

XML-BASED AGENT SCRIPTS AND INFERENCE MECHANISMS

Guili Sun, B.A., M.A.

U

Thesis Prepared for the Degree of

MASTER OF SC IENCE

NIVERSITY OF NORTH TEXAS

August 2003

APPROVED:

Paul Tarau, Major Professor
Rada Mihalcea, Committee Member
Karl Steiner, Committee Member
Krishna M. Kavi, Chair of the Department of

Computer Science
C. Neal Tate, Dean of the Robert B. Toulouse

School of Graduate Studies

Sun, Guili, XML-Based Agent Scripts and Inference Mechanisms. Master of Science

(Computer Science), August 2003, 49 pages, 4 figures, 29 references, 27 titles.

Natural language understanding has been a persistent challenge to researchers in various

computer science fields, in a number of applications ranging from user support systems to

entertainment and online teaching. A long term goal of the Artificial Intelligence field is

to implement mechanisms that enable computers to emulate human dialogue. The

recently developed ALICEbots, virtual agents with underlying AIML scripts, by

A.L.I.C.E. foundation, use AIML scripts - a subset of XML - as the underlying pattern

database for question answering. Their goal is to enable pattern-based, stimulus-response

knowledge content to be served, received and processed over the Web, or offline, in the

manner similar to HTML and XML. In this thesis, we describe a system that converts the

AIML scripts to Prolog clauses and reuses them as part of a knowledge processor. The

inference mechanism developed in this thesis is able to successfully match the input

pattern with our clauses database even if words are missing. We also emulate the pattern

deduction algorithm of the original logic deduction mechanism. Our rules, compatible

with Semantic Web standards, bring structure to the meaningful content of Web pages

and support interactive content retrieval using natural language.

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Paul Tarau, for his immense help since the very

beginning of my thesis work. His inspiration, encouragement, and carefulness helped

me at every step of my process. I would also like to thank Dr. Rada Mihalcea for her

comments on my thesis. Dr. Karl Steiner provided valuable feedback as well. The

Natural Language Processing (NLP) group also gave me tremendous input. Last but

not least, I would like to thank my husband for his support.

ii

CONTENTS

ACKNOWLEDGEMENTS ii

1 Introduction 1

1.1 Chat Agents and Agent Programming 2

1.2 JINNI . 3

1.3 XML . 4

1.4 Prolog . 5

2 Literature Review 7

2.1 ELIZA . 7

2.2 ALICEbot . 9

2.3 Semantic Web . 11

2.4 Open Mind Project . 13

2.5 VISTA Project . 15

2.6 AIML . 16

2.6.1 General Overview . 16

2.6.2 Program D . 18

2.6.3 AIML Pattern Mapping . 19

2.6.4 Logical Deduction in AIML 20

3 Implementation 25

3.1 System Architecture . 25

iii

3.2 Database Generation . 26

3.2.1 AIML Parser . 26

3.2.2 Structure of Prolog Clauses 29

3.2.3 Lossless Information Conversion 35

3.3 Prolog Database Creation . 36

3.4 Information Deduction . 40

3.5 Running Scripts . 43

3.6 Application with Agents . 44

4 Conclusion 45

BIBLIOGRAPHY 47

iv

LIST OF FIGURES

3.1 System Architecture . 26

3.2 Database Generator . 27

3.3 Tree Representation of Prolog clause of AIML scripts 30

3.4 Runtime System . 40

v

CHAPTER 1

Introduction

Ever since computers were invented, natural language understanding has been a per-

sistent challenge to researchers in various computer science fields, in a number of

applications ranging from user support systems to entertainment and online teach-

ing. A long term goal of Artificial Intelligence (AI) field is to implement mechanisms

to enable computers to emulate human dialogue. From an early version of human-

computer interaction in the 1960s, called Eliza[1], who was able to carry on a con-

versation with the end-user through string substitution and keyword-based canned

responses, to recently developed ALICEbots[2], virtual agents with underlying AIML

scripts, by A.L.I.C.E. foundations, we have seen dramatic improvements in AI chat

bots. Claire[3], the virtual service representative of SprintPCS, has facial expression

and can listen and respond to human speech audibly. Ultimately, we would like to

have the perfect virtual agents[4] to perform various tasks for us in our daily life, as

in the movie “Artificial Intelligence”. The goal is clearly set, but we have a long way

to reach it. In this thesis, we focus on improving the searching capability of chat

agents, who have underlying XML compliant AIML query database, by converting

the AIML scripts to equivalent but faster Prolog terms.

1

1.1 Chat Agents and Agent Programming

A computer agent is basically a program that can collect relevant information, and

process certain tasks in the background. In particular, agent-based programming

has become a dominant and promising paradigm which may help realize AI through

distributed problem solving [5].

A chat agent is also called a chat bot, or simply bot. It is a computer program that

simulates human conversation, or chat, through artificial intelligence. It is a software

tool for digging through data. Typically a chat bot will communicate with a real

person. It has wide applications, for instance, a welcome host in an online tour, an e-

commerce service representative, a customer service representative to handle regular

situation. Using chat agents could enhance web applications with a visible interactive

personality, with human-like interaction between users and the system. The ability

of making a decision on knowledge base has great development in entertainment and

in distributed education.

Agents enable software developers to incorporate a new form of user interaction,

called conversational interfaces, and develop conversational agents. This leverages

natural aspects of human social communications. In addition to input from keyboard

and mouse, newly developed agents can also recognize sound patterns and perform a

certain task or respond back using synthesized speech, recorded audio or text. The

conversational interface approach added special features to the already existing type

chatting approach using graphical user interfaces. It brings computer to the next

level of being more human like.

2

Agents, as digging tools, have great potential in data mining field. Data mining

requires a series of searches, and agents can save labor as they can perform search

diligently, and even better, consolidate the result in more human readable formats.

They could have storing abilities, and speed up later searches. When AI will be ad-

vanced enough, agents will be able to make decisions using the vast knowledge base

they collected. Typically, agent technology has applications in online teaching, ac-

cepting voice commands and accomplishing specific tasks, walking through a decision

process, story narration and querying information to build virtual environments. The

most important merit of agents is they do not feel tired of their job and never easily

get emotional.

1.2 JINNI

JINNI[6], short for Java INference engine and Networked Interactor, is a lightweight,

multi-threaded, logic programming language. It is designed to be used as a flex-

ible scripting tool for gluing together knowledge processing components and Java

objects in distributed applications. JINNI threads are coordinated through black-

boards that are local to each process[7]. The synchronization mechanisms between

local and remote thread are built on top of a Linda-style coordination framework.

The associative search is implemented through unification based pattern matching.

Threads are controlled with tiny interpreters following a scripting language based on

a subset of Prolog. This particular feature makes JINNI a convenient development

platform for distributed AI, and in particular, for building intelligent autonomous

3

agent applications.

1.3 XML

Thanks to the World Wide Web, the information exchange these days is much quicker,

easier and flexible. To make electronic document distribution faster and easier to an

international audience, to address the requirements of commercial Web publishing,

and to enable the further expansion of Web technology into new domains of dis-

tributed document processing, the World Wide Web Consortium has developed an

Extensible Markup Language (XML)[8] for applications that require functionality be-

yond the current Hypertext Markup Language (HTML). The flexibility of XML lies

in that one can define his own tags, and use a Document Type Definition (DTD)

or an XML Schema to describe the data. With a DTD or XML Schema, XML is

designed to be self-descriptive.

There are certain applications that cannot be accomplished by HTML, but an be

achieved with XML. These applications can be divided into four broad categories [9]:

• Communication between two or more heterogeneous databases

• Distribution of a significant proportion of the processing load from the Web

server to the Web client

• Presenting different views of the same data to different users

• Possibility of the intelligent Web agents attempting to tailor information dis-

covery to the needs of individual users.

4

XML derives from a philosophy stating that data belong to its creators and that

content providers are best served by a data format that does not bind them to par-

ticular script languages, authoring tools, and delivery engines. Instead, data format

should provide a standardized, vendor-independent, level playing field upon which

different authoring and delivery tools may freely compete. Consequently, the flexible

but structured nature of XML documents leads to a variety of ways of implementing

XML effectively. AIML, the scripts used by ALICEbots, are so created to meet the

special needs of chatting bots in various fields.

1.4 Prolog

Prolog, which stands for PROgramming in LOGic, is the most widely available lan-

guage in logic programming paradigm. Since it deals with symbolic or non-numeric

computation, Prolog is frequently used in AI field where manipulation of symbols

and inference about them is common. Prolog consists of some facts and certain rules.

When a Prolog program is executed, some queries are made against the facts and rules.

If they follow the rules, they are proved to be true, otherwise false. Some of the fea-

tures of Prolog are “logical variables”, which means that they behave like mathemat-

ical variables, a powerful pattern-matching facility called unification, a backtracking

strategy to search for proofs, uniform data structures, and interchangeable input and

output. Therefore, an important application area of Prolog is parsing. Actually Pro-

log was created to express grammar rules with logic and to formalize the process of

parsing [10]. The most common logic grammar formalism is definite clause grammars

5

(DCG). In our implementation, we apply DCG to generate the querying database.

6

CHAPTER 2

Literature Review

2.1 ELIZA

Eliza is a computer program for the study of natural language communication between

man and machine [1]. It is believed to be one of the first public displays of artificial

intelligence. Eliza parodies a psychotherapist by answering questions with questions.

Input sentences are analyzed on the basis of decomposition rules triggered by key

words appearing in the input text. Then responses are constructed by reassembly

rules associated with selected decomposition rules. When in conversation with Eliza,

the user types in some statements or sets of statements in natural language patterns,

using normal punctuation and sentence structures except for question mark. When

the control is transferred to Eliza after the user hits the carriage return, Eliza analyzes

the user’s statement and generates some response and types it out. Following is an

excerpt of a typical conversation with Eliza:

U: Men are all alike.

E: In what way?

U: they’re always bugging use about something or other.

E: Can you think of a specific example?

U: Well, my boyfriend makes me come here.

E: Your boyfriend made you come here.

7

U: He says I’m depressed much of the time.

E: I’m sorry to hear you are depressed.

...

When an input is read, it is inspected for the presence of a keyword. When

such a word is found, the sentence is transformed according to a rule defined for this

keyword. Next, the text is composed and printed out to the user. These keywords

and their associated transformation rules constitute the script for a particular class

of conversation. It is noteworthy that the script of ELIZA is data, not part of the

program itself. This means ELIZA is not restricted to a particular set of recognition

patterns or responses, and not even to any specific language.

However, there are some fundamental technical problems with ELIZA [11]. The

central issue is text manipulation, which regards the transformation rule associated

with certain keywords. The pattern matching used by ELIZA provides no way for

ELIZA to represent or recognize the grammatical structures, i.e. the syntax, of a

sentence. The answer to a pair of sentences, one expressed in active voice and the

other in passive voice, but with identical meanings will be different. Besides, ELIZA

has no knowledge of anything it talks about. It simply has a set of responses. This

lack of initiative, knowledge, and common sense in ELIZA makes a conversation with

her increasingly irritating with the program’s aimlessness.

8

2.2 ALICEbot

ALICEbots are the latest creation of artificial intelligence by A.L.I.C.E. foundation.

They are capable of imitating human brain with greater speed and accuracy. The

original bot was created by Dr. Richard Wallace to approximate life. By analyzing

human chats, Dr. Wallace noticed that most conversation utterances start with one

of the 2,000 words. Then Alice was created to start a conversation with one of the

2,000 words, obeying what language theorists call Zipf’s Law – a very small number

of words make up for most of what we say [12]. After being taught 40,000 responses,

Alice was able to answer 95 percent of what people said to her.

Following is a conversation transcript with Alice, who was powered by ProgramD

with around 25,000 categories:

ALICE> Hello there user and thanks for connecting!

user > Hello, Alice.

ALICE> Hi there!

user > What do you know about the weather in Denton?

ALICE> I do not know what weather in Denton is.

The ALICE chat robot can follow many things, like our discussion

about weather in Denton. But I did not get that.

ALICE> Can you tell me any gossip?

user > The University is shut down for two days because of winter storm

warning.

ALICE> Do you like your school?

9

user > yes, sure

ALICE> What’s your favorite thing at school? OK let’s do it. Oh, you are

a poet.

user > What is artificial intelligence?

ALICE> Artificial intelligence is the branch of engineering and science

devoted to constructing machines that think. I like AI a lot too.

Where do your interests lie?

user > My interest is in AI field, as well. I am doing programming with

Prolog for AI applications.

ALICE> Have you told many people that your interest is in AI field as

well? It’s good to meet someone who is programming with Prolog

for AI applications.

user > Nice to talk with you.

ALICE> Thank you for your kindness.

user > bye

ALICE> See you later user.

We can see that this chatbot is capable of getting control of the topic and leading

the conversation by asking user questions. Alice chat robot is based on experiments

specified by Alan M. Turing[13] in 1950. It uses a sophisticated pattern-matching

case-statement technology to create a very convincing illusion of natural conversation.

In other words, Alice uses case based reasoning[14], which by comparison makes Eliza

keyword searching quite simple. Alice is capable of learning and storing information

10

from the user, which means it can spread gossip told to it by the end user. Therefore,

the conversation is very lively and impersonates human-like behavior. However, it is

still a machine, and the model of learning is supervised by its botmaster, who monitors

the robot’s conversations and creates new AIML content to make the responses more

appropriate, accurate, believable or more human-like. This process is called targeting,

with several algorithms for detecting new patterns in dialog being developed[15].

2.3 Semantic Web

According to World Wide Web Consortium (W3C), the semantic web is the ab-

stract representation of data on the World Wide Web, based on Resource Description

Framework (RDF) and other to-be-defined standards[16]. It extends the current web

and re-defines the meaning of information available on the web to enable computers

and people to work cooperatively [17]. Most of the Web’s content available today is

designed for humans to read, but not for computer programs to manipulate meaning-

fully. When we search the Internet, we can retrieve the relevant information based

on a key word. However, we must sift through the returned WebPages to find the

good ones that actually meet our intended meaning. Chances are 80 percent of the

returned pages are irrelevant, because the search engine does not check the meaning

of the keyword in the context of a particular page. It simply returns the web page

for human to read, which is really time consuming.

We would, however, like to have a powerful tool that can build related information

for us. If we browse the web and find an interesting conference we would attend,

11

what we would like to have instantly by clicking a button are the time and place and

links to other documents including the pages of other people who would attend the

conference. When we decide to attend this conference, by clicking the register button,

our own calendar would record the time and date of the conference with links to other

useful information such as flight schedule, event description, etc. Instead of doing all

these jobs manually by us, we would like to have all these information retrieved and

sorted by some computer agents. Currently, web data can be shared by applications

using different XML DTDs or schemas, databases could be linked and data could be

wrapped with SOAP (Simple Object Access Protocol) to communicate.

The use of Semantic Web will bring structure to the meaningful content of Web

pages. The Semantic Web is not a separate web but an extension to the current

one. For the semantic web to function, computers must have access to structured

collections of information and sets of inference rules that they can use to conduct

automated reasoning. Artificial Intelligence workers have studied such systems before

the Web was developed. Knowledge representation is still currently in its primitive

form. Searching will yield irrelevant information because word sense needs to be

disambiguated[18]. Some good demonstrations exist, but it has not yet changed the

world. It contains the seeds of important applications, but to realize its full potential

it must be linked into a single global system. A software agent will roam from page to

page, carrying out the complicated tasks for users. It will link data from the Web and

use it more effectively for new discovery, automation, and integration across various

applications.

12

2.4 Open Mind Project

Despite years of research in artificial intelligence, computers still lack any knowledge

and are incapable of understanding the common sense of life [19]. A simple rule like

“Every person is younger than the person’s mother” is taken for granted by humans,

but needs to be taught to computers in order to figure out family relationships.

Computer scientists have been trying very hard to find ways to teach computers all

the common sense knowledge, but they have not been very successful. For one reason,

there are so many things to be learned, and for another, there is not a good project

to adequately collect information.

Sponsored by MIT Media laboratory, Open Mind Commonsense Project seeks all

resources available online, given the fact the web is popular enough to reach a large

population, to teach computers how to describe and reason about the world, especially

about people and their goals, activities, and interests. All these informations will take

the Internet from its current state as a giant repository of web pages, to a new state

where it will be able to think about all the knowledge it contains to make it a living

entity that could be deployed in real life for various purpose mentioned in Chapter 1.

Computers are smart when we feed them software to do complex things like playing

chess, or designing airplane engines. However, we cannot make computers commu-

nicate with people in the way human interacts with each other. The main problem

is that computers know nothing about people. To give computers common sense we

must program them with knowledge about many different areas. The artificial intelli-

gence is about how to make systems that are abundant with many types of knowledge

13

and many ways of thinking about different things, i.e., the capacity of commonsense

reasoning. A large database is indispensable, but we need to give computers many dif-

ferent ways of using that knowledge to think, giving computers methods of reasoning,

planning, explaining, predicting, and all the other things we human do.

With abundant data in the database, at the Media Lab, researchers are exploring

several kinds of applications. They developed systems that could reason what the

user really wants when the user types a piece of information. For instance, when the

user types “my cat is sick” into the search engine, the system reasons, and gives back

the answer of “Search for a veterinarian in your area”. This answer is based on the

following facts:

People care about their pets:

• People want their pets to be healthy

• My cat is my pet

• I want my cat to be healthy

• A veterinarian heals sick pets

• A veterinarian makes sick pets healthy

• I want to call a veterinarian

• A veterinarian is a local service

Therefore: Search for a veterinarian in the user’s area

14

With large database available, sense disambiguation is an important issue. There

have been several researches done in this area[20]. Achievements in building large

unambiguous corpus gives natural language processing much more power in searching

for accurate information.

2.5 VISTA Project

The VISTA project (Virtual Interactive Story Telling Agents) is part of University

of North Texas Digital Storytelling Project [21]. The virtual agents interact with

users through natural language query/answer patterns derived from the analysis of

narrative content. Such interactions allow a user to learn about the content of a story

by asking the questions he/she personally needs or wants to ask. VISTAs are coded

as a combination of AIML scripts [2, 15] to support AI applications and rules in a

Prolog knowledge base. The components of the system includes a web client with

a video/audio agent interface, an HTTP and media server, a story database, AIML

Programs, and Prolog Knowledge Base Programs executed by the JINNI systems[6,

22].

In VISTA project, the query/answering process about a given story is modeled as a

combination of story specific AIML query/answer patterns, a generic AIML pattern

library, and a set of JINNI 2002 classes implementing the underlying storytelling

ontology that emerges from classifying the stories by themes, motifs, genres, and

other indexing schemes. Agents use two orthogonal techniques to answer questions.

The first technique uses transcripts from human chat sessions as analogical sources

15

to replicate what humans do directly; the second technique is inferential/deductive.

It tries to identify, at least partially, what the focus of interest is in the question and

consults the story classification hierarchy and related dialogue patterns to handle

unknown situations. It uses the lexical knowledge base together with an advanced

rule based inference mechanism for understanding stories[23].

2.6 AIML

2.6.1 General Overview

AIML[24] is a subset of XML. AIML stands for Artificial Intelligence Markup Lan-

guage and was developed by ALICEbot community between 1995 and 2000 to enable

people to input knowledge into chat-bots. The syntax of AIML is compliant with

XML. Its goal is to enable pattern-based, stimulus-response knowledge content to be

served, received and processed on the Web and offline, in the manner that is currently

possible with HTML and XML[25].

AIML describes a class of data objects called AIML objects and partially describes

the behavior of computer programs that process them. There are two basic units

in AIML, topics and categories, either parsed or unparsed. Parsed data consist of

characters, some being character data, while other being AIML elements. AIML

elements encapsulate the stimulus-response knowledge contained in the document.

Character data within these elements is sometimes parsed by an AIML interpreter,

while sometimes left unparsed for later processing by a responder[25].

In AIML, the tags most important to us are <aiml> <category> <pattern>, and

16

<template>. <aiml> is the root tag that marks the beginning of an AIML document.

Correspondingly, </aiml> marks the ending of such document. A unit of knowledge

forms a category and is denoted within the <category> </category> tag set. Each

category consists of an input question (the <pattern> part), an output answer(the

<template> part), and an optional context(the <that> part) or the previous utter-

ance the bot says. The AIML pattern consists of words (letters and numerals only),

spaces, and the wildcard symbols and *. This pattern language is case invariant.

The question that users input will be compared to the content inside <pattern>

</pattern> tags. If there is a match, the contents of <template> will be retrieved

as a response to the question asked. More generally, this reply is transformed into

a mini computer program which can save data, activate other programs, give condi-

tional responses, and recursively call the pattern matcher to retrieve responses from

other categories. Following is a sample AIML script:

<category>

<pattern>YES</pattern>

<that>FOOBAR</that>

<template>You said yes</template>

</category>

in which the robot says “Foobar” and if the user answers with “yes”, then the robot

will respond with “You said yes”.

17

2.6.2 Program D

ALICEbot engine is implemented in many languages like Java, C, C++, Perl, Lisp,

and PHP scripts. The first edition of A.L.I.C.E. was implemented in 1995 using

SETL, an unpopular language or unknown language based on set theory and mathe-

matical logic. It later migrated to the platform independent Java language in 1998.

Codenamed “Program A”, this implementation of A.L.I.C.E. and AIML was imple-

mented in pre-Java 2 and was very popular among the research community. Launched

in 1999, Program B brought a breakthrough in A.L.I.C.E free software development.

More than 300 developers contributed to this version. AIML was transitioned to a

fully XML-compliant grammar, and this version won the Loebner Prize, an annual

Turing Test, in January 2000. Program C was the C/C++ implementation of AIML

released in 2000.

Program D was recoded by Jon Baer[2] based on Program B, a pre-Java 2 imple-

mentation. Many features of Java 2, like Swing and Collections, were added into this

new version. It still uses AIML scripts as underlying pattern database of ALICE-

bots for question answering. Though AIML can handle well individual patterns, it

has limitations in generalization and inference capabilities. Due to the limitations of

AIML, we decide to implement this engine in Prolog, i.e. extend AIML-based pattern

processing with a logic-based engine and deploy it with JINNI[26]. However, there

are good features of AIML that we try to emulate in our implementation, like the

pattern deduction algorithm used in Program D.

18

2.6.3 AIML Pattern Mapping

AIML pattern mapping is done via Graphmaster technique [15]. The Graphmaster

has a collection of nodes called Nodemapper. Pictorially it is a hierarchy of Nodes,

each being either a root, a leaf, or both. The root of Graphmaster has about 2000

branches, each accounting for the first word of all the patterns. A <template> tag is

attached to each leaf node.

The search for an answer to a question is as follows. To match an input of the user

to a pattern, there are three basic steps. The underscore “ ” has the highest priority,

followed by atomic word match, and then by the wildcard “*”. For example, if the

first word of the input string is “X”, first of all, we check if the Nodemapper contains

the key “ ”. If we find such a node, we traverse the subtree of this node and find

the subsequent words following “X”. If there is a match, we return the <template>

attached to the last branch. If not, we backtrack to the root and put back the words

of input string one by one. Next, we look for the branch that contains exactly the

word “X” and apply the same algorithm to find the match. If no match is found with

the atomic word branch, we try the third path, the wildcard path. For an empty/null

input, if the Nodemapper contains the <template> key, then a match is found. If the

root Nodemapper has a wildcard “*” node and it points to a leaf, then we guarantee

there is a match for any input string.

The above-described matching algorithm is a highly restricted version of back-

tracking. The patterns need not to be ordered strictly though if only the underscore

branch comes before any word branch and the wildcard branch comes after any word

19

branch.

2.6.4 Logical Deduction in AIML

AIML has some simple reasoning capabilities. It doesn’t use any logic engine as

Prolog, and the results are obtained with AIML only. The question pattern being

considered is the “What” questions. For example:

What does a bird have?

What do birds have?

What does a raven do?

What else does a bird have?

What else do ravens do? A bird has a beak, a tail, lungs, eyes, wings,

feathers, and is cold-blooded.

The first step is to construct an ISA hierarchy in AIML [27]. The entries look like

this:

<category>

<pattern>ISA RAVEN</pattern>

<template>A Bird.</template>

</category>

<category>

<pattern>ISA BIRD</pattern>

<template>An animal.</template>

20

</category>

From the database of ISA’s, there are many answers to a simple “What” question.

Therefore, AIML uses the <random> tag to group these answers:

<category>

<pattern>ISA CHICKEN</pattern>

<template>

<random>

A Bird.

A Food.

</random>

</template>

</category>

As with any database, there is a default case for ISA relation where an answer will

be provided even if the first argument cannot be identified:

<category>

<pattern>ISA * </pattern>

<template>Unknown</template>

</category>

To build a knowledge base for “What” questions, the next step would be creating

Has and Does relations. Similar to ISA relation, the <random> tag is used to group

many facts together:

21

<category>

<pattern>WHAT DOES A BIRD HAVE</pattern>

<template>

<random>

Lungs.

An eye.

A beak.

A tail.

A wing.

A feather.

Cold blood.

</random>

</template>

</category>

For the default case, the symbol “UNKNOWN” appears in the patterns. Here, the

art sense of the writer comes into play.

<category>

<pattern>WHAT DOES UNKNOWN HAVE</pattern>

<template>

<random>

Imagine no possessions.

I don’t know

22

The same as everyone else?

</random>

</template>

</category>

<category>

<pattern>WHAT DOES UNKNOWN DO</pattern>

<template>

<random>

Exist.

I don’t know.

The same as everyone else?

</random>

</template>

</category>

To reduce symbols, we first transform a variety of grammatical forms into simpler

inputs. The tag <srai> is designed to recursively find the next pattern. Given the

following knowledge base, we will be able to transform “WHAT DOES A X DO”,

“WHAT DOES AN X DO” and “WHAT DO X DO” into single canonical form like

“WHAT DOES X DO”.

<category>

<pattern>WHAT DO * DO</pattern>

23

<template><srai>WHAT DOES A <star/> DO</srai></template>

</category>

<category>

<pattern>WHAT DOES A * DO</pattern>

<template><srai>WHAT DOES <star/> DO</srai></template>

</category>

The inferential abilities of AIML are realized through the <srai> tags. Basically, we

will reduce “WHAT DOES X DO” to “WHAT DOES Y DO” if there is ISA relation

between X and Y. Similarly we can reduce “WHAT DOES X DO” to “WHAT DOES

X HAVE”. With the same technology, AIML is capable of reducing plural forms to

singular forms. For each “WHAT” question, therefore, we would be able to find

an answer to it. Ultimately, there is an “WHAT DOES AN UNKNOWN HAVE”

category as the default case to halt the recursion.

24

CHAPTER 3

Implementation

3.1 System Architecture

The AIML scripts developed by Dr. Richard Wallace serve as the query database for

various ALICEbots. They contain rich information about our daily life, and rely on

recursive methods to find an answer to a given question. With targeting mechanism,

the bot is capable of acquiring new knowledge. The Loebner winner Program D,

introduced in Section 2.6.2, uses AIML scripts to carry out the query/answer tasks.

In our project, we reuse AIML scripts but in a Prolog based knowledge processor.

The whole project could be separated into two phases: Database Generation Phase

and Runtime Phase.

In the database generation phase, the original XML compliant AIML scripts are

sent to event driven SAX parser. With JINNI engine, patterns of questions and

answers are extracted to a Prolog QA pattern database. This phase is implemented by

a modified XML-Prolog conversion package and it supports bi-directional conversion

between AIML and Prolog clauses.

In the runtime phase, the QA patterns in Prolog clauses serve as the underly-

ing database and provide canned and inferential answers to incoming queries. It is

achieved by a Prolog inference engine that searches the Prolog QA database recur-

sively in a finite amount of time for the matched answer and presents it to the user

25

System

Runtime
User

Database
Generator

(XML/AIML −> Prolog) Database

QA Pattern

Figure 3.1: System Architecture

via a GUI. This match engine uses standard DCGs and works with JINNI 2003 or

BinProlog.

When the user inputs a question where there is not a ready answer, we will prompt

the user for a possible solution and insert dynamically into the database. This learning

capacity enhanced the power of our search engine greatly.

3.2 Database Generation

3.2.1 AIML Parser

In Figure 3.2, the AIML/XML file is the origin of file conversion. There are 34

standard AIML files:

std-65percent.aiml std-gossip.aiml std-religion.aiml

26

SAX Parser JINNI 2003AIML/XML Pattern Files

Java Virtual Machine

QA Pattern Database

Figure 3.2: Database Generator

27

std-atomic.aiml std-hello.aiml std-robot.aiml

std-botmaster.aiml std-inactivity.aiml std-sales.aiml

std-brain.aiml std-inventions.aiml std-sextalk.aiml

std-connect.aiml std-knowledge.aiml std-sports.aiml

std-dictionary.aiml std-lizards.aiml std-srai.aiml

std-disconnect.aiml std-login.aiml std-suffixes.aiml

std-dont.aiml std-numbers.aiml std-that.aiml

std-errors.aiml std-personality.aiml std-turing.aiml

std-gender.aiml std-pickup.aiml std-yesno.aiml

std-geography.aiml std-politics.aiml

std-german.aiml std-profile.aiml

Each of these files specifies a special feature for ALICEbots. For instance, the file std-

gender.aiml lists the common English names that ALICEbots could encounter. This

file finds the user’s name and determines the gender for a given name. Its information

will be used in the (set name gender male) category. The file std-profile.aiml tries to

learn specific things about an individual user and the file std-knowledge.aiml contains

the common knowledge and is an important resource in conversation. When we start

our chat bot, all these files are loaded into the brain of our bot.

An AIML to Prolog parser is written in Java to convert AIML files to Prolog

based clauses. Well documented XML processors in literature include Simple API for

XML (SAX) parser and Document Object Model (DOM) parser from org.w3c.dom

and org.xml.sax [28]. However, they take different approaches. DOM parser creates a

28

tree of nodes when a Document object is created based on an XML file. To access the

leaf knowledge, we need to traverse the whole tree. SAX parser, on the other hand,

is event-driven. The information of an XML file is accessed as a sequence of events.

But we need to create our own custom object model and a listener class listening to

SAX events.

Given the fact that only a small subset of database needs to be searched and

processed during information query, we developed an event-driven parser based on

JINNI 2003’s Java based SAX parser. Using an event driven parser avoids large XML

trees in memory. Having a cache for external Prolog facts ensures that other large

data is only brought into memory as needed. In our model, we use SAX parser to

parse iteratively the AIML files and create Prolog clauses which could be ported to

JINNI.

We have AIMLContentHandler and AIMLContentPrinter classes to perform this

conversion. The AIMLContentHandler class implements org.xml.sax.ContentHandler.

The important methods we override are startDocument(), endDocument(), startEle-

ment(), endElement(), and characters().

3.2.2 Structure of Prolog Clauses

The original AIML files have a list of categories within the <aiml> tags. Ecah cate-

gory could have its own attribute and a list of data. Therefore, when creating Prolog

clauses for AIML scripts, we use recursively the form ’$ai’(tagname, [AttributeList],

29

category

DataList

...... category

AttributeList

aiml

AttributeList DataList

pattern that template

Figure 3.3: Tree Representation of Prolog clause of AIML scripts

[DataList]) as shown in Figure 3.3 to represent the original information. Any DataL-

ist could contain another ’$ai’(tagname,[AttributeList], [DataList]) as its data. If the

attribute list is empty, empty square brackets [] are used to represent empty attribute.

Similarly for empty data list, there is a pair of empty brackets for it. For string data,

we use the form ’$s’(“Data”) because if a string is represented with single quotes, it

will be loaded in memory, and we can run out of memory space fairly quickly. On the

contrast, list representations for strings are faster and more convenient for conversion.

The outer most tagname is always aiml and each source file is converted to a single

file consisting of one Prolog clause.

In the end, the original AIML tree representation is expressed with recursive

’$ai’(tagname, [AttributeList], [DataList]) form. It enables the Prolog database to

30

have a uniform structure and could be parsed conveniently in QA extraction. Given

a source file of:

<?xml version="1.0" encoding="ISO-8859-1"?>

<aiml version="1.0">

<!-- Free software (c) 2001 ALICE AI Foundation -->

<!-- This program is open source code released under -->

<!-- the terms of the GNU General Public License -->

<!-- as published by the Free Software Foundation. -->

<meta name="author" content="Jon Baer"/>

<meta name="language" content="en"/>

<category>

<pattern>BOT HOW MUCH IS *</pattern>

<template>

<random>

The answer is <javascript><star/></javascript>.

<javascript><star/></javascript> I think.

I think it’s <javascript><star/></javascript>

Let me check, it’s <javascript><star/></javascript>

</random>

</template>

31

</category>

<category>

<pattern>EVALUATE *</pattern>

<template>

<javascript><star/></javascript>

</template>

</category>

<category>

<pattern>WHAT IS NATURAL LANGUAGE</pattern>

<template>

Natural language is what artificial intelligences speak.

</template>

</category>

<category>

<pattern>SHOW ME A WINDOW</pattern>

<template>

<display target="sized" height="400" width="400" status="1">

http://www.alicebot.net

</display>

32

OK.

</template>

</category>

<category>

<pattern>YES</pattern>

<that>FOOBAR</that>

<template>You said yes</template>

</category>

</aiml>

The converted aiml clause would be like this:

’$ai’(aiml, [’version’ = ’1.0’],[

’$ai’(meta, [’name’ = ’author’,’content’ = ’Jon Baer’],[]),

’$ai’(meta, [’name’ = ’language’,’content’ = ’en’],[]),

’$ai’(category, [],[’$ai’(pattern, [],[’$s’("BOT HOW MUCH IS *")]),

’$ai’(template, [],[

’$ai’(random, [], [

’$ai’(li, [],[’$s’("The answer is"),

’$ai’(javascript, [],[’$ai’(star, [],[])]), ’$s’(".")]),

’$ai’(li, [],[’$ai’(javascript, [],[

’$ai’(star, [],[])]), ’$s’("I think.")]),

33

’$ai’(li, [],[’$s’("I think it’s"), ’$ai’(javascript, [],[

’$ai’(star, [],[])])]),

’$ai’(li, [],[’$s’("Let me check, it’s"),

’$ai’(javascript, [],[’$ai’(star, [],[])])])])])]),

’$ai’(category, [],[’$ai’(pattern, [],[’$s’("EVALUATE *")]),

’$ai’(template, [],[’$ai’(javascript, [],[’$ai’(star, [],[])])])]),

’$ai’(category, [],[’$ai’(pattern, [],[’$s’("WHAT IS NATURAL LANGUAGE")]),

’$ai’(template, [],[’$s’("Natural language is what

’Artificial Intelligences’ speak.")])]),

’$ai’(category, [],[’$ai’(pattern, [],[’$s’("SHOW ME A WINDOW")]),

’$ai’(template, [],[’$ai’(display, [’target’ = ’sized’,

’height’ = ’400’,’width’ = ’400’,’status’ = ’1’],[

’$s’("http://www.alicebot.net")]), ’$s’("OK.")])]),

’$ai’(category, [],[’$ai’(pattern, [],[’$s’("YES")]),

’$ai’(that, [],[’$s’("FOOBAR")]),

’$ai’(template, [],[’$s’("You said yes")])])]).

For simplicity, we omit the comment lines. They do not affect the integrity of

the original source file. The information can be stored externally and put back when

needed.

34

3.2.3 Lossless Information Conversion

To make sure there is no information loss during AIML to Prolog conversion, the

converted Prolog files are tested by a modified JINNI XML Parser. There are seven

classes in this package: Main, XMLConverter, GenericJinniXMLHandler, FullXML-

Handler, SimpleXMLTermHandler, XMLTermBuilder, and XMLTermHandler. The

Main class loads the Prolog-based AIML file and starts the usual JINNI top level. In

XMLConverter, the prolog terms is converted to an XML representation. The Gener-

icJinniXMLHandler class acts as a no-action adaptor for various SAX parser based

Handlers. It calls the parser, sends end notification, and properly terminates the

Prolog side processing. The FullXMLHandler inherits from GenericJinniXMLHan-

dler and sends events to Prolog for each member of the DefaultHandler SAX adaptor.

It ensures all Java functionalities are being done in Prolog as well. SimpleXMLTer-

mHandler only overrides a few methods needed in parsing XML represented Prolog

terms. The XMLTermBuilder builds Prolog terms directly for fast processing. It cre-

ates the illusion of having a DOM parser. The complete “syntax tree” it builds is a set

of Prolog terms. Similarly XMLTermHandler focuses on handling XML represented

Prolog terms.

To test the integrity of converted AIML files in Prolog form, first of all, we run

the modified XMLConverter class to change the Prolog file back to AIML format.

We use a reflection-based interface for Prolog-to-XML converter, which takes a file

containing Prolog clauses and builds an XML representation in another file. Because

we use a well-formed Prolog clause, converting it back to XML representation with

35

JINNI Engine means recognizing three objects, namely Fun, String, and Integer of

JINNI. JINNI Fun class implements external representations of Prolog compound

terms. It is a functor of the form Symbol/Arity. Our newly created Prolog clauses

have recursively ’$ai’(tagname, [AttributeList],[DataList]) form and because we use

‘$ai’ and ‘$s’ to denote tagname and string data, the tagname is conveniently taken

as a functor name when we convert it back to XML representation.

The new AIML file is converted for a second time to Prolog format. Comparing

this version against the first version reveals no difference between two output files.

Therefore, we conclude that this three way conversion, i.e. AIML to Prolog, Prolog

to AIML, and AIML to Prolog again, ensures no information loss at all.

3.3 Prolog Database Creation

After aiml clauses are converted to Prolog format, the next step we perform is the

creation of a query database in the form of qa(Q,A). Each qa corresponds to a category

in the original AIML file, where the Q corresponds to <pattern> content and the A

is what <template> contains.

The first issue of database creation is reading all Prolog files of aiml scripts and

extract the qa’s into a qadb file. BinProlog has a predicate called dir2files that search

iteratively through a directory and read the content into a database. The codes we

have for this purpose is:

go1 :-

retractall(qa(_,_)),

36

dir2files(ai_files, FileList),

forall(member(X, FileList),

(namecat(ai_files,’/’,X, File),

term_of(File, Term),

process(Term))),

write(qa([[who, is, ’X’,.]],

[[i, know,a,lot,but,i,do,not,know,anything,about,’X’,.]])),

println(’.’),

write(qa([[what, is, ’X’,.]],

[[i,know,a,lot,but,i,can,not,answer,’X’,.]])),

println(’.’),

write(qa([[my, name, is, ’X’,.]],

[[hello, ’X’,what,can,i,do,for,you,?,.]])),

println(’.’),

told,

listing(qa).

In this part, we clean up the qa database for the first time and append the facts

read from each file to qa list. When this process is finished, all qa facts are in memory,

ready for query. We insert a few default answers for who and what questions as well.

When processing aiml term, we fully utilize the feature present with the aiml

clause, which contains recursive ’$ai’(tagname, [AttributeList], [DataList]) informa-

tion. With the pictorial representation as illustrated in Figure 3.3, we can tell there

37

is a clear iteration of the form ’$ai’(tagname, [AttributeList], [DataList]).

Therefore, after reading into memory one file at a time, the next step we do is

scanning the attribute list as well the data list from the outmost tag aiml. Then we

recursively scan all categories. We also insert a default answer to handle situations

where there is not a ready answer in the database. The code that does this part of

job is:

process(’$ai’(aiml, AttrList, Children)) :-

scan_attr_list(AttrList),

scan_all_categories(Children, _).

The top level scanning we do on the aiml term is finding all categories included in a

file. Other tags parallel to category is ignored. Since there is more than one category

in a single aiml file, our scanning method recursively goes through all categories until

the file comes to an end. For each category, we insert into our qadb file the content of

pattern() as Q, and the content of template() as A in pairs. Another important tag

is that(), which records the previous utterance of the user. The codes that perform

these functions are:

scan_all_categories([], []).

scan_all_categories([C|Cs], [qa(Q,A)|QAs]) :-

scan_category(C, Q, A),

tell_at_end(’qadb.pl’), write(qa(Q,A)), println(’.’),

scan_all_categories(Cs, QAs),

assert(qa(Q,A)), !.

38

scan_category(C,Q,A) :-

(C = ’$ai’(category, _, Children)

-> process_category(Children, Q, A)

; Q=[[hello,’X’,.]], A=[[hi,thanks,for,calling,me,’X’,.]],!

).

process_category([], [], []).

process_category([C|Cs], Q, A) :-

(C = ’$ai’(pattern, Attr, Child)

-> get_Q(Attr, Child, Q), process_category(Cs, Q, A)

;C = ’$ai’(template, Attr, Child)

-> get_A(Attr, Child, A), !

% once get the answer, no need to proceed

;C = ’$ai’(that, Attr, Child) -> process_that(Attr, Child)

;process_category(Cs, Q, A)

).

When inserting into qadb file, Prolog has special features that require attention.

Any word that starts with a capital letter is considered a variable. Therefore, we

must be very careful about it. Sometimes, though, we purposefully insert a variable

X for later inference during querying database.

39

3.4 Information Deduction

Web Client

with User Interface
Learning ProcessUser

QA Pattern Database

Prolog Inference

Engine

Prolog Dynamic

Assertions

Extacted QA Pattern

Figure 3.4: Runtime System

As in Figure 3.4, the user interacts with a web client whose function is simply dis-

playing a graphical user interface (GUI), reading in user inputs and displaying system

output. We call our bot Emily, and she is capable of providing useful information

about various aspects.

First of all, the input string is converted into a list of words. If the input list

consists of words like “bye”, “quit”, or “exit”, Emily will stop running and exit.

40

Otherwise, the search engine searches the database for the most appropriate answer.

The codes we have for the initiation of Emily is here:

go :-

nl,print(’EMILY > ’), println(’Hello, user’),

repeat,

print(’User > ’),

read_line(Input),

name(Input,Cs),

to_lower_chars(Cs, Ls),

to_words(Ls, Ws),

if_any((member(bye, Ws);

member(quit, Ws);

member(exit, Ws)),

(nl, print(’EMILY >’),

println(’See you’),

abort),

(qtoa(Ws, Answer),

nl, print(’EMILY > ’),

write_words(Answer), nl

)),

Ws = bye.

There might be more than one answer to a question. The original AIML files uses

41

<random> tag to select from a list of answers randomly. We preserved this feature

by choosing one element from the answer list and write that out to the user.

qtoa(Input,Answer):-

qa(Q,Ans),

match_pattern(Q, Input), !,

length(Ans, L),

if_any(L > 1,

(random(X), I is X mod L, N is I + 1,

findnth(Ans, N, Ans2),

flatten(Ans2, Answer)),

flatten(Ans, Answer)

).

The internal pattern processing engine has a pattern matching library. The predi-

cates works on tokens as well as char, integer, even clause streams. The match pattern

predicate words with JINNI 2000 or BinProlog. It uses standard DCG because DCG

allows designing pattern processor more easily in that DCG handles patterns elegantly

without complex use of append operations. Initially the complete list of tokens is given

as the hidden input argument for the DCG processor.

match_pattern(Pattern,Input):-

match_pattern(Pattern,Input,_Before,_After).

match_pattern(Pattern,Input,Before,After):-

42

nonvar(Pattern),nonvar(Input),

[Before|Pattern]=NewPattern, % adds initial collector variable

!,

match_internal(NewPattern,Input,After),

!. % matches the first occurrence of the pattern

This match internal(+Pattern,+InputList,-LeftOverList) matches pattern against in-

put list and returns what is left over in -LeftOverList part. So after the sequence of

patterns has been found, the LeftOverList contains tokens left unprocessed. In our

pattern processor, a DCG rule is invoked as a (+InputList, -LeftOverList). The DCG

transformation maps a grammar rule like

a --> b,c,d.

to

a(S1,S4):-b(S1,S2),c(S2,S3),d(S3,S4).

Forcing the LeftOverList to be empty brakets [] might trigger extensive backtracking.

3.5 Running Scripts

As described in previous sections, we first convert all AIML source scripts to cor-

responding Prolog format and load Prolog clauses into memory when our chatbot

Emily is started. Following is a short script of a dialogue with Emily.

?- go.

43

EMILY> Hello, user

User > Why is the sky blue.

EMILY> The sky is blue because of the atmospheric optical effect known

as raleigh scattering.

User > Do you know about the recent happenings in Denton?

EMILY> I know a lot but I can not tell you about the recent happenings

in Denton.

User > What is natural language?

EMILY> Natural language is what artificial intelligences speak.

User > Who is Yoko Ono.

EMILY> Miss yoko ono is the widow of John Lennon.

User > Who is Reagan.

EMILY> The best president the united states had in the 20th century.

3.6 Application with Agents

As described in 1.1, a chat agent can simulate human conversation. It can be used to

incorporate animated characters into software application and web pages. Microsoft

provides an agent[29] with Text-to-Speech (TTS) and Speech-to-Text (STT) functions

and the TTS engine is supported in its Internet Explorer on Windows 2000 and

Windows XP. This agent technology is borrowed here and linked to our database.

Agent Genie, the parrot, asks questions and Agent Merlin, the funny man, answers

them.

44

CHAPTER 4

Conclusion

The goal of natural language processing in the world of conversational agents is to

enable a computer to emulate human languages so that people can talk to computers

as though they are addressing another person. The early ELIZA program carries

on conversation with people, and provides canned answers based on keywords. AL-

ICEbots, the chat agents developed by A.L.I.C.E. foundation, use AIML to power

up their conversational abilities and use animations with realistic facial expression.

They can listen to human speech and speak as well.

As part of this thesis, an AIML parser is developed in Java using the event-driven

SAX parser. This parser converts AIML scripts to Prolog clauses. These clauses

are reversible to the original AIML form without losing any information. With the

correctness of this conversion, we guarantee the database created is as accurate and

informative as the original AIML scripts.

Secondly, a Prolog question-answer (QA) database is generated by analyzing the

converted AIML patterns. With this functionality, we can translate a large corpus of

AIML based QA patterns into a format ready for knowledge processing.

To enhance the searching capability of our chat agent, a Prolog based pattern

processing engine is developed supporting a subset of the converted AIML patterns.

The recursive search is at its preliminary stage. When linked to Microsoft agent

technology, the search agent could interact with user via Text-to-Speech (TTS).

45

This technology has broad applications ranging from entertainment to online

teaching. Our patterns have been integrated in the VISTA (Virtual Story Telling

Agents) project as a way to enhance their functionality by reusing existing libraries

of AIML patterns for common sense reasoning and improved conversational abilities.

46

BIBLIOGRAPHY

[1] J. Weizenbaum, Computer Program for the Study of Natural Lan-
guage Communication Between Man and Machine. Available at
http://i5.nyu.edu/ mm64/x52.9265/january1966.html.

[2] A.L.I.C.E. AI Foundation. Artificial Intelligence Markup Language
(AIML). Technical report, A.L.I.C.E. AI foundation, 2002. Available at
http://alice.sunlitsurf.com/TR/2001/WD-aiml/.

[3] Claire, Virtual Representative of SprintPCS. Available at
http://www.sprintpcs.com.

[4] Artificial Intelligence. Movie. 2001 Warner Bros. Directed by Steven Spielberg.
Available at http://aimovie.warnerbros.com/.

[5] G. A. Agha and N. Jamali. Concurrent Programming for Distributed Ar-
tificial Intelligence. Multiagent Systems: A modern Approach to DAI, Ed.
Gerhard Weiss, Chapter 12, pp.505-531, MIT Press, 1999. Available at
http://yangtze.cs.uiuc.edu/Papers/Agents.html.

[6] BinNet Corporation. Jinni 2002 A High Performance Java and
.NET based Prolog for Object and Agent Oriented Internet Pro-
gramming. Technical report, BinNet Corp., 2002. Available at
http://www.binnetcorp.com/download/jinnidemo/JinniUserGuide.html.

[7] P. Tarau. Fluents: A refactoring of Prolog for Uniform Reflection and INterop-
eration with External Objects. In Proceedings of CL 2000, Jul 2000. Ed. John
Lloyd. London.

[8] Extensible Markup Language. Technical Report. Available at
http://www.w3c.org/XML/.

[9] J. Bosak. XML, Java and the Future of the Web. Technical re-
port. Sun Microsystems. Available at http://www.ibiblio.org/pub/sun-
info/standards/xml/why/xmlapps.htm.

[10] L. Sterling and E. Shapiro. The Art of Prolog: Advanced Programming Tech-
niques, 2nd edition, MIT Press, Mar 1994.

[11] M. Sharples, D. Hogg, C. Hutchison, S. Torrance and D. Young. Computers and
Thought: A practical Introduction to Artificial Intelligence, Oct 1996. Available at
http://www.cs.bham.ac.uk/research/poplog/computers-and-thought/index.html.

[12] C. Thompson, Approximating Life, New York Times. Available at
http://www.nytimes.com/2002/07/07/magazine/07WALLACE.html.

[13] A. Hodges. Alan Turing and the Turing Test. Available at
http://www.turing.org.uk/publications/testbook.html.

47

[14] W. Pieters. Case-based Techniques for Conversational Agents.
Master’s thesis. University of Twente, Jun 2002, Available at
http://wwwhome.cs.utwente.nl/ pieters/report.pdf.

[15] Richard Wallace. AIML Pattern Matching Simplified. Tech-
nical report, A.L.I.C.E. AI foundation, 2002. Available at
http://www.alicebot.org/documentation/matching.html.

[16] Resource Description Framework (RDF) Model and Syntax Specification. Tech-
nical report. Available at http://www.w3.org/TR/REC-rdf-syntax/.

[17] T. Berners-Lee, J Hendler and O Lassila. The Seman-
tic Web. Scientific American, May 2001. Available at
http://www.scientificamerican.com/article.cfm?articleID=00048144-10D2-
1C70-84A9809EC588EF21&catID=2.

[18] R. Mihalcea and D.I. Moldovan. Word Sense Disambiguation Based on Semantic
Density, in Proceedings of COLING-ACL 1998 Workshop on Usage of WordNet
in Natural Language Processing Systems , pp.16-22, Montreal, Canada, August
1998.

[19] Push Singh, The Open Mind Common Sense Project. Available at
http://www.kurzweilai.net/articles/art0371.html?printable=1.

[20] T. Chklovski and R. Mihalcea. Building a Sense Tagged Corpus with Open Mind
Word Expert. In Proceedings of the Workshop on ”Word Sense Disambiguation:
Recent Successes and Future Directions”, ACL 2002 pp. 116-122.

[21] E. Figa and P. Tarau. The VISTA Project: An Agent Architecture for Virtual In-
teractive Storytelling. In TIDSE 2003, Eds N. Braun and U. Spierling, Darmstadt,
Germany, Mar 2003.

[22] P. Tarau and V Dahl. A Logic Programming Infrastructure for Internet Pro-
gramming. In Artificial Intelligence Today – Recent Trends and Developments.
Eds. M. J. Wooldridge and M. Veloso. Springer, LNAI 1600. ISBN 3-540-66428-9.
pp.431-456.

[23] E. Figa and P. Tarau. Story Traces and Projections: Exploring the Pat-
terns of Storytelling. Available at http://logic.csci.unt.edu/tarau/research/
2002/figa tarau wnet tidse.pdf.

[24] AIML Tutorial, Technical report, A.L.I.C.E. AI foundation, 2002. Available at
http://www.pandorabots.com/pandora/pics/wallaceaimltutorial.html.

[25] AIML Specification. Technical report. Available at
http://alicebot.org/TR/2001/WD-aiml-1.0.1-20011025-006.html.

[26] P. Tarau. Inference and Computation Mobility with Jinni. In The Logic Pro-
gramming Paradigm: a 25 Year Perspective, Eds. K.R. Apt and V.W. Marek and
M. Truszczynski, 1999, Springer,ISBN 3-540-65463-1, pp.33-48.

48

[27] Richard Wallace. Simple Logical Deductions in AIML. Available at
http://www.aiml.info/modules.php?name=Content&pa=showpage&pid=1.

[28] XML Standard API. Available at http://xml.apache.org/xerces2-
j/javadocs/api/index.html.

[29] Microsoft Agent. Available at http://www.microsoft.com/msagent/default.asp.

49

