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The creation, storage, manipulation, and transmission of images have become less 

costly and more efficient. Consequently, the numbers of images and their users are 

growing rapidly. This poses challenges to those who organize and provide access to 

them. One of these challenges is similarity matching. Most current content-based image 

retrieval (CBIR) systems which can extract only low-level visual features such as color, 

shape, and texture, use similarity measures based on geometric models of similarity. 

However, most human similarity judgment data violate the metric axioms of these 

models.  

Tversky’s (1977) contrast model, which defines similarity as a feature contrast 

task and equates the degree of similarity of two stimuli to a linear combination of their 

common and distinctive features, explains human similarity judgments much better than 

the geometric models. This study tested the contrast model as a conceptual framework to 

investigate the nature of the relationships between features and similarity of images as 

perceived by human judges. Data were collected from 150 participants who performed 

two tasks: an image description and a similarity judgment task. Qualitative methods 

(content analysis) and quantitative (correlational) methods were used to seek answers to 

four research questions related to the relationships between common and distinctive 

features and similarity judgments of images as well as measures of their common and 

distinctive features. 



Structural equation modeling, correlation analysis, and regression analysis 

confirmed the relationships between perceived features and similarity of objects 

hypothesized by Tversky (1977). Tversky’s (1977) contrast model based upon a 

combination of two methods for measuring common and distinctive features, and two 

methods for measuring similarity produced statistically significant structural coefficients 

between the independent latent variables (common and distinctive features) and the 

dependent latent variable (similarity). This model fit the data well for a sample of 30 (435 

pairs of) images and 150 participants (χ2 =16.97, df=10, p = .07508, RMSEA= .040, 

SRMR= .0205, GFI= .990, AGFI= .965). The goodness of fit indices showed the model 

did not significantly deviate from the actual sample data. 

This study is the first to test the contrast model in the context of information 

representation and retrieval. Results of the study are hoped to provide the foundations for 

future research that will attempt to further test the contrast model and assist designers of 

image organization and retrieval systems by pointing toward alternative document 

representations and similarity measures that more closely match human similarity 

judgments. 
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CHAPTER 1 

INTRODUCTION 

General Background 

People from all walks of life as well as organizations use images for their daily 

activities including business, medical treatment, education, and entertainment. Images are 

“becoming an integral part of human communication” (Chang, Smith, Beigi, & Benitez, 

1997, p. 63). The creation, storage, manipulation, and transmission of images have 

become less costly and more efficient. People can even capture, store, transmit and print 

images using their mobile telephones. Consequently, the numbers of both images and 

their users are growing rapidly. For instance, one of the major suppliers of stock images, 

Getty Images, Inc. (http://www.gettyimages.com) has over 70 million still images in its 

collection. This presents a tremendous challenge for those who design and implement 

image storage and retrieval systems. Two of the main challenges relate to indexing or 

representation of images and to the measurement of their similarity for organization and 

retrieval purposes as well as visualization of both stored and retrieved sets of images. 

Researchers and practitioners disagree on the significant attributes that should be 

considered for indexing images and this has been reflected in results of investigations that 

looked into the appropriateness of some of the traditional image indexing tools 

(Jörgensen, 2003). Furthermore, there is lack of research into the exact nature of image 

perception by users and the criteria they use to make similarity judgments. 
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Similarity plays an important role in human perception (Melara, 1992; Tversky, 

1977; Tversky & Gati, 1978) and information organization and retrieval (Qin, 2000; 

Santini & Jain, 1999; Zhang & Korfhage, 1999a, 1999b; Zhang & Rasmussen, 2001). For 

instance, in libraries and other types of information systems, information objects are 

categorized according to their similarity (or proximity) based on their physical form 

and/or intellectual content. A major component of any information retrieval system is 

similarity matching to determine inter-document similarity, which is the degree of 

similarity between documents (or their representations) in the system, and/or the degree 

of similarity between representation of a user’s query and documents (or their 

representations) in the system. 

Even though geometric/spatial models of similarity are widely utilized to 

determine inter-document similarity and in visualizations of sets of documents stored in 

information retrieval systems and/or sets of retrieved documents, some weaknesses in 

their metric assumptions/axioms have been identified by Tversky (1977). Consequently, 

Tversky (1977) formulated an alternative set-theoretical model known as the contrast 

model. This study used the contrast model as the conceptual framework to investigate the 

nature of the relationships between perceived features and similarity of images. 

Statement of the Problem 

The amount of research on text representation and retrieval of text documents 

dwarfs that on representation and retrieval of image documents (Jörgensen, 1995; Lynch, 

1991; Shatford, 1986). Even within the image indexing and retrieval literature, content-

based (automatic/machine-based) image indexing and retrieval literature outnumbers the 

concept-based (manual, text-based) literature (Chu, 2001), even though there is continued 
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dependence on concept-based image indexing and retrieval (Enser, 2000). Lacking from 

both sets of literature are detailed investigations of the nature of human similarity 

judgments of images, specifically the relationships between human similarity judgments 

and the common and distinctive features of images. 

Image attributes are the key to their description, indexing, and representation 

(Rasmussen, 1997). However, only a handful of researchers (Greisdorf & O’Connor, 

2002a, 2002b; Hastings, 1995; Jörgensen, 1995, 1996, 1998, 2003; Lee, 2001) have 

conducted studies to identify attributes of images generally perceived by users and 

current concept-based image indexing mechanisms hardly rely upon any sort of 

theoretical foundation (Jörgensen, 2003). One of these researchers who undertook such a 

study found that there is “a very incomplete match between the attributes addressed by 

major textual image indexing systems and thesauri in use and the attributes described by 

participants in empirical research” (Jörgensen, 2003, p.243). 

Moreover, lack of research regarding the nature of visual similarity has already 

been identified (Jörgensen, 1995; Santini & Jain, 1999). Despite the major role similarity 

plays in human perception (Melara, 1992; Tversky, 1977; Tversky & Gati, 1978) and 

information organization and retrieval (Qin, 2000; Santini & Jain, 1999; Zhang & 

Korfhage, 1999a, 1999b; Zhang & Rasmussen, 2001), the various psychological models 

of similarity such as Tversky’s (1977) contrast model have not been used enough to 

investigate problems in library and information science. Even though the 

geometric/spatial models of similarity (especially multidimensional scaling) are widely 

applied in information retrieval in general and image retrieval in particular to determine 

the extent of inter-document similarity and for visualizations of sets of stored or retrieved 
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text and image documents (e.g. Rubner, 1999), some weaknesses in their metric axioms 

(the fact that human similarity judgment data violate these axioms) have been identified 

by Tversky (1977). Therefore, there is a need for research that uses the contrast model as 

a framework not only to bridge the gap in the relevant literature, but also to explore 

alternative methods of image indexing and retrieval. This study attempts to achieve that 

by investigating the nature of the relationships between perceived features and similarity 

of images. 

Research Questions 

This study used Tversky’s (1977) contrast model as a general framework and 

attempted to answer the following research questions: 

RQ1: Which methods measure the common and unique/distinctive features of 

images well? 

RQ2: To what extent does the contrast model fit human similarity judgments 

and features/attributes data for a sample of images? 

RQ3: What is the relationship between perceived similarity of images, as judged 

by humans, and their features/attributes identified and described/listed by 

humans? 

RQ4: What are the relative weights given to common and unique/distinctive 

features in human similarity judgments of images? 

Purpose of the Study 

The study uses both qualitative (content analysis) and quantitative (correlational) 

methods to investigate the above research questions pertinent to perceived features and 

similarity of images. Its main purposes are: 
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• To determine, for a sample of images, methods that measure the common and 

unique/distinctive features of images well through testing the three 

measurement models for common and unique/distinctive features using 

structural equation modeling (SEM). 

• To investigate the extent of the fit of Tversky’s (1977) contrast model to 

human similarity ratings and common and unique/distinctive features data for 

the same sample of images using structural equation modeling (SEM); 

• To determine the relationship between perceived similarity of images, as 

judged by humans, and their common and unique/distinctive 

features/attributes, identified and described/listed by humans; or specifically, 

to see whether higher common features and lesser unique/distinctive features 

result in higher average similarity ratings; and 

• To determine, for the same sample of images, the relative weights given to 

common and unique/distinctive features in human similarity judgments 

through structural equation modeling (SEM) and regression analysis. 

Significance of the Study 

Given the importance of attributes and similarity matching and measurement in 

text and image indexing and retrieval, this study is among the first known to investigate 

perceived features and similarity of images, in the context of their representation and 

retrieval, using the contrast model as a framework. Results of this study will serve as a 

foundation for future research that will attempt to further test the model. Results may 

inform image indexers about important attributes. Furthermore, results obtained from the 

test of the contrast model will inform designers of retrieval systems about similarity 
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measures that match perceived similarity and could be used to formulate alternative 

similarity measures for image retrieval systems that mimic perceived similarity. This 

research will begin to fill a gap in the literature. 

The study is also significant in that its results challenge the widely accepted 

notion that documents (both text and image) can be represented as points in a continuous 

multidimensional space and their similarity computed using distance functions that 

satisfy the three metric axioms of minimality (δ(x,y) ≥ δ(x,x)=0), symmetry 

(δ(x,y)=δ(y,x)), and the triangle inequality (δ(x,z) ≤ δ(x,y) + δ(y,z)), where x, y, and z are 

three points representing three objects in the multidimensional space and δ is a metric 

distance function. Instead, the results support the idea that these documents can be 

represented as sets of discrete features and that their similarity can be determined by 

contrasting their common and unique/distinctive features with varying weights for 

common and unique/distinctive features. Results of the tests of the measurement models 

will inform future research as to which measures of the common and unique/distinctive 

features of images measure the constructs well and provide reliability and validity 

coefficients to serve as references. 

Basic Assumptions 

It is safe to assume that human participants in the study are able to perceive and 

identify possible features/attributes of images and are also able to describe/list them. 

Furthermore, verbal and written descriptions as well as any data derived thereof can be 

used for further analysis to address the research questions (Ericsson & Simon, 1980).  
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Perceived similarity, like any perceptual continuum, is assumed to be scalable 

(measurable). Participants are assumed to be able to produce at least interval level data 

when asked to judge the degree of similarity of pairs of stimuli. 

Despite recent developments in content-based automatic feature extraction and 

indexing of images using low-level features such as color, shape, and texture (Faloutsos 

et al., 1994; Flickner et al., 1995; Holt et al., 1997; Rui, Ortega, Huang, & Mehrotra, 

1999; Smith & Chang, 1996), textual descriptions of image attributes remain popular 

methods for indexing (Enser, 2000; Jörgensen, 1995, 1996, 1998, 2003). Quite often, 

users formulate their queries or describe images using words (or natural language) as well 

(O'Connor, O'Connor & Abbas, 1999).  

Definitions of Terms 

Image 

An image is “a visual representation of an object or scene or person produced on a 

surface” (Hyperdictionary, 2003). In the context of this study, an image is a digital color 

picture/photo of various types of objects with both indoor and outdoor surroundings 

stored in the Joint Photographic Experts Group (JPEG) format and displayed on a 

standard personal computer monitor. 

Perception 

Human perception is the process of receiving information about a stimulus/object 

through one’s senses and organizing it as well as interpreting that information 

(Hyperdictionary, 2003). In this study, perceived features and similarity of images are 

considered to be results of more than just “feeling” them through one’s senses. They are 

7 



results not only of visual experience but are also results of interpretations of visual and 

other attributes based on participants’ past experience and knowledge. 

Attribute/Feature 

In this study, the two terms, attribute and feature, are used interchangeably. An 

attribute of a stimulus (or object) is a characteristic of contents of the stimulus and an 

image attribute is a characteristic of both its visual and nonvisual contents. Layne (1994, 

p. 586) defines an image attribute as “what is depicted or represented in the image” while 

Jörgensen (2003, p. 3) expands on what is depicted in an image by stating that it is “not 

limited to purely visual characteristics, but includes other cognitive, affective, or 

interpretive responses to the image such as those describing spatial, semantic, or 

emotional characteristics.” 

Representation 

Representation is a mechanism where “one thing stands for another” (O’Connor, 

1996, p. 11). It is a concept that encompasses other concepts such as indexing and 

abstracting. O’Connor (1996) emphasizes the significance of attributes of entities in their 

representation. Representation of a document (both text and image) is, among others 

things, the creation of a surrogate for the document and can take the form of a record in a 

database, a textual/verbal description, a smaller version of the document (especially for 

image documents), a single or a set of parts/sections of the document (e.g. a frame(s) 

extracted from a moving image document), or an assigned set of terms that stand for 

contents of the document being represented. 
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Similarity Measure 

In the context of image and text document retrieval, a similarity measure is a 

metric used to determine either the proximity/similarity of the representation of a 

document (or representations of a collection of documents) to the representation of a 

query or the proximity of representations of documents (or inter-document similarity) in a 

collection. The most widely used similarity measures are the distance-based (such as the 

Minkowski metric) and angle (cosine)-based similarity measures. In content-based image 

retrieval (CBIR), the distance-based measures are more popular (Gupta, Santini & Jain, 

1997). 

Limitations and Delimitations of the Study 

One major limitation of the study stems from the fact that there are no standard 

test sets of images similar to the Text Retrieval Conference (TREC) document sets. 

Consequently, because the sample of images chosen for this study comes from the 

collection of images (color photographs taken by a number of photographers) published 

on a CD enclosed with the book by O’Connor & Wyatt (2004), results may not be 

generalizable to any other population of images (such as a collection of art images, a 

stock photo collection, etc.). Due to the specific data collection technique chosen (paired 

comparison, which involves n(n-1)/2 pairs of images for a sample of size n) to solicit 

similarity judgments of images by participants, the size of the sample of images for the 

study (30) may not be large enough to generalize results of the study to other stock photo 

or image collections. However, it is still large enough for the results to be valid for 

collections similar to the population of images. 
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The test of Tversky’s (1977) contrast model is restricted only to similarity ratings 

of the form “how similar are images a and b” rather than subject/referent similarity 

ratings of the form such as “how similar is image a to image b.” Because dissimilarity 

ratings were not collected, relationships between similarity and dissimilarity of images 

were not determined. 

Summary 

This chapter provides the general and theoretical background for the study and the 

delineation of the problem under study. The contrast model is established as the 

framework for the study and research questions concerning perceived features and 

similarity of images are presented. The research questions address the nature of the 

relationship between similarity and common and distinctive features of images including 

their relative weights and best measures, as well as the extent to which the contrast model 

fits the data for a sample of images. The main purposes, significance, and basic 

assumptions of the study are outlined. Limitations and delimitations of the study, in terms 

of the sample of images selected as well as data collection techniques used, are also 

identified. The next chapter presents a critical review of the literature that is relevant to 

this study. 
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CHAPTER 2 

REVIEW OF THE LITERATURE 

Introduction 

This chapter presents a critical review of the literature relevant to the topic of the 

dissertation, the nature of the relationships between perceived features and similarity of 

images. More specifically, it presents a historical review of the main constructs of the 

study such as similarity and features/attributes, and a review of the theoretical framework 

for the study, such as psychological models of similarity in general and Tversky’s (1977) 

contrast model in particular. A detailed review of the literature on similarity measurement 

in image retrieval, image features/attributes, representation, indexing and organization 

completes the chapter. 

Psychological Models of Similarity 

Similarity is one of the most important and well-researched constructs 

(Goldstone, 1999; Tversky, 1977). According to Melara (1992), the concept of similarity 

is central to the field of psychology and researchers’ understanding of similarity as a 

construct must be anchored in the concept of perception. Others believe that similarity, as 

a construct, is “fundamental to theories of perception, learning, and judgment” (Tversky 

& Gati, 1978, p. 79) and that the “ability to assess similarity lies close to the core of 

cognition” (Goldstone, 1999, p. 757). Similarity “refers to the outcome of a comparison 

among entities, usually a comparison based on many of the entities’ properties. Objects 

are similar to the degree that they have features in common and do not have distinctive 

features” (Sloman & Rips, 1998, p. 4). According to Tversky (1977, p. 327), similarity 

“serves [as] an organizing principle by which individuals classify objects, form concepts, 
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and make generalizations.” Unzicker, Jüttner & Rentschler (1998, p. 2289) argue that 

“classes or categories consist of collections of objects that are grouped by similarity.” 

Most similarity analyses involve collection of data on ratings, by humans, of the degree 

of similarity of pairs of stimuli or the sorting of  stimuli into groups based on their 

similarity and the use of geometric models that equate observed dissimilarities between 

stimuli to their metric distances between the points on a coordinate space (Tversky, 

1977). 

From around 1850, psychophysicists such as Fechner started to study the nature 

of human similarity judgments through investigations of relationships between physical 

and psychological changes. Fechner created a scale to measure the psychological change 

and called it the “just noticeable difference” or jnd (Melara, 1992). By creating this scale, 

Fechner laid the foundations for scaling or measurement of similarity relations as well as 

scaling or measurement in psychophysics, a field of psychology that studies the 

relationship between the physical world and its psychological representation/experience.  

By introducing the concept of just noticeable difference, Fechner was also laying 

the foundations for the earliest model of similarity, based on the idea that jnd is a fixed 

entity. This assumption was challenged by Louis Leon Thurstone, who says a human 

observer gives “different comparative judgments on successive occasions about the same 

pair of stimuli” (Thurstone, 1927, p. 274). This led to the formulation of his law of 

comparative judgment, another classic model of similarity, which defines similarity 

relations as probabilistic. 

Even though the two classic models of similarity pioneered by Fechner and 

Thurstone did not at first have a big impact in explaining similarity relations, they 
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definitely influenced the scaling of similarity of stimuli as well as the development of 

multidimensional scaling (Melara, 1992). Multidimensional scaling is a geometric/spatial 

model of similarity where stimuli are represented as points on an n-dimensional (n ≥ 2) 

space, usually Euclidean (Dunn-Rankin, Knezek, Wallace, & Zhang, 2004), and the 

distance between any two points determines the degree of psychological similarity of the 

two stimuli represented by the two points. The smaller this distance, the more similar the 

two stimuli are and vice versa. 

While Fechner’s just noticeable difference and Thurstone’s Law of Comparative 

Judgment “examined the psychological properties of a single dimension of experience,” 

multidimensional scaling “allowed an investigator to determine how many psychological 

dimensions subjects used when judging similarity” (Melara, 1992, p. 316). The 

geometric/spatial models of similarity, more specifically multidimensional scaling, are 

based on the assumption that the multidimensional space, on which the stimuli are 

represented as points in the space, is metric. Given any three points x, y and z in a 

multidimensional space, a metric space is one that satisfies the three metric 

axioms/conditions of positivity or minimality (distance between x and y is zero if they are 

identical and positive if they are distinct); symmetry (the distance from x to y is equal  to 

the distance from y to x); and triangle inequality (the distance between x and z is less 

than or equal to the sum of the distance between x and y and the distance between y and 

z) (Figure 1 shows the three points in a two-dimensional space). 
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Figure 1. Three points in a two-dimensional space forming a triangle. 

 

Even though the idea of representing stimuli as points in a multidimensional space 

is attractive, it requires a mechanism by which distances between the points are 

determined. The first researcher who attempted to tackle this issue and thus became a 

catalyst for the development and use of geometric/spatial models of similarity was 

Attneave (Melara, 1992). While it is easier to know what the dimensions of simple 

perceptive stimuli are and to determine, through experiments, how these dimensions 

combine to estimate overall similarity of stimuli (Attneave, 1950), this is not the case 

with more complex stimuli. Attneave (1950) limited his search for metrics or rules for 

determining the distances between the points in the multidimensional space, and hence 

the overall similarity of the stimuli represented by those points, to the Minkowski family 

of metrics. The two metrics chosen by Attneave (1950) were the Euclidean and the city-

block or Manhattan metrics, two metrics which later became among the most popular in 

similarity measurement for text and image retrieval. Given  two points, X and Y, in a p-

x

y z 

Dimension 2

Dimension 1 
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dimensional space (p ≥  1) with (X1, X2, X3, ..., Xp) and (Y1, Y2, Y3, ..., Yp) as their 

respective coordinates, the distance between the two points, in terms of the Minkowski 

metric, is given by: r

p

i

r
ii YXYXd ∑

=

−=
1

),( . When r=1, ∑
=

−=
p

i
ii YXYXd

1

),( , it is called the 

city-block or the Manhattan distance. When r=2, ( )∑
=

−=
p

i
ii YXYXd

1

2),( , it is the familiar 

Euclidean distance.  

Figure 2 is an illustration of the city-blockdistance between two points, A and B. 

The rectangles in Figure 2 represent city blocks while the lines represent streets. In order 

to travel from one point to the other, one has to travel the same number of blocks 

regardless of the route taken. 

 

       

       

       

       

       

       

       

A 
 

 

 

 

 

 

 

 

 

B 

Figure 2. “City-Block” distance between two points. 
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In Figure 3, the Euclidean distance between the two points x(x1,x2) and y(y1,y2) in 

a two-dimensional space is the hypotenuse of the right-angled triangle, which, according 

to the well-known Pythagoras theorem, is the square root of the sum of the squares of the 

lengths of the two legs, or ( )∑
=

−=
2

1

2),(
i

ii yxyxd . 

 

 

Figure 3. Euclidean distance between two points in a two-dimensional space. 

 

Attneave, in 1950, is one of the early researchers to notice some of the 

weaknesses of the geometric/spatial models of similarity, especially the fact that human 

similarity ratings data do not satisfy the metric axioms. Others have gone even further 

and have not only formulated alternative models of similarity (Tversky, 1977), but also 

tested the alternative models under several conditions using a variety of stimuli (Gati & 

Tversky, 1984; Tversky & Gati, 1978; Tversky & Gati, 1982). Even with the introduction 

of non metric multidimensional scaling by Shepard (1962a, 1962b), which made possible 

x(x1,x2) 

y(y1,y2) 

Dimension 2 

Dimension 1 

16 



the analysis of original similarity judgment data using a single technique through 

monotonic transformation, geometric/spatial models of similarity did not escape from 

criticism due to the fact that they, again, violate the metric axioms as well as a property 

of lines in the Minkowski family of geometries called segmental additivity (Melara, 

1992). A line satisfies the property of segmental additivity if for three points A, B, and C 

on the line, in the same order, the sum of the distances from A to B and B to C equals the 

distance from A to C. 

In line with Attneave’s (1950) argument that metric axioms are not satisfied by 

similarity judgment data, hence the apparent weakness of geometric/spatial models of 

similarity, Tversky (1977) formulated an alternative set theory-based model called the 

contrast model. Tversky’s (1977) contrast model, unlike geometric/spatial models of 

similarity, does not represent stimuli as points in a multidimensional space. Rather, it 

defines stimuli as sets of features and the similarity of any two stimuli as a linear function 

of a measure of their common and unique/distinctive features. According to the contrast 

model, two stimuli are more similar if they have more common features than unique 

distinctive features and human judges “place more weight on common features when 

judging similarity, and more weight on distinctive features when judging dissimilarity” 

(Melara, 1992, p. 346). Another assertion that sets the contrast model apart from the 

geometric/spatial models of similarity is that, while the geometric/spatial models consider 

dissimilarity to be the opposite of similarity, this is not always a given in the contrast 

model, even though Tversky & Gati (1978) report a near-perfect (r = -0.98) negative 

correlation between similarity and difference ratings of 21 pairs of countries. Perhaps the 

clearest distinction between the geometric/spatial models of similarity and the feature-
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based contrast model emanates from the fact that while dimensions have mutually 

exclusive levels (e.g. color has levels of red, green, blue, etc.), features are dichotomies (a 

stimulus either has or does not have a particular feature) (Rosch & Lloyd, 1978). This 

study looks only at the nature of human similarity judgments, rather than dissimilarity 

judgments, using the contrast model as a framework. 

Most of the geometric/spatial models assume that humans, in their judgments of 

similarity and/or dissimilarity of stimuli, pay equal attention to the various dimensions. 

Shepard (1964) noticed that humans attach unequal weights to different dimensions and 

suggested that any analysis of similarity judgment data take into account individual 

differences among humans. This gave rise to a scaling procedure called individual 

differences scaling (or INDSCAL) (Melara, 1992). 

Despite several critics pointing out the weaknesses of geometric/spatial models of 

similarity, these models still remain the dominant and most used (Tversky, 1977; Tversky 

& Gati, 1978). Apart from the geometric/spatial and Tversky’s (1977) contrast models, 

the other two models of similarity of note are the transformational and alignment-based 

models. When it comes to well-structured stimuli, both geometric/spatial and feature-

based models of similarity may not explain their similarity relations well. The 

transformational and alignment-based models are better suited to explaining the nature of 

similarity of such stimuli. Transformational models are based on the notion that two 

stimuli are more similar if few numbers of operations are required to make the two 

stimuli identical, by transforming one of the two (Goldstone, 1999). According to 

Goldstone (1999, p. 758), in alignment-based models “comparing things involves not 

simply matching features, but determining which elements correspond to or align with 
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one another.” In addition, in alignment-based models, features that align with one another 

may also need to have similar functions.  

The four major models of similarity reviewed above, namely the geometric/spatial 

(e.g. MDS), feature-based (e.g. the contrast model), transformational, and alignment-

based models, may not be well suited to explaining similarity relations of every possible 

set of stimuli due to weaknesses peculiar to each one of them. The strength of a similarity 

model should be measured, in part, on the basis of how well it explains the nature of 

human similarity judgments. An attempt was made in this study to test how well the 

contrast model does explain human similarity judgments of images. 

The Contrast Model 

People organize, group and categorize things based on their degree of similarity 

and separate them based on their degree of difference or dissimilarity. What makes two 

things similar has been a focus of several investigations in psychology, cognitive and 

behavioral sciences, and related fields for over 100 years (Melara, 1992). Through these 

investigations, a number of theories and models have been formulated and tested to 

explain perceived similarity (Attneave, 1950; Shepard, 1962a, 1962b; Thurstone, 1927; 

Tversky, 1977). One of these models is Tversky’s (1977) contrast model. Tversky 

challenged the basic assumptions/axioms of the geometric/spatial models of similarity. 

In a seminal paper, Tversky (1977) not only showed that metric 

axioms/assumptions of geometric/spatial models of similarity are violated by human 

similarity judgments data, but he also formulated and tested an alternative set-theoretical 

model of similarity called the contrast model. According to the contrast model, similarity 

judgment is a feature contrast task and the degree of similarity of two objects (or stimuli) 
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is a linear combination of their common and unique/distinctive features. Furthermore, the 

model posits that two stimuli are more similar if they have more common features and 

fewer unique/distinctive features. They are less similar if they have more 

unique/distinctive features and fewer common features. 

Figure 4 illustrates the relations between two sets. Given two stimuli a and b and 

their respective feature sets A and B, the perceived similarity of a and b, denoted by 

s(a,b), is expressed as a linear function of the measures of their common and 

unique/distinctive features (Tversky, 1977; Tversky & Gati, 1978), and is given by: 

S(a,b)= θf(A∩B) - αf(A-B) - βf(B-A), where: 

• A∩B represents the common features of a and b, 

• A-B represents features of a that b does not have (distinctive features of a), 

• B-A represents features of b that a does not have (distinctive features of b), 

• θ, α, and β reflect weights given to the common and unique/distinctive features 

and are non-negative (θ, α, β ≥ 0), 

• S is an interval scale such that S(a,b) > S(c,d) if and only if s(a,b) > s(c,d), that is, 

a and b are more similar than c and d are, 

• f is an additive function (that is, f(A∪B)=f(A)+f(B)), whenever A and B are 

disjoint (A∩B=∅). 

Another form of the contrast model, called the ratio model, is given by: 

)()()f(A
)f(Ab)S(a,

ABfBAfB
B

−+−+∩
∩

=
βα

, where α, β ≥ 0. The ratio model 

defines a normalized value of similarity such that 0 ≤ S ≤ 1. It is a generalized form of 

set-theoretical models of similarity, including the contrast model (Tversky, 1977). 
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(stimulus a) than the referent (stimulus b) and among different types of features, humans 

“attend primarily to features that have classificatory significance” (Tversky & Gati, 1978. 

p. 81).  

The main reason for Tversky (1977) to formulate and test the contrast model, as 

indicated earlier, is the violation of the metric axioms, which are the basis of 

geometric/spatial models of similarity,  by similarity rating data. Given three points x, y, 

and z in a multidimensional space and a metric distance function δ, the three metric 

axioms can be expressed as (Tversky, 1977): 

Minimality: δ(x,y) ≥ δ(x,x)=0 

Symmetry: δ(x,y) = δ(y,x) 

Triangle Inequality: δ(x,z) ≤ δ(x,y) + δ(y,z) 

 

In support of his argument of the violation of the minimality axiom by similarity 

ratings, Tversky (1977) cites the fact that an object may not be recognized as itself all the 

time. In other words, two identical stimuli may not always be judged to be the same. 

Tversky (1977) provided evidence that the symmetry axiom, even though it is one of the 

basic assumptions of similarity theories, does not always hold. In his study of 21 pairs of 

countries, he noted that participants judged the similarity of North Korea to Red China to 

be greater than the similarity of Red China to North Korea. He attributes this asymmetry 

to the fact that “the variant [North Korea] is more similar to the prototype [Red China] 

than vice versa” (Tversky, 1977, p. 328), a notion supported by Rosch (1975). A t-test 

confirmed the asymmetry as well for both rated similarity and confusion data (Tversky, 

1977; Tversky & Gati, 1978). The third metric axiom that drew criticism from Tversky 
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(1977) is the triangle inequality. To illustrate how this axiom is violated by similarity 

relations of three stimuli, he notes that even though Jamaica is similar to Cuba 

(geographic location) and Cuba is similar to Russia (ideology/politics), that does not 

make Jamaica and Russia similar.  

As discussed in the preceding section, the geometric/spatial model and Tversky’s 

(1977) contrast model of similarity are set apart by methods used to represent stimuli and 

determine their similarity. Geometric/spatial models represent stimuli as points in a 

multidimensional metric space and their similarity is determined by a distance function 

that is assumed to satisfy the three metric axioms. On the other hand, Tversky’s (1977) 

contrast model represents stimuli as sets of features and the similarity of two stimuli is a 

function of the measures of their common and distinctive features, based on  different 

weights for common and distinctive features. Tversky (1977) defines a feature or 

attribute of a stimulus as its components, whether concrete properties or abstract 

attributes. This definition was adopted for this study. 

The first attempts to test the contrast model were made by Tversky (1977) and 

Tversky & Gati (1978) using both perceptual/visual stimuli (e.g. figures, letters of the 

alphabet, schematic faces) and semantic stimuli (countries, vehicles). Tversky (1977), in 

addition to showing the violation, by similarity ratings, of the three metric axioms, found 

significant correlations between average similarity ratings by 48 judges and two measures 

of common features (r=0.68 & 0.84) and distinctive features (r= -0.36 & -0.64) of 12 

vehicles (bus, car, truck, motorcycle, train, airplane, bicycle, boat, elevator, cart, raft, 

sled). He also showed that the linear combination of measures of common and distinctive 

features account for close to 76% (multiple correlation coefficient, R=0.87) of the 
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variance in similarity, a result that clearly supports the contrast model and, again, attests 

to the significance of this research for understanding the nature of human similarity 

judgments of images using the contrast model as a framework.  

Subsequent to its formulation and testing by Tversky (1977), several researchers 

have either tested or used the contrast model as a framework for their studies in 

marketing and advertising (Johnson, 1981, 1986; Johnson & Horne, 1988), psychology 

(Ben-Shakhar & Gati, 1992; Dopkins & Ngo, 2001; Gati & Tversky, 1984), and 

consumer research (Ulhaque & Bahn, 1992). Johnson (1981) first tested Tversky’s (1977) 

contrast model using consumer products such as soft drinks, frozen desserts, appliances, 

and fruits. Results of his study show the asymmetry property of similarity judgments data 

and they “support the generality of Tversky’s theory in a consumer products context” 

(Johnson, 1981, p. 115). 

Johnson (1986) also conducted a direct test of the contrast model through 

similarity, dissimilarity, and subject/referent similarity judgment tasks. He devised an 

indirect method for operationalizing the function f in the contrast model [S(a,b)= 

θf(A∩B) - αf(A-B) - βf(B-A)], which is a measure of the common and distinctive 

features of stimuli. The method involves dividing the total number of common (or 

distinctive) features attributed to the stimuli by each participant by the total number of 

participants who listed at least a single common (or distinctive) feature. It is one of the 

methods adopted for this study (method 2) and it is described in detail in chapter 3. 

To determine the effects of common and distinctive features on similarity, 

dissimilarity, and subject/referent similarity judgments of various products, thereby 

testing the contrast model, Johnson (1986) used linear regression, one of the data analysis 
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methods used in this study as well. Johnson (1986) divided a total of 87 participants into 

four groups to take part in the similarity/dissimilarity judgment tasks while all 87 

participants completed the stimulus description task with a two minutes time constraint 

on each judgment (or pair of stimuli) to ensure validity. In order to conduct the study 

with several participants simultaneously, Johnson (1986) used a written format of the 

stimulus description task, an approach partially followed in this study. 

Results of his correlation and regression analyses of the similarity/dissimilarity 

judgments data provided not only a direct support for the contrast model, they also 

proved Tversky’s (1977) assertion that “common features add to similarity and detract 

from dissimilarity whereas distinctive features have the opposite effect” (Johnson, 1986, 

p. 55). Johnson (1986) came to the conclusion that “proximity judgments are well 

predicted by a simple linear combination or contrast of the average number of common 

and distinctive features associated with the [stimuli] being judged” (p. 56). This, once 

again, confirms the contrast model and offers support to the choice, for this study, of 

correlational (linear) methods such as linear regression, correlation, and structural 

equation modeling to test Tversky’s (1977) contrast model using images as stimuli. 

The main focus of Gati and Tversky’s (1984) 15 studies involving verbal 

descriptions of people, meals, farms, sea scenes, faces, medical symptoms, schematic 

faces, profiles, landscapes, as well as drawings of sea scenes, images of faces, and 

pictures of sea scenes was the estimation of the relative weight, using the contrast model 

as a framework, of common to distinctive features on similarity judgments. They, once 

again, validated findings of earlier researchers and concluded that “the relative weight of 

common to distinctive features was higher in judgments of similarity” (Gati & Tversky, 
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1984, p. 341). This statement is relevant particularly to one of the research questions in 

this study (RQ4). A similar study by Ben-Shakhar and Gati (1992), through manipulation 

of components of stimuli (by removing or adding components), supports Gati and 

Tversky’s (1984) assertions regarding relative weights of common and distinctive 

features on similarity judgments. However, Ben-Shakhar and Gati (1992) recommend 

further research to corroborate their results. 

A few authors (Dopkins & Ngo, 2001; Medin, Goldstone, & Gentner, 1993; 

Tversky, 1977) suggested a possible effect of category relationships of stimuli, in 

addition to their common and distinctive features, on similarity judgments. Dopkins and 

Ngo (2001) specifically sought to investigate the contribution of category relationships to 

similarity judgments. Through their two experiments, one involving names of 15 

vegetables and 15 non-vegetables paired with the higher-level semantic category 

“vegetable” (i.e. 30 pairs of stimuli) and another experiment involving 28 pairs of names 

of vegetables and 63 pairs formed from seven vegetable and nine non-vegetable names, 

Dopkins and Ngo (2001) found, using regression analysis, that category relationships had 

an effect on similarity judgments. They conclude that “A pair of concepts is perceived to 

be more similar if they are bound by a category inclusion relation than if they are not” (p. 

251), that is, vegetable/vegetable pairs were judged to be more similar than 

vegetable/non-vegetable pairs. Perhaps this is true for conceptual/semantic stimuli such 

as names of vegetables with category relationships. However, it may not have any impact 

on this study because images, which are perceptual/visual stimuli, were used to test the 

contrast model. 
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In summary, while researchers in other fields such as psychology, advertising and 

marketing, and consumer research have realized the usefulness of Tversky’s (1977) 

contrast model to understand and explain the nature of human similarity judgments of 

perceptual/visual, conceptual/semantic, and verbal stimuli, with results supporting the 

contrast model, no attempt has been made by library and information science researchers 

to test and use the model. This is despite the fact that the contrast model explains human 

similarity judgments much more than the other models of similarity and the fact that 

similarity measurement is a major component/function of most text and image document 

representation and retrieval systems that use the vector-space model of document 

representation. Hence, this study is significant in that it is the first investigation to look 

into the nature of human similarity judgments in the context of image retrieval using the 

contrast model as a theoretical framework. Results of the study will inform designers of 

image retrieval systems about alternative models of similarity measurement and assist the 

formulation of similarity measures that produce similar results to human judges. 

Similarity Measurement in Image Retrieval 

Similarity matching is the key task in information seeking, storage, and retrieval 

by both people and machines (Qin, 2000; Santini & Jain, 1999; Zhang & Korfhage, 

1999a, 1999b; Zhang & Rasmussen, 2001). The majority of computerized systems use 

the vector-space model (VSM) of document representation (Zachary, 2000), in which 

similarity matching is achieved through similarity measures. Rubner (1999, p. 7), in 

explaining the function and importance of similarity measures in content-based image 

retrieval (CBIR) systems, states that: “In order for an image retrieval system to find 

images that are visually similar to the given query, it should have both a proper 
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representation of the images’ visual features and a measure that can determine how 

similar or dissimilar the different images are from the query.”  

Similarity measures are metrics used to determine the relevance of documents in a 

collection to queries based on proximities between their feature representations or to 

determine inter-document similarity. Similarity measures play important roles in both 

text retrieval (Qin, 2000; Zhang & Korfhage, 1999a; Zhang & Korfhage, 1999b; Zhang & 

Rasmussen, 2001) and content-based image retrieval (CBIR) (Gupta, Santini, & Jain, 

1997; Santini & Jain, 1999; Zachary, 2000; Zachary, Iyengar & Barhen, 2001).  The most 

popular of the similarity measures used in text retrieval are the cosine (angle)-based and 

distance-based measures (Zhang & Rasmussen, 2001; Zhang & Korfhage, 1999b). While 

the distance-based similarity measures are the most widely used measures in content-

based image retrieval (CBIR) systems, the cosine (angle)-based measure has had limited 

applications in this area (Gupta, Santini & Jain, 1997). This is an indication that 

geometric/spatial models of similarity have been predominantly applied in both text and 

image retrieval compared to the other models. Among the geometric/spatial models of 

similarity, those that use the two Minkowski metrics, namely the Euclidean distance (or 

L2 norm) and the city-block distance (or L1 norm) (discussed earlier under the section 

“Psychological models of similarity” in this chapter), to measure similarity/dissimilarity 

are more popular in content-based image retrieval systems (Rubner, 1999; Stricker & 

Orengo, 1995; Zachary, 2000).  

Most content-based image retrieval (CBIR) systems use the color feature of 

images as the basis for their representation and similarity matching. What is more, while 

similarity measures used in text retrieval mainly use term frequency and weights in 
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computing inter-document similarity; CBIR systems rely on the color histogram. Figure 2 

shows the basic model for a content-based image retrieval (CBIR) system. The image 

database contains feature vectors of images, which are their feature representations, 

extracted using appropriate feature extraction algorithms. When a user submits a query 

image (to a system using a “query by example” method of retrieval), its feature vector is 

extracted using the same algorithm as the one used to represent images in the database 

(Zachary, 2000). Images (or their feature vectors) in the database are evaluated for 

relevance to the user query through a similarity measure and results of this evaluation are 

produced as retrieved sets of images (Zachary, 2000). 

 
Figure 5. A model for content-based image retrieval systems (Zachary, 2000). 

 

Lately, similarity measures based on the contrast model (e.g. Santini & Jain, 

1999) and a combination of the geometric/spatial and transformational models (e.g. 

Rubner, 1999; Rubner, Guibas, & Tomasi, 1997; Rubner, Puzicha, Tomasi, & Buhmann, 

2001; Rubner, Tomasi, & Guibas, 1998, 2000) have been proposed. However, none of 
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these similarity measures have been based on research that tested corresponding models 

of similarity using humans. The similarity measure Santini and Jain (1999) proposed is 

the fuzzy features contrast model which uses fuzzy logic. To demonstrate how this 

similarity measure derived from Tversky’s (1977) contrast model is applied, Santini and 

Jain (1999) used images of human faces as well as predicates such as “the mouth of this 

person is wide” for which the truth value can be determined through measurement. These 

measurements make up feature sets of the faces, which Santini and Jain (1999) call fuzzy 

sets of true predicates. The saliency of the fuzzy sets (i.e., the function f in Tversky’s 

contrast model) is equated with their cardinality (the number of elements in the fuzzy 

sets). 

Rubner and his colleagues (Rubner, 1999; Rubner, Guibas, & Tomasi, 1997; 

Rubner, Puzicha, Tomasi, & Buhmann, 2001; Rubner, Tomasi, & Guibas, 1998, 2000) 

developed a similarity measure which has characteristics of both geometric/spatial and 

transformational models of similarity, called the earth mover’s distance (EMD). 

According to Rubner, Tomasi, & Guibas (2000), the development of this measure was 

instigated by a transportation problem solved through linear optimization that requires 

minimizing the cost for transporting goods from several suppliers to several consumers. 

Instead of global features such as color histograms of images, the earth mover’s distance 

(EMD) is applied on their color or texture signatures (clusters of pixels carrying the same 

colors/textures with weights equal to the number of pixels in the cluster). Given two 

distributions (or signatures of two images) in the same space, one considered to be a mass 

of earth and the other a collection of holes, the earth mover’s distance (EMD) is a 

measure of the amount of work required to transform one distribution to the second 
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distribution (i.e., the amount of work required to fill the holes with the earth) (Rubner, 

Tomasi, & Guibas, 1998). 

Despite the fact that there are CBIR systems that use various types of similarity 

measures, the majority of which are based on the geometric/spatial models of similarity, 

to determine inter-document similarity or similarity of documents to users’ queries and  

provide visualizations of stored and/or retrieved image documents as results of users’ 

queries for human browsing, there are not thorough investigations that compare human 

similarity judgments of images and the various similarity measures (Gupta, Santini & 

Jain, 1997; Zhu & Chen, 2000). In judging the relevance of a document or information 

source to a particular query, users inherently use their own measure of similarity. Unless 

retrieved sets of documents are examined by the user and judged for their relevance, there 

is no direct way of determining how similar two documents are either to each other or the 

document the user had in mind when submitting the query to the system. Therefore, there 

is a need for a similarity measure that predicts the relevance and similarity judgments of 

documents by users (see Santini & Jain, 1999). A similarity measure based on Tversky’s 

(1977) contrast model seems to fit the criterion, provided that the model is tested and 

provides a good fit for a sample of images. Testing the contrast model is one of the main 

purposes of this study. 

Features/Attributes and Representation of Images 

Image features/attributes and their indexing and representation go hand in hand. 

As Jörgensen (1995) and Rasmussen (1997) pointed out, almost all forms of indexing and 

representation, in both concept-based and content-based image representation and 

retrieval, is based on one or more features/attributes of the images. That there is a 
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mismatch between traditional indexing tools such as subject headings and thesauri and 

terms used by end users has been well documented. Results of a study that looked at the 

Art and Architecture Thesaurus (AAT) suggest that only about 16% of entries in the AAT 

could be used for the purpose of indexing a general image collection (Jörgensen, 2003). 

There are various types as well as levels of image features identified in the 

literature of both concept-based and content-based image retrieval. Some divide image 

features into three categories (see Markkula et al., 2001) while some group them into two 

general categories, namely, low-level/syntactic/primitive and high-level/semantic (see 

Jörgensen , Jaimes, Benitez, & Chang, 2001). However, there is a general agreement that 

humans perceive all levels of features of images. According to Greisdorf and O'Connor 

(2002a), categories of features perceived by users of images are color (sometimes even 

when the image is black and white), shape, texture, objects in the image as well as 

“implied” by the image, location, action, and/or affect. Jörgensen and her colleagues 

(Jörgensen, Jaimes, Benitez, & Chang, 2001) provide a conceptual framework for 

categories of visual attributes in the form of a “pyramid.” They divide image attributes 

into 10 levels and two general categories. The first category, syntax, consists of four 

mainly perceptual (or basic) features/attributes, while the second category, semantics, is 

made up of six conceptual (or higher level - semantic) features/attributes.  

Several content-based image retrieval (CBIR) systems such as QBIC (Faloutsos et 

al, 1994; Flickner et al, 1995; Holt et al, 1997), VisualSEEk (Smith & Chang, 1996), 

MARS (Rui, Ortega, Huang, & Mehrotra, 1999), use the color feature of images as the 

basis for their representation and similarity matching (Rui, Huang, & Chang, 1999; 

Zachary, 2000; Zachary & Iyengar, 2001; Zachary, Iyengar, & Barhen, 2001). As a 
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result, the color histogram, which depicts the distribution of pixels carrying the various 

colors in an image, has become the most useful feature representation and the most 

researched. The most widely used color space is the RGB (red, green, and blue, the three 

additive primary colors) space (Jain & Vailays, 1996; Zachary, 2000) due to the fact that 

the human eye “perceives color as linear combinations of [the] three primary colors” 

(Zachary, 2000, p. 19), even though it is known to not have perceptual uniformity. As a 

result, some researchers proposed other cost-effective types of features based on color 

such as image entropy (Zachary, 2000; Zachary & Iyengar, 2001; Zachary, Iyengar, & 

Barhen, 2001) and color signatures (Rubner, 1999), which are clusters of pixels carrying 

the same colors with weights equal to the number of pixels in the cluster. 

Other features of images such as shape and texture are also used for indexing and 

representation (Faloutsos, 1994; Flickner et al., 1995; Jain & Vailaya, 1996; Rubner, 

1999; Rui, Huang, & Chang, 1999; Zachary, 2000). While the shape feature of images is 

useful for automatic object recognition (Gudivada & Raghavan, 1997), the texture feature 

is applicable to pattern recognition and computer vision (Rui, Huang, & Chang, 1999). 

The color histogram of an image denotes “the joint probability of the intensities of 

the three color channels [Red, Green, & Blue]” (Rui, Huang, & Chang, 1999, p. 41) and 

given an image I, its histogram, H(I), is a vector with elements hc1, hc2, hc3, …, hcn, where 

hcj is the number of pixels carrying color cj (Stricker & Orengo, 1995). A color image 

with the three channels (R, G, B) may have three different histograms, one for each 

channel. Figure 6 shows an image with its color histograms, extracted using CVIPtools 

(Umbaugh, 1998), for the red, green, and blue channels, respectively. 
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Content-based feature representation of images, especially those based on the 

color histogram, are global in nature. In other words, they represent the entire image. 

However, efforts are also being made to represent images using local features such as 

individual objects, parts or regions of images. An example of a system that uses such 

approach is Blobworld, where images are automatically segmented into regions called 

“blobs” and their color and texture features extracted (Carson et al, 1999). 

 
Figure 6. An image with its RGB color histograms - (O’Connor & Wyatt, 2004, used 

with permission). 

So far, the discussion has focused on image features/attributes and which types of 

features are used to represent images by the various types of content-based image 

retrieval (CBIR) systems. One of the major problems in information storage, 
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organization, access and retrieval is related to representation of the documents. Blair 

(1990) argues that representation is “primarily a problem of language and meaning” (p. 

1). It is even more so in the case of concept-based image representation where the 

documents being represented are visual images, rather than structured text documents, 

and the task of representation and retrieval involves feature description and matching text 

descriptions of images with users’ query terms. O’Connor, O’Connor, and Abbas (1999) 

suggest that representation of images using terms generated through users’ reactions 

might address this problem. However, the cost of indexing images by human indexers, let 

alone using user generated terms, especially in large image collections, is prohibitive. In 

an ideal situation, automatic extraction and indexing of images based on low-

level/primitive as well as high-level/semantic features would be possible. However, most 

of the current content-based image retrieval (CBIR) methods could only enable the 

extraction of low-level/primitive features such as color, shape, texture, etc. Even though 

content-based image retrieval (CBIR) mechanisms offer cost effective alternatives, the 

computational cost of some of these mechanisms could also be high (Zachary & Iyengar, 

2001). Given the fact that there is still continued dependence on concept-based image 

indexing and retrieval, mostly with the help of human indexers (Enser, 2000), the need 

for CBIR systems capable of extracting high-level/semantic features has increased (Stan 

& Sethi, 2001). A solution, suggested by researchers, that could improve image 

representation and retrieval is the use of a combination of both concept and content-based 

methods (Djeraba, Bouet, Briand, & Khenchaf, 2000; Enser, 2000). 

The amount of information contained in an image or the meaning it conveys to 

different viewers depends on several factors and it is difficult to extract or measure, 
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hence the difficulty in representing and indexing images for effective and efficient 

retrieval. If a picture is worth a thousand words to a single user, then “it is worth a 

million words” to a thousand of them (Greisdorf & O’Connor, 2002a, p. 7). This is not to 

say that words are not suitable for indexing images. Actually, textual descriptions of 

image attributes are still popular methods of indexing (Enser, 2000; Jörgensen, 1995, 

1996, 1998, 2003). Besides, most image users formulate their queries using words though 

this is neither always the necessary nor the only way (O’Connor, O’Connor, & Abbas, 

1999). Therefore, there is a need for more investigation into what features and categories 

of features are generally perceived by image users and into ways to incorporate them into 

the traditional tools for image indexing and representation. 

A handful of investigators have looked into this problem through user reactions to 

images and image description tasks (Greisdorf & O’Connor, 2002a; Greisdorf & 

O’Connor, 2002b; Jörgensen, 1995, 1996, 1998; O’Connor, O’Connor, & Abbas, 1999; 

Turner, 1994, 1995) as well as through solicitation of queries from image users (Chen, 

2001a, 2001b; Choi & Rasmussen, 2002, 2003; Goodrum & Spink, 2001; Hastings, 

1995). Subject analysis of images and image indexing has also been addressed by a few 

authors (Layne, 1994; Mostafa, 1994; Rasmussen, 1997; Shatford, 1986). The meaning 

and interpretation of visual arts was the subject of investigation by Panofsky (1955) long 

before these researchers attempted to address the issue of perceived features/attributes, 

subject analysis, and indexing of images. Jörgensen (2003) asserts that Panofsky’s work 

on the meaning of visual arts “forms the basis for much of the theoretical work that has 

been done on the classification of art images” (p. 117). Rosch and others (Rosch, 1975; 
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Rosch, & Mervis, 1975; Rosch et al., 1976) have also studied which categories of 

attributes of objects carry more information. 

Panofsky (1955) classified attributes of visual arts into three levels, namely 

preiconographical, iconographical, and iconological. Preiconographical attributes are 

basic or natural characteristics, usually names of objects; iconographical level attributes 

have meaning attached to them as a result of interpretation; while iconological attributes 

involve deeper syntheses and multiple interpretations (Jörgensen, 2003). 

One researcher who studied the nature of perceived features of images extensively 

is Jörgensen (1995, 1996, 1998, 2003). In her dissertation research, which required 

participants to do a description, a sorting, and a searching task, Jörgensen (1995) 

identified three general levels/categories of image attributes. They are perceptual (P), 

interpretive (I), and, to a lesser extent, reactive (R) attributes. According to Jörgensen 

(1995), perceptual attributes relate to physical characteristics of images including objects 

in the images, image color, and other visual elements; whereas interpretive attributes are 

in the eyes of the viewer and require more than just perceiving. 

Results from Jörgensen’s (1995) three tasks performed by participants produced 

12 categories (or classes) of attributes, namely objects, people, color, story, spatial 

location, description, visual elements, art historical information, people-related, external 

relation, viewer response, and abstract. Generally, this order of categories of attributes 

represents their frequency of assignment (i.e., “objects” attributes were assigned most, 

while “abstract” attributes were assigned least) (Jörgensen, 1995). 

In summary, content-based image representation and retrieval systems enable 

only the extraction and representation of primitive/basic/low-level features of images, 
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while concept-based image representation tools include an insignificant number of terms 

used by image users. However, concept-based methods remain the dominant image 

representation mechanisms.  

Summary 

This chapter presents a detailed and critical review of the literature relevant to the 

topic of the study, which is the nature of perceived features and similarity of images. The 

study was conducted within the context of image representation and retrieval using 

Tversky’s (1977) contrast model as a conceptual framework. The literature review is 

organized under four sections. The first section deals with the four psychological models 

of similarity, namely the geometric/spatial, set-theoretical, alignment-based, and 

transformational models together with their uses and applications. The second section is a 

detailed presentation of past research that either used or tested Tversky’s (1977) contrast 

model, one of the set-theoretical models. The third section summarizes literature on 

similarity measures used by content-based image retrieval (CBIR) systems to determine 

inter-document similarity and/or the relevance of documents to a user’s query, while the 

last section presents the various types and categories of features/attributes of images used 

for their indexing and representation. 

Weaknesses in the most widely used models of similarity, the geometric/spatial 

models, led to the formulation and testing of Tversky’s (1977) contrast model which 

seems to explain human similarity judgments better. While content-based image retrieval 

(CBIR) systems can only extract basic/primitive/low-level features of images and their 

similarity measures are based on geometric models of similarity, the reviewed literature 

supports an investigation into alternative mechanisms for representation and similarity 
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matching of images. Therefore, this study attempts to fill the gap in the literature and 

assist in the efforts to develop such mechanisms. The following chapter, in the light of 

the literature review, presents detailed descriptions of data collection and analysis 

procedures and methods. 
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CHAPTER 3 

MATERIALS AND METHODS 

Introduction 

The main goal of this chapter is to present detailed description of the materials, 

participants, and the various instruments and methods used for data collection and 

analyses, including statistical techniques and procedures used to test the contrast model, 

in order to fulfill the purposes of the study. Even though Tversky’s contrast model was 

used as a framework to guide this study, the study is mainly exploratory in nature. Both 

qualitative (content analysis) and quantitative (correlational) methods were used to seek 

answers to the four research questions concerning the nature of perceived features and 

similarity of images (see chapter 1). 

Two web-based forms for two different tasks were used to collect data for the 

study. The first form is for an image description task where participants describe (list 

features/attributes of) images and the second is for a similarity judgment task where they 

judge the degree of perceived similarity of pairs of images on a ratio scale using 

magnitude estimation (Stevens, 1956, 1966, 1975). 

Materials 

In the absence of a standard test collection of images, a set of color photographs 

taken by a number of photographers and published on a CD with a book by O’Connor & 

Wyatt (2004) served as the population of images. A simple random sample of 30 color 

digital images (Appendix A) was selected from this collection. Each image was 375X250 
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pixels in dimension. In order to ensure heterogeneity and sufficient variations of features 

of the sample of images selected randomly from the collection, 15 volunteer participants 

were asked to describe them, that is list features of the images. Feature data (list of 

features) for all the 30 images were subjected to analysis of spread (variability) and the 

Index of Qualitative Variation (IQV), a measure of qualitative variability (Weisberg, 

1992) was used. The IQV measure, calculated using the formula: 
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= , where pi (for i=1, 2, 3, …, k), is the proportion of distinct 

features (features not shared by others) attributed to image i and k is the number of 

images in the sample, that is, 30. The calculated value of the IQV is 0.99965, a value 

close to 1, which signifies greater diversity among the sample of 30 images. 

Participants 

The use of humans as judges of similarities between images for research purposes 

(Mojsilović et al., 2000; Mojsilović & Rogowitz, 2001; Rogowitz et al., 1998) and as 

participants in stimulus description tasks involving perceptual/visual stimuli such as 

images (Gati & Tversky, 1984; Jörgensen, 1995; Tversky, 1977) as well as 

conceptual/semantic stimuli (Dopkins & Ngo, 2001; Gati & Tversky, 1984; Johnson, 

1986; Tversky, 1977) is common. Participants in this study were asked to voluntarily 

serve as similarity judges of images, through paired comparison (where the degree of 

similarity of images is rated in pairs), and asked to provide descriptions of images in 

terms of their features/attributes. The convenience sampling method was adopted for 

selecting participants. The sample consisted of 150 graduate students at the School of 

Library and Information Sciences, University of North Texas (population size: 1100). 
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They were all beginning masters students taking two of the three core courses at the 

School. Beginning students were chosen in order to minimize the possibility of them 

providing subject-headings-like terms, which students of LIS who are advanced in their 

programs tend to do. Convenience sampling can be used for testing models provided that 

the “model is correctly specified” (Schonlau, Fricker, & Elliott, 2001, p. 34). The model 

being tested in this study, Tversky’s (1977) contrast model, has a strong and well-

documented theoretical foundation and well-defined structural relations among the 

constructs (perceived features and similarity). 

The sample size of 150 participants is well over the recommended minimum 

number of participants for correlational studies (30) (Gay & Diehl, 1992) and it is a 

sufficient number for structural equation modeling (Schumacker & Lomax, 1996). 

Participants were randomly assigned to the two tasks with half of them (75) providing 

similarity judgments and the remaining half (75) taking part in the image description task. 

A similar procedure was used by Dopkins and Ngo (2001) and Tversky (1977) and is 

assumed to produce feature listing and similarity judgment data that is free of interactive 

influences (Dopkins & Ngo, 2001).  

Data Collection 

Data collection for the study is based on some assumptions related to scaling 

(measurement) of the degree of perceived similarity of images as well as the ability of 

participants to describe/list features of images and judge the similarity of pairs of images. 

These assumptions are: 

1. Participants are not only able to perceive and identify 

features/attributes of images but they are also able to describe/list 

42 



them. In other words, “it is possible to elicit from subjects detailed 

features of stimuli” (Tversky, 1977, p. 339). 

2. The degree of perceived similarity of images can be scaled on a ratio 

level of measurement using magnitude estimation procedures 

(Stevens, 1956, 1966, 1975). Magnitude estimation has produced 

useful results in the study of human perception both within and 

outside psychophysics-a field that investigates the quantitative 

relations between physical and perceptual magnitudes–and the 

investigation of perceived similarity of perceptual stimuli such as 

images (Stevens, 1966; Nunnally & Bernstein, 1994). Magnitude 

estimation has also been used by information science researchers with 

encouraging results for scaling users’ perception of relevance (Bruce, 

1994; Eisenberg, 1986, 1988) and satisfaction with their information 

seeking on the Internet (Bruce, 1998). 

3. Participants are able to judge the degree of perceived similarity of 

pairs of images, through magnitude estimation, and produce ratio 

level data. Research has already shown that participants “can make 

consistent quantitative appraisals of their subjective experiences” 

(Stevens, 1956, p.5).  

Image Description Task 

The main purpose of this task was to solicit lists of features/attributes of the 30 

images from participants. Half of the 150 participants, randomly assigned to complete the 

image description task, were involved in the description (listing of features/attributes) of 

43 



the 30 images. An email message was sent to each of the students taking two required 

courses at the School of Library and Information Sciences, University of North Texas, 

during the Summer 2004 and Fall 2004 semesters. Students were randomly assigned to 

this task. In the email message, the URL (web address) for the image description task and 

a unique identifier (a random number assigned by the researcher to identify the 

participants for authentication purposes) was sent to each participant. A follow-up email 

message was sent to participants who did not complete the task after two weeks from the 

date the first email message was sent.  

When the participants visited the website for the task, a web-based form 

(Appendix C) displayed each image individually. The images were presented randomly; 

that is, no two participants saw the 30 images in the same order. The first page displays 

instructions for participants on how to complete the task (Appendix B). To ensure 

internal validity (Ericsson & Simon, 1980), a time constraint was enforced and each of 

the 30 images was displayed for a maximum of 90 seconds (one and a half minutes) and 

participants were asked to type as many features/attributes as possible to describe the 

particular image. Two images (not in the sample) were included (without the participants’ 

knowledge) at the beginning of the task to familiarize participants with the image 

description task. Demographic data on participants (e.g., gender, age, educational 

level/background, school/faculty/department) were also collected. 

Similarity Judgment Task 

The purpose of the similarity judgment task was to obtain human similarity 

judgment data from participants for the sample of 30 images. The traditional paired 

comparison design (where the degree of perceived similarity of images is rated in pairs) 
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of the 30 images was used to collect similarity judgment data. The other half of the 150 

participants, once again randomly assigned to this task, completed the similarity 

judgment task. An email message, similar to the one sent to participants of the image 

description task, was sent to them as well. A follow-up message was also sent two weeks 

after the first one. After reading the instructions for this task (Appendix D), participants 

were presented with a web-based form (Appendix E) for each of two sets of pairs of the 

30 images [30(30-1)/2=435 pairs in each set] and were asked to judge the degree of 

perceived similarity of pairs of images on a ratio scale using magnitude estimation 

(Stevens, 1956, 1966, 1975).  

There are two designs/forms of tasks involving magnitude estimation: with and 

without a standard stimulus or a modulus (Stevens, 1975; Engen, 1971). In a task 

involving magnitude estimation with a standard stimulus or a modulus, participants are 

presented with the standard stimulus or modulus together with the magnitude estimation 

of the modulus, usually an integer multiple of 10, predetermined by the researcher. 

Participants are then asked to estimate the magnitude, relative to the magnitude of the 

modulus, of a series of stimuli that vary in intensity of the attribute/continuum being 

scaled/measured. For instance, if the magnitude of the modulus was given as 20 and the 

participant judges the magnitude of another stimulus to be twice that of the modulus, 

he/she will assign the number 40 to this particular stimulus. Similarly, if he/she judges 

the magnitude of the presented stimulus to be a quarter of the magnitude of the modulus, 

then he/she will assign the number 5.  

The second form of magnitude estimation uses no standard stimulus or modulus. 

Participants are presented with the stimuli in random orders and they are asked to assign 
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numbers to each stimulus, proportional to their perceived intensity of the 

attribute/continuum being scaled. A variation of the second form of magnitude estimation 

instructs participants to mark a point on a horizontal line of a certain length so that the 

distance between the beginning of the line and the marked point is equal to the magnitude 

of the intensity of the attribute/continuum being scaled. 

The first method of magnitude estimation (with a modulus) was the first to be 

used in psychometric scaling. However, it was later found that the choice of a standard 

stimulus by the researcher interferes with the freedom of participants to produce their 

own magnitude estimations and that the second method (with no modulus) is preferred as 

it facilitates unconstrained judgments (Stevens, 1975). Therefore, in this study, a 

variation of the second method of magnitude estimation (with no modulus) was used 

where participants used a horizontal line (five inches long and a fifth of an inch thick) to 

indicate the degree of their perceived similarity of pairs of images. 

The perceived similarity of the first set of 435 pairs of the 30 images was judged 

by all the 75 participants of the similarity judgment task first and the second set of 435 

pairs (obtained by permuting the positions of the images in the first set of pairs, i.e., a 

pair a, b in the first set would be presented as b, a in the second and reversing the order of 

pairs in the first set) was judged by the same participants after a mandatory five-minute 

break in order to minimize the fatigue effect due to the large number of pairs of images 

they had to judge. Pairs of images were presented in the same order for all the 

participants. The order of pairs of images in both sets of 435 pairs as well as the order of 

presentation of images in a pair were determined using an optimum order and 

presentation method for paired comparisons suggested by Ross (1934). Ross (1934) 
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argues that the method eliminates errors due to time and space and that other methods 

that use random orders are open to such errors. Because the sample size of images for this 

study is an even number (30), n=31 was used to produce the pairs as suggested by Ross 

(1934). Pairs involving image number 31 were dropped. 

As a familiarization and calibration exercise in magnitude estimation, participants 

were presented with five lines of varying lengths (two to eight inches) and asked to judge 

their apparent length. Three practice pairs of images (not included in the sample) were 

also presented at the beginning of the similarity judgment task (participants were not 

aware of this fact) in order to familiarize participants with the similarity judgment task 

using magnitude estimation. Demographic data on participants (e.g. gender, age, 

educational level/background, school/faculty/department, etc.) were also collected. 

Data Analysis 

Image Description and Similarity Judgment Tasks 

Content analysis was used to analyze data from the image description task. 

Content analysis data constituted sets of features of the sample of images. Data derived 

from sets of features were in turn used for determining the relationship between 

perceived similarity of images and their common and unique/distinctive features and to 

determine the relative weights given to common and unique/distinctive features in 

similarity judgments, as well as for testing Tversky’s contrast model. 

One of the methods of data analyses for verbal/written tasks such as the image 

description task is content analysis through the creation and testing of a coding scheme 

that involves the definition of recording units & categories, assessment of the accuracy of 

coding, revision of coding rules, and coding the entire text (Weber, 1990). For the 
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purpose of this study, the “word” and “word sense” recording units (basic unit of text to 

be classified or categorized) were used to represent individual features of images and 

make up sets of features of images. According to Weber (1990), word sense could be a 

phrase constituting a semantic unit. It includes idioms such as “taken for granted” as well 

as proper nouns like “the Empire State Building” (Weber, 1990, p. 22). 

A dictionary based on the recording units (words or word senses representing 

features of images) was created for the purpose of coding the list of features supplied by 

participants for each image into categories whereby each recording unit is assigned to a 

category where it shares a similar meaning with units already assigned to the category. 

Weber (1990) recommends categories of synonyms or categories of “words sharing 

similar connotations” (p. 12). As is customary in content analysis, intercoder agreement 

was used to measure reliability (the consistency of the coding scheme, more specifically 

the assignment of features to the categories in the dictionary). Two popular measures, 

percent agreement and Cohen’s (1960) Kappa, were calculated between the researcher 

and each of two other coders, using the list of features supplied for all 30 images by all 

participants of the image description task. Once an acceptable level of the intercoder 

agreement was achieved in constructing the dictionary, the computer software 

TEXTPACK (Mohler & Zuell, 1998) was used to determine the frequencies for 

categories of features (that is, the number of features assigned by all participants) for 

each of the 30 images.  

Validity (how well an instrument/scale measures what it was meant to measure) is 

another major issue in content analysis. Even though reliability is not a sufficient 

indicator of validity, it is one of the necessary conditions. Content (face) validity is 
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sufficient for most content analyses and it requires results of the content analysis to be 

consistent with characteristics of the objects under study (Holsti, 1969). Evaluating the 

descriptions provided by the participants for over-elaborations and long stories ensured 

the content validity and usefulness of the image description task and content analysis data 

derived from their descriptions. Construct validity, a measure of the agreement between a 

theoretical construct and a procedure used to measure the construct, was also determined 

for the three constructs measured by using data from the image description task (i.e., the 

common and distinctive features). This was achieved through testing measurement 

models for the common and distinctive features, that is, the three independent latent 

variables/constructs – common features (commnfet), distinctive features of image a (in a 

pair of images a and b) (distfeta), distinctive features of image b (distfetb) (see Figure 7), 

using structural equation modeling (SEM). 

The paired comparison design of the similarity judgment task is a commonly used 

method of collection of human similarity judgment data (Dunn-Rankin, Knezek, Wallace, 

& Zhang, 2004; Ross, 1934). The appropriate measure of reliability for the similarity 

judgment task is Cronbach’s (1951) Coefficient Alpha (α) that measures how well two or 

more variables/items/scales measure the dependent latent construct (i.e., the perceived 

similarity of images–sim in Figure 7). Construct validity for the similarity (sim) construct 

in the contrast model, or how well the two observed dependent (or Y) variables, SIMAB 

& SIMBA, measure the dependent latent variable/construct similarity  (sim), was also 

determined by testing the appropriate measurement model in Figure 7.  

Linear correlation techniques were employed to find out the nature of the 

relationships between perceived similarity (the dependent/criterion variable) and common 
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and unique/distinctive features (the independent/predictor variables) of images, using the 

observed x (independent) and y (dependent) variables. Structural equation modeling 

(SEM) (Schumacker & Lomax, 1996) was used to fit the contrast model to similarity 

judgment and image description (feature listing) data.  Linear regression and structural 

equation modeling were used to determine the relative weights (θ, α, and β in the contrast 

model S(a,b)= θf(A∩B) - αf(A-B) - βf(B-A)) of common and unique/distinctive features 

in similarity judgment. The unit of analysis for all variables in the model is pairs of 

images and for the sample of 30 images, the total number of cases (N) is 435(which is 

30(30-1)/2). 

Structural Equation Modeling (SEM) 

Structural equation modeling (SEM) is a set of statistical techniques that include 

path analysis (to study direct/indirect effects); factor analysis (to study measurement 

models, or how well a set of observed variables measure latent variables/constructs); 

regression analysis (to study prediction and amount of variance explained); and structure 

(covariance structure) analysis (to study relationships between latent variables) 

(Schumacker & Lomax, 1996). It provides a single comprehensive means for data 

analysis, especially testing complex theoretical models. Structural equation modeling 

(SEM) is appropriate for studies that investigate research questions related to the 

relationships between latent variables/constructs and when researchers are seeking to test 

theoretical model fit to sample data. All four research questions in this study deal with 

either relationships between latent constructs or the testing of a theoretical model, hence 

the choice of structural equation modeling as an appropriate set of statistical techniques. 

In general, a structural equation model has two parts: the measurement model and the 
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structural model (Schumacker & Lomax, 1996). The common and conventional names, 

notations and symbols for the various types of variables, path coefficients, error terms 

(measurement & prediction errors) are summarized in Table 1 (Jöreskog & Sörbom, 

1993). 

Table 1 

Conventional Symbols, Names of Variables and Coefficients in Structural Equation 

Modeling 

Symbol Name Variable, path or coefficient it stands for 
ξ Ksi Exogenous (independent) latent variable 
η Eta Endogenous (dependent) latent variable 
γ Gamma Path coefficients for a path connecting an exogenous latent 

variable (ξ) to an endogenous latent variable (η) 
β Beta Path coefficients for a path connecting an endogenous latent 

variable (η1) to another endogenous latent variable (η2) 
Y Y-variable Observed variables which depend on the endogenous 

(dependent) latent variables (η) 
X X-variable Observed variables which depend on the exogenous 

(independent) latent variables (ξ) 
λ (y) Lambda-Y Path from an endogenous (dependent) latent variable (η) to 

a Y-variable 
λ (x) Lambda-X Path from an exogenous (independent) latent variable (ξ) to 

an X-variable 
ζ Zeta Error terms in the structural equations 
ε Epsilon Measurement errors in the observed Y-variables 
δ Delta Measurement errors in the observed X-variables 

 

The path diagram in Figure 7 is a graphical representation of Tversky’s contrast 

model [S(a,b)= θf(A∩B) - αf(A-B) - βf(B-A)] tested in this study with a sample of 30 

images and 150 participants where the endogenous (dependent) latent variable, sim (η), is 

the degree of perceived similarity of images a and b [S(a,b)], commnfet (ξ1) is one of the 

exogenous (independent) latent variables and is a measure of the common features of a 

and b [f(A∩B)],  distfeta (ξ2) is the second exogenous (independent) latent variable and it 

is a measure of the unique/distinctive features of a when compared to b [f(A-B)], and 
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distfetb (ξ3) is the third exogenous (independent) latent variable and is a measure of the 

unique/distinctive features of b when compared to a [ f(B-A)]. Table 2 is a summary of 

the variables, coefficients, and parameters in Figure 7 as well as how each observed 

variable in the model is measured. 

Use of more than one measure of the latent variables ensures construct validity 

and minimizes measurement error. The endogenous (dependent) latent variable 

(perceived similarity or sim) has two measures, SIMAB & SIMBA, operationalized using 

the similarity judgment task described earlier.  SIMAB is similarity judgments data 

(obtained using magnitude estimation) for the first set of 435 pairs of the 30 images while 

SIMBA is similarity judgments data for the second set. Like any data obtained using 

magnitude estimation, values of the two variables, SIMAB & SIMBA, for the 435 cases 

(pairs of images) were determined by taking the logarithms of the raw magnitude 

estimations provided by all participants of the image description task and then aggregated 

using their geometric means. The three independent latent variables (common features, 

unique/distinctive features of a, and unique/distinctive features of b) have three measures 

each and these measures are three different methods of operationalization (outlined 

below) of the function f in the contrast model, some of which (methods 1 & 2) take into 

account the number of participants who assign a particular feature to a stimulus.  
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Figure 7. Path diagram for Tversky’s contrast model. 

Table 2 

Variables, Coefficients, and Parameters in Tversky’s Contrast Model (Figure 7) 

Symbol Variable, path or coefficient it stands for 
ξ1 Common features (commnfet)–exogenous latent variable(1) 
ξ2 Distinctive features of a (distfeta) – exogenous latent variable (2) 
ξ3 Distinctive features of b (distfetb) – exogenous latent variable (3) 
η Perceived similarity (sim) - endogenous latent variable 
γco Path coefficient for the path from ξ1 to η 
γda Path coefficient for the path from ξ2 to η 
γdb Path coefficient for the path from ξ3 to η 
SIMAB, 
SIMBA 

Observed Y-variables (of η) – similarity judgments for image sets 1 
& 2, respectively 

COMMNFE1, 
COMMNFE2, 
COMMNFE3 

Observed X-variables (of ξ1) – measures of common features using 
methods 1, 2, & 3, respectively 

(Table continues) 

sim (η) 

SIMAB ε1

ε2

commnfet 
(ξ1) 

SIMBA

distfeta  
(ξ2) 

COMMNFE3 

DISTFEA1 

DISTFEA2 

COMMNFE1 

COMMNFE2 

DISTFEA3 

DISTFEB1 

DISTFEB2 

DISTFEB3 

distfetb 
(ξ3) 

δc1 λc1

λc2
δc2 

δc3 λc3

λda1 γco
λab δda1 

ζ
λda2 γda 

δda2 

δda3 λda3
λba γdb

λdb1
δdb1 

λdb2

δdb2 

δdb3 λdb3
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Table 2 (Continued) 

Variables, Coefficients, and Parameters in Tversky’s Contrast Model (Figure 7) 

Symbol Variable, path or coefficient it stands for 
DISTFEA1, 
DISTFEA2, 
DISTFEA3 

Observed X-variables (of ξ2) – measures of distinctive features of a 
using methods 1, 2, & 3, respectively 

DISTFEB1, 
DISTFEB2, 
DISTFEB3 

Observed X-variables (of ξ3) – measures of distinctive features of b 
using methods 1, 2, & 3, respectively 

λab, λba Path from η to SIMAB and SIMBA, respectively 
λc1, λc2, λc3 Path from ξ1 to COMMNFE1, COMMNFE2, & COMMNFE3, 

respectively 
λda1, λda2, λda3 Path from ξ2 to DISTFEA1, DISTFEA2, & DISTFEA3, respectively 
λdb1, λdb2, λdb3 Path from ξ3 to DISTFEB1, DISTFEB2, & DISTFEB3, respectively 
ζ Error term in the structural equation 
ε1, ε2 Measurement errors in SIMAB & SIMBA, respectively 
δc1, δc2, δc3 Measurement errors in COMMNFE1, COMMNFE2, & 

COMMNFE3, respectively 
δda1, δda2, δda3 Measurement errors in DISTFEA1, DISTFEA2, & DISTFEA3, 

respectively 
δdb1, δdb2, δdb3 Measurement errors in DISTFEB1, DISTFEB2, & DISTFEB3, 

respectively 
 

The three methods of operationalization of the function f in the contrast model are 

discussed below. 

Method 1: The first method of measurement of common and unique/distinctive 

features was used by Tversky (1977) and it requires the number of participants who 

attribute a specific common or unique/distinctive feature to be determined. Let Xi be the 

proportion of participants who assigned feature X to image i and Nx be the total number 

of images that feature X was assigned to. According to this method (method 1), the 

measure of the common features of images a and b is computed using: 

x

ba
N

XXBAf ∑=∩ )( , for all X in A∩B. Similarly, let Yi and Zj be the proportion of 
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participants who assigned unique/distinctive features Y and Z to images i and j, 

respectively. The measures of the unique/distinctive features of images a and b are 

 and ∑=− aYBAf )( ∑=− bZABf )( , respectively, for all Y in A-B and all Z in B-A. 

Method 2: The second method of measurement of common and unique/distinctive 

features was developed by Johnson (1986). Let Ci be the number of common features 

attributed to images a and b by participant i (i=1, 2, 3, …, n) and n be the total number of 

participants who assigned at least one common feature to a and b. The measure of the 

common features of images a and b is the mean number of common features and is given 

by n
CBAf i∑=∩ )( . To compute the measure of the unique/distinctive features of a 

and b, let Di and Dj be the number of unique/distinctive features assigned to images a and 

b, respectively, by participants i (i=1, 2, 3, …, n) and j (j=1, 2, 3, …, m) and n and m be 

the total number of participants who assigned at least one unique/distinctive feature to a 

and b, respectively. The measures of the unique/distinctive features of images a and b are 

n
DBAf i∑=− )( and m

DABf j∑=− )( , respectively. 

Method 3: The third method of measurement of common and unique/distinctive 

features was used by Tversky (1977) as well. This measure “assigns equal weight to all 

features regardless of their frequency of mention” (Tversky, 1977, p. 338). It is 

determined by simply counting the number of common and unique/distinctive features 

assigned by participants. Let Ci be the number of common features attributed to images a 

and b by participant i (i=1, 2, 3, …, n) and n be the total number of participants who 

assigned at least one common feature to a and b. The measure of the common features of 

images a and b is the sum of the number of common features assigned by all the 
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participants and is given by ∑=∩ iCBAf )( . To determine the measure of the 

unique/distinctive features of a and b, let Di and Dj be the number of unique/distinctive 

features assigned to images a and b, respectively, by participants i (i=1, 2, 3, …, n) and j 

(j=1, 2, 3, …, m) and n and m be the total number of participants who assigned at least 

one unique/distinctive feature to a and b, respectively. The measures of the 

unique/distinctive features of images a and b are ∑=− iDBAf )( and 

, respectively. ∑=− jDABf )(

Summary 

This chapter presents the nature of the population and selection of samples of 

participants and materials (images) for the study. The various data collection methods, 

namely the image description and similarity judgment tasks, methods of 

operationalizations of the measured variables including the three methods (1, 2, and 3) 

for measuring the common and distinctive features of pairs of images, as well as data 

analysis methods such as content analysis, correlation analysis and regression analysis, 

and structural equation modeling are discussed. A path diagram depicting Tversky’s 

(1977) contrast model is presented and issues of validity and reliability of the data 

collection instruments, scales, and measured variables are addressed. 
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CHAPTER 4 

ANALYSIS OF DATA, RESEARCH FINDINGS, AND DISCUSSION 

Introduction 

The main purpose of this study is to investigate the nature of perceived features 

(common and unique/distinctive) and similarity of images, including their measurements 

and relationships, by way of four research questions (see chapter 1) using Tversky’s 

(1977) contrast model as a framework. Data were collected through image description 

and similarity judgment tasks performed by 150 participants using 30 images (435 pairs). 

Qualitative methods (content analysis) and quantitative methods (correlation & 

regression analyses, structural equation modeling) of data analysis were employed to seek 

answers to the four research questions. Structural equation modeling including the testing 

of the measurement models for all four latent variables (common features, distinctive 

features of a & b, where a & b form a pair of images, and similarity) as well as the testing 

of the contrast model was done using LISREL© 8.54 software (Jöreskog & Sörbom, 

1993). 

The chapter also presents a summary of the demographic data on participants, 

results of the analysis of data from the two tasks (image description and similarity 

judgment tasks), and a detailed discussion of the results vis-à-vis the four research 

questions as well as findings of similar research. A summary of the results and research 

findings is included at the end of the chapter. 
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Description of Participants 

A total of 150 participants took part in two tasks: an image description task (75 

participants randomly assigned to this task) and a similarity judgment task (the other 75 

participants randomly assigned to the task). Table 3 shows the distribution of participants 

of both tasks by gender, age, major, highest degree completed, programs of study, 

whether they had a degree or background in art, and their frequency of use of images. 

There were more female participants (77%) than male participants, a proportion 

comparable to that of the total number of female and male students in the school from 

which the sample of participants was drawn, an indication of the representativeness of the 

sample, in terms of gender. Approximately three quarters of the participants are between 

26 and 50 years old and over 95% of them major in either library or information science. 

Only about a quarter of the participants indicated masters and Ph.D. as their highest 

degrees completed at the time of participation, while almost all (97%) are enrolled in the 

various masters program tracks at the school. Few participants (13%) have either a degree 

or some background in art, while most of them (88%) either use or work with images at 

least once a month. 
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Table 3 

Demographic Data on Participants of the Study 

Image 
Description Task 

Similarity 
Judgment Task 

Total 

Demographics Count %a Count % a Count % b 
Gender       

M 19 25.33 15 20.00 34 22.67 
F 56 74.67 60 80.00 116 77.33 

Age       
<21 0 0.00 1 1.33 1 0.67 

21-25 12 16.00 9 12.00 21 14.00 
26-30 12 16.00 10 13.33 22 14.67 
31-35 14 18.66 9 12.00 23 15.33 
36-40 11 14.67 10 13.33 21 14.00 
41-45 12 16.00 12 16.00 24 16.00 
46-50 6 8.00 14 18.67 20 13.33 
51-55 6 8.00 7 9.33 13 8.67 
56-60 2 2.67 2 2.67 4 2.67 

>60 0 0.00 1 1.34 1 0.66 
Major       

Journalism 1 1.34 0 0.00 1 0.67 
Info. Science 4 5.33 9 12.00 13 8.66 
Lib. Science 66 88.00 64 85.34 130 86.67 

Info. Systems 0 0.00 1 1.33 1 0.67 
Other 4 5.33 1 1.33 5 3.33 

Highest degree completed       
Bachelors 57 76.00 51 68.00 108 72.00 

Masters 14 18.66 21 28.00 35 23.33 
PhD 2 2.67 1 1.33 3 2.00 

Other 2 2.67 2 2.67 4 2.67 
Program of study       

Masters 73 97.32 72 96.00 145 96.67 
PhD 1 1.34 1 1.33 2 1.33 

Other 1 1.34 2 2.67 3 2.00 
Background/Degree in art       

Yes 9 12.00 11 14.67 20 13.33 
No 66 88.00 64 85.33 130 86.67 

Frequency of use of images      0.00 
Daily 16 21.33 20 26.66 36 24.00 

3 times a week 9 12.00 13 17.33 22 14.67 
Twice a week 7 9.33 5 6.67 12 8.00 
Once a week 10 13.34 8 10.67 18 12.00 

once every two weeks 6 8.00 8 10.67 14 9.33 
Once a month 18 24.00 12 16.00 30 20.00 

Never 9 12.00 9 12.00 18 12.00 
Note. an=75. bn=150 
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Analysis of Image Description Task Data 

As described in chapter 3, content analysis was used to build a dictionary of all 

feature-bearing words and word senses supplied by participants of this task. Once the 

dictionary, with 196 mutually exclusive categories, was built by the researcher and three 

others through consensus, two more coders were asked to assign features to the 

categories. The two coders examined a random set of features (23% of the total number 

of features) and assigned them to 39 randomly selected categories (20%). The coders 

were told to leave the features that did not fit into any of the categories unassigned. 

Instructions for coders and a set of features assigned to a sample feature category are in 

Appendix F. The inter-coder agreement (percent agreement) was calculated using the 

general formula: n
APAO = , where PAO is the “ ‘proportion agreement, observed,’ A is 

the number of agreements between two coders, and n is the total number of units the two 

coders have coded” (Neuendorf, 2002, p. 149). The computed values of the percent 

agreement between the researcher and the two coders were .90 and .92. This is quite a 

large value, considering that reliability coefficients, including percent agreement values, 

over 0.80 are considered to be “acceptable in most situations” (Neuendorf, 2002, p. 143). 

Another measure of inter-coder reliability is Cohen’s (1960) Kappa computed 

using the formula: 
E

EO

PA
PAPAKappasCohen

−
−

=
1

' , where PAO is the “ ‘proportion agreement, 

observed,’ and PAE stands for ‘proportion agreement, expected by chance,’ ” (Neuendorf, 

2002, p. 143). PAE is computed using the formula: ( )( )∑= iE pmnPA 2
1 , where n is the 

number of units coded in common by coders and pmi is the product of marginals for 

category i. The computed values of Cohen’s Kappa for the researcher and the two coders 
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were .89 and .91. Once again, this is an acceptable value and shows the reliability of the 

categories formed and the dictionary built using the categories. 

A single file containing all features assigned by 75 participants (15301 total 

features), together with the dictionary, was submitted to the TEXTPACK (Mohler & 

Zeull, 1998) text analysis software. The minimum and maximum number of features 

assigned to a single image were 352 and 652, respectively. Table 4 depicts the 

distribution of features assigned to the 30 images by 75 participants of this task. 

Table 4 

Distribution of Features Assigned to 30 Images 

Image#a 
No. of 

features Mean SD Image# a 
No. of 

features Mean SD 
1 550 7.33 2.915 16 475 6.33 2.321 
2 555 7.40 3.000 17 405 5.40 2.329 
3 569 7.59 3.329 18 407 5.43 2.188 
4 609 8.12 3.624 19 643 8.57 4.451 
5 578 7.71 3.552 20 502 6.69 3.166 
6 611 8.15 2.939 21 486 6.48 2.723 
7 579 7.72 3.375 22 534 7.12 2.630 
8 510 6.80 2.800 23 563 7.51 3.042 
9 429 5.72 2.414 24 652 8.69 3.526 
10 550 7.33 2.905 25 495 6.60 3.000 
11 571 7.61 2.686 26 517 6.89 2.749 
12 587 7.83 3.130 27 420 5.60 2.857 
13 380 5.07 2.029 28 409 5.45 2.029 
14 405 5.40 1.816 29 511 6.81 3.224 
15 352 4.69 2.278 30 447 5.96 2.178 

    Total 15301 6.80 2.895 
Note. aImage numbers refer to arbitrary ID numbers assigned by the researcher. n=75 

 

The unit of analysis for all variables in this study, including measures of common 

and distinctive measures, is pair of images. For the sample of 30 images, there are 435 

unique pairs; hence the total number of cases (N) is 435. Values of the measures of 
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common and distinctive features (that is, values of the variables: COMMNFE1, 

COMMNFE2, COMMNFE3, DISTFEA1, DISTFEA2, DISTFEA3, DISTFEB1, 

DISTFEB2, DISTFEB3) for each pair were determined using the three methods 

discussed in chapter 3. The data were then processed using SPSS© version 12.0.1 for 

Windows (SPSS Inc., 2003) to produce summary statistics for the nine variables that 

correspond to the nine measures of common (three) and distinctive (three each for a and 

b, where a and b make a pair of images) features presented in Table 5. 

Table 5 

Descriptive Statistics for Measures of Common and Distinctive Features 

 Measure Mean SD Skewness Kurtosis Cronbach’s  α 
1. Common features 

using method 1 
(COMMNFE1) 

0.060 0.102 6.627** 61.987** .841 

2. Common features 
using method 2 
(COMMNFE2) 

1.565 0.469 1.387** 4.367** .988 

3. Common features 
using method 3 
(COMMNFE3) 

63.260 46.488 1.376** 3.819** .988 

4. Distinctive features 
of a using method 1 
(DISTFEA1) 

4.236 1.493 -0.230 -0.138 .841 

5. Distinctive features 
of a using method 2 
(DISTFEA2) 

5.158 0.969 -0.197 -0.391* .961 

6. Distinctive features 
of a using method 3 
(DISTFEA3) 

386.457 73.428 -0.241 -0.277 .961 

7. Distinctive features 
of b using method 1 
(DISTFEB1) 

3.773 1.453 -0.255 -0.339 .841 

8. Distinctive features 
of b using method 2 
(DISTFEB2) 

4.561 1.125 0.030 -0.771** .971 

9. Distinctive features 
of b using method 3 
(DISTFEB3) 

340.623 86.508 -0.068 -0.621** .971 

Note. N=435. *p < .05, **p < .01 
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All observed x variables, except three (DISTFEA1, DISTFEA3, DISTFEB1), had 

either skewness or kurtosis or both values significantly different from zero (p < .05). The 

original scores had to be transformed to meet univariate normality criterion for further 

analyses. 

Analysis of Similarity Judgment Task Data 

The similarity judgment task involved magnitude estimation by participants. As a 

calibration exercise and to acquaint them with the process of magnitude estimation, 

participants were presented with a set of five straight lines of varying lengths (two to 

eight inches) and asked to assign numbers proportional to the apparent length of the lines. 

The magnitude estimations of the five lines by the 75 participants of the similarity 

judgment task were averaged across all participants of the task using geometric mean, 

after log transformations. The Pearson product moment correlation between the 

geometric means of the logarithms of the magnitude estimations of the lines and the 

logarithms of their actual lengths is .999, an almost perfect correlation.  

Participants were then shown a set of 435 pairs of the 30 images in the sample (set 

1) and then the second set (set 2) of 435 pairs (obtained by reversing the order of 

presentation of pairs in set 1 as well as the order of images in each pair). Similarity 

judgments (ratings) or original raw data for the two sets of 435 pairs of the 30 images in 

the sample, that is data for the two observed Y (dependent) variables (SIMAB for the first 

set, SIMBA for the second set), consist of magnitude estimations (ranging from 1 to 500, 

where an inch on the straight line used in the web form represents 100 units/numbers) by 

all participants for each pair of images which were later aggregated using the geometric 

mean, after log-transformations. According to Stevens (1966, 1975), magnitude 
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estimation data is log-normal, hence the need for log-transformations. The appropriate 

measure of central tendency for such data is the geometric mean rather than the 

arithmetic mean.  Hence, the geometric means of the base 10 logarithms of the magnitude 

estimations make up values of the two variables, SIMAB and SIMBA. Table 6 shows the 

descriptive statistics for the two variables. 

Table 6 

Descriptive Statistics for Similarity Judgments 

Variable Mean  SD Skewness Kurtosis Cronbach’s  α 
Similarity judgments 
of set 1 (SIMAB) 

1.719 0.252 0.813** 0.330 .965 

Similarity judgments 
of set 2 (SIMBA) 

1.654 0.227 1.211** 1.565** .963 

Note. N=435. **p < .01 

 

The reliability coefficients, that is Cronbach’s alpha values, for both variables are 

well above the minimum value often cited by the literature, which is 0.70 (Nunnally & 

Bernstein, 1994). However both SIMAB and SIMBA had skewness values significantly 

different from zero while SIMBA had a kurtosis value significantly different from zero  

(p < .01), a property of non-normal scores, prompting the researcher to use 

transformations of the two variables in subsequent analyses.  

Research Findings and Discussion 

Prior to any kind of analysis, including structural equation modeling, data need to 

be checked for missing values, outliers and univariate normality (Schumacker & Lomax, 

1996; West, Finch, & Curran, 1995). In the data collected for this study, there were no 

missing data and no apparent extreme outliers. However, the similarity judgment data 
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(the observed Y variables: SIMAB and SIMBA) and some of the common and distinctive 

feature data (six of the nine observed X variables: COMMNFE1, COMMNFE2, 

COMMNFE3,  DISTFEA2, DISTFEB2, DISTFEB3) did not satisfy the univariate 

normality criterion. Their skewness and kurtosis values (see Tables 5 and 6) are well 

above the recommended values of zero (Tabachnick & Fidell, 1989), zero being the 

skewness and kurtosis for a normal distribution. The recommended courses of action 

when a distribution of scores is non-normal are: (a) transformations such as log-

transformations (log x), taking the square roots ( x ), and inverse (1/x) of scores, and  

(b) the use of asymptotically distribution free least squares estimation method for 

structural equation modeling (including model testing) (Schumacker & Lomax, 1996; 

West, Finch, & Curran, 1995). Even though the log-transformation of all observed 

variables in this study yielded scores with improved skewness and kurtosis values (See 

Table 7), they still failed to satisfy the univariate normality criterion. Besides, the log-

transformed scores have different means and standard deviations from the original raw 

scores. In order to achieve the univariate normality, the raw data were subjected to the 

“Normal Scores” algorithm in PRELIS (du Toit & du Toit, 2001; Jöreskog & Sörbom, 

1999). It is evident from Table 7 that the skewness and kurtosis values for normal scores 

of almost all variables are either zero or very close to zero (p >.94) and the normal scores 

have the same mean and standard deviation values as the original scores (Tables  5 and 

6). 
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Table 7 

Descriptive Statistics for Normal Scores and Logarithmic Transformations of all 

Observed Variables 

 Normal Scores Log-Transformed Scores 
Variable Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis 

COMMNFE1 0.060 0.102 0.001* -0.009* 2.459 0.582 -0.824 1.445 
COMMNFE2 1.565 0.469 0.061** -0.178** 4.169 0.232 -13.300 239.953 
COMMNFE3 63.260 46.488 0.005* -0.025* 1.632 0.471 -1.385 1.871 
DISTFEA1 4.236 1.493 0.000* -0.008* 1.589 0.207 -1.931 5.554 
DISTFEA2 5.158 0.969 -0.001* -0.011* 1.704 0.087 -0.719 0.477*** 
DISTFEA3 386.458 73.428 -0.001* -0.011* 2.579 0.089 -0.848 1.127 
DISTFEB1 3.773 1.453 0.000* -0.008* 1.529 0.231 -1.626 2.724 
DISTFEB2 4.561 1.125 0.000* -0.009* 1.645 0.113 -0.470 -0.413 
DISTFEB3 340.623 86.508 0.000* -0.009* 3.517 0.120 -0.722 0.388*** 
SIMAB 1.719 0.252 0.000* -0.008* 1.231 0.061 0.478 -0.220*** 
SIMBA 1.654 0.227 0.000* -0.009* 1.215 0.056 0.823 0.641 

Note. N=435. *p > .94, ** p > .46, ***p > .05 

 

Another crucial task of data screening is checking for pairwise linearity of all 

variables using scatter plots. An examination of the scatter plots for all pairs of the 

observed variables in the study shows that they are linearly related. 

As part of data screening, the convergent validity of a construct or latent variable 

needs to be assessed as well. To establish convergent validity, observed variables or 

measures of a particular latent construct need to correlate (Nunnally & Bernstein, 1994). 

It is evident from Table 8 that all relevant Pearson’s product moment correlation 

coefficients are significant (p < .001). Therefore, it is safe to conclude that all latent 

variables have good convergent validity with respect to their observed variables. 
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Table 8 

Correlations among Observed Variables for each Latent Construct 

Latent Construct Correlations among observed variables 
  COMMNFE1 COMMNFE2 COMMNFE3 
 COMMNFE1 1.000   
Common Features COMMNFE2 .730** 1.000  
 COMMNFE3 .916** .861** 1.000 
  DISTFEA1 DISTFEA2 DISTFEA3 
 DISTFEA1 1.000   
Distinctive features of a DISTFEA2 .782** 1.000  
 DISTFEA3 .784** 1.000** 1.000 
  DISTFEB1 DISTFEB2 DISTFEB3 
 DISTFEB1 1.000   
Distinctive features of b DISTFEB2 .679** 1.000  
 DISTFEB3 .683** .998** 1.000 
  SIMAB SIMBA  
Similarity SIMAB 1.000   
 SIMBA .799** 1.000  

**p < .001, one-tailed 

 

Extent to which Various Methods Measure the Common and Distinctive Features of 

Images (RQ1) 

The first research question is: Which methods measure the common and 

distinctive features of images well? Three measures have been reported in the literature 

(Johnson, 1986; Tversky, 1977). In chapter 3, the three different methods for measuring 

common and distinctive features of pairs of images were discussed. The main purpose of 

this research question (RQ1) is to determine how well the three methods measure the 

three independent latent variables. This was assessed, using output from LISREL©, 

through measurement model fit indices and loadings of those measures (or estimated 

parameters called λ(x)’s) on corresponding independent latent variables/constructs 

(common and distinctive features). A covariance matrix (Table 9) consisting of all 
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observed x and y variables (three observed x variables for each of the independent latent 

variables and two observed y variables for the dependent latent variable), produced from 

feature data (obtained through an image description task and summarized using three 

methods for measuring common and distinctive features), and the two observed y 

variables, SIMAB & SIMBA, was produced using LISREL©. 

Convergent validity of the observed variables was already assessed (see the 

Research Findings section above) by examining the correlations of observed variables for 

each independent latent variable or construct. A quick glance at Table 8 suggests that all 

nine observed x variables satisfy the convergent validity criterion of the correlations 

being statistically significant (Nunnally & Bernstein, 1994). 

The relevant elements of the covariance matrix in Table 9 (only elements for the 

nine observed x variables) were used in the analysis. A single LISREL© program (using 

the maximum likelihood estimation method) produced results of tests of model fit of the 

measurement models for the three independent latent variables measured using the three 

methods and these results are shown in Figure 8. The independent latent constructs 

(common and distinctive features) were allowed to correlate. How well a given observed 

variable measures a latent variable or construct is dependent on the statistical significance 

of the relevant loadings or parameter estimates (Schumacker & Lomax, 1996), provided 

the measurement model fits the sample data well. 
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Table 9 

Covariance Matrix for all Observed Variables in the Study (Normal Scores) 

             1 2 3 4 5 6 7 8 9 10 11
1. COMMNFE1 0.010           
2. COMMNFE2 0.035 0.220          

        
        

           
           
       
          
          

        
             

3. COMMNFE3 4.360 18.768 2161.113 
4. DISTFEA1 -0.093 -0.346 -43.526 2.230 
5. DISTFEA2 -0.041 -0.127 -19.102 1.132 0.940
6. DISTFEA3 -3.147 -9.716 -1458.167

 
86.012

 
71.167

 
5391.722

 7. DISTFEB1 -0.070 -0.223 -29.867 0.354 0.205 15.866
 

2.112
8. DISTFEB2 -0.016 0.010 -5.330 -0.003 0.024 1.985 1.110 1.265
9. DISTFEB3 

 
-1.353

 
0.529 -442.821

 
0.399 1.949 164.606

 
85.895 97.137 7483.558

 
 

10. SIMAB 0.017 0.061 7.896 -0.191 -0.072 -5.539 -0.128 -0.024 -2.117 0.063
11. SIMBA 0.014 0.051 6.605 -0.156 -0.060 -4.616 -0.124 -0.023 -2.019 0.046 0.051

Note. N=435 
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In other words, in addition to the assessment of the significance of the loadings 

(λ(x)s) on independent latent constructs, the extent of fit of the measurement models need 

to be assessed as well. The main goal of assessing model fit is to see whether the model 

produces the original sample covariance matrix (of observed variables) with minimum or 

no residuals. This is achieved through examination of several model fit indices. In other 

words, the various model fit indices are indicators of how well the model specified by the 

researcher fits sample data. 

In order to assess model fit, several fit indices (criteria) are recommended instead 

of a single index since there is no single best index (Schumacker & Lomax, 1996). 

Consequently, the most widely used indices such as the Chi-square (χ2), the Standardized 

Root Mean Square Residual (SRMR), Root Mean Square Error of Approximation 

(RMSEA), the Goodness-of-fit index (GFI), and the Adjusted-goodness-of-fit index 

(AGFI) were used to assess the fit of the measurement models to sample data.  

Chi-square (χ2) is a measure of overall model fit and “measures the distance 

(difference, discrepancy, deviance) between the sample covariance (correlation) matrix 

and the fitted covariance (correlation) matrix” (Jöreskog, 1993, p. 308). The larger the 

value of the Chi-square (χ2), the worse the model fit to the data as it is an indication of a 

significant discrepancy between the sample covariance (correlation) matrix and the 

reproduced (or model implied) covariance (correlation) matrix.  

The Root Mean Square Residual (RMR) is a measure of the mean difference 

between the sample (or observed) and the reproduced (model implied) covariance 

(correlation) matrices. It is the square root of the mean of the squared differences 

(residuals) between the sample (observed) and the implied covariance (correlation) 
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matrices. The Standardized Root Mean Square Residual (SRMR) is preferred to the Root 

Mean Square Residual (RMR) since it is a standardized summary of average covariance 

discrepancies and its values lie between zero and one. A value closer to one is an 

indication of a good fit (Kelloway, 1998). 

The Root Mean Square Error of Approximation (RMSEA), which is a “measure 

of discrepancy per degree of freedom” (Jöreskog, 1993, p. 310), is a model fit measure 

that takes the population error of approximation into account. The degrees of freedom for 

a model with k parameters to be estimated and q observed variables is q(q+1)/2 – k. 

The Goodness-of-fit index (GFI) and the Adjusted-goodness-of-fit index (AGFI) 

were developed as alternatives to the Chi-square (χ2) which is “N-1 times the minimum 

value of the fit function” and it is affected by N, the sample size (Jöreskog, 1993, p. 309). 

Both the Goodness-of-fit index (GFI) and the Adjusted-goodness-of-fit index (AGFI) “do 

not depend on sample size explicitly and measure how much better the model fits 

compared with no model at all” (Jöreskog, 1993, p. 309) and their values range between 

zero and one, with values closer to one indicating better fit of the model to the data. 

The acceptable levels or thresholds of these model fit indices are: a Chi-square 

(χ2) value that is non-significant (in other words, the observed and estimated covariance 

matrices need to be found to not be statistically different), values of RMSEA and SRMR 

below 0.05, and values of GFI and AGFI at least 0.90 (Hu & Bentler, 1999; Jöreskog, 

1993). 

Table 10 shows values of the model fit indices for the measurement models of 

common and distinctive features using all observed x variables (measurement model 1 – 

Figure 8), and pairs of observed x variables (measurement models 2, 3, and 4 – Figures 9, 
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10, and 11, respectively). Measurement model 1 (all observed x variables – Figure 8) is 

what has been proposed, based on the measures of common and distinctive features 

reported in the literature on the contrast model, when the contrast model was specified in 

chapter 3 (Figure 7). However, none of the values of the fit indices were below or above 

the recommended thresholds (χ2=548.48, df=27, p<.01, RMSEA=.211, SRMR=.125, 

GFI=.781, AGFI=.635).  

Since the measurement model with all nine observed x variables is not a good fit 

to the data, the model had to be modified. Three modified measurement models with 

pairs of the observed x variables for each independent latent variable were considered. 

Measurement model 2 (using observed x variables measured using methods 2 and 3 

discussed in chapter 3, Figure 9) was the first to be tested. Once again, the model fit 

indices for this modified model showed a poor fit (χ2=136.24, df=9, p<.01, RMSEA=.180, 

SRMR=.0435, GFI=.905, AGFI=.779). 

 

Figure 8. Measurement model for common and distinctive features (all observed x 

variables – measurement model 1). 
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Figure 9. Measurement model for common and distinctive features (observed x variables 

measured using methods 2 & 3 – measurement model 2). 

 

It is evident from Table 10 that measurement models with a combination of 

observed x variables measured using methods 1 & 3 (Figure 10) and methods 1 & 2 

(Figure 11) fit the data well. Measurement model 3 (observed x variables measured using 

methods 1 & 3) had all five model fit indices that exceeded their recommended minimum 

levels or that are less than their recommended maximum levels (χ2=7.78, df=4, p>.05, 

RMSEA=.047, SRMR=.0207, GFI=.994, AGFI=.969). Likewise, measurement model 4 

(observed x variables measured using methods 1 & 2) had all model fit indices that either 

exceeded their recommended minimum levels or that are less than their recommended 

maximum levels (χ2=4.75, df=4, p>.3, RMSEA=.021, SRMR=.0234, GFI=.996, 

AGFI=.981). Measurement model 4 (observed x variables measured using methods 1 & 

2) fits the data slightly better than measurement model 3 (observed x variables measured 

using methods 1 & 3). 
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Table 10 

Model Fit Statistics for Measurement Models of Common and Distinctive Features 

Model χ2 df p RMSEA SRMR GFI AGFI 
Measurement model 1 
(all observed x variables) 

548.48 27 .00 .211 .125 .781 .635 

Measurement model 2 
(observed x variables 
measured using methods 
2 & 3) 

136.24 9 .00 .180 .0435 .905 .779 

Measurement model 3 
(observed x variables 
measured using methods 
1 & 3) 

7.78 4 .0998 .047 .0207 .994 .969 

Measurement model 4 
(observed x variables 
measured using methods 
1 & 2) 

4.75 4 .3138 .021 .0234 .996 .981 

 

 

Figure 10. Measurement model for common and distinctive features (observed x 

variables measured using methods 1 & 3 – measurement model 3). 
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Figure 11. Measurement model for common and distinctive features (observed x 

variables measured using methods 1 & 2). 

 

Measurement models that have observed x variables measured using methods 2 

and 3 together did not fit the data well consistently. This appears to be due to 

multicollinearity, which is a characteristic of two or more measures of the same latent 

construct (or predictors of the same dependent variable in regression analysis) that are 

highly correlated, with correlations above .90 and due to singularity, which is a 

characteristic of two or more measures of the same latent construct that are perfectly 

correlated (Tabachnick & Fidell, 1989). The correlation between DISTFEA2 and 

DISTFEA3, measures of distinctive features of a (where a and b form a pair) measured 

using methods 2 and 3 is .998 while the correlation between DISTFEB2 and DISTFEB3 

is 1.00. The source of this multicollinearity and singularity is the fact that observed x 

variables measured using method 2 are simply observed x variables measured using 

method 3 divided by the number of participants who attributed the common (for 
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measures of common features) or distinctive (for measures of distinctive features) 

features to pairs of or to individual images. 

Despite the fact that measurement models 1 (all observed x variables) and 2 

(observed x variables measured using methods 2 and 3) did not fit the sample data well, 

all loadings of the observed x variables onto their corresponding independent latent 

constructs in all the four measurement models were significant (p<.01). 

Extent of Fit of the Contrast Model to Sample Data (RQ2)  

The second research question is: To what extent does the contrast model fit 

human similarity judgments and features/attributes data for a sample of images? The two-

step approach of model testing (Jöreskog & Sörbom, 1993; Schumacker & Lomax, 1996) 

was followed. In the two-step approach, the measurement model is tested first to see if it 

holds for the set of observed and latent variables and to see if the observed x variables 

measure their respective latent variables. The structural model is then tested once the 

measurement model holds. 

The measurement models for the independent latent variables (common and 

distinctive features) with four different combinations of the observed x variables have 

already been tested. Measurement models of independent latent variables with observed x 

variables measured using methods 1 & 3 and methods 1 & 2 fit the data well. Therefore, 

only two measurement models, one consisting of the observed x variables measured 

using methods 1 & 3 and the two observed y variables (SIMAB and SIMBA) (Figure 12) 

and another one consisting of observed x variables measured using methods 1 & 2 and 

the two observed y variables (Figure 13) were tested.  
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A quick look at Table 11 indicates that the measurement model with a 

combination of observed x variables measured using methods 1 & 3 (Figure 12) 

(χ2=22.18, df=10, p < .05, RMSEA=.053, SRMR=.0185, GFI=.987, AGFI=.955) is a poor 

fit compared to the measurement model with a combination of observed x variables 

measured using methods 1 & 2 (Figure 13) (χ2=16.97, df=10, p>.05, RMSEA=.040, 

SRMR=.0205, GFI=.990, AGFI=.965). The latter has all five model fit indices that 

exceeded their recommended minimum levels (GFI >.90, and AGFI > .90) or that are less 

than their recommended maximum levels (non-significant χ2 with p > .05, RMSEA <.05, 

SRMR <.05). Therefore, the measurement model with observed x variables measured 

using methods 1 & 2 was used to test the contrast model. 

 

Table 11 

Model Fit Statistics for Measurement Models of Common Features, Distinctive Features, 

and Similarity 

Model χ2 df p RMSEA SRMR GFI AGFI 
Measurement model 
with observed x 
variables measured using 
methods 1 & 3 and the 
two observed y variables 

22.18 10 .01422 .053 .0185 .987 .955 

        
Measurement model 
with observed x 
variables measured using 
methods 1 & 2 and the 
two observed y variables 

16.97 10 .07508 .040 .0205 .990 .965 
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Figure 12. Measurement model for common and distinctive features (observed x 

variables measured using methods 1 & 3) and similarity. 

 

Figure 13. Measurement model for common and distinctive features (observed x 

variables measured using methods 1 & 2) and similarity. 
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A modified version of the contrast model, with observed x variables measured 

using methods 1 & 2 and the two observed y variables (SIMAB and SIMBA), was tested 

and not only did the model fit the sample data well (χ2=16.97, df=10, p >.05, 

RMSEA=.040, SRMR=.0205, GFI=.990, AGFI=.965) (see Figure 14), all the loadings 

(parameter estimates) for the observed x and y variables onto their respective latent 

variables were statistically significant (p < .05). Table 12 presents the standardized 

loadings of the observed variables on the latent variables for the modified contrast model. 

 

Figure 14. The modified contrast model. 

Table 12 

Standardized Loadings of Observed x and y Variables on the Latent Variables in the 

Modified contrast model 

Construct Observed Variable Latent Variable Loadings 
Common features COMMNFE1 1.00** 
 COMMNFE2 .75** 
Distinctive features of a DISTFEA1 1.00** 
 DISTFEA2 .65** 
Distinctive features of b DISTFEB1 1.00** 
 DISTFEB2 .24* 
Similarity SIMAB .93** 
 SIMBA .87** 

*p < .05, **p < .01 
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The path coefficients (except for the path coefficient for the structural relationship 

between distfetb to sim, with p < .06) in the structural model with the three independent 

latent variables (commnfet, distfeta, and distfetb) and the latent dependent variable (sim) 

were statistically significant (p < .05). Even though the error variance of the latent 

dependent variable (sim) was .45 and significant (t=9.99), the major portion of its 

variance is explained (R2=.55) by the combination of the three independent latent 

variables (commnfet, distfeta, distfetb). Based on the correlation matrix for the 

standardized scores of the dependent latent variable (sim) and the three independent 

latent variables (commnfet, distfeta, distfetb) generated by LISREL©, the proportion of 

the total amount of variance in the dependent latent variable (sim) explained by each of 

the independent latent variables is 53.29% (r=.73), 30.58%(r= -.553), and 16.00%(r= -

.40), respectively. Furthermore, the direction of the path coefficients (positive path 

coefficients for common features and negative path coefficients for distinctive features) is 

proof that Tversky’s (1977) statement that common features increase while distinctive 

features decrease the degree of similarity of pairs of objects. Figure 15 presents the 

structural model of the modified contrast model with t-values for the path coefficients. 

 

Figure 15. The structural model of the modified contrast model. 
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Therefore, it is fair to conclude that Tversky’s (1977) contrast model, in its 

modified form (Figure 14), provides a reasonably good fit to the data for a sample of 

images with path coefficients that are in the right direction and with the right magnitudes. 

Relationships between Perceived Features and Similarity of Images (RQ3) 

The third research question is: What is the relationship between perceived 

similarity of images, as judged by humans, and their features/attributes identified and 

described/listed by humans? The main purpose of the study, by seeking an answer to this 

question, is to see whether more common features and less distinctive features result in 

higher similarity judgments. Pearson’s product moment correlation was used to 

determine the relationships between perceived features and similarity of images. The 

correlations between measures of common and distinctive features and similarity 

judgments are given in Table 13. 

As originally argued by Tversky (1977) and subsequently confirmed by Tversky 

and Gati (1978) and Johnson (1981, 1986), common features contribute to higher 

similarity judgments. Correlations between similarity judgments of the first set of pairs of 

images (SIMAB) and the three measures of their common features were found to be 

positive and statistically significant (r=.648, .513, and .675; p < .01). Likewise, the 

correlations between similarity judgments of the second set of pairs of images (SIMBA) 

and the three measures of their common features were positive and statistically 

significant as well (r=.624, .480, and .626; p < .01). 

In contrast, distinctive features contribute to lower similarity ratings with 

correlations between similarity judgments of the first set of pairs of images (SIMBA) and 

measures of their distinctive features negative and statistically significant (r=-.507, -.296, 
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and -.300; p < .01, for the three measures of distinctive features of a, when a and b form a 

pair, respectively, and r=-.351, -.084, and -.097, p < .05, for the three measures of 

distinctive features of b). Similar results hold for the correlations between similarity 

judgments of the second set of pairs of images (SIMBA) and the three measures of their 

distinctive features (r=-.460, -.274, and -.277; p < .01, for distinctive features of a, and 

r=-.375, -.091, and -.103, p < .05, for distinctive features of b). 

Results of the structural equation analysis (model testing) under research question 

2 (RQ2) are in accord with those of the correlations where path coefficients between the 

independent latent variables (common and distinctive features) and the dependent latent 

variable (similarity) match correlation coefficients in both magnitude and direction. 

 

Table 13 

Means, Standard Deviations, and Correlations of Measures of Common and Distinctive 

Features and Similarity Judgments of Images 

  Mean SD SIMAB SIMBA 
1. COMMNFE1 0.060 0.102 .648** .624**
2. COMMNFE2 1.565 0.469 .513** .480**
3. COMMNFE3 63.260 46.488 .675** .626**
4. DISTFEA1 4.236 1.493 -.507** -.460**
5. DISTFEA2 5.158 0.969 -.296** -.274**
6. DISTFEA3 386.458 73.428 -.300** -.277**
7. DISTFEB1 3.773 1.453 -.351** -.375**
8. DISTFEB2 4.561 1.125 -.084* -.091*
9. DISTFEB3 340.62 86.508 -.097* -.103*
10. SIMAB 1.719 0.252 1.000 .799**
11. SIMBA 1.654 0.227 .799** 1.000

Note. N=435, *p < .05, **p < .01, one-tailed 
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These results suggest that the more common features and the fewer distinctive 

features two images have, the more similar they are. Conversely, the fewer common 

features and the more distinctive features they have, the less similar they are. This is in 

total agreement with Tversky’s (1977) assertion in formulating the contrast model and 

they are consistent with results from a similar research in marketing by Johnson (1986), 

who used consumer products as materials. 

Relative Weights of Common and Distinctive Features of Images on their Similarity 

(RQ4) 

The fourth and final research question is: What are the relative weights given to 

common and distinctive features in human similarity judgments of images? The main 

purpose of the study regarding this research question is to determine, through structural 

equation modeling and regression analysis, the relative weights of common and 

distinctive features (independent variables) on similarity (dependent variable). 

In order to estimate the relative weights of common and distinctive features on 

similarity judgments, on top of results from the testing of the contrast model (RQ2), a 

regression analysis of similarity judgments on measures of common and distinctive 

features was conducted. In a way, the regression analysis results are used to validate 

results from structural equation modeling. 

Tables 14 and 15 present the independent variables (measures of common and 

distinctive features), unstandardized (B) and standardized (Beta) regression coefficients 

as well as t values associated with the regression coefficients for the two observed Y 

(dependent) variables SIMAB (similarity judgments of the first set of 435 pairs of 

images) and SIMBA (similarity judgments for the second set), respectively. The 
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coefficients of determination, R2 values, with their corresponding F ratios are also 

presented in the two tables. The regression analyses results in Tables 14 and 15 confirm 

(except in the case of distinctive features measured using method 3) the fact that common 

and distinctive features influence similarity of images in the expected direction and with 

the expected magnitudes (weights) as stated in Tversky’s (1977) contrast model. What is 

more, common and distinctive features reliably predict similarity of images. 

In terms of their prediction power (weight), common features have the largest 

followed by distinctive features of a (where a and b form a pair). Distinctive features of b 

had the least weight. In other words, in the contrast model (S(a,b)= θf(A∩B) - αf(A-B) - 

βf(B-A), for the sample of images in this study, θ > α > β. This is the case despite the 

fact that the participants were not asked to judge “how similar is image a to image b”. 

Tversky’s (1977) assertion that features of the subject (the first object in the pair) are 

weighed more than those of the referent (the second object in the pair) holds.  

In the case of independent variables (common and distinctive features) measured 

using method 3, even though the explained portions of variability in similarity (dependent 

variable) for both sets (.46 and .40, respectively) were significant, weights of distinctive 

features were non-significant (p >.05). This is consistent with the findings of the tests of 

the measurement models for the independent latent variables where models with 

observed x variables measured using method 3 did not fit the sample data well. 

Furthermore, results of the regression analysis are in agreement with those of the 

structural equation analysis. Both the directions and magnitudes of loadings of 

independent latent constructs (common and distinctive features) on the dependent latent 
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construct (similarity) called gammas (γ) are comparable to corresponding standardized 

regression weights (βs). 

Table 14 

Regression Analysis of Similarity Judgments of the First Set (SIMAB) on Measures of 

Common and Distinctive Features of Images 

Independent Variable B Beta t 
COMMNFE1 1.196 .486 9.505** 
DISTFEA1 -.033 -.197 -4.311** 
DISTFEB1 -.016 -.090 -2.181* 
R2=.45, F(3,431)=116.101**    
COMMNFE2 .252 .469 11.136** 
DISTFEA2 -.042 -.163 -3.865** 
DISTFEB2 -.020 -.089 -2.210* 
R2=.30, F(3,431)=60.423**    
COMMNFE3 .004 .666 16.838** 
DISTFEA3 -.00005 -.015 -.370 
DISTFEB3 -.00007 -.024 -.658 
R2=.46, F(3,431)=120.3**    

*p < .05, **p < .01 

Table 15 

Regression Analysis of Similarity Judgments of the Second Set (SIMBA) on Measures of 

Common and Distinctive Features of Images 

Independent Variable B Beta t 
COMMNFE1 1.042 .470 8.912** 
DISTFEA1 -.023 -.154 -3.268** 
DISTFEB1 -.020 -.129 -3.036** 
R2=.41, F(3,431)=100.913**    
COMMNFE2 .213 .440 10.199** 
DISTFEA2 -.035 -.148 -3.438** 
DISTFEB2 -.019 -.096 -2.310* 
R2=.26, F(3,431)=50.604**    
COMMNFE3 .003 .617 14.79** 
DISTFEA3 -.00004 -.013 -.303 
DISTFEB3 -.00009 -.035 -.917 
R2=.40, F(3,431)=93.285**    

*p < .05, **p < .01 
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Summary 

This chapter presents results of the analysis of data, research findings, and 

discussions of the results and findings with respect to the four research questions. 

Participants are described by demographic variables such as gender, age, major, etc. 

Results of the analysis of the image description and similarity judgment tasks, including 

descriptive statistics (mean, SD, skewness, kurtosis, Cronbach’s α) for all observed 

variables are presented. Data screening procedures followed and corrective measures 

taken before subjecting the data to further statistical analyses are explained. 

All four research questions were explored. Research question 1 (RQ1) deals with 

the measurement models of the independent latent variables (common and distinctive 

features). Measurement models with observed x variables measured using methods 1 & 3 

and 1 & 2 fit the data well. The second research question (RQ2) deals with testing the fit 

of the contrast model to sample data. A modified version of the contrast model with 

observed x variables measured using methods 1 & 2 is a good fit to the data with 

significant path coefficients (or loadings). 

The third research question (RQ3) concerns the relationships (associations) 

between common and distinctive features (independent variables) and similarity 

(dependent variable) of images. Pearson’s product moment correlation coefficients for 

the relationships between measures of common features and similarity of images are 

found to be positive and statistically significant (p<.01), while coefficients for the 

relationships between measures of distinctive features and similarity of images are 

negative and statistically significant (p<.05). The fourth and last research question (RQ4) 

deals with the predictive power (weights) of the common and distinctive features on 
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similarity of images. Results obtained under research question 2 (RQ2), that is, structural 

coefficients and their direction and magnitude are confirmed: common features have 

larger weights on similarity than distinctive features.  
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

Introduction 

The main purpose of this study was to investigate the nature of the relationships 

between common and distinctive features of images and their similarity, using Tversky’s 

(1977) contrast model as a theoretical framework, and to test the contrast model within 

the context of image representation and retrieval. Four research questions were 

formulated and explored to address the main purpose of the study. The first two research 

questions address issues related to measures of common and distinctive features of 

images and measurement as well as structural model fit to the sample data. The 

remaining two research questions address the nature of the relationships between 

common and distinctive features (independent variables) and their similarity (dependent 

variables), including the prediction power (weights) of the independent variables. 

Data were collected from 150 participants who were randomly assigned to two 

tasks (75 participants per task), an image description and a similarity judgment task, 

using a random sample of 30 images (435 pairs). The image description task data were 

summarized through content analysis and three measures of common and distinctive 

features. After initial screening and appropriate corrective measures, a set of 11 observed 

(nine observed x and two observed y) variables and four latent constructs/variables were 

subjected to analysis using LISREL© 8.54 (Jöreskog & Sörbom, 1993). 
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Results of the analysis together with research findings and discussions with 

respect to the four research questions are presented in chapter 4. This chapter summarizes 

the results and research findings, points out limitations of the study, and presents 

concluding remarks as well as implications of research findings for similar research and 

practice. Finally, recommendations are made as to possible considerations for future 

research. 

Summary of the Findings 

To reiterate, the main purpose of this study was to explore the nature of the 

relationships between features (common and distinctive) and similarity of images, using 

Tversky’s (1977) contrast model as a theoretical framework. This was achieved through 

correlation and regression analysis, and structural equation modeling. Four research 

questions were considered. 

The first research question dealt with three different methods used in the literature 

to measure common and distinctive features of objects. Four measurement models for the 

independent latent variables (common and distinctive features) were tested to find out 

which observed x variables, measured using the three methods, measure the independent 

latent variables well. In a way, this is also an indirect test of the appropriateness of the 

three methods. Two of the measurement models, one with the observed x variables 

measured using all three methods and the other with observed x variables measured using 

methods 2 and 3 did not fit the data well. Values of the model fit indices for the first 

measurement model (all observed x variables) were: χ2=548.48, df=27, p<.01, 

RMSEA=.211, SRMR=.125, GFI=.781, AGFI=.635. Values of the fit indices for the 

second measurement model were: χ2=136.24, df=9, p<.01, RMSEA=.180, SRMR=.0435, 
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GFI=.905, AGFI=.779. The remaining two measurement models, one with observed x 

variables measured using methods 1 and 3 (χ2=7.78, df=4, p>.05, RMSEA=.047, 

SRMR=.0207, GFI=.994, AGFI=.969) and the other with observed x variables measured 

using methods 1 and 2 (χ2=4.75, df=4, p>.3, RMSEA=.021, SRMR=.0234, GFI=.996, 

AGFI=.981) fit the sample data well. It turned out that the reason why measurement 

models involving observed x variables measured using methods 2 and 3 had poor fit to 

the sample data is due to multicollinearity (highly correlated observed variables 

measuring the same construct) and signgularity (perfectly correlated observed variables 

measuring the same construct) (Tabachnick & Fidell, 1989).  

The second research question concerns the extent of fit of the contrast model to 

sample data. The two-step approach of model testing (Jöreskog & Sörbom, 1993; 

Schumacker & Lomax, 1996) was used, where the measurement model is tested first and 

then the test of the structural model proceeds once the measurement model holds for a set 

of observed and latent variables. The measurement model with a combination of 

observed x variables measured using methods 1 and 2 and the two observed y variables 

(SIMAB and SIMBA) is a good fit to the data (χ2 =16.97, df=10, p > .05, RMSEA= .040, 

SRMR= .0205, GFI= .990, AGFI= .965). A modified version of the contrast model, with 

this measurement model, was tested and found to be a good fit to the data (χ2 =16.97, 

df=10, p > .05, RMSEA= .040, SRMR= .0205, GFI= .990, AGFI= .965) with statistically 

significant structural coefficients between the independent latent variables (common and 

distinctive features) and the dependent latent variable (similarity). The structural 

coefficients have the right directions and magnitudes and results confirm Tversky’s 

(1977) contrast model. The final structural equation for the contrast model fitted to the 
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data for the sample of images in the study is: sim= .58*commnfet - .18*distfeta - 

.07*distfetb. 

The third research question of the study was meant to investigate the 

relationships/associations between common and distinctive features and similarity of 

images. Some researchers have already found that while common features contribute to 

higher similarity judgments, distinctive features have the opposite effect (Johnson, 1981, 

1986; Tversky, 1977; Tversky & Gati, 1978). This was substantiated by results of this 

study where the Pearson’s product moment coefficients for the correlations between 

measures of common features and similarity of images are positive and statistically 

significant (p < .01, one-tailed). The correlations between measures of distinctive features 

and similarity of images are negative and significant (p < .05, one-tailed). 

The fourth research question raised the issue of the prediction power (weights) of 

common and distinctive features as predictors of similarity of images. Both regression 

analysis and structural equation modeling results confirm Tversky’s (1977) contrast 

model in that common and distinctive features can reliably predict similarity of images 

and common features have more predictive power (weights) than distinctive features. The 

structural equation for the contrast model (sim= .58*commnfet - .18*distfeta - 

.07*distfetb) compares well with the regression equations for the Model in terms of 

magnitudes and directions of structural coefficients and standardized regression weights. 

The regression equations for the contrast model (where SIMAB and SIMBA are the two 

observed y variables measuring similarity) are: 

SIMAB= .486*COMMNFE1 - .198*DISTFEA1 - .090*DISTFEB1 

SIMAB= .469*COMMNFE2 - .163*DISTFEA2 - .089*DISTFEB2 
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SIMBA= .470*COMMNFE1 - .154*DISTFEA1 - .129*DISTFEB1 

SIMBA= .440*COMMNFE2 - .148*DISTFEA2 - .096*DISTFEB2 

The numbers are standardized regression (β) weights. 

Limitations of the Study 

This study has some inherent limitations. Some of these limitations could not be 

avoided due to lack of access to well-defined populations of materials (images) and 

participants (image users). As a result, it was not practical to select a random sample of 

image users because such a population is not clearly defined and known. 

Lack of a standard test collection of images forced the researcher to select a 

sample of images from a publicly available collection of images (included in a published 

book). The relatively smaller size of the sample of images might be a limitation even 

though the selection of a smaller sample size is enforced due to the scaling procedures 

(paired comparisons) used for data collection to scale/measure similarity. Even for the 

sample of 30 images, each participant had to look at 870 pairs of images.  

In terms of the setting for data collection, it was not practical to bring participants 

to a common room and setting. Therefore, they were allowed to complete the image 

description and similarity judgment tasks on their own using their office or home 

computers and settings. This could be a potential limitation, although it was not evident 

from results of internal consistency measures, which are high (Cronbach’s α > .84). 

Content analysis was used to build feature sets of images. Individual features 

were assigned to categories of features. Even though the inter-coder agreements were 

high, the process of assigning features to categories through content analysis might have 

had a bearing on the results. As a result of these limitations (assignment of features to 
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categories), findings of this study may have limited generalizability. However, in spite of 

the above mentioned limitations, results of this study are valuable for future research. 

Concluding Remarks 

Attributes/features of documents are the basis for representation and indexing of 

both image and text documents. Not only does similarity play a central role in human 

perception and learning, psychological models of similarity have also been adopted for 

information retrieval purposes in the form of similarity measures used for determining 

inter-document similarity or similarity between representations of documents and users’ 

queries. However, few researchers devote their time and energy in trying to understand 

the nature of perceived features and similarity of documents, including image documents. 

This study is the first to test a psychological model of similarity, other than geometric 

models, in the context of document representation and retrieval. 

Results of the study point to the fact that a linear combination of common and 

distinctive features of images can reliably predict their similarity, an assertion made by 

Tversky (1977) when he formulated the contrast model of similarity between objects. The 

contrast model fits data for a sample of images well with the structural relationships 

between common and distinctive features (independent latent variables) and similarity 

(dependent latent variable) in the expected directions and with the expected magnitudes. 

Correlations between common and distinctive features and similarity of images are 

positive (and significant, p < .01) and negative (and significant, p < .05), respectively. 

This is due to the fact that participants tend to pay more attention to common features 

than distinctive features in their similarity judgments (Tversky, 1977). 
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Regression analysis results for the sample of images in this study indicate that 

common and distinctive features of images (measured using methods 1 and 2) are 

significant predictors of their similarity, with common features having more weights than 

distinctive features. Furthermore, common features have larger relative weights than 

distinctive features, an observation originally made by Tversky (1977). However, 

distinctive features measured without taking into account the number of times a feature is 

attributed to an image (e.g. method 3) were not significant predictors of similarity. In 

general, there is empirical and theoretical support for these results in the literature 

(Johnson, 1981, 1986; Tversky, 1977; Tversky & Gati, 1978). 

Implications of Research Findings 

Research findings in this study have implications for both researchers trying to 

better understand the nature of the relationships between perceived features of objects 

and their similarity as well as designers of information representation and retrieval 

systems. The current study is the first to test Tversky’s (1977) contrast model, in the 

context of representation and retrieval of image documents, using images as materials 

and structural equation modeling techniques. Results of the study will provide the 

foundations for future research that will attempt to test the Model using not only images, 

but also other types of objects as stimuli. 

The study has methodological implications as well, especially the 

scaling/measurement of common and distinctive features and of perceived similarity. All 

observed variables in the study had high reliability coefficients (Cronbach’s α > .84). The 

fact that reliable scaling procedures were developed and used in this study is a significant 

methodological contribution to the literature. These procedures should be useful for 
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future research that involves the scaling/measurement of common and distinctive features 

as well as similarity of images and other types of stimuli. 

Results of the study confirmed that the contrast model explains human similarity 

judgments of images well. This has image representation and retrieval (more specifically 

similarity matching) implications. Given the fact that most of the current vector-space-

model-based information retrieval systems use similarity measures derived from 

geometric models of similarity, despite their weaknesses, a similarity measure based on 

the contrast model would be a viable alternative. Moreover, a representation model 

mainly based on sets of features of documents would serve as an alternative to the vector-

space model. 

Two characteristics set a retrieval system where documents are represented by 

sets of features and similarity matching of document representations (or document and 

query representations) based on the contrast model and systems where the vector-space 

model document representation and similarity measures based on geometric models of 

similarity (e.g. angle (cosine) measure, Euclidean distance, etc.) are adopted apart. The 

first distinction is while the first type of retrieval systems considers individual features of 

documents as discrete elements of a feature set; the latter consider them as an array of 

numbers or a vector. The second distinction is that while similarity measures based on the 

contrast model would give more weight to common features than distinctive features of 

documents, similar to how people rate similarity of objects, and similarity is determined 

through a linear combination of measures of common and distinctive features, similarity 

measures based on geometric models of similarity do not weigh common and distinctive 

features the same way. 
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Both alternative methods of representation and similarity matching may prove to 

be useful and effective. However, any similarity measure based on the contrast model 

needs to take into account the fact that common features carry more weights than 

distinctive features. Alternative image representation methods and similarity measures 

have been explored in the past (Rubner, 1999; Santini & Jain, 1999). However, extensive 

evaluations of these methods will be required. In order for these evaluations to be fruitful, 

the role of the end user must be considered. 

Recommendations for Future Research 

This study used the minimum required number of two observed variables for each 

latent variable in the model. Even if this is not a major handicap, researchers who attempt 

to test the contrast model need to develop and introduce more measures of common and 

distinctive features as well as more scales for the measurement of similarity of pairs of 

objects. 

Subsequent studies should attempt to test the contrast model using samples of 

materials (images and other types of information objects) and participants (users of 

images and other information objects) selected from well-defined populations (for 

instance, a standard test collection of images and a community of image users such as 

photo journalists, etc.) in order to validate results of this study. 

The next logical step seems to be the design, development, and testing/evaluation 

of document representation methods and similarity measures based on the contrast model 

in a functional information retrieval environment. Testing may involve comparisons of 

the contrast model-based representation methods and similarity measures to existing 

methods and measures such as the vector-space model and the angle (cosine) and 
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distance-based similarity measures. Traditional retrieval effectiveness and efficiency 

measures such as recall and precision as well as alternative metrics could be used for 

testing/evaluation purposes. Furthermore, if feature set based document (especially image 

document) representations are to be adopted by retrieval systems, there is a need for 

thorough investigations into the types and levels of attributes/features not only perceived 

but also used during searching by people/users. 

Summary 

A short summary of results and research findings is presented in this chapter. All 

research findings of the study support Tversky’s (1977) contrast model, which depicts 

similarity judgment as a feature contrast task and equates it to a linear combination of 

common and distinctive features. Common features of images were found to have a 

higher predictive power (weight) on their similarity than did distinctive features. 

The chapter also presents limitations of the study, concluding remarks, 

implications of research findings, and recommendations for future research. Limitations 

of the study are mainly related to the number of observed variables of each latent variable 

in the contrast model and to sampling of materials (images) and participants (image 

users). Concluding remarks concern the nature of the relationships between common and 

distinctive features of images and their similarity as well as the relative weights of 

common and distinctive features as predictors of similarity of images.  

Implications of research findings are discussed in terms of alternative image 

representation methods and similarity measures based on the contrast model. 

Methodological implications of the study are also discussed. Finally, recommendations 

are made for future research with respect to testing the contrast model and evaluation of 
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representation methods and similarity measures based on the contrast model, including 

comparisons of these methods and similarity measures with other methods and similarity 

measures, in a functional information retrieval environment. 
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IMAGES USED IN THE STUDY 
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1* 2* 3* 

 

4* 5* 6* 

   

7* 8* 9* 

  
10* 11* 12* 

13* 14* 15* 

 

   
   
*O’Connor & Wyatt (2004) (Used with permission 
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16* 17* 18* 

19* 20* 21* 

22* 23* 24* 

25* 26* 27* 

28* 29* 30* 

*O’Connor & Wyatt (2004) (Used with permission 
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INSTRUCTIONS 

Thank you for taking your time to participate in our study. The study is trying to 

answer questions regarding perceived features and similarity of images/pictures. In this 

session, your task will be to describe a set of 32 images/pictures by listing all possible 

features/attributes/things that you see (perceive) in each image.   Please separate adjacent 

features/attributes/things in your list by a semicolon (e.g. pretty woman; dog; jumping 

girl; etc.). You will have a maximum of 90 seconds (one and half minutes) for each 

image and if you cannot think of anything more to describe in the image before the 90 

seconds lapse, go to the next image by clicking on the button. Please note that 

there are no right or wrong answers.  Let me know if you need more explanation. The 

Institutional Review Board (IRB) of the University of North Texas has approved this 

study and your responses will be anonymous and confidential. Let me know if you have 

any questions. When you are ready to start the image description task, please click on 

.
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IMAGE DESCRIPTION TASK 

.
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INSTRUCTIONS 

Thank you very much for taking your time to participate in our study. In this 

session, you are requested to judge the degree of similarity of pairs of images. Before 

judging the degree of similarity of pairs of images, you will be shown five (5) lines of 

various lengths. Imagine small, medium and large lines. Imagine also small, medium and 

large numbers. I would like you to assign numbers to each line in such a way that the 

larger the number the larger the line, and vice versa. Please assign any positive number 

(including fractions and decimals) and do not think of any specific unit of measurement 

(e.g. inches, centimeters). Please try to judge the length of each line independently 

without comparing it to preceding lines. Your response should be as spontaneous as 

possible. 

After the lines, you will be presented with a series of pairs of images. I would like 

you to judge how similar the two images in each pair are (using your own criteria for 

similarity) by clicking on the horizontal line in such a way that the length of the line up to 

the point where you clicked matches your judgment of the degree of similarity of the pair 

of images. Please be spontaneous in your response and complete the task in its entirety. 

You will take a five(5) minutes break halfway through the task. The Institutional Review 

Board (IRB) of the University of North Texas has approved this study and your responses 

will be anonymous and confidential. Let me know if you have any questions. When you 

are ready to start the similarity judgment task, please click on .
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SIMILARITY JUDGMENT TASK 
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Instructions for Coders 
 
Attached are three documents: 

• A set of 30 images (pictures) 
• A list of 954 feature bearing terms or phrases which were assigned to the 30 

images (image numbers are included together with this list of feature terms) by 75 
participants as part of an image description task. 

• A list of 39 categories of features. 
 
I would like you to examine each feature term, determine which category it 

belongs to in the list of categories of features, and then assign the corresponding category 
number in the “category#” column. 

 
Please do not assign any “category#” if you think that the feature term does not 

belong to any of the 39 categories. 
 
Please let me know if you have any questions. 
 
Thank you. 
 
Abebe Rorissa 

 
Sample features assigned to a category 

Category: Art(ist)/Museum/Sculpture 
Art 
Art-Gallery 
Artist 
Art-Museum 
Artsy 
Artwork 
Gallery 
Interaction-With-Art 
Modern-Art 
Modern-Artsy 
Modern-Sculpture 
Museum 
Museum-Or-Public-Park 
Portrait 
Sculpted 
Sculpture 
Sculpture-In-The-Park 
Sculptures
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