1))− 1 = −1. So R(0) = ±1 and

R(1) = ±1. The second part of Theorem 2.11 holds trivially and so r and s are topologically

equivalent. �

It is worth noting that in the proof given above, we found that r and s were topologically

equivalent because R(0) = ±1 and R(1) = ±1. In Chapter 6, we will see that this is the

case when µr and µs are what will be called “refinable” measures. An alternate proof of

Theorem 2.9 may be seen by noting that if f and g are an x-like and a (1− x)-like partition

polynomial with r = f(s) and s = g(r), then f̂ = f ◦g◦f and ĝ = g are partition polynomials

with r = f̂(s) and s = ĝ(r), and are either both x-like or both (1− x)-like.
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CHAPTER 3

ONE IMPLIES TWO

In this chapter, we prove the first of the necessary implications. The observation which

motivates this proof is that for C a cylinder set, and U a clopen subset, that the associated

partition polynomial pU of U is of the form pCq, where pC is the partition polynomial

associated with C, and q is some partition polynomial.

3.1. Proof

Theorem 3.1. Let r and s be algebraic numbers in (0, 1), and let R and S be their irreducible

polynomials. Further, suppose f and g are partition polynomials such that r = f(s) and

s = g(r), and that h is a homeomorphism of C such that µr = µs ◦ h.

If R(0) 6= ±1 and g(0) = 0, or if R(1) 6= ±1 and g(1) = 1, then

(i) R(0)|g′(0)− 1

(ii) R(1)|g′(1)− 1

(iii) S(0)|f ′(0)− 1

(iv) S(1)|f ′(1)− 1

If R(0) 6= ±1 and g(0) = 1, or if R(1) 6= ±1 and g(1) = 0, then

(i) R(0)|g′(0) + 1

(ii) R(1)|g′(1) + 1

(iii) S(0)|f ′(0) + 1

(iv) S(1)|f ′(1) + 1

Proof. We view the strange conclusion of the theorem as sixteen statements: there are

four if’s, each giving four then’s. We will use a number of symmetries to reduce the number

of statements requiring proof. To help justify our simplifying hypotheses, we regard the

theorem as a statement about a system (r, s, R, S, f, g, h) satisfying the first two sentences,
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which we will call a homeomorphism system. The next several paragraphs will reduce the

problem to showing two of the sixteen statements, by cutting the number in half three times.

If (r, s, R, S, f, g, h) is a homeomorphism system, let r̂ = 1− r, ŝ = s, R̂(x) = R(1− x),

Ŝ = S, f̂(x) = 1 − f(x), ĝ(x) = g(1 − x). So r̂, ŝ are algebraic numbers, R̂ and Ŝ are

their irreducible polynomials, and f̂ and ĝ are partition polynomials such that r̂ = f̂(ŝ) and

ŝ = ĝ(r̂). Let Φ denote the homeomorphism of C which switches 0’s and 1’s. So µx◦Φ = µ1−x,

for all x. In particular, µr̂ = µr ◦ Φ = µs ◦ h ◦ Φ. Let ĥ = h ◦ Φ. So (r̂, ŝ, R̂, Ŝ, f̂ , ĝ, ĥ) is

a homeomorphism system also. A great deal of verifying shows that the first eight of our

sixteen statements (the first two large if’s) will hold for the (r, s) system if and only if the

second eight hold for our (r̂, ŝ) system. Hence it suffices to show the first eight hold for all

homeomorphism systems.

Consider r̄ = 1− r, s̄ = 1− s, R̄(x) = R(1− x), S̄(x) = S(1− x), f̄(x) = 1− f(1− x),

ḡ(x) = 1 − g(1 − x), and h̄ = Φ ◦ h ◦ Φ. Then as before, we have (r̄, s̄, R̄, S̄, f̄ , ḡ, h̄) is

a homeomorphism system, and it can be verified that the first four statements (the “if

R(0) 6= ±1 and g(0) = 0” statements) hold for the (r, s) system, if and only if the second set

of four statements (the “if R(1) 6= ±1 and g(1) = 1” statements) hold for the (r̄, s̄) system.

Hence it suffices to show the first four statements hold for all homeomorphism systems.

Suppose (r, s, R, S, f, g, h) is a homeomorphism system with R(0) 6= ±1, and g(0) = 0.

We have that S(s) = S(g(r)) = 0. So S ◦g is an integer polynomial with r as a root. It must

therefore be a multiple of R. That is, R|S ◦ g. In particular, R(0)|S ◦ g(0) = S(0). So we

must have S(0) 6= ±1. We also have that r = f(s) = f(g(r)). Therefore, (f ◦ g− id)(r) = 0.

Again, this tells us that R|f ◦ g − id, and in particular, R(0)|(f(g(0))− 0 = f(0). But f is

a partition polynomial, and so f(0) is either 0 or 1. Since R(0) 6= ±1, we must have that

f(0) = 0. We have argued that the assumptions of R(0) 6= ±1 and g(0) = 0 give two further

statements that S(0) 6= ±1 and f(0) = 0, and the argument is symmetric so that the two are

actually equivalent. This explains the apparent assymetry of the sixteen statements: Each

of the four if’s concerning g and R is equivalent to some similar statements about f and S.

14



For clarity, we restate that we have now reduced the problem to showing that for a

homeomorphism system with R(0) 6= ±1 and g(0) = 0, we have

(i) R(0)|g′(0)− 1

(ii) R(1)|g′(1)− 1

(iii) S(0)|f ′(0)− 1

(iv) S(1)|f ′(1)− 1.

We have argued that a homeomorphism system satisfies R(0) 6= ±1 and g(0) = 0 if and

only if it satisfies S(0) 6= ±1 and f(0) = 0. Because of this, we see that the homoeomorphism

system (r, s, R, S, f, g, h) satisfies the R(0) 6= ±1, g(0) = 0 hypotheses if and only if the

homeomorphism system obtained by exchanging the roles of r and s does. (This system is

(s, r, S,R, g, f, h−1).) Also, it is clear that the first two of the conclusions above hold for the

(r, s) system if and only if the last two hold for the (s, r) system. Hence it suffices to show that

the first two conclusions hold for every homeomorphism system with R(0) 6= ±1, g(0) = 0.

We will actually only argue one of these, and indicate how the proof of the second is similar.

Let (r, s, R, S, f, g, h) be a homeomophism system with R(0) 6= ±1 and g(0) = 0. Let

w0 = 10̄ = 1000 . . . ∈ C, and let w1 = 010̄. We have that h is a homeomorphism, and so

h(w0) and h(w1) cannot both be 0̄. Assume h(w0) 6= 0̄. (The other case is similar.) We

know therefore that there is some n such that πn(h(w0)) = 1. Let A = {w ∈ C : πn(w) = 1}.

Then A is a clopen set whose associated partition polynomial is µx(A) = x.

We know that w0 ∈ h−1(A). By continuity, we know some cylinder set about w0 is

properly contained in h−1(A). That is, [100..0] ( h−1(A). This gives that h([100..0]) ( A,

and if we let q(x) denote the partition polynomial of h([100..0]), we know that 0 < q(x) < x

on (0, 1). In particular, we know that q(0) = 0. So x is a factor of q(x), and q(x)
x

is a

polynomial with integer coefficients satisfying 0 < q(x)
x

< 1 on (0, 1). So q(x)
x

is a partition

polynomial. This gives us that q(s)
s
∈ P(s). But, calculating q(s):

q(s)

s
=

µs(h([100..0]))

s
=

µr([100..0])

g(r)
=

r(1− r)j

g(r)
∈ P(s) = P(r),

for some j ≥ 0. (We know that P(s) = P(r) by binomial equivalence.)
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We therefore know that there is some partition polynomial p such that r(1 − r)j =

g(r)p(r). This implies that the polynomials x(1 − x)j and g(x)p(x) are congruent modulo

R(x), and we may write

x(1− x)j = g(x)p(x) + Q(x)R(x)

for some integer polynomial Q(x). Observe now that x divides the left hand side of the

above equation. Also, we are under the assumption that g(0) = 0, so that x divides g(x).

This gives us that x divides Q(x)R(x). Since R is irreducible and isn’t x itself, (since R has

a root in (0, 1)) we have that x divides Q(x). This gives −R(x)Q(x)
x

= g(x)
x

p(x) − (1 − x)j.

Letting x go to zero gives that

−R(0)Q′(0) = g′(0)p(0)− 1.

But p is a partition polynomial, and p(0) = 0 gives a contradiction, since R(0) 6= ±1. So it

must be that p(0) = 1, and R(0)|g′(0)− 1.

The argument that R(1)|g′(1)−1 is similar to the one above, beginning by taking w0 = 01̄

and w1 = 101̄. �
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CHAPTER 4

TWO IMPLIES THREE

4.1. Lemmas

In this chapter we argue that if we have the divisibility properties of statement 2, then

the partition polynomials f and g of the theorem may be replaced by partition polynomials

which are either both x-like or (1−x)-like. Note that the definitions of x-like and (1−x)-like

describe local properties that f and g have at 0 and 1. Hence, our strategy to replace f

and g with x-like and (1 − x)-like polynomials will be to work one side at a time. We will

describe properties which assure us that we may replace g with a polynomial which is x-like

at 0, without affecting whether g is x-like at 1, and similarly when we may replace g with

a polynomial which is x-like at 1, without affecting whether g is x-like at 0. (The same

arguments will also apply to f .)

Each of these is again divided into two parts: we first must be able to assure that g takes

the right value at 0, and then must be able to assure that g takes the correct derivative at

0. (We will then use symmetry to apply these to the value and derivative of g at 1.) First

we examine the value of g.

Lemma 4.1. If g ∈ P with g(0) = 1, if R is an integer polynomial with R(0) = ±1, and if

0 < r < 1 with R(r) = 0, then there is ĝ ∈ P such that ĝ(0) = 0, ĝ(r) = g(r), ĝ(1) = g(1),

and ĝ′(1) = g′(1).

Proof. Define gn as

gn(x) = g(x)−R(0)R(x)(1− x)n.

Then if n ≥ 2, we have that gn(0) = 0, gn(r) = g(r), gn(1) = g(1), and gn(1) = g′(1). It only

remains to verify that for some large n, gn is a partition polynomial. (Let ĝ be this gn.) It is
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clear that gn is a polynomial with integer coefficients, so by Theorem 2.6 it suffices to show

that for large n we have 0 < gn < 1 on (0, 1).

A simple computation verifies that g′n(0) →∞, and so for some large n1, g′n1
(0) > 0, and

gn1(0) = 0. Hence, there is δ1 > 0 such that 0 < gn1(x) and R(0)R(x) > 0 for all x in (0, δ1].

On this interval, we have that gn increases pointwise to g as n increases, and so for n > n1

we have 0 < gn1 < gn < g < 1 on (0, δ1].

As x → 1, we have that g increases to 1 or decreases to 0 at a polynomial rate. There are

some constants c and m such that min{g(x), 1−g(x)} = c(1−x)m +O((1−x)m+1) as x → 1.

Fixing n2 > m, we have that |R(0)R(x)(1− x)n2| < min{g(x), 1− g(x)} for x ∈ [1− δ2, 1),

for some δ2 > 0. This implies that |R(0)R(x)(1 − x)n| < min{g(x), 1 − g(x)} on [1 − δ1, 1)

for all n > n2. From this, we get that 0 < gn < 1 on [1− δ2, 1).

Finally, since g is a partition polynomial, there is some ε > 0 such that ε < g < 1 − ε

on the interval [δ1, 1 − δ2]. Also, R is bounded on [0, 1], so there is n3 > 0 such that

|R(0)R(x)(1 − x)n3 | < ε on [δ1, 1 − δ2]. For n > n3, we will have that 0 < gn < 1 on

[δ1, 1 − δ2]. Combining all of these, we have that if n > n1, n2, n3, then 0 < gn < 1 on

(0, 1). �

Next we give conditions under which we may force g to have the correct derivative at 0.

Lemma 4.2. If g ∈ P with g(0) = 0, if R is an integer polynomial with R(0)|g′(0)− 1, and

if 0 < r < 1 with R(r) = 0, then there is ĝ ∈ P such that ĝ(0) = 0, ĝ′(0) = 1, ĝ(r) = g(r),

ĝ(1) = g(1), and ĝ′(1) = g′(1).

Proof. Define gn as

gn(x) = g(x)− g′(0)− 1

R(0)
R(x)x(1− x)n.

(If R(0) = 0 then the theorem is trivial as R(0)|g′(0) − 1 implies g′(0) = 1. Take ĝ = g.)

Then if n ≥ 2, it’s easy to verify that gn(0) = 0, g′n(0) = 1, gn(r) = g(r), gn(1) = g(1), and

g′n(1) = g′(1). It only remains to verify that for some large n, gn is a partition polynomial.
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As before, it is clear that gn is a polynomial with integer coefficients, so by Theorem 2.6 it

suffices to show that for large n we have 0 < gn < 1 on (0, 1).

Let n1 = 2. Since g′n1
(0) = 1, we may find δ1 > 0 such that 0 < gn1(x) < 1, and R(x)

R(0)
> 0

for x in (0, δ1]. On this interval, gn either decreases to g pointwise if g′(0) − 1 < 0, or gn

increases to g pointwise if g′(0) − 1 > 0. (If g′(0) = 1, then let ĝ = g and we’re done.) In

either of these cases, we have for n > n1 that gn lies between gn1 and g on (0, δ1], each of

which is between 0 and 1 on (0, δ1]. Hence, we have for n > n1, that 0 < gn < 1 on (0, δ1].

The remainder of the argument is similar to the argument of the previous lemma. There

are constants c and m such that min{g(x), 1− g(x)} = c(1− x)m + O((1− x)m+1) as x → 1.

If n2 > m, we have that there is a constant δ2 > 0 such that |g
′(0)−1
R(0)

R(x)x(1 − x)n1| <

min{g(x), 1− g(x)} for x ∈ [1− δ2, 1). This inequality will also hold for n > n1, and so for

n > n1, we have 0 < gn < 1 on [1− δ2, 1).

Finally, there is ε > 0 such that ε < g < 1 − ε on [δ1, 1 − δ2]. We can find n3 such that

|g
′(0)−1
R(0)

R(x)x(1− x)n3| < ε on [δ1, 1− δ2]. This will also hold for n > n3, and so for n > n3

we have that 0 < gn < 1 on [δ1, 1 − δ2]. Combining all these, we get that if n > n1, n2, n3,

then 0 < gn < 1 on (0, 1), and we’re done. �

The previous two lemmas adjusted the behaviour of g at 0. We use the same symmetries

we exploited in the last chapter to describe how to adjust g at 1.

Lemma 4.3. Let g ∈ P, and let R be an integer polynomial with R(r) = 0 for some 0 < r < 1.

There is ĝ ∈ P with ĝ(0) = 0, ĝ′(0) = 1, ĝ(r) = g(r), ĝ(1) = g(1), and ĝ′(1) = g′(1),

provided either R(0) = ±1, or g(0) = 0 and R(0)|g′(0)− 1.

There is ĝ ∈ P with ĝ(1) = 1, ĝ′(1) = 1, ĝ(r) = g(r), ĝ(0) = g(0), and ĝ′(0) = g′(0),

provided either R(1) = ±1, or g(1) = 1 and R(1)|g′(1)− 1.

Proof. The first statement is just a combination of the two previous lemmas. The second

follows directly from applying the first statement to the partition polynomial 1 − g(1 − x)

and the polynomial R(1− x) which has a root of 1− r. �
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Now we use the above lemma to give conditions under which we may replace g with an

x-like or (1− x)-like partition polynomial.

Theorem 4.4. Let g ∈ P, and let R be an integer polynomial with R(r) = 0 for some

0 < r < 1.

There is an x-like partition polynomial ĝ with ĝ(r) = g(r), provided the following two

statements hold.

(i) Either we have R(0) = ±1 or we have g(0) = 0 and R(0)|g′(0)− 1.

(ii) Either we have R(1) = ±1 or we have g(1) = 1 and R(1)|g′(1)− 1.

There is a (1−x)-like partition polynomial ĝ with ĝ(r) = g(r), provided the following two

statements hold.

(i) Either we have R(0) = ±1 or we have g(0) = 1 and R(0)|g′(0) + 1.

(ii) Either we have R(1) = ±1 or we have g(1) = 0 and R(1)|g′(1) + 1.

Proof. The first statement is simply a combining of the two parts of the previous theo-

rem. The second statement can be derived by applying the first statement to the partition

polynomial 1− g(x), noting that g(x) is x-like if and only if 1− g(x) is (1− x)-like. �

Of course we have written the above theorem in terms of the polynomials g and R, but

they can also be applied to f and S which satisfy the same hypotheses. We now show the

next implication of Theorem 2.11, that two implies three.

4.2. Proof

Theorem 4.5. Let r and s be algebraic numbers in (0, 1), and let R and S be their irreducible

polynomials. Further, suppose f and g are partition polynomials such that r = f(s) and

s = g(r).

Suppose also that if R(0) 6= ±1 and g(0) = 0, or if R(1) 6= ±1 and g(1) = 1, then

(i) R(0)|g′(0)− 1

(ii) R(1)|g′(1)− 1

(iii) S(0)|f ′(0)− 1
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(iv) S(1)|f ′(1)− 1.

Finally, suppose that if R(0) 6= ±1 and g(0) = 1, or if R(1) 6= ±1 and g(1) = 0, then

(i) R(0)|g′(0) + 1

(ii) R(1)|g′(1) + 1

(iii) S(0)|f ′(0) + 1

(iv) S(1)|f ′(1) + 1.

Then there are partition polynomials f̂ and ĝ, either both x-like or both (1 − x)-like, such

that r = f̂(s) and s = ĝ(r).

Proof. As mentioned before, since S(g(r)) = 0 we know R|S ◦ g. We also have that

(f ◦ g− id)(r) = 0, which implies R|f ◦ g− id. Similar arguments give two more statements:

R|S ◦ g, R|f ◦ g − id, S|R ◦ f, S|g ◦ f − id.

We will repeatedly use these facts in what follows. We split into cases, first considering

whether R(0) or R(1) is ±1, and then splitting into subcases, considering whether g(0) is 0

or 1.

(i) R(0) = ±1, R(1) = ±1: Using that S|R ◦ f , and f is 0 or 1 valued at 0 and 1, we

have that S(0)| ± 1 and S(1)| ± 1. So by Theorem 4.4, we may replace f and g by

two x-like or two (1−x)-like partition polynomials. Note that in this case, we may

choose whether we want to use x-like or (1− x)-like polynomials.

(ii) R(0) 6= ±1, R(1) = ±1:

(a) g(0) = 0: We are in the case that R(0) 6= ±1 and g(0) = 0, so the first long

hypothesis of the theorem applies. We therefore know that R(0)|g′(0)− 1, as

well as that g(0) = 0, and that R(1) = ±1. By Theorem 4.4, we know that we

may also replace g with an x-like partition polynomial.

We know that R|f ◦ g − id, so R(0)|f(0). We cannot have f(0) = 1, and so

it must be the case that f(0) = 0. We also claim that S(1)| ± 1: In the case

that f(1) = 1, this follows from S(1)|R(f(1)), while in the case that f(1) = 0
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it follows from S(1)|g(f(1))− 1. We have that f(0) = 0, S(1) = ±1, and that

S(0)|f ′(0)− 1. (By the hypothesis of the theorem again.) So we may replace

f with an x-like partition polynomial as well.

(b) g(0) = 1: In this case, we have R(0) 6= ±1, and g(0) = 1, so the second

long hypothesis of the theorem applies, and we know R(0)|g′(0) + 1. We may

therefore replace g with a (1− x)-like partition polynomial.

We know that R|f ◦ g − id, so R(0)|f(1) − 0. We cannot have f(1) = 1, so

it must be that f(1) = 0. We also claim that S(0)| ± 1: This follows from

S(0)|R(f(0)) if f(0) = 1, or it follows from S(0)|g(f(0)) − 0 if f(0) = 0. We

have therefore that f(1) = 0, S(0) = ±1, and that S(1)|f ′(1) + 1. So by

Theorem 4.4, we may replace f with a (1 − x)-like partition polynomial as

well.

(iii) R(0) = ±1, R(1) 6= ±1: This case reduces to case (ii). Let r̄ = 1 − r, R̄(x) =

R(1− x), s̄ = s, S̄(x) = S(x), f̄(x) = 1− f(x), and ḡ(x) = g(1− x). We have that

(r̄, s̄, R̄, S̄, f̄ , ḡ) satisfy the hypotheses of the theorem if and only if (r, s, R, S, f, g)

do, as mentioned in the previous chapter. Since R̄(0) 6= ±1 and R̄(1) = ±1, case

two applies here. There are therefore partition polynomials ˆ̄f and ˆ̄g, either both

x-like or both (1 − x)-like, such that r = ˆ̄f(s) and s = ˆ̄g(r). Then, we may take

f̂(x) = 1− ˆ̄f(x), and ĝ(x) = ˆ̄g(1− x). (It is easy to verify that these will be either

both (1− x)-like or x-like as well.)

(iv) R(0) 6= ±1, R(1) 6= ±1:

(a) g(0) = 0: Again, R(0)|f(g(0)) − 0 gives us that f(0) = 0. Further, we have

that R(1)|f(g(1))−1. This will yield a contradiction unless f(g(1)) = 1, which

can only happen if g(1) = 1 and f(1) = 1. We are in the case of the first long

hypothesis of the theorem, so we have that R(0)|g′(0) − 1, and three similar

statements. Using all of these, Theorem 4.4 lets us replace f and g with x-like

partition polynomials.
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(b) g(0) = 1: As before, R(0)|f(g(0))− 0 gives that f(1) = 0. Also, we have that

R(1)|f(g(1)) − 1. It must be that f(g(1)) = 1, but this can only happen if

g(1) = 0 and f(0) = 1. Also, we are in the case of the second long hypothesis,

so we have R(0)|g′(0) + 1, as well as three more statements. Theorem 4.4

therefore lets us replace f and g with (1− x)-like partition polynomials.

�

In the next chapter, we will see that x-like partition polynomials yield homeomorphisms

which count 0’s and 1’s, while (1−x)-like partition polynomials yield homemorphisms which

switch-count. We may like to do something similar here, and keep track of which conditions

yield x-like partition polynomials and which yield (1 − x)-like partition polynomials. A

formal statement is cumbersome, but an inspection of the proof shows: If the first half of the

condition holds non-trivially (the hypothesis and conclusions are both true), then we get x-

like partition polynomials. If the second half holds non-trivially, we get (1−x)-like partition

polynomials. If both hold trivially, it must be the case that R(0) = ±1 and R(1) = ±1, and

we may find either x-like or (1− x)-like partition polynomials.

Furthermore, it turns out that it is impossible for both halves to hold non-trivially. For

example, if the hypothesis of the first statement were true because R(0) 6= ±1 and g(0) = 0,

then the hypothesis of the second could only hold by R(1) 6= ±1 and g(1) = 0. As we’ve

argued before, R(0)|f(g(0))−0 implies f(0) = 0. But now R(1)|f(g(1))−1, yields R(1)|−1,

a contradiction.
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CHAPTER 5

THREE IMPLIES FOUR

In this section we prove the final non-trivial implication, using the x-like or (1− x)-like

partition polynomials to construct a homeomorphism sending µr to µs, which also either

counts or switch-counts 0’s or 1’s.

5.1. Lemmas

First, we state a result which describes the extent to which we may approximate a

continuous function on [0, 1] by a polynomial with integer coefficients. Lorentz proved most

of the following theorem in his book on Bernstein polynomials [9], but only stated that such

polynomials are dense in C[δ, 1− δ].

Lemma 5.1. Let f be a continuous function on [0, 1]. Given ε, δ > 0, there is a polynomial p

with integer coefficients so that |f(x)− p(x)| < ε for x ∈ [δ, 1− δ], and |f(x)− p(x)| < 1
2
+ ε

for x ∈ [0, δ] ∪ [1− δ, 1].

Proof. It is well known that the Bernstein polynomials of a continuous function f , Bf
n(x) =∑n

i=0 f( i
n
)
(

n
i

)
xi(1−x)n−i converge uniformly to f on [0,1]. So for large n, we have |f−Bf

n| <

ε/2 on [0,1]. Let ci,n be the nearest integer to f( i
n
)
(

n
i

)
. Then |Bf

n(x)−
∑n

i=0 ci,nx
i(1−x)n−i| ≤∑n

i=0
1
2
xi(1− x)n−i = 1

2
xn+1−(1−x)n+1

2x−1
. This function converges to zero uniformly on [δ, 1− δ]

while staying less than 1
2

on [0, δ] ∪ [1− δ, 1]. �

We will actually need to use this lemma in a particular way. This will be clearer at the

time if we state the following lemma now.

Lemma 5.2. Suppose f and g are functions continous on [0, 1], except possibly for finitely

many poles, and that at such poles of g, we have g → +∞, while at poles of f we have

f → −∞. Further suppose that f < g on their common domain, and that g(1)− f(1) > 1,
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and g(0)− f(0) > 1, if these values are defined. Then there is a polynomial Q with integer

coefficients having f < Q < g on [0, 1].

Proof. We may find a continuous function Q̂ on [0, 1] with f < Q̂ < g everywhere, and

with f + 1
2

< Q̂ < g − 1
2

on some neighborhoods of 0 and 1. We could, for example take

Q̂ to be f+g
2

except near poles of f and g, where we use a continuous linear patch. Now an

approximation of Q̂ by a polynomial with integer coefficients using the previous lemma with

sufficiently small ε and δ will satisfy the desired requirements. �

We now use this theorem to prove our main technical requirement, which we may view as

an extension lemma. We are given “behaviors” (of p1 and p2) at 0, r, and 1, which sum to the

corresponding “behaviors” of q at these points. We extend these behaviors to polynomials

q1 and q2 which now sum to q everywhere.

Lemma 5.3. If r is an algebraic number in (0, 1), and if p1, p2, and q are partition polyno-

mials such that p1(r) + p2(r) = q(r) and such that p1+p2

q
(x) → 1 as x goes to 0 and 1, then

there are partition polynomials q1 and q2 such that q1 + q2 = q, such that qi(r) = pi(r) for

i = 1, 2, and such that pi

qi
(x) → 1 as x goes to 0 or 1, for i = 1, 2.

Proof. Since the pi’s are integer polynomials, we may find (unique) integers ai, bi > 0

and mi, ni ≥ 0 such that pi(x) = aix
mi + O(xmi+1) as x → 0, and such that pi(x) =

bi(1− x)ni + O((1− x)ni+1) as x → 1, for i = 1, 2. Let m = min{m1, m2}, n = min{n1, n2},

M = max{m1, m2}, and N = max{n1, n2}. Then our assumption that p1+p2

q
→ 1 as x → 0, 1

gives us that q(x) = p1(x)+p2(x)+O(xm+1) as x → 0, and q(x) = p1(x)+p2(x)+O((1−x)n+1)

as x → 1.

It is sufficient to find q1 ∈ Z[x] such that:

(i) q1(r) = p1(r),

(ii) 0 < q1 < q on (0, 1),

(iii) q1(x) = p1(x) + O(xm1+1) as x → 0, and (q − q1)(x) = p2(x) + O(xm2+1) as x → 0,
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(iv) q1(x) = p1(x) + O((1− x)n1+1) as x → 1, and (q − q1)(x) = p2(x) + O((1− x)n2+1)

as x → 1.

We know that p1(x) = (q − p2)(x) + O(xm+1) as x → 0, so one of the two statements of

(iii) implies the other, depending on whether m1 or m2 is larger. Accordingly, let eL = p1 if

m1 ≥ m2, and let eL = q − p2 if m1 < m2. Then eL is associated with the stronger of the

two statements, and for (iii) to hold, it is sufficient that q1(x) = eL(x) + O(xM+1) as x → 0.

Notice that eL has exactly m1 factors of x, the same number that p1 has.

Similarly, we let eR = p1 if n1 ≥ n2, and let eR = q− p2 if n1 < n2. Then for (iv) to hold,

it is sufficient that q1(x) = eR(x) + O((1− x)N+1) as x → 1. Again, we may notice that eR

has exactly n1 factors of (1− x), the same as p1.

We now claim that q − eL > 0 on (0, δ1), and that q − eR > 0 on (1 − δ2, 1), for some

δ1, δ2 > 0. These require cases:

(i) If m1 < m2, then q − eL = p2 ∈ P .

(ii) If m1 ≥ m2, then (q− eL)(x) = (q− p1)(x) = p2(x)+O(xm+1) = a2x
m2 +O(xm2+1)

as x → 0, and so q − eL is positive near 0.

The argument for q − eR near 1 is similar.

Next we claim that eL > 0 on (0, δ′1), and that eR > 0 on (1− δ′2, 1), for some δ′1, δ
′
2 > 0.

Again, there are two cases:

(i) If m1 < m2, then eL(x) = (q − p2)(x) = p1(x) + O(xm+1) = a1x
m1 + O(xm1+1),

which is positive near 0.

(ii) If m1 ≥ m2, then q − eL = p1 ∈ P .

The argument for eR near 1 is similar.

Let φ(x) = (1 − xM+1)N+1. Note that φ is a partition polynomial, that φ(x) has a root

of multiplicity N + 1 at 1, while 1− φ(x) has a root of multiplicity M + 1 at 0. (The second

statement can be seen by considering the first two terms of the binomial expansion of φ(x).)

Let R(x) be the irreducible polynomial of r, and consider choosing

q1(x) = eL(x)φ(x) + eR(x)(1− φ(x)) + Q(x)R(x)2xM+1(1− x)N+1,
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Where Q is some polynomial with integer coefficients. We then have that

(q1 − eL)(x) = (eR − eL)(x)(1− φ(x)) + Q(x)R(x)2xM+1(1− x)N+1 = O(xM+1)

as x → 0, and also that

(q1 − eR)(x) = (eL − eR)(x)φ(x) + Q(x)R(x)2xM+1(1− x)N+1 = O((1− x)N+1)

as x → 1. This implies that the needed properties (iii) and (iv) hold. It is also easy to verify

that q1(r) = p1(r), using that eL(r) = eR(r) = p1(r). It only remains to verify that Q can

be chosen so that q1 is a partition polynomial and so that (ii) holds. Since q1 has integer

coefficients, we need only that 0 < q1 < q on (0, 1). This holds if and only if the following

holds on (0, 1):

−eL(x)φ(x)− eR(x)(1− φ(x))

R(x)2xM+1(1− x)N+1
< Q(x) <

(q − eL)(x)φ(x) + (q − eR)(x)(1− φ(x))

R(x)2xM+1(1− x)N+1
.

We will now verify that the bounds above satisfy the hypotheses of Lemma 5.2, which

will imply that such a polynomial Q(x) with integer coefficients exists.

We are under the hypothesis that p1(r) + p2(r) = q(r). This implies that R|q − p1 − p2,

and therefore that p1(r̄) + p2(r̄) = q(r̄) whenever r̄ is a root of R. If such a root is in

(0, 1), we will have that 0 < p1(r̄) < q(r̄). We will also have that eL(r̄) = eR(r̄) = p1(r̄).

Thus, at a root r̄ of R in (0, 1), the numerator of the left-hand side is −p1(r̄) < 0, and the

denominator decreases to 0, while the right hand side has a numerator of (q−p1)(r̄) > 0 and

the denominator decreases to 0. This gives that at any pole in (0, 1) which arises as a root of

R, the lower bound goes to −∞ while the upper bound goes to +∞, as required. Also it is

clear that both bounds are continuous except at finitely many poles. The difference beween

the two has a numerator of q(x), which is positive on (0, 1). This will give that the upper

bound is strictly greater than the lower bound on (0, 1), as the denominators are always

positive or 0. All that remains is to verify that the bounds have the correct behavior at 0

and 1. (Note that since R is irreducible, neither 0 nor 1 is a root of R.)
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The lower bound can be expressed as

− eL(x)φ(x)

R(x)2xM+1(1− x)N+1
− eR(x)(1− φ(x))

R(x)2xM+1(1− x)N+1
.

Recall that 1 − φ(x) has a root of multiplicity M + 1 at 0, and so the all factors of x in

the second term can be cancelled and the second term stays finite near 0. We have verified

that eL is positive near 0 on the right, and it is clear that φ, R(x)2, and xM+1(1− x)N+1 are

positive near 0. So the first term is negative near 0. Also, when we defined eL, we noticed

that it had exactly m1 factors of x. The denominator of the first term has M + 1 factors of

x, a larger number, so the first term has a pole at 0. Since this term stays negative, it must

go to −∞ as x → 0+. The second term stayed finite near 0, and so the lower bound goes to

−∞ as x → 0+. A similar argument verifies that the lower bound goes to −∞ as x → 1−,

this time because the second term goes to −∞ and the first term goes stays finite. This will

ensure that the difference between the upper bound and lower bound is greater than 1 near

0+ and 1−, as long as the upper bound does not go to −∞ near 0+ or 1−. We verify this

now.

The upper bound can be expressed as

(q − eL)(x)φ(x)

R(x)2xM+1(1− x)N+1
+

(q − eR)(x)(1− φ(x))

R(x)2xM+1(1− x)N+1
.

We verified that q − eL is positive near zero on the right, and all other components of the

first term are positive there also. The first term must stay positive as x → 0+, possibly

going to +∞. In the second term, we have seen that 1− φ(x) has M + 1 factors of x, so the

second term stays bounded as x → 0+. So the sum of the two terms cannot go to −∞, as

neither term does. A similar argument applies as x → 1−, with the roles of the two terms

reversed. �

The way in which we will actually need to use this lemma is to split a polynomial into

several pieces. A straightforward induction gives the following lemma, whose proof we omit:
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Lemma 5.4. If r is an algebraic number in (0, 1), and if p1, . . . , pk and q are partition

polynomials such that
∑k

i=1 pi(r) = q(r) and such that p1+..+pk

q
(x) → 1 as x goes to 0 or 1,

then there are partition polynomials q1, . . . , qk such that
∑k

i=1 qi = q, such that qi(r) = pi(r)

for 1 ≤ i ≤ k, and such that pi

qi
(x) → 1 as x goes to 0 or 1, for 1 ≤ i ≤ k.

5.2. Counting 0’s and 1’s

Next, we examine the structure of the set of infinite words having exactly k 0’s. Note

that there is exacly one word with no 0’s, 1̄. There are countably many words with exactly

one 0, and the only limit point of this set is 1̄. Similarly, we have that the set of words with

exactly k 0’s is countably infinite if k ≥ 1, and the limit points of this set are precisely the

words with fewer than k 0’s. On the other hand, the collection of all words with finitely

many 0’s is dense in C.

If C is a non-empty clopen set in C, density gives us that C must contain a word with

finitely many 0’s. Let k be the smallest number of 0’s appearing in a word in C. Then C

cannot contain infinitely many words with k 0’s, as C would then contain a limit point of

this set, which would have fewer than k 0’s. Also, C contains a word with exactly k 0’s,

which is a limit point of the set of words with k + 1 0’s, and so C must contain infinitely

many such points. Of course, similar statements hold when we count 1’s, and we collect

these statements:

Proposition 5.5. Let C be a non-empty clopen set in C. Then there are unique integers

a, b ≥ 1, m, n ≥ 0 so that the following two statements hold: The number of words in C

having exactly k 1’s is 0 if k < m, is a if k = m, and is ∞ if k > m. The number of points

in C having exactly k 0’s is 0 if k < n, is b if k = n, and is ∞ if k > m.

Next we observe that these characteristics of a clopen set C can be determined by exam-

ining the partition polynomial associated with C. Recall that any non-empty clopen C can

be written in the form C = ∪k
i=0[wi], where the wi’s are distinct words of the same length,

N . It is clear that the smallest number, m, of 1’s appearing in an element of C, is the

smallest number of 1’s appearing in one of the words wi, and that the number, a, of such
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elements in C is the number of words wi having that smallest number of 1’s. The partition

polynomial associated with C is p(x) =
∑k

i=0 xai(1 − x)N−ai , where ai is the number of 1’s

in wi. We have that there are exactly a terms which are xm(1− x)N−m, and all other terms

have a higher power of x. Since xm(1 − x)N−m = xm + O(xm+1) as x → 0, we can write

p(x) = axm + O(xm+1) as x → 0. We may further note that any non-zero polynomial with

integer coefficients has a unique a 6= 0 and m ≥ 0 for which this equality holds, and so a and

m can be determined uniquely by properties of p. Similar statements hold when we count

0’s, and we collect these below:

Proposition 5.6. Let C be a non-empty clopen set in C, and let p(x) be the partition

polynomial associated with C. There are unique integers a, b > 0 and m, n ≥ 0 such that C

has exactly a words containing exactly m 1’s, and C has exactly b words containing exactly n

0’s. These are also the unique integers a, b > 0 and m, n ≥ 0 such that p(x) = axm+O(xm+1)

as x → 0, and such that p(x) = b(1− x)n + O((1− x)n+1) as x → 1.

5.3. Proof

We now prove the objective of the chapter. Note that we are actually stating something

a little stronger: x-like partition polynomials yield homeomorphisms which count 0’s and

1’s, and (1− x)-like partition polynomials yield homeomorphisms which switch-count.

Theorem 5.7. Suppose r and s are numbers in [0, 1], and f and g are partition polynomials

such that r = f(s) and s = g(r). If f and g are x-like, then there is a homeomorphism h of

C which counts 0’s and 1’s such that µr = µs ◦ h. If f and g are (1− x)-like, then there is a

homeomorphism h of C which switch-counts 0’s and 1’s, such that µr = µs ◦ h.

Proof. First we note that it is sufficient to prove the first statement. If f and g are (1−x)-

like, then f̄(x) = 1−f(x) and ḡ(x) = g(1−x) are x-like, having f̄(s) = 1−r, and ḡ(1−r) = s.

If the first statement holds, there is a homeomorphism h̄ of C which counts 0’s and 1’s, such

that µ1−r = µs ◦ h. If Φ again denotes the homeomorphism of C which switches 0’s and 1’s,
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then we have µr = µ1−r ◦ Φ = µs ◦ h ◦ Φ, and so h ◦ Φ is the desired homeomorphism. (It is

easily verified to switch-count 0’s and 1’s.) So suppose f and g are x-like.

We construct partitions Pn and Qn of C into clopen sets for n ≥ 0 and bijections πn :

Pn → Qn satisfying the following properties:

(i) Pn+1 is a refinement of Pn and Qn+1 is a refinement of Qn,

(ii) each member of P2n−1 and each member of Q2n is a basic clopen set of length ≥ n,

(iii) for any C ∈ Pn we have µs(πn(C)) = µr(C),

(iv) for any C ∈ Pn, and any l ≥ 0, we have that the number of elements in C having

exactly l 0’s is the same as the number of elements in πn(C) having exactly l 0’s,

(v) for any C ∈ Pn, and any l ≥ 0, we have that the number of elements in C having

exactly l 1’s is the same as the number of elements in πn(C) having exactly l 1’s,

and

(vi) if C ∈ Pn+1 and C ⊆ C ′ ∈ Pn, then πn+1(C) ⊆ πn(C ′).

Given the above sequence, define h : C → C by: for each α ∈ C, let Cn be the unique

member of Pn containing α and let f(α) be the unique element of
⋂

n πn(Cn). It is straight-

forward to verify that h is a well-defined homeomorphism of C (defining f−1 by an analogous

method from Qn to Pn), and h(C) = πn(C) for all C ∈ Pn, so that µs(h(X)) = µr(X) for

X ∈
⋃

n Pn. Since every clopen set is a finite disjoint union of sets each in
⋃

n Pn, h maps

µr to µs. Finally, for any word w in C which contains exactly l 0’s or 1’s, w is the only such

point in any sufficiently small neighborhood of w. Hence, for sufficiently large n, the unique

member of Pn containing w contains only one such point. This gives that πn(Pn) contains

exactly one such point, and {h(w)} =
⋂

n πn(Cn) must be this point. So h counts 0’s and

1’s.

We build Pn, Qn, and πn by a back-and-forth recursive construction. Let P0 = Q0 = {C}

with π0(C) = C. Given P2n, Q2n, π2n, let P2n+1 be a refinement of P2n into basic clopen

sets of length at least n + 1. Fix Y ∈ Q2n, a basic clopen set, and let q be its associated

partition polynomial. Also, let p be the partition polynomial associated with π−1
2n (Y ). Now,
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π−1
2n (Y ) ∈ P2n is a union of basic clopen sets X1, . . . , Xk ∈ P2n+1. Let the associated partition

polynomial of Xi be pi. We have therefore that

k∑
i=1

(pi ◦ f)(s) =
k∑

i=1

pi(r) =
k∑

i=1

µr(Xi) = µr(π
−1
2n (Y )) = µs(Y ) = q(s).

We also have that
∑k

i=1(pi ◦f) = p◦f . Since f is x-like, we get that p(f(x))/p(x) → 1 as

x → 0, 1. (This statement is easy to verify, for example using L’Hôpital’s rule and induction.

Note that this is precisely where the fact that f is x-like is used.) Further, since p and q

are the partition polynomials of π−1
2n (Y ) and Y respectively, and since these two sets have

the same counting behavior, Proposition 5.6 gives us that p(x)/q(x) → 1 as x → 0, 1.

Combining these gives us that
(∑k

i=1(pi ◦ f)(x)
)

/q(x) → 1 as x → 0, 1. We may therefore

use Theorem 5.4 to find q1, . . . , qk ∈ P such that
∑k

i=1 qi = q, such that (pi ◦ f)(s) = qi(s)

for 1 ≤ i ≤ k, and such that pi◦f
qi

(x) → 1 as x → 0, 1, for 1 ≤ i ≤ k. Now by Theorem 2.7,

there is a partition {Y1, . . . , Yk} of Y into clopen sets whose associated partition polynomials

are q1, . . . , qk, respectively.

Using (pi ◦ f)(s) = qi(s) gives us that µr(Xi) = µs(Yi). Knowing pi◦f
qi

(x) → 1 as x → 0, 1

and that f is x-like gives us that pi and qi have the same first order behavior at 0 and 1,

which with Proposition 5.6 tells us that Xi and Yi have the same number of words with

exactly l 0’s or 1’s for all l ≥ 0. We may therefore let π2n+1(Xi) = Yi, and let Q2n+1 include

all these Yi. Once this is done for all Y ∈ Q2n, we will have the desired partition Q2n+1 and

map π2n+1.

We have finished refining the partition on the P side, and we must now refine the Q side.

So let Q2n+2 be a refinement of Q2n+1 into basic clopen sets of length ≥ n + 1, and apply

the above procedure with r and s interchanged to get P2n+2 and π2n+2 (the map from Q2n+2

to P2n+2 will be π−1
2n+2). This will complete the back-and-forth recursive step. �
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CHAPTER 6

FURTHER RESULTS AND EXAMPLES

6.1. Refinability

One consequence of Theorem 2.11 is that if r and s are binomially equivalent algebraic

numbers, and if the irreducible polynomial R of r satisfies R(0) = ±1, and R(1) = ±1, then

r and s are topologically equivalent. This gives a condition on R alone which implies that

every number binomially equivalent to r is topologically equivalent to r. This condition on

r was shown in [18] by Dougherty, Mauldin and Yingst to be equivalent to a property of the

measure µr, called refinability. (Versions of the results of this section and the following one

appeared previously in that paper.) We discuss refinability now.

Definition 6.1. If µ is a measure on C, we say that a clopen set C is refinable with respect

to µ if whenever D1, D2, . . . , Dk are clopen sets in C with
∑k

i=1 µ(Di) = µ(C), there is a

partition {C1, . . . , Ck} of C into clopen sets, such that µ(Ci) = µ(Di) for 1 ≤ i ≤ k. We say

that the measure µ is refinable when every clopen set is refinable with respect to µ.

This definition is essentially what is required to replicate the proof of Theorem 5.7, and

show that µ and ν are homeomorphic.

Theorem 6.2. Let µ and ν be two refinable measures on C with the same clopen value set.

Then µ and ν are homeomorphic.

Proof. As in the proof of Theorem 5.7, we construct partitions Pn and Qn of C into clopen

sets for n ≥ 0 and bijections πn : Pn 7→ Qn satisfying the following properties:

(i) Pn+1 is a refinement of Pn and Qn+1 is a refinement of Qn,

(ii) each member of P2n+1 and each member of Q2n is a basic clopen set of length ≥ n,

(iii) for any C ∈ Pn we have µ(πn(C)) = ν(C), and
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(iv) if C ∈ Pn+1 and C ⊆ C ′ ∈ Pn, then πn+1(C) ⊆ πn(C ′).

As before, given the above sequence, we can construct a homeomorphism h : C → C with

ν = µ ◦ h by: given α ∈ C, let Cn be the unique member of Pn with α ∈ Pn, let h map α to

the unique element of
⋂∞

n=0 πn(Cn).

We build Pn, Qn, and πn by a back-and-forth recursive construction. Let P0 = Q0 = {C}

with π0(C) = C. Given P2n, Q2n, π2n, let P2n+1 be a refinement of P2n into basic clopen sets

of length ≥ n + 1. Fix Y ∈ Q2n, a basic clopen set Now, π−1
2n (Y ) ∈ P2n is a union of basic

clopen sets X1, . . . , Xk ∈ P2n+1. Since µ and ν have the same clopen value set, for each Xi,

there is some clopen Zi with µ(Zi) = ν(Xi).

We have therefore that

k∑
i=1

µ(Zi) =
k∑

i=1

ν(Xi) = ν(π−1
2n (Y )) = µ(Y )

Since Y is refinable with respect to µ, we have that there is a partition {Y1, . . . , Yk} of

Y with µ(Yi) = µ(Zi) for 1 ≤ i ≤ k. We may let π2n+1(Xi) = Yi, and let Q2n+1 include all

these Yi. Once this is done for all Y ∈ Q2n, we will have the desired partition Q2n+1 and

map π2n+1.We may apply a similar procedure to the Q side to complete the back-and-forth

recursive step. �

We are interested in the case that µ = µr is a Bernoulli trial measure. The following

is a restatement of the definition of refinability in terms of partition polynomials. The

proof is omitted and is trivial using the definition of associated partition polynomials and

Theorem 2.7. Note that in the property below, we are requiring that a sum of values of

functions be extendable to a sum of functions, similar to Lemma 5.3.

Proposition 6.3. Let 0 ≤ r ≤ 1. Then µr is refinable if and only if whenever q, p1, . . . , pk

are partition polynomials with q(r) =
∑k

i=0 pi(r), there are partition polynomials q1, . . . , qk

with q =
∑n

i=0 qi, and with qi(r) = pi(r) for 0 ≤ i ≤ k.
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It’s easy to note that µr is trivially refinable if r is transcendental, or if r is 0 or 1. (If r

is transcendental, then q(r) =
∑k

i=0 pi(r) implies q =
∑k

i=0 pi.) The following theorem from

[18] characterizes the remaining cases.

Theorem 6.4. Let r be an algebraic number in (0, 1), and let R be its irreducible polynomial.

Then µr is refinable if and only if R(0) = ±1 and R(1) = ±1.

The proof is fairly complicated. Showing that refinability implies R(0) = ±1 and R(1) =

±1 is straightforward but the other direction is messy. A large part depends on the following

application of Theorem 5.2, which we state as a lemma.

Lemma 6.5. Suppose g ∈ P with g 6= 0, f is a polynomial with real coefficients which is

positive on (0, 1), and R is a polynomial with integer coefficients with |R(0)| = |R(1)| = 1,

such that g < f at all roots of R in (0, 1). Then there is a partition polynomial h such that

h(r) = g(r) for each root r of R in (0, 1), and with 0 < h < f on (0, 1).

Proof. We first search for ĝ ∈ Z[x] with ĝ(r̄) = g(r̄) for every root r̄ of R in (0, 1), and

with 0 < ĝ < f on some intervals (0, δ) ∪ (1 − δ, 1). This property will be assured if ĝ has

roots of 0 and 1 with higher multiplicity than those of f . Hence it suffices to show that g

can be replaced by some g# ∈ Z[x] with its multiplicity at 0 and 1 each increased, but still

retaining that g > 0 on (0, δ) ∪ (1 − δ, 1), and g#(r) = g(r) for every root r of R in (0, 1).

For this, consider taking

g#(x) = g(x)
[
1−R(x)2 (1− x(1− x))n] .

The additional factor will clearly provide an additional root at 0 and 1, will not affect the

value of g at roots of R, and is easily checked to be positive on (0, δ)∪(1−δ, 1) for sufficiently

large n. (Even though a(x) = (1− x(1− x))n and b(x) = 1
R(x)2

take the same value at 0 and

1, calculating the derivative of a(x) at 0 and 1 verifies that a < b on (0, δ) ∪ (1 − δ, 1) for

large n.) Repeating this process sufficiently many times gives the desired ĝ.
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We now search for a polynomial of the form h(x) = ĝ(x) + xN(1− x)NQ(x)R(x)2 where

Q ∈ Z[x], and with 0 < h < f . This is equivalent to solving

− ĝ(x)

xN(1− x)NR(x)2
< Q(x) <

f(x)− ĝ(x)

xN(1− x)NR(x)2
.

If N is chosen sufficiently large that the lower bound goes to −∞ as x → 0+ or 1−, and so

that the upper bound goes to +∞ as x → 0+ or 1−, then the existence of such Q will be

assured by Theorem 5.2. (That the bounds will behave this way for large N is assured since

0 < ĝ < f near 0+ and 1−.) It’s easy to verify that h will have all the desired properties. �

We now prove Theorem 6.4.

Proof. Let R be an irreducible polynomial with |R(0)| = 1, |R(1)| = 1, and let r be a root

of R in (0,1). We will show that r is refinable.

Suppose that f, g1, g2, . . . gk are partition polynomials with the property that f(r) =∑k
i=1 gi(r). If some gi’s are zero-valued anywhere in (0,1), then they are identically zero and

we may take the corresponding hi’s to be zero and still satisfy the requirements of refinability.

Likewise, if there is only one gi which is not zero, we can take hi = f and satisfy refinability.

So assume k > 1, and each gi is not zero. So each gi is positive-valued at each root of R in

(0,1). But f −
∑

gi is an integer polynomial which is zero-valued at r, so is a polynomial

multiple of R, and hence is zero-valued at all roots of R in (0,1). We may conclude that

0 < gi < f at all roots of R in (0,1).

Choose positive numbers δ, ε so small that: for any root r̄ of R in (0, 1) and any x ∈

[r̄ − δ, r̄ + δ], we have f(x) > (k − 1)ε +
∑k

i=2 gi(r̄); and the distance between any two such

roots is greater than 2δ. For each i ≥ 2, we can find a polynomial pi with real coefficients

such that: for any root r̄ of R in (0, 1), we have pi(r̄) > gi(r̄) but 0 < pi(x) < gi(r̄) + ε

for all x ∈ [r̄ − δ, r̄ + δ]; and, for any x ∈ (0, 1) not in any of the intervals [r̄ − δ, r̄ + δ],

0 < pi(x) < f(x)/(k − 1). (Since the polynomials are dense in C[0, 1], we may find a

polynomial φi with φi(r̄) > gi(r̄)/f(r̄), 0 < φi < (gi(r̄) + ε)/f on each interval [r̄ − δ, r̄ + δ],

and 0 < φi < 1/(k − 1) off those intervals. Take pi = fφi.)
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We have that gi < pi at roots of R, and pi > 0 on (0, 1) for i ≥ 2. So Lemma 6.5 applies,

and we may find hi < pi, a partition polynomial which agrees with gi at roots of R, for i ≥ 2.

Let h1 = f−
∑k

i=2 hi. The properties in the preceding paragraphs ensure that
∑k

i=2 pi < f

on (0, 1), so h1 > 0 on (0, 1). The sum of the polynomials hi is f , so each hi lies below f

and hence below 1. Therefore, each hi is a partition polynomial. We have hi(r) = gi(r) for

i ≥ 2, and h1(r) = f(r)−
∑k

i=2 hi(r) = f(r)−
∑k

i=2 gi(r) = g1(r). This completes the proof

that µr is refinable, by Proposition 6.3.

Now, suppose µr is refinable, and let R be the irreducible polynomial of r. Let M =

supx∈[0,1] R(x)2. Let k be such that
(

1
x(1−x)

)k

> M + 1 on [0,1].

Next, let j > k be sufficiently large that (1 − x)j−k − x < R(x)2 on (0,1). (We know

R is irreducible so R(0) 6= 0. If R(0)2 = 1, we’ll have to find j sufficiently large that the

derivative of the left hand side is less that that of the right at 0, so that the inequality holds

on (0, δ) for some positive δ. For even larger j, the inequality will hold off of (0, δ), because

the left hand side will be negative, and will still hold on (0, δ) because the left hand side

decreases as j increases.)

So on (0,1) we have:

(1− x)j−k − x < R(x)2 <
1

xk(1− x)k
− 1 <

1

xk(1− x)k
− x.

Manipulating this gives

0 < xk+1(1− x)k − xk(1− x)j + xk(1− x)kR(x)2 < 1− xk(1− x)j.

Let g(x) be the middle expression in the above inequality. By Theorem 2.6, g(x) is a

partition polynomial. We also have rk+1(1 − r)k = rk(1 − r)j + g(r). By refinability, we

have that there are partition polynomials h1, h2, with h1(r) = rk(1 − r)j, h2(r) = g(r), and

h1(x) + h2(x) = xk+1(1 − x)k. In particular, we have 0 < h1(x) < xk+1(1 − x)k for x near

0 and 1. So h1 must have a root of 0 with multiplicity at least k + 1, and a root at 1 with

multiplicity at least k. We can write h1(x) = xk+1(1 − x)kp(x), for p a polynomial with

integer coefficients.
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Then we have rk+1(1−r)kp(r) = rk(1−r)j. So rp(r) = (1−r)j−k. This implies that xp(x)

and (1 − x)j−k are congruent modulo R, and we can write xp(x) = (1 − x)j−k + Q(x)R(x)

for some polynomial Q ∈ Z[x]. Evaluating this at zero gives 0 = 1 + Q(0)R(0). Therefore

R(0) = ±1.

One can argue that R(1) = ±1 by symmetry. If µr is refinable, then µ1−r is as well,

and the irreducible polynomial of 1 − r is R(1 − x), and the above argument shows this

polynomial satisfies R(1− 0) = ±1. �

As we have noted at the beginning of the section, if r and s are binomially equivalent,

we only need that r has R(0) = ±1 and R(1) = ±1 to ensure that r and s are topologically

equivalent. That is, we only need that µr be refinable. We observe now that Theorem 6.2

does apply in this case, and that µr and µs are actually both refinable.

Theorem 6.6. If r and s are binomially equivalent numbers in (0, 1), and if µr is refinable,

then µs is refinable.

Proof. If r is transcendental or is 0 or 1, then s = r or s = 1 − r, and so s is also

transcendental or 0 or 1. Suppose then that r is algebraic in (0, 1). We may let R, S, f , and

g be as in the proof of Theorem 4.5. As before have S|R ◦ f , and so S(0) and S(1) divide

±1, and each is ±1. So s is refinable. �

6.2. Goodness

Following Akin [1], we refer to a probability measure µ on C as good if given U and V

clopen in C such that µ(U) < µ(V ), there is U ′ ⊆ V , clopen with µ(U ′) = µ(U). Good

measures are significant for a variety of reasons given in [1], most notably because there is a

uniquely ergodic minimal homeomorphism T on C for which µ is the unique ergodic measure

precisely when µ is good. (Glasner and Weiss showed in [4] that such measures are good,

while Akin shows in [1] that good measures have this property.)

It is elementary to verify that all good measures on C are refinable. From this it follows

(using Theorem 6.2) that two good measures with the same clopen values set are topologically
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equivalent. The techniques of this paper give us a complete characterization of when the

measure µr is good.

Theorem 6.7. Let r ∈ (0, 1) be algebraic. Then µr is good if and only if its irreducible

polynomial R satisfies R(0) = ±1, R(1) = ±1, and R has exactly one root in (0, 1).

Proof. Suppose r satisfies the second property. Let C1, C2 be clopen sets in C with µr(C1) <

µr(C2). Then their corresponding partition polynomials p1, p2 have the property that p1 < p2

at the only root of R in (0, 1). Then Lemma 6.5 applies, and we may find p̂1 with integer

coefficients such that 0 < p̂1 < p2 on (0, 1), and p̂1(r) = p1(r). So p̂1 ∈ P , and by Theorem 2.7

there is a corresponding clopen set Ĉ1 ⊆ C2 such that µr(Ĉ1) = µr(C1). So µr is good and

one direction is concluded.

Now suppose µr is good. Then µr is refinable, and so by Theorem 6.4, R(0) = ±1 and

R(1) = ±1. Now, if r̄ ∈ (0, 1) is a root of the minimal polynomial of r, then any two clopen

sets with the same µr measure will have the same µr̄ measure also. If U, V are clopen sets in

C with µr(U) < µr(V ), there is a clopen subset W of V with µr(W ) = µr(U). So µr̄(U) =

µr̄(W ) < µr̄(V ). That is, for U, V clopen sets, if µr(U) < µr(V ), then µr̄(U) < µr̄(V ).

But if r̄ 6= r, we can clearly find two partition polynomials pU , pV with pU(r) < pV (r) and

pU(r̄) > pV (r̄), yielding a contradiction. �

6.3. Examples

First we point out that there are large (finite) topological equivalence classes in (0, 1).

This example was earlier given in [18].

Theorem 6.8. Given any k ≥ 0 there are k distinct numbers in (0, 1) which are topologically

equivalent.

Proof. Let n be a positive integer with at least k factors. Let r be the the root of xn +x−1

in (0, 1). If d is a factor of n, and s = rd, we have r = 1 − sn/d. These are partition

polynomials, so r and s are binomially equivalent. The irreducible polynomial R of r is a

factor of xn +x−1, and so has R(0)|−1 and R(1)|1. So r and s are topologically equivalent,
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either by refinablility or by the second part of Theorem 2.11. We have k such choices of s,

and they are clearly distinct. �

We have established implications between goodness, refinability, topological equivalence

and binomial equivalence. The following theorem collects some of these and asserts that

these implications are sharp. The first part was established by Dougherty, Mauldin and

Yingst in [18] and the third by Austin in [3].

Theorem 6.9. (i) That µr is good is sufficient to assure that µr is refinable, but is

not necessary, even among those r with a non-trivial ∼top equivalence class.

(ii) If r and s are binomially equivalent, then the refinability of µr is sufficient to assure

that r ∼top s, but is not necessary, even among non-trivially binomially equivalent

r and s.

(iii) If r and s are in (0, 1), the topological equivalence of r and s is sufficient to assure

the binomial equivalence of r and s, but is not necessary.

Proof. All three implications have been established previously, and we need only provide

the counterexamples.

(i) Let R(x) = −14x6 + 21x4 − 8x2 − x + 1. It can be verified that R is irreducible,

and R has three roots in (0, 1). Let r be any one of these, and let s = r2. Then

r = −14s3 + 21s2 − 8s + 1. The polynomial −14x3 + 21x2 − 8x + 1 maps (0, 1)

into (0, 1), and so is a partition polynomial, so we have that r and s are binomially

equivalent. Also, R(0) = 1 and R(1) = −1, so r and s are topologically equivalent

either by refinability or the second part of Theorem 2.11. It is also easy to verify

that r 6= s and r 6= 1− s, so this equivalence is non-trivial.

(ii) Let f(x) = x+5x2(1−x)2 and let g(x) = x−3x2(1−x)2. There is a unique root of

f ◦g− id in (0, 1). Let r be this root, and let s = g(r). We then have that r = f(s).

Both f and g map (0, 1) into (0, 1) so are partition polynomials, and both are x-like,

so by Theorem 2.11, r and s are topologically equivalent, and it’s easy to see they
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are not trivially so. Using Maple, we can verify that R(x) = f(g(x))−x
x2(1−x)2

is irreducible,

and so is the irreducible polynomial of r. This polynomial has R(0) = 2, so r is

not refinable, and by Theorem 6.6, s isn’t refinable either.

(iii) Let f(x) = 3x(1 − x) and let g(x) = 2x(1 − x). Let r and s be the unique

solutions of r = f(s) and s = g(r). Then f and g are partition polynomials, so

r ∼bin s. The irreducible polynomial of r can be verified to be R(x) = f◦g(x)−x
x

=

−12x3+24x2−18x+5. Now R(0) 6= ±1 and g(0) = 0, but R(0) = 5 does not divide

g′(0) = 2. So by the second part of Theorem 2.11, r and s are not topologically

equivalent.

�

6.4. Further Results

One of the problems which has remained open in the area is whether a ∼top equivalence

class, or a ∼bin equivalence class can be infinite. The following is a combination of known

results pointed out by Joe Buhler, which shows that equivalence classes are finite for algebraic

integers.

Theorem 6.10. Let 0 < r < 1 be an algebraic integer. There are only finitely many values

in (0, 1) which are binomially equivalent to r.

Proof. If r ∼bin s, then r ∈ P(s) and s ∈ P(r). So r ∈ Z[s], and s ∈ Z[r]. From this it

follows that Z[r] = Z[s]. For algebraic integers it is known that this implies that r and s

have the same discriminant. We briefly argue this now.

Let n be the degree of r. This must be the degree of s also. Let r = r1, r2, . . . , rn be

the algebraic conjugates of r. Each of 1, s, . . . , sn−1 is in Z[r] and so is an integer linear

combination of powers of r. Since r is an algebraic integer, we may express them as an

integer combination of 1, r, . . . , rn−1. The rational vector space Q(r) = Q(s) has as bases

both B1 = {1, r, . . . , rn−1} and B2 = {1, s, . . . , sn−1}. The expressions described above give

us that the change of basis matrix from B2 to B1, M has integer coefficients. By symmetry
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of argument, the inverse of this matrix also has integer coefficients, and so det M = ±1. We

have MT maps the vector (1, r, . . . , rn−1) to (1, s, . . . , sn−1), and so maps (1, ri, . . . , r
n−1
i ) to

(1, si, . . . , s
n−1
i ), where {si}n

i=1 are the algebraic conjugates of s. If A = [ai,j] and B = [bi,j]

are given by ai,j = ri−1
j and bi,j = si−1

j , then MT A = B and

disc s = (det B)2 = (det MT )2(det A)2 = (det A)2 = disc r.

A result of Kálmán Györy, first proved in [5] and [6] is that if we regard two polynomials as

equivalent when they differ by translation by an integer, then there are only finitely monic

polynomials of any given degree and discriminant. If r and s are binomially equivalent

numbers in (0, 1), and r is an algebraic integer of degree n and discriminant D, then s is an

algebraic integer which is the root of some monic polynomial of dicriminant D and degree n.

There are only finitely many choices of such a polynomial up to translation by an integer,

and only finitely many translates of such a polynomial will have a root in (0, 1). �

It appears that this argument cannot be extended to non-integers. Versions of Györy’s

theorem exist for non-integers with a more sophisticated notion of equivalent polynomials,

but it doesn’t appear useful in this case, as binomially equivalent non-integers do not neces-

sarily have the same discriminant. For instance, the example in the second part of the proof

of Theorem 6.9 can be computed by Maple to have different (very large) discriminants.

Next, we present a theorem which we haven’t used in this paper, but may be a useful tool

when searching for examples. The statement that s is binomially reducible to r is stronger

than the statement that s ∈ Z[r]. This result describes exactly how much stronger.

Theorem 6.11. Let 0 < r, s < 1 be algebraic, and let R be the irreducible polynomial of

r. Suppose g is some polynomial with integer coefficients with g(r) = s. Then there is a

partition polynomial ĝ with ĝ(r) = s if and only if the following statements hold:

(i) Either R(0)|g(0) or R(0)|g(0)− 1,

(ii) either R(1)|g(1) or R(1)|g(1)− 1,

(iii) and 0 < g(r̄) < 1 for every root r̄ of R in (0, 1).
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Proof. If such ĝ exists, it satisfies ĝ(r) = g(r), and so g and ĝ are congruent modulo R in

Z[x]. So ĝ must be of the form ĝ = g + QR for some Q ∈ Z[x]. The three statements now

follow from the fact that ĝ(0), ĝ(1) are each 0 or 1, and that 0 < ĝ(r̄) < 1 for any root r̄ of

R in (0, 1).

Now suppose g has the required properties. Then for some integers m and n, we have

g(0) + mR(0) and g(1) + nR(1) are each 0 or 1. So, replacing g(x) with g(x) + nxR(x) +

m(1− x)R(x) lets us assume that g(0) and g(1) are each 0 or 1.

We search for a partition polynomial of the form ĝ(x) = g(x)+x(1−x)R(x)2Q(x). This

polynomial will have ĝ(r) = g(r) = s, and so we need only show that it can be chosen to be

a partition polynomial. It has integer coefficients, so we need only verify that 0 < ĝ < 1 on

(0, 1). This holds if and only if the following inequality holds on (0, 1):

−g(x)

x(1− x)R(x)2
< Q(x) <

1− g(x)

x(1− x)R(x)2
.

We verify that the bounds for Q satisfy the hypotheses of Lemma 5.2, and so that such a

Q with integer coefficients exists. Both sides are clearly continuous with only finitely many

poles in (0, 1), and the difference is clearly positive so that the right-hand side is strictly

greater than the left on (0, 1). At any pole which is a root r̄ of R, we have that 0 < g(r̄) < 1,

so that the numerator of the left-hand side is negative, and the numerator of the right-hand

side is positive, which ensures that the lower bound goes to −∞ and the upper bound goes

to +∞. At 0, we have either that −g(0) = 0 and 1 − g(0) = 1, in which case the left

hand side stays finite and the right-hand side goes to +∞, or we have that −g(0) = −1 and

1−g(0) = 0 in which case the left hand side goes to −∞ and the right hand side stays finite.

In either case, the hypotheses are satisfied, and similar reasoning applies at 1. �

This theorem directly gives the following corollary.

Corollary 6.12. If r is an algebraic number in (0, 1), and R is its irreducible polynomial,

then the clopen values set of the measure µr is the set of all g(r) where g is some integer
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polynomial satisfying g(0) ≡ 0 or 1 modulo R(0), g(1) ≡ 0 or 1 modulo R(1), and 0 < g(r̄) <

1 for each root r̄ of R in (0, 1).

We now use this result to characterize another property defined by Akin in [1]. A measure

µ on C is said to have a grouplike clopen values set if given any two clopen sets C and D in

C with µ(C) + µ(D) < 1, there is a clopen set E with µ(C) + µ(D) = µ(E). This occurs

exactly when the clopen values set of the measure µ is of the form G ∩ [0, 1], where G is

a subgroup of R, or equivalently, when the clopen values set S of µ has the property that

S + Z is a subgroup of R. The preceding lemma makes it fairly simple to characterize the

Bernoulli trial measures with grouplike clopen values set.

Corollary 6.13. Let 0 < r < 1. The measure µr has a grouplike clopen values set if and

only if r is algebraic and its irreducible polynomial R satisfies R(0) = ±1 or ±2, R(1) = ±1

or ±2, and R has exactly one root in (0, 1).

Proof. Suppose that µr has a grouplike clopen values set. For some n, we have rn < 1
2
.

So 2rn is a clopen value for the measure µr. There is some partition polynomial p with

p(r) = 2rn. Since 2xn is not a partition polynomial, this is a non-trivial polynomial equation

solved by r, so r is algebraic. Further, 2xn − p(x) is a multiple of R(x), so R(1) divides

2 − p(1) = 2 or 1, so R(1) = ±1 or ±2. A similar argument using 2(1 − x)m shows that

R(0) = ±1 or ±2.

Now suppose that R(x) has a root r̄ in (0, 1) other than r. Further suppose r < r̄. Then

for some large n, we will have 2rn < r̄n < 1
2
. Let m be the largest integer such that mrn ≤ 1.

If µr is has a grouplike clopen values set, then using this property m − 1 times shows that

mrn is a clopen value for µr. There must be a partition polynomial p with p(r) = mrn.

This polynomial must also have p(r̄) = mr̄n > 2mrn > (m + 1)rn > 1, a contradiction.

Considering multiples of (1− r)n handles the case when r̄ < r.

Now suppose r has the properties described. If C and D are clopen sets with µr(C) +

µr(D) < 1, let pC and pD be their partition polynomials. We have that 0 < pC + pD < 1 at

the only root of R in (0, 1), and we must have that (pC + pD)(0) ≡ 0 or 1 modulo R(0), and
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(pC + pD)(1) ≡ 0 or 1 modulo R(1), since every integer has these properties. By the above

theorem, pC(r) + pD(r) is a clopen value for the measure µr, and µr is good. �

6.5. Related Problems

We conclude by presenting a few directions in which research in this problem can be

continued.

Problem. Is there an infinite ∼top equivalence class? Is there an infinite ∼bin equivalence

class? We may weaken the question even further by saying r and s are algebraically equivalent

when Z[r] = Z[s], and asking if there is an infinite algebraic equivalence class in (0, 1).

Problem. When are two Haar measures on C homeomorphic? That is, given two topo-

logical groups whose topology is homeomorphic to C, when are the associated Haar measures

homeomorphic?

A partial answer is briefly described as follows: It is known that such a topological

group must have a decreasing seqence, {Cn}∞n=1, of clopen subgroups whose intersection is

{e}. (Balls about the origin with respect to a translation invariant ultrametric will work.)

Compactness gives that the space is a finite union of translates of Cn, so µ(Cn) = 1
an

for

some integer an. The same argument applied to Cn−1 gives us that an−1|an. We find by a

simple homeomorphism that µ is homeomorphic to the product measure on
∏∞

n=1 Fn, where

each Fn is a finite set with an+1

an
elements, endowed with the uniform measure. By further

factoring each of these Fn’s, we are able to express this measure as a product measure on∏∞
n=1 Pn where each Pn is finite with prime size and uniform measure. We observe that two

Haar measures are homeomorphic if and only if they yield the same “prime factorization,”

meaning that every prime occurs in the resulting sequence the same (possibly infinite) number

of times. This answer seems unsatisfactory however, and some deeper algebraic description

might be desirable.

Problem. If (r1, . . . , rn) is a probability vector, let β(r1, . . . , rn) be the corresponding

product measure on {1, . . . , n}N. When are two of these measures homeomorphic?
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Instead of increasing the size of the factors, we may be interested in increasing the number

of factors. It turns out that this does not significantly complicate the issue: Let I be any

infinite index set, possibly of very large cardinality, and νr denote the Bernoulli trial measure

on the set {0, 1}I . Then νr and νs are homeomorphic precisely when µr and µs on {0, 1}N

are. This is because clopen sets in {0, 1}I can only depend on finitely many indices, and so

they correspond with partition polynomials in the same way, and all the same arguments

apply, giving us that if νr ≈ νs, then r and s can be written as x-like or (1−x)-like partition

polynomials in each other. On the other hand, if µr ≈ µs, then νr and νs are homeomorphic

since they are expressible as products of copies of µr and µs, respectively.
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[6] , Sur les polynômes à coefficients entiers et de discriminant donné ii, Publ. Math.
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