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CHAPTER 1

INTRODUCTION

Many of the theorems and lemmas quoted in chapters 2 and 3 are exercises from [1, p.

9-11, 18] that are stated but not proven.

In this introduction, we will introduce the spaces commonly used in fixed point theory as

well as some of the theorems most often used with these spaces. We will also introduce the

concept of contraction mappings and nonexpansive mappings.

Before we can talk about contraction and nonexpansive mappings, some preliminary defini-

tions and theorems are required about the spaces we will be dealing with. We will first deal

with metric spaces.

Definition 1.0.1 (Metric). Let X be a set. A metric is a function

d : X ×X → [0,+∞) which satisfies the following properties:

For al l x, y , z in X,

• d (x, y) = 0 if and only if x = y .

• d (x, y) = d (y , x).

• d (x, z) ≤ d (x, y) + d (y , z).

Definition 1.0.2 (Metric Space). A set X with a metric d defined on it is said to be a metric

space.

Most times, however, having a metric space is not enough to guarantee having a fixed

point for a contraction map or a nonexpansive map. What is most often required is at least

having a complete metric space. The following definitions develop this notion.
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Definition 1.0.3 (Convergence). A sequence {xn}∞n=1 in X is said to converge to a point x in

X if and only if for all ε > 0, there exists an N in N so that for every n in N, n ≥ N implies

|xn − x | < ε. This is also known as strong convergence.

Definition 1.0.4 (Cauchy Sequence). A sequence {xn}∞n=1 in X is said to be Cauchy in X if

and only if for all ε > 0, there exists an N in N such that for every m, n in N, if both n ≥ N

and m ≥ N, then |xn − xm| < ε.

Definition 1.0.5 (Complete Metric Space). A metric space X is said to be complete if every

Cauchy sequence in X converges in X.

Also, there will be times where we will rely on having a compact metric space. The

following definition and two theorems give us the appropriate tools to work with.

Definition 1.0.6 (Compact Metric Space). A metric space X is said to be compact if every

collection U of open sets V in X satisfies⋃
U = X implies that there exists W a finite subset of U, also known as a finite subcollection

of U, satisfying
⋃
W = X.

Theorem 1.0.7. A metric space X is compact if and only if every sequence

{xn}∞n=1 has a subsequence {xnk}
∞
k=1 which converges to some point x in X.

Theorem 1.0.8 (Extreme Value Theorem). Let X be a compact metric

space and let f : X → R be a continuous function. Then, f attains its extrema. Furthermore,

f [X] is a compact subset of X.

Sometimes, even a compact or a complete metric space will not be enough to guarantee

having a fixed point in a contraction map or in a nonexpansive map. But, in many of these

circumstances having a Banach space will give us a fixed point for such mappings.
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Definition 1.0.9 (Norm). Let X be a linear space. A norm is a function ‖·‖ : X → [0,+∞)

which satisfies the following properties:

For every x, y in X,

• ‖x‖ = 0 in R if and only if x = 0 in X.

• For every α in R, ‖αx‖ = |α| ‖x‖.

• ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Definition 1.0.10 (Normed Linear Space). A linear space X is called a normed linear space if

there exists a norm on X.

Remark 1.0.11. A normed linear space X with norm ‖·‖ is also a metric space with metric d

defined by d (x, y) = ‖x − y‖.

Definition 1.0.12 (Banach Space). A normed linear space X is said to be a Banach space if

X, as a metric space, is complete.

Before we can begin the fixed point theory discussion, we need the definitions of a non-

expansive map and of a contraction map.

Definition 1.0.13 (Nonexpansive and Contraction Maps). Let X be a

metric space. Let f : X → X be a function satisfying the property that there exists a λ (called

the Lipschitzian constant) in [0, 1] such that for every x, y in X, d (f (x) , f (y)) ≤ λd (x, y).

The function f is said to be a nonexpansive map if λ = 1. If λ < 1, then f is said to be a

contraction map.

Finally, we finish this chapter with Banach’s Contraction Principle. This result is used in

many of the proofs in the following chapters.
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Theorem 1.0.14 (Banach’s Contraction Principle). Let (X, d) be a

complete metric space and let F : X → X be a contraction with Lipschitzian constant L.

Then, F has a unique fixed point u in X. Furthermore, for any x in X we have lim
n→∞
F n (x) = u

with d (F n (x) , u) ≤ Ln

1−Ld (x, F (x)) .

Proof. [1, p. 1-2] We first show uniqueness. Suppose there exist x, y in X with x = F (x)

and y = F (y). Then

d (x, y) = d (F (x) , F (y)) ≤ Ld (x, y) ,

therefore d (x, y) = 0.

To show existence, select an x in X. We first show that {F n (x)} is a Cauchy sequence.

Notice for n in {0, 1, . . .} that

d (F n (x) , F n+1 (x)) ≤ Ld (F n−1 (x) , F n (x)) ≤ · · · ≤ Lnd (x, F (x)) .

Thus for m > n where n is in {0, 1, . . .},

d (F n (x) , Fm (x)) ≤ d (F n (x) , F n+1 (x)) + d (F n+1 (x) , F n+2 (x))

+ · · ·+ d (Fm−1 (x) , Fm (x))

≤ Lnd (x, F (x)) + · · ·+ Lm−1d (x, F (x))

≤ Lnd (x, F (x)) [1 + L+ L2 + · · · ]

= Ln

1−Ld (x, F (x)) .

That is for m > n, n in {0, 1, . . .},

d (F n (x) , Fm (x)) ≤ Ln

1−Ld (x, F (x)) .

This shows that {F n (x)} is a Cauchy sequence and, since X is complete, there exists u in

X with lim
n→∞
F n (x) = u. Moreover the continuity of F yields

u = lim
n→∞
F n+1 (x) = lim

n→∞
F (F n (x)) = F (u) ,

therefore u is a fixed point of F . Finally letting m →∞ in the inequality

d (F n (x) , Fm (x)) ≤ Ln

1−Ld (x, F (x))

yields

d (F n (x) , u) ≤ Ln

1−Ld (x, F (x)) . �
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CHAPTER 2

COMPLETE METRIC SPACES

In this chapter, we will look into fixed point theorems involving metric spaces. These

theorems appear as exercises in [1, p. 9-11].

We consider the following question: If we can obtain a fixed point for a contraction mapping

in the scenario of a complete metric space, are we guaranteed a fixed point for a contraction

mapping in an incomplete metric space?

Example 2.0.15. A contraction F from an incomplete metric space into itself need not have

a fixed point.

Proof. Let X = R \ {0}. Then, the map f : X → X defined by f (x) = x
2
is a contraction.

However, as 0 is not in X, there is no fixed point of f . Furthermore, X with the standard

metric from R restricted to X forms a metric space. Moreover, as {1
n
}∞n=1 is a Cauchy

sequence in X, with the aforementioned metric, that does not converge in X, X is not

complete. �

Hence, we will almost solely be dealing with spaces which are at least complete metric

spaces.

Next, we look at a map F with the property that after n compostions of F with itself, we

obtain a contraction mapping. The question: Does this guarantee that F has a fixed point?

Theorem 2.0.16. Let (X, d) be a complete metric space and let F : X → X be such that

FN : X → X is a contraction for some positive integer N. Then F has a unique fixed point

u in X and for each x in X, lim
n→∞
F n (x) = u.
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Proof. As X is a complete metric space and FN is a contraction on X, there exists an L in

[0, 1) such that d
(
FN (x) , FN (y)

)
≤ Ld (x, y), for all x, y in X and, by Theorem 1.0.14,

there exists a u in X that is a unique fixed point of FN. Also, if we let x be in X, then

lim
m→∞

(
FN

)m
(x) = u. Furthermore, for every m in N, d

((
FN

)m
(x) , u

)
≤ Lm

1−Ld
(
x, FN (x)

)
.

Also, as u is in the domain of FN, there exists x0 in X such that F (x0) = u, namely

x0 = F
N−1 (u). For each i in {0, 1, . . . , N − 2}, let xi = F (N−1)−i (u). Then, F i+1 (xi) = u

for all i in {0, 1, . . . , N − 2}. So,

d
((
FN

)m
(xi) , u

)
= d

((
FN

)m (
F (N−1)−i (u)

)
, u

)
≤ Lm

1−Ld
(
F (N−1)−i (u) , F (2N−1)−i (u)

)
= Lm

1−Ld
(
F (N−1)−i (u) , F (N−1)−i

(
FN (u)

))
= Lm

1−Ld
(
F (N−1)−i (u) , F (N−1)−i (u)

)
= 0 f or al l m in N.

Hence, d
(
FmN (xi) , F

mN (u)
)
= 0 for all i in {0, . . . , N − 2} and for all m in N. Whence,

d
(
F (N−1)−i (u) , u

)
= 0 for all i in {0, . . . , N − 2}. Therefore, F (N−1)−i (u) = u for all i in

{0, . . . , N − 2}. Thus, F (u) = u. Furthermore, if there exists a v in X such that F (v) = v ,

then FN (v) = v and as u is the only fixed point of FN, FN (v) = v = u = FN (u). Whence,

F has a unique fixed point u. Now, let x be in X. We already have lim
m→∞

(
FN

)m
(x) = u.

Let ε > 0. Then, there exists an M0 in N such that for every m in N, m ≥ M implies

d
((
FN

)m
(x) , u

)
≤ Lm

1−Ld
(
x, FN (x)

)
< ε. As u = F (u) = · · · = FN−1 (u) = FN (u), we can

similarly obtain M1, . . . ,MN−1 and apply this reasoning to F (x) , . . . , F
N−1 (x), respectively.

Let M̂ = sup
0≤i≤N−1

Mi . Then, we can let m ≥ M̂. So, d (Fm (x) , u) < ε. Therefore,

lim
m→∞

Fm (x) = u. �

Thus, it is enough to have a contraction mapping appear after n

self-compositions to guarantee that a map has a unique fixed point.

Now, we might explore what happens when a map starts in an arbitrary complete metric

space X and maps to the nonnegative real numbers. Are there conditions on a map like this
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that would force a continuous map from X to itself to have a fixed point? The following is

a lemma which helps answer this question.

Lemma 2.0.17. Let (X, d) be a complete metric space and let φ : X → [0,∞) be a map

(not necessarily continuous). Suppose inf{φ (x) + φ (y) : d (x, y) ≥ γ} = µ (γ) > 0 for all

γ > 0. Then each sequence {xn} in X, for which lim
n→∞
φ (xn) = 0, converges to one and only

one point u ∈ X.

Proof. Let {xn} be a sequence in X such that lim
n→∞
φ (xn) = 0. Then, let ε > 0. Then, there

exists γ such that inf{φ (x) + φ (y) : d (x, y) ≥ γ and x, y in {xn}} = 2ε > µ (γ) > 0.

Also, there exists an N such that n ≥ N implies φ (xn) < ε. Thus, for every n,m ≥ N,

φ (xm) + φ (xn) < 2ε. Hence, for every n,m ≥ N, d (xm, xn) < γ. Note that if we instead

start out letting γ > 0 be arbitrary, µ (γ) can fullfil the role of 2ε. Hence, {xn} converges to

some u in X. Now, let {xn} and {yn} be two sequences such that {φ (xn)} and {φ (yn)} both

converge to 0. A similar argument shows that there exists N1, N2 such that if n ≥ N1 and

m ≥ N2, then φ (xn)+φ (ym) < µ (γ). Thus, taking N = max{N1, N2}, we get d (xn, yn) < γ

for all n ≥ N. Hence, {xn} and {yn} both converge to the same u in X. �

Now, using a mapping with the property in the lemma above as well as a continous

mapping from X to itself, do we obtain a fixed point? Is the fixed point unique?

Theorem 2.0.18. Let (X, d) be a complete metric space and let F : X → X be continuous.

Suppose φ (x) = d (x, F (x)) satisfies inf{φ (x) + φ (y) : d (x, y) ≥ γ} = µ (γ) > 0 for all

γ > 0, and that inf
x in X

d (x, F (x)) = 0. Then F has a unique fixed point.

Proof. As inf
x in X

φ (x) = 0, by Lemma 2.0.17 above, we have that every sequence {xn}, for

which {φ (xn)} converges to 0, converges to one and only one point u in X. We also have

that such a sequence exists as the inf is 0. Furthermore, as φ (x) is defined as d (x, F (x)),

this means F has the unique fixed point u. �
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To conclude the chapter, we ask if having a map from a metric space to itself that is

bounded in the metric after n self-compositions gives us any useful results. Do we get fixed

points? Do we get some other property, such as a new metric? Does the new metric bound

the original function in the new metric? Note that we are not assuming this metric space is

complete.

Theorem 2.0.19. Let T be a map of the metric space (X, ρ) into itself such that, for a fixed

positive integer n, ρ (T nx, T ny) ≤ αnρ (x, y); here α is a positive real number. Then the

function σ defined by σ (x, y) := ρ (x, y) + 1
α
ρ (Tx, T y) + · · · + 1

αn−1ρ (T
n−1x, T n−1y) is a

metric on X and T satisfies σ (Tx, T y) ≤ ασ (x, y) for x, y in X.

Proof. First, let us prove that σ is a metric on X.

Let x, y , z be in X.

• σ (x, x) = ρ (x, x) + 1
α
ρ (Tx, T x) + · · ·+ 1

αn−1ρ (T
n−1x, T n−1x) = 0.

• σ (x, y) = ρ (x, y) + 1
α
ρ (Tx, T y) + · · ·+ 1

αn−1ρ (T
n−1x, T n−1y)

≥ ρ (x, y) > 0 i f x 6= y .

• σ (x, y) = ρ (x, y) + 1
α
ρ (Tx, T y) + · · ·+ 1

αn−1ρ (T
n−1x, T n−1y)

= ρ (y , x) + 1
α
ρ (Ty, T x) + · · ·+ 1

αn−1ρ (T
n−1y , T n−1x)

= σ (y , x) .

• σ (x, z) = ρ (x, z) + 1
α
ρ (Tx, T z) + · · ·+ 1

αn−1ρ (T
n−1x, T n−1z)

≤ (ρ (x, y) + ρ (y , z)) + 1
α
(ρ (Tx, T y) + ρ (Ty, T z))

+ · · ·+ 1
αn−1 (ρ (T

n−1x, T n−1y) + ρ (T n−1y , T n−1z))

= ρ (x, y) + 1
α
ρ (Tx, T y) + · · ·+ 1

αn−1ρ (T
n−1x, T n−1y)

+ρ (y , z) + 1
α
ρ (Ty, T z) + · · ·+ 1

αn−1ρ (T
n−1y , T n−1z)

= σ (x, y) + σ (y , z) .

Thus, σ is a metric on X. Now, let us prove that T satisfies the claimed condition

σ (Tx, T y) ≤ ασ (x, y) for x, y in X.
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σ (Tx, T y) = ρ (Tx, T y) + 1
α
ρ (T 2x, T 2y) + · · ·+ 1

αn−1ρ (T
nx, T ny)

≤ ρ (Tx, T y) + 1
α
ρ (T 2x, T 2y) + · · ·+ αρ (x, y)

= αρ (x, y) + ρ (Tx, T y) + · · ·+ 1
αn−2ρ (T

n−1x, T n−1y)

= α
(
ρ (x, y) + 1

α
ρ (Tx, T y) + · · ·+ 1

αn−1ρ (T
n−1x, T n−1y)

)
= ασ (x, y) . �
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CHAPTER 3

BANACH SPACES

This chapter focuses on fixed point theorems relating to Banach spaces.

As several of the theorems and lemmas in this section use uniformly convex Banach spaces,

we give several definitions and properties that are useful for these spaces.

Definition 3.0.20 (Uniformly Convex Banach Space [2, p. 51]). A Banach space

X is said to be uniformly convex if for all 2 ≥ ε > 0, there exists a δ > 0 such that for every

x, y in X, if ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ > ε, then
∥∥ x+y
2

∥∥ ≤ (1− δ).
Definition 3.0.21 (Weak Convergence). A sequence {xn} in a uniformly

convex Banach space X is said to converge weakly to x in X if and only if lim
n→∞
〈xn, x∗〉 = 〈x, x∗〉

for each x∗ in X∗. Here, X∗ is the dual space of X, defined by X∗ = {T : X → R : T is a

bounded linear functional }.

The following property gives us a way to measure the convexity of our space.

Definition 3.0.22 (Modulus of Convexity [2, p. 52]). The modulus of

convexity of a Banach space X is the function δX : [0, 2]→ [0, 1] defined by

δX (ε) = inf{1−
∥∥ x+y
2

∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε}.
Remark 3.0.23 ([2, p. 52]). Let ε > 0. Then, δX (ε) =

sup {A in R : for x, y in X, if ‖x‖ ≤ 1, ‖y‖ ≤ 1, and ‖x − y‖ ≥ ε,

then
∥∥ x+y
2

∥∥ ≤ 1− A}
.
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Remark 3.0.24 ([2, p. 53]). Remark 3.0.23 is equivalent to the following:

For x, y , p in X,R > 0, and r in [0, 2R], if ‖x − p‖ ≤ R, ‖y − p‖ ≤ R, and ‖x − y‖ ≥ r ,

then
∥∥p − 1

2
(x + y)

∥∥ ≤ (
1− δ

(
r
R

))
R.

The following theorem is needed to prove Theorem 3.0.28.

Theorem 3.0.25. Let Br be the closed ball of radius r > 0, centered at zero, in a Banach

space E with F : Br → E a contraction and F
(
∂Br

)
⊆ Br . Then F has a unique fixed point

in Br .

Proof. [1, p. 3-4] Consider

G (x) = x+F (x)
2
.

We first show that G : Br → Br . To see this let

x? = r x‖x‖ where x is in Br and x 6= 0.

Now if x is in Br and x 6= 0,

‖F (x)− F (x?)‖ ≤ L ‖x − x?‖ = L (r − ‖x‖) ,

since x − x? = x
‖x‖ (‖x‖ − r), and as a result

‖F (x)‖ ≤ ‖F (x?)‖+ ‖F (x)− F (x?)‖

≤ r + L (r − ‖x‖)

≤ 2r − ‖x‖ .
Then for x in Br and x 6= 0

‖G (x)‖ =
∥∥∥ x+F (x)2

∥∥∥ ≤ ‖x‖+‖F (x)‖
2

≤ r.

In fact by continuity we also have

‖G (0)‖ ≤ r,

and consequently G : Br → Br . Moreover G : Br → Br is a contraction since

‖G (x)− G (y)‖ ≤ ‖x−y‖+L‖x−y‖
2

= [1+L]
2
‖x − y‖ .

Theorem 1.0.14 implies that G has a unique fixed point u in Br . Of course if u = G (u) then

u = F (u). �
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The following theorem is needed to give a result for use in Theorem 3.0.29. This result

is nice in that it gives a midpoint property given two points in the space.

Theorem 3.0.26. Suppose K is a nonempty, bounded, convex subset of a uniformly convex

Banach space X and suppose T : K → X is nonexpansive. Then for {un}, {vn} in K and zn =
1
2
(un + vn), if both lim

n→∞
‖un − Tun‖ = 0 and lim

n→∞
‖vn − Tvn‖ = 0, then lim

n→∞
‖zn − Tzn‖ = 0.

Proof. [2, p. 109] Suppose not. Then, there exist sequences {un}, {vn} in K with

lim
n→∞
‖un − Tun‖ = 0

lim
n→∞
‖vn − Tvn‖ = 0

and with zn =
1
2
(un + vn) and ε > 0 satisfying ‖zn − Tzn‖ ≥ ε for all n in N. Thus, we may

pass to a subsequence and obtain that for some r > 0, lim
n→∞
‖un − zn‖ = lim

n→∞
‖vn − zn‖ = r .

Let d = diam (K) and choose t > 0 so that t < ε/d . Then clearly t < ε/ ‖un − zn‖ and so

for n sufficiently large,

t < ε/ [‖un − Tun‖+ ‖un − zn‖] .

Also,

‖un − Tzn‖ ≤ ‖un − Tun‖+ ‖Tun − Tzn‖ ≤ ‖un − Tun‖+ ‖un − zn‖ .

Since the above inequalities hold if un is replaced by vn, we have (for large n) by Remark

3.0.24:

‖un − vn‖ ≤
∥∥un − 1

2
(zn − Tzn)

∥∥+ ∥∥vn − 1
2
(zn − Tzn)

∥∥
≤ [(‖un − Tun‖+ ‖un − zn‖)

+ (‖vn − Tvn‖+ ‖vn − zn‖)] (1− δ (t)) .
Letting n →∞ we obtain the contradiction

2r ≤ 2r (1− δ (t)) . �

The following result is used in Theorem 3.0.29.

Theorem 3.0.27. Suppose K is a nonempty, bounded, closed and convex subset of a uniformly

convex Banach space X and suppose T : K → X is a nonexpansive mapping wich satisfies

inf{‖x − Tx‖ : x is in K} = 0. Then T has a fixed point in K.
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Proof. [2, p. 109-110] Let Br = Br (0) = {x in X : ‖x‖ < r}. Let R denote the set of

numbers r > 0 for which Br ∩ K 6= ∅ and inf{‖x − Tx‖ : x is in Br ∩ K} = 0, and let

r0 = inf R. Since K is bounded, r0 < ∞, and if r0 = 0, then 0 is in K and T0 = 0. So

we may suppose r0 > 0. It is clearly possible to select xn in Br0+1/n ∩ K for each n so that

lim
n→∞
‖xn − Txn‖ = 0. Since any strongly convergent subsequence of {xn} would have a fixed

point of T as its limit, we may suppose there exists ε > 0 and a subsequence {xnk} of {xn}

such that
∥∥xnk − xnk+1∥∥ ≥ ε, k = 1, 2, . . .. For each k , let mk = 1

2

(
xnk − xnk+1

)
. Then if t > 0

is any number smaller than ε/r0, t ≤ ε/ ‖xk‖ for k sufficiently large and thus, by Remark

3.0.24,

‖mk‖ ≤ (r0 + (1/nk)) (1− δ (t)) .

Thus lim sup
k→∞

‖mk‖ ≤ r0 (1− δ (t)) < r0. Since Theorem 3.0.26 implies

lim
k→∞
‖mk − Tmk‖ = 0, this contradicts the definition of r0. �

The following theorem, from [1, p. 9], is useful in obtaining a fixed point for a function

on a closed ball centered at the origin. Basically, if the function behaves as an odd function

on the boundary of the closed ball, it has a fixed point in the closed ball.

Theorem 3.0.28. Let Br be the closed ball of radius r > 0, centered at zero, in a Banach

space E with f : Br → E a contraction and F (−x) = −F (x) for x in ∂Br . Then F has a

fixed point in Br .

Proof. Let x be in ∂Br . Then, 2 ‖F (x)‖ = ‖F (x)− F (−x)‖

≤ L ‖x − (−x)‖ = 2L ‖x‖ = 2Lr < 2r . Hence, ‖F (x)‖ < r . Thus, F (x) is in Br . By

Theorem 3.0.25, F has a unique fixed point u in Br . �

The next theorem, from [1, p. 18], gives a result as important as Theorem 1.0.14, but

for uniformly convex Banach spaces and nonexpansive maps.
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Theorem 3.0.29. Let X be a uniformly convex Banach space and K

a nonempty, closed, convex, bounded subset of X. Then every nonexpansive map F : K → K

has a fixed point.

Proof. Assume that 0X is in K. (A modified argument from the one given below holds

for any x0 in K, therefore for simplicity we let x0 = 0X.) Also assume that F (0X) 6= 0X

(otherwise we are finished). For each n = 2, 3, . . . , notice that Fn :=
(
1− 1

n

)
F : K → K is

a contraction. Now Theorem 1.0.14 guarantees that there exists a unique xn in K with xn =

Fn (xn) =
(
1− 1

n

)
F (xn). Thus ‖xn − F (xn)‖ = 1

n
‖F (xn)‖ ≤ 1

n
δ (K), where δ (K) denotes

the diameter of K. For each n in {2, 3, . . .}, let Qn = {x in K : ‖x − F (x)‖ ≤ 1
n
δ (K)}. Now,

Q2 ⊇ Q3 ⊇ · · · ⊇ Qn ⊇ · · · is a decreasing sequence of nonempty (given that for every N ≥ n,

xN is in Qn) closed sets, each of which is a subset of K. Let dn = inf{‖x‖ : x is in Qn} and

since the Qns are decreasing, we have d2 ≤ d3 ≤ · · · ≤ dn ≤ · · · , with di ≤ δ (K) for each i in

{2, 3, . . .}. Consequently, dn ↑ d with d ≤ δ (K). Next let An = Q8n2∩B (0X, d + 1/n), where

B (0X, d + 1/n) = {x in X : ‖x − 0X‖ < d + 1n}. Now An is a decreasing sequence of closed,

nonempty sets, each of which is a subset of K. We now show that inf{‖x − F (x)‖ : x is in

K} = 0[1, p. 14-15]. To see this, let n be in N and let un be in An. Then, ‖un − 0X‖ ≤ d+ 1n .

Also, since un is in Q8n2, we have ‖un − F (un)‖ ≤ 1
8n2
δ (K). Thus, {un} is a sequence in

K such that lim
n→∞
‖un − F (un)‖ = 0. So, we have that inf{‖x − F (x)‖ : x is in K} = 0.

Theorem 3.0.27 gives us that F has a fixed point in K, which is what we wanted to show. If

0X is not in K, let x0 be in K and replace all mention of 0X in the above proof with x0. �
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