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Maxwell's equations are obtained from Coulomb's Law using special relativity.  

For the derivation, tensor analysis is used, charge is assumed to be a conserved scalar, 

the Lorentz force is assumed to be a pure force, and the principle of superposition is 

assumed to hold. 

Einstein's gravitational field equation is obtained from Newton's universal law of 

gravitation.  In order to proceed, the principle of least action for gravity is shown to be 

equivalent to the maximization of proper time along a geodesic.  The conservation of 

energy and momentum is assumed, which, through the use of the Bianchi identity, 

results in Einstein's field equation. 
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CHAPTER 1 

INTRODUCTION 

Thousands of years ago, the more advanced ancient societies were aware of the 

forces of electricity and magnetism.1  Several hundreds of years ago, these forces were 

considered to be different manifestations of the same kind of force.  Ironically, this 

unification was dismissed for centuries as the scientific community pursued a more 

enlightened philosophy.  It wasn't until the time of James Clerk Maxwell that the 

unification of these two forces was again accepted.  Of course, this did not play well 

with the mechanics proposed by Isaac Newton.2  The two theories, electromagnetism 

and classical mechanics, required different treatments when transformed from one 

coordinate system to another.  This indicated that at least one of the two theories 

needed an adjustment.  The first idea was to adjust Maxwell's equations to 

accommodate classical mechanics, but Albert Einstein saw things the other way 

around.2 

Einstein used symmetry to show algebraically that length contraction and time 

dilation are consequences of the invariance of the speed of light.3  To solidify the 

principle of relativity, he developed a geometrical picture in which tensors that transform 

according to Lorentz transformation matrices represent all physical objects in flat space-

time.2  In this regard, the magnetic field is a consequence of the application of special 

relativity to the electric field under a Lorentz transformation.  Ultimately, tensor analysis 

can be used to derive Maxwell's equations from Coulomb's Law and the assumptions 

that charge is a conserved scalar and that the principle of superposition holds.2 
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 After completing his theory of special relativity, Einstein realized that the next 

great accomplishment would be to make gravitation consistent with the special theory of 

relativity.2  Mass, the source of gravitation, is very different than charge, and the 

analogy between gravity and electrostatics breaks down.2  Einstein showed that the 

gravitational field is actually a distortion of space-time itself.2  For general relativity, 

tensors had to be used so that the form of the equations of physical laws remained 

invariant under general coordinate transformations.  This is called the principle of 

general covariance.4 

 Applying the principle of general covariance and the equivalence principle to 

Newton's universal law of gravitation gives Einstein's gravitational field equation, if 

energy is conserved.  Poisson's equation for gravity can be generalized to Einstein's 

gravitational field equation, a second rank tensor equation.2  In the limit that the sources 

are stationary and the fields they produce are weak, Einstein's equation reduces to 

Poisson's equation for gravity.2  Therefore, Newton's law for gravity, which he 

presented5 in 1686, is still a valid way to describe "weak gravitational interactions" in 

which the interacting bodies have constant mass and have negligible velocity compared 

to the speed of light.  That Newton's law for gravity is still valid today in the appropriate 

limit demonstrates the smooth progression of classical physics over the last few 

centuries. 
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CHAPTER 2 

SPECIAL RELATIVITY:  DERIVATION OF MAXWELL'S EQUATIONS 

2.1. Introduction 

Magnetism was most likely first recognized thousands of years ago by the 

Chinese as a force, though most thought it to be of magical origin.1  The source of this 

magic was known as lodestone.  Almost as long ago, the Greeks first recognized that a 

force emanated from amber.  This was the first observation of the electrostatic force.1  A 

millennium later, in the sixteenth century during the renaissance, interest in science 

grew, and sparked an explosion of scientific discoveries.  Charles Coulomb 

experimentally demonstrated in 1785 that the electrostatic force obeys an inverse 

square law.1  In 1873, James Clerk Maxwell presented his Treatise on Electricity and 

Magnetism which showed a unification of the contemporary theories of electricity and 

magnetism into an elegant set of four equations known as Maxwell's equations.6  Along 

with the elegance of the equations came the realization that electromagnetic waves 

should propagate away from a source at the speed of light (a phenomenon that Heinrich 

Hertz verified experimentally in a series of experiments conducted between 1879 and 

1889).6  In 1890, Hendrik A. Lorentz proposed transformations that maintained the form 

of Maxwell's equations for frames of reference moving at different velocities with respect 

to the source of the electromagnetic field.7  A transformation of this type is known as a 

Lorentz transformation.  Einstein showed in 1905 that the Lorentz transformations could 

be derived algebraically with the assumption that the speed of light is the same for any 

observer in any inertial frame of reference,3 and so modified classical mechanics to be 

consistent with electromagnetism.2 
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There have been many attempts to obtain Maxwell's equations from Coulomb's 

Law using special relativity, though the approaches and assumptions vary.  R. P. 

Feynman uses the scalar and vector potentials.8  E. Krefetz indicates that a multitude of 

assumptions must be made in order to carry out the derivation.9  W. Rindler gives a very 

similar approach, as well as using potentials to justify certain steps.10  D. H. Frisch and 

L. Wilets offer a very detailed and rigorous approach.11  One of the most significant 

approachs to the one given in this chapter was presented by D. H. Kobe.2  However, 

there are some considerations that are given more attention in this chapter. 

Tensors are discussed in general in Sec. 3.  In Sec. 4 Gauss' Law for 

electrostatics is generalized to Gauss' Law for time varying fields and to the Ampere-

Maxwell Law.  In Sec. 5 the conservative nature of the electrostatic field is generalized 

to Faraday's Law and the law of no magnetic monopoles.  The proper time introduced in 

Sec. 3 and the Faraday tensor developed in Secs. 4 and 5 are used to generalize 

Newton's second law for a charged particle to the Lorentz force in Sec. 6.  Sec. 7 gives 

the conclusion for this chapter. 

  2.2. Lorentz Transformations 

Einstein postulated that the speed of light should be the same for both of two 

observers, regardless of their relative motion (as long as neither experiences an 

acceleration).  Using this postulate, the Lorentz transformations can be obtained.  

Consider two observers, A and B, moving along the x -axis.  They both pass through 

the origin at time 0=t .  Let A observe B to move to the right (in the x+  direction) at a 

constant speed, v .  Now, assume that A sends out a light pulse isotropically from the 

origin at 0=t .  Of course, observer A will consider this as a spherical wavefront, 
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centered at herself, the radius of which increases at a rate, c .  The "strange" 

consequence of Einstein's postulate is that B will also consider this as a spherical 

wavefront, centered at himself, the radius of which also increases at a rate, c .  This is 

strange in terms of Galilean relativity.  While B should consider a spherical wavefront, 

he should consider the center of the sphere to move to the left (in the x−  direction).  

However, according to Einstein's special theory of relativity, the center of the sphere will 

not move at all with respect to B; B will also remain at the center of the sphere.  

Therefore, some aspect of the common sense of Galilean relativity must change.  

Einstein's relativity abandons the notions of absolute time and absolute space, and it 

replaces them with the invariance of the speed of light in all inertial frames.  The Lorentz 

transformations, instead of Galilean transformations, determine Cartesian coordinate 

transformations from one inertial frame to another. 

To proceed with the derivation, it is convenient to introduce two coordinate 

systems, K and K', and restrict the discussion to 1 spatial dimension.  Let K be defined 

as the coordinate system in which A is at rest and B is moving to the right at a constant 

velocity, v .  Let K' be defined as the coordinate system in which B is at rest.  Since B is 

moving to the right relative to A at a speed, v , then A moves to the left relative to B at a 

speed, v .  Therefore, in K', A is moving to the left at a constant velocity, v .  This has a 

straightforward representation in Cartesian coordinates. 

In coordinate system K, let Ax  be the value of the x  coordinate of A's position, 

and let Bx  be the value of the x  coordinate of B's position.  Thena 

 0=Ax , (1) 
                                            
a Note:  the coordinates are, in general, functions of time. 
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and 

 vtxB = . (2) 

In coordinate system K', let Ax′  be the value of the x  coordinate of A's position, 

and let Bx′  be the value of the x  coordinate of B's position.b  Then 

 tvxA ′−=′ , (3) 

and 

 0=′Bx . (4) 

Since the speed of light is invariant, the light pulse has the same coordinate 

representation in both coordinate systems.  Along the x  -axis 

 ctxc ±=± , (5) 

and 

 tcxc ′±=′± . (6) 

Equations (5) and (6) show Einstein's postulate in mathematical form.  The (+) 

and (-) signs in equations (5) and (6) indicate a rightward and leftward traveling light 

pulse, respectively.  Equations (1) through (6) suggest an ostensible contradiction.  The 

right side of the light pulse relative to B in coordinate system K seems to be traveling 

more slowly than c  relative to B, and the left side seems to be exceeding the speed c .  

To resolve the contradiction, one must realize that vtxx −=′ , and that tt ≠′  (in 

                                            
b Notice the prime on the time parameter in equation (3).  Time is not necessarily the 

same from one coordinate system to another.  This is how the paradox is resolved. 
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contradiction to the Galilean transformation that says tt =′ , always).  The next stepc is 

to rewrite equations (5) and (6) as 

0=−+ ctxc      and     0=′−′+ tcxc  

for the rightward traveling light pulse, and 

0=+− ctxc      and     0=′+′− tcxc  

for the leftward traveling light pulse.  The assumption that an affine transformation 

(linear in this particular example) exists between the coordinates in K and the 

coordinates in K' leads to3 

 )()( tcxactx cc ′−′=− ++ , (7) 

and 

 )()( tcxbctx cc ′+′=+ −− , (8) 

where a  and b  are arbitrary constants.  This affine transformation is assumed to apply 

to all events in space-time, not just those on the light cone, since a light cone can 

always be defined through any given event.  Generalizing +cx  and −cx  to x  and +′cx  and 

−′cx  to x′ , equations (7) and (8) can be rearranged to give the primed coordinates in 

terms of the unprimed coordinatesd 

                                            
c This step is not at all obvious.  The motivation is based on the desire to find a 

transformation for all points, not just those on the light cone. 

d This results in two equations, four variables, and two arbitrary constants (to be 

determined subsequently).  So, given two of the variables, the equations may be solved 

for the other two, up to the arbitrary constants. 
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( ) ( )
( )

( )ct
ab

ba
ba
bax

ab
bax

22
+

+
−

+
+

=′  

and 

( )
( )

( ) ( ) t
ab

ba
c
x

ab
ba

ba
bat

22
+

+
+

+
−

=′ . 

The role of the two arbitrary constants, a  and b , can be fulfilled by two different 

arbitrary constants, β  and γ , defined ase 

( )
( )ba

ba
+
−

=− β      and     ( )
ab

ba
2
+

=γ  

so that 

 ctxx βγγ −=′ , (9) 

and 

 t
c
xt γβγ +−=′ . (10) 

The arbitrary constant, β , can be found by using the primed and unprimed 

coordinates to describe the position of observer B.  Combining equation (9) with 

equations (2) and (4) gives 

 
c
v

=β . (11) 

To find the arbitrary constant, γ , symmetry must be used.  Equations (9) and (10) give 

the coordinates of an event as seen by observer B, in terms of the coordinates as seen 

                                            
e This does not change the generality, since the number of arbitrary constants does not 

change.  These particular symbols are chosen in anticipation of the result and 

recognition of the standard usage. 
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by observer A, given that B is moving with a velocity, v , in the x  direction as seen by 

observer A.  The symmetry suggests that there should also be two such equations to 

tell B where an event will appear in A's perspective.  The coordinate values should also 

match between the two sets of equations if they are to be meaningful.  Equation (11) is 

used to replace β  in equations (9) and (10). 

 tvxx γγ −=′ , (12) 

and 

 t
c
xvt γγ +−=′ 2 . (13) 

Solving equations (12) and (13) for x  and t  gives 

 t
vc

cvx
vc

cx ′
−

+′
−

=
)()( 22

2

22

2

γγ
, (14) 

and 

 t
vc

cx
vc

cvt ′
−

+′
−

=
)()( 22

2

22

2

γγ
. (15) 

Since the velocity of A relative to K' is the opposite of the velocity of B relative to 

K, the v 's must be multiplied by -1 in equations (14) and (15) in order to compare the 

form to equations (12) and (13).  In doing this, it is seen that all four factors agree so 

that γ  must satisfy 

)( 22

2

vc
c
−

=
γ

γ . 

This gives 

 
22 /1

1
cv−

=γ . (16) 
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Finally, note that no transformation of the y  or z  coordinates occur, so that 

 
zz
yy

=′
=′ . (17) 

Equations (12), (13), and (17), together with the definitions (11) and (16), give the 

primed coordinates of an event in space-time in terms of the unprimed coordinates.f  In 

matrix notation, this can be written as 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′
′
′
′

z
y
x
ct

z
y
x
tc

1000
0100
00
00

γβγ
βγγ

. (18) 

The inverse of the matrix in equation (18) represents a boost in the opposite direction, 

which is accomplished by changing the (-) signs to (+) signs. 

2.3. Tensors 

The previous section emphasized an algebraic derivation of the Lorentz boost.  

However, there is a much more geometrical interpretation of the Lorentz boost.  The 

benefit of a geometrical interpretation is that it provides an intuitive understanding of the 

effects of a Lorentz boost on the coordinates (length contraction and time dilation).  To 

develop an understanding of the representation of physical objects by tensors, consider 

three immediate examples of three different tensor ranks:  the speed of light as a scalar, 

                                            
f The primed coordinates are the coordinates of the event as seen by an observer 

moving with a speed v  in the x  direction as seen with respect to the unprimed 

coordinate system.  Since the orientations of the coordinate systems are arbitrary, they 

can always be rotated so that their x  axes coincide with the direction of the boost. 
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an event (or, more appropriately, a displacement) in space-time as a 4-vector, and the 

metric as a second rank tensor. 

2.3a. Scalar Fields (0th Rank Tensors) 

The speed of light is a constant scalar field in special relativity.  Scalar fields are 

tensors of rank 0, and vice versa.  Being a field means that the object is defined over a 

connected region of space-time.  Being a constant means that the object has the same 

value at every point in the region of interest. 

Scalar fields are invariant to Lorentz transformations.  Consider an arbitrary point 

in space-time, (also called an "event"), represented in shorthand notation by, µx .  Let 

an arbitrary scalar field, φ , take the value, ( )µφ x , at the point µx .  Let primes indicate 

transformed values under some Lorentz transformation.  Since φ  is a scalar field, it 

satisfies the relationship 

 ( ) ( )µα φφ xx =′′ . (19) 

Equation (19) defines φ  as a tensor of rank 0.  This means that the value of the 

scalar field at an arbitrary point in space-time transforms to the same value at the 

transformed point in space-time under a Lorentz transformation.  In other words, 

changing the space-time perspective (coordinate system) does not change the 

numerical value of the scalar field at any given point in space-time. 

2.3b. Vector Fields (1st Rank Tensors) 

Increasing the rank of the tensor increases the level of complexity.  Equation (18) 

can be written in component form as 

 ∑
=

=′
3

0ν

ν
ν

µµ xax , (20) 
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where µx′  is the thµ  component of the four-component column vector on the L.H.S. of 

equation (18), νx  is the thν  component of the four-component column vector on the 

R.H.S. of equation (18), and ν
µa  is the component in the thµ  row and thν  column of the 

matrix in equation (18).g  The scripts run from 0 to 3.h  Einstein's summation convention 

provides a shorthand notation for equation (20).  A summation from 0 to 3 over any 

Greek-letter index that appears once as a superscript and once as a subscript in a given 

term is implied in Einstein's summation convention.12  Using this convention, equation 

(20) can be written as12 i 

 ν
ν

µµ xax =′ . (21) 

This kind of summation is called "contraction."  An event in space-time can be 

represented by a position 4-vector, which can in turn be represented by one temporal 

component (ct ), and three spatial components ( x , y , and z ).  The first component of 

                                            
g  In other words, equation (20) is the operation of a matrix on a vector in linear algebra 

written out explicitly. 

h Starting the index at 0 is merely a convention.  This convention will be used in this 

paper since it is ubiquitous in the literature. 

i There is no physical significance to what specific Greek letter is used for any given 

index.  The letters µ  and ν  happen to be popular choices.  What is physically 

significant is whether or not the specific letter is repeated and therefore involved in a 

summation. 
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the position 4-vector,j 0x , is identified with the product of the speed of light with the time 

of the event, ct .  The other three components of the position 4-vector, 1x , 2x , and 3x , 

are arbitrarily identified with the Cartesian components of the position 3-vector that 

represents the point in space at which the event occurs, namely, ( x , y , z ).  This refers 

explicitly to the νx  on the R.H.S. of equation (21).  The µx′  on the L.H.S. is treated 

similarly, but with respect to components in the primed coordinate system. 

It is more appropriate to express equation (21) in terms of differentials.k 

 ν
ν

µµ dxaxd =′ , (22) 

where the coordinates refer to some trajectory represented as a curve in 4-dimensional 

space-time.l  Equation (22) establishes a paradigm2 for a tensor of rank 1 in the context 

of special relativity (Minkowski space-time)12 in terms of its components (the 

components in equation (22) are the contravariant components).  4-vectors are tensors 

of rank 1, and vice versa.2  The components, ν
µa , are the corresponding components of 

                                            
j Do not confuse these upper indices with exponents.  Exponentiation will be indicated 

by first putting the variable in parenthesis, unless the context makes the use as an 

exponent obvious. 

k The reason behind this, though not extremely complicated, is deferred to the next 

chapter in the discussion of curved manifolds.  As a brief justification, it involves the 

more appropriate concept of a tangent vector from differential geometry. 

l It is chosen as a scalar so that it remains unaffected by the Lorentz transformation 

matrix and is thus a global parameter. 
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the Jacobian transformation matrix.  In other words, equation (22) just shows the 

application of the chain rule in multivariable calculus such that 

 ν
ν

µ
µ dx

x
xxd
∂
′∂

=′ , (23) 

where Einstein's summation convention is being used.  Equation (23) shows the 

geometrical meaning of the Lorentz transformations. 

A tensor of rank 1 is similar to a vector in linear algebra in the sense that the 

matrix multiplication of a vector has the form of equation (23).  However, there is a 

stronger requirement on 4-vectors in the geometrical context of tensors.  The 

contravariant components of a tensor of rank 1 (4-vector) must transform according to 

equation (22) under a Lorentz transformation.  That is, no extra terms should result from 

a Lorentz transformation than those that appear in equation (22). 

The components of a vector field transform under a Lorentz transformation.  

Consider an arbitrary point in space-time represented in shorthand notation by, νx .  Let 

the contravariant components of an arbitrary vector field, A , take the values, ( )νµ xA , 

at the point νx .  Let primes indicate transformed values under some particular Lorentz 

transformation.  Since µA  are the contravariant components of a vector field, they 

satisfy the relationship 

 ( ) ( )νµ
µ

αβα xAaxA =′′ . (24) 

Equation (24) defines A  as a tensor of rank 1.  This means that the value of the 

contravariant components of a vector field at an arbitrary point in space-time transform 

into a contraction with components of the Lorentz transformation matrix at the 

transformed point in space-time under a Lorentz transformation.  In a sense, the value 
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of the tensor itself does not change.  However, the need to represent the tensor as a set 

of 4 numbers requires a transformation of these four numbers according to equation 

(24), much like rotating the coordinate axes changes the individual components of a 

vector without actually changing the vector itself. 

The components of a tensor can also take the covariant form.  The paradigm for 

this form of component is the partial derivative operator, which can be written using the 

shorthand 

 µµ x∂
∂

≡∂ . (25) 

An important difference in the notation for covariant components is that the index is 

written as a subscript, rather than a superscript.  The transformation rule for such 

components is similar to equation (24), except that the components have subscripts 

instead of superscripts and the indices on the components of the transformation matrix 

are switched: 

 ( ) ( )ν
µα

µβ
α xAaxA =′′ . (26) 

The two different forms of components are discussed in more detail in the next two 

subsections. 

2.3c. Second Rank Tensors 

In order to have a sense of scale ("closeness"), a scalar productm is defined 

using a tensor of rank 2 called the metric tensor.  In special relativity there are four 

dimensions, so a tensor of rank 2 will have 42 = 16 components, in general.  These 

                                            
m The scalar product is a generalization of the dot product to spaces that are not 

Euclidean. 
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tensors seem quite similar to 4x4 matrices in linear algebra, but there are several 

differences that make this comparison dangerously confusing.  One confusing similarity 

between second rank tensors and 4x4 matrices is the compact manner of listing the 

components in four rows and four columns.  This makes a second rank tensor look 

much like a matrix, but, keep in mind that the tensor is an object independent of the 

particular arrangement of components.  However, out of convenience, the components 

of the metric tensor in special relativity are usually given as12 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
=

1000
0100
0010
0001

µνη . (27) 

The scalar product is written in component form as 

 νµ
µνη vu=⋅ vu , (28) 

where u  and v  are arbitrary 4-vectors, and µu  and νv  are their contravariant 

components.n  The scalar product is a true scalar in the sense that it is a tensor of rank 

0.   As an example, consider the squared distance from the origin to a point in space.  In 

3-dimensional Euclidean space, this can be found from the Cartesian components as 

the sum of the squares of the components.  This is actually the scalar (dot) product of 

the position vector with itself.  In flat space-time (special relativity), the distance is 

generalized to something called the proper distance, but is fundamentally the same:  it 

is the scalar product of the position 4-vector with itself.  However, in space-time this is 
                                            
n Don't forget that, since the Greek indices appear once as a subscript and once as a 

superscript, they are summed over, from 0 to 3.  This summation is called contraction 

when both factors in the summation are components of tensors. 
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not exactly the sum of the squares.  Using equation (28) with the definition from 

equation (27), the square of the differential proper distance is given by 

νµ
µνη dxdx=⋅dxdx  

( ) ( ) ( ) ( ) =−−−=
23222120 dxdxdxdx  

 222222 dsdzdydxdtc =−−− , (29) 

where ds  is the differential proper distance.  Notice that the surface, 0=ds , gives a 4-

dimensional cone.  This is called the light cone,o because it represents the set of all 

events in space-time through which a ray of light could pass, given that it passes 

through the origin of 3-dimensional space at time 0=t .  If 0≠ds , then equation (29) 

gives a 4-dimensional hyperboloid.p 

 Derived from the differential proper distance is the fundamentally important 

scalar called the differential proper time, which is literally just the differential proper 

distance divided by the speed of light. 

( )222221 dzdydxdtc
c

d ++−=τ , (30) 

                                            
o It is called a "cone," but don't forget that this is a 4-D cone.  Picture a sphere that 

shrinks down to a point and then immediately expands again.  If that point is the origin, 

and the radius of the sphere shrinks and expands at the constant rate, c , then this 

shrinking and expanding sphere is the light cone.  If space were two dimensional, then 

this could be represented as the familiar version of a cone. 

p That is why the hyperbolic functions are a very straightforward way to express the 

Lorentz transformations. 
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where τd  is the differential proper time.  This gives the time experienced by an 

observer who undergoes a given displacement in space-time.  This is the parameter 

used to generalize the time derivative in many physical laws. 

The usefulness of second rank tensors has been demonstrated by the Minkowski 

metric tensor.  In general, the components of a second rank tensor field follow a certain 

transformation rule.  Consider an arbitrary point in space-time represented in shorthand 

notation by, κx .  Let the contravariant components of an arbitrary second rank tensor 

field, B , take the values, ( )κµν xB , at the point κx .  Let primes indicate transformed 

values under some particular Lorentz transformation.  Since µνB  are the contravariant 

components of a second rank tensor field, they satisfy the relationship 

 ( ) ( )κµν
ν

β
µ

αλαβ xBaaxB =′′ . (31) 

Equation (31) defines B  as a tensor of rank 2.  The contravariant components of 

a second rank tensor field at an arbitrary point in space-time transform into a contraction 

of each index with components of the Lorentz transformation matrix at the transformed 

point in space-time under a Lorentz transformation.  Again, the tensor itself does not 

change, but the contravariant components change according to equation (31). 

At this point one should notice that there is one Lorentz transformation factor for 

every rank of the tensor.  As in the case for the covariant components of a first rank 

tensor, in the transformation rule for the covariant components of a second rank tensor, 

the indices on the components of the Lorentz transformation matrices are switched.  A 

more detailed discussion of the distinction between contravariant form and covariant 

form follows in the next subsection. 
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2.3d. Superscripts vs. Subscripts 

There is a shorthand notation for the contraction of the metric tensor with another 

tensor,q called raising and lowering an index, or "index gymnastics."2  Since the metric 

tensor plays a fundamental roll in the analysis, it frequently appears in the formulae.  

Rather than explicitly write it out, it is more convenient to use this shorthand.  If the 

metric tensor is contracted with the superscript of another tensor, then the superscript is 

written as a subscript and the metric tensor is omitted.  As an example, the scalar 

product can be simplified using the shorthand as 

 µ
µν

ν
νµ

µνη dxdxdxdxdxdx == . (32) 

This introduces a new kind of component, which is indexed with a subscript, called 

covariant.  Intuitively, the contravariant components (with the superscript) refer to the 

coordinates in terms of the constant coordinate hyperplanes, while the covariant 

components (with the subscript) refer to the coordinates as measured along the axes 

(which are the intersections of all other hyperplanes).  This gives the scalar product the 

intuitive meaning of the number of hyperplanes through which a line segment passes.13  

The partial derivative is the paradigm for the covariant component,2 since it holds all 

other variables fixed, and thus "moves along the coordinate axis."  In Cartesian 

coordinates, the distinction is trivial, since the coordinate system is orthogonal.  In 

special relativity there is a non-trivial distinction, in that, changing between contravariant 

and covariant form changes the sign on the 1st, 2nd, and 3rd components.  This can be 

                                            
q This is actually more than just a convenient shorthand; it shows that the contraction of 

the components of the metric tensor with the contravariant components of a 4-vector 

gives the covariant components of the 4-vector. 
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seen by comparing equation (29) with equation (32).  Since the partial derivative is the 

paradigm for the covariant component, it is given a special symbol. 

 f
x
f

µµ ∂≡
∂
∂ , (33) 

where f  is a scalar function of the position in space-time.  Notice that the symbol takes 

a subscript, indicating that it is covariant.  So, the differential is the paradigm for the 

contravariant form of a vector, and the partial derivative is the paradigm for the 

covariant form of a vector. 

The components of the metric tensor also have a contravariant form that raises 

the index of covariant components to make them contravariant.  The different types of 

components of the metric tensor satisfy the relationship:12 

 ν
µ

αν
µα δηη = , (34) 

where ν
µδ  is the Kronecker Delta.r  Notice that the two forms of the components of the 

metric tensor are contracted on one index, leaving one free indexs from each tensor.  In 

general, the contraction takes away one rank from each tensor, so, the components of 

two 2nd rank tensors contracted on one of their indices leaves 2 - 1 + 2 -1 = 2 indices, 

and therefore results in components of a 2nd rank tensor.  The contraction of the 

components of two 1st rank tensors (4-vectors) results in a tensor of rank 0 (scalar).  

Also notice that the result preserves the placement of the remaining indices as a 

subscript or superscript.  It turns out that the covariant components of the Minkowski 

                                            
r The Kronecker Delta can be thought of as the mixed components of the metric tensor 

of space-time. 

s A free index is an index that is not involved in the contraction. 
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metric tensor are the same as the contravariant components.  So, equation (23) also 

represents the covariant components. 

There is another 2nd rank tensor, called the Faraday tensor, which encapsulates 

the electric and magnetic field into one physical object.  It is developed from first 

principles of electrostatics in the next three sections. 

2.4. Generalizing Electrostatics to the Time Dependent Gauss' 

Law and the Ampere Maxwell Law 

Here, a brief review of electrostatics is given.  The goal is to propose the 

minimum number of physical postulates in order to generalize to a relativistic version of 

the electromagnetic field.  This generalization results in a second rank tensor, called the 

electromagnetic field strength tensor, or Faraday tensor.  Maxwell's equations follow as 

a natural consequence of this generalization. 

Coulomb's law states that the force between two charges is proportional to the 

product of the charges and inversely proportional to the square of the distance between 

them.  For two charges, q  and q′ , located at points in space represented by the 

position vectors, xr  and x′r , respectively, Coulomb's law gives the force, F
r

, experienced 

by the charge, q , as 

 3
04 xx

xxqqF rr

rrr

′−

′−′
=

πε
, (35) 

where 0ε  is the permittivity of free space.  The electric field, E
r

, at the point in space 

represented by the position vector, xr , due to charge, q′ , is defined as 

 
q
FE
r

r
= . (36) 
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If the source charge, q′ , is generalized to the charge density at a point in space, 

xr′ , as a function of the position vector that represents that point, )(3 xxdqd r′′=′ ρ , where 

xd ′3  is a small volume element, then, using the principle of superposition, the electric 

field, ( )xE rr
, is given as an integral over all of space. 

 ( ) ∫
′ ′−

′−′′=
V xx

xxxxdxE 3
3

0

)(
4

1
rr

rr
rrr

ρ
πε

. (37) 

The divergence and curl of the electric field can be found by taking the 

divergence and curl of the integral in equation (37).  As a resultt 

 ( ) )(1

0

xxE rrr
ρ

ε
=⋅∇ , (38) 

and, 

 ( ) 0=×∇ xE rr
. (39) 

Equations (38) and (39) are the equations of electrostatics that follow from 

Coulomb's Law.  The electric charge density, )(xrρ , is the 0th contravariant component 

of a 4-vector.u,14  This 4-vector is called the charge-current density 4-vector.14  The 

contravariant components of the charge-current density 4-vector are:14  cj ρ=0 , 

xjj =1 , yjj =2 , and zjj =3 .  Notice the similarity to the assignment of the components 

in the position 4-vector.  This indicates that the electric charge density transforms in the 

same way that time transforms under a Lorentz transformation. 

                                            
t The derivation for equations (38) and (39) can be found in Appendix A. 

u The justification for the static charge being the 0th component of a 4-vector is shown in 

Appendix B. 
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Consider the contraction of the partial derivative 4-vector with the charge-current 

density 4-vector, µ
µ j∂ .  This is called the 4-divergence of the charge-current density.  

From Section 3.d, this contraction can be recognized as a scalar field.  Consider a static 

distribution of charge in its own rest frame, so that 0=ij .  In this case the scalar field is 

just the time derivative of the charge density.  Since charge is a conserved quantity, 

then the time rate of change of the static charge distribution is 

 ( )
( ) 00

0

=
∂
∂

=
∂
∂

=
∂
∂

x
j

tc
c

t
ρρ  (40) 

in its own rest frame.  Since the contraction is a scalar field, then in any coordinate 

system 

 0=∂ µ
µ j . (41) 

Equation (41) is the continuity equation, 

 j
t

r
⋅−∇=

∂
∂ρ , (42) 

where j
r

 is the 3-dimensional electric current density vector.v 

Replacing the charge density, ρ , in equation (38) with the 0th component of the 

charge-current density 4-vector, 

 ( ) ( )xj
c

xE rrr
0

0

1
ε

=⋅∇ . (43) 

                                            
v Physically, equation (42) says that, if there is an increase or decrease of charge at a 

point in space, then there is a net current flow into or out of that region of space that 

contains the charge. 
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Since the R.H.S. of equation (43) transforms as the 0th component of a 4-vector, 

so must the L.H.S.  The divergence of the electric field generalizes to a contraction of 

the partial derivatives with the contravariant components of a tensor.  This, along with 

the 4-vector transformation property of the L.H.S., requires that the components of the 

electric field be generalized to components of a 2nd rank tensor.14 

 
30

20

10

FE

FE

FE

z

y

x

=

=

=

 (44) 

so that 

 00
0

0 FFE ∂−∂=⋅∇ µ
µ

r
. (45) 

These new components that have been introduced are components of the 

Faraday tensor.  Again, since equation (45) must transform as the 0th component of a 4-

vector, the last term, 00
0F∂− , must vanish.w  Equation (43) then becomes 

 0

0

0 1 j
c

F
ε

µ
µ =∂ . (46) 

Substituting the definitions that have been used so far in this section, equation 

(46) is a generalization of equation (38) to a time-dependentx electric field and current 

                                            
wThe last term in equation (45) must vanish because it transforms as the 000 mixed 

component of a 3rd rank tensor, and therefore does not transform as the 0th component 

of a 4-vector. 

x The time dependence is a consequence of the requirement that the physical objects 

must be tensor fields, which must be defined as functions of space-time, not just 

functions of space, in order to be Lorentz invariant. 
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density.  In order to have form invariance under Lorentz transformations, the other three 

components of the 4-vector must be included.  Therefore, equation (46) generalizes to14 

 νµν
µ ε

j
c

F
0

1
=∂ . (47) 

There is only one subtle difference in the notation between equation (46) and (47), 

namely, that the 0 superscript has become a Greek letter ν .  Physically, however, there 

is a very profound difference, namely, that equation (47) accounts for all components of 

the Faraday tensor whereas equation (46) does not.  A consequence of this natural 

generalization is that equation (47) gives another one of Maxwell's laws, the Ampere-

Maxwell law.14  

To find the other components of the Faraday tensor, the divergence of equation 

(47) gives14 

 0=∂∂ µν
µν F , (48) 

by equation (41).  Equation (48) suggests that the Faraday tensor is antisymmetric.y,14  

Assuming that the Faraday tensor is antisymmetric reveals 7 more of its components by 

symmetry:  0=µµF , xEF −=01 , yEF −=02 , and zEF −=03 .  To find the remaining 6 

components, equation (47) is examined.  As previously mentioned, the ν  = 0 

component of equation (47) returns Gauss' Law for a time-dependent electric field and 

charge density.z 

                                            
y For a discussion of the antisymmetry of the Faraday tensor, refer to Appendix C. 

z The result of Gauss' Law with time dependence should not be at all surprising 

considering the development up to equation (46). 
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 ( ) ( )txtxE ,1,
0

rrr
ρ

ε
=⋅∇ , (49) 

where the argument represents a dependence on space as well as time.  For ν  = 1, 

equation (47) givesaa 

 
t

E
j

c
F

zc
F

y
c x

x ∂
∂

+=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

0

3121
2 1

ε
, (50) 

and similarly for the ν  = 2 and 3 terms.  Equation (50) gives the x -component of the 

Ampere-Maxwell Law,14 given certain assignments for the components of the Faraday 

tensor that appear, namely xcBF −=23 , ycBF −=31 , zcBF −=12 , xcBF =32 , ycBF =13 , 

and zcBF =21 .  Therefore, the Faraday tensor may now be sumarized in a 4x4 matrix in 

terms of the electric and magnetic fields as 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−−−

=

0
0

0
0

xyz

xzy

yzx

zyx

cBcBE
cBcBE

cBcBE
EEE

F µν , (51) 

where the first index gives the row, starting with zero from the top, and the second index 

gives the column, starting with zero from the left.  If these assignments are made, then 

equation (50) gives the Ampere-Maxwell Law 

 ( ) ( ) ( )
t

txE
c

txjtxB
∂

∂
+=×∇

,1,, 20

rr
rrrr

µ , (52) 

where 0µ  is the permeability of free space. 

This accounts for all of the components of the Faraday tensor.  Finding the last 

six is a bit speculative.  Reference to the Ampere-Maxwell Law seems to break the 

                                            
aa For the details of the derivation of equation (50), refer to Appendix D. 
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promise that only electrostatics would be needed.  The resolution is that the naming of 

the components is arbitrary.  The oblique components of the Faraday tensor were 

recognized to satisfy the Ampere-Maxwell equation from equation (50), but the tensor 

had already been defined physically to satisfy equation (47), which describes the 

fundamental response of the Faraday tensor to the charge-current density.  In other 

words, equation (47) shows that these oblique components satisfy the Ampere-Maxwell 

equation, and therefore they are associated with the magnetic field components.  The 

naming convention should not be obscured as a physical indication; equation (47) gives 

the Ampere-Maxwell equation, not vice versa.  For the reader who is still not convinced, 

ultimately, the definition for these oblique components is verified operationally by their 

appearance in the Lorentz force law in Section 6. 

2.5.  Generalizing Electrostatics to Faraday's Law and the 

Law of No Magnetic Monopoles 

Faraday's Law, equation (39), for electrostatics was obtained in Section 4 from 

the basic principles already mentioned.  Written in component form 

 0
3

1

3

1

=
∂
∂∑∑

= =k j j

k
ijk x

E
ε , (53) 

where ijkε  is the Levi-Civita symbol defined as14 

 
⎪
⎩

⎪
⎨

⎧
−
+

=
3,2,10

3,2,11
3,2,11

ofnpermutatioanotisijkif
ofnpermutatiooddanisijkif
ofnpermutatioevenanisijkif

ijkε . (54) 

Using the notation from section 3 and equation (44), equation (53) becomes 

 0
3

1

3

1

0 =∂∑∑
= =k j

k
jijk Fε . (55) 
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The Levi-Civita symbol can be generalized to a 4th rank tensor called the Levi-

Civita tensor,14 by using a definition similar to equation (54) for the contravariant 

components of the tensor. 

 
⎪
⎩

⎪
⎨

⎧
−
+

=
3,2,1,00

3,2,1,01
3,2,1,01

ofnpermutatioanotisif
ofnpermutatiooddanisif
ofnpermutatioevenanisif

κλµν
κλµν
κλµν

εκλµν . (56) 

Replacing the Levi-Civita symbol in equation (55) with the appropriate 

contravariant components of the Levi-Civita tensor, and lowering the indices on the 

components of the Faraday tensor, 

 0
3

1

3

1
0

0 =∂∑∑
= =k j

kj
ijk Fε , (57) 

where14 ijk
ijk εε −=0 , and 0

00
k

kk FFF −== µν
νµηη .  Recognizing that the component of 

the Levi-Civita tensor vanishes if any of the other indices = 0, equation (57) is identical 

to 

 00
0 =∂ αµ

µναε F . (58) 

To generalize this to a tensor equation, the 0 must be generalized to an index 

that ranges from 0 to 3.  Since the components of the Levi-Civita tensor are constant, 

they can be moved between the partial derivative to directly multiply the components of 

the Faraday tensor.  Equation (58) can also be multiplied by 1/2.  This gives 

 ( ) 02
1 =∂ αβ

µναβ
µ ε F . (59) 

The quantity in parenthesis is defined as µνF∗ , the dual of the µνF  component of the 

Faraday tensor.14  These components can be expressed as a matrix similar to equation 

(51). 
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⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−−−

=∗

0
0

0
0

xyz

xzy

yzx

zyx

EEcB
EEcB
EEcB
cBcBcB

F µν . (60) 

Replacing the quantity in parenthesis using this definition, equation (59) becomes: 

 0=∂ ∗ µν
µ F . (61) 

"A generalization of Helmholtz's theorem states that an antisymmetric second-rank 

tensor is completely determined by specifying its divergence and the divergence of its 

dual."15  These specifications have been made by equations (47) and (61) in terms of 

the charge-current density 4-vector. 

For ν  = 0, using the definition of the dual, and the suggested antisymmetry of the 

Faraday tensor from Section 4, equation (61) gives 

 0111 211332

=
∂
∂

+
∂
∂

+
∂
∂

z
F

cy
F

cx
F

c
, (62) 

where the factor of c/1  has been introduced arbitrarily without changing the validity of 

the equation.  Equation (62) gives the law of no magnetic monopoles using the 

component definitions in equation (51). 

 0=⋅∇ B
r

. (63) 

This supports the discussion in the previous section concerning the relationship of these 

components to the magnetic field. 

For ν  = 1, equation (61) gives: 

 031
3

21
2

11
1

01
0 =∂+∂+∂+∂ ∗∗∗∗ FFFF , (64) 



   30 
 

 

and similarly for ν  = 2 and 3.  Rearranging equation (64) and making the assignments 

to the components of the Faraday tensor according to equation (51) gives Faraday's 

Law for time-dependent electric and magnetic fields. 

 ( ) ( )
t

txBtxE
∂

∂
−=×∇

,,
rr

rr
. (65) 

This further supports the discussion in the previous section concerning the relationship 

of these components to the magnetic field. 

2.6.  The Lorentz Force 

The previous sections developed the Faraday tensor from a few reasonable 

assumptions.  As a result, two similar equations were found, (47) and (61), that 

determine the Faraday tensor in terms of a given charge-current density 4-vector.  In 

this section, the response of a point-charge is found to a given Faraday tensor, which 

completes the mathematical description of the interaction between charge and field.  To 

begin the development, Newton's second law is considered in the context of the electric 

field (equation (36)). 

 Eq
dt
pd rr

= , (66) 

where pr  is the 3-dimensional momentum vector of the charged point-particle of charge 

q , and E
r

 is the electrostatic field at the charge.  Equation (66) is a first order, linear, 

ordinary differential equation.  Applying the usual technique of separating the dependent 

variables from the independent variables, an implicit equation can be obtained in the 

derivatives of pr  and t  with respect to the proper time τ . 

 Eq
d
dt

d
pd rr

ττ
= . (67) 
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As in the previous 2 sections, the components of the electric field are identified with 

components of the Faraday tensor 10FEx → , etc., according to equation (44).  Applying 

this direct substitution to equation (67) gives 

 0i
i

Fq
d
dt

d
dp

ττ
= , (68) 

where ip  is the thi  component of the momentum vector pr .  Multiplying the R.H.S. of 

equation (68) by 
c
c  gives 

 0
0

000 iii
i

Fu
c
qF

d
dx

c
qF

d
dtc

c
q

d
dp

=⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=

τττ
, (69) 

where 0u  is the 0th covariant component of the proper velocity νu  defined as the proper 

time derivative of the position 4-vector. 

 
τ
ν

ν d
dx

u ≡ . (70) 

 The L.H.S. of equation (69) can be generalized to a 1st rank tensor in a 

straightforward manner by changing the Latin superscript i  to a Greek letter µ , thus 

including all four components.  This will also change the i  on the R.H.S. of the equation 

to a µ .  Since the L.H.S. is a 1st rank tensor, so must be the R.H.S.  This requires that 

the 0 subscript and superscript be generalized to contracted indices rather than free 

indices. 

 µν
ν

µ

τ
Fu

c
q

d
dp

= . (71) 

Equation (71) is the relativistic equation of motion for a charged particle.  It includes 

every component of the momentum 4-vector µp  (and velocity 4-vector νu ) of the 
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charged particle and every component of the Faraday tensor µνF .  Consider, as an 

example, µ = 1, which represents a typical spatial component (the x -component).  This 

gives, directly from equation (71), 

 13
3

12
2

10
0

1

Fu
c
qFu

c
qFu

c
q

d
dp

++=
τ

. (72) 

Using the chain rule and equation (70), and substituting xpp =1 , 

 133122100 F
d
dx

c
qF

d
dx

c
qF

d
dx

c
q

dt
dp

d
dt x

ττττ
++= . (73) 

The components of the position 4-vector can be identified according to section 2.3b, 

and the 10F  component of the Faraday tensor is the x -component of the electric field.  

The chain rule can also be applied to the R.H.S. of the equation. 

 ⎥⎦
⎤

⎢⎣
⎡ −−+= 1312 F

dt
dzF

dt
dy

d
dt

c
qE

dt
dtc

d
dt

c
q

dt
dp

d
dt

x
x

τττ
. (74) 

Simplifying, 

 [ ]1312 FvFv
c
qEq

dt
dp

zyx
x −−+= , (75) 

where 
dt
dyvy =  and 

dt
dzvz = .  Letting zBcF −=12  and yBcF =13  in accordance with the 

previous 2 sections, equation (75) gives the x -component of the force experienced by a 

point particle of charge q  moving with velocity vr  through an electric field E
r

 and 

magnetic field B
r

. 

 [ ]xx
x BvqEq

dt
dp rr

×+= . (76) 

The y  and z -components follow similarly. 
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 The µ = 0 component of equation (71) yields a well-known feature of 

electromagnetism, and does so naturally from the principle of relativity. 

 ⎟
⎠
⎞

⎜
⎝
⎛ ++=⎟

⎠
⎞

⎜
⎝
⎛ ++= zyx E

dt
dzE

dt
dyE

dt
dx

c
qF

d
dx

F
d
dxF

d
dx

dt
d

c
q

dt
dp 033022011

0

τττ
τ , (77) 

which can be rearranged to give 

 ( ) ( ) ( )Evq
dt

energyd
dt

cpd rr
⋅=≡

0

. (78) 

Equation (78) gives the power delivered to the charge by the electric field, and shows 

that the magnetic field does no work. 

2.7.  Conclusion 

Assuming that Coulomb's Law and the principle of superposition are valid for a 

static electric field and static charge distribution, the electrostatic field is found to be 

conservative and Gauss' Law obtained.  By assuming that charge is a conserved scalar, 

the equation of continuity was found for the charge density.  This allowed Gauss' Law 

for the electrostatic field to be generalized, using the principle special relativity, to 

Gauss' Law for electrodynamics and the Ampere-Maxwell equation.  The curl of the 

electrostatic field was also generalized to give the law of no magnetic monopoles and 

Faraday's Law.  Finally, the force of the electrostatic field was generalized to the 

Lorentz force and an equation for the rate of energy equal to the power delivered to a 

point charge in an electric field. 

All of this information can be written in terms of three tensor equations in special 

relativity, (47), (61), and (68), that maintain their form under all Lorentz transformations.  

The first two equations determine the response of the field to charged matter, which is 

represented by the response of the Faraday tensor to the charge-current density 4-
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vector.  These equations are Maxwell's equations.  The third equation determines the 

response of charged matter to the field, which is represented by the response of a point 

charge to the Faraday tensor.  This equation is Newton's second law of motion with the 

Lorentz force.  The mutual interaction between the field and charge upholds Newton's 

third law of motion. 
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CHAPTER 3 

GENERAL RELATIVITY:  EINSTEIN'S GRAVITATIONAL FIELD EQUATION FROM 

NEWTON'S LAW OF UNIVERSAL GRAVIATION 

3.1. Introduction 

After completing his theory of special relativity, Albert Einstein realized that the 

next great challenge would be to make gravitation consistent with the special theory of 

relativity.2  Isaac Newton himself found fault in his universal law of gravitation because it 

required a "spooky action at a distance."16  In order to have an instantaneous action at a 

distance, an interaction must travel at an infinite speed.  This becomes a problem for 

causality in special relativity, because, what is simultaneous in one frame of reference is 

not simultaneous in a boosted frame.  In other words, an action in one frame of 

reference could inconsistently be a re-action in another frame of reference.  The 

alternative to instantaneous action at a distance is an interaction that propagates at the 

speed of light, which is accomplished in general relativity.  Another problem with 

Newton's universal law of gravitation is the source term, namely the mass.  Obviously, 

what is a static mass distribution in one frame of reference induces a mass current in a 

boosted frame.  So, the source of gravitation must demonstrate this in general relativity 

as a tensor.  It turns out that the source of gravitation is matter and energy, partly as a 

consequence of Einstein's equivalence principle, so a second rank tensor is used, in 

contrast to the source of the electromagnetic field, which is a first rank tensor.2  Another 

consequence of the equivalence principle, and perhaps the most profound (certainly the 

most popular) feature of general relativity, is that the gravitational field is actually a 

distortion of space-time itself.2 
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There are two basic approaches to demonstrate the correspondence between 

Einstein's gravitational field equation and Newton's universal law of gravitation.  One of 

these is to show that Einstein's gravitational field equation reduces to Poisson's 

equation for gravity in the limit of static, weak fields.  This is mathematically 

straightforward, and involves neglecting certain terms in the equation at the appropriate 

stages.  Newton's universal law of gravitation has been demonstrated as a limiting form 

of Einstein's equation by several authors.17,18,19  The other approach is to show that 

Einstein's gravitational field equation is an inevitable consequence of Newton's 

universal law of gravitation when certain assumptions are made concerning the physical 

universe.  The latter approach is taken in this chapter. 

Many other authors have shown Einstein's gravitational field equation as a 

generalization of Newton's universal law of gravitation.  Ohanian shows that Einstein's 

gravitational field equation is the result of a generalization of Poisson's equation, with 

the assumption that the gravitational potential is the 00 component of the space-time 

metric tensor.20  Misner, et. al. gives six "reasonable axiomatic structures" that lead to 

Einstein's equation, with the underlying assertion that the generalization must lead to 

Einstein's equation.21  Kobe shows a heuristic treatment of the speed of light to 

establish a relationship between the gravitational potential and the metric tensor, similar 

to Einstein's first theory using the speed of light as a scalar field.22,23  Costa de 

Beauregard introduces a "generalized Poisson potential" that is not closely related to 

the gravitational potential in Newton's universal law of gravitation.24  Moore derives 

Schwarzschild's equation from Poisson's equation, but does not use tensors (general 

covariance) nor develops the general form of Einstein's equation.25  Mannheim 
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mentions the relationship between Einstein's gravitational field equation and Poisson's 

equation, but does not give the derivation.26  Rindler proposes a canonical form for the 

metric of curved space-time, compares Poisson's equation to the geodesic equation for 

curved space-time and then relates the gravitational potential to the Christoffel 

symbol.27  Bondi also assumes a canonical metric for a spherically symmetric mass 

distribution and does not give detailed justification for the use of the stress-energy 

tensor or Einstein tensor, but does give an excellent intuitive illustration of non-

Euclidean space.28  In a lecture on general relativity and astrophysics delivered at the 

DPG School, a linear relationship is assumed between the stress-energy tensor, Ricci 

tensor, and curvature scalar, in order to reflect the linear relationship of the tidal force to 

the mass density in Newton's theory.29  Weinberg gives similar points in the 

development that is found in this paper.30  Perhaps the most significant approach to the 

one presented in this paper was by Chandrasekhar, who gives more detail in some 

parts of the generalization and far less detail in others, and uses a different set of 

assumptions.31 

In this chapter, the concept of general covariance (tensor analysis in the context 

of general coordinate transformations, in contrast to the linear transformations in special 

relativity) is applied to the classical Poisson's equation for gravity, which is based on 

Newton's universal law of gravitation and the principle of superposition.  Poisson's 

equation for gravity can then be written as the 00 component (time-like component) of a 

second rank tensor equation.2  Einstein's equation is obtained by relating the mass 

density (times c2) to the 00 component (being the energy component) and trace of the 

energy-stress tensor.2  Poisson's equation, which is valid for slowly moving particles in 
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static and weak gravitational fields, is generalized to give Einstein's gravitational field 

equation, which is valid for particles at any speed in an arbitrary gravitational field.2 

A brief development of Poisson's equation for Newtonian gravity is presented in 

Sec. 2.  Section 3 gives a discussion of space-time curvature and introduces some 

important tensors.  The principle of least action for gravity is shown to be equivalent to 

the definition of a geodesic in Sec. 4.  In Sec. 5, the mass density (times c2) is 

generalized to the stress-energy tensor, and the Bianchi identity is used to give 

Einstein's equation.  Section 6 gives the conclusion. 

3.2.  Poisson's Equation for Gravity 

In 1686, Isaac Newton presented his law of universal gravitation to the world.5  

The key features of this law are that the force is proportional to the product of the point 

masses, and that the force is inversely proportional to the square of the distance 

between the point masses.  Given two masses, m  and m′ , the force ( )xF rr
 on mass m  

at xr  by the mass m′  at the origin is given by Newton's universal law of gravitation: 

 ( ) 3x
xmGmxF r

r
rr

′−= , (79) 

where G  is Newton's universal gravitational constant.5  Equation (79) can be 

generalized so that m′  is at some point x′r : 

 ( ) 3xx
xxmGmxF
′−

′−′−= rr

rr
rr

. (80) 

The forces on m  at xr  due to masses im  at ixr  ( Ni K,2,1= ) obey the principle of 

superposition, so that the total force on mass m  at xr  is: 

 ( ) ∑
−

−
−=

i i

i
i

xx
xx

mGmxF 3rr

rr
rr

. (81) 
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If the constellation of masses in equation (81) is generalized to a continuous distribution 

of mass with a mass density ( )x′rρ  at the position x′r , then the force on mass m  at xr  

by the continuous mass distribution is given by: 

 ( ) ( )∫ ′−

′−′′−= 3
3

xx
xxxxdGmxF rr

rr
rrr

ρ , (82) 

where the integral is a volume integral on x′r  over all space. 

A gravitational field ( )xg rr  at the displacement xr  can be defined as: 

 ( ) ( )
m
xFxg
rr

rr
≡ . (83) 

Combining equations (82) and (83), the gravitational field at the point xr  due to a 

continuous distribution of mass with a mass density ( )x′rρ  as a function of the position 

x′r  is given as: 

 ( ) ( )∫ ′−

′−′′−= 3
3

xx
xxxxdGxg rr

rr
rrr ρ . (84) 

The gravitational field is conservative because ( ) 0=×∇ xg rr .bb  Therefore a 

gravitational potential function ( )xrΦ  for the gravitational field ( )xg rr  can be found, which 

is given by:cc 

 ( ) ( )
∫ ′−

′
′−=Φ

xx
xxdGx rr

r
r ρ3 . (85) 

                                            
bb This is shown in Appendix E 

cc The derivations of equation (85) from equation (84) and equation (86) from equation 

(85) can be found in Appendix E. 
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Taking the Laplacian of equation (85) gives Poisson's equation for the Newtonian 

gravitational potential: 

 ( ) ( )xGx rr ρπ42 =Φ∇ . (86) 

3.3.  Space-time Curvature 

The Minkowski space-time of special relativity is often referred to as "flat" space-

time.  The space-time of general relativity is often referred to as "curved" space-time.2  

This section demonstrates the significance of this curvature and provides a mechanism 

to quantify it. 

Euclidean geometry has several features, called axioms, such as the existence 

of parallel lines and an open set of points, that serve the same purpose as intuitive 

geometric notions.  The advent of Riemannian geometry demonstrated that the axioms 

of Euclidean geometry are nontrivial.  The most obviously nontrivial notion is the 

Euclidean construct of parallel lines, which require a more careful definition in 

Riemannian geometry.  Riemannian geometry is the generalization of Euclidean 

geometry to include the notion of curvature. 

In this section the relevant distinctions between Euclidean space, Minkowski 

space-time, and pseudo-Riemanniandd,32 space-time are demonstrated, and the tensors 

used to describe this curvature in the context of space-time (4-D) are developed. 

                                            
dd The geometry of general relativity is not truly Riemannian because the geometry of 

special relativity is not truly Euclidean.  This subtly is not important for the development 

in this paper, but, to be rigorous, the prefix "pseudo-" is added to indicate this 

distinction. 
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A key feature of Euclidean geometry is Pythagoras' theorem that essentially 

defines the distance between two points to be the distance that one would measure if 

one were to put a physical ruler across them.  This implies that the metric tensor of 

Euclidean geometry is the unit second rank tensor, the Kronecker Delta, mnδ , in 

Cartesian coordinates.  In special relativity, the idea of distance is generalized to proper 

distance or proper time.  This implies that the metric tensoree used in the geometry of 

special relativity is the Minkowski metric tensor,12 µνη , in Cartesian coordinates.  The 

Minkowski metric tensor is generalized to the metric tensor for curved space-time,33 

µνg , in general relativity.  The metric tensor itself is a dynamical variable in general 

relativity.34  It interacts with mass and energy and reacts accordingly.  This profound 

consequence of general relativity has evidence in Einstein's equivalence principle in 

which he proposed gravitational and inertial mass to be equivalent. 

The notion of parallel is more appropriately applied to vectors than to lines in 

general relativity.  Two vectors at the same point in space-time are parallel to each 

other if and only if one is a scalar multiple of the other.  In order to determine whether 

vectors at two different points in space-time are parallel, a connection must be 

established.  The connection used in general relativity is parallel transport.  Parallel 

transport is the transporting of a tangent vector from one point to another along a 

piecewise geodesic path while maintaining the orientation of the vector to each 

                                            
ee A discussion of tensors can be found in Chapter 2, Section 3. 
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geodesic in each piece.35  A geodesic is a path that extremizes the proper distance or 

proper time between two given points.ff,32 

Parallel transport can have a peculiar consequence in a curved geometry.  The 

vector that is parallel transported along one path can disagree with the same vector 

transported along a different path between the same two points.  The simplest example 

of this disagreement occurs on the surface of the Earth.  Consider an arrow pointing 

westward on the equator.  Parallel transporting this arrow along the equator to the 

opposite side of the Earth will result in a westward pointing arrow on the opposite side 

of the Earth.  Parallel transporting this arrow along a line of longitude to the same point 

will result in an eastward pointing arrow at that point.  This disagreement is a direct 

result of the curvature of the geometry, and it can be used to quantify the curvature. 

First, note that parallel transportation along a single geodesic is closely related to 

partial differentiation.gg  Next, note that the tensor product of the partial derivative tensor 

with a 4-vector results in an object that is not a tensor.hh  A new kind of derivative can 

                                            
ff Actually, more generally, a geodesic is a curve of stationary proper length in pseudo-

Riemannian geometry.  However, it is of maximum proper length for all massive 

particles.  A geodesic represents the "straightest" path connecting two points in curved 

space. 

gg Recall that a partial derivative is a change in a function with respect to a change 

along a coordinate axis. 

hh Appendix F shows why the tensor product of the partial derivative with a 4-vector 

results in an object that is not a tensor. 
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be defined that is related to the partial derivative, traditionally called the covariant 

derivative, that is a tensor. 

 Some new notation is introduced to simplify the expression for a partial 

derivative.  A comma before a lower index will be used to indicate a partial derivative 

with respect to the coordinate that takes that index: 

 µ
ββ

µ AA ∂≡, , (87) 

where β
β x∂∂≡∂ /  according to equation (25) or (33) in Section 3 of Chapter 2. 

For an arbitrary 4-vector µA , the covariant derivative with respect to βx  is 

denoted by a semicolon before a lower index and is defined as:36 

 αµ
αβ

µ
ββ

µ AAA Γ+∂≡; , (88) 

where µ
αβΓ  is known as a connection coefficient.  In general relativity, the connection 

coefficient is called the Christoffel symbol.  The Christoffel symbol can be expressed in 

terms of the metric tensor as:37 

 ( )ναβαβνβνα
µνµ

αβ ,,, gggg −+=Γ . (89) 

The term on the left-hand side of equation (88) is a second rank mixed tensor, whereas 

the object in equation (87) is not.  Though the covariant derivative is a tensor, two 

consecutive covariant derivatives of a 4-vector do not commute, in general.  This 

property can be used to quantify the curvature of space-time.  A fourth rank tensor, 

known as the Riemann curvature tensor βµν
αR , is defined in terms of the Christoffel 

symbols as:35 

 α
σν

σ
βµ

α
σµ

σ
βν

α
µβν

α
νβµβµν

α ΓΓ−ΓΓ+Γ+Γ−≡ ,,R . (90) 
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 The Riemann tensor is essentially the commutator of two covariant derivatives 

acting on a 4-vector.ii  It indicates the path dependence of differentiation in curved 

space.  If the space is flat, then the Riemann tensor vanishes. 

Two other important tensors come directly from the Riemann curvature tensor.  

The Ricci tensor µνR  is defined as the Riemann curvature tensor contracted on its first 

and last indices:38 

 µνα
α

µν RR ≡ . (91) 

The Riemann curvature scalar R  is defined by the contraction of the two remaining 

indices:38 

 µνα
αµν

µν
µν

µ
µ RgRgRR ==≡ . (92) 

The Ricci tensor and Riemann curvature scalar together satisfy the Bianchi identity:38 

 ( ) 0;2
1 =− µν

µ
ν

µ δ RR . (93) 

Equation (93) is valid geometrically, meaning it is independent of the details of 

the physical situation. 

3.4.  Principle of Least Action 

Points in 3-D space extrude into 4-D space-time as worldlines.  In Minkowski 

space-time, the notion of a straight line is intuitively the same as that in familiar 

Euclidean geometry.  That is, the worldlines of free particles "look" straight in Minkowski 

space-time.  More formally, a geodesic is the generalization of a straight line to curved 

                                            
ii Note that the left-hand side of equation (90) is a tensor, even though every term on the 

right-hand side is not a tensor in itself.  
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space, and is defined as the path that maximizes the proper time experienced by a 

particle that travels between two given points.39 

 max=∫
geodesic

dτ . (94) 

A geodesic is a path over which a particle will not experience any force.  Any 

deviation from this path will result in an experienced acceleration and a decrease in the 

proper time experienced by the particle.jj  Since a deviation from this path results in a 

force, it should not be surprising that this requirement is related to the principle of least 

action for the gravitational potential energy. 

 min=∫
pathactual

dtL , (95) 

where L  is the Lagrangian function for a massive particle in a gravitational potential.  

Using the definition of the Lagrangian as 

 VTL −≡ , (96) 

equation (95) can be rewritten as 

 ( ) min2
2
1 =Φ−∫ dtmmv

pathactual

. (97) 

In the limit 

 µνµν η→g , (98) 

equation (94) can be rewritten askk 

                                            
jj The fact that acceleration reduces the experienced proper time is valid in special 

relativity.  This is one way to address the infamous twins paradox. 

kk See Appendix F for a derivation of equation (99). 
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 ( )( ) min2
2
1

00
2

2
12

2
1 =+−∫ dtcgcmmv

geodesic

, (99) 

In equation (97), gravity is treated as a force for which there exists a potential 

function.  This is the notion of gravity given by Newton.  In equation (99), the influence 

of geometry on the trajectory of an otherwise free particle is demonstrated.  Solely 

under the influence of gravity, the actual path of a physical particle is a geodesic.  

Comparing equations (97) and (99), the gravitational potential can be expressed in 

terms of the metric tensor as40 

 2
2
1

00
2

2
1 cgc +=Φ . (100) 

Equation (100) gives the relationship between the Newtonian gravitational 

potential Φ  and the 00 component of the metric tensor 00g . 

3.5.  Einstein's Equation 

The mass density, ρ , is related to the 00 mixed component of the stress-energy 

tensor 0
0T  in the cloud of dust model41,ll which Einstein used in his paper, The Meaning 

of Relativity.42  First, consider the trace of the stress-energy tensor. 

 2~~ cuuTT ρρ µ
µ

µ
µ ==≡ , (101) 

where ρ~  is the proper mass density scalar field.  In the static limit, the space-like 

components of the stress-energy tensor (in the cloud of dust model) vanish. 

 0000 =++=k
kT . (102) 

                                            
ll See Appendix H for a description of the stress-energy tensor. 
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This implies (numerically) that 

 22
0

0 ~ ccTT ρρ ===  (103) 

in the static limit. 

 According to equation (103), the Newtonian mass density (times 2c ) can be 

written as either the 00 mixed component or the trace of the stress-energy tensor.  More 

generally, it can be written as a linear combination of the two. 

 ( ) 0
0

0
02 1 δρ TaaTc −+= , (104) 

where a  is a constant to be determined and 0
0δ  is the 00 component of the Kronecker 

Delta tensor (and therefore equal to unity).  Though seemingly superfluous at this point, 

the Kronecker Delta tensor is necessary for subsequent generalization in order to 

maintain the rank and form of the tensor components.  Substituting equation (100) and 

(104) into Poisson's equation (86) gives 

 ( )( )0
0

0
0

400
2 18 δπ TaaT

c
Gg −+=∇ . (105) 

The L.H.S. of equation (105) can be related to the 00 component of the Ricci 

tensor.2,mm 

 0
0

00
2 2Rg −=∇ . (106) 

Combining equations (105) and (106) gives 

 ( )( )0
0

0
0

40
0 14 δπ TaaT

c
GR −+−= . (107) 

Both the L.H.S. and R.H.S. of equation (107) are 00 mixed components of 

second rank tensors.  Generalization of equation (107) to be form invariant under 

                                            
mm See Appendix I for the generalization of 00

2 g∇  to 0
02 R− . 
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general coordinate transformations is simply a matter of recognizing that equation (107) 

is the 00 component of a tensor equation, and that all sixteen mixed components of the 

second rank tensor equation must exist in general.2 

 ( )( )ν
µ

ν
µ

ν
µ δπ TaaT

c
GR −+−= 14
4  (108) 

for 3,2,1,0, =νµ . 

The Riemann curvature scalar can be related to the trace of the stress-energy 

tensor by taking the trace of equation (108). 

 ( ) ( )( )414
4 TaaT

c
GR −+−=

π . (109) 

Solving this equation for T, substituting this back into equation (108) and rearranging 

gives 

 ( )
( ) ν

µ
ν

µ
ν

µ πδ T
c

aGR
a

aR 4

4
34

1
−=

−
−

− . (110) 

Energy and momentum are conserved if the 4-divergence of the stress-energy 

tensor vanishes as20 

 0; =µν
µT . (111) 

On physical grounds, it is assumed that energy and momentum are conserved in the 

theory.  Taking the 4-divergence of equation (110) gives 

 ( )
( ) 0

34
1

;

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−
µ

ν
µ

ν
µ δR

a
aR . (112) 

Comparing equation (112) with the Bianchi identity equation (93) requires 

 ( )
( ) 2

1
34

1
=

−
−

a
a . (113) 

Therefore the value of a  is 2.  Substituting 2=a  into equation (110) gives 
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 ν
µ

ν
µ

ν
µ πδ T

c
GRR 42

1 8
−=− . (114) 

Equation (114) is Einstein's equation for the gravitational field in terms of the 

Ricci tensor, Riemann curvature scalar, and the stress-energy tensor.20  Another form of 

Einstein's equation is obtained by raising the lower index in equation (114). 

 µνµνµν π T
c

GgRR 42
1 8

−=− . (115) 

3.6.  Conclusion 

Poisson's equation for gravity is a direct consequence of Newton's law of gravity 

if superposition, continuity, and conservation of energy are assumed.  This assumption 

is valid in static, weak gravitational fields.  However, in general relativity, the 

gravitational field is related to the curvature of space-time.  Therefore, the metric tensor 

of special relativity must be generalized to the metric tensor of curved space-time.  

Using the principle of least action to relate the gravitational potential to the 00 

component of the metric tensor, Einstein's equation follows as a natural consequence of 

tensor analysis, the Bianchi identity and the conservation of energy and momentum. 
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CHAPTER 4 

CONCLUSION 

 Classical physical theory effectively began when Isaac Newton proposed his 

classical dynamics and universal law of gravitation.  This sparked a classical world view 

of physical phenomena to which science remains loyal even today, in the appropriate 

limits of consideration, usually referred to as "everyday experience."23  Classical 

mechanics was not successfully contested until Albert Einstein introduced his special 

theory of relativity.  However, Einstein further extended the classical view by discovering 

the appropriate way in which to generalize Newtonian gravitation.2  In this way, 

Einstein's general relativity marks the completion of the classical deterministic physical 

theory of the universe.2 
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APPENDIX A 

Derivation of Equations (38) and (39) from Coulombs Law and 

the Principle of Superposition 
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1. Derivation of Equation (38) 

Equation (37) was derived from Coulomb's Law and the principle of 

superposition: 

 ( ) ∫ ′−

′−′′= 3
3

0

)(
4

1
xx
xxxxdxE rr

rr
rrr

ρ
πε

. (37) 

Taking the divergence of this integral equation with respect to the unprimed 

coordinates (coordinates of the observation point where the electric field is being 

defined), recognize that the divergence operator does not act on the primed 

coordinates: 

 ( ) ∫ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

′−

′−
⋅∇′′=⋅∇ 3

3

0

)(
4

1
xx
xxxxdxE rr

rr
rrr

ρ
πε

, (A1) 

where ∇  is the gradient with respect to the unprimed coordinates.  The divergence in 

parenthesis must be determined from an auxiliary integral. 

 By the divergence theorem: 

 ∫∫
=′−≤′− ′−

′−
⋅=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

′−

′−
⋅∇

RxxSRxxV xx
xxsd

xx
xxxd

rrrr
rr

rr
r

rr

rr

:
3

:
3

3 . (A2) 

Making the substitution rxx rrr
=′− , the surface integral may easily be evaluated: 

 πφθθφθθ
π

θ

π

φ

π

θ

π

φ

4
ˆˆsin

ˆˆsin
0

2

0
3

2

0

2

0
3

2 =⋅=⋅ ∫ ∫∫ ∫
= == = R

RnnddR
R
RnnddR , (A3) 

where n̂  represents the unit normal vector to the spherical surface of integration.  This 

result is valid for all values of R  > 0.  This condition is met for all observation points 

xx ′≠
rr .  Examining the value of the divergence at xr  directly using the same substitution: 

 011ˆ
2

2
223 =⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

=⋅∇=⋅∇
r

r
rrr

r
r
rr . (A4) 
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Under the same condition that xx ′≠
rr .  Therefore, this divergence must satisfy two 

properties, namely: 

 03 =
′−

′−
⋅∇

xx
xx
rr

rr

, if xx ′≠
rr , (A5) 

and 

 π43
3 =

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

′−

′−
⋅∇∫

V xx
xxxd rr

rr

, if V contains x′r . (A6) 

This gives, by definition, the 3-dimensional Dirac-Delta function: 

 ( )xx
xx
xx rr
rr

rr
′−=

′−

′−
⋅∇ δ

π 34
1 . (A7) 

Therefore: 

 ( ) ( )( ) ( )xxxxxdxE rrrrrr
ρ

ε
δρ

ε 0

3

0

1)(1
=′−′′=⋅∇ ∫ , (38) 

which is Gauss' Law for electrostatics. 

2. Derivation of Equation (39) 

Taking the curl of equation (37): 

 ( ) ( )∫ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

′−

′−
×∇′′=×∇ 3

3

04
1

xx
xxxxdxE rr

rr
rrr

ρ
πε

. (A8) 

Examining the curl in parenthesis directly by arbitrarily considering the x component: 

 333 r
yy

zr
zz

yxx
xx

x

′−
∂
∂

−
′−

∂
∂

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

′−

′−
×∇ rr

rr

 

 ( ) ( ) 33

11
rz

yy
ry

zz
∂
∂′−−

∂
∂′−=  
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 ( ) ( )
z
r

r
yy

y
r

r
zz

∂
∂−′−−

∂
∂−′−= 44

33  

( ) ( ) 033
44 =

′−′−−
′−′−=

r
yy

r
zz

r
zz

r
yy . (A9) 

The other two components of the curl are similarly found to vanish.  This is not a 

conditional result; therefore, the curl in parenthesis is identically 0.  This gives equation 

(39), 

 ( ) 0=×∇ xE rr
, (39) 

which says that the electrostatic field is a conservative vector field. 
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APPENDIX B 

Demonstration of Charge Density as the 0-component of a 4-vector 
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Charge is assumed to be a conserved scalar.  A differential element of charge, 

dq , is related to a static charge density, ρ , by the relationship: 

 xddq 3ρ= , (B1) 

where xd 3  is a differential element of 3-dimensional spatial volume.  Since the charge 

is a scalar, the R.H.S. of this equation must be a scalar, but the differential volume 

element of 3-dimensional space is not a scalar: 

 3213 dxdxdxxd ≡ . (B2) 

There is an element of 4-dimensional space-time volume that is a scalar:43  

 xddxdxdxdxdxxd 3032104 =≡ . (B3) 

To show that equation (B3) represents a scalar (it is not directly obvious from the 

discussions in Chapter 2), consider the element of volume under a coordinate 

transformation. 

 32104 xdxdxdxdxd ′′′′=′ . (B4) 

From multivariable calculus, this relates to the unprimed element of volume as 

 xdJxd 44 =′ , (B5) 

where  is the determinant of the coordinate transformation matrix (a.k.a. the Jacobian).44  

For the purposes of Chapter 2, the transformation matrix is the Lorentz transformation 

matrix.  Without loss of generality, the 1x -axis may be aligned with the Lorentz boost.  

Then, using equation (18), the Jacobian of such a boost is 

 1
1
1

1000
0100
00
00

2

2
222 =

−
−

=−=
−

−

=
β
βγβγ

γβγ
βγγ

J . (B6) 

 Inserting this result into equation (B5) gives 
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 xdxd 44 =′ . (B7) 

 Upon comparison to equation (19), equation (B7) shows that the element of 

space-time volume is a scalar.  Rearranging equation (B3) gives 

 0
3

4

dx
xd
xd
= , (B8) 

so this scalar density is the zero component of a 4-vector.  This can be generalized to 

 ( ) ( )µ
µ

xA
xd

xdf 0
3 = , (B9) 

where ( )µxdf  is an arbitrary scalar field and 

 ( ) ( ) ( ) 0
4

00 dx
xd

xdfdxxgxA
µ

µµ ==  (B10) 

is the 0-component of an arbitrary 4-vector field.  This shows that the division of an 

arbitrary scalar field by a differential element of 3-dimensional spatial volume, which is a 

scalar density, results in the 0-component of a 4-vector field.  Applying this to electric 

charge: 

 0
3 jc
xd

dqc
== ρ . (B11) 

This shows that the electric charge density is the 0-component of a 4-vector field.  

This 4-vector field is conventionally given the symbol µj  and called the charge-current 

density 4-vector.  The other three components of this 4-vector are the components of 

the electric current density 3-vector. 
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APPENDIX C 

Antisymmetry of the Faraday Tensor 
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1. Primary Approach 

By definition, the components, µνS , of a second rank tensor are symmetric if 

 νµµν SS =  (C1) 

and the components, µνA , of a second rank tensor are antisymmetric if 

 νµµν AA −=  (C2) 

This definition also holds for covariant and mixed components. 

According to equation (48): 

 0=∂∂ µν
µν F . (48) 

In special relativity, the twice-repeated partial derivatives are symmetric covariant 

components of a second rank tensor.  They are symmetric because the result of the 

differentiation is the same under an exchange of subscripts.  That is: 

 [ ] [ ]⋅∂∂=⋅∂∂ νµµν . (C3) 

As a consequence of the construction of tensors, the contraction on both indices of the 

symmetric covariant components of a second rank tensor with the antisymmetric 

contravariant components of an second rank tensor vanishes.  To show this, let µνS  be 

the symmetric covariant components of a second rank tensor, and let µνA  be the 

antisymmetric contravariant components of a second rank tensor.  Contracting on both 

indices gives 

 ( )( ) νµ
νµ

νµ
νµ

µν
µν ASASAS −=−= , (C4) 

where equations (C1) and (C2) have been used.  Recognizing that both of the indices 

that appear in equation (C4) are dummy indices, they may be substituted with any 
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arbitrary Greek letter without changing the validity of the equation in any way, and 

without using any identity or definition.  Choosing the mutual substitution νµ ↔  gives 

 µν
µν

µν
µν ASAS −= . (C5) 

The only way that equation (C5) can be true is that the contraction definitively vanishes. 

A second rank tensor has 16 independent components, in general, whereas 

there are only 6 independent antisymmetric components.  Since the electric and 

magnetic field vectors contribute six independent components, the Faraday tensor is 

intuitively antisymmetric, because any extra independent components would bring 

superfluous information.9 

2. An Alternative Approach 

Any second rank tensor may be written as the sum of a symmetric second rank 

tensor and an antisymmetric second rank tensor, much like a matrix in linear algebra 

can be broken into a symmetric and antisymmetric matrix.  So, let the Faraday tensor 

be: 

 µνµνµν SAF += , (C6) 

where µνA  is the antisymmetric part and µνS  is the symmetric part.  Inserting this into 

equation (48): 

 [ ] 0=∂∂+∂∂=+∂∂=∂∂ µν
µν

µν
µν

µνµν
µν

µν
µν SASAF . (C7) 

The term containing the antisymmetric part µνA  is identically zero.  Therefore, 

the symmetric part µνS  must satisfy: 

 0=∂∂ µν
µν S . (C8) 

The simplest solution to this second order partial differential tensor equation is:9 23 
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 0=µνS . (C9) 

3. Another Consideration 

 If the Lorentz force is assumed to be a "pure force," that is, a force that does not 

affect the rest mass m  of the particle on which it acts, then45 

 
ττ
µµµµ

d
dp

p
md

dp
u 1

=  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

ττ
µµ

µ

µ

d
dp

pp
d
dp

m2
1  

 ( )µ
µ

τ
pp

d
d

m2
1

=  

 ( )( ) 0
2
1 2 == mc

d
d

m τ
, 

where µu  is the proper velocity, or 4-velocity of the particle, and the invariance of 

( )2mcpp =µ
µ  has been used.  Given that the Lorentz force is of the form: 

ν
µν

µ

τ
ukF

d
dp

= , 

it follows that: 

0=µν
µν uuF . 

 It should be obvious that the tensor product of the 4-velocity with itself is a 

symmetric second rank tensor (because the order of the tensor product does not 

change the value of the components).  Therefore, from the result in the first section of 

this appendix it can clearly be seen that the Faraday tensor must be antisymmetric to 

satisfy the above relationship (that is, for the Lorentz force to be a pure force). 
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APPENDIX D 

Explicit Calculation of Equation (50) 
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The 1=ν  component of equation (47) is 

 1

0

1 1 j
c

F
ε

µ
µ =∂ . (D1) 

Writing out all of the terms in equation (D1) explicitly gives 

 1

0
3

31

2

21

1

11

0

01 1 j
cx

F
x
F

x
F

x
F

ε
=

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂ . (D2) 

Using the definitions from Chapter 2 for µx , µj , and µνF , equation (D2) may be written 

as 

 
( )
( )

( )
x

x j
cz

F
y

F
xct

E

0

3121 10
ε

=
∂
∂

+
∂
∂

+
∂
∂

+
∂
−∂ . (D3) 

Rearranging equation (D3) gives 

 x
x j

z
Fc

y
Fc

t
E

0

3121 1
ε

=
∂
∂

+
∂
∂

+
∂
∂

− . (D4) 

A further rearrangement of equation (D4) gives 

 ( ) ( )
t

E
j

z
cFc

y
cFc x

x ∂
∂

+=
∂

∂
+

∂
∂

0

31
2

21
2 1//

ε
, (D5) 

and, finally, 

 
t

E
j

c
F

zc
F

y
c x

x ∂
∂

+=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

0

3121
2 1

ε
, (50) 

which is equation (50). 
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APPENDIX E 

Demonstration of Equation (85) and Derivation of Poisson's Equation (86) from 

Equation (84) 
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1. Demonstration of Equation (85) 

Equation (84) gives a 3-dimensional vector field ( )xg rr  according to a mass 

density distribution ( )x′rρ .  This is derived from the superposition of a central field, and 

is therefore a conservative field.  Since it is conservative, it has a potential function 

( )xrΦ  that is related by 

 ( ) ( )xxg rrr
Φ−∇= , (E1) 

where the gradient operates on the unprimed coordinates. 

 Since the gradient does not operate on the primed coordinates, it can be taken 

inside the integration in equation (85) to operate on only the unprimed coordinates: 

 ( ) ( )∫ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′−

∇′′=Φ∇−
xx

xxdGx rr
rr 13 ρ  (E2) 

 ( )
( ) ( ) ( )∫ ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

′−+′−+′−
∇′′=

222

3 1

zzyyxx
xxdG rρ  

 ( ) ( )
( ) ( ) ( )( )∫ ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡
+

′−+′−+′−

′−
−′′= L

r

2
3222

3 ˆ
zzyyxx

xxxxxdG ρ , 

where addition of the ŷ  and ẑ  vector terms are implied, 

 ( ) ( ) ( ) ( )
∫ ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

′−

′−+′−+′−′′−= 3
3 ˆˆˆ

xx
zzzyyyxxxxxdG rr

rρ  

 ( ) ( ) ( )
∫ ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

′−

′+′+′−++′′−= 3
3 ˆˆˆˆˆˆ

xx
zzyyxxzzyyxxxxdG rr

rρ  

 ( )∫ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

′−

′−′′−= 3
3

xx
xxxxdG rr

rr
rρ , (84) 
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which is the R.H.S. of equation (84). 

2. Derivation of Equation (86) 

 To get equation (86), the demonstration is analogous to that in Appendix A for 

deriving equation (38) from equation (37).  The differences are the following two explicit 

direct replacements: 

 ( )rE rr
Φ−∇→ , (E3) 

 Gπ
ε

41

0

−→ , (E4) 

and to replace the charge density from Appendix A with a mass density in this case.  

The negative sign before the constant of proportionality is due to the fact that 

gravitational force is always attractive between mass (a mass at the origin exerts a force 

on another mass in the r̂−  direction). 
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APPENDIX F 

Demonstration of the Partial Derivative of a 4-vector 
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Consider the operation of the partial derivative on an arbitrary 4-vector: 

 ( )[ ]xA
x

A µ
νν

µ

∂
∂

=, . (F1) 

Now consider an arbitrary coordinate transformation to primed coordinates: 

 ( )[ ] ( ) ⎥
⎦

⎤
⎢
⎣

⎡
∂
′∂

∂
∂

′∂
∂

=′′
′∂
∂ xA

x
x

xx
xxA

x
µ

µ

α

νβ

ν
α

β . (F2) 

 If the space-time is flat, and the transformation is from one Cartesian coordinate 

system to another (a Lorentz transformation), then the partial derivatives of the 

coordinates are constant, which allows them to be pulled out of the partial derivative of 

the 4-vector: 

 ( ) ( )[ ] ν
µν

βµ
αµ

µ
α

ν
ν

β
µ

µ

α

νβ

ν

,AaaxAa
x

axA
x
x

xx
x

=
∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
∂
′∂

∂
∂

′∂
∂ . (F3) 

Therefore: 

 ν
µν

βµ
α

β
α

,, AaaA =′ . (F4) 

This has the form of equation (31), and therefore the operation of the partial derivative 

on a four vector is a tensor product that results in a second rank tensor if there is no 

contraction, or a scalar if there is contraction.  This idea was used more than once in 

Chapter 2. 

 If, however, the space-time is not flat, then the partial derivatives of the 

coordinates are not constant.  According to the product rule for differentiation: 

 ( ) ( )[ ] ( )xA
xx

x
x
xxA

xx
x

x
xxA

x
x

xx
x µ

µν

α

β

ν
µ

νµ

α

β

ν
µ

µ

α

νβ

ν

∂∂
′∂

′∂
∂

+
∂
∂

∂
′∂

′∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
∂
′∂

∂
∂

′∂
∂ 2

 

 µ
µν

α

β

ν

ν
µ

µ

α

β

ν

A
xx

x
x
xA

x
x

x
x

∂∂
′∂

′∂
∂

+
∂
′∂

′∂
∂

=
2

, . (F5) 
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It is this second term that appears on the R.H.S. that prevents the ordinary partial 

derivative operation from resulting in a tensor in curved spacetime. 

 This demonstration is shown by Ohanian and most other references that use 

tensor analysis to discuss space-time curvature.33 

 To show how the Christoffel symbol subtracts this problem from the 

transformation, consider the transformation of the covariant derivative using equation 

(88) and (89). 

 σα
σβ

α
ββ

α AAA ′Γ′+′∂′=′ ; . (F6) 

The form of the first term on the R.H.S. of equation (F6) has already been shown in 

equation (F5).  To find the form of the second term, note the transformation property of 

the Christoffel symbol37 

 βσ

µ

µ

α
µ
λνβ

ν

σ

λ

µ

α
α

σβ xx
x

x
x

x
x

x
x

x
x

′∂′∂
∂

∂
′∂

+Γ
′∂

∂
′∂

∂
∂
′∂

=Γ′
2

, (F7) 

which is a consequence of applying a coordinate transformation explicitly to the R.H.S. 

of equation (89) and then simplifying.  Equation (F6) becomes 

 µ
µν

α

β

ν

ν
µ

µ

α

β

ν

β
α A

xx
x

x
xA

x
x

x
xA

∂∂
′∂

′∂
∂

+
∂
′∂

′∂
∂

=′
2

,;  

 κ
κ

σ

βσ

µ

µ

α
µ
λνβ

ν

σ

λ

µ

α

A
x
x

xx
x

x
x

x
x

x
x

x
x

∂
′∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′∂′∂

∂
∂
′∂

+Γ
′∂

∂
′∂

∂
∂
′∂

+
2

. (F8) 

Rearranging 

 κ
κ

σ

σ

λ
µ
λνβ

ν

µ

α

ν
µ

µ

α

β

ν

β
α A

x
x

x
x

x
x

x
xA

x
x

x
xA

∂
′∂

′∂
∂

Γ
′∂

∂
∂
′∂

+
∂
′∂

′∂
∂

=′ ,;  

 κ
βσ

µ
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µν
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β

ν

A
xx

x
x
x

x
xA
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x

x
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∂

∂
′∂

∂
′∂

+
∂∂
′∂

′∂
∂

+
22

. (F9) 
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Recognizing the product of the transformation matrix with its own inverse as the 

Kronecker delta tensor in the second term, equation (F9) becomes 

 λµ
λνβ

ν

µ

α

ν
µ

µ

α

β

ν

β
α A

x
x

x
xA

x
x

x
xA Γ

′∂
∂

∂
′∂

+
∂
′∂

′∂
∂

=′ ,;  
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βσ

µ

µ

α

κ

σ
µ

µν

α

β

ν

A
xx

x
x
x

x
xA
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x

x
x

′∂′∂
∂

∂
′∂

∂
′∂

+
∂∂
′∂

′∂
∂

+
22

. (F10) 

 Consider the partial derivative of the Kronecker delta tensor, which vanishes in 

any coordinate system. 

 0=
′∂
∂

β
α

σ δx
. (F11) 

The Kronecker delta tensor can be replaced by the product of the coordinate 

transformation matrix with its own inverse. 

 βσ

µ

µ

α

β

µ

µσ

α

β

µ

µ

α

σ xx
x

x
x

x
x

xx
x

x
x
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∂

∂
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∂
∂′∂
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⎠

⎞
⎜⎜
⎝

⎛
′∂

∂
∂
′∂

′∂
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0 . (F12) 

Using the chain rule 

 µλ

α

σ

λ

β

µ

βσ

µ
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xx
x
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x

x
x
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x
x

∂∂
′∂
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∂
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′∂′∂

∂
∂
′∂ 22

. (F13) 

Substituting equation (F13) into equation (F9) gives 
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µ
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µ
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, . (F14) 

Utilizing the freedom to reassign contracted indices and the fact the repeated partial 

derivatives commute gives 

 ( ) µ
µν

α

β

ν

µν

α

β

ν
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µ
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;A
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x

x
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∂
′∂

′∂
∂

= . (F15) 

Therefore, according to the rules set forth in Section 2.3, the form of equation (F15) 

shows that the covariant derivative of a 4-vector is a tensor of second rank.  By 

induction (though not formally), the covariant derivative operator itself is a covariant 4-

vector, or a 4-covector. 

 µ
νν

µ ADA =; . (F16) 

Combining equations (F15) and (F16) gives 

 νβ

ν

β D
x
xD
′∂

∂
=′ . (F15) 
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APPENDIX G 

Derivation of Equation (99) from Equation (94) 
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 Equation (94) says that a geodesic maximizes the proper time: 

 max=∫
geodesic

dτ . (G1) 

From Chapter 1 Sec 3 the definition of proper time leads to: 

 ( )∫∫∫ ++== lk
kl

k
k dxdxgdtcdxgdtcg

c
dxdxg

c
d 0

2
00 211 νµ

µντ  

 ∫∫ ++=++= lk
kl

k
k

lk

kl

k

k gggdt
dtc

dx
dtc

dxg
dtc

dxggdt βββ000000 22 , (G2) 

where 
dtc

dxk
k =β , similar to the definition in equation (11).  If this integration is carried 

out along a geodesic, then 

 max2 000 =++∫
geodesic

lk
kl

k
k dtggg βββ . (G3) 

Multiplying2 by 2cm−  gives 

 min2 000
2 =++− ∫

geodesic

lk
kl

k
k dtgggcm βββ . (G4) 

Notice that the integral is now minimized due to the negative sign.  Assuming that the 

metric tensor deviates by a small amount from the Minkowski Metric tensor, and that the 

velocities are slow compared to the speed of light, the square root can be 

approximated.2 

 ( )∫∫ −−−−−=
geodesic

lk
kl

k
k

geodesic

dtgggcmd βββτ 000
2 211  

 ( )( )∫ −−−−−≈
geodesic

lk
kl

k
k dtgggcm βββ0002

12 211  

 ( )( )∫ −−−−≈
geodesic

k
k dtgcm ββ002

12 11 . (G5) 
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where the l  superscript in the last term has been lowered by the metric tensor and the 

raised and lowered Latin index k  indicates a summation from 1 to 3.  The radical has 

been expanded assuming that the parenthetical is 1<< , and, aside from the 00g  

component, the metric tensor is approximated as the Minkowski metric tensor.2  

Simplifying, and making use of equation (11), equation (G5) becomes 

 ( )∫∫ −+−−=
geodesicgeodesic

dtcmgcmcmcmd 22
2
1

00
2

2
12

2
12 βτ  

 ( )∫ +−+−=
geodesic

dtvmgcmcmcm 2
2
1

00
2

2
12

2
12  

 ( )( ) min2
2
1

00
2

2
12

2
1 =+−= ∫ dtcgcmmv

geodesic

, (99) 

upon rearranging, which is equation (99). 
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APPENDIX H 

The Stress-energy Tensor from the "Cloud of Dust" Model 
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 Imagine an extremely dense (in the continuum limit) cloud of identically massive 

dust particles (point masses) of rest mass m , but that they do not interact with each 

other.  This is the popular "cloud of dust" model used to demonstrate the stress-energy 

tensor.41  In some small element of spatial volume V∆ , there is some number of 

particles n , each with a rest mass m .  For simplicity, consider all of the particles to be 

co-moving.  Then, the momentum in this element of volume is 

 µµ umnp = . (H1) 

The energy of this element of the dust cloud is given as 

 cumncpE 00 ==∆ . (H2) 

Therefore, the energy density in this volume is 

 cu
V
mn

V
E 0

∆
=

∆
∆ . (H3) 

In the limit that 0→∆V , equation (H3) gives 

 ( ) 0000000
3

~1 Tuucuj
c

cu
xd
mnd

≡== ρ , (H4) 

where ρ~  is the rest frame mass density of the dust cloud and 00T  is defined as the 

energy density of the matter field (i.e. the density of 2cm ).  The appearance of 0j  is by 

a similar argument to that found in Appendix B, except that here it indicates the 0-

component of the mass current density 4-vector. 

 In order to form a tensor, all that must be done is to generalize the indices from 

0  to µ  and ν .  Then, equation (H4) is still identically valid in the rest frame, and 

furthermore, validity is maintained under a Lorentz boost. 

 νµµν ρ uuT ~≡ . (H5) 
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Lowering the second index of equation (H5) for the 00 component gives 

 α
αρ uugT 0

00
0 ~= . (H6) 

In the static weak field limit, 00 αα η→g , and cu →0 .  Therefore equation (H6) gives 

 2000
00

0 ~~~ cuuuuT ρρηρ α
α →=→ . (H7) 

 For an interpretation of this new tensor, consider three sets of components, 00T , 

0kT , and klT . 

 00T  is the energy density,41 as before.  It is the amount of energy per unit volume 

by virtue of the presence of rest mass, whether or not the mass is in motion. 

 kk TT 00 =  is the momentum density, or energy flux density.41  This is quite similar 

to current density.  It is due to a stream of massive point particles flowing in the k  

direction (or, at least, the flow has a projection in the k  direction). 

 lkkl TT =  is the momentum flux density of k  directed momentum transferred in 

the l  direction.41  This is similar to a transverse wave in the case that lk ≠ , and a 

longitudinal wave in the case that lk = . 

 As a simple example, consider a constant, continuous, and static distribution of 

non-interacting mass.  The stress energy tensor has components 200 ~ cT ρ= , and 

0=µνT  if either 0≠µ  or 0≠ν .  A Lorentz boosted version of this stress energy tensor 

in the x  direction is essentially the same as a uniform distribution of mass moving as a 

whole in the x  direction (resulting in a Lorentz factor due to relativistic velocity addition) 

with an increased mass density (due to length contraction and resulting in another 

Lorentz factor).  This gives 2200 ~ cT ργ=′ , vcTT ργ ~20110 =′=′ , and 2211 ~ vT ργ=′ .  

Therefore, the 00 component is still the familiar rest energy density with the relativistic 
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correction factor of 2γ , the 10 component is the classical density of the momentum in 

the x  direction with the relativistic correction factor of c2γ , and the 11 component is the 

classical kinetic energy density with the relativistic correction factor 2γ . 
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APPENDIX I 

Generalization of 00
2 g∇  to 0

02 R−  
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 According to the notation of Chapter 2, the Laplacian of 00g  can be written as 

 lk
klk

k ggg ,,
000000

2 η−=∂−∂=∇ , (I1) 

where the summations on k  and l  are from 1 to 3.  The use of Latin indices is allowed 

by the diagonal nature of the Minkowski metric tensor, since including the 0 index terms 

would not contribute anything to the summation. 

 The quantity in equation (I1) must be related to a tensor in order to be a physical 

object.  As it stands, the object in equation (I1) has two free indices, both 0.  So, it is 

reasonable to generalize to the 00 component of a second rank tensor.  The most 

obvious first attempt is to simply generalize the ordinary partial derivatives summed 

from 1 to 3 to covariant derivatives summed from 0 to 3.  This, by definition, would make 

the object the 00 component of a tensor directly in a single step. 

 µ
µ

;
;

00,
,

00 gg k
k −→ . (I2) 

Unfortunately, this is not an acceptable candidate, since this object, also by definition, 

vanishes when 00g  is interpreted as a component of the general metric tensor. 

 0;00 =µg  (I3) 

 The next attempt (not at all obvious, and not nearly as direct) is to transpose the 

indices in order to account for all of the components of the metric tensor.  Consider the 

explicit summation in equation (I1). 

 ∑∑
= =

−=∇
3

1

3

1

,,
0000

2

k l

lk
kl gg η  (I4) 

Transposing the indices on lkg ,,
00  gives 

 ( )∑∑
= =

+++−=∇
3

1

3

1

0,,
0

0,0,,0,
0

,,
0000

2

k l

k
lkl

l
k

lk
kl ggggg η . (I5) 
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The equality remains in equation (I5) in the static limit since all three additional terms 

contain a derivative with respect to time and therefore vanish.  This accounts for all of 

the components of the general metric tensor.  The operation of raising an lowering can 

be done implicitly by accounting for a change of sign when the operation involves a 

Latin index.  This gives 

 ( )( ) ( )( ) ( ) ( )( )∑∑
= =

↓↓↓↓↓↓↓↓
↑↑ −++−+−−−−−=∇

3

1

3

1
0,,00,0,,0,0,,0000

2 111111
k l

klkllklk
kl ggggg η  

 ( )∑∑
= =

−+−−=
3

1

3

1
0,,00,0,,0,0,,00

k l
klkllklk

kl ggggη  (I6) 

The Latin indices can be generalized to Greek indices also without changing the validity 

of equation (I6) in the static limit, since such a generalization will only introduce time 

derivatives which vanish in the static limit.  The explicit summation is now removed in 

favor of notational convenience over functional explicitness. 

 ( )0,,00,0,,0,0,,0000
2

µνµννµνµ
µνη ggggg −+−−=∇ . (I7) 

Two mutually canceling terms may be added to equation (I7), namely µν ,0,0g−  and 

µν ,0,0g .  Inserting these two terms and rearranging gives 

 ( )νµµνµννµµνµν
µνη ,0,00,0,,0,0,,000,,0,0,000

2 ggggggg −+++−−−=∇ . (I8) 

Using the symmetry of the metric tensor and the commutability of the ordinary partial 

derivatives, equation (I8) may be rewritten. 

 ( )0,,00,0,0,,0,,00,0,0,0,000
2

νµµνµνµνµνµν
µνη ggggggg −+++−−−=∇ . (I9) 

Grouping the first three terms together and the last three terms together and 

recognizing the Minkowski metric tensor as a constant gives 

 ( )[ ] ( )[ ]νµµνµν
µν

ννν
µν

µ ηη ,00,,00,000,00,000
2 ggggggg −+∂−−+∂=∇ . (I10) 
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In local geodesic coordinates µνµν η=g  at the pole of these coordinates.  In such 

coordinates, equation (I10) may be written as 

 ( )[ ] ( )[ ]νµµνµν
µν

ννν
µν

µ ,00,,00,000,00,000
2 ggggggggg −+∂−−+∂=∇ . (I11) 

The quantities in square brackets are recognized as constant scalar multiples of the 

Christoffel symbol according to equation (89). 

 [ ] [ ] ( )µ
µ

µ
µ

µ
µ

µ
µ 0,0,00000000

2 222 Γ+Γ−−=Γ∂−Γ∂=∇ g . (I12) 

In geodesic coordinates, the quantity in parenthesis of equation (I12) is recognized as 

exactly the 00R  component of the Ricci tensor according to equations (90) and (91). 

 0000
2 2 Rg −=∇ . (I13) 

The first subscript of this component of the Ricci tensor may be raised with the metric 

tensor.  In geodesic coordinates 00 αα η→g , therefore, raising and lowering a 0 index 

does not change the value of the tensor component.  This gives (numerically) 

 0
0

00
2 2 Rg −=∇ . (I14) 

 The justification for using geodesic coordinates is in the weak field limit.  

Geodesic coordinates are coordinates for which the metric tensor is locally flat, and 

therefore can be replaced by the Minkowski metric tensor.  This is representative of the 

metric that would be observed, for instance, inside an elevator that is freely falling in the 

Earth's gravitational field.  Essentially, a freely falling Cartesian coordinate system is a 

geodesic coordinate system in a weak gravitational field for some small amount of time. 

 At this point, it should be emphasized that the equality in equation (I10) is exact 

in the static limit, and that, by choosing a geodesic coordinate system, the 

generalization from (I10) to (I11) is locally exact.  A transformation from the R.H.S. of 
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equation (I11) to a general coordinate system will generate two extra terms that are 

products of Christoffel symbols.  These two terms match those found in the definition of 

the Riemann tensor so that the R.H.S. of equation (I11) is found to transform as a 

tensor in general coordinates. 
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