
 
 
 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPROVED: 
 
Krishna Kavi, Major Professor and Chair of the 

Department of Computer Science and 
Engineering 

Phil Sweany, Minor Professor 
Robert Brazile, Committee Member 
Saraju P. Mohanty, Committee Member 
Armin R. Mikler, Departmental Graduate 

Coordinator 
Oscar Garcia, Dean of College of Engineering 
Sandra L. Terrell, Dean of the Robert B. 

Toulouse School of Graduate Studies 

HIGH PERFORMANCE ARCHITECTURE USING SPECULATIVE THREADS AND 

DYNAMIC MEMORY MANAGEMENT HARDWARE 

Wentong Li 

Dissertation Prepared for the Degree of 

DOCTOR OF PHILOSOPHY 

UNIVERSITY OF NORTH TEXAS 
 

December 2007 



Li, Wentong, High Performance Architecture using Speculative Threads and Dynamic 

Memory Management Hardware. Doctor of Philosophy (Computer Science), December 2007, 

114 pp., 28 tables, 27 illustrations, bibliography, 82 titles. 

With the advances in very large scale integration (VLSI) technology, hundreds of 

billions of transistors can be packed into a single chip. With the increased hardware budget, 

how to take advantage of available hardware resources becomes an important research area. 

Some researchers have shifted from control flow Von-Neumann architecture back to dataflow 

architecture again in order to explore scalable architectures leading to multi-core systems 

with several hundreds of processing elements. 

In this dissertation, I address how the performance of modern processing systems can 

be improved, while attempting to reduce hardware complexity and energy consumptions. My 

research described here tackles both central processing unit (CPU) performance and memory 

subsystem performance. More specifically I will describe my research related to the design of 

an innovative decoupled multithreaded architecture that can be used in multi-core processor 

implementations. I also address how memory management functions can be off-loaded from 

processing pipelines to further improve system performance and eliminate cache pollution 

caused by runtime management functions. 



Copyright 2007

by

Wentong Li

ii



ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Dr. Krishna Kavi, for his support,

patience, and encouragement throughout my graduate studies. It is not often that one finds

an advisor who always finds the time for listening to the little problems and roadblocks that

unavoidably crop up in the course of performing research. I am deeply grateful to him for

the long discussions that helped me sort out the technical details of my work. I am also

thankful to him for encouraging the use of correct grammar and consistent notation in my

writings and for carefully reading and commenting on countless revisions of this manuscript.

His technical and editorial advice was essential to the completion of this dissertation.

My thanks also go to Dr. Saraju Mohanty and Dr. Phil Sweany, whose insightful com-

ments and constructive criticisms at different stages of my research were thought-provoking

and helped me focus my ideas.

I would like to thank Dr. Naghi Prasad and Mr. Satish Katiyar for their supports, kindly

reminding and encouragements during the writing of this dissertation.

Finally, and most importantly, I would like to thank my wife Liqiong, my son Colin and

my daughter Sydney. They form the backbone and origin of my happiness. Their love and

encouragement was in the end what made this dissertation possible. I thank my parents,

Yong and Li, my father-in-law Duanxiang for their faith in me and unconditional support.

iii



CONTENTS

ACKNOWLEDGMENTS iii

LIST OF TABLES viii

LIST OF FIGURES x

CHAPTER 1. INTRODUCTION 1

1.1. Dataflow Architecture 2

1.2. Scheduled Dataflow Architecture 2

1.3. Thread-Level Speculation 3

1.4. Decoupled Memory Management Architecture 4

1.5. My Contributions 4

1.6. Outline of the Dissertation 5

CHAPTER 2. SURVEY OF RELATED WORKS 6

2.1. SDF-Related Dataflow Architectures 6

2.1.1. Traditional Dataflow Architectures 6

2.1.1.1. Static Dataflow Architecture 7

2.1.1.2. Dynamic (Tagged-Token) Dataflow Architecture 7

2.1.1.3. Explicit Token Store Dataflow Architecture 9

2.1.2. Hybrid Dataflow/Von Neumann Architecture 11

2.1.3. Recent Advances in Dataflow Architecture 11

2.1.3.1. WaveScalar Architecture 12

2.1.3.2. SDF Architecture 13

2.1.4. Multithreaded Architecture 13

2.1.4.1. Multiple Threads Using the Same Pipeline 13

2.1.4.2. Multiple Pipelines 15

iv



2.1.4.3. Multi-Core Processors 17

2.1.5. Decoupled Architecture 17

2.1.6. Non-Blocking Thread Model 18

2.2. Thread-Level Speculation 18

2.2.1. Single Chip TLS Support 19

2.2.2. TLS Support for the Distributed Shared Memory System 22

2.2.3. Scalable TLS Schemas 23

CHAPTER 3. SDF ARCHITECTURE OVERVIEW 25

3.1. SDF Instruction Format 25

3.2. SDF Thread Execution Stages 25

3.3. Thread Representation in SDF 27

3.4. The Basic Processing Units in SDF 28

3.5. Storage in SDF Architecture 31

3.6. The Experiment Results of SDF Architecture 31

CHAPTER 4. THREAD-LEVEL SPECULATION (TLS) SCHEMA FOR SDF

ARCHITECTURE 35

4.1. Cache Coherency Protocol 35

4.2. The Architecture Supported by the TLS Schema 36

4.3. Cache Line States in Our Design 38

4.4. Continuation in Speculative SDF Architecture 39

4.5. Thread Schedule Unit in Speculative Architecture 40

4.6. ABI Design 41

4.7. State Transitions 42

4.7.1. Cache Controller Action 43

4.7.2. State Transitions According to the Processor Requests 43

4.7.2.1. Invalid State 43

4.7.2.2. Exclusive State 44

4.7.2.3. Shared State 44

4.7.2.4. Sp.Exclusive State 44

v



4.7.2.5. Sp.Shared State 45

4.7.3. State Transitions According to the Bus Requests 46

4.7.3.1. Shared State 47

4.7.3.2. Sp.Shared State 48

4.7.3.3. Exclusive State 48

4.7.3.4. Sp.Exclusive State 48

4.8. ISA Support for SDF architecture 49

4.9. Compiler Support for SDF Architecture 50

CHAPTER 5. SDF WITH TLS EXPERIMENTS and RESULTS 51

5.1. Synthetic Benchmark Results 51

5.2. Real Benchmarks 55

CHAPTER 6. PERFORMANCE OF HARDWARE MEMORY MANAGEMENT 58

6.1. Review of Dynamic Memory Management 58

6.2. Experiments 59

6.2.1. Simulation Methodology 59

6.2.2. Benchmarks 60

6.3. Experiment Results and Analysis 62

6.3.1. Execution Performance Issues 62

6.3.1.1. 100-Cycle Decoupled System Performance 62

6.3.1.2. 1-Cycle Decoupled System Performance 64

6.3.1.3. Lea-Cycle Decoupled System Performance 65

6.3.1.4. Cache Performance Issues 66

CHAPTER 7. ALGORITHM IMPACT OF HARDWARE MEMORY MANAGEMENT 69

7.1. Performance of Different Algorithms 71

CHAPTER 8. A HARDWARE/SOFTWARE CO-DESIGN OF A MEMORY

ALLOCATOR 77

8.1. The Proposed Hybrid Allocator 79

8.2. Complexity and Performance Comparison 81

vi



8.2.1. Complexity Comparison 81

8.2.2. Performance Analysis 82

8.3. Conclusion 85

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 86

9.1. Conclusions and Contributions 86

9.1.1. Contributions of TLS in dataflow architecture 86

9.1.2. Contributions of hardware memory management 87

9.2. Future Work 87

BIBLIOGRAPHY 89

vii



LIST OF TABLES

3.1 SDF versus VLIW and Superscalar 33

3.2 SDF versus SMT 34

4.1 Cache Line States of TLS Schema 38

4.2 Encoding of Cache Line States 39

4.3 Encoding of Cache Line States 43

4.4 State Transitions Table for Action Initiated By SP (Part A) 46

4.5 State Transitions Table for Action Initiated By SP (Part B) 47

4.6 State Transitions Table for Action Initiated By Memory 48

5.1 Selected Benchmarks 55

6.1 Simulation Parameters 61

6.2 Description of Benchmarks 62

6.3 Percentage of Time Spent on Memory Management Functions 63

6.4 Execution Performance of Separate Hardware for Memory Management 63

6.5 Limits on Performance Gain 65

6.6 Average Number of Malloc Cycles Needed by Lea Allocator 66

6.7 L-1 Instruction Cache Behavior 67

6.8 L-1 Data Cache Behavior 67

7.1 Selection of the Benchmarks, Inputs, and Number of Dynamic Objects 71

7.2 Number of Instructions(Million) Executed by Different Allocation Algorithms 72

7.3 Number of L1-Instruction Cache Misses(Million) of Different Allocation Algorithms 73

7.4 Number of L1-Data Cache Misses(Million) of Different Allocation Algorithms 73

viii



7.5 Execution Cycles of Three Allocators 74

8.1 Comparison of Chang’s Allocator and my Design 81

8.2 Selected Benchmarks and Ave. Object Sizes 83

8.3 Performance Comparison with PHK Allocator 83

ix



LIST OF FIGURES

2.1 Block Diagram of Dynamic Dataflow Architecture 8

2.2 ETS Representation of a Dataflow Program Execution 10

2.3 Block Diagram of Rhamma Processor 18

2.4 Architecture for SVC 20

2.5 Block Diagram of Stanford-Hydra Architecture 21

2.6 Example of MDT 22

2.7 Block Diagram of Architecture Supported by Steffan’s TLS Schema 23

3.1 Code Partition in SDF Architecture 26

3.2 An SDF Code Example 27

3.3 State Transition of the Thread Continuation 28

3.4 SP Pipeline 29

3.5 General Organization of the Execution Pipeline (EP) 29

3.6 Overall Organization of the Scheduling Unit 30

4.1 Architecture Supported by the TLS schema 37

4.2 Overall TLS SDF Design 41

4.3 Address Buffer Block Diagram 42

4.4 State Transitions for Action Initiated by SP 45

4.5 State Transitions Initiated by Memory 49

5.1 The Performance and Scalability of Different Load and Success Rates of TLS Schema 52

5.2 Ratio of Instruction Executed EP/SP 53

5.3 Normalized Instruction Ratio to 0% Fail Rate 53

x



5.4 Performance Gains Normalized to Non-Speculative Implementation 56

5.5 Performance Gains Normalized to Non-Speculative Implementation 57

7.1 Performances of Hardware and Software Allocators 75

8.1 Block Diagram of Overall Hardware Design 80

8.2 Block Diagram of the Proposed Hardware Component (Page Size 4096 bytes, Object

Size 16 bytes) 80

8.3 Normalized Memory Management Performance Improvement 84

xi



CHAPTER 1

INTRODUCTION

Conventional superscalar architecture - based on the Von-Neumann execution model -

has been on the main stage of commercial processors (Intel, AMD processors) for the past

twenty years. The Von-Neumann architecture uses a program counter (PC) to control the

execution of a program based on the control flow graph.

The superscalar architecture exploits the data independence at the instruction level and

allows more than one instruction to be issued out-of-order in every clock cycle. The super-

scalar architecture dedicates a large amount of hardware to branch prediction, aggressive

out-order-issue instructions, speculative instruction execution, etc., to get more instructions

executed per cycle (IPC). It also utilizes a very deep pipeline to achieve a high clock rate.

It has been shown that performance improvement diminishes by simply increasing the clock

rate, or increasing the instruction scheduling window size with additional hardware resources

in the superscalar architecture paradigm.

With the advances in VLSI technology, hundreds of billions of transistors can be packed

into a single chip. With the increased hardware budget, how to take advantage of available

hardware resources becomes an important research area. Some researchers have shifted

from control flow Von-Neumann architecture back to dataflow architecture again in order

to explore scalable architectures leading to multi-core systems with several hundreds of

processing elements.

In this dissertation, I address how the performance of modern processing systems can be

improved, while attempting to reduce hardware complexity and energy consumptions. My

research described here tackles both central processing unit (CPU) performance and memory

subsystem performance. More specifically I will describe my research related to the design of

an innovative decoupled multithreaded architecture that can be used in multicore processor

implementations. I also address how memory management functions can be off-loaded from

1



processing pipelines to further improve system performance and eliminate cache pollution

caused by runtime management functions.

1.1. Dataflow Architecture

Dataflow architecture is a drastically different architecture from the current Von-Neumann

architecture. An application can be translated into a data flow graph, which is a directed

graph. The nodes in the data flow graph represent the instructions and the arcs in the data

flow graph represent the data dependences between the instructions.

The execution of the dataflow architecture is only driven by the availability of the input

operands. Once an instruction has all its inputs, it can be fired. The firing of an instruc-

tion will consume the input data (operands) and will generate the output operands. Since

the conditions of an instruction that can be executed in the dataflow architecture are only

dependent on data availability, dataflow architecture can easily exploit parallelism at the in-

structional level. Due to this fine-grained parallelism that can easily be exploited in dataflow

architectures, the parallelism is much larger than that of the Von-Neumann model.

Dataflow architecture is a very powerful alternative to the current architecture. However,

pure dataflow architecture, which requires a large amount of hardware such as the number

of the functional units, communication bandwidth, and the operand matching hardware, is

too complex to be implemented cost effectively.

To reduce the hardware requirement of pure dataflow architecture, some researchers

proposed hybrid dataflow/Von-Neumann architecture. In such architectures, a dataflow

graph is statically partitioned into subgraphs. These subgraphs are executed in a data flow

order, but the instructions within subgraphs are executed sequentially. By doing this, the

enormous scheduling and communication overheads are saved.

1.2. Scheduled Dataflow Architecture

Scheduled dataflow architecture (SDF) is a further enhancement of the hybrid dataflow

and Von-Neumann architecture. The subgraphs of a data flow graph are transformed into

threads. An application is partitioned into multiple threads with multiple contexts. A

thread can be fired when all its inputs are available. Therefore, SDF exploits the thread

level parallelism (TLP) inherent in the dataflow graph.

2



In modern processors, the CPU clock rate is much higher than the memory speed. The

access times and I/O bandwidth did not improve with the processor clock rate. The gap be-

tween the processor speed and the memory speed has widened. One way to tolerate the long

latency memory operation in modern computer systems is to perform a context switch. The

hardware or the operating system swaps out the task that waits for the memory operation

and schedules another ready task to run. Another approach to alleviate the memory gap is

to use decoupled architecture. The main feature of decoupled architecture is separation of

the memory access from the execution. In this type of architecture, there are two sets of

different processing elements, one for the memory access and one for the execution. SDF

architecture also incorporates this feature into its architecture design. SDF architecture also

uses a non-blocking thread execution model to achieve a clean separation of memory access

from execution.

This architecture differs from other multi-threaded architectures in two ways: 1) the

programming paradigm is based on the dataflow, which eliminates the need for runtime

scheduling, reducing the hardware complexity significantly and 2) complete decoupling of

the memory access from the execution pipeline.

1.3. Thread-Level Speculation

With the advances in compiler technology in recent years, compiler-driven code paral-

lelization has advanced significantly. Thread-level parallelism is the key to achieving high

performance for today’s multi-core architectures. Unfortunately, there are still a large set of

applications that cannot be parallelized due to the inability to determine data dependences

or control dependences at compiling time. These types of programs are very common in

many application domains, like sparse matrix computations, molecular biology, image pro-

cessing, etc. Furthermore, the loops in these applications are repeated for a large number of

iterations with only a few data dependences across the loop iterations.

Thread-level speculation (TLS) is a technique which enables compilers to aggressively

parallelize applications despite data or control dependences. In architectures with TLS sup-

port, the hardware takes the responsibility to check the dependence violations, and recover

from the violations to guarantee the correct execution result. Due to the dataflow languages

3



are not commonly used, one has to compile the programs written in imperative languages like

C/C++. These programming languages generally have no consideration of parallel dataflow

programming paradigms. TLS support in SDF architecture will improve the compiler’s abil-

ity to generate parallel threads, even with undetermined dependencies, to achieve a better

execution performance.

1.4. Decoupled Memory Management Architecture

The second part of this dissertation research investigates efficient memory management

needed in modern computing systems. Dynamic memory management is traditionally im-

plemented as library functions within system’s runtime library. The memory management

functions execute in different logical slices of the applications. They rarely interfere with

the applications except receiving parameters and returning values. But they compete for

the cache and CPU resources, with the application. By off-loading the memory management

functions from the CPU, the cache contentions can be reduced and the memory management

performance will be improved.

1.5. My Contributions

In this dissertation, I propose a scalable thread-level speculation schema along with

an architecture design for the scheduled dataflow architecture. This is the first work to

propose a TLS schema in a hybrid dataflow architecture. Compared with the existing TLS

schema, my design has the advantage of low hardware cost, and does not need any OS

level support. I also model the performance of SDF architecture with TLS support using

synthetic benchmarks. I compare the performance of TLS schema with the results reported

by other researchers using selected benchmarks to show that thread-level speculation is

more effective in SDF architecture. In my view, the beauty of the proposed TLS model

and its hardware realization lies in its simplicity and clarity. I evaluated the performance

impacts of hardware memory management in conventional architecture. I also proposed

a hybrid hardware/software memory management implementation which can improve the

performance of memory intensive applications by 23% with a small amount of hardware.

4



1.6. Outline of the Dissertation

The dissertation can be divided into two parts: the thread-level speculation (TLS) of

SDF described in chapter 2 through chapter 5, and the hardware memory management

described in chapter 6 through chapter 8. The dissertation is organized as follows: Chapter

2 will review SDF related dataflow architectures and architectures supporting thread level

speculation; Chapter 3 will introduce SDF architecture in more detail; Chapter 4 will present

my TLS schema; Chapter 5 will provide experimental results, analyses and comparisons with

the results from other researchers; Chapter 6 will demonstrate the performance impacts of

hardware memory management; Chapter 7 will compare the performance of different memory

management algorithms; Chapter 8 will show a hybrid memory management unit design; and

Chapter 9 will summarize contributions and some of the future improvements that can be

applied to enhance the performance of my TLS schema.

5



CHAPTER 2

SURVEY OF RELATED WORKS

This survey includes two parts: the first refers to SDF-related dataflow architectures,

and the second refers to thread-level speculation-related architecture (TLS).

2.1. SDF-Related Dataflow Architectures

SDF architecture has the following characteristics: it is a, multi-threaded hybrid dataflow/

Von-Neumann architecture, which decouples memory accesses and execution, and uses a non-

block thread model. In this section, I will review works in traditional dataflow architecture,

multi-threaded architecture, hybrid dataflow architecture, recent advances in dataflow archi-

tecture, decoupled architecture, and the non-blocking thread model.

2.1.1. Traditional Dataflow Architectures

The dataflow computing model was developed by Dennis and Misuanas[22] in the early

1970s. Instruction execution in dataflow architecture is based on the availability of input

data. An instruction can be fired when all its inputs are available. Multiple instructions can

be fired at the same time if sufficient resources are available. Dataflow architecture can eas-

ily achieve maximum instruction-level parallelism possible. The synchronization for parallel

execution in the dataflow architecture is implicit (data availability). Single assignment lan-

guages and notions, such as SISAL[11], VAL[1] and Id[38], were developed during the same

period. In conjunction with the dataflow architecture, anti-dependences (write after read)

and output dependences (write after write) are handled elegantly. It seems very promising

that this new architecture will deliver high parallelism machine. However, the architecture’s

performance as implemented is not as expected. This is partly due to the fact that VLSI

technology was not mature at the time these architectures were implemented (in the 1970s

and 1980s). Other limitations of the model include: 1) excessively fine-grained thread paral-

lelism, 2) the fact that it’s very hard to integrate high speed storage (like registers and caches)

into this architecture, and 3) asynchronous triggering of instructions [47][48][70][72][66].

6



There are three main architectures based purely on the dataflow principle: Static (Single-

Token-Per-Arc) Dataflow architecture, Dynamic (Tagged-Token) Dataflow architecture, and

Explicit Token Store (ETS) architecture. The following sections describe some of these

architectures.

2.1.1.1. Static Dataflow Architecture

In the static dataflow model, programs are represented as a collection of templates. A

template contains the operation code, operand slots, and destination address fields. Destina-

tion address fields refer to the operand slots in subsequent templates that receive the results.

Once the destination template receives a token, it needs to give an acknowledgment, which

doubles the traffic. The instructions are fired when all the operands are available. Since only

one set of operands can be held with each instruction template, the loop iterations can not

be parallelized in this architecture. Architectures based on this model are: the MIT Static

Dataflow Machine[22], the LAU in France, the DDMI at the University of Utah (1978), and

the Texas Instrument DDP (1979).

2.1.1.2. Dynamic (Tagged-Token) Dataflow Architecture

Dynamic (Tagged-Token) dataflow architecture allows subprograms and loop iterations

to proceed in parallel. A token consists of a tag and associated data. Each tag is composed of

a PE number (to determine which processing element it refers to), context field t (uniquely

identifying the context), initiation number i (identifying the loop iteration), and instruction

address n. It also has a port number since the destination instruction may need more than

one input. For example, a token can be defined as <t.i.ni, data>p. Port p represents

left or right. If it is a simple token without identifying loop iteration, t is the tag itself.

If the tags are attached to the tokens, they allow multiple tokens to reside on the arc

and the architectures supporting such tokens are called dynamic (Tagged-Token) dataflow

architectures. When identical tags are present on all input arcs (indicating a complete set of

operands for a specific context and loop iteration), the node can be enabled or fired. There

are two units, known as the matching unit and the execution unit, which are connected by

an asynchronous pipeline with queues to balance the load variations. The execution is in

terms of receiving, processing, and sending out tokens containing data and destination tags.

7



Data dependencies are translated into tag matching and transformation. The tag contains

information about the destination context and how to transform the tag to achieve results.

In order to support token matching, some form of associative memory, such as real memory

with associative access, a simulated memory based on hashing, or a direct-matched memory,

is required. The figure 2.1 below shows a block diagram, tag format, and token format of

this particular architecture.

Figure 2.1. Block Diagram of Dynamic Dataflow Architecture

Dynamic dataflow unfolds much more parallelism than the static dataflow model. How-

ever, the large number of tokens waiting to be matched increases the size and complexity of

the associative memory. Arvind et al. first proposed I-structure [8] [7], but it was simulta-

neously discovered by Watson and Gurd at the University of Manchester [77]. I-structure in

dataflow can be viewed as a place to store structures, arrays, or indexed data using single-

assignment rules. Each element of an I-structure can be read many times, but can only be

written once. Each element is associated with status bits and a queue of deferred reads. The

status can be defined as PRESENT (data ready), ABSENT (data not ready), and WAITING

(data not ready, but with at least one deferred read). Three operations can be performed on

the I-structures: I-allocate (allocation space for I-structure), I-fetch (to retrieve the contents;

if the data is not ready, the read is deferred), and I-store (to write the contents). The I-fetch

8



instruction is executed in split phases, which means that the read request issued is indepen-

dent in time from the response. It does not cause the issuing PE to wait for a response.

The main drawback of this dynamic dataflow architecture is that the amount of memory

needed to store tokens waiting for a match tends to be very large. To overcome this, the

technique of hashing is used, which is not as fast as associative memory. Several dynamic

dataflow machines have been constructed, including: 1) the MIT Tagged-Token Dataflow

architecture [7], 2) the Manchester Dataflow Machine [36], 3) the Distributed Data-Driven

Processor (DDDP) from OKI Electric Ind. (Japan) [49], 4) the Stateless Dataflow Architec-

ture (SDFA) designed at the University of Manchester [23], and 5) the Data-Driven VLSI

Array (DDA) designed by Technion (Haifa, Israel) [51].

2.1.1.3. Explicit Token Store Dataflow Architecture

The explicit token store (ETS) concept was proposed in order to overcome the draw-

backs associated with token matching using associative memory or hashing. ETS uses direct

matching of operands (or tokens) belonging to an instruction. In a direct matching schema,

storage (called a frame) is dynamically allocated for all the tokens needed by the instructions

in a code block. A code block can be viewed as a sequence of instructions comprising a loop

body or a function. The actual disposition of locations within a frame is determined at

compile time; however, the actual allocation of frames is determined at run time. In a direct

matching schema, any computation is completely described by a pointer to an instruction

(IP) and a pointer to a frame (FP). The pair of pointers, <FP, IP>, called a continuation,

corresponds to the tag part of a token. A typical instruction that an IP points to specifies

an opcode, an offset in the frame where the match of input operands for that instruction will

take place, one or more displacements (destinations) that define the destination instructions

to receive the result token(s), and the input port (left/right) indicator that specifies the

appropriate input arc for a destination instruction.

When a token arrives at a node (e.g. ADD in Figure 2.2), the IP part of the tag points

to the instruction that contains an offset r as well as displacement(s) for the destination

instruction(s). The actual matching process is achieved by checking the slot availability in

the frame memory at FP+r. If the slot is empty, the data value from the token is written

9



to the slot and its presence bit is set to indicate that the slot is full. If the slot is already

full (indicating a match of input operands), the value is extracted, leaving the slot empty,

and the corresponding instruction is executed. The resulting token(s) generated from the

operation is communicated to the destination instruction(s) by updating the IP according

to the displacement(s) encoded in the instruction (e.g., execution of the ADD operation

produces two result tokens <FP.OP+1,3.55>. Instruction execution in ETS is asynchronous

since an instruction is enabled immediately upon the arrival of the input operands.

Figure 2.2. ETS Representation of a Dataflow Program Execution

MIT and Motorola jointly built the Monsoon explicit token store machine in 1990 [20][60].

The Monsoon PE used an 8-stage pipeline. The first stage is the instruction fetch. The

second stage is the effective address generation, which consists of three pipeline stages.

The execution stage consists of three pipeline stages, while the final stage comprises the

token-form stage. The ETS model is also applied in other machines such as the EM-4 and

Epsiln-2[34].

10



2.1.2. Hybrid Dataflow/Von Neumann Architecture

Even though dataflow architecture provided the natural elegance of eliminating output-

dependencies and anti-dependencies, it performed poorly with sequential code. In an eight-

stage pipeline machine such as the Monsoon, an instruction of the same thread can only

be issued to the dataflow pipeline after the completion of its predecessor instruction. In

addition, the token matching and waiting matching store introduced more pipeline bubbles

or stalls into the execution stage(s) of the dataflow machines. In order to overcome these

drawbacks, some researchers proposed a hybrid of dataflow/control-flow models along with

a multithreaded execution. In such models [59][41], several tokens within a dataflow graph

are grouped together as a thread to be executed sequentially under its own private program

counter control, while activation and synchronization of threads are data-driven. Such hybrid

architectures deviate from the original dataflow model, where the instructions fetch data from

memory or registers, instead of having instructions deposit operands (tokens) in “operand

receivers” of successor instructions. In such hybrid models two key features that support

these types of architectures are: sequential scheduling and the use of registers for buffering

the results between instructions. Examples of such hybrid models are: the threaded abstract

machine (TAM) [19], P-RISC [59] and Star-T [4].

2.1.3. Recent Advances in Dataflow Architecture

Due to the drawbacks listed in the section 2.1.1, dataflow architectures did not reach

commercial success. With advances in VLSI technology, the gap between the wire-delay

relative to the switching speed and the exponential cost of the circuit complexity make a

simple scaling up of existing processor designs futile [2]. Effectively translating the hardware

budget into performance becomes a new challenge. Multithreaded model is becoming a

preferred possible solution to this problem. Since dataflow model presents a clean model for

multithreading, many researchers are shifting their interests back to dataflow architecture

again.

There are two new architectures based on the dataflow concept: WaveScalar [69] archi-

tecture from the University of Washington and SDF[32] architecture.

11



2.1.3.1. WaveScalar Architecture

WaveScalar architecture integrates the idea of computation in memory (cache) and

dataflow computing. The goal of WaveScalar is to minimize the communication cost be-

tween processors and memory. The key difference between WaveScalar and the previous

dataflow architectures is that it supports traditional memory semantics.

WaveScalar instructions are cached and executed by an intelligent, distributed instruction

cache - the WaveCache. The WaveCache loads instructions from the memory and assigns

them to a processing element for execution. These instructions will reside in the WaveCache

for multiple invocations. A WaveScalar binary is the data flow graph in executable format.

It resides in the memory as a collection of intelligent instruction words.

The core of WaveScalar architecture is the WaveCache. A WaveCache is a grid of 2K

(2048) processing elements (PEs) arranged into clusters of 16 PEs. Each PE contains the

logic of the instruction placement and execution, input and output queues for instruction

placement and execution, communication logic, and function units (integer and floating).

Each PE can hold eight different instructions; a total of 16,000 instructions can be kept in

cache. The instruction placement is dynamic based on the resource availability. And when

an instruction is loaded, the destination field of an instruction is modified accordingly.

The WaveScalar compiler breaks the control flow graph of an application into waves.

A wave has the following properties: 1) each instruction in a wave only executes once in

a round, 2) the instructions are partially ordered, and 3) there is no control-flow within a

wave. In WaveScalar, φ functions [18] are used to address the control dependences between

waves. In this architecture, every data value carries a tag. The wave numbers are used to

differentiate the data between dynamic waves. A special instruction, “WAVE ADVANCE”,

is used to manage wave numbers. This architecture assumes the wave number computation

is very simple and can be combined with other instructions, for example, the ADD-WITH-

WAVEADVANCE. The key feature of WaveScalar is that wave number management can

be entirely distributed and under software control, whereas tag generation in traditional

dataflow architecture is only partially distributed.

12



Unlike traditional dataflow architecture, WaveScalar does not use I-structure memory.

The memory ordering problem is solved by the compiler’s insertion of the annotation <pred,

this, suc> tuples into the load and store instructions. Pred is the sequence number of the

predecessors, this is the sequence number of this node, and suc is the sequence number of

the successor. In case of ambiguous dependences, the compiler will insert a ’? ’ as a wildcard

in the annotation.

The weakness of this architecture is that it moves the complex communication between

instructions in traditional superscalar from the reservation stations to the PEs, and does

not reduce the number of actual communications needed, as it claims: the architecture

makes communications explicit between them. The other drawback is that the utilization of

PEs (not functional units) is very low. The utilization of PEs is only 0.01% from the data

provided [69]. One must conclude that today’s technology cannot meet the requirements of

WaveScalar.

2.1.3.2. SDF Architecture

SDF is one type of hybrid architecture that tries to use relatively simple hardware to

achieve high performance, and to utilize the hardware more efficiently. The features of SDF

architecture include decoupling and non-blocking multithreading. And SDF architecture is

very flexible; one can choose the number of PEs according to different types of applications.

A detailed introduction to SDF architecture can be found in chapter three.

2.1.4. Multithreaded Architecture

There are several types of multithreaded architecture, which can be divided into three

categories: multiple threads that share the same pipeline, multiple pipelines that share the

same register files or L1 cache, and multi-core, chip-microprocessors (CMP).

2.1.4.1. Multiple Threads Using the Same Pipeline

This type of architecture has only one pipeline, but the hardware can explicitly support

more than one thread (the hardware keeps multiple contexts). This kind of architecture falls

into one of two categories depending on whether the instructions are issued from only a single

thread or from multiple threads in a given cycle. In simultaneous multithreading (SMT) and

13



other interleaving architectures [74][3] instructions are issued from multiple threads to the

pipeline during the same cycle.

Simultaneous multithreading (SMT) is an extension of mainstream superscalar architec-

ture, which allows multiple independent threads to issue multiple instructions during each

clock cycle to a superscalar pipeline. The Intel Hyper-Threading processor is an implemen-

tation of the SMT architecture. SMT simultaneously uses the thread-level parallelism and

instruction-level parallelism by running multiple tasks on a superscalar processor at the same

time. The entire active contexts in the SMT architecture will compete for resources at each

clock cycle. The primary changes in SMT architecture from the conventional superscalar

processor are the differences in the instruction fetch and register renaming mechanism. The

fetch stage needs to fetch instructions from multiple instruction streams, which will incur

extra overheads, so the fetch stage of SMT architecture has to be further divided into multi-

ple stages. After the instructions are fetched from different contexts, the renaming register

mechanism maps the architectural registers into the machine’s physical registers. SMT ar-

chitecture requires more physical registers than what a superscalar architecture does. Due

to the large renaming register file size, the renaming of the register will take extra cycles.

After register renaming, the instructions are combined into a single instruction stream in

an instruction queue waiting for schedule. Because the different instruction streams do not

have dependencies among them, it is possible to issue more instructions (higher ILP) in a

single cycle. SMT improves the throughputs of the threads and utilizes hardware resources

(functional units) more efficiently than superscalar. But SMT also increases the contention

for resources including the branch predictor, and caches. Some studies show that this archi-

tecture is not very scalable in terms of the number of threads due to the contentions of these

resources [39][40].

Tera utilizes a single pipeline by interleaving the execution of the instructions from dif-

ferent threads to hide the memory latency and the pipeline stalls due to data dependencies.

The Tera computer does not include a cache. Each memory access takes 70 cycles but using

the 128 hardware threads that can be supported, Tera aims to hide the memory latency

since instructions from other threads are interleaved with the memory access instructions of

a thread.

14



2.1.4.2. Multiple Pipelines

Multiple pipelines architecture has multiple pipelines layout on a single chip. Multiscalar

[67], Superthreaded [73] architecture, and TRIPS [64] are examples of this architecture.

Multiscalar Architecture

A Multiscalar processor resembles multiple pipelines, but with a single logical register

file that is implemented with physical copies in parallel processing units. In the Multiscalar

architecture, the static program is partitioned into sequential “tasks”. A task may be a basic

block, a number of connected basic blocks, a number of loop iterations, a function call, or any

combination thereof. The compiler is responsible for marking task boundaries, but it need

not have full knowledge of inter-task or intra-task dependences. Dependences are implied by

normal sequential execution semantics, as in conventional architectures. Load balance, i.e.

choosing tasks of roughly equivalent size, is one of the important design considerations.

The control unit of the Multiscalar processor executes the program binary by processing

each task as a single unit. Upon encountering each task, it predicts the subsequent task (by

keeping a record of past history in a manner similar to dynamic branch prediction). Then

the task is assigned to one of the parallel processing units. Consequently, the control unit

scans the program (speculatively) by taking large steps, one task at a time, not pausing to

look at any of the individual instructions within a task (including branches that may be

contained within a task). The multiple processing units fetch and execute instructions from

each of the assigned tasks in parallel. The result is that many instructions are executed per

clock cycle.

Each task consumes and produces values that are bound to architectural registers and

memory locations. Because of the natural sequential ordering of tasks, a value that a task

consumes must be a value from an (earlier) task that produces it. Although copies are

physically distributed, the register file has the appearance of a single, conventional file. When

a register value is produced by one task and consumed by another, later task, the value must

be conveyed to the physical register file in the later task (and all tasks in between). This is

accomplished by the compiler and hardware. In a MultiScalar processor, tasks complete by

committing their state changes (to registers and memory) in the same order in which they

15



were assigned to processors. This can only happen when the task has completed execution

and when any predicted branch prior to the beginning of the task has been resolved.

Superthreaded Architecture

Superthreaded architecture has multiple processing elements (PEs) connected to each

other in a unidirectional ring. Each processing element has a private instruction-level cache

and a private memory buffer to cache speculative stores and to support run time data

dependency checking. The PEs share the L-1 data cache and unified L-2 cache, as well as a

register file and lock register.

This architectural model adopts a thread pipelining execution model that allows threads

with data dependences and control dependences to be executed in pipelined fashion. The

basic idea of thread pipelining is to compute and forward recurrence data and possible de-

pendent store addresses to the next thread as soon as possible, so the next thread can start

execution and perform run time data dependence checking. Thread pipelining also forces

contiguous threads to perform their memory write-backs in order, which enables the compiler

to fork threads with control speculation. With run time support for data dependence check-

ing and control speculation, the Superthreaded architectural model can exploit loop-level

parallelism from a broad range of applications.

TRIPS

TRIPS is a tile-based architecture. Each TRIPS core contains four processors. These pro-

cessors share instruction caches and data caches, which are connected to processors through

intelligent communication tiles.

Each processor contains 16 PEs (tiles). The PEs are connected in a grid fashion by an

intelligent communication channel and share common register files. All the PEs contain an

integer ALU and a floating point ALU, but each PE has it own reservation stations.

The compiler will partition the programs into blocks of the same size. A block is spawned

as a thread for execution. Once a thread is scheduled, the instructions within the block will

be placed over all the 16 PEs in a processor and the execution will be based on the dataflow

model of that block.

TRIPs can be configured to support up to eight threads from the same task. The synchro-

nization of the eight threads is through the register files and reservation stations, but these

16



threads must commit their results in the order of their spawning. TRIPS also can be con-

figured to support four tasks with two threads from each task. By using dataflow execution

within a thread, TRIP can utilize the fine-grained instruction-level parallelism (D-morph).

And a processor can support multiple threads so that it also capitalizes on thread-level par-

allelism (T-morph). By the grid connection of the PEs with an intelligent communication

channel, the data exchanges between neighboring PEs are greatly improved (S-morph). Be-

cause of these three properties, TRIPS is called a processor design with polymorphism for

different applications.

2.1.4.3. Multi-Core Processors

When CMOS technology scales down in size, more and more transistors can be packed

onto a single chip. Multiple independent cores, each representing a complete CPU, can be

placed on a single chip with inter-core communication channels. Multi-core processors offer

an immediate and cost-effective way to solve today’s processor design challenge. There are

several multi-core processors, like the Intel DUO and AMD Dual Core, which are already

commercially available.

2.1.5. Decoupled Architecture

J.E. Smith [65] proposed a decoupled memory access and execution architecture that

requires a compiler to explicitly slice the program into a memory access slice and a compu-

tational slice. The two slices would run on a different processing elements and a synchro-

nization mechanism would be needed to guarantee the correct execution.

Rhamma [35] is a decoupled multi-threaded architecture that implements decoupled

memory access and execution. Rhamma uses two separate pipelines: a memory access

pipeline and an execution pipeline. A program interleaves on both pipelines during execu-

tion according to the instruction type. While a program running on the execution pipeline

encounters a memory access instruction, a context switch will be generated and the program

moved from the execution pipeline to the memory access pipeline. And when the mem-

ory access pipeline decodes a non-memory access instruction, a context switch will cause

the thread to move back to an execution pipeline. The following figure 2.3 shows a block

diagram of the Rhamma machine.

17



Figure 2.3. Block Diagram of Rhamma Processor

2.1.6. Non-Blocking Thread Model

A non-blocking thread proceeds to evaluation as soon as all input operands are available.

It completes execution without blocking the processor due to the synchronization of threads.

Thread context switching is controlled by the compiler with the means of generating new

threads rather than blocking a thread for synchronization. It will reduce the synchronization

overhead. The disadvantage of this model is that it tends to generate more fine-grained

threads, which will in turn may increase the overhead.

The Cilk run-time environment [10] is a typical example of a non-blocking multi-threaded

system.

2.2. Thread-Level Speculation

With the advances in compiler technology in recent years, compiler-driven code paral-

lelization has advanced significantly. Thread-level parallelism is the key to achieving high

performance for today’s multi-threaded architectures. Unfortunately, there are still a large

set of applications that cannot be parallelized due to the ambiguous data or control de-

pendences. Those dependences are too complicated for the modern compiler to analyze.

And those dependences are very common in many application domains, like sparse matrix

computations, molecular biology, image processing, etc. Furthermore, the loops in these

applications are repeated for a large number of iterations with only a few data dependences

across the loop iterations in actual execution.

18



Thread-level speculation (TLS) is a technique which enables compilers to aggressively

parallelize applications despite data or control dependences between the resulting thread. In

architectures with TLS support the hardware assumes responsibility of checking dependence

violations and recovering from the violations to guarantee the correct execution result.

TLS support can be partitioned into three categories according to the architecture: TLS

support on a single chip, TLS support on a distributed system, and TLS support on both a

single chip and distributed system.

2.2.1. Single Chip TLS Support

Marcuello et. al. [57] proposed a multi-threaded micro-architecture that supports spec-

ulative thread execution within a single processor. The micro-architecture of a speculative

multi-threaded processor (SM) consists of several thread units (TU) that execute the different

threads of a program in parallel. TUs are connected using ring topology.

Each thread unit has its own physical registers, register map table, instruction queue,

functional units, local memory, and reorder buffer. The loops are captured by the hardware to

automatically generate parallel threads. Control speculation is used in two levels, one for the

parallel loop generation, and the other for the branches. Initially, there are no speculative

threads. When the non-speculative threads start a new iteration of a loop, a number of

speculative threads are created and allocated to execute the subsequent iterations. When a

speculative thread reaches the end of its iteration, it is suspended and waits to commit or

be squashed. After the non-speculative thread is committed, the speculative thread of the

next iteration either becomes non-speculative or squashed.

Data dependences across iterations can be categorized as either register dependences or

memory dependences. The register dependences are solved by a loop iteration table, which

records the detailed value changes of a register in that iteration. The memory dependences

are solved by a multi-value cache. For each address, the multi-value cache holds the iteration

number, data value, and a flag indicating whether the data value has been produced. The

data is loaded or stored by that iteration. If the earlier iteration updates an address in the

multi-value cache that is labeled and read by a later iteration, the multi-value cache will

generate a dependency violation and the later iteration will be squashed and re-executed.

19



Multiscalar uses a centralized ARB (Address Resolution Buffer) [31], which is similar

to a multi-value cache to support thread-level speculation. Each load will update the ARB

states and each store will check the buffer to guarantee that there are no memory dependency

violations while a thread commits. Because the multi-value cache and ARB are centralized,

they may become the bottleneck of the system. Speculative versioning cache [33] is an

attempt to distribute the centralized ARB to each processing unit in order to avoid the

delay caused by serializing the operations on the ARB. The speculative versioning cache

provides a private cache for each processing unit. The system is similarly organized to

a snooping bus-based cache coherent symmetric multiprocessor (SMP). The architectural

organization is as Figure 2.4:

Figure 2.4. Architecture for SVC

There are two additional fields added to each speculative versioning cache line. One is

the L bit; the other is the pointer field. The L bit is set when a task loads from a line

before storing it to the line. If the L bit is set it means that there is a potential memory

dependency violation. The pointer field is used to store the L1 cache that contains the next

copy, which forms a distributed versioning ordering list (VOL). The requested hit on the

private cache will not generate an additional request to the version control logic. The cache

misses will issue a bus request, which is snooped by all the caches, and the version control

logic will use the information from the VOL to form the appropriate response. When a task

commits, all dirty lines in its private cache will write back to the memory and other lines are

invalidated. When a task is squashed, all the lines in the cache are invalidated. The cache

coherence schema used in speculative versioning cache is an extension of an invalidate-based

20



write-back cache coherence protocol. Instead of running this protocol on an SMP system, it

runs between tightly coupled PEs.

Stanford Hydra [37] is a CMP system which supports the TLS execution. The CMP

contains four MIPS processors. Figure 2.5 shows the design of Hydra.

Figure 2.5. Block Diagram of Stanford-Hydra Architecture

Each of these four CPUs has a speculative coprocessor. The coprocessor will set up the

speculative context and copy the register file to a Register Passing Buffer. This architecture

also utilizes a variation of the invalidate-based write-back cache coherence protocol to detect

data cache access violations. There are two sets of bits with each L1 data cache line to

support the TLS execution.

The first set of bits includes a modified bit and a pre-invalid bit for invalidating a cache

line. The modified bit is used to buffer the speculative memory state. By using the write-

back protocol, the modified data will also be put on the bus with its sequence number.

Only the CPUs that are running speculative threads will update its local cache. Once the

pre-invalid bit is set, it means a speculative thread has modified this line. This bit is used

to delay invalidating this cache line until a speculative thread has been assigned to the

CPU. The second set of bits includes a read bit and a write bit used to detect the data

dependency violation of the speculative threads. These two bits are designed to allow gang-

clearing(invalid all the cache line accessed by this speculative thread in once) when a thread

is either squashed or restarted. A read bit set means the thread has read this data. Once a

21



write from a less speculative thread is seen on the bus, the cache will generate a dependency

violation and it will cause the speculative thread to be squashed. This bit set means that

the thread has generated a local version of the address referenced.

Krishnan et al. [52] proposed a schema that supports the TLS execution using an memory

disambiguation table (MDT) to solve the ambiguous memory dependences. The MDT is

similar to a directory in a conventional shared-memory multiprocessor system. Figure 2.6

shows an example of MDT. The assumption is that each processor has a private L1 cache

and a shared L2 cache. The MDT is integrated with the shared L2 cache. MDT keeps entries

on a per memory-line basis and maintains information per word basis. For each word, the

MDT keeps a load bit and a store bit for each processor. When a thread is initialized on a

processor, all its LOAD bits and STORE bits are cleared. As the thread executes, the MDT

works like a directory that keeps tracking which processor shared which words. By doing

this, MDT can find the violation of the memory accesses.

Figure 2.6. Example of MDT

2.2.2. TLS Support for the Distributed Shared Memory System

Zhang et al. [81] proposed a schema that supports speculative thread execution in large-

scale distributed shared memory (DSM) systems by extending the directory-based cache

coherence protocol. This schema partition the loop iterations into read-first iteration or

writing iteration based on the non-privatization, blocked privatization, advanced privatiza-

tion, and blocked advanced privatization algorithm in compile time. The directory controller

will create a undo log of the memory accessed by these threads. Once the directory-controller

detects a memory access violation, it will invalid the speculative threads and recover the cor-

rect memory state according to the undo log. These schema requires the speculative thread

to commit in order of their iteration number.

22



2.2.3. Scalable TLS Schemas

Cintra et al. [16] proposed a TLS schema that supports CMP and a large-scale DSM

system. This schema extends the MDT schema for the CMP, described in section 2.2.1.

For each node of CMP, there is a local MDT (LMDT) table, the same as the MDT in [52].

For the whole DSM system, there is a global memory disambiguation table (GMDT). The

GMDT is distributed to all the nodes in the system as the directory. GMDT keeps the

memory information on a per cache-line basis instead of a per word basis, such as in the

MDT. In this architecture the threads assigned to each node must be in batch mode (or a

chunk), so the GMDT can view the chunk of threads on a node as one speculative job, thus

the design of GMDT can be greatly simplified. The GMDT uses a ring structure to perform

the chunk-to-node mapping. As the driving force of the execution, at least one chunk is

non-speculative in the system.

Instead of squashing one thread as in the Zhang et al.[81], the GMDT squashes a chunk

of threads at one time. All the GMDTs synchronize in a barrier to ensure the integrity of

the system.

Steffan et al. [68] proposed a TLS architecture that is built upon a write-back invalidation-

based cache coherence protocol. This design uses the single-chip multiprocessor or simulta-

neous multi-threaded processors as the building block. The base architecture is as Figure2.7:

Figure 2.7. Block Diagram of Architecture Supported by Steffan’s TLS Schema

This schema depends on the speculative threads committing based on their logical or pro-

gram order. An epoch number is used to define the logical order of the threads. It adds the

23



speculative-exclusive (SpE) state to define the speculative-modified data, and speculative-

shared state to define the speculatively read data. To define a speculative thread context,

the following resources are needed: epoch number, cancel handler address, violation han-

dler address, violation flag, logic late mask, replication of the SL and SM bits from cache,

and an ownership buffer (ORB), which is used to record the address of the data that was

speculatively modified by this line. The paper does not mention how the thread context is

maintained. It can be maintained by hardware, but how to implement this hardware with

very low overhead will be another challenge. Or if it is maintained by an operating system,

this will result in very slow memory access for speculative threads.

This work is most closely related to ours. The difference between my work and Steffan’s is

that his work is based on conventional architecture, while my work is based on dataflow/Van

Neumann hybrid architecture. If provide a set of fully implementable hardware design that

supports thread-level speculation in SDF architecture. This design has a very low hardware

complexity. All the speculative stores will be buffered in the registers instead of in the ORB,

as they do in their architecture. This hardware does not need any help from operating

systems.

24



CHAPTER 3

SDF ARCHITECTURE OVERVIEW

SDF architecture applies the dataflow model on a thread-level granularity, instead of on

the fine-grained instruction-level like conventional dataflow architectures. SDF architecture

is a decoupled architecture that separates memory access from the main execution pipeline

to further tolerate the latency of memory access by overlapping the memory access with

the execution. SDF architecture also utilizes the non-blocking thread model to reduce the

context switching cost.

3.1. SDF Instruction Format

Unlike conventional dataflow architecture, SDF instructions within a thread are executed

in a control-flow manner with a private program counter that is associated with each thread.

The instruction format of SDF architecture is very similar to the MIPS instruction format.

Most instructions in SDF have two source operands and one destination operand like MIPS

instructions. Due to the fact that SDF architecture maintains I-structure semantics for

thread synchronization, and conventional memory semantics like MIPS, SDF has two sets of

memory access instructions for memory accesses – IFetch and IStore for I-structure memory,

and Read and Write for conventional memory.

SDF also has some special instructions for spawnning threads (FALLOC), thread switch-

ing between the memory access and execution pipelines (FORKSP, FORKEP), and reading

and writing from the frame memory (Load and Store).

3.2. SDF Thread Execution Stages

For SDF architecture, the compiler partitions the applications written in high-level lan-

guages into threads based on the data flow graph. A thread in SDF architecture can be

viewed as a subgraph of a data flow graph. The size of an SDF thread is limited by the

hardware resources, such as number of registers per context, number of entries in a frame

memory for a thread, etc. Because SDF decouples memory access and execution, a thread

25



will further partition into three portions: pre-load codes, execute codes, and post-store codes.

The pre-load and post-store codes will execute on the memory access pipeline, and the ex-

ecution code will execute on the execution pipeline. The execution sequence of a thread is

shown in the following figure 3.1.

Figure 3.1. Code Partition in SDF Architecture

To understand the decoupled, scheduled dataflow concept, consider one iteration of the

innermost loop of matrix multiplication: c[i, j] = c[i, j] + a[i, k] ∗ b[k, j]. The SDF code is

shown in figure 3.2. In this example, I assume that all necessary base addresses and indexes

for the arrays are stored in the thread’s frame. The thread is enabled after it receives all

inputs in its frame and a register context is allocated. In the preload portion of the example,

the base address and offsets of arrays are loaded from the frame memory and then the data

element referenced in this iteration is fetched from the I-structure memory. By executing the

FORKEP instruction, the thread gives up the memory access unit and the continuation of

the thread is put into a queue to wait for the execution unit. When the thread is scheduled

on the execution pipeline, the multiplication is performed. Then by executing the FORKSP

instruction, the continuation of this thread is put into the post-store queue to wait for the

execution. Finally, the thread gets the memory access unit again and the result is post-

stored. Because the thread model is non-blocking, the FFREE instruction frees the frame

held by the thread and the continuation is destroyed.

26



Figure 3.2. An SDF Code Example

3.3. Thread Representation in SDF

A thread in SDF architecture can be uniquely identified by a continuation of four tuples

- <FP, IP, RS, SC>. FP is the Frame Pointer (where thread input values are stored), IP

is the Instruction Pointer (which points to the thread instructions), RS is a register set (a

dynamically allocated register context), and SC is the synchronization count (the number of

inputs needed to enable the thread). The synchronization count is decreased when a thread

receives its inputs, and the thread is scheduled on SP when the count reaches zero. Each

thread has an associated continuation. At any given time a thread continuation can be in

one of the following states:

• Waiting continuation (WTC) or <FP, IP, −−, SC>

• Pre-Load Continuation (PLC) or <FP, IP, RS, −−>

• Enabled Continuation (EXC) or <−−, IP, RS, −−>

• Post-store Continuation (PSC) or <−−, IP, RS, −−>

The “−−” means that the value is undefined in that state.

Figure3.3 shows a state transition diagram of thread continuation. A thread continuation

is created in the WTC state. A thread moves from the WTC state to the PLC state once

a register set is assigned to the continuation and scheduled to an SP (memory access unit)

27



Figure 3.3. State Transition of the Thread Continuation

for preload. And then the thread is moved to EXC state, when it finishes using SP and

transfers to EP (execution unit). After using EP, the continuation is moved to SP again

and the thread continuation enters PSC state. The scheduling unit is responsible for moving

continuations between SP and EP.

3.4. The Basic Processing Units in SDF

A processing element in scheduled dataflow architecture (SDF) is composed of three

components: the Synchronization Processor (SP), the Execution Processor (EP), and the

thread schedule unit.

The SP is responsible for pre-loading a thread context (i.e. registers) with data from the

thread’s memory and post-storing results from a completed thread into frames of destination

threads. The synchronization pipeline consists of six stages: instruction fetch, instruction

decode, effective address computation, memory access, execution, and write-back. Figure3.4

shows a block diagram of SP. The instruction fetch stage fetches an instruction belonging

to the current thread using the PC (Program Counter). The decode stage decodes the in-

struction and fetches the operands from the registers. The effective address stage computes

the effective address for memory access instructions like LOAD, STORE, READ, WRITE,

IFETCH, and ISTORE. The memory access stage completes the memory access for memory

access instructions. The write-back stage completes the LOAD, READ, and IFETCH in-

structions by storing the result into the register. Unlike traditional dataflow architecture, the

instruction is not scheduled immediately when the operands are available. The instructions

28



are ”scheduled” like control flow architectures using program counters. The instruction-

driven approach eliminates the need for complex communications to exchange tokens among

processing elements.

Figure 3.4. SP Pipeline

The EP performs thread computations, including integer and floating point arithmetic

operations, and spawns new threads. The execution pipeline consists of four pipeline stages:

instruction fetch, decode, execute, and write-back. The instruction fetch stage behaves like a

traditional fetch unit, which fetches instructions pointed by the program counter (PC). The

instruction decode stage decodes the instruction and fetches the operands from the registers.

The execution stage executes the instruction, and the write-back units write the value to the

register file.

Figure 3.5. General Organization of the Execution Pipeline (EP)

A more general implementation can include multiple EP and SPs to execute threads from

a single task or independent tasks. Multiple SP and EPs can be configured into multiple

clusters. Inter-cluster communications will be achieved through shared memory.

29



The scheduling of threads to an SP and EP is handled by a scheduling unit (SU). Fig-

ure 3.6 shows the SP with scheduling queues.

Figure 3.6. Overall Organization of the Scheduling Unit

In SDF architecture, a thread is created by using the FALLOC instruction. The FALLOC

instruction creates a frame (pointed to by an FP) related to a certain thread (pointed to

by an EP) with a given Synchronization Count (SC), which indicates the number of inputs

needed to enable the thread. The thread continuation (<FP, IP, −−, SC>) is then handled

by the SU. The SU takes care of checking when the synchronization count reaches zero. Then

it allocates a register set (RS) to it, and the continuation is scheduled for execution on the

SP. Now the thread is in the PLC state. The PLC thread is ready to execute on the SP for

preload. At the end of the preload phase, the thread is handed off to the EP by executing

the FORKEP instruction. The thread is in state EXC (<−−, IP, RS, −−>) and is ready

to be executed on the EP. The SU is also responsible for moving the thread between the

SP and the EP. The FORKSP instruction is used to move the thread from the EP to the

SP (from the PLC state to the PSC state). After completing the post store, the register set

(RS) is freed and the thread execution is complete.

In order to speed up the frame allocation, a fixed-size frame for the thread is pre-allocated

and a stack of indexes pointing to the available frames is maintained. The SU makes a frame

index available to the EP by popping the stack when executing the FALLOC instruction.

The SU is also responsible for allocating the register sets. The register sets are viewed

as circular buffers which are allocated to enabled threads. The SU pushes indexes of de-

allocated frames to the stack FFREE instruction subsequent to the post-store of completed

30



threads. These policies permit fast context switching and low overhead creation of threads.

FALLOC and FFREE take two cycles in SDF architecture. Because the thread transition

in between SP and EP are very simple, I assume these transitions can be completed in two

cycles based on Rhamma architecture [35]. Note that scheduling is at the thread-level rather

than instruction-level, unlike superscalar or other conventional architectures, and thus it

requires much simpler hardware.

3.5. Storage in SDF Architecture

There are three classes of storage in SDF architecture: I-structure, conventional memory,

and frame memory. I-structure follows the semantics of I-structure proposed by Arvind

[8][7]. To access this memory IFETCH and ISTORE instructions are used. The IALLOC

instruction is used to allocate the I-structure and the IFREE instruction is used to de-allocate

the I-structure. The I-structure can be used to model the producer and consumer problem

and will synchronize the thread execution.

The frame memory is used to store the inputs from one thread to the continuation of

another thread. In addition, the frame memory is allocated by using the FALLOC instruction

and de-allocated by using the FFREE instruction. Allocation and deallocation of frames are

the EP’s responsibility.

The conventional memory is accessed by using the READ and WRITE instruction. It is

just like the memory in any Von Neumann architecture.

3.6. The Experiment Results of SDF Architecture

The SDF architecture exploits two levels of parallelism. Multiple threads can be active

simultaneously, permitting thread-level parallelism. In addition, the three phases of a thread

(pre-load, execute, and post-store) can be overlapped with those of other threads. I reported

the results of preliminary performance comparisons of SDF with other architectures [32][46].

More recently, If also have collected data to compare SDF with SMT. The results thus far

show that SDF scales better than superscalar, and VLIW systems with added functional units

and register sets. Even for control-dominated applications, multi-threading computations

from independent workloads can lead to better utilization of the functional units within

SDF (similar to SMT). Here I show a selected subset of my results.

31



Table 3.6 compares SDF with VLIW (using Trimaran [17]) and superscalar (using Sim-

plescalar [13]) for a selected set of benchmarks (Matrix Multiplication, a picture zooming

program [50], JPEG, ADPCM from EEMBC), in terms of the instructions per cycle (IPC). It

should be noted that SDF uses in-order execution pipelines and performs no speculative ex-

ecutions. Thus, the actual (useful) number of instructions executed by SDF is much smaller

than those in the other architectures. In these comparisons, I set the number of SPs equal

to integer functional units of VLIW and superscalar systems, while setting the number of

EPs equal to the number of floating point functional units. Since I rely on in-order execu-

tion, I feel that this is a reasonable comparison. EPs are provided with a full complement

of floating point arithmetic units, while SPs are designed with simple integer add/multiply

units to compute memory addresses.

The following table clearly shows the scalability of SDF as more functional units are

added1, reaching 2.7 instructions per cycle with four EPs and four SPs for matrix multipli-

cation.

Table 3.6 compares SDF with SMT2 [56] (in terms of IPC), using the same number of

thread contexts and functional units. This data indicates that SDF can perform as well as

SMT.

The SDF code is generated by a toy compiler, which can only compile simple C programs.

The toy compiler is built upon the SUIF compiler tool3. The data supports the hypothesis

that one can design architectures that are based on a fine-grained multi-threading model

that scales better than and compares favorably with conventional modern architectures (at

least for the selected benchmarks). More sophisticated compiler optimizations, and optimiza-

tions that uniquely take advantage of this decoupled architecture, will certainly improve the

performance of SDF over competing architectures.

1Superscalar architecture may improve its IPC if larger instruction windows, renaming registers, and

reservation stations are provided.
2I used the simulator available at http://maggini.eng.umd.edu/vortex/ssmt.html. I acknowledge that

IPC may not be the best measure, but since the SMT simulator available to us only provided IPC counts, I

included only IPC comparisons in my tables. The comparisons are also limited by the SMT simulator, which

could not run large benchmarks or run benchmarks with a large number of thread contexts.

3SUIF group, http://suif.stanford.edu

32



IPC IPC IPC

VLIW Superscalar SDF

Benchmark 1 IALU/1 FALU 1 IALU/1 FALU 1 SP / 1 EP

Matrix Mult 0.334 0.825 1.002

Zoom 0.467 0.752 0.878

Jpeg 0.345 0.759 1.032

ADPCM 0.788 0.624 0.964

Benchmark 2 IALU / 2FALU 2 IALU / 2FALU 2 SP / 2 EP

Matrix Mult 0.3372 0.8253 1.8244

Zoom 0.4673 0.7521 1.4717

Jpeg 0.3445 0.7593 1.515

ADPCM 0.7885 0.6245 1.1643

Benchmark 4 IALU / 4FALU 4IALU / 4FALU 4 SP / 4EP

Matrix Mult 0.3372 0.826 2.763

Zoom 0.4773 0.8459 2.0003

Jpeg 0.3544 0.7595 1.4499

ADPCM 0.7885 0.6335 1.1935

Table 3.1. SDF versus VLIW and Superscalar

33



IPC SMT IPC SDF

Benchmark 2 threads 2 threads

Matrix Mult 1.9885 1.8586

Zoom 1.8067 1.7689

Jpeg 1.9803 2.1063

ADPCM 1.316 1.9792

Benchmark 4 threads 4 threads

Matrix Mult 3.6153 3.6711

Zoom 2.513 2.9585

Jpeg 3.6219 3.8641

ADPCM 1.982 2.5065

Benchmark 6 threads

Matrix Mult 5.1445

Zoom 4.223

Jpeg 4.7495

ADPCM 3.7397

Table 3.2. SDF versus SMT

34



CHAPTER 4

THREAD-LEVEL SPECULATION (TLS) SCHEMA FOR SDF ARCHITECTURE

The TLS schema is based on a variation of the invalidate-based snoopy cache coherency

protocol, thus I will briefly review the cache coherency protocol at the beginning of this

chapter. Then I will introduce our TLS schema.

4.1. Cache Coherency Protocol

Cache coherency problems arise in the multiprocessor systems, where each processor has

its own private cache and multiple caches can have copies of the same memory location

simultaneously. Cache coherency protocol is the mechanism that ensures all these copies

remain consistent when the contents of that memory location are modified. There are three

main types of cache coherency mechanisms: snooping cache coherency protocol, directory-

based cache coherency protocol, and compiler-directed cache coherency.

Snoopy cache protocols are based on the systems where all the processors in the system

and the memory module share a common bus. All the processors monitor the transactions

on the shared memory by snooping on the bus. There are several variations of the snoopy

cache protocol: MSI [30], MOSI [45], MESI [61] [58], and MOESI.

In these cache coherence protocols, each cache line in the system is in one of the predefined

states. The most common states in these protocols are as follows: Modified (M), Invalid (I),

O (Owned), S (Shared), and E (Exclusive). Every cache controller observes every write on

the bus. If a snooping cache has a copy of the block, it either invalidates or updates its copy.

Protocols that invalidate cached copies on a write are commonly referred to as invalidation-

based protocols, whereas those that update other cached copies are called update-based

protocols. In either case, the next time the processor with the copy accesses the block, it

will see the most recent value, either through a cache miss or because the updated value is in

its cache. Archibald et al. [5] reviewed these cache coherence protocols and the performance

35



issues of snooping cache protocol. The snooping cache protocol is often used in symmetric

multiprocessor (SMP) systems.

With a directory-based cache coherent protocol [71] [79], a processor must communicate

with a common directory whenever the processor’s action may cause an inconsistency be-

tween its cache and the other caches or memory. The directory maintains information about

which processor has a copy of which block. Directories usually track where data is located in

a multiprocessor at the granularity of a cache block. Every request for data (i.e. every “read

miss”) is sent to the directory, which in turn forwards information to the nodes that have

cached that data. A directory-based cache coherency protocol is often used in distributed

memory systems such as the non-uniform memory access system (NUMA).

Both the directory-based cache coherency protocol and snoopy cache protocol can be

enforced by a cache controller.

The compiler-directed [75] [12] [27] cache coherence mechanism determines, at compile

time, which cache block may become stale and inserts special instructions into the code to

ensure the stale cache block will not be used.

In order to correctly execute an application, the TLS schema must detect the memory

access violations, where a cache coherency protocol can be applied for this purpose. Our

underlying system is an SMP, so in this work I extend a variation of the invalidate-based

snoopy cache protocol to support our TLS execution.

4.2. The Architecture Supported by the TLS Schema

For non-speculative SDF architecture, if there is an ambiguous RAW (true dependence)

that cannot be resolved at compile time, the compiler generates sequential threads to guar-

antee correct execution using I-structure semantics. This will reduce the performance of

certain programs. However, with hardware support for speculative thread execution and

result commit, a complier can more aggressively create concurrent threads to improve the

performance of applications.

The purpose of TLS schema is to support speculative execution both within a cluster

(which includes multiple SPs and EPs) and multiple clusters connected by a shared bus with

a memory unit. Because our architecture has the property of decoupling memory access,

36



that means only the memory access pipeline (SP) will access the memory. The data cache is

connected only to the SPs. Figure4.1 shows the architecture supported by our TLS schema.

Node  n

. . .

Shared  Memory  Bus

Intra−Node Coherence

Inter−Node  Coherence

Memory

SP2 SP3 SP4SP1 SP2 SP3 SP4SP1

Data Cache Data Cache

Node 1

Figure 4.1. Architecture Supported by the TLS schema

Since EPs do not access the memory, EPs are not included in this block diagram. In each

node, the SPs share the same data cache. TLS execution must maintain coherence within

the same node and across multiple nodes.

The TLS schema is scalable both within a node, which means the number of speculative

threads within a node must be scalable, and the number of clusters supported by the TLS

schema, which must also be scalable. I chose the snoopy protocol to support the TLS

execution, which gives us scalability in terms of the number of clusters in our system. And

the snoopy protocol also enforces the coherence of data cache across multiple nodes. And

our speculative execution hardware provides the scalability of TLS execution within a node

with only a small amount of hardware.

The following terms will be used in this chapter:

Epoch: Meaning an execution thread or a task.

Epoch number: A number is used to define the logical or program order of the epochs.

This is a partial order. The epochs are committed in the order of their epoch numbers.

The meanings of these terms are same as [31] [68].

37



4.3. Cache Line States in Our Design

To support the TLS execution, the TLS schema must be able to detect the data depen-

dence violations at run time. Using an MSI protocol, these violations can be easily detected.

I extend the standard invalidate-based MSI protocol. In order to support our TLS

execution, two new states are included: the SpR.Sh and the SpR.Ex, in addition to the

three states of MSI protocol (Excusive (E), Shared (S), and Invalid (I)). The SpR.Sh state

means the cache line has been read by a speculative thread and more than one copy of

this cache line exists in the system. The SpR.Ex state means that this is the only copy of

cache line in the system and it has been read by a speculative thread. The data modified

by a thread is contained in the register set assigned to the thread and the results are not

committed to memory (or other thread frames) until the thread is allowed to complete its

“post-store” portion of execution. The speculative thread are not allowed to write the data

into cache, which will reduce the overhead of recovering from a data dependency violation.

Table 4.3 includes all the cache line states in the TLS schema.

State Description

M Modified and exclusive ownership

S Shared

I Invalid

SpR.Sh Speculative Read, Shared copy

SpR.Ex Speculative Read, Exclusive copy

Table 4.1. Cache Line States of TLS Schema

In order to differentiate these states, it only needs one additional bit (more than the 2

bits needed to implement snoopy coherence protocol) with each cache line to identify these

states. The three bits are: Invalid bit, Dirty (Modified) bit, and SpR (speculative read) bit.

The Invalid bit and Dirty bit are the same as regular cache. SpR bit defines the speculative

access of a cache line. Table 4.3 shows the encoding of the states.

The cache line is in the Invalidate state, if the Valid bit is 0. The cache line is in the

Exclusive (Modified) state, if the Valid bit and the Dirty bit are 1 and the SpRead bit is

0. The cache line is in the Share state, if only the Valid bit is 1. The cache line is in the

38



SpRead Valid Dirty(Exclusive)

I X 0 X

E/M 0 1 1

S 0 1 0

SpR.Ex 1 1 1

SpR.Sh 1 1 0

Table 4.2. Encoding of Cache Line States

SpR.Ex state, if all the status bits are 1. And the cache line is in the SpR.Sh state, if the

Valid bit and the SpRead bit are 1 and the Dirty bit is 0.

4.4. Continuation in Speculative SDF Architecture

In SDF architecture, a thread can be uniquely identified by a continuation, which is

defined by < FP, IP, RS, SC > (see Chapter 3). In order to support speculative execution

of threads, I add three more elements into the continuation definition. A continuation in the

SDF architecture which supports TLS is defined by: < FP, IP, RS, SC, EPN,RIP, ABI >.

The first four elements are the same as in the original continuation definition in SDF. The

added elements are: the epoch number (EPN), the re-try instruction pointer (RIP), and

an address-buffer ID (ABI). For any TLS schema, an execution order of threads must be

defined based on the program order. The epoch numbers (EPN) are used for this purpose.

Speculative threads must commit in the order of their epoch numbers. RIP defines the

instruction at which a failed speculative thread must start its retry. The other architectures

that support speculation only allow a speculative thread to fail or succeed [31] [68]. But

for SDF architecture with TLS support, if the speculation failed, instead of re-executing

the thread from the beginning, I would start from a point where the first speculative read

access is performed. Since the thread execution goes through pre-load, execute and post-

store; any and all memory accesses take place in pre-load portion of the code, and a failed

speculative thread will restart in the pre-load portion at the point a speculative access is

made. RBI defines this point of restart. ABI defines the buffer ID that is used to store

the addresses of speculatively-read data. I will explain the details of the ABI design in

section 4.6. For the non-speculative thread, the three new fields will all be set to zero as

39



< FP, IP, RS, SC,−−,−−,−− > so the hardware can easily determine whether a thread

is speculative or not by testing the EPN field in a continuation.

4.5. Thread Schedule Unit in Speculative Architecture

The thread in SDF architecture moves between SPs and EPs and the thread schedule unit

is responsible for scheduling waiting threads on SPs and EPs. In conventional SDF archi-

tecture, without speculative threads, there are two queues that pertain to threads awaiting

to be scheduled on SPs: preload queue (enabled threads waiting to be scheduled on SPs for

preload) and post-store queue (threads that have completed their execution and waiting to

store results).

A separate queue are added for speculative threads to control the order of their commits.

Figure 4.2 shows the overall design of the new architecture (compare with Figure 3.6). This

queue is ordered by the EPN (epoch numbers) of the thread continuations.

For the controller (thread schedule unit) to distinguish between speculative and non-

speculative threads, it only needs to test the epoch field of the continuation to see if it is

equal to zero (as stated previously, a non-speculative thread’s EPN is set to zero and any

continuation that has a non-zero epoch number is a speculative thread). All the speculative

threads are committed in order.

The commit controller maintains the epoch number of the next thread that can commit

based on the program order. It will test the epoch number of a continuation that is ready for

commit. If EPN of a thread matches this number and no data access violations are found in

the address buffer associated with the thread, the commit controller will schedule the thread

for commit (i.e. schedule the thread on SP for post-store). If there is a violation, the commit

controller sets the IP of that continuation to RIP and places it back in the preload queue for

re-execution. At this time, the thread becomes non-speculative.. The epoch number of the

next thread that can commit is updated. It needs to note that the commit is a sequential

operation according the order of the epoch number, which can become another bottleneck

of future performance.

40



execution queue

speculative 
commit queue

Control
Commit 

preload queue

poststore queue

Schedule Unit

SPs EPs

Thread

Figure 4.2. Overall TLS SDF Design

4.6. ABI Design

A few small, fully-associative set of buffers are used to record the addresses of data that

are speculatively accessed by speculative threads. Data addresses are used as indices into

these buffers. The small fully associative buffers can be implemented using an associative

cache where the number of sets represents the maximum number of speculative threads and

the associativity represents the maximum number of speculative data items that can be

read by a thread. For example, a 64 set 4-way associative cache can support 64 speculative

threads with four speculative address entries per thread. The address buffer ID (ABI) is

assigned when a new continuation for a speculative thread is created. When a speculative

read request is issued by a thread, the address of the data being read is stored in the address

buffer assigned to the thread and the entry is set to valid. When a speculatively read data is

subsequently written by a non-speculative thread, the corresponding entries in the address

buffers are invalidated, preventing speculative threads from committing. The block diagram

of address buffer for a 4-SP node is shown in figure4.3. This design allows for invalidation of

speculatively-read data in all threads simultaneously. It also allows different threads to add

different addresses into their buffers. When and “invalidate” request comes from the bus

or a ”write” request comes from inside the node, the data cache controller will change the

cache line states, and the speculative controller will search the address buffer to invalidate

appropriate entries.

41



Threads in SDF architecture are fine-grained and thus the number of data items spec-

ulatively read will be small. By limiting the number of data items speculatively read, the

probability that a speculative thread successfully completes can be improved. For example,

if p is the probability that speculatively read data will be invalidated, then the probability

that a thread with n speculatively read data items will successfully complete is given by

(1− p)n. With four to eight speculative reads per thread and 16 speculative threads, it only

needs 64 to 128 entries in the address buffers. Because the threads are non-blocking, they

are allowed to complete the execution phrase even if some of the speculatively read data

is invalidated. This eliminates complex mechanisms to interrupt threads, but may cause

wasted execution of additional instructions for speculative threads.

The number of entries in the ABI determines the number of speculative threads that can

be supported in an SDF node.

Invalid Address from External

...
entry 1

entry n

...
entry 1

entry n

...
entry 1

entry n

...
entry 1

entry n

. . .

Invalid Address from SP0

Invalid Address from SP1

Invalid Address from SP2

Invalid Address from SP3

Speculative
Read Address

Speculative
Read Address

Speculative
Read Address

Read Address
from SP0

from SP1

from SP2

from SP3

Speculative

address buffer id

address buffer id

address buffer id

address buffer id

Figure 4.3. Address Buffer Block Diagram

4.7. State Transitions

In this section, I will introduce the actions and state transitions needed to implement

the extensions to Cache Coherence in detail.

42



4.7.1. Cache Controller Action

In an invalidate-based cache coherence protocol, the cache controller will serve requests

either from the processors or from the external memory.

The processor-initiated requests can be a combination of the reads or writes, hits or

misses, and speculative or non-speculative accesses. This gives us eight total possible com-

binations. Because I do not allow the speculative thread to write, the number of the actions

from the processors is reduced to six. The following table shows the action initiated by the

processors.

Actions Initiated by Processors Description

Read Hit (non-speculative) Non-speculative thread read hit

SP Read Hit (speculative) Speculative thread read hit

Read Miss (non-speculative) Non-speculative thread read miss

SP Read Miss (speculative) Speculative thread read miss

Write Hit (non-speculative) Non-speculative thread write hit

Write Miss (non-speculative) Non-speculative thread write miss

Table 4.3. Encoding of Cache Line States

The corresponding messages generated by the cache controller are the same as in the

regular MSI protocol: Read Miss and Write Miss.

4.7.2. State Transitions According to the Processor Requests

In this section, I’m going to introduce the actions and state transitions. I will start with

the each of the five states and examine the possible actions.

4.7.2.1. Invalid State

The only possible actions for this state are Read Miss, SP Read Miss, and Write Miss.

For Read Miss, the cache controller will put a read miss message on the bus and wait for

the data to come and then set the cache line state to Shared. For SP Read Miss, the cache

controller will place a read miss on the bus. When the data comes back it will set the cache

line to SP Shared state and add this address to the appropriate ABI associated with the

thread. For Write Miss, the cache controller will send out a write miss message and acquire

43



exclusive ownership of this cache line and invalidate this address in local ABI. When the

data comes back, it will update this cache line and set it to Exclusive state.

4.7.2.2. Exclusive State

In exclusive state, Read Hit and Write Hit will not generate any transitions. SP Read

Hit will change the state to SP.Exclusive, and the address will be recorded in the ABI.

When Read Miss happens, the cache line will be written back and replaced by the new

data. And then the state of this cache line will be set to Shared. When SP Read Miss

happens, the cache line will be written back and replaced by the new data, and the address

will be recorded into the local ABI and the state will be set to SP Shared. When Write Miss

happens, the data will be written back, and a write miss message will be put on the bus

and the address in the local ABI will be invalidated. Once the data comes back, the cache

controller will update the data and set it to Exclusive state.

4.7.2.3. Shared State

Read Hit will not generate any actions. Read Miss will generate a read miss message;

once new data comes back the cache line state will still be in Shared state. Sp Read Miss

will generate a read miss message and the new address will be added to the ABI. Once the

data comes back, the cache line state will be set to SP.Share (and the state is changed in

all caches to SpShared). Write Hit will generate a write miss message to acquire exclusive

ownership of the cache line and invalidate the address in local ABI; once the data comes

back, the cache line will be replaced and updated, and the state will be set to Exclusive.

4.7.2.4. Sp.Exclusive State

Read Hit will generate no actions. Sp Read Hit will add the address to the ABI. Read

Miss will cause the cache line to be written back and generate a Read Miss message; once

the data comes back, the state will be set to Shared state. Sp Read Miss will perform an

action similar to the Read Miss, but the difference is when the data comes back, the address

will be recorded in the ABI and the cache line state will be set to Sp.Shared state. Write

Hit will cause the cache controller to invalidate the local ABI and the state will change to

Exclusive state. Write Miss will generate a write miss message on the bus and write this

44



cache line back. Once the new cache line comes back it will update the cache line and set it

to the Exclusive state.

4.7.2.5. Sp.Shared State

Read Hit will generate no action. Sp.Read miss will add the address to the local ABI and

there will be no state transition. Read Miss will cause a Read Miss message to be generated,

and once the new data comes back, it will be put in the Shared state or Sp.Shared state if

the address is in local ABI. Sp.Read Miss will also generate a Read Miss message. Once the

data comes back, the address will be recorded in the local ABI and the states will still be

Sp.shared. Write Miss will generate a Write Miss message to acquire exclusive ownership of

the cache line and the address in the local ABI will be invalidated. Once the data comes, it

will update the cache line and set it to Exclusive state.

Figure4.4 shows the state transition diagram for the actions generated by the SPs. Table

4.4 and Table 4.5 summarize the state transitions.

Write Hit S

Read Hit

R
ea

d 
H

it
R

ead H
it

SpR.Ex SpR.Sh

E

Read Hit

I

Read
 M

iss

Write Miss

Write Hit

Write Miss

Read Miss
Read Miss

SpRead Miss

Write Miss

SP. R
ead

 M
iss

SpRead Hit

Sp
R

ea
d 

H
it

W
rite M

iss

SpRead Hit 

W
rite H

it

SpRead Miss

SpRead Miss

Write Miss
Write Miss

R
ead M

issSp
R

ea
d 

H
it

Sp
R

ea
d 

M
is

s

SpRead M
iss

    
 R

ea
d M

iss

Figure 4.4. State Transitions for Action Initiated by SP

45



Cache Block State Messages Next Cache Block State Actions

Invalid Read Miss Shared Read Data from cache

SpRead Miss Sp. Shared 1. Read Data from cache

2. Update the ABI

Write Miss Exclusive 1. Send Write Miss message to acquire

Exclusive ownership

2. Read the cache line

3. Update the cache line

Exclusive Read Hit Exclusive 1. Read Data from cache

2. Update entry to Epoch-Address buffer

3. Update entry in Address-Epoch buffer

Read Miss Shared 1. Write back the cache line

2. Send Read Miss message

3. Read in the cache line

Write Miss Exclusive 1. Write back the cache line

2. Send Write Miss message to acquire

Exclusive ownership

3. Read in the cache line

4. Update the cache line

Write Hit Exclusive No action

Sp.Read Hit Sp.Exclusive Update the ABI

Sp.Read Miss Sp.Shared 1. Invalidate local ABI

2. Write the cache line back

3. Send Read Miss message

4. Read in the cache line

5. Update the ABI

Shared Read Hit Shared No action

Read Miss Shared 1. Send Read Miss message

2. Read in the cache line

Write Hit Exclusive 1. Send Write Miss message to acquire

Exclusive ownership

2. Update the cache line

Write Miss Exclusive 1. Send Write Miss message to acquire

Exclusive ownership

2. Read the cache line

3. Update the cache line

Sp.Read Hit Sp.Shared Update the ABI

Sp.Read Miss Sp.Shared 1. Send the Read Miss message

2. Read in the cache line

3. Update the ABI

Table 4.4. State Transitions Table for Action Initiated By SP (Part A)

4.7.3. State Transitions According to the Bus Requests

In this section, I will introduce the actions generated by the bus (caused by caches access

in other nodes). There are only Read Miss and Write Miss messages on the bus. If local

46



Cache Block State Messages Next Cache Block State Actions

Sp.Shared Read Hit Sp.Shared No action

Read Miss Shared Update ABI (Invalid)

Write Hit Exclusive 1. Send Write Miss message to acquire

Exclusive ownership

2. Update the cache

3. Update ABI (Invalid)

Write Miss Exclusive 1. Update ABI (Invalid)

2. Send Write Miss message to acquire

Exclusive ownership

3. Read in cache line

4. Update cache

Sp.Read Hit Sp.Shared Update ABI

Sp.Read Miss Sp.Shared 1. Update ABI (invalid)

2. Send Read Miss message

3. Read in cache

4. Update ABI

Sp.Exclusive Read Hit Sp.Exclusive No action

Read Miss Shared 1. Update ABI (invalid)

2. Write back the cache line

3. Send Read Miss message

4. Read the cache line

Write Hit Exclusive Update ABI (invalid)

Write Miss Exclusive 1. Update ABI (Invalid)

2. Write back the cache line

3. Send Write Miss message to acquire

Exclusive ownership

4. Read in cache line

5. Update cache line

cline2-4 Sp.Read Hit Sp.Exclusive Update ABI

cline2-4 Sp.Read Miss Sp.Shared 1. Update ABI (Invalid)

2. Write back the cache line

3. Send Read Miss message

4. Read in cache line

Table 4.5. State Transitions Table for Action Initiated By SP (Part B)

cache does not have that cache line, no action will be performed for Read Miss and invalid

local ABI will be performed for Write Miss. If the cache line has the data, I will examine

the state of each of the four states.

4.7.3.1. Shared State

There will be no action to Read Miss. To Write Miss, the cache line will be invalidated.

47



4.7.3.2. Sp.Shared State

There will be no action to Read Miss. To Write Miss, the cache line and corresponding

ABI entries are invalidated.

4.7.3.3. Exclusive State

For Read Miss, the cache line is written back and the cache line state is changed to

Shared state. For Write Miss, cache line is written back, and the local cache line is set to

Invalid state.

4.7.3.4. Sp.Exclusive State

For Read Miss, the cache line is written back and the cache line state is changed to

Shared state. For Write Miss, the cache line is written back; the local cache line is changed

to Invalid state and entries in the local ABI are invalidated.

Figure 4.5 shows the state transition diagram for actions generated by the bus.

The key idea is that every speculative read will change the cache line state to speculative

and also allocate an entry to the corresponding ABI buffer and every (non-speculative) write

will invalidate the entries in the ABI buffer and the states of cache lines are modified in

accordance to invalidate-based cache coherency protocol.

Table 4.6 summarizes the state transitions.

Cache Block State Messages Next Cache Block State Actions

Invalid
Read Miss

Invalid No Action
Write Miss

Exclusive
Read Miss Shared No Action

Write Miss Invalid Write back the cache line

Shared
Read Miss Shared No action

Write Miss Invalid No action

Sp.Shared
Read Miss Sp.Shared No action

Write Miss Invalid Update ABI (Inavlid)

Sp.Exclusive

Read Miss Sp.Shared No action

Write Miss Invalid
1. Update ABI (Inavlid)

2. Write back the cache line

Table 4.6. State Transitions Table for Action Initiated By Memory

48



Write Miss

S

SpR.Ex

E

SpR.Sh

I

Write Miss Write Miss

Read Miss

Read Miss

Read Miss

Read Miss

Write Miss

Figure 4.5. State Transitions Initiated by Memory

4.8. ISA Support for SDF architecture

I added five new instructions to the SDF instruction set for thread-level speculation

support.

The first instruction, SFALLOC, is for allocating a frame to a speculative thread. This

instruction will request the system to assign an epoch number and an ABI for the new

speculative thread continuation.

The SFORKSP and SFORKEP instructions will be used by the system to indicate the

moving of a speculative thread between SP and EP.

The SREAD instruction is for speculatively reading data, which will cause an entry to

be added into the address buffer associated with that continuation. It should be noted that

not all reads of a speculative thread are speculative reads. A compiler can resolve most data

dependencies and use speculative reads only when static analyses cannot determine memory

49



ordering. It should also be noted that when a speculative thread is invalidated, the retry

needs only to re-read speculatively-read data.

The SCFORKSP instruction is for committing a speculative thread. This instruction

will place the speculative thread continuation into the speculative thread commit queue.

4.9. Compiler Support for SDF Architecture

For the simplest case, a compiler can generate speculative tasks exclusively out of loop

iterations [26] [80]. The reason is that loops are often the best source of parallelism and

the algorithm used to analyze the cross loop iteration data dependencies is very mature.

For a slightly complicated compiler system, a dependence analysis phase identifies the most

likely data dependences in the code and partitions the code into tasks to minimize inter-task

dependences. If there are ambiguous data dependencies between tasks, the compiler can also

utilize the speculative thread execution model to maximize the parallelisms [15] [42] [76]. The

most aggressive compiler system can utilize the speculative thread execution at the procedure

level. When a function call is encountered, the compiler can generate two threads: one non-

speculative thread executes the function call and the speculative thread continues the current

execution path. By doing this, the granularity of the speculative thread will be increased

and the overhead of speculative thread generation will be reduced [55] [62].

Due to the fine-grained thread characteristic of SDF system, a compiler, which can

analyze the data dependencies at loop level, will successfully generate the speculative thread

for SDF system. Most of today’s compilers have the module to analyze data dependencies

at the loop level.

50



CHAPTER 5

SDF WITH TLS EXPERIMENTS AND RESULTS

I implemented the speculative thread execution schema within the SDF simulator frame-

work. The existing SDF simulator performs a cycle-accurate functional simulation of SDF

instructions.

5.1. Synthetic Benchmark Results

In order to model the performance of the speculative thread execution schema, I first

created a synthetic benchmark that executes a loop containing a variable number of instruc-

tions. I controlled the amount of time a thread spends at SPs and EPs by controlling the

number of LOADS and STORES (workload on SP) and computational instructions (work-

load on EP). The base performance are collected using a non-speculative execution of these

threads. Then, I used the TLS to parallelize these benchmarks. I tested this group of bench-

marks both in terms of scalability - number of SPs and EPs in the system, and the success

rate of the speculative threads - and correct speculation.

Figure 5.1(a) shows the performance of a synthetic benchmark that spends 33% of the

time at SPs and 67% of the time at EPs, when executed without speculation. Figure 5.1(b)

shows the performance for a program with 67% SP workload, 33% EP workload, while Figure

5.1(c) shows the data for programs with 50% SP and 50% EP workloads (if executed non-

speculatively). All programs are tested using different speculation success rates. I will show

data with different numbers of functional units: 8SPs-8EPs, 6SPs-6EPs, 4SPs-4EPs, and

2SPs-2EPs.

Since the SDF performs well when the SPs and EPs have a balanced load (and achieve

optimal overlap of threads executing at EPs and SPs), we would expect the best performance

for the cases shown in Figure5.1(c) and when the success of speculation is very high (closer to

100%). However, even if I started with a balanced load, as the speculation success drops (and

is closer to zero), the load on the EPs increases because failed threads will have to re-execute

51



 0

 2

 4

 6

 8

 10

 12

 100 90 80 70 60 50 40 30 20 10 0

S
pe

ed
up

Success Rate (%)

8SP8EP
6SP6EP
4SP4EP
2SP2EP

(a) Benchmark Spend 33% of the Time on SP, 67%

on EP

 0

 2

 4

 6

 8

 10

 12

 100 90 80 70 60 50 40 30 20 10 0

S
pe

ed
up

Success Rate (%)

8SP8EP
6SP6EP
4SP4EP
2SP2EP

(b) Benchmarks Spend 67% of the Time on SP, 33%

on EP

 0

 2

 4

 6

 8

 10

 12

 14

 16

 100 90 80 70 60 50 40 30 20 10 0

S
pe

ed
up

Success Rate (%)

8SP8EP
6SP6EP
4SP4EP
2SP2EP

(c) Benchmarks Spend 50% of the Time on SP, 50%

on EP

Figure 5.1. The Performance and Scalability of Different Load and Success

Rates of TLS Schema

their computations. As stated previously, a failed thread only needs to re-read the data items

that were read speculatively, and data from a thread are post-stored only when the thread

speculation is validated. Thus a failed speculation will disproportionately add to the EP

workload. For the case shown in Figure 5.1(b) with a smaller EP workload, I obtain higher

speed-ups (compared with Figures5.1(a) or5.1(c)) even at lower success rates of speculation,

since EPs are not heavily utilized in this workload. For the 33% – 66% SP-EP workload in

Figure 1(a), even a very high success rate will not lead to high performance gains on SDF

because EPs are already overloaded, and the mis-speculative thread will further increase

the load of EPs. From Figure 5.1(c), we can also see that when the speculation success is

below 50%, there are insignificant differences among the performance gains resulting from

52



the different number of functional units (number of EPs and SPs), except for the 2SP-

2EP setup. This is because, at lower success rates, there are insignificant opportunities for

realizable parallelism.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 100 90 80 70 60 50 40 30 20 10 0

In
st

ru
ct

io
n 

R
at

io
 E

P
/S

P

Fail Rate (%)

SP 50: EP 50
SP 33: EP 66
SP 66: EP 33

Figure 5.2. Ratio of Instruction Executed EP/SP

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 100 90 80 70 60 50 40 30 20 10 0

N
or

m
al

iz
ed

 In
st

ru
ct

io
n 

(w
ith

 0
%

 F
ai

l)

Fail Rate (%)

SP 50:EP 50
SP 33:EP 66
SP 66:EP 33

Figure 5.3. Normalized Instruction Ratio to 0% Fail Rate

Figure5.2 below shows the ratio of actual instructions executed by EPs over the instruc-

tions executed by SPs (y-axis) as the speculation failure rate increases (x-axis). With an

53



increasing failure rate, the EPs will be more heavily loaded (higher ratios on the y-axis), and

the performance will drop as the success rate drops. The balance of the workload between

EP and SP will affect scalability. Even with higher speculation success rates, the workload

SP33:EP66 (with higher EP load) has poorer performance than the other workloads. Fig-

ure 5.3 shows the increase in the total workload (combined EP+SP instructions executed),

normalized to the case when the speculation success is 100% (y-axis). Since most of the

re-try work is done by the EP, a smaller EP/SP work ratio will result in a smaller increase

in the overall work, with increasing mis-speculation rates. When the speculation success ap-

proaches zero, (indicating strict sequential ordering of threads,) the overhead due to retries

can actually cause a performance drop in a multi-threaded system. However, the SP66:EP33

workload, which has the smallest increases in the overall workload, has the best performance

when the speculation success rate is below 50%.

In thes experiments, I show that even with very small success rates, the thread-level

speculation can lead to some performance gains. This performance gain is due to the fact

that I start later iterations of a loop earlier. Each iteration has a non-speculative part and

a speculative part. The non-speculative parts can execute in parallel. Hurson et al. [6]

describes a compiler approach to split loops into parallel and sequential loops - the parallel

loop can be executed fully in parallel. This is effectively achieved by the TLS scheme where

speculative threads complete the parallel portions of their computations, and may have to

re-do the sequential portions of their computations on a mis-speculation.

From these experiments, we can draw the following conclusions. Speculative thread

execution can lead to performance gains over a wide range of speculation success probabilities.

At least a 2-fold performance gain can be expected, when the success of speculation is greater

than 50%. If the success rate drops below 50%, one should turn off speculative execution to

avoid excessive retries that can overload the EPs. When the EP workload is less than the

SP workload, the TLS schema can tolerate higher rates of mis-speculation. Finally, when

the success rates are below 50%, the performance does not scale well with added SPs and

EPs (8SPs-8EPs, 6SPs-6EPs, and 4SPs-4EPs all show similar performance). This suggests

that the success of speculation can be used to decide on the number of SPs and EPs needed

to achieve optimal performance.

54



5.2. Real Benchmarks

To further test my design, I selected a set of real benchmarks. I hand-coded these bench-

marks using SDF assembly language. This group of benchmarks includes: Livermore loops

2 and 3, two major functions compress() and decompress() from 129.compress benchmark,

and four loops chosen from 132.ijpeg benchmark. Table 5.1 shows the detailed description

of the benchmarks. I coded these benchmarks in two forms: one without speculation, where

all the threads are executed sequentially, and the other with speculation. In the speculative

execution, earlier iterations (or threads with lower epoch numbers) generated speculative

threads for later iterations (or threads with higher epoch numbers).

Suite Application Selected Loops

Livermore Loops Loop2

Loop3

SPEC 95 129.Compress95 Compress.c:480 while loop

Compress.c:706 while loop

132.ijpeg Jccolor.c:138 for loop

Jcdectmgr.c:214 for loop

Jidctint.c:171 for loop

Jidctint.c:276 for loop

Table 5.1. Selected Benchmarks

I evaluated performance gains using different numbers of SPs and EPs and the results

are shown in figure 5.4. The speculative execution does achieve higher speedups - between

30% and 158% for the 2SP-2EP configuration and between 60% and 200% speedup for the

4SP4EP configuration. To compare my results with those of [68], I used the parallel coverage

parameter defined in [68]. Using the 4SP4EP configuration to compare with their four

tightly-coupled, single-threaded superscalar pipeline processors, for compress95 I achieved a

speedup of 1.94 compared to 1.27 achieved by [68], and a speedup of 2.98 for ijpeg compared

to 1.94 achieved by [68].

Another finding from figure 5.4 is that the performance does not scale well after the

4SP4EP configuration. This is because of the way I generated threads - I generated a

very limited number of speculative threads, since each iteration only generates one new

55



Figure 5.4. Performance Gains Normalized to Non-Speculative Implementation

speculative thread. However, with an optimizing compiler, it will be possible to generate as

many speculative threads as needed to fully utilize available processing and functional units.

These experiments are repeated with the same benchmarks, but using a control thread

that spawned multiple speculative threads at a time. For the Livermore loops, the control

thread spawned 10 iterations at a time, and for the compress95 and the jpeg, the control

thread spawned 8 iterations at a time. The results are shown in figure 5.5. In most cases,

this approach does show better scalability with added functional units. Livermore loop 3

and compress are the exceptions. For these applications, the mis-speculation is very high

and since on mis-speculation threads become non-speculative, (executing sequentially,) the

available concurrency is reduced. It should be noted, however, that this approach does lead

to higher speedups than those reported in [68].

56



Figure 5.5. Performance Gains Normalized to Non-Speculative Implementation

57



CHAPTER 6

PERFORMANCE OF HARDWARE MEMORY MANAGEMENT

To achieve better performance with SDF architecture, a separated hardware unit are

used to control the I-Structure management. In conventional computer systems, dynamic

memory management functions are performed in software. The experience with SDF archi-

tecture suggests that conventional architecture can also benefit from using separate hardware

memory manager or hardware-assisted memory manager to achieve high performance. In

this chapter and the following two chapters I will demonstrate the usefulness of the hardware

memory manager. This chapter will provide the background on memory management and

a simple analysis of why hardware allocator improves performance; chapter 7 will provide

the performance impact of different memory management algorithms when implemented in

hardware; chapter 8 will show a simple design of a hardware-assisted memory manager that

improves performance by 23%.

6.1. Review of Dynamic Memory Management

Dynamic memory management is an important problem that has been studied by re-

searchers for several decades [78]. With the popularity of object-oriented languages such as

C++ and Java, dynamic memory allocation and garbage collection can become significant

barriers to application performance. My research goal is to explore the use of separate hard-

ware for dynamic memory management. Several related research directions have influenced

this work. I will briefly review the most relevant research in this section.

Dynamic memory management is traditionally implemented as software within a system’s

run-time environment. Modern programming languages and applications are driving the need

for more efficient implementations of memory management functions, both in terms of mem-

ory usage and execution performance. Several researchers have proposed and implemented

custom allocators and garbage collectors to improve performance of applications requiring

dynamic memory management. Such allocators attempt to optimize allocations based on

58



an application’s memory usage patterns. Berger, et al., describe a comprehensive evaluation

of different memory allocators for a wide range of benchmarks including SPECint2000 and

memory intensive applications [9]. Their study found that the total execution time spent

on memory management functions can be significant. This finding supports the efforts to

decouple memory management functions from the primary execution engine. Previously our

group [63] have studied cache behavior and pollution of the cache due to the bookkeeping

meta-data used by the allocation functions. This research suggests that if separate hardware

logic is used to perform memory management functions, cache performance of the application

can be improved.

Furthermore, while separate memory management hardware is important for many archi-

tectural paradigms, it is critical for Simultaneous Multithreading (SMT) architectures [74].

SMT places heavy demands on instruction and data caches [39]. By separating memory man-

agement functions from the execution pipeline, we can at least eliminate cache contention

produced by memory management functions. This, in turn, improves the scalability of SMT

architectures.

In this part of the work, I will focus on why separate hardware can improve performance

instead of how to implement a separate hardware memory manager. This hardware unit can

be integrated along with the CPU, incorporated within a memory controller, or embedded

with IRAM [28].

6.2. Experiments

To evaluate the potential for decoupling memory management, the experiments are con-

structed to reflect the exact conditions as closely as possible. I identified and controlled

experimental parameters such as machine model(s), appropriate benchmarks, and statistical

attributes of interest. In this section, I will describe the methodology and the selection of

benchmarks.

6.2.1. Simulation Methodology

For the purpose of studying the performance implications of decoupling memory manage-

ment, I extended the SimpleScalar/PISA Tool Set, version 3 [13]. I assumed the existence

59



of hardware for memory management in the form of a separate hardware unit. The sim-

ulated memory management hardware behaves in the same fashion as Lea’s allocator [53]

used in a LINUX system. I further assumed that the hardware memory management unit

is not pipelined. The later allocation or de-allocation request must wait for the previous

requests to finish. In a real implementation though, one can use pipelined hardware for

memory management to process “bursts” of allocation requests, particularly for applications

that allocate several objects together. I added two instructions, “ALLOC” for allocation

and “DEALLOC” for de-allocation, to the instruction set of SimpleScalar. The two new

instructions are treated in the same manner as other PISA instructions and processed by

scheduling them on the separate hardware allocator, viewed as a functional unit (similar to

an Integer or Floating point unit). However, when allocation and de-allocation instructions

are encountered, the reservation stations are frozen until the memory management completes

and returns the results. This results in CPU stalls, particularly when using a slow hardware

allocator. In an actual implementation, this restriction can be eliminated with proper hard-

ware/software optimizations. Table 6.1 summarizes the simulation parameters. To explore

the feasibility of this decoupling architecture, I used a wide range of allocation latencies (i.e.,

time to complete an allocation request and return the address of the allocated object), from

1-cycle to the number of cycles that match the software allocator in various experiments.

6.2.2. Benchmarks

Table 6.2 shows the benchmark programs used in the experiments. I selected the bench-

marks for my experiments from SPECInt2000, memory intensive benchmarks, and Olden

benchmarks. Table 6.2 also shows the total number of instructions executed by the bench-

marks.

The selected benchmarks demonstrate different levels of memory management operations,

as a percentage of total execution times (as shown in Table 6.3). These levels range from

very high (parser, cfrac, treeadd), to average (espresso, voronoi), and to very low (vortex,

gzip, bisort).

Table 6.3 lists the fraction of execution time spent on memory management functions.

Looking at the fraction of time spent on memory management functions, one might assume

60



Pipelined CPU Parameters

Issue Width 4

5 Int (4 ALU, 1 Mult/Div),

Functional Units 5 FP (4 ALU, 1 Mult/Div),

2 Memory, 1 Allocator, 1 Branch

Register Update Unit Size (RUU) 8

Load/Store Queue size (LSQ) 4

Integer ALU 1 cycle

Integer Multiply 4 cycles

Integer Divide 20 cycles

FP Multiply 4 cycles

FP Divide 12 cycles

Branch Prediction Scheme Bimodel

Memory Parameters

L1 Data Cache 4-Way set associative, 16 Kbytes

L1 Data Cache 4-Way set associative, 16 Kbytes

L1 Instruction Cache Direct Mapped, 16 Kbytes

L2 Unified Cache 4-Way set associative, 256 Kbytes

Line Size 32 Bytes

L1 Hit Time 1 cycle

L1 Miss Penalty 6 cycles

Memory Latency/Delay 18/2 cycles

Allocation Time 100 or 1 cycles

De-allocation Time 1 cycle

Table 6.1. Simulation Parameters

that this limits the performance gains of decoupled architecture (i.e., the maximum perfor-

mance gains using a hardware allocator are limited by the fraction of the time spent on

memory allocation functions). However, several complex features of modern architectures

impact performance. These factors include cache misses, pipeline stalls, out-of-order execu-

tion, and speculations. I will show that these factors may lead to performance gains greater

than the fraction of cycles spent on memory management functions (see the last column of

Table 6.3).

61



6.3. Experiment Results and Analysis

In this section, I will report the results of the experiments. I will discuss both the

execution performance and cache behavior resulting from decoupling memory management

functions.

6.3.1. Execution Performance Issues

6.3.1.1. 100-Cycle Decoupled System Performance

I assume that each malloc operation takes a fixed 100 cycles in this experiment. Table

6.4 shows the performance improvements achieved when a separate hardware unit is used for

all memory management functions (malloc and free). The second column in the table shows

the number of cycles needed for a conventional architecture and the third column shows the

execution cycles needed by a decoupled system. The fourth column shows the percentage

of speed-up achieved by the architecture. The fifth column reproduces the fraction of cycles

(from Table 6.3) spent on memory management functions; it is named as Percentage of

Cycles in Memory Management (CMM for short). The last two columns of the table depict

the utilization of superscalar in terms of the instruction per cycles (IPC). In both cases,

the IPC does not exceed 1.67. The instruction count of a decoupled system is smaller than

the conventional architecture, since software implementation of the memory management

functions is replaced by the hardware. Smaller IPCs in the decoupled system can be due to

the non-pipelined implementation of the memory management hardware and the freezing of

Benchmark Benchmark No. Inst.

Family Name
Benchmark Description Input

(Million)

164.gzip gnu zip data compression test 4,540

SPEC 197.parser English parser test 1,617

255.vortex object oriented database test 12,983

MEM
cfrac factoring numbers a 22 digit No. 96

espresso PLA optimizer mpl4.espresso 73

bisort sorting bitonic sequences 250K integers 607

OLDEN treeadd summing values on a tree 1M nodes 95

voronoi computing voronoi diagram 20K points 166

Table 6.2. Description of Benchmarks

62



Benchmark Name % Execution Time in Memory Management

164.gzip 0.04

197.parser 20.65

255.vortex 0.59

cfrac 18.75

espresso 11.63

bisort 2.08

treeadd 49.44

voronoi 8.75

Table 6.3. Percentage of Time Spent on Memory Management Functions

reservation stations on malloc requests. These restrictions limit the amount of Instruction

Level Parallelism (ILP). This means that the number of eliminated cycles is less than the

number of eliminated instructions.

Benchmark CC (Cycle Count) - Million Speedup CMM IPC (Inst. Per Cycle)

Name CONV Decoupled % % CONV Decoupled

164.gzip 2,725 2,724 0.0309 0.04 1.67 1.67

197.parser 1,322 1,280 3.19 20.65 1.57 1.26

255.vortex 12,771 12,602 1.34 0.59 1.00 1.03

cfrac 107 99 7.83 18.75 1.16 0.96

espresso 46 45 1.44 11.63 1.18 1.46

bisort 474 426 10.03 2.08 1.31 1.42

treeadd 134 165 -23.19 49.44 1.59 0.58

voronoi 123 123 -0.01 8.75 1.38 1.23

Table 6.4. Execution Performance of Separate Hardware for Memory Management

Before discussing the range of speed-ups achieved using a slow allocator (fourth column

of Table 6.4-100-cycle Decoupled), I should re-emphasize that 100 cycles for a hardware

implementation of memory management functions implies a slow hardware. In contrast,

Chang et al. describe hardware that requires, on average, 4.82 cycles (note that they did not

mention whether this is CPU or memory cycle) [14]. With the slow implementation using

63



100 cycles, it is possible for the CPU to idle waiting for a memory allocation, reflected by

lower IPC counts.

Two anomalies are noticed when examining the speedup achieved using 100-cycle hard-

ware implementation (fourth column of Table 6.4). First, for some benchmark programs

(vortex, bisort), even a 100-cycle hardware memory manager achieves higher performance

than the fraction of cycles spent on memory management functions by a software implemen-

tation (comparing columns 4 and 5 of Table 6.4). In a moment, I will show that this is in

part due to the CPU cache misses eliminated by moving memory management to dedicated

hardware. The second anomaly is for voronoi and treeadd programs; the decoupled system

shows performance degradation for these benchmarks.

I believe that this is due to two factors: (1) CPU stalls resulting from a slow allocator

(compare the IPCs), and (2) the allocation behavior of the application. The software allo-

cator (Lea’s) takes advantage of the allocation behavior of these programs. These programs

perform all of their allocations at the beginning of the execution and keep all the allocated

memory throughout the execution. In addition, most allocated objects are small and belong

to 8, 16 or 32 byte chunks. These sizes can be allocated very fast in Lea’s allocator.

6.3.1.2. 1-Cycle Decoupled System Performance

Table6.5 shows the execution speed-up achieved assuming 1-cycle for all memory manage-

ment functions. This data places an upper bound on performance improvement for decoupled

memory management architecture. I will discuss some techniques for achieving faster allo-

cators later in this paper. Such implementations would eliminate CPU stalls awaiting an

allocation, since allocations take only one cycle.

Note that eliminating the CPU stalls using a 1-cycle hardware implementation produces

a “super-linear” speedup for almost all the benchmarks (fourth column, compared with the

fifth column of Table 6.5). The speedup for the 1-cycle decoupled system should be at least

the same as the percentage of cycles spent in memory management (CMM) in conventional

architecture. This can be viewed as linear-speedup. If the percentage of speedup is greater

than the percentage of the CMM, the system has achieved a super-linear speedup. According

to the data shown in Table 6.5, a 1-cycle decoupled system reveals super-linear speedup for

64



Benchmark CC (Cycle Count) - Million Speedup CMM IPC (Inst. Per Cycle)

Name CONV Decoupled % % CONV Decoupled

164.gzip 2,725 2,724 0.03 0.04 1.67 1.67

197.parser 1,322 1,074 18.81 20.65 1.57 1.51

255.vortex 12,771 12,591 1.41 0.59 1.00 1.03

cfrac 107 78 27.65 18.75 1.16 1.23

espresso 46 39 14.85 11.63 1.18 1.67

bisort 474 413 12.76 2.08 1.31 1.47

treeadd 134 63 52.65 49.44 1.59 1.51

voronoi 123 111 10.37 8.75 1.38 1.37

Table 6.5. Limits on Performance Gain

almost all the applications except gzip and parser. I attribute the super-linear performance

to the removal of conflict (cache) misses between the memory allocation functions and the

applications. In section 5.2, I also investigated the first level cache performance of the

selected benchmarks.

6.3.1.3. Lea-Cycle Decoupled System Performance

Table 6.6 shows the average number of cycles spent per malloc call when a software

implementation of the Lea’s allocator is used. Note that the second column of Table6.6 shows

the average number of CPU cycles per memory management function (not the percentage

shown in the other tables thus far). In the experiments thus far I have used a fixed number

of cycles (either 100 or 1) for each allocation. However, as shown in Table6.6, allocators take

different amounts of time for allocation, depending on the size of the object and the amount

of search needed to locate a chunk of memory sufficient to satisfy the request. I repeated the

experiments using the same average number cycles for a hardware allocator as that for the

software implementations respectively (second column of Table 6.6). The performance gains

of these experiments are shown in the third column of Table 6.6.

65



Benchmark Name Average CMM % of Speedup

164.gzip 790 0

197.parser 69 10.02

255.vortex 401 0.88

cfrac 93 8.8

espresso 87 4.08

bisort 90 10.95

treeadd 67 0

voronoi 79 2.22

Table 6.6. Average Number of Malloc Cycles Needed by Lea Allocator

Based on the data shown in Table6.6, we can classify these benchmarks into three groups.

The first group consists of benchmark with an average number of cycles per memory man-

agement request exceeding 100 cycles (gzip and vortex). For these types of benchmarks,

the performance of Lea’s allocator is poor since they allocate objects with very large size.

Lea’s allocator has to request memory from the system for each large object. The second

group includes the majority of the benchmarks and requires less than 100 cycles per mem-

ory management request. They include parser, cfrac, espresso, bisort, and voronoi. For

these applications, even when the number of cycles needed per memory allocation by the

hardware allocator is set equal to those of a software allocator, the performance gained by

the decoupled allocator is noticeable. The third group of applications includes treeadd and

generates allocation requests in a burst (several allocation requests in sequence). For these

applications, the current hardware allocator causes CPU stalls since memory management

hardware is not pipelined, resulting in performance degradations.

6.3.1.4. Cache Performance Issues

Previously I stated that the “super-linear” speedup with separate 100-cycle hardware

for memory management functions (at least for vortex and bisort) is due in part to the

elimination of CPU cache misses. Now, I explore this in more detail. Table 6.7 and6.8 show

the data for L-1 instruction and data caches.

66



Conventional Architecture Decoupled
Benchmark

No. of Ref. No. of Misses No. of Ref. No. of Misses
Name

(Million) (Thousand) (Million) (Thousand)

164.gzip 5,145 70,412 5,144 70,356

197.parser 2,320 10,841 1,825 6,040

255.vortex 14,148 974,678 14,094 959,584

cfrac 140 7,048 107 4,122

espresso 86 1,286 77 779

bisort 697 1.1 700 1.08

treeadd 257 1.3 124 0.98

voronoi 187 1,023 174 1,214

Table 6.7. L-1 Instruction Cache Behavior

Conventional Architecture Decoupled
Benchmark

No. of Ref. No. of Misses No. of Ref. No. of Misses
Name

(Million) (Thousand) (Million) (Thousand)

164.gzip 1,504 37,616 1,504 37,577

197.parser 927 11,659 677 8,298

255.vortex 6,920 70,412 6,875 68,828

cfrac 50 10 37 9.9

espresso 23 94 20 74

bisort 161 2,193 156 2,193

treeadd 88 1,068 40 1,056

voronoi 58 1,054 53 928

Table 6.8. L-1 Data Cache Behavior

The reduction in instruction cache misses can be more easily understood since instructions

comprising malloc and free are removed from the execution pipeline. The reduction in data

references and misses (Table6.8) is because the allocation bookkeeping meta-data maintained

67



by the allocator is no longer brought into CPU cache. These results are similar in spirit to

those of [9], but differ in actual values.

Using miss penalties from SimpleScalar, as well as the memory accesses eliminated (both

from Instruction and Data caches), one can estimate the number of cycles eliminated from

CPU execution. This should indicate the performance contribution due to improved CPU

cache performance. For example, for vortex, the elimination of some memory accesses for

instructions and data as well as the reduction in cache misses has contributed to 2% of

the 2.81% improvement shown in Table 6.4; the remaining performance is mostly due to

the elimination of instructions from the execution pipeline. Note that for vortex, since this

application shows a CPI close to one cycle on average, computing the contribution of reduced

cache misses to the overall performance gains is straightforward.

Similar computations can be used to find the performance gains due to improved cache

hits for other benchmarks; however, such computations are more complex because an IPC

that is not equal to one reflects out-of-order execution of instructions. This explains most

of the differences between the percentage of time spent on dynamic memory management

in a conventional architecture (fifth column of Table 6.5) and the potential performance

improvement with a 1-cycle hardware allocator (fourth column of Table 6.5). Other factors

such as out-of-order-execution and speculative execution change the instructions per cycle

(IPC) counts for the architecture.

68



CHAPTER 7

ALGORITHM IMPACT OF HARDWARE MEMORY MANAGEMENT

Dynamic memory management is an important problem that has been studied by re-

searchers for the past several decades. Modern programming languages and applications

are driving the need for more efficient implementations of memory management functions,

both in terms of memory usage and execution performance. Several researchers have pro-

posed and implemented custom allocators and garbage collectors to improve performance of

applications requiring dynamic memory management.

In general, a hardware implementation of any function should require fewer CPU cycles

than its software counterpart. When memory management functions are implemented in

software, the chosen allocator algorithm impacts application performance due to the follow-

ing behavioral differences of the allocators:

a) The number of instructions required by allocators differ since different search and alloca-

tion methods are used (for example, first fit, best-fit, segregated lists, buddy lists, etc).

b) The number of instruction cache accesses and misses caused by allocator functions differs

among allocators and choice of allocator may also cause different numbers of cache conflicts

with applications’ instruction accesses.

c) The number of additional data cache accesses and cache conflicts caused software allo-

cators. The software allocator needs to access bookkeeping data, such as object headers.

Bookkeeping data must be brought into CPU cache for allocator use, causing more data

accesses and misses (application data + bookkeeping data), more cache conflicts among ap-

plication data, and additional allocator bookkeeping data.

d) The localities of allocated objects. .Different allocator algorithms assign objects to differ-

ent memory areas, leading to different localities of allocated objects.

As I will show in this dissertation, when using hardware allocators, the performance of

applications is affected mostly by item (d) above, and the actual allocator method used

has less significant impact on applications’ performance, implying that one can select an

69



allocator based either on ease of implementation, or on differing localities of applications’

objects.

In this chapter, I compare performance and cache behaviors of three general purpose

allocators: Lea’s allocator [53] , PHK allocator [44] , and the estranged buddy system [25]

for both software and hardware implementations. I do not evaluate hardware complexities

of these allocators, but rather simulate the existence of such allocators as special hardware

units within the Simplescalar tools.

Lea’s allocator, written by Doug Lea, is used in Linux systems. Lea’s allocator is a best-

fit allocator using lists of different-sized objects. For small objects, it uses exact-fit from

the quick-lists by allocating an object from an appropriate-sized list; for medium and large-

sized objects it uses best-fit. Coalescing of freed objects is performed as needed. The PHK

allocator, used in FreeBSD systems, was designed by Poul-Henning Kamp. PHK allocators

are page-based segregated allocators. Each memory page contains only objects of one size.

For small objects (less than half a page) object size is padded to the nearest power of two. For

larger objects, PHK will allocate the number of pages that is sufficient to satisfy the request.

The page directory is allocated using mmap() system call. The estranged buddy system

is a variation of Knuth’s buddy system. In estranged buddy, buddies are not immediately

combined into larger chunks, thereby eliminating the need for later breaking larger chunks

into smaller ones.

I use the same simulation tool-SimpileScalar 3.0 for the simulation environment as in the

previous chapter. I simulate memory management as a hardware functional unit residing

on-chip along with the primary processing units. I show results for the memory functional

units assumed to implement Doug Lea, PHK, and Estranged Buddy methods of memory

management. The hardware allocator keeps all the object headers (i.e., bookkeeping data)

and provides only actual data objects to the processing elements, thus improving the CPU

data cache performance. As in chapter 6, I added new instructions to the SimpleScalar

Portable Instruction Set Architecture (PISA), to perform malloc()/free()/realloc() functions

of C.

The simulator configuration is same as that shown in Table 6.1. Table 7.1 describes

the benchmarks used in this part of experiment. 253.perlmbk and 197.parser, from the

70



SPEC benchmarks suite, are the most memory-intensive in terms of the number of dynamic

objects allocated; 255.vortex and 300.twolf are moderately intensive, and the remaining

SPEC benchmarks have very few allocation requests. 176.gcc is not memory intensive in

terms of using the system-provided allocator, since it maintains its own object stack allocator.

cfrac and espresso are memory intensive.

It should be noted that system calls in SimpleScalar are assumed to take only one cycle.

This may somewhat skew the results since SimpleScalar does not penalize allocators that

invoke brk() system calls to get more memory from the system. However, in real imple-

mentations, systems calls can be expensive. Efficient memory management algorithms try

to avoid brk(), using mmap() instead, or starting with a large memory space rather than

incrementally asking the system for more space. Use of SimpleScalar does not allow us to

differentiate allocators’ use of system calls.

Benchmark
Benchmark Description Input

Total Number of

Name Allocated Objects

253.perlbmk Perl interpreter perfect.pl b 3 m 4 8,888,714

197.parser Natural language processor ref.in(100) 8,647,462

255.vortex Object-oriented database test/lendian.raw 186,429

300.twolf Place and route simulator test 8,395

164.gzip gnu zip data compression test/input.compressed 2 1,245

176.gcc gnu C compiler cccp.i -o cccp.s 4,304

175.vpr
FPGA circuit

net.in place.in 1,590
placement and routing

181.mcf
Minimum cost network

test/inp.in 3
flow solver

cfrac Factors numbers A 22-digit number 227,091

espresso PLA optimizer largest.espresso 1,701,112

Table 7.1. Selection of the Benchmarks, Inputs, and Number of Dynamic Objects

7.1. Performance of Different Algorithms

In this section I show that, when using hardware allocators, performance of applications

is affected mostly by object localities, and that the actual allocator method used has less

significant impact on applications’ performance.

71



Table7.2 shows the number of instructions executed by software and hardware implemen-

tations of three allocators - Doug Lea (DL), PHK, and Estrange Buddy (ESB). The leftmost

columns list variation in numbers of instructions executed using different allocators imple-

mented in software (including both allocator functions and application code). The rightmost

columns show variations in instructions executed by the same set of allocators implemented

in hardware. These numbers include only application code since allocator functions are not

executed by the CPU.

Benchmark Name

# of Instructions Executed # of Instructions Executed

on Conventional Architecture on Separate Architecture

DL PHK ESB DL PHK ESB

cfrac 124.9 238.35 152.8 95.8 95.8 95.8

197.parser 9,140 11,598 9,772 7,570 7,572 7,511

Espresso 2,091 2,363 2,072 1,863 1,863 1,863

253.perlbmk 30,415 35,039 31,345 29,545 29,545 29,546

255.vortex 13,092 13,130 13,051 12,995 12,995 12,995

164.gzip 4,557 4,558 4,557 4,557 4,557 4,557

300.twolf 412.9 411.9 414.2 411.9 411.9 411.9

175.vpr 2,372 2,373 2,373 2,372 2,372 2,372

176.gcc 2,526 2,526 2,526 2,524 2,524 2,524

181.mcf 418.9 420.2 418.9 418.9 418.9 418.9

Table 7.2. Number of Instructions(Million) Executed by Different Allocation Algorithms

Table 7.3 shows L-1 instruction cache miss behavior of the three allocators when imple-

mented in software and when separated from the CPU. Unlike software implementations

of the three allocators, hardware implementations do not show any variation in cache miss

data, since allocator functions are not brought to the CPU instruction cache. In Table 7.4 I

show L-1 data cache misses for applications using software and hardware implementations of

the three different memory allocators (viz., Doug Lea, PHK, and Estrange Buddy system).

Differences among cache behaviors of software implementations are both because the alloca-

tor data (viz. bookkeeping data) is brought into the CPU cache and because of differences

in the localities of applications’ objects. Differences in cache behaviors of hardware imple-

mentations are due only to differing localities of allocated objects. Even though hardware

72



allocators remove headers from the CPU data cache, the actual placement of object data

depends on the allocator itself, affecting data localities and data cache misses.

Benchmark Name

# of L1-Instruction Cache Miss # of L1-Instruction Cache Miss

on Conventional Architecture on Separate Architecture

DL PHK ESB DL PHK ESB

cfrac 6.74 9.87 6.40 4.21 4.21 4.21

197.parser 145 119 101 74.6 74.6 74.6

espresso 34.9 39.3 30.7 23.0 23.0 23.0

253.perlbmk 4,163 4,505 4,383 4,051 4,056 4,057

255.vortex 988 1018 1017 976 976 976

164.gzip 24.4 23.8 23.7 23.7 23.7 23.7

300.twolf 28.9 29.1 28.7 28.9 28.9 28.9

175.vpr 240 243 249 240 240 240

176.gcc 200 201 200 200 200 200

181.mcf 0.525 0.367 0.385 0.417 0.417 0.417

Table 7.3. Number of L1-Instruction Cache Misses(Million) of Different Al-

location Algorithms

Benchmark Name

# of L1-Data Cache Miss # of L1-Data Cache Miss

on Conventional Architecture on Separate Architecture

DL PHK ESB DL PHK ESB

cfrac 9998* 56,106* 16,805* 8,205* 13,721* 11,809*

197.parser 77.4 59.18 61.04 64.98 58.6 59.10

espresso 16.14 15.33 16.47 15.23 14.63 14.52

253.perlbmk 193.4 166.1 211.3 173.4 171.2 162.5

255.vortex 40.91 74.17 73.3 34.18 69.43 70.83

164.gzip 37.58 37.56 37.59 37.55 37.55 37.55

300.twolf 1.07 1.38 1.75 0.76 1.33 1.45

175.vpr 17.93 22.76 21.52 17.81 22.75 20.2

176.gcc 13.2 13.3 13.5 13.2 13.2 13.2

181.mcf 10.6 10.61 13.53 10.6 10.6 10.6

*exact number

Table 7.4. Number of L1-Data Cache Misses(Million) of Different Allocation Algorithms

73



Both Tables7.3 and7.4 show reductions in instruction and data cache misses when using

hardware for memory allocation (particularly for memory-intensive benchmarks). For exam-

ple, for application cfrac, using Lea’s allocator in hardware shows a reduction in instruction

cache misses of 2.53 million and data cache misses of 1793. Likewise using PHK, hardware

shows a reduction of 5.76 million in instruction cache misses, and 42385 in data cache misses.

And the estranged buddy system shows reductions of 2.19 million and 4996 in instruction

and data cache misses respectively.

Table7.5 shows execution cycles for benchmarks using the three allocators when executed

by the CPU and when executed by a separate hardware.

Benchmark Name
Conventional (million) Separated (million)

DL PHK ESB DL PHK ESB

cfrac 104.9 183.2 123.7 78.83 78.84 78.84

197.parser 7,348 8,277 8,345 5,996 5,901 6,605

espresso 1,379 1,511 1,377 1,202 1,201 1,202

253.perlbmk 45,801 50,179 46,872 43,981 44,120 43,810

255.vortex 12,807 13,122 13,560 12,553 12,728 13,287

164.gzip 2,539 2,536 2,536 2,507 2,507 2,508

300.twolf 433.3 436.8 434.1 432.5 434.4 434.1

175.vpr 3,136 3,168 3,188 3,141 3,153 3,155

176.gcc 2,663 2,671 2,669 2,661 2,661 2,661

181.mcf 309.6 309.6 312.4 309.6 309.1 309.1

Table 7.5. Execution Cycles of Three Allocators

In order to measure variations among the different allocators implemented in software

and hardware, I present the data graphically. Figure 1(a) shows execution cycles using

software implementations of the three allocators, normalized to execution cycles of the soft-

ware’s Doug Lea allocator. Figure 1(b) shows the execution cycles for the three allocators

implemented in hardware, again normalized to the execution cycles of Doug Lea’s allocator

in hardware. The graphical data clearly shows greater variation in the execution cycles for

applications when memory management functions are implemented in software, as compared

to the case when the allocators are removed from the main processing elements (and im-

plemented in hardware). I believe that this is a significant result indicating that one can

74



(a) Performance Using Software Allocators

(b) Performance Using Hardware Allocators

Figure 7.1. Performances of Hardware and Software Allocators

select an allocator that simplifies hardware implementation and improves localities of allo-

cated objects without needing to worry about the impact of the allocator on the execution

performance of applications.

75



In general, Lea’s algorithm performs better than other allocators, both in hardware and

software implementations. Lea’s allocator utilizes both spatial and temporal locality in its

allocation algorithm. But for benchmarks with more significant spatial localities, the PHK

allocator sometimes exhibits better cache performance. This is the case with 197.parser and

253.perlbmk. Estranged buddy allocators show worse cache behavior because any buddy

system allocator results in large internal fragmentations, and poor localities. However, per-

formance differences when using hardware implementations are small. As stated previously,

object locality depends on the allocator algorithm used, and application performance varia-

tions among the hardware allocators (Figure 1(b)) are mainly due to variations in L1 data

cache localities exhibited by allocated data objects.

While using software-implemented allocators executed by main processing pipelines, not

only the complexity of the allocator affects the performance of applications, but also the

localities of allocated objects can lead to differences in applications’ performance. However,

when allocator functions are removed from the CPU, applications only see performance

differences caused by localities of objects allocated. And the locality difference will not

cause a significant performance impact, which suggests if implementing a hardware allocator,

I should choose a simple and fast implementation.

76



CHAPTER 8

A HARDWARE/SOFTWARE CO-DESIGN OF A MEMORY ALLOCATOR

In the previous two chapters, I discussed the pure hardware implementation of a memory

allocator completely separate from the execution pipeline. However, I did not show a hard-

ware implementation. I only analyzed the performance benefit and the different algorithm

impact on a hardware allocator.

In this chapter, I present a new hybrid software/hardware allocator and its hardware

implementation for a faster, lower cost system. This allocator is based on the PHK [44] al-

location algorithm used in the Free-BSD system and Chang’s hardware design for allocators

[14]. I aim to balance the hardware complexity with performance by using both hardware

and software together. To substantiate the claims, I present a comparison of the design in

terms of hardware complexity with a hardware-only allocator and a comparison in terms of

performance with a software-only allocator. The proposed hybrid allocator can find impor-

tant use in applications written in modern programming languages like C++/JAVA where

a significant amount of time is spent in memory management.

Different software allocators use different techniques to organize available chunks of free

memory. A search of these free chunks is needed for allocation of memory. This search could

be in the critical path of allocators causing a major performance bottleneck. Hardware

allocators can provide several advantages over their software counterparts. Parallel search of

the available memory chunks can be implemented in hardware, which can speed up memory

allocation and improve the performance by reducing execution time. The hardware allocator

can easily hide the execution latency of freeing objects, since freeing can run concurrently

with application execution. The hardware allocator unit can also perform coalescing of free

chunks of memory, in the background, while the application is not using this portion of the

memory. The major disadvantage of a hardware only allocator is the potential hardware

complexity in implementing complex allocators.

77



Berger et al. [9] showed that a general purpose allocator works well for most applications.

The average performance difference of the two most popular general purpose open source

allocators, Doug Lea’s [53] used in the LINUX system and PHK used in the Free-BSD system,

is less than 3% for memory allocation intensive benchmarks in SPEC 2000. I chose PHK

because of its suitability for hardware/software co-design. The PHK allocator is a page-

based allocator. Each page can only contain objects of one size. For a large object, sufficient

numbers of pages are allocated to accommodate the object. For applications written using

object-oriented languages such as Java and C++, most of the objects allocated are small.

For small objects, less than half a page, object size is padded to the nearest power of two,

to match the size of objects on that page. This allocator keeps a page directory for all

the allocated pages. At the beginning of each small object page, a bitmap of allocation

information is created. When allocating a small object, the PHK allocator performs a linear

search on the bitmap to find the first available chunk in that page. This search is performed

in the following sequence: first locate the first word of a page that has a free chunk, then

locate the address of the first byte in that word that represents a free chunk.

There are a few hardware allocator designs [14] [29] [25] [24] reported. All of these are

based on the buddy system invented by Knuth [50]. Chang’s algorithm [14] is a first-fit

method based on a binary OR-tree and a binary AND-tree. Each leaf node of the OR-tree

represents the base size of the smallest unit of memory that can be allocated, and other

nodes provide information if such a unit is available. All allocated objects are multiples of

the base size. The leaves of the OR-tree together represent the entire memory. The input

of the AND-tree is generated by a complex interconnection network of the OR-tree. The

AND-tree has the same number of leaves as the OR-tree. The AND-tree is used to generate

the address of the first available chunk for a particular sized object. The interconnection

between the OR-tree and the AND-tree is the most complex part of Chang’s allocator. The

interconnection has the same critical path delay as the OR-tree and the AND-tree. The final

allocation result is produced by the output of the AND-tree through a set of multiplexers.

The critical path delay of this algorithm is: Ddelay = DOR−tree +DInterconnection +DAND−tree.

The hardware complexity in terms of the number of gates is O(nlg(n)), where n is the

number of the memory chunks and O(ln(n)) is the critical path delay.

78



8.1. The Proposed Hybrid Allocator

I note that pure hardware allocators based on the buddy system are not scalable since

the complexity of the hardware increases with the size of the memory managed. Also,

the buddy system is known for its poor object locality [43]. On the other hand, software

allocators exhibit poor execution performance. I have designed a new hybrid allocator using

small, fixed hardware to help manage the memory. The software portion based on the PHK

algorithm provides better object localities than the buddy system and the hardware portion

improves execution performance of the software portion.

The software in the allocator is responsible for creating page indexes and for initializing

the page header as in a software implementation of PHK. For large objects (> half a page),

the software takes full responsibility without any hardware assistance. When an application

requests allocation of a small-sized object, the software portion of the hybrid system will

locate the bitmap of a page with free memory and issues a search request to the hardware.

The hardware portion will search the page index (or bitmap) in parallel to find a free chunk,

and mark the bitmap to indicate an allocation.

Figure8.1 shows the block diagram of the hardware I propose to fulfill parallel searching.

I have an OR-tree and an AND-tree similar to Chang’s system. The OR-tree is responsible

for determining if there is a free chunk in a page. The AND-tree will locate the position

of the first free chunk in the page. Because an OR-tree and an AND-tree are dedicated to

one object size, the complex interconnections between the OR-tree and the AND-tree are

not needed (unlike Chang’s [14]). The individual implementation of the OR-tree and the

AND-tree are identical to that of Chang’s designs. The multiplexer (MUX) uses the opcode

to select the address of the bit needed to be flipped. If the opcode is “alloc”, the address

from the AND-tree will be chosen. If the opcode is “free”, the address from the request will

be selected.

D-latches in the design are used as storage devices, where the bitmap will be loaded from

the page in accordance with the allocation size. The de-multiplexer (DEMUX) is used to

decode the address from the MUX. Bit-flippers use the decoded address and the opcode to

determine how to flip a desired bit. Because of the page limits, I do not show the detailed

79



U

Unit for 32 bytes objects

Unit for 16 bytes objects
Size

Input

Unit for quarter page objects

M

Unit for half a page objects

Opcode

X

Figure 8.1. Block Diagram of Overall Hardware Design

flipper logic here. It may be noted that the critical path in this design is only the AND-tree

for the “allocate” operation. The “free” doesn’t generate any output, and the processor can

immediately continue execution of the application code.

address

256

8

256
D−Latches

OR
Tree

  AND
Tree

X
U
M

1
Valid bit

   8  8
address
Input 2

Opcode

Bit−Flippers

256

DEMUX
256

8

 Output 

Figure8.2. Block Diagram of the Proposed Hardware Component (Page Size

4096 bytes, Object Size 16 bytes)

Figure8.1 shows the overall design of the system with 4096-byte pages. I have shown one

unit for one page in Figure 8.2. For different object sizes, the hardware needed to support

the bitmap will be different. In the design, I pre-selected object sizes from 16-bytes to 2048

bytes and included hardware to support pages for these objects. It should be noted that the

larger the object size the smaller the amount of hardware needed to support the bit-maps

indicating the availability of chunks in that page. For example, I need only 2 bits for a page

that allocates 2048-byte objects. The MUX here is used to select the hardware unit that

will be responsible for supporting objects of a given size. With 4096-byte pages, I have 8

80



Attributes Chang’s Allocator My Design

Design Algorithm Total Memory Page Based

Interconnection Complexity O
(

M
S

lg M
S

)
No Interconnection

Overall Hardware Complexity O
(

M
S

lg M
S

)
O

(
P
S

)

Scalability No Yes

Need for Software Assistance No yes

Critical Path Delay O
(
lg M

S

)
O

(
lg P

S

)

Clock Frequency Slow Fast

Allocation Locality Poor Better

POSIX Compatible No Yes

Table 8.1. Comparison of Chang’s Allocator and my Design

different-sized objects ranging from 16-bytes to 2048-bytes. For allocating 16-byte objects, I

need trees with 256 leaves. Each tree only needs 255 AND/OR gates. For the overall system,

I need 502 AND gates and 502 OR gates. This is very small amount of hardware compared

with the billions of transistors available on modern processor chips.

8.2. Complexity and Performance Comparison

8.2.1. Complexity Comparison

Existing hardware allocator designs implement the buddy system of allocations. The

amount of hardware that is used to implement a buddy allocator is dependent on the memory

size [43]. That makes the buddy system-based allocators not scalable. The design has a

much lower hardware complexity than Chang’s allocator. In order to compare hardware

complexity, the following notations are used: M is the total dynamic memory size, P is

the page size, and S is the smallest allocated object size. Table 8.1 shows details of the

comparison with Chang’s algorithm.

The complex interconnection determines the hardware complexity of Chang’s allocator

and it grows as O((M/S)lg(M/S)). The hardware complexity of my design is O(P/S).

Normally, the page size is small and in most cases pages are of a fixed size. For example, in

a 2GByte dynamic memory system where the smallest object allocated is 16-bytes, Chang’s

allocator needs several hundred million gates, while my design only needs twenty thousand

gates when 4096-byte pages are used (see section 8.1).

81



The critical path delay of my design is much smaller than that of Chang’s design. For

Chang’s allocator, the critical path delay is O(lg(M/S)) which grows with the size of the

memory that is managed. For my design, the critical path delay is O(lg(P/S)). For a system

as previously described, the height of the trees in Chang’s algorithm is 27. The total critical

path delay will be 108 logic gate delays. For my approach, the critical path incurs only 16

gate delays. Moreover, the proposed allocator can be run at a much higher clock frequency

than Chang’s allocator, although it needs software assistance.

When freeing an object, Chang’s algorithm needs the size of the object to manipulate

the AND-trees and OR-trees. In POSIX systems, “free” commands do not provide object

sizes; only the starting address of the object to be freed. This incompatibility makes Chang’s

approach impractical. Since the software part in my design will locate the bitmap on free,

my design is fully POSIX compatible. In addition, my design is based on the PHK alloca-

tor,which aims to enhance the locality of allocated objects (since smaller objects are allocated

from the same page), unlike an allocator based on the buddy system used by Chang. How-

ever, there is another buddy allocator called the Address-Ordered buddy system [21] that

may improve locality.

8.2.2. Performance Analysis

For the purpose of analyzing performance gains from my design, I simulated the exis-

tence of a hardware-assisted PHK allocator within a conventional CPU using a SimpleScalar

simulation tool set. The hardware portion of the hybrid allocator presented in section 8.1

runs at 1-cycle speed. For the purpose of analysis this hardware is implemented as a special

functional unit in a superscalar processor. This unit is activated by operations “find chunk”

and “free chunk”. The page size of the system is assumed to be 4096 bytes, and the smallest

object allocated is set to 16 bytes. The detailed processor parameters used in the simulations

is the same as in Table 6.1.

I used ten benchmarks (with varying numbers of memory management overheads) to

study the performance gains using my design: parser and perlbmk are from SPEC CPU2000

suite; cfrac, espresso and boxed-sim are memory intensive benchmarks that are widely used

by researchers; the other benchmarks are from the Olden suite, which are also memory

82



Benchmark Average Time Spent in

Name Input Object Size Allocation (%)

cfrac 22-digits number 8 bytes 29.7

espresso largest.espresso 250 bytes 4.7

boxed-sim -n 10 -s 1 24 bytes 2.4

parser ref.in (first 300 lines) 16 bytes 35.6

perlbmk perfect.pl b 2 38 bytes 10.7

treeadd 20 1 24 bytes 48.2

voronoi 20000 1 40 bytes 10.4

bisort 250000 1 24 bytes 2.3

perimeter 12 1 48 bytes 16.3

health 5 500 1 24 bytes 4.9

Table 8.2. Selected Benchmarks and Ave. Object Sizes

PHK Software My Hardware

Benchmark Allocator Execution Allocator Execution Speedup

Name Cycles (million) Cycles (million)

cfrac 189.7 148.1 1.28

espresso 5,241 5,129 1.02

boxed-sim 9,043 8,922 1.01

parser 27,111 21,163 1.27

perlbmk 135.5 127.3 1.06

treeadd 160.4 112.4 1.43

voronoi 128.8 122.3 1.05

bisort 424.1 418.1 1.01

perimeter 42.11 37.97 1.11

health 383.0 372.2 1.03

Table 8.3. Performance Comparison with PHK Allocator

allocation intensive programs. The inputs to these benchmarks, average object sizes, and

percentage of execution time spent in memory management are shown in Table 8.2. The

simulation results are shown in Table 8.3.

The speedup of each application is proportional to the execution time spent on mem-

ory management and the average object size. In Figure 8.3, I show the reduced memory

management execution cycles normalized to the original execution cycles spent on memory

83



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

healthperimeterbisortvoronoitreeaddperlbmkparserboxed-simespressocfrac

P
er

ce
ta

ge
 o

f P
er

fo
rm

an
ce

 g
ai

n(
%

)

0.5

Figure 8.3. Normalized Memory Management Performance Improvement

management functions by the software only allocator. This figure shows the relative perfor-

mance improvements for memory management functions. The cfrac application shows the

best performance improvement. The average object size in cfrac is 8 bytes, which means that

most pages allocated contain 256 objects. The linear search in the software implementation

for that many objects will be very slow. The hardware speeds up the search, leading to a

76.2% normalized performance improvement over the software-only allocation. The cycles

spent in bitmap searching by the software-only allocator is close to the performance differ-

ence between the software-only allocator and the proposed hybrid allocator, which can be

calculated from Table 8.3.

The benchmark espresso with an average object size of 250 bytes shows the least amount

of improvement using the hybrid allocator. Pages allocated for espresso contain fewer than

20 objects. Linear search of 20 objects is not significant, and the hardware allocator only

shows a 48.0% normalized performance improvement. The other benchmarks have average

object sizes of 16 bytes to 48 bytes, and thus the performance gains are not as significant as

that for cfrac, but better than espresso.

84



On average, the hybrid allocator reduces the memory management time by 58.9%. The

average overall execution speedup of the design when compared to a software-only allocator

implementation is 1.127 (or 12.7%).

8.3. Conclusion

My design has significantly lower hardware complexity and lower critical path delays

compared to reported hardware-only allocators. My hardware design has a fixed hardware

complexity, complexity being dependent on the size of a memory page, and not the total

(user) memory being managed. Since this design is based on a PHK algorithm, it is likely

to achieve better object localities than those using buddy systems. I also have shown that

the hardware-software allocator achieves 12.7% gains in overall execution performance over

software-only allocator implementation for memory intensive benchmarks and improves the

memory management efficiency by 58.9% (that is the execution performance improvement for

memory management functions). The performance gains depend on how often an application

invokes “malloc” or “free” functions, and the average size of objects allocated. In the future,

I will explore variable-sized pages such that the number of allocated objects are the same in

each page. By doing this, all the bitmaps will have the same number of bits. Thus, I will

only need one pair of AND-trees and OR-trees in my design. That will further reduce the

hardware complexity. I expect that this will also improve the memory management efficiency

of allocators for large objects. I also plan to investigate hybrid designs for other memory

management algorithms like Doug Lea’s allocator.

85



CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1. Conclusions and Contributions

9.1.1. Contributions of TLS in dataflow architecture

This section will emphasize the contributions and conclusions of this dissertation in terms

of designing, implementing, and evaluation of the Thread Level Speculation schema for multi-

threaded dataflow architecture (SDF).

The major contribution of this dissertation is the design of a TLS schema that can be

implemented for the SDF architecture. One major performance barrier of SDF architecture is

that ambiguous data dependencies will force thread sequential execution. This TLS schema

can enhance the performance of SDF architecture by eliminating the sequential execution due

to static ambiguous data dependencies commonly existing in the programs. It will improve

the utilization of the hardware by executing the instructions speculatively. As I have shown

previously, part of the work, creating and initializing thread context, will always be useful

in terms of SDF architecture. Modern compilers can easily capture these data dependencies

and parallelize the code by utilizing the TLS hardware. A compiler extension based on

the GCC 4.0 can already generate speculative threads for conventional architecture. And

with the trend of multi-core architectures becoming mainstream architecture and the revival

of dataflow concepts, thread-level speculation will become an increasingly popular research

topic.

The second contribution is that I demonstrated a hardware implementation of the TLS

schema with simple hardware. The hardware used to implement this schema is a slight mod-

ification of a fully-associative cache to store the states of speculative access data. The SDF

feature of preload and post-store makes the TLS scheme simpler than existing speculation

support for conventional architectures [68] [31] [57] [33] [81].

86



I evaluated the performance of the proposed schema and show that even with a very

high mis-speculation rate above 80%, TLS-SDF architecture can still achieve performance

improvements. I also show that this scheme can scale better in terms of added functional

units.

9.1.2. Contributions of hardware memory management

The major contribution in this subject is that I provide an analysis of the performance

impact of using hardware memory management unit in conventional architectures. I applied

different memory management algorithm in conventional architectures and showed that a

simple memory management algorithm can achieve comparable performance as a complex

one if implemented in hardware.

The second contribution is that I provide a hybrid (hardware/software) co-design allo-

cator. I show that with this design, only a fixed amount of hardware (and the hardware

does not grow with the total amount of memory managed) is needed. This implementation

achieves an average of 12.7% performance gain.

9.2. Future Work

All the benchmarks used in evaluating the TLS SDF architecture are handwritten. The

implementation of a compiler which supports the TLS execution in SDF needs to be ad-

dressed. The existing compiler framework - GCC, SUIF, and SCALE - can perform very

complicated data dependency analysis. Based on the results of these analyses, one can easily

generate the speculative threads code.

Lepek and Lipsti [54] mention that up to 70% of stores are silent in SPEC95, which means

that the updated value is the same as the value already stored in that memory location. In

the current TLS schema, these silent stores are treated as storing a new value, which will

trigger invalidation of current cache copies. Detecting the silent stores and converting them

to no-ops will eliminate some cache invalidations and improve the success rate of speculative

threads. This will further enhance the performance.

As mentioned in chapter 5, the current simulator does not implement the multiple clusters

of SDF nodes. Testing the TLS schema in a multiple cluster environment will be a project to

undertake in the future. There are other challenges in a multiple cluster environment, such

87



as how this TLS schema can be integrated with the task scheduler to achieve the optimal

performance.

In term of hardware memory management, I can extend the hardware memory manage-

ment to include garbage collection. I believe that hardware memory management unit will

show more performance advantage in garbage collection than its software counterpart.

88



BIBLIOGRAPHY

[1] W.B. Ackermann and J.B. Dennis. VAL – a value-oriented algorithmic language, pre-

liminary reference manual. Technical Report TR218, Laboratory for Computer Science,

MIT, Cambridge, MA, 1992.

[2] V. Agarwal, M.S. Hrishikesh, S.W. Keckler, and D. Burger. Clock rate versus IPC:

The end of the road for conventional microarchitectures. In Proceedings of the 27th

International Symposium on Computer Architecture (ISCA-27), pages 248–259, 2000.

[3] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith.

The tera computer system. In Proceedings of the 1990 International Conference on

Supercomputing, 1990.

[4] B.S. Ang, Arvind, and D. Chiou. StarT - the next generation: Integrated global caches

and dataflow architecture. Tech Report TR-354, Laboratory for Computer Science, MIT,

Cambridge, MA, August 1988.

[5] J. Archibald and J. Baer. Cache coherence protocols: Evaluation using a multiprocessor

simulation model. ACM Transactions on Computer Systems, 4(4):273–298, November

1986.

[6] A.R.Hurson, J.T.Lim, K.M.Kavi, and B.Lee. Parallelization of do all and do across

loops - a survey. Advances in Computers, 45:53–103, 1997.

[7] Arvind and R. Nikhil. Executing program on the MIT Tagged-token dataflow architec-

ture. IEEE Transactions on computers, 39(3):300–318, 1991.

[8] Arvind and R.S. Nikhil. Executing a program on the MIT Tagged-token dataflow ar-

chitecture. PARLE(2), pages 1–29, 1987.

[9] E.D. Berger, B.G. Zorn, and K.S. McKinley. Reconsidering custom memory allocation.

In Proceedings of the Conference on Object-Oriented Programming Systems, Languages

and Applications, pages 1–12, 2002.

89



[10] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall, and Y. Zhou.

Cilk: An efficient multithreaded runtime system. Journal of Parallel and Distributed

Computing, 37(1):55–69, 1996.

[11] A.P.W. Böhm, D.C. Cann, J.T. Feo, and R.R. Oldehoeft. SISAL reference manual (lan-

guage version 2.0). Technical Report CS91-118, Computer Science Department, Col-

orado State University, 1992.

[12] W.C. Brantley, K.P. McAuliffe, and J. Weiss. Rp3 processor-memory element. In Pro-

ceedings of the International Conference on Parallel Processing, pages 782–789, 1985.

[13] D. Burger and T.M. Austin. The simplescalar tool set, version 2.0. Tech. Report CS-

1342, University of Wisconsin-Madison, June 1997.

[14] J.M. Chang and E.F. Gehringer. A high-performance memory allocator for object-

oriented systems. IEEE Transactions on Computers, 45(3):357–366, 1996.

[15] P.S. Chen, M.Y. Hung, Y.S. Hwang, R.D. Ju, and J.K. Lee. Compiler support for spec-

ulative multithreading architecture with probabilistic points-to analysis. In Symposium

on Principles and Practice of Parallel Programming (PPoPP), pages 25–36, June 2003.

[16] M. Cintra, J.F. Martnez, and J. Torrellas. In Proceedings of the 27th Annual Interna-

tional Symposium on Computer Architecture (ISCA-27), pages 13–24, June 2000.

[17] HP Compiler and Architecture Research Group. Trimaran, an infrastructure for research

in instruction-level parallelism, http://www.trimaran.org.

[18] D.E. Culler, K.E. Schauser A.Sah, T. Eicken, and J. Wawrzynek. Fine-grain parallelism

with minimal hardware support: A compiler-controlled threaded abstract machine. In

Proceedings of the 4th International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS-IV), pages 164–175, April 1991.

[19] D.E. Culler, S.C. Goldstein, K.E. Schauser, and T.V. Eicken. TAM - a compiler con-

trolled thread abstract machine. Journal of Parallel and Distributed Computing, 18:347–

370, 1993.

[20] D.E. Culler and G.M. Papadopoulos. The explicit token store. Journal of Parallel and

Distributed Computing, 10(4):289–308, 1990.

90



[21] D.C. Defoe, S.R. Cholleti, and R.K. Cytron. Upper bound for defragment buddy heaps.

In Proceedings of Conference on Languages, Compilers, and Tools for Embedded Sys-

tems, pages 222–229, 2005.

[22] Jack B. Dennis and David Misunas. A preliminary architecture for a basic data flow

processor. In Proceedings of 2nd International Conference on Computer Architecture

(ISCA-2), pages 126–132, January 1975.

[23] D.F.Snelling. The Stateless Data-Flow Architecture. PhD thesis, Dept. Comp. Sci., Univ.

Manchester, 1993.

[24] S. Donahue, M. Hampton, R. Cytron, M. Franklin, and K. Kavi. Hardware support for

fast and bounded-time storage allocation. In Second Workshop on Memory Perfoamnce

Issue (WMPI 2002), 2002.

[25] S. Donahue, M. Hampton, M. Deters, J.M. Nye, R. Cytron, and K. Kavi. Storage

allocation for real-time, embedded systems. In Embedded Software: Proceedings of the

First International Workshop (EMSOFT), pages 131–147, October 2001.

[26] Z.H. Du, C.C. Lim, X.F. Li, C. Yang, Q. Hao, and T.F. Ngai. A cost-driven compilation

framework for speculative parallelization of sequential programs. In In Proceedings of

the Conference on Programming Language, Design and Implementation (PLDI), June

2004.

[27] J. Edler, A. Gottlieb, C.P. Kruskal, K.P. McAuliffe, L. Rudolph, M. Snir, P.J. Teller, and

J. Wilson. Issues related to mimd shared-memory computers: The nyu ultra-computer

approach. In Proceedings of the 12th Annual International Symposium on Computer

Architecture (ISCA-12), pages 126–135, June 1985.

[28] D. Patterson et al. The case for intelligent RAM:IRAM. IEEE Micro, pages 34–44, April

1997.

[29] H. Cam et al. A high performance hardware efficient memory allocator technique and

design. pages 274–276, 1999.

[30] S.J. Frank. Tightly coupled multiprocessor systems speed memory access times. Elec-

tronics, 57(1):164–169, January 1984.

[31] M. Franklin and G. S. Sohi. Arb: A hardware mechanism for dynamic reordering of

memory references. IEEE Transactions on Computers, pages 552–571, May 1996.

91



[32] K.M. Kaviand R. Giorgi and J. Arul. Scheduled dataflow: Execution paradigm, archi-

tecture and performance evaluation. IEEE Transactions on Computers, 50(8):834–846,

August 2001.

[33] S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi. Speculative versioning cache.

In Proceedings of the 4th International Symposium on High-Performance Computer Ar-

chitecture, pages 195–205, February 1998.

[34] V.G. Grafe and J.E. Hoch. The Epsilon-2 multiprocessor system. Journal of Parallel

and Distributed Computing, 10:309–318, 1990.

[35] W. Grünewald and T. Ungerer. A multithreaded processor design for distributed shared

memory system. In Proceedings of the International Conference on Advances in Parallel

and Distributed Computing, pages 206–213, 1997.

[36] J.R. Gurd and D.F.Snelling. Manchester data-flow: a progress report. In Proceedings of

the 6th international conference on Supercomputing, pages 216–225, 1992.

[37] L. Hammond, M. Willey, and K. Olukotun. Data speculation support for a chip multi-

processor. In Proceedings of the 8th International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 58–69, October 1998.

[38] S. Heller and T. Ungerer. Id compiler user’s manual. Technical Report MIT/CSG Memo

248, Laboratory for Computer Science, MIT, Cambridge, MA, 1985.

[39] S. Hily and A. Seznec. Contention on 2nd level cache may limit the effectiveness of smt.

Internal Report 1086, IRISA, 1997.

[40] S. Hily and A. Seznec. Out of order execution may not be cost-effective on processors

featuring smt. Internal Report 1179, IRISA, 1998.

[41] R.A. Iannuucci. Toward a dataflow/von neumann hybrid architecture. In Proceedings of

the 15th International Symposium on Computer Architecture (ISCA-15), pages 131–140,

1988.

[42] T. Johnson, R. Eigenmann, and T. Vijaykumar. Min-cut program decomposition for

thread-level speculation. In In Proceedings of the Conference on Programming Language,

Design and Implementation (PLDI), June 2004.

92



[43] M.S. Johnstone and P.R. Wilson. The memory fragmentation problem: solved. In

ISMM’98 Proceedings of the First International Symposium on Memory Management,

vol. 34(3), of ACM SIGPLAN Notices, pages 26–36, October 1998.

[44] P.H. Kamp. Malloc(3) revisited, http://phk.freebsd.sk/pubs/malloc.pdf.

[45] R. Katz, S. Eggers, D.A. Wood, C. Perkins, and R.G. Sheldon. Implementing a cache

consistency protocol. In Proceedings of the 12th Annual International Symposium on

Computer Architecture (ISCA-12), pages 276–283, June 1985.

[46] K.M. Kavi, J. Arul, and R. Giorgi. Execution and cache performance of the sched-

uled dataflow architecture. Journal of Universal Computer Science, Special Issue on

Multithreaded and Chip Multiprocessors, October 2000.

[47] K.M. Kavi and A.R. Hurson. Performance of cache memories in dataflow architectures.

Journal of System Architecture, 44(9-10):657–674, June 1998.

[48] K.M. Kavi, B. Lee, and A.R. Hurson. Multithreaded systems: A survery. Advances in

Computers, 48:287–328, 1998.

[49] M. Kishi, H. Yasuhara, and Y. Kawamura. DDDP – a distributed data driven processor.

In Proceedings of the 10th Annual International Symposium on Computer Architecture

(ISCA-10), pages 236–242, June 1983.

[50] D.E. Knuth. The Art of Computer Programming Vol I: Fundamental Algorithms.

Addison-Wesley, 1968.

[51] I. Koren, B. Mendelson, I. Peled, and G.M. Silberman. A data-driven vlsi array for

arbitrary algorithms. Computer, 21:30–43, October 1988.

[52] V. Krishnan and J. Torrellas. A chip-multiprocessor architecture with speculative mul-

tithreading. IEEE Transactions on Computers (Special Issue on Multithreaded Archi-

tecture), pages 866–880, December 1999.

[53] D. Lea. A memory allocator, http://gee.cs.oswego.edu/dl/html/malloc.html.

[54] K. Lepak and M. Lipasti. On the value locality of store instructions. In Proceedings of

the 27th Annual International Symposium on Computer Architecture (ISCA-27), June

2000.

93



[55] W. Liu, J. Tuck, L. Ceze, K. Strauss, J. Renau, and J. Torrellas. A tls compiler that

exploits program structure. In ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming (PPoPP), March 2006.

[56] D. Madon, E. Sanchez, and S. Monnier. A study of simultaneous multithreaded architec-

ture. In Proceedings of EuroPar ’99, LNCS vol. 1685, Springer-Verlag, pages 716–726,

September 1999.

[57] P. Marcuello, A. Gonzalez, and J. Tubella. Speculative multithreaded processors. In

Proceedings of the International Conference on Supercomputing, pages 77–84, July 1998.

[58] E. McCreight. The dragon computer system: An early overview. Technical report, Xerox

Corp., September 1984.

[59] R.S. Nikhil and Arvind. Can dataflow subsume von neumann computing? In Proceedings

of the 16th International Symposium on Computer Architecture (ISCA-16), pages 262–

272, 1989.

[60] G.M. Papadopoulos. Implementation of a general purpose dataflow multiprocessor. Tech

Report 432, Laboratory for Computer Science, MIT, Cambridge, MA, August 1988.

[61] M. Papamarcos and J. Patel. A low overhead coherence solution for multiprocessors

with private cache memory. In Proceedings of the 11th Annual International Symposium

on Computer Architecture (ISCA-11), pages 348–354, June 1984.

[62] J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and J. Torrellas. Tasking with out-of-

order spawn in tls chip multiprocessors: Microarchitecture and compilation. In ACM

International Conference on Supercomputing (ICS), June 2005.

[63] M. Rezaei and K.M. Kavi. Intelligent memory management eliminates cache pollution

due to memory management functions. Journal of Systems Architecture, 52(1):41–55,

January 2006.

[64] K. Sankaralingam, R. Nagarajan, H. Liu, J. Huh, C.K. Kim, D. Burger, S.W. Keck-

ler, and C.R. Moore. Exploiting ilp, tlp, and dlp using polymorphism in the trips ar-

chitecture. In Proceedings of the 30th Annual International Symposium on Computer

Architecture (ISCA-30), pages 422–433, June 2003.

[65] J.E. Smith. Decoupled access/execute architectures. ACM Transactions on Computer

Systems, 2(4):289–308, November 1984.

94



[66] M. Tokoro snd R. Jagnanathan and H. Sunahara. On the working set concept for

dataflow machine. In Proceedings of the 10th International Symposium on Computer

Architecture (ISCA-10), pages 90–97, July 1987.

[67] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar processors. In Proceedings

of the 22nd International Symposium on Computer Architecture (ISCA-22), pages 414–

425, 1995.

[68] J.G. Steffan, C.B. Colohan, A. Zhai, and T.C. Mowry. A scalable approach to thread-

level speculation. In Proceedings of the 27th Annual International Symposium on Com-

puter Architecture (ISCA-27), pages 1–12, June 2000.

[69] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. Wavescalar. In The 36th Annual

International Symposium on Microarchitecture (MICRO-36), 2003.

[70] M. Takesue. A unified resource management and execution control mechanism for

dataflow machine. In Proceedings of 14th Intl. Symposium on Computer Architecture

(ISCA-14), pages 90–97, June 1987.

[71] C.K. Tang. In National Computer Conference (AFIPS), pages 749–753, 1976.

[72] S.A. Threson and A.N. Long. A feasibility study of a memory hierarchy in dataflow ar-

chitecture. In Proceedings of the International Conference on Parallel Processing, pages

356–360, June 1987.

[73] J.Y. Tsai, J. Huang, C. Amlo, D. J. Lilja, and P.C. Yew. The superthreaded processor

architecture. IEEE Trans. on Computers, 48(9):881–902, September 1999.

[74] D.M. Tullsen, S.J. Eggers, and H.M. Levy. Simultaneous multithreading: Maximizing

on-chip parallelism. In Proceedings of the 22nd International Symposium on Computer

Architecture (ISCA-22).

[75] A.V. Veidenbaum. A compiler-assisted cache coherence solution for multiprocessors. In

Proceedings of the International Conference on Parallel Processing, pages 1029–1036,

1986.

[76] T. Vijaykumar and G. Sohi. In International Symposium on Microarchitecture, pages

81–92, November 1998.

95



[77] I. Watson and J.R. Gurd. A prototype dataflow computer with token labeling. In Pro-

ceedings of the National Computer conference(AFIPS Proceedings 48), pages 623–628,

1979.

[78] P.R. Wilson, M.S. Johnstone, M.Neely, and D. Boles. Dynamic storage allocation: A

survey and critical review. Lecture Notes in Computer Science 985, 1995.

[79] W.C. Yen, D.W.L. Yen, and K.S. Fu. Data coherence problem in a multicache system.

IEEE Transaction on Computers, 34(1):56–65, 1985.

[80] A. Zhai, C. Colohan, J. Steffan, and T.Mowry. Compiler optimization of scalar value

communication between speculative threads. In International Conference on Architec-

tural Support for Programming Languages and Operating Systems, October 2002.

[81] Y. Zhang, L. Rauchwerger, and J. Torrelas. Hardware for speculative parallelization of

partially-parallel loops in DSM multiprocessors. In Proceedings of the 5th International

Symposium on High-Performance Computer Architecture (HPCA-5), pages 135–141,

January 1999.

96


