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Maxwell's equations are obtained from Coulomb's Law using special relativity.
For the derivation, tensor analysis is used, charge is assumed to be a conserved scalar,
the Lorentz force is assumed to be a pure force, and the principle of superposition is
assumed to hold.

Einstein's gravitational field equation is obtained from Newton's universal law of
gravitation. In order to proceed, the principle of least action for gravity is shown to be
equivalent to the maximization of proper time along a geodesic. The conservation of
energy and momentum is assumed, which, through the use of the Bianchi identity,

results in Einstein's field equation.
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CHAPTER 1

INTRODUCTION

Thousands of years ago, the more advanced ancient societies were aware of the
forces of electricity and magnetism.? Several hundreds of years ago, these forces were
considered to be different manifestations of the same kind of force. lIronically, this
unification was dismissed for centuries as the scientific community pursued a more
enlightened philosophy. It wasn't until the time of James Clerk Maxwell that the
unification of these two forces was again accepted. Of course, this did not play well
with the mechanics proposed by Isaac Newton.? The two theories, electromagnetism
and classical mechanics, required different treatments when transformed from one
coordinate system to another. This indicated that at least one of the two theories
needed an adjustment. The first idea was to adjust Maxwell's equations to
accommodate classical mechanics, but Albert Einstein saw things the other way
around.?

Einstein used symmetry to show algebraically that length contraction and time
dilation are consequences of the invariance of the speed of light.® To solidify the
principle of relativity, he developed a geometrical picture in which tensors that transform
according to Lorentz transformation matrices represent all physical objects in flat space-
time.? In this regard, the magnetic field is a consequence of the application of special
relativity to the electric field under a Lorentz transformation. Ultimately, tensor analysis
can be used to derive Maxwell's equations from Coulomb's Law and the assumptions

that charge is a conserved scalar and that the principle of superposition holds.?



After completing his theory of special relativity, Einstein realized that the next
great accomplishment would be to make gravitation consistent with the special theory of
relativity.? Mass, the source of gravitation, is very different than charge, and the
analogy between gravity and electrostatics breaks down.? Einstein showed that the
gravitational field is actually a distortion of space-time itself.? For general relativity,
tensors had to be used so that the form of the equations of physical laws remained
invariant under general coordinate transformations. This is called the principle of
general covariance.*

Applying the principle of general covariance and the equivalence principle to
Newton's universal law of gravitation gives Einstein's gravitational field equation, if
energy is conserved. Poisson's equation for gravity can be generalized to Einstein's
gravitational field equation, a second rank tensor equation.? In the limit that the sources
are stationary and the fields they produce are weak, Einstein's equation reduces to
Poisson's equation for gravity.? Therefore, Newton's law for gravity, which he
presented® in 1686, is still a valid way to describe "weak gravitational interactions"” in
which the interacting bodies have constant mass and have negligible velocity compared
to the speed of light. That Newton's law for gravity is still valid today in the appropriate
limit demonstrates the smooth progression of classical physics over the last few

centuries.



CHAPTER 2

SPECIAL RELATIVITY: DERIVATION OF MAXWELL'S EQUATIONS
2.1. Introduction
Magnetism was most likely first recognized thousands of years ago by the
Chinese as a force, though most thought it to be of magical origin.! The source of this
magic was known as lodestone. Almost as long ago, the Greeks first recognized that a
force emanated from amber. This was the first observation of the electrostatic force.* A
millennium later, in the sixteenth century during the renaissance, interest in science
grew, and sparked an explosion of scientific discoveries. Charles Coulomb
experimentally demonstrated in 1785 that the electrostatic force obeys an inverse
square law.! In 1873, James Clerk Maxwell presented his Treatise on Electricity and
Magnetism which showed a unification of the contemporary theories of electricity and
magnetism into an elegant set of four equations known as Maxwell's equations.® Along
with the elegance of the equations came the realization that electromagnetic waves
should propagate away from a source at the speed of light (a phenomenon that Heinrich
Hertz verified experimentally in a series of experiments conducted between 1879 and
1889).° In 1890, Hendrik A. Lorentz proposed transformations that maintained the form
of Maxwell's equations for frames of reference moving at different velocities with respect
to the source of the electromagnetic field.” A transformation of this type is known as a
Lorentz transformation. Einstein showed in 1905 that the Lorentz transformations could
be derived algebraically with the assumption that the speed of light is the same for any
observer in any inertial frame of reference,® and so modified classical mechanics to be

consistent with electromagnetism.?



There have been many attempts to obtain Maxwell's equations from Coulomb's
Law using special relativity, though the approaches and assumptions vary. R. P.
Feynman uses the scalar and vector potentials.® E. Krefetz indicates that a multitude of
assumptions must be made in order to carry out the derivation.® W. Rindler gives a very
similar approach, as well as using potentials to justify certain steps.’® D. H. Frisch and
L. Wilets offer a very detailed and rigorous approach.'* One of the most significant
approachs to the one given in this chapter was presented by D. H. Kobe.? However,
there are some considerations that are given more attention in this chapter.

Tensors are discussed in general in Sec. 3. In Sec. 4 Gauss' Law for
electrostatics is generalized to Gauss' Law for time varying fields and to the Ampere-
Maxwell Law. In Sec. 5 the conservative nature of the electrostatic field is generalized
to Faraday's Law and the law of no magnetic monopoles. The proper time introduced in
Sec. 3 and the Faraday tensor developed in Secs. 4 and 5 are used to generalize
Newton's second law for a charged particle to the Lorentz force in Sec. 6. Sec. 7 gives
the conclusion for this chapter.

2.2. Lorentz Transformations

Einstein postulated that the speed of light should be the same for both of two
observers, regardless of their relative motion (as long as neither experiences an
acceleration). Using this postulate, the Lorentz transformations can be obtained.
Consider two observers, A and B, moving along the x-axis. They both pass through
the origin attime t =0. Let A observe B to move to the right (in the + x direction) at a
constant speed, v. Now, assume that A sends out a light pulse isotropically from the

origin at t =0. Of course, observer A will consider this as a spherical wavefront,



centered at herself, the radius of which increases at a rate, ¢. The "strange"
consequence of Einstein's postulate is that B will also consider this as a spherical
wavefront, centered at himself, the radius of which also increases at a rate, ¢c. Thisis
strange in terms of Galilean relativity. While B should consider a spherical wavefront,
he should consider the center of the sphere to move to the left (in the — x direction).
However, according to Einstein's special theory of relativity, the center of the sphere will
not move at all with respect to B; B will also remain at the center of the sphere.
Therefore, some aspect of the common sense of Galilean relativity must change.
Einstein's relativity abandons the notions of absolute time and absolute space, and it
replaces them with the invariance of the speed of light in all inertial frames. The Lorentz
transformations, instead of Galilean transformations, determine Cartesian coordinate
transformations from one inertial frame to another.

To proceed with the derivation, it is convenient to introduce two coordinate
systems, K and K', and restrict the discussion to 1 spatial dimension. Let K be defined
as the coordinate system in which A is at rest and B is moving to the right at a constant
velocity, v. Let K' be defined as the coordinate system in which B is at rest. Since B is
moving to the right relative to A at a speed, v, then A moves to the left relative to B at a
speed, v. Therefore, in K', A is moving to the left at a constant velocity, v. This has a
straightforward representation in Cartesian coordinates.

In coordinate system K, let x, be the value of the x coordinate of A's position,
and let x; be the value of the x coordinate of B's position. Then?

X, =0, (1)

% Note: the coordinates are, in general, functions of time.



and

Xg = Vt. (2)

In coordinate system K', let x|, be the value of the x coordinate of A's position,
and let x, be the value of the x coordinate of B's position.” Then

Xy =-vt', 3)
and

x;, =0. (4)

Since the speed of light is invariant, the light pulse has the same coordinate
representation in both coordinate systems. Along the x -axis

X., = *Ct, (5)
and

., ==xct’. (6)

Equations (5) and (6) show Einstein's postulate in mathematical form. The (+)
and (-) signs in equations (5) and (6) indicate a rightward and leftward traveling light
pulse, respectively. Equations (1) through (6) suggest an ostensible contradiction. The
right side of the light pulse relative to B in coordinate system K seems to be traveling
more slowly than c relative to B, and the left side seems to be exceeding the speed c.

To resolve the contradiction, one must realize that x'=x—vt, and that t" =t (in

® Notice the prime on the time parameter in equation (3). Time is not necessarily the

same from one coordinate system to another. This is how the paradox is resolved.



contradiction to the Galilean transformation that says t'=t, always). The next step® is
to rewrite equations (5) and (6) as
X, —Cct=0 and x, —ct'=0
for the rightward traveling light pulse, and
X, +ct=0 and x!_ +ct'=0
for the leftward traveling light pulse. The assumption that an affine transformation
(linear in this particular example) exists between the coordinates in K and the
coordinates in K' leads to®

(X, —ct) =a(x,, —ct'), (7)
and

(X, +ct) =b(x._+ct'), (8)
where a and b are arbitrary constants. This affine transformation is assumed to apply
to all events in space-time, not just those on the light cone, since a light cone can

always be defined through any given event. Generalizing x,, and x_ to x and x, and
X, to x', equations (7) and (8) can be rearranged to give the primed coordinates in

terms of the unprimed coordinates®

¢ This step is not at all obvious. The motivation is based on the desire to find a
transformation for all points, not just those on the light cone.

9 This results in two equations, four variables, and two arbitrary constants (to be
determined subsequently). So, given two of the variables, the equations may be solved

for the other two, up to the arbitrary constants.



The role of the two arbitrary constants, a and b, can be fulfilled by two different

arbitrary constants, g and y, defined as®

—ﬂz% and 7=%
so that

X' =yXx-pyct, 9)
and

t’=—ﬂy§+yt. (10)

The arbitrary constant, g, can be found by using the primed and unprimed

coordinates to describe the position of observer B. Combining equation (9) with
equations (2) and (4) gives

Vv

f=—. (11)
C

To find the arbitrary constant, y, symmetry must be used. Equations (9) and (10) give

the coordinates of an event as seen by observer B, in terms of the coordinates as seen

® This does not change the generality, since the number of arbitrary constants does not
change. These particular symbols are chosen in anticipation of the result and

recognition of the standard usage.



by observer A, given that B is moving with a velocity, v, in the x direction as seen by
observer A. The symmetry suggests that there should also be two such equations to
tell B where an event will appear in A's perspective. The coordinate values should also
match between the two sets of equations if they are to be meaningful. Equation (11) is

used to replace S in equations (9) and (10).
X' =yx—vrt, (12)

and
t’:—v7iz+y/t. (13)
C

Solving equations (12) and (13) for x and t gives

2 2
X=— X v t', (14)

y(c?=v?) y(c?=v?)

and

c? , c? .

t=v X + t
y(c®=v?)  y(c?-v?)

(15)

Since the velocity of A relative to K' is the opposite of the velocity of B relative to
K, the v's must be multiplied by -1 in equations (14) and (15) in order to compare the
form to equations (12) and (13). In doing this, it is seen that all four factors agree so

that y must satisfy

. — (16)



Finally, note that no transformation of the y or z coordinates occur, so that
17)

Equations (12), (13), and (17), together with the definitions (11) and (16), give the
primed coordinates of an event in space-time in terms of the unprimed coordinates." In

matrix notation, this can be written as

ct’ y =Py 0 0Ofct
X' — 0 O x
A . (18)
y' 0 0 1 0|y
z' 0 0 0 1z

The inverse of the matrix in equation (18) represents a boost in the opposite direction,
which is accomplished by changing the (-) signs to (+) signs.
2.3. Tensors

The previous section emphasized an algebraic derivation of the Lorentz boost.
However, there is a much more geometrical interpretation of the Lorentz boost. The
benefit of a geometrical interpretation is that it provides an intuitive understanding of the
effects of a Lorentz boost on the coordinates (length contraction and time dilation). To
develop an understanding of the representation of physical objects by tensors, consider

three immediate examples of three different tensor ranks: the speed of light as a scalar,

"The primed coordinates are the coordinates of the event as seen by an observer
moving with a speed v in the x direction as seen with respect to the unprimed
coordinate system. Since the orientations of the coordinate systems are arbitrary, they

can always be rotated so that their x axes coincide with the direction of the boost.

10



an event (or, more appropriately, a displacement) in space-time as a 4-vector, and the
metric as a second rank tensor.
2.3a. Scalar Fields (0" Rank Tensors)

The speed of light is a constant scalar field in special relativity. Scalar fields are
tensors of rank 0, and vice versa. Being a field means that the object is defined over a
connected region of space-time. Being a constant means that the object has the same
value at every point in the region of interest.

Scalar fields are invariant to Lorentz transformations. Consider an arbitrary point
in space-time, (also called an "event"), represented in shorthand notation by, x“. Let
an arbitrary scalar field, ¢, take the value, ¢(x” ) at the point x“. Let primes indicate

transformed values under some Lorentz transformation. Since ¢ is a scalar field, it
satisfies the relationship

#(x)=g(x"). (19)

Equation (19) defines ¢ as a tensor of rank 0. This means that the value of the
scalar field at an arbitrary point in space-time transforms to the same value at the
transformed point in space-time under a Lorentz transformation. In other words,
changing the space-time perspective (coordinate system) does not change the
numerical value of the scalar field at any given point in space-time.

2.3b. Vector Fields (1% Rank Tensors)
Increasing the rank of the tensor increases the level of complexity. Equation (18)

can be written in component form as

3
X' = Za"vxv : (20)
v=0

11



where x'# is the 4™ component of the four-component column vector on the L.H.S. of

equation (18), x” is the v" component of the four-component column vector on the

th

R.H.S. of equation (18), and a*, is the component in the x" row and v" column of the

matrix in equation (18).% The scripts run from 0 to 3." Einstein's summation convention
provides a shorthand notation for equation (20). A summation from 0 to 3 over any
Greek-letter index that appears once as a superscript and once as a subscript in a given
term is implied in Einstein's summation convention.'? Using this convention, equation
(20) can be written as™?'

X' =a",x". (22)
This kind of summation is called "contraction.” An event in space-time can be
represented by a position 4-vector, which can in turn be represented by one temporal

component (ct), and three spatial components (x, y, and z). The first component of

9 In other words, equation (20) is the operation of a matrix on a vector in linear algebra
written out explicitly.

" Starting the index at 0 is merely a convention. This convention will be used in this
paper since it is ubiquitous in the literature.

' There is no physical significance to what specific Greek letter is used for any given

index. The letters # and v happen to be popular choices. What is physically

significant is whether or not the specific letter is repeated and therefore involved in a

summation.

12



the position 4-vector, x°, is identified with the product of the speed of light with the time
of the event, ct. The other three components of the position 4-vector, x*, x?, and x°,
are arbitrarily identified with the Cartesian components of the position 3-vector that

represents the point in space at which the event occurs, namely, (x, y, z). This refers

explicitly to the x” on the R.H.S. of equation (21). The x“ on the L.H.S. is treated
similarly, but with respect to components in the primed coordinate system.

It is more appropriate to express equation (21) in terms of differentials.

dx'# =a*,dx", (22)
where the coordinates refer to some trajectory represented as a curve in 4-dimensional
space-time.! Equation (22) establishes a paradigm? for a tensor of rank 1 in the context
of special relativity (Minkowski space-time)*? in terms of its components (the
components in equation (22) are the contravariant components). 4-vectors are tensors

of rank 1, and vice versa.” The components, a“,, are the corresponding components of

I Do not confuse these upper indices with exponents. Exponentiation will be indicated
by first putting the variable in parenthesis, unless the context makes the use as an
exponent obvious.

X The reason behind this, though not extremely complicated, is deferred to the next
chapter in the discussion of curved manifolds. As a brief justification, it involves the
more appropriate concept of a tangent vector from differential geometry.

"It is chosen as a scalar so that it remains unaffected by the Lorentz transformation

matrix and is thus a global parameter.

13



the Jacobian transformation matrix. In other words, equation (22) just shows the

application of the chain rule in multivariable calculus such that

ru
dx"# :ax—dx”, (23)
ox”

where Einstein's summation convention is being used. Equation (23) shows the
geometrical meaning of the Lorentz transformations.

A tensor of rank 1 is similar to a vector in linear algebra in the sense that the
matrix multiplication of a vector has the form of equation (23). However, there is a
stronger requirement on 4-vectors in the geometrical context of tensors. The
contravariant components of a tensor of rank 1 (4-vector) must transform according to
equation (22) under a Lorentz transformation. That is, no extra terms should result from
a Lorentz transformation than those that appear in equation (22).

The components of a vector field transform under a Lorentz transformation.

Consider an arbitrary point in space-time represented in shorthand notation by, x". Let

the contravariant components of an arbitrary vector field, A, take the values, A”(x” )

at the point x”. Let primes indicate transformed values under some particular Lorentz
transformation. Since A“ are the contravariant components of a vector field, they
satisfy the relationship
A“(x7 )=a, A“(x"). (24)
Equation (24) defines A as a tensor of rank 1. This means that the value of the
contravariant components of a vector field at an arbitrary point in space-time transform
into a contraction with components of the Lorentz transformation matrix at the

transformed point in space-time under a Lorentz transformation. In a sense, the value

14



of the tensor itself does not change. However, the need to represent the tensor as a set
of 4 numbers requires a transformation of these four numbers according to equation
(24), much like rotating the coordinate axes changes the individual components of a
vector without actually changing the vector itself.

The components of a tensor can also take the covariant form. The paradigm for
this form of component is the partial derivative operator, which can be written using the

shorthand

0
a”EGX“.

(25)

An important difference in the notation for covariant components is that the index is
written as a subscript, rather than a superscript. The transformation rule for such
components is similar to equation (24), except that the components have subscripts
instead of superscripts and the indices on the components of the transformation matrix

are switched:
AL(X7? )=a%A,(x"). (26)
The two different forms of components are discussed in more detail in the next two
subsections.
2.3c. Second Rank Tensors
In order to have a sense of scale ("closeness"), a scalar product™ is defined
using a tensor of rank 2 called the metric tensor. In special relativity there are four

dimensions, so a tensor of rank 2 will have 4° = 16 components, in general. These

™ The scalar product is a generalization of the dot product to spaces that are not

Euclidean.

15



tensors seem quite similar to 4x4 matrices in linear algebra, but there are several
differences that make this comparison dangerously confusing. One confusing similarity
between second rank tensors and 4x4 matrices is the compact manner of listing the
components in four rows and four columns. This makes a second rank tensor look
much like a matrix, but, keep in mind that the tensor is an object independent of the
particular arrangement of components. However, out of convenience, the components

of the metric tensor in special relativity are usually given as*?

10 0 O
0 -1 0 O
Tw=lo 0 -1 0 @)
0 0 0 -1
The scalar product is written in component form as
u-v=mn,uv", (28)

where u and v are arbitrary 4-vectors, and u” and v" are their contravariant
components." The scalar product is a true scalar in the sense that it is a tensor of rank
0. As an example, consider the squared distance from the origin to a point in space. In
3-dimensional Euclidean space, this can be found from the Cartesian components as
the sum of the squares of the components. This is actually the scalar (dot) product of
the position vector with itself. In flat space-time (special relativity), the distance is
generalized to something called the proper distance, but is fundamentally the same: it

is the scalar product of the position 4-vector with itself. However, in space-time this is

" Don't forget that, since the Greek indices appear once as a subscript and once as a
superscript, they are summed over, from 0 to 3. This summation is called contraction

when both factors in the summation are components of tensors.

16



not exactly the sum of the squares. Using equation (28) with the definition from

equation (27), the square of the differential proper distance is given by

dx-dx =n,, dx“dx”

= (dx0 )2 —(dxl )2 —(dx2 )2 —(dx3 )2 =

c’dt® —dx* —dy® —dz® =ds?, (29)
where ds is the differential proper distance. Notice that the surface, ds =0, gives a 4-
dimensional cone. This is called the light cone,’ because it represents the set of all
events in space-time through which a ray of light could pass, given that it passes
through the origin of 3-dimensional space at time t=0. If ds =0, then equation (29)
gives a 4-dimensional hyperboloid.”

Derived from the differential proper distance is the fundamentally important
scalar called the differential proper time, which is literally just the differential proper

distance divided by the speed of light.

drz%\/czdtz—(dx2+dy2+dzz), (30)

°Itis called a "cone," but don't forget that this is a 4-D cone. Picture a sphere that
shrinks down to a point and then immediately expands again. If that point is the origin,
and the radius of the sphere shrinks and expands at the constant rate, c, then this
shrinking and expanding sphere is the light cone. If space were two dimensional, then
this could be represented as the familiar version of a cone.

P That is why the hyperbolic functions are a very straightforward way to express the

Lorentz transformations.

17



where dr is the differential proper time. This gives the time experienced by an
observer who undergoes a given displacement in space-time. This is the parameter
used to generalize the time derivative in many physical laws.

The usefulness of second rank tensors has been demonstrated by the Minkowski
metric tensor. In general, the components of a second rank tensor field follow a certain

transformation rule. Consider an arbitrary point in space-time represented in shorthand

K

notation by, x*. Let the contravariant components of an arbitrary second rank tensor

field, B, take the values, B“V(x” ) at the point x*. Let primes indicate transformed

values under some patrticular Lorentz transformation. Since B*" are the contravariant
components of a second rank tensor field, they satisfy the relationship

B'(x* )=a“.a’B* (x* ). (31)

Equation (31) defines B as a tensor of rank 2. The contravariant components of
a second rank tensor field at an arbitrary point in space-time transform into a contraction
of each index with components of the Lorentz transformation matrix at the transformed
point in space-time under a Lorentz transformation. Again, the tensor itself does not
change, but the contravariant components change according to equation (31).

At this point one should notice that there is one Lorentz transformation factor for
every rank of the tensor. As in the case for the covariant components of a first rank
tensor, in the transformation rule for the covariant components of a second rank tensor,
the indices on the components of the Lorentz transformation matrices are switched. A
more detailed discussion of the distinction between contravariant form and covariant

form follows in the next subsection.

18



2.3d. Superscripts vs. Subscripts

There is a shorthand notation for the contraction of the metric tensor with another
tensor,® called raising and lowering an index, or "index gymnastics."? Since the metric
tensor plays a fundamental roll in the analysis, it frequently appears in the formulae.
Rather than explicitly write it out, it is more convenient to use this shorthand. If the
metric tensor is contracted with the superscript of another tensor, then the superscript is
written as a subscript and the metric tensor is omitted. As an example, the scalar
product can be simplified using the shorthand as

1, dx“dx” = dx, dx" = dx“dx,, . (32)

This introduces a new kind of component, which is indexed with a subscript, called
covariant. Intuitively, the contravariant components (with the superscript) refer to the
coordinates in terms of the constant coordinate hyperplanes, while the covariant
components (with the subscript) refer to the coordinates as measured along the axes
(which are the intersections of all other hyperplanes). This gives the scalar product the
intuitive meaning of the number of hyperplanes through which a line segment passes.**
The partial derivative is the paradigm for the covariant component,? since it holds all
other variables fixed, and thus "moves along the coordinate axis." In Cartesian
coordinates, the distinction is trivial, since the coordinate system is orthogonal. In
special relativity there is a non-trivial distinction, in that, changing between contravariant

and covariant form changes the sign on the 1%, 2" and 3" components. This can be

9 This is actually more than just a convenient shorthand; it shows that the contraction of
the components of the metric tensor with the contravariant components of a 4-vector

gives the covariant components of the 4-vector.

19



seen by comparing equation (29) with equation (32). Since the partial derivative is the

paradigm for the covariant component, it is given a special symbol.

of
ox* = 8/1f ! (33)

where f is a scalar function of the position in space-time. Notice that the symbol takes

a subscript, indicating that it is covariant. So, the differential is the paradigm for the
contravariant form of a vector, and the partial derivative is the paradigm for the
covariant form of a vector.

The components of the metric tensor also have a contravariant form that raises
the index of covariant components to make them contravariant. The different types of
components of the metric tensor satisfy the relationship:*?

77#&770”/ = 5’UV ’ (34)

where 5“, is the Kronecker Delta." Notice that the two forms of the components of the
metric tensor are contracted on one index, leaving one free index® from each tensor. In
general, the contraction takes away one rank from each tensor, so, the components of
two 2" rank tensors contracted on one of their indices leaves 2 - 1 + 2 -1 = 2 indices,
and therefore results in components of a 2" rank tensor. The contraction of the
components of two 1% rank tensors (4-vectors) results in a tensor of rank 0 (scalar).
Also notice that the result preserves the placement of the remaining indices as a

subscript or superscript. It turns out that the covariant components of the Minkowski

" The Kronecker Delta can be thought of as the mixed components of the metric tensor
of space-time.

S A free index is an index that is not involved in the contraction.

20



metric tensor are the same as the contravariant components. So, equation (23) also
represents the covariant components.

There is another 2" rank tensor, called the Faraday tensor, which encapsulates
the electric and magnetic field into one physical object. It is developed from first
principles of electrostatics in the next three sections.

2.4. Generalizing Electrostatics to the Time Dependent Gauss'
Law and the Ampere Maxwell Law

Here, a brief review of electrostatics is given. The goal is to propose the
minimum number of physical postulates in order to generalize to a relativistic version of
the electromagnetic field. This generalization results in a second rank tensor, called the
electromagnetic field strength tensor, or Faraday tensor. Maxwell's equations follow as
a natural consequence of this generalization.

Coulomb's law states that the force between two charges is proportional to the
product of the charges and inversely proportional to the square of the distance between

them. For two charges, g and q', located at points in space represented by the
position vectors, X and X', respectively, Coulomb's law gives the force, F , experienced
by the charge, q, as

- qq" X-X
E = — 35
472'80 |X—X,|3 ( )

where ¢, is the permittivity of free space. The electric field, E , at the point in space

represented by the position vector, X, due to charge, q', is defined as

m
Il

(36)

o | T
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If the source charge, ', is generalized to the charge density at a point in space,
X', as a function of the position vector that represents that point, dq’ = d®x’ p(X') , where
d®x’ is a small volume element, then, using the principle of superposition, the electric

field, E(X ), is given as an integral over all of space.

E(X) = [d* p(0) =X (37)
472'80V, |X— |

The divergence and curl of the electric field can be found by taking the
divergence and curl of the integral in equation (37). As a result'

V-E(X)=p(x), (38)

0

and,

VxE(X)=0. (39)
Equations (38) and (39) are the equations of electrostatics that follow from

Coulomb's Law. The electric charge density, p(X), is the 0" contravariant component

of a 4-vector."** This 4-vector is called the charge-current density 4-vector.** The

0

contravariant components of the charge-current density 4-vector are:** j° = pc,

Notice the similarity to the assignment of the components

7z

i'=i. i"=i,and j* =]
in the position 4-vector. This indicates that the electric charge density transforms in the

same way that time transforms under a Lorentz transformation.

' The derivation for equations (38) and (39) can be found in Appendix A.
“ The justification for the static charge being the 0" component of a 4-vector is shown in

Appendix B.
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Consider the contraction of the partial derivative 4-vector with the charge-current
density 4-vector, 0, j“. This is called the 4-divergence of the charge-current density.
From Section 3.d, this contraction can be recognized as a scalar field. Consider a static
distribution of charge in its own rest frame, so that j' =0. In this case the scalar field is

just the time derivative of the charge density. Since charge is a conserved quantity,

then the time rate of change of the static charge distribution is

op _olpe) _d° _,

o oct) & (40)
in its own rest frame. Since the contraction is a scalar field, then in any coordinate
system

a,j"=0. (41)
Equation (41) is the continuity equation,

P __yv.j, (42)

where ] is the 3-dimensional electric current density vector.”
Replacing the charge density, p, in equation (38) with the 0" component of the

charge-current density 4-vector,

v-E(0)=—J°(%). 3)

¥ Physically, equation (42) says that, if there is an increase or decrease of charge at a
point in space, then there is a net current flow into or out of that region of space that

contains the charge.
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Since the R.H.S. of equation (43) transforms as the 0" component of a 4-vector,
so must the L.H.S. The divergence of the electric field generalizes to a contraction of
the partial derivatives with the contravariant components of a tensor. This, along with
the 4-vector transformation property of the L.H.S., requires that the components of the

electric field be generalized to components of a 2nd rank tensor.**

E =F"
E,=F% (44)
E,=F%®
so that
V-E=0,F*-9,F". (45)

These new components that have been introduced are components of the

Faraday tensor. Again, since equation (45) must transform as the 0™ component of a 4-

vector, the last term, —9,F %, must vanish." Equation (43) then becomes

5, F® =L jo. (46)
£,C

Substituting the definitions that have been used so far in this section, equation

(46) is a generalization of equation (38) to a time-dependent” electric field and current

"“The last term in equation (45) must vanish because it transforms as the 000 mixed
component of a 3" rank tensor, and therefore does not transform as the 0™ component
of a 4-vector.

* The time dependence is a consequence of the requirement that the physical objects
must be tensor fields, which must be defined as functions of space-time, not just

functions of space, in order to be Lorentz invariant.
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density. In order to have form invariance under Lorentz transformations, the other three
components of the 4-vector must be included. Therefore, equation (46) generalizes to**

3, F" = . (47)
£,C

There is only one subtle difference in the notation between equation (46) and (47),
namely, that the O superscript has become a Greek letter v. Physically, however, there
is a very profound difference, namely, that equation (47) accounts for all components of
the Faraday tensor whereas equation (46) does not. A consequence of this natural
generalization is that equation (47) gives another one of Maxwell's laws, the Ampere-
Maxwell law.**

To find the other components of the Faraday tensor, the divergence of equation
(47) gives™

0,0,F*" =0, (48)
by equation (41). Equation (48) suggests that the Faraday tensor is antisymmetric.”**
Assuming that the Faraday tensor is antisymmetric reveals 7 more of its components by
symmetry: F* =0, F*=-E , F” =-E ,and F* =-E,. To find the remaining 6
components, equation (47) is examined. As previously mentioned, the v =0

component of equation (47) returns Gauss' Law for a time-dependent electric field and

charge density.”

Y For a discussion of the antisymmetry of the Faraday tensor, refer to Appendix C.
2 The result of Gauss' Law with time dependence should not be at all surprising

considering the development up to equation (46).
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VoE(%t)= -2 p(R01), (49)

where the argument represents a dependence on space as well as time. For v =1,

equation (47) gives®

: (50)

0 0 F* o0 F*| 1. O©E,
C|l———+——|=—],+

oy ¢ 0z ¢ & ot
and similarly for the v = 2 and 3 terms. Equation (50) gives the x-component of the

Ampere-Maxwell Law,** given certain assignments for the components of the Faraday

tensor that appear, namely F* =—cB,, F* =—cB,, F** =—cB,, F* =cB,, F"® =cB,,

and F* =cB,. Therefore, the Faraday tensor may now be sumarized in a 4x4 matrix in

terms of the electric and magnetic fields as

-E, -E, -E,
0 -cB, cB,
, (51)

0
Fe = =
E, c¢B 0 —cB,
EZ

z

—cBy cB 0

X
where the first index gives the row, starting with zero from the top, and the second index
gives the column, starting with zero from the left. If these assignments are made, then
equation (50) gives the Ampere-Maxwell Law

S o w0y, 1 OE(Xt
V><B(x,t):yoj(x,t)+c—2 (Eit )

: (52)

where x, is the permeability of free space.

This accounts for all of the components of the Faraday tensor. Finding the last

six is a bit speculative. Reference to the Ampere-Maxwell Law seems to break the

® For the details of the derivation of equation (50), refer to Appendix D.
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promise that only electrostatics would be needed. The resolution is that the naming of
the components is arbitrary. The oblique components of the Faraday tensor were
recognized to satisfy the Ampere-Maxwell equation from equation (50), but the tensor
had already been defined physically to satisfy equation (47), which describes the
fundamental response of the Faraday tensor to the charge-current density. In other
words, equation (47) shows that these oblique components satisfy the Ampere-Maxwell
equation, and therefore they are associated with the magnetic field components. The
naming convention should not be obscured as a physical indication; equation (47) gives
the Ampere-Maxwell equation, not vice versa. For the reader who is still not convinced,
ultimately, the definition for these oblique components is verified operationally by their
appearance in the Lorentz force law in Section 6.
2.5. Generalizing Electrostatics to Faraday's Law and the
Law of No Magnetic Monopoles
Faraday's Law, equation (39), for electrostatics was obtained in Section 4 from

the basic principles already mentioned. Written in component form

3 OE
ZZguka—“O' (53)
X;

3
k=1 j=L
where &, is the Levi-Civita symbol defined as'*

+1 if ijk is an even permutation of 1,2,3
gy =1—1 if ijkisanodd permutationof 1,2,3 . (54)
0 if ijk is not a permutation of 1,2,3

Using the notation from section 3 and equation (44), equation (53) becomes

Zigijkaj':ko =0. (55)

3
k=1 j=1
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The Levi-Civita symbol can be generalized to a 4" rank tensor called the Levi-
Civita tensor,'* by using a definition similar to equation (54) for the contravariant

components of the tensor.

+1 if kAuvisaneven permutation of 0,1,2,3
g =4—1 if xAuvis anodd permutation of 0,1,2,3 . (56)
0 if xduvisnota permutation of 0,1,2,3

Replacing the Levi-Civita symbol in equation (55) with the appropriate
contravariant components of the Levi-Civita tensor, and lowering the indices on the

components of the Faraday tensor,

ii«?"“@j Fo =0, (57)

k=1 j=1

where** &*° = —¢, , and F, =77, F* =-F*. Recognizing that the component of

the Levi-Civita tensor vanishes if any of the other indices = 0, equation (57) is identical

to
&% F,=0. (58)

To generalize this to a tensor equation, the 0 must be generalized to an index
that ranges from 0 to 3. Since the components of the Levi-Civita tensor are constant,
they can be moved between the partial derivative to directly multiply the components of

the Faraday tensor. Equation (58) can also be multiplied by 1/2. This gives

8,(3&"F,, )=0. (59)

The quantity in parenthesis is defined as “F*”, the dual of the F*” component of the
Faraday tensor.** These components can be expressed as a matrix similar to equation

(51).
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0 -cB, -cB, -cB,

o _ cB, 0 E, -E (60)
| cB, -E, 0 E,
B, E, -E 0
Replacing the quantity in parenthesis using this definition, equation (59) becomes:
0, F* =0. (61)

"A generalization of Helmholtz's theorem states that an antisymmetric second-rank
tensor is completely determined by specifying its divergence and the divergence of its
dual."®® These specifications have been made by equations (47) and (61) in terms of
the charge-current density 4-vector.

For v =0, using the definition of the dual, and the suggested antisymmetry of the

Faraday tensor from Section 4, equation (61) gives

32 13 21
10F +16F +laF _0, (62)
Cc ox C¢co ¢ oz

where the factor of 1/c¢ has been introduced arbitrarily without changing the validity of
the equation. Equation (62) gives the law of no magnetic monopoles using the

component definitions in equation (51).

V-B=0. (63)
This supports the discussion in the previous section concerning the relationship of these
components to the magnetic field.

For v =1, equation (61) gives:

0y F*+0,"F" +0,"F* +0,"F* =0, (64)
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and similarly for v = 2 and 3. Rearranging equation (64) and making the assignments
to the components of the Faraday tensor according to equation (51) gives Faraday's

Law for time-dependent electric and magnetic fields.

VxE(X,t)=-

(65)

This further supports the discussion in the previous section concerning the relationship
of these components to the magnetic field.
2.6. The Lorentz Force

The previous sections developed the Faraday tensor from a few reasonable
assumptions. As a result, two similar equations were found, (47) and (61), that
determine the Faraday tensor in terms of a given charge-current density 4-vector. In
this section, the response of a point-charge is found to a given Faraday tensor, which
completes the mathematical description of the interaction between charge and field. To
begin the development, Newton's second law is considered in the context of the electric
field (equation (36)).

dp =
£ —gE, 66
il (66)

where p is the 3-dimensional momentum vector of the charged point-particle of charge

q, and E is the electrostatic field at the charge. Equation (66) is a first order, linear,
ordinary differential equation. Applying the usual technique of separating the dependent
variables from the independent variables, an implicit equation can be obtained in the

derivatives of p and t with respect to the proper time z.

dp dt -
—=—9E. 67
dr dz‘q (67)

30



As in the previous 2 sections, the components of the electric field are identified with
components of the Faraday tensor E, — F*°, etc., according to equation (44). Applying
this direct substitution to equation (67) gives

dp'  dt i
—=—gF", 68
dr drq (68)

where p' isthe i" component of the momentum vector p. Multiplying the R.H.S. of

equation (68) by % gives

dizﬂ(c_dtjpo:ﬂ Do Vg0 9 g0, (69)
dr c\ dr c\ dr c

where u, is the 0™ covariant component of the proper velocity u, defined as the proper

time derivative of the position 4-vector.

dx
u L. 70

The L.H.S. of equation (69) can be generalized to a 1st rank tensor in a
straightforward manner by changing the Latin superscript i to a Greek letter x, thus
including all four components. This will also change the i on the R.H.S. of the equation
toa x. Since the L.H.S. is a 1st rank tensor, so must be the R.H.S. This requires that

the O subscript and superscript be generalized to contracted indices rather than free

indices.

u
w9, g (71)
dr ¢’

Equation (71) is the relativistic equation of motion for a charged particle. It includes

every component of the momentum 4-vector p* (and velocity 4-vector u,) of the
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charged particle and every component of the Faraday tensor F*". Consider, as an

example, x4 =1, which represents a typical spatial component (the x-component). This

gives, directly from equation (71),

q

1
di—ﬂqul°+Eu2F12+%u3Fl3. (72)

dr ¢
Using the chain rule and equation (70), and substituting p* = p,,

ﬂd&:ﬂdﬁpw +ﬂdﬁ|:12 _,_H%FB_ (73)
dr dt c dr c dr c dr

The components of the position 4-vector can be identified according to section 2.3b,
and the F'° component of the Faraday tensor is the x-component of the electric field.

The chain rule can also be applied to the R.H.S. of the equation.

ﬂdpx :ﬂﬂc_thx_,_ﬂﬂ[_ﬂFlZ_gpm] (74)
dr dt cdr dt cdr| dt dt

Simplifying,
9y, + 9[-y, F2 oy, FB ], (75)
dt e ! ’

where v, =g—¥ and v :%. Letting F** =—cB, and F** =cB, in accordance with the

z

previous 2 sections, equation (75) gives the x-component of the force experienced by a

point particle of charge q moving with velocity V through an electric field E and

magnetic field B.

%:qu+q[\7xl§]x. (76)

The y and z -components follow similarly.
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The =0 component of equation (71) yields a well-known feature of

electromagnetism, and does so naturally from the principle of relativity.

0
dlzﬂﬁ %F‘)l_,_dﬁp(ﬁ_i_dﬁp% :ﬂ(%E”_ﬂE _,_%Ezj, (77)
dt cdt( dr dr dr cl dt de ' dt

which can be rearranged to give

0

d(th) d(er:;rgy):q(v.é). 78)
Equation (78) gives the power delivered to the charge by the electric field, and shows
that the magnetic field does no work.

2.7. Conclusion

Assuming that Coulomb's Law and the principle of superposition are valid for a
static electric field and static charge distribution, the electrostatic field is found to be
conservative and Gauss' Law obtained. By assuming that charge is a conserved scalar,
the equation of continuity was found for the charge density. This allowed Gauss' Law
for the electrostatic field to be generalized, using the principle special relativity, to
Gauss' Law for electrodynamics and the Ampere-Maxwell equation. The curl of the
electrostatic field was also generalized to give the law of no magnetic monopoles and
Faraday's Law. Finally, the force of the electrostatic field was generalized to the
Lorentz force and an equation for the rate of energy equal to the power delivered to a
point charge in an electric field.

All of this information can be written in terms of three tensor equations in special
relativity, (47), (61), and (68), that maintain their form under all Lorentz transformations.

The first two equations determine the response of the field to charged matter, which is

represented by the response of the Faraday tensor to the charge-current density 4-
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vector. These equations are Maxwell's equations. The third equation determines the
response of charged matter to the field, which is represented by the response of a point
charge to the Faraday tensor. This equation is Newton's second law of motion with the

Lorentz force. The mutual interaction between the field and charge upholds Newton's

third law of motion.

34



CHAPTER 3

GENERAL RELATIVITY: EINSTEIN'S GRAVITATIONAL FIELD EQUATION FROM
NEWTON'S LAW OF UNIVERSAL GRAVIATION
3.1. Introduction
After completing his theory of special relativity, Albert Einstein realized that the

next great challenge would be to make gravitation consistent with the special theory of
relativity.? Isaac Newton himself found fault in his universal law of gravitation because it
required a "spooky action at a distance."*® In order to have an instantaneous action at a
distance, an interaction must travel at an infinite speed. This becomes a problem for
causality in special relativity, because, what is simultaneous in one frame of reference is
not simultaneous in a boosted frame. In other words, an action in one frame of
reference could inconsistently be a re-action in another frame of reference. The
alternative to instantaneous action at a distance is an interaction that propagates at the
speed of light, which is accomplished in general relativity. Another problem with
Newton's universal law of gravitation is the source term, namely the mass. Obviously,
what is a static mass distribution in one frame of reference induces a mass current in a
boosted frame. So, the source of gravitation must demonstrate this in general relativity
as a tensor. It turns out that the source of gravitation is matter and energy, partly as a
consequence of Einstein's equivalence principle, so a second rank tensor is used, in
contrast to the source of the electromagnetic field, which is a first rank tensor.> Another
consequence of the equivalence principle, and perhaps the most profound (certainly the
most popular) feature of general relativity, is that the gravitational field is actually a

distortion of space-time itself.?
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There are two basic approaches to demonstrate the correspondence between
Einstein's gravitational field equation and Newton's universal law of gravitation. One of
these is to show that Einstein's gravitational field equation reduces to Poisson's
equation for gravity in the limit of static, weak fields. This is mathematically
straightforward, and involves neglecting certain terms in the equation at the appropriate
stages. Newton's universal law of gravitation has been demonstrated as a limiting form
of Einstein's equation by several authors.*”*®#!® The other approach is to show that
Einstein's gravitational field equation is an inevitable consequence of Newton's
universal law of gravitation when certain assumptions are made concerning the physical
universe. The latter approach is taken in this chapter.

Many other authors have shown Einstein's gravitational field equation as a
generalization of Newton's universal law of gravitation. Ohanian shows that Einstein's
gravitational field equation is the result of a generalization of Poisson's equation, with
the assumption that the gravitational potential is the 00 component of the space-time
metric tensor.?® Misner, et. al. gives six "reasonable axiomatic structures" that lead to
Einstein's equation, with the underlying assertion that the generalization must lead to
Einstein's equation.?* Kobe shows a heuristic treatment of the speed of light to
establish a relationship between the gravitational potential and the metric tensor, similar
to Einstein's first theory using the speed of light as a scalar field.”*?®* Costa de
Beauregard introduces a "generalized Poisson potential” that is not closely related to
the gravitational potential in Newton's universal law of gravitation.?* Moore derives
Schwarzschild's equation from Poisson's equation, but does not use tensors (general

covariance) nor develops the general form of Einstein's equation.?> Mannheim
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mentions the relationship between Einstein's gravitational field equation and Poisson's
equation, but does not give the derivation.?® Rindler proposes a canonical form for the
metric of curved space-time, compares Poisson's equation to the geodesic equation for
curved space-time and then relates the gravitational potential to the Christoffel
symbol.?” Bondi also assumes a canonical metric for a spherically symmetric mass
distribution and does not give detailed justification for the use of the stress-energy
tensor or Einstein tensor, but does give an excellent intuitive illustration of non-
Euclidean space.?® In a lecture on general relativity and astrophysics delivered at the
DPG School, a linear relationship is assumed between the stress-energy tensor, Ricci
tensor, and curvature scalar, in order to reflect the linear relationship of the tidal force to
the mass density in Newton's theory.?® Weinberg gives similar points in the
development that is found in this paper.>® Perhaps the most significant approach to the
one presented in this paper was by Chandrasekhar, who gives more detail in some
parts of the generalization and far less detail in others, and uses a different set of
assumptions.*!

In this chapter, the concept of general covariance (tensor analysis in the context
of general coordinate transformations, in contrast to the linear transformations in special
relativity) is applied to the classical Poisson's equation for gravity, which is based on
Newton's universal law of gravitation and the principle of superposition. Poisson's
equation for gravity can then be written as the 00 component (time-like component) of a
second rank tensor equation.? Einstein's equation is obtained by relating the mass
density (times c¢?) to the 00 component (being the energy component) and trace of the

energy-stress tensor.? Poisson's equation, which is valid for slowly moving particles in
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static and weak gravitational fields, is generalized to give Einstein's gravitational field
equation, which is valid for particles at any speed in an arbitrary gravitational field.?

A brief development of Poisson's equation for Newtonian gravity is presented in
Sec. 2. Section 3 gives a discussion of space-time curvature and introduces some
important tensors. The principle of least action for gravity is shown to be equivalent to
the definition of a geodesic in Sec. 4. In Sec. 5, the mass density (times c?) is
generalized to the stress-energy tensor, and the Bianchi identity is used to give
Einstein's equation. Section 6 gives the conclusion.

3.2. Poisson's Equation for Gravity

In 1686, Isaac Newton presented his law of universal gravitation to the world.®

The key features of this law are that the force is proportional to the product of the point

masses, and that the force is inversely proportional to the square of the distance
between the point masses. Given two masses, m and m', the force F(X ) on mass m

at X by the mass m’ at the origin is given by Newton's universal law of gravitation:

F(X)=-Gmm’

X (79)
[X]

where G is Newton's universal gravitational constant.> Equation (79) can be

generalized so that m’ is at some point X':

X—X'

F(X)=-Gmm’ (80)

x-x'|"

The forces on m at X due to masses m; at X, (i =1 2,... N) obey the principle of
superposition, so that the total force on mass m at X is:
X=X
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If the constellation of masses in equation (81) is generalized to a continuous distribution

!

of mass with a mass density p(X') at the position X', then the force on mass m at X

by the continuous mass distribution is given by:

!

F(%)=-6m[ d* p(x') >, (82)
[X=xX'|
where the integral is a volume integral on X' over all space.
A gravitational field (j()?) at the displacement X can be defined as:
oy F(x
g(x)= (2), (83)

m
Combining equations (82) and (83), the gravitational field at the point X due to a

continuous distribution of mass with a mass density p( >”<') as a function of the position

X' is given as:

(84)

The gravitational field is conservative because Vx (X )=0." Therefore a
gravitational potential function ®( X ) for the gravitational field g( X ) can be found, which

is given by:*

o(x)=-G[ d°x’ p(X) (85)

®® This is shown in Appendix E
“ The derivations of equation (85) from equation (84) and equation (86) from equation

(85) can be found in Appendix E.
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Taking the Laplacian of equation (85) gives Poisson's equation for the Newtonian
gravitational potential:

V2O(X )=47G p(X). (86)

3.3. Space-time Curvature

The Minkowski space-time of special relativity is often referred to as "flat" space-
time. The space-time of general relativity is often referred to as "curved" space-time.?
This section demonstrates the significance of this curvature and provides a mechanism
to quantify it.

Euclidean geometry has several features, called axioms, such as the existence
of parallel lines and an open set of points, that serve the same purpose as intuitive
geometric notions. The advent of Riemannian geometry demonstrated that the axioms
of Euclidean geometry are nontrivial. The most obviously nontrivial notion is the
Euclidean construct of parallel lines, which require a more careful definition in
Riemannian geometry. Riemannian geometry is the generalization of Euclidean
geometry to include the notion of curvature.

In this section the relevant distinctions between Euclidean space, Minkowski

dd,32

space-time, and pseudo-Riemannian space-time are demonstrated, and the tensors

used to describe this curvature in the context of space-time (4-D) are developed.

9 The geometry of general relativity is not truly Riemannian because the geometry of
special relativity is not truly Euclidean. This subtly is not important for the development
in this paper, but, to be rigorous, the prefix "pseudo-" is added to indicate this

distinction.
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A key feature of Euclidean geometry is Pythagoras' theorem that essentially
defines the distance between two points to be the distance that one would measure if
one were to put a physical ruler across them. This implies that the metric tensor of

Euclidean geometry is the unit second rank tensor, the Kronecker Delta, J,,, in

Cartesian coordinates. In special relativity, the idea of distance is generalized to proper
distance or proper time. This implies that the metric tensor®® used in the geometry of

special relativity is the Minkowski metric tensor,* 1., In Cartesian coordinates. The

Minkowski metric tensor is generalized to the metric tensor for curved space-time,*

d,.. in general relativity. The metric tensor itself is a dynamical variable in general

relativity.>* It interacts with mass and energy and reacts accordingly. This profound
consequence of general relativity has evidence in Einstein's equivalence principle in
which he proposed gravitational and inertial mass to be equivalent.

The notion of parallel is more appropriately applied to vectors than to lines in
general relativity. Two vectors at the same point in space-time are parallel to each
other if and only if one is a scalar multiple of the other. In order to determine whether
vectors at two different points in space-time are parallel, a connection must be
established. The connection used in general relativity is parallel transport. Parallel
transport is the transporting of a tangent vector from one point to another along a

piecewise geodesic path while maintaining the orientation of the vector to each

®¢ A discussion of tensors can be found in Chapter 2, Section 3.
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geodesic in each piece.®® A geodesic is a path that extremizes the proper distance or
proper time between two given points.™3?

Parallel transport can have a peculiar consequence in a curved geometry. The
vector that is parallel transported along one path can disagree with the same vector
transported along a different path between the same two points. The simplest example
of this disagreement occurs on the surface of the Earth. Consider an arrow pointing
westward on the equator. Parallel transporting this arrow along the equator to the
opposite side of the Earth will result in a westward pointing arrow on the opposite side
of the Earth. Parallel transporting this arrow along a line of longitude to the same point
will result in an eastward pointing arrow at that point. This disagreement is a direct
result of the curvature of the geometry, and it can be used to quantify the curvature.

First, note that parallel transportation along a single geodesic is closely related to

partial differentiation.?9 Next, note that the tensor product of the partial derivative tensor

with a 4-vector results in an object that is not a tensor." A new kind of derivative can

™ Actually, more generally, a geodesic is a curve of stationary proper length in pseudo-
Riemannian geometry. However, it is of maximum proper length for all massive
particles. A geodesic represents the "straightest” path connecting two points in curved
space.

9% Recall that a partial derivative is a change in a function with respect to a change
along a coordinate axis.

"" Appendix F shows why the tensor product of the partial derivative with a 4-vector

results in an object that is not a tensor.

42



be defined that is related to the partial derivative, traditionally called the covariant
derivative, that is a tensor.

Some new notation is introduced to simplify the expression for a partial
derivative. A comma before a lower index will be used to indicate a partial derivative
with respect to the coordinate that takes that index:

A p=0,A", (87)

where 0, = olox” according to equation (25) or (33) in Section 3 of Chapter 2.

For an arbitrary 4-vector A*, the covariant derivative with respect to x” is
denoted by a semicolon before a lower index and is defined as:*®

Ap=0,A +T A%, (88)
where T';; is known as a connection coefficient. In general relativity, the connection
coefficient is called the Christoffel symbol. The Christoffel symbol can be expressed in
terms of the metric tensor as:*’

F(Z)’ = g/“/ (gva,ﬁ + gﬁv,a - gaﬂ,v ) (89)
The term on the left-hand side of equation (88) is a second rank mixed tensor, whereas
the object in equation (87) is not. Though the covariant derivative is a tensor, two

consecutive covariant derivatives of a 4-vector do not commute, in general. This

property can be used to quantify the curvature of space-time. A fourth rank tensor,
known as the Riemann curvature tensor Rz, is defined in terms of the Christoffel
symbols as:*

R”pw =T, +T5,  +Tg5 0% ~T7 T (90)

Bv.u Bv= ou Puov:
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The Riemann tensor is essentially the commutator of two covariant derivatives
acting on a 4-vector." It indicates the path dependence of differentiation in curved
space. If the space is flat, then the Riemann tensor vanishes.

Two other important tensors come directly from the Riemann curvature tensor.

The Ricci tensor R, is defined as the Riemann curvature tensor contracted on its first

and last indices:*®

R v = RalLlVa . (91)

y7i
The Riemann curvature scalar R is defined by the contraction of the two remaining

indices:®
RER/UIL[ :gﬂvRﬂV:gﬂvRa/jva- (92)
The Ricci tensor and Riemann curvature scalar together satisfy the Bianchi identity:®

(R%—16"R), =0, (93)

H
Equation (93) is valid geometrically, meaning it is independent of the details of
the physical situation.
3.4. Principle of Least Action
Points in 3-D space extrude into 4-D space-time as worldlines. In Minkowski
space-time, the notion of a straight line is intuitively the same as that in familiar
Euclidean geometry. That is, the worldlines of free particles "look" straight in Minkowski

space-time. More formally, a geodesic is the generalization of a straight line to curved

" Note that the left-hand side of equation (90) is a tensor, even though every term on the

right-hand side is not a tensor in itself.
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space, and is defined as the path that maximizes the proper time experienced by a

particle that travels between two given points.*

J.dr =max. (94)

geodesic

A geodesic is a path over which a particle will not experience any force. Any
deviation from this path will result in an experienced acceleration and a decrease in the
proper time experienced by the particle.) Since a deviation from this path results in a
force, it should not be surprising that this requirement is related to the principle of least

action for the gravitational potential energy.

det = min, (95)

actual path
where L is the Lagrangian function for a massive particle in a gravitational potential.
Using the definition of the Lagrangian as

L=T-V, (96)

eqguation (95) can be rewritten as

j(%mvz - md )dt =min. (97)
actual path
In the limit
g/jl/ - 77/11/ 1 (98)

equation (94) can be rewritten as*®

J The fact that acceleration reduces the experienced proper time is valid in special
relativity. This is one way to address the infamous twins paradox.

*k See Appendix F for a derivation of equation (99).
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J.(%mvz—m(%czgo(ﬁ%cz ))dt:min, (99)

geodesic

In equation (97), gravity is treated as a force for which there exists a potential
function. This is the notion of gravity given by Newton. In equation (99), the influence
of geometry on the trajectory of an otherwise free particle is demonstrated. Solely
under the influence of gravity, the actual path of a physical particle is a geodesic.
Comparing equations (97) and (99), the gravitational potential can be expressed in
terms of the metric tensor as*

® =1c’g, +ic?. (100)

Equation (100) gives the relationship between the Newtonian gravitational

potential ® and the 00 component of the metric tensor g, .

3.5. Einstein's Equation

The mass density, p, is related to the 00 mixed component of the stress-energy

41,1
I

tensor T in the cloud of dust model*" which Einstein used in his paper, The Meaning

of Relativity.** First, consider the trace of the stress-energy tensor.

T=T", =pu”u, =pc?, (101)
where p is the proper mass density scalar field. In the static limit, the space-like
components of the stress-energy tensor (in the cloud of dust model) vanish.

T*% =0+0+0=0. (102)

" See Appendix H for a description of the stress-energy tensor.
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This implies (numerically) that

T=T%=pc?=pc? (103)
in the static limit.

According to equation (103), the Newtonian mass density (times ¢*) can be
written as either the 00 mixed component or the trace of the stress-energy tensor. More
generally, it can be written as a linear combination of the two.

pc?=aT%+(1-a)Ts5%, (104)
where a is a constant to be determined and §°% is the 00 component of the Kronecker
Delta tensor (and therefore equal to unity). Though seemingly superfluous at this point,
the Kronecker Delta tensor is necessary for subsequent generalization in order to
maintain the rank and form of the tensor components. Substituting equation (100) and
(104) into Poisson's equation (86) gives

872G

v2g,, :C—4(aT°o+(1—a)T5°o ). (105)

The L.H.S. of equation (105) can be related to the 00 component of the Ricci

tensor.2™™
V204 = —2R%. (106)
Combining equations (105) and (106) gives

R% =~ 470 (aT% + (1-a)T5% ). (107)

C4

Both the L.H.S. and R.H.S. of equation (107) are 00 mixed components of

second rank tensors. Generalization of equation (107) to be form invariant under

™M See Appendix | for the generalization of V°g,, to —2R%.
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general coordinate transformations is simply a matter of recognizing that equation (107)
is the 00 component of a tensor equation, and that all sixteen mixed components of the
second rank tensor equation must exist in general.?

R¥, :—4::—4G(aT”V+(1—a)T 5, ) (108)

for u4,v=0,12,3.
The Riemann curvature scalar can be related to the trace of the stress-energy
tensor by taking the trace of equation (108).

3 Az G

C4

R =

(aT +(1-a)T(4)). (109)

Solving this equation for T, substituting this back into equation (108) and rearranging
gives

(1-a) oo _ 47Ga
(4-3a) ¢

R¥, — T, (110)

Energy and momentum are conserved if the 4-divergence of the stress-energy
tensor vanishes as®

T“.. =0. (111)
On physical grounds, it is assumed that energy and momentum are conserved in the

theory. Taking the 4-divergence of equation (110) gives

( R*, — ((j__;a)) RS, j -0. (112)

Comparing equation (112) with the Bianchi identity equation (93) requires

(1-a) 1
(4-3a) 2 (113)

Therefore the value of a is 2. Substituting a =2 into equation (110) gives
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87G
Ryv_%Raﬂv:_ C4 Tyv- (114)

Equation (114) is Einstein's equation for the gravitational field in terms of the
Ricci tensor, Riemann curvature scalar, and the stress-energy tensor.?> Another form of
Einstein's equation is obtained by raising the lower index in equation (114).

A% A% 872.G LV
R“ —1Rg* = T, (115)

3.6. Conclusion

Poisson's equation for gravity is a direct consequence of Newton's law of gravity
if superposition, continuity, and conservation of energy are assumed. This assumption
is valid in static, weak gravitational fields. However, in general relativity, the
gravitational field is related to the curvature of space-time. Therefore, the metric tensor
of special relativity must be generalized to the metric tensor of curved space-time.
Using the principle of least action to relate the gravitational potential to the 00
component of the metric tensor, Einstein's equation follows as a natural consequence of

tensor analysis, the Bianchi identity and the conservation of energy and momentum.
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CHAPTER 4

CONCLUSION

Classical physical theory effectively began when Isaac Newton proposed his
classical dynamics and universal law of gravitation. This sparked a classical world view
of physical phenomena to which science remains loyal even today, in the appropriate
limits of consideration, usually referred to as "everyday experience."?® Classical
mechanics was not successfully contested until Albert Einstein introduced his special
theory of relativity. However, Einstein further extended the classical view by discovering
the appropriate way in which to generalize Newtonian gravitation.? In this way,
Einstein's general relativity marks the completion of the classical deterministic physical

theory of the universe.?
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APPENDIX A
Derivation of Equations (38) and (39) from Coulombs Law and

the Principle of Superposition
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1. Derivation of Equation (38)
Equation (37) was derived from Coulomb's Law and the principle of
superposition:

= =1

-
x|'

Taking the divergence of this integral equation with respect to the unprimed

3

(37)

coordinates (coordinates of the observation point where the electric field is being
defined), recognize that the divergence operator does not act on the primed

coordinates:

x|

1 X—X'
X )= d*x' p(X)| V- —>— |, Al
4 80‘[ p( )( | X' 3} ( )

where V is the gradient with respect to the unprimed coordinates. The divergence in

i

parenthesis must be determined from an auxiliary integral.

By the divergence theorem:

X—X' . X=X
'[ d3X v—_"s = § dsq—_"3 (AZ)
%% | | S{x-x'|-R |X_X|

Making the substitution X — X' =, the surface integral may easily be evaluated:

TTR sin@dodgh - ”R j jR Sin@dodgh - ”R _4r, (A3)

6=0 $=0 0=0 =0
where n represents the unit normal vector to the spherical surface of integration. This
result is valid for all values of R > 0. This condition is met for all observation points

X # X'. Examining the value of the divergence at X directly using the same substitution:

V.L:v.ina(rz 1] 0. (A4)
r
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v

Under the same condition that X = X

properties, namely:

and

><l

| J 47 , if V contains X'.

fo v 2=

This gives, by definition, the 3-dimensional Dirac-Delta function

1 X—X'
v 270 _s(x-%).
4rr |)z_>z'|3 ( )

Therefore:

v-E(x) _—J'd (2 X 8(x-2))==p(%).

which is Gauss' Law for electrostatics.
2. Derivation of Equation (39)

Taking the curl of equation (37):

V X—X' :iz—z' oy-y
|y(_7('3 X oy r* oz rd
NG,
(2-2) ==y 5

53

Therefore, this divergence must satisfy two

(A5)

(A6)

(A7)

(38)

(A8)



- 0. (A9)

The other two components of the curl are similarly found to vanish. This is not a

conditional result; therefore, the curl in parenthesis is identically 0. This gives equation

(39),

VxE(%x)=0, (39)

which says that the electrostatic field is a conservative vector field.
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APPENDIX B

Demonstration of Charge Density as the 0-component of a 4-vector
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Charge is assumed to be a conserved scalar. A differential element of charge,

dg, is related to a static charge density, p, by the relationship:

dg = pd°x, (B1)
where d°x is a differential element of 3-dimensional spatial volume. Since the charge
is a scalar, the R.H.S. of this equation must be a scalar, but the differential volume
element of 3-dimensional space is not a scalar:

d®x = dx'dx?dx®. (B2)

There is an element of 4-dimensional space-time volume that is a scalar:*®

d*x = dx%dx*dx?dx® = dx°d*x. (B3)
To show that equation (B3) represents a scalar (it is not directly obvious from the
discussions in Chapter 2), consider the element of volume under a coordinate
transformation.

d*x" = dxdx""dx"*dx"°. (B4)
From multivariable calculus, this relates to the unprimed element of volume as

d*x'=|J|d*x, (B5)
where is the determinant of the coordinate transformation matrix (a.k.a. the Jacobian).**
For the purposes of Chapter 2, the transformation matrix is the Lorentz transformation
matrix. Without loss of generality, the x'-axis may be aligned with the Lorentz boost.

Then, using equation (18), the Jacobian of such a boost is

y B 00
-pr vy 00 1- p?
13| = . - O:yz—ﬂzyzzl_ﬂzzl. (B6)
0 0 0 1

Inserting this result into equation (B5) gives
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d*x’ =d*x. (B7)
Upon comparison to equation (19), equation (B7) shows that the element of

space-time volume is a scalar. Rearranging equation (B3) gives

d*x
d3x

= dx°, (B8)

so this scalar density is the zero component of a 4-vector. This can be generalized to

df(::)::Ao(Xﬂ), (B9)

d
where df(x“ ) is an arbitrary scalar field and

(x gl Joeo - 9L

dx° (B10)

is the 0-component of an arbitrary 4-vector field. This shows that the division of an
arbitrary scalar field by a differential element of 3-dimensional spatial volume, which is a
scalar density, results in the 0-component of a 4-vector field. Applying this to electric
charge:

cdq .0
= pC= . Bll
d3X J ( )

This shows that the electric charge density is the 0-component of a 4-vector field.
This 4-vector field is conventionally given the symbol j# and called the charge-current

density 4-vector. The other three components of this 4-vector are the components of

the electric current density 3-vector.
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APPENDIX C

Antisymmetry of the Faraday Tensor
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1. Primary Approach

By definition, the components, S*", of a second rank tensor are symmetric if

S# =8" (C1)
and the components, A“", of a second rank tensor are antisymmetric if

AAY — _ A (C2)
This definition also holds for covariant and mixed components.

According to equation (48):

0,0,F" =0. (48)

In special relativity, the twice-repeated partial derivatives are symmetric covariant
components of a second rank tensor. They are symmetric because the result of the
differentiation is the same under an exchange of subscripts. That is:

0,0,['1=0,0,[] (C3)
As a consequence of the construction of tensors, the contraction on both indices of the
symmetric covariant components of a second rank tensor with the antisymmetric

contravariant components of an second rank tensor vanishes. To show this, let S, be

the symmetric covariant components of a second rank tensor, and let A“" be the
antisymmetric contravariant components of a second rank tensor. Contracting on both
indices gives

S, AY = (SW )(— A™ ): =S, A%, (C4)
where equations (C1) and (C2) have been used. Recognizing that both of the indices

that appear in equation (C4) are dummy indices, they may be substituted with any
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arbitrary Greek letter without changing the validity of the equation in any way, and
without using any identity or definition. Choosing the mutual substitution ux <> v gives

S, A" == A", (C5)
The only way that equation (C5) can be true is that the contraction definitively vanishes.

A second rank tensor has 16 independent components, in general, whereas
there are only 6 independent antisymmetric components. Since the electric and
magnetic field vectors contribute six independent components, the Faraday tensor is
intuitively antisymmetric, because any extra independent components would bring
superfluous information.®

2. An Alternative Approach

Any second rank tensor may be written as the sum of a symmetric second rank
tensor and an antisymmetric second rank tensor, much like a matrix in linear algebra
can be broken into a symmetric and antisymmetric matrix. So, let the Faraday tensor
be:

F& = AR 4§47 (C6)
where A”" is the antisymmetric part and S*" is the symmetric part. Inserting this into
equation (48):

8,0,F*" =2,0,| A +5* |=0,0,A" +08,0,5* =0. (C7)

The term containing the antisymmetric part A“" is identically zero. Therefore,
the symmetric part S* must satisfy:

0,0,8" =0. (C8)

The simplest solution to this second order partial differential tensor equation is:®#

60



S =0.

3. Another Consideration

If the Lorentz force is assumed to be a "pure force,"” that is, a force that does not

affect the rest mass m of the particle on which it acts, then®

&, 1,0,

s~ H
dz m dr

" d
_i[deﬂ+p/‘&j

u/‘

oml dr dr

1 d
:%d_r(pﬂp”)

- L4 ((mey)=o,

" 2mdr
where u” is the proper velocity, or 4-velocity of the particle, and the invariance of

p“p, =(mc)® has been used. Given that the Lorentz force is of the form:

=kF, u",
dr g

it follows that:
F,uu“=0.
It should be obvious that the tensor product of the 4-velocity with itself is a

symmetric second rank tensor (because the order of the tensor product does not

change the value of the components). Therefore, from the result in the first section of

this appendix it can clearly be seen that the Faraday tensor must be antisymmetric to

satisfy the above relationship (that is, for the Lorentz force to be a pure force).
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APPENDIX D

Explicit Calculation of Equation (50)
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The v =1 component of equation (47) is

14

0,F"h=—""]j (D1)
&,C
Writing out all of the terms in equation (D1) explicitly gives
01 11 21 31
oF +6F +8F +8F _ 1 it (D2)

ox’  oxt oxt ox® ¢
Using the definitions from Chapter 2 for x*, j*, and F*", equation (D2) may be written

as

_ 21 31
aé(Ex)+6(O)+8F L OF =ijx- (D3)
ct) X dy 8z &cC

Rearranging equation (D3) gives

21 31
_OE, +C8F +C8F =ijx' (D4)
ot oy oz &,

A further rearrangement of equation (D4) gives

20 ie) . oF*/c) 1 L OE

oy oz P

X, (D5)
and, finally,

oy ¢ ¢

+
&, b5

21 31
C{QF GF}_l. aEX, (50)

which is equation (50).
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APPENDIX E
Demonstration of Equation (85) and Derivation of Poisson's Equation (86) from

Equation (84)
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1. Demonstration of Equation (85)

Equation (84) gives a 3-dimensional vector field §(X ) according to a mass
density distribution p(X"). This is derived from the superposition of a central field, and
is therefore a conservative field. Since it is conservative, it has a potential function
®( X ) that is related by

§(x)=-va(x), (E1)
where the gradient operates on the unprimed coordinates.

Since the gradient does not operate on the primed coordinates, it can be taken

inside the integration in equation (85) to operate on only the unprimed coordinates:

|X—X'

—V@(X):dosx’p(i’)V{;} (E2)

I ! ]
ofanal )V[\/(XX’)Z+(yy’)Z+(ZZ’)2

3y’ A %' % (X_X,)
=G| d°' p(x)| - % Tt
oo { (= F 4 (y-y f+(z-2F ) ]

where addition of the y and Z vector terms are implied,

=—GJ‘d3X'p()?')_ i(x—x’)+)|7§(y—y’)+2(z—z’)}

-6 d*x p(x') (Rx+Jy+2z2)—(Xx'+Jy' +2z2 )]
|X—%'

=—G[ d°x' p(X') >”<>”<'|3], (84)
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which is the R.H.S. of equation (84).
2. Derivation of Equation (86)
To get equation (86), the demonstration is analogous to that in Appendix A for
deriving equation (38) from equation (37). The differences are the following two explicit

direct replacements:

E—-va(r), (E3)
L, e, (E4)
&

and to replace the charge density from Appendix A with a mass density in this case.
The negative sign before the constant of proportionality is due to the fact that
gravitational force is always attractive between mass (a mass at the origin exerts a force

on another mass in the — direction).
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APPENDIX F

Demonstration of the Partial Derivative of a 4-vector
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Consider the operation of the partial derivative on an arbitrary 4-vector:

A= [A“(x)]. (F1)

Now consider an arbitrary coordinate transformation to primed coordinates:

0 [ pa(x)]=2 a{axmA”(x)}. F2)

ox'? Cox'F ox”| ox”
If the space-time is flat, and the transformation is from one Cartesian coordinate
system to another (a Lorentz transformation), then the partial derivatives of the

coordinates are constant, which allows them to be pulled out of the partial derivative of

the 4-vector:

ox" o0 | ox'* , 0 Y
A“(x)|=a, —|a“,A“(x)|=a%.a, A“,. F3
axlﬂ ox” |: Ox* ( )j| B ox” [ H ( )] HEp ( )
Therefore:
A’a,ﬂ = aa/taﬂvAﬂ,v- (F4)

This has the form of equation (31), and therefore the operation of the partial derivative
on a four vector is a tensor product that results in a second rank tensor if there is no
contraction, or a scalar if there is contraction. This idea was used more than once in
Chapter 2.

If, however, the space-time is not flat, then the partial derivatives of the

coordinates are not constant. According to the product rule for differentiation:

ox” a{

ox'* ox" ox'* 0 ox" o*x'*
2w w () e (x)

ox* ~ox'? ox* ox” ox'” Ox¥ ox*

ox" ox'“ X" 0ix'“
AY L+
ox'? ox+ ox'? Ox"ox*

A“ (F5)
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It is this second term that appears on the R.H.S. that prevents the ordinary partial
derivative operation from resulting in a tensor in curved spacetime.

This demonstration is shown by Ohanian and most other references that use
tensor analysis to discuss space-time curvature.®®

To show how the Christoffel symbol subtracts this problem from the
transformation, consider the transformation of the covariant derivative using equation
(88) and (89).

Ay =0, N +T L A7, (F6)
The form of the first term on the R.H.S. of equation (F6) has already been shown in
equation (F5). To find the form of the second term, note the transformation property of

the Christoffel symbol®’

o OX'CXP ox" ., ox'* 9%x”

= + S
P ox* ox'T ox'? M ox* ox'ox'”

(F7)

which is a consequence of applying a coordinate transformation explicitly to the R.H.S.

of equation (89) and then simplifying. Equation (F6) becomes

2
e ox" ox'* ox" o0°x'”

BT Ak v Ay A A g
oxX'” ox ox'” ox"ox

ra A v roa 2 U ro
N ox'* ox* ox “ +8x 0°X OX AF (F8)
ox* ox'® ox'? ox* ox'°ox'? ) ox*
Rearranging
v ra ra v A 1o
A, = ox" ox A, ox'* ox “ OX” OX AF
ox'’ ox* ox* ox'F " ox' ox”®
v 21 1o ra 2 Hu
ox" 0°X g X7 ox'" 0°X AF (F9)
ox'” ox¥ox* oxX* ox* ox'ox’’
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Recognizing the product of the transformation matrix with its own inverse as the

Kronecker delta tensor in the second term, equation (F9) becomes

A ox" ox'* ,, oxX'“ ox" ., .
’ﬂ_afﬂa# u B A
X X ox* Ox

aXv aZXIa

1o ra 2 U
AF 4 ox'? ox'* 07X
oxX< ox* ox'°ox'”’

+ K
ox'? ox"ox*

(F10)

Consider the partial derivative of the Kronecker delta tensor, which vanishes in
any coordinate system.

a, 0%p =0. (F11)
ox'?
The Kronecker delta tensor can be replaced by the product of the coordinate
transformation matrix with its own inverse.
ra M 2yra H ra 2y u
0 [ ox'* ox 0= 0°X OX +8x 0°X _ (F12)
ox'e\ ox* ox'’* ox'7ox* ox'’ ox* ox'ox'”
Using the chain rule
ra 2 U U A 2yra
OX 0°X _ ox* oOx aix . (F13)
ox* ox'ox'’  ox'P ox'° ox*ox”

Substituting equation (F13) into equation (F9) gives

po, L O
Toox'? ox”

ox'® ox¥
+
ox* ox'?

rs A
ox¥ 9%x'“ A/,_ax"’ ox“ ox* o°x'“
ox~ ox'? ox'® ox’tox*

+
ox'? oxox*

K

_oxh X, o ox e Al
ox'? ox* ox* ox'F
8XV aZXra

p aX,u aZX!a
ox'’ ox”*ox*

+ 0% A"
ox'? oxox*
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v ra ra v v 2yra H 2 yra
_oox" oox' L, oxX' oxY L, . OXY 07X u OX" 07X 2

Toxf axt T axt axt ox'? ox’ ox* ox'? ox*ox*

(F14)

Utilizing the freedom to reassign contracted indices and the fact the repeated partial

derivatives commute gives

ox'* ox” X’ a*x'*  ox¥ 9*x'“
A, = A*, +T4 A* )+ - A*
P o Gx’ﬁ( fa) (ax'f" ox"ox*  ox'” ox"ox” j
ox” ox'*
_ A F15
X'’ ox* (F15)

Therefore, according to the rules set forth in Section 2.3, the form of equation (F15)
shows that the covariant derivative of a 4-vector is a tensor of second rank. By
induction (though not formally), the covariant derivative operator itself is a covariant 4-
vector, or a 4-covector.

A*, =D, A", (F16)

Combining equations (F15) and (F16) gives

D’ ox"”

= ) F15
B 8xlﬂ v ( )
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APPENDIX G

Derivation of Equation (99) from Equation (94)
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Equation (94) says that a geodesic maximizes the proper time:

J.dz': max . (G1)

geodesic

From Chapter 1 Sec 3 the definition of proper time leads to:

.[dz' :J%,/ g,,dx“dx” :J'%\/ 0o, (Cdt )* +2g,, dx* cdt +g,, dx*dx’

dx" dx* dx'
=I dt\/g()0+290k Cdt +gk| Cdt Cdt =J- dt\/gOO +290k ,Bk +gk| ,Bk ﬁl ’ (GZ)

k
where g* :det’ similar to the definition in equation (11). If this integration is carried
C

out along a geodesic, then

goo+290kﬂk+gk|ﬂkﬂl dt = max. (G3)
[V

geodesic

Multiplying® by —mc? gives

- ImCZ\/goo+290kﬂk+gmﬁkﬁl dt = min. (G4)

geodesic
Notice that the integral is now minimized due to the negative sign. Assuming that the
metric tensor deviates by a small amount from the Minkowski Metric tensor, and that the
velocities are slow compared to the speed of light, the square root can be

approximated.?

jdf:_ ijZ\/l_(l_goo — 20 ﬂk =0y ,Bk ﬂl )dt

geodesic geodesic

~— [me?(1-3(1- g~ 290, B* — 0 B* B' ) et

geodesic

v— [me?(1-4(1- gy - BB, ) Jot. (G5)

geodesic
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where the | superscript in the last term has been lowered by the metric tensor and the
raised and lowered Latin index k indicates a summation from 1 to 3. The radical has
been expanded assuming that the parenthetical is <<1, and, aside from the g,
component, the metric tensor is approximated as the Minkowski metric tensor.?
Simplifying, and making use of equation (11), equation (G5) becomes

Jdr =— J‘ (mc2 —imc? +imc? gy —imc? p? )dt

geodesic geodesic

j (-mc?+ime? —imc? gy, +3mv? )dt

geodesic

= J(3m (300 +3c* o= min ©)

geodesic

upon rearranging, which is equation (99).
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APPENDIX H

The Stress-energy Tensor from the "Cloud of Dust" Model
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Imagine an extremely dense (in the continuum limit) cloud of identically massive
dust particles (point masses) of rest mass m, but that they do not interact with each
other. This is the popular "cloud of dust” model used to demonstrate the stress-energy
tensor.** In some small element of spatial volume AV , there is some number of
particles n, each with a rest mass m. For simplicity, consider all of the particles to be
co-moving. Then, the momentum in this element of volume is

p“ =nmu”. (H1)
The energy of this element of the dust cloud is given as

AE =p°c=nmu’c. (H2)
Therefore, the energy density in this volume is

AE _nm ,

A _ 0 oe (H3)
AV AV
In the limit that AV — 0, equation (H3) gives
d(rlm)uoczljouoczﬁuouo T (H4)
d°x c

where p is the rest frame mass density of the dust cloud and T is defined as the

energy density of the matter field (i.e. the density of mc?). The appearance of j° is by

a similar argument to that found in Appendix B, except that here it indicates the O-
component of the mass current density 4-vector.

In order to form a tensor, all that must be done is to generalize the indices from
0 to x# and v. Then, equation (H4) is still identically valid in the rest frame, and
furthermore, validity is maintained under a Lorentz boost.

T =pu”u”. (H5)
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Lowering the second index of equation (H5) for the 00 component gives

T% =pg,u’u”. (H6)
In the static weak field limit, g_, — 7,,, and u® — c. Therefore equation (H6) gives

T% = pn,u’u” =puu’ - pc?. (H7)

For an interpretation of this new tensor, consider three sets of components, T,
T, and TY.

T® is the energy density,** as before. It is the amount of energy per unit volume

by virtue of the presence of rest mass, whether or not the mass is in motion.

T =T% js the momentum density, or energy flux density.** This is quite similar
to current density. It is due to a stream of massive point particles flowing in the k

direction (or, at least, the flow has a projection in the k direction).

T =T* is the momentum flux density of k directed momentum transferred in
the | direction.** This is similar to a transverse wave in the case that k =1, and a
longitudinal wave in the case that k =1 .

As a simple example, consider a constant, continuous, and static distribution of
non-interacting mass. The stress energy tensor has components T® = pc?, and
T# =0 ifeither £ =0 or v#0. A Lorentz boosted version of this stress energy tensor

in the x direction is essentially the same as a uniform distribution of mass moving as a
whole in the x direction (resulting in a Lorentz factor due to relativistic velocity addition)
with an increased mass density (due to length contraction and resulting in another
Lorentz factor). This gives T'® =y* pc®, T =T =y*cpv,and T™ =y* pv°.

Therefore, the 00 component is still the familiar rest energy density with the relativistic
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correction factor of »?, the 10 component is the classical density of the momentum in
the x direction with the relativistic correction factor of »*c, and the 11 component is the

classical kinetic energy density with the relativistic correction factor 2.
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APPENDIX |

Generalization of Vg, to —2R%
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According to the notation of Chapter 2, the Laplacian of g,, can be written as

V205 =008 = 14 oo+ (1)
where the summations on k and | are from 1 to 3. The use of Latin indices is allowed
by the diagonal nature of the Minkowski metric tensor, since including the 0 index terms
would not contribute anything to the summation.

The quantity in equation (I1) must be related to a tensor in order to be a physical
object. As it stands, the object in equation (11) has two free indices, both 0. So, itis
reasonable to generalize to the 00 component of a second rank tensor. The most
obvious first attempt is to simply generalize the ordinary partial derivatives summed
from 1 to 3 to covariant derivatives summed from 0 to 3. This, by definition, would make

the object the 00 component of a tensor directly in a single step.
goo’kvk - _goo;#?/‘ . (12)
Unfortunately, this is not an acceptable candidate, since this object, also by definition,

vanishes when g, is interpreted as a component of the general metric tensor.

ooy = 0 (|3)
The next attempt (not at all obvious, and not nearly as direct) is to transpose the
indices in order to account for all of the components of the metric tensor. Consider the

explicit summation in equation (11).

3 3
VZgoo = —ZZ% goonYI (14)

k=1 1=1

Transposing the indices on g,,*' gives

3

3
VZgoo = —zzfm (goo’k'I + gkoﬂ'I + gkl,o,o + gofk’O ) (15)

k=1 1=1
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The equality remains in equation (I15) in the static limit since all three additional terms
contain a derivative with respect to time and therefore vanish. This accounts for all of
the components of the general metric tensor. The operation of raising an lowering can
be done implicitly by accounting for a change of sign when the operation involves a

Latin index. This gives

3 3
vzgoo:_zz l)(_ 77??( 1)( 1)900k| ( )gkoéli-’_gkléé_'_( )gmié)

k=1 1=1

3 3
= _ZZUH (gOO,k,I ~ G000 T 900 ~ Yoo ) (16)

k=1 I=1
The Latin indices can be generalized to Greek indices also without changing the validity
of equation (I16) in the static limit, since such a generalization will only introduce time
derivatives which vanish in the static limit. The explicit summation is now removed in
favor of notational convenience over functional explicitness.

v2goo =-n" (gOO,y,v ~ 0,000 T 900 = Yov o ) (17)

Two mutually canceling terms may be added to equation (17), namely -g,,,, and
9,00, INserting these two terms and rearranging gives
V2900 = _77W (_ gV0,0,/l - golx,y,o + goo,y,v + ng,O,y + gﬂv,o,o - gy0,0,v ) (|8)

Using the symmetry of the metric tensor and the commutability of the ordinary partial

derivatives, equation (I8) may be rewritten.

V? O =" (_ 9,004 " Yov0 T 9000 T 9000 T 900~ Youwo ) (19)
Grouping the first three terms together and the last three terms together and

recognizing the Minkowski metric tensor as a constant gives

V250 =, 1" (9100 + Jovo ~ Goow )]0l (9vos + 9o — G ) |- (110)
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In local geodesic coordinates g** = »*" at the pole of these coordinates. In such

coordinates, equation (110) may be written as

vzgoo = aﬂ[gw (gvo,o + gw,o - goo,v )]—60[g’” (gvo,ﬂ + gﬂv,o - 90y,v )] (lll)
The quantities in square brackets are recognized as constant scalar multiples of the
Christoffel symbol according to equation (89).

V29, =0, |21 |0, 21

Ou ]: _2(_1_‘01‘61# +F0‘u,u,0 ) (|12)
In geodesic coordinates, the quantity in parenthesis of equation (112) is recognized as

exactly the R,, component of the Ricci tensor according to equations (90) and (91).
V%94 = 2Ry, - (113)
The first subscript of this component of the Ricci tensor may be raised with the metric
tensor. In geodesic coordinates g“° — 1°, therefore, raising and lowering a 0 index
does not change the value of the tensor component. This gives (numerically)
V2g,, = -2R%. (114)
The justification for using geodesic coordinates is in the weak field limit.
Geodesic coordinates are coordinates for which the metric tensor is locally flat, and
therefore can be replaced by the Minkowski metric tensor. This is representative of the
metric that would be observed, for instance, inside an elevator that is freely falling in the
Earth's gravitational field. Essentially, a freely falling Cartesian coordinate system is a
geodesic coordinate system in a weak gravitational field for some small amount of time.
At this point, it should be emphasized that the equality in equation (110) is exact

in the static limit, and that, by choosing a geodesic coordinate system, the

generalization from (110) to (111) is locally exact. A transformation from the R.H.S. of
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equation (111) to a general coordinate system will generate two extra terms that are
products of Christoffel symbols. These two terms match those found in the definition of
the Riemann tensor so that the R.H.S. of equation (111) is found to transform as a

tensor in general coordinates.
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