A MULTIPATH FAULT-TOLERANT PROTOCOL FOR ROUTING IN PACKET-
SWITCHED COMMUNICATION NETWORKS

Anupama Krishnan, B.E..

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

May 2003

APPROVED:

Armin R. Mikler, Magjor Professor

Azzedine Boukerche, Committee Member

Steve Tate, Committee Member

Krishna Kavi, Chair of the Department of
Computer Science

C. Nea Tate, Dean of the Robert B. Toulouse
School of Graduate Studies

Krishnan, Anupama, The Multipath Fault-Tolerant Protocol for Routing in Packet-Switched

Communication Networks. Master of Science (Computer Science), May 2003, 76 pp., 16 figures,

43 titles.

In order to provide improved service quality to applications, networks need to address the need for
reliability of data delivery. Reliability can be improved by incorporating fault tolerance into
network routing, wherein a set of multiple routes are used for routing between a given source and
destination. This thesis proposes a new fault-tolerant protocol, called the Multipath Fault Tolerant
Protocol for Routing (MFTPR), to improve the reliability of network routing services. The protocol
is based on a multipath discovery agorithm, the Quasi-Shortest Multipath (QSMP), and is designed
to work in conjunction with the routing protocol employed by the network. MFTPR improves upon
the QSMP algorithm by finding more routes than QSMP, and aso provides for maintenance of
these routes in the event of failure of network components. In order to evaluate the resilience of a
pair of paths to failure, this thesis proposes metrics that evaluate the non-disjointness of a pair of
paths and measure the probability of simultaneous failure of these paths. The performance of

MFTPR to find aternate routes based on these metrics is analyzed through simulation.

ACKNOWLEDGEMENTS

There are several people I would like to acknowledge for their valued contributions in
the completion of this work. First, I wish to thank my advisor, Dr. Mikler, for his
guidance, understanding and infinite patience. He helped me find a stimulating and
challenging subject of work and his support throughout this thesis has been invaluable.

I also wish to thank Dr. Boukerche and Dr. Tate for taking time off their busy
schedules at the end of the semester to be part of my thesis committee. I thank Dr.
Tate for meticulously reviewing my document and patiently answering all my queries.
I thank the Computer Science department at UNT for giving me the opportunity to
pursue my master’s degree. It has been a wonderful experience to study at UNT.

I am especially thankful to Subhashini, who has spent an enormous amount of time
to review my thesis document in great detail. Her technical and emotional support
throughout these last few weeks has considerably eased my struggle to complete the
task of writing this thesis. I also thank Prasanna for taking the time to provide
feedback regarding my work. The moral support rendered by both Prasanna and
Sandhya has also been important to me.

I would like to wholeheartedly acknowledge and thank my family members for their
unstinting love and encouragement throughout my academic career. I owe a world of
thanks to my dad for his support, to my mother for helping me set better standards
for myself, and to my sister for being my best friend always.

Above all, I wish to thank God for everything I have received and will ever receive in
my life.

i

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS ... e ii
LIST OF FIGURES o vi
Chapter
1. INTRODUCGTION .. e 1
Quality of Service (QOS)t 2
Faults and Fault Tolerance)
Fault Tolerance and Redundancy................... 9
Fault Tolerance in Routing 11
Road Map ... 13
2. SOLUTIONS FOR ACHIEVING FAULT TOLERANCE
FOR ROUTING SERVICES 15
Application Embedded Fault Tolerance 16
Fault Tolerance in Client-Server Systems 16
Fault Tolerance in Distributed Systems.......................... 17
Solutions for Offering Fault Tolerance to Applications............... 19
Hot Standby Routing Protocol (HSRP) 19

il

Dynamic Routing System (DRS) 20

Transmission Control Protocol (TCP) 21
Fault Tolerance in Network Routing 22
The K- Shortest Paths Problem 23
Disjoint Multipath Algorithms 24
Non-Disjoint Multipath Algorithms 27

3. THE MULTIPATH FAULT-TOLERANT PROTOCOL

FOR ROUTING . ..o e 32
Quasi-Shortest Multipath (QSMP), 33

The Multipath Fault-Tolerant Protocol for Routing (MFTPR) 38

Route Discovery Mechanisms................ 39

Route Maintenance i 44

Route Selection Policies and Resilience to Failures 48

Simulation and Experiments............... ... i 52
Experiments and Analysis............ 53

4. SUMMARY AND FUTURE WORK 63
Future Worko 68
BIBLIOGRAPHY .. 70

v

2.1

2.2

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

LIST OF FIGURES

Node Disjoint Paths 24
Link Disjoint Paths 25
Quasi-Shortest Path 34
Graph of a Network 35
Calculating the Quasi-Shortest Path 35
Possible Alternate Path from Source W to Destination 7 37
Alternate Paths from Ato C'....... 41
Requests Generated by Node A to Find Quasi-Via Paths to Destination

C 42
Maintenance of Backup Routes........... 45
Main and Backup Routing Tables for Node A 46
35 Nodes, Commonality 0%, Threshold 50% 55
45 Nodes, Commonality 0% , Threshold 40% 55
65 Nodes, Commonality 0%, Threshold 50% 56
65 Nodes, Commonality 30%, Threshold 40% 56
Nodes 45, Commonality 30%, Threshold 30% 57
Nodes 35, Degree 4 59

3.15 Nodes 55, Degree 4

3.16 Nodes 65, Degree 5

vi

CHAPTER 1

INTRODUCTION

Over the past few years, networks have grown in size exponentially. Many appli-
cations, especially businesses, now operate over the Internet and depend upon it for
communication and other services. This underlines the need for network services to
be provided in a reliable manner. Currently, the routing model of the Internet offers
a best-effort service, whereby the network tries to deliver data packets, but provides
no guarantees about the reliability of delivery. Consequently, data packets could be
lost or delayed. The best-effort routing model is no longer sufficient to provide reli-
able services to applications, especially since networks now carry much more traffic
than they were ever designed to handle. Networks, therefore, need to address the
growing need for reliability in services provided to applications. Since reliability can
be considered to be a Quality of Service (QoS) parameter, issues related to Quality

of Service in general and reliability in particular must be considered.

Quality of Service (QoS)

The term Quality of Service is ambiguous as there is neither a clear consensus
on what “services” are provided under the umbrella of QoS, nor are there clearly
defined mechanisms to provide these services. Paul Ferguson and Geoff Huston in
their book Quality of Service [8] aptly draw a parallel between QoS and the Elusive
Elephant, where three blind men come upon an elephant and envision it differently as
each is faced with just one small part of the elephant. There are several perspectives
on QoS, and this can be attributed to the fact that each perspective addresses only
a small, specific portion of QoS-related issues. A variety of QoS definitions exist.
QoS may be defined as “the ability of a network element (e.g., an application host or
router) to have some level of assurance that its traffic and service requirements can
be satisfied” [28].

In order to be able to provide Quality of Service to applications, a network must
have a reasonable level of service quality. Service Quality may be defined as “deliv-
ering consistently predictable service” [9]. The parameters used to measure service
quality in networks are delay, packet loss, bandwidth, and jitter [9]. For a network
consisting of routers and hosts (or nodes), the service quality parameters are defined

as follows:

e Delay is the amount of time taken by the network to deliver a packet from
source to destination. It is measured as a combination of several factors in-
cluding transmission delay, propagation delay, and queuing delay at the various

routers. Reducing delay increases the network’s service quality.

e Packet Loss is caused by network congestion and component failures. Ideally,
packet loss should be non-existent. Realistically, one of the goals while offering

better service quality would be to minimize packet loss.

e Bandwidth is the maximum data transfer rate that a communication link
between two end points can support. The higher the bandwidth offered, the
better is the service quality. However, bandwidth is limited by the physical
communication medium of the link, which in turn implies that maximizing

efficiency in the use of bandwidth is the actual measure of service quality.

e Jitter is the variation in delay experienced by packets belonging to a single con-
nection. Applications related to real-time based audio and video are generally

considered to be jitter-sensitive. Reduced jitter implies better service quality.

Optimizing the above-mentioned metrics improves service quality and thereby im-
proves QoS. The QoS proffered by a system may also be characterized by factors such

as system availability, reliability, safety, security, and maintainability. Awvazilability

refers to the probability that the system is functioning correctly and is able to per-
form its tasks at any given instant. Reliability for a network is defined to be inversely
proportional to packet loss, and a reliable system should continuously provide ser-
vices without failure. A safe system should eliminate catastrophic consequences in the
event of a failure, whereas a secure system must maintain and preserve confidentiality
among other things. Finally, maintainability refers to the ease with which a system
facilitates repair externally or recuperates on its own after failure. A system that
exhibits these characteristics is said to be a dependable system [11], and increasing
dependability can be considered a QoS objective.

The ability to measure and characterize QoS in a system by no means simplifies the
task of actually providing the requisite QoS. This is especially true of large networks
that are composed of several smaller autonomous networks. The constituent networks
may offer varying levels of service quality, making it difficult to provide consistent
service quality across the heterogeneous network. They may also employ different
protocols for network functions such as routing, and in addition may have varying
infrastructures that are dictated by local organizational policies. Consequently, it
is difficult to propose architectural changes or implement mechanisms to provide
uniform end-to-end QoS guarantees.

However, it is possible to incorporate properties such as fault tolerance into the

network that help improve service quality without having to modify existing infras-
tructure or protocols. This thesis proposes a protocol for fault tolerance that allows
networks to improve the reliability of data transfer and consequently increase system
dependability. Fault tolerance advocates addressing faults and provides contingency
measures to deal with them so that network services remain available even in the face

of failures. Below, we discuss some issues related to faults and fault tolerance.

Faults and Fault Tolerance

A fault is defined as the failure of a component of a system or a subsystem of the
system [11]. The occurrence of one or many faults may lead to system failure, where
the system cannot deliver the promised services or deviates from expected services.
For example, a link or node failure is a fault. Multiple link and node failures may
lead to failure of network routing services, which in turn may translate to failure of
the entire network.

Faults can be classified on the basis of locality, effect and duration [11]. Locality-
based faults may be caused by failure of hardware components in the system, failure
due to incorrect use of the system or failure due to changes in the operational environ-
ment. A failed network component such as a router is an instance of a locality-based

fault. Effect-based faults cause incorrect computational results or unacceptable delay

in delivered services. For example, a memory module that is faulty may lead to er-
roneous computation. Durational faults are time-based and can be further classified
as persistent, transient or intermittent faults. Persistent faults remain active unless
the cause for the fault is repaired. A failed disk drive is an example of a persis-
tent fault. Transient faults remain active for a short duration. For example, a noise
spike causes a transient fault that results in garbled data, but transmissions after the
spike subsides remain unaffected. Intermittent faults are faults that become active
periodically. A loose contact on a circuit board will cause an intermittent fault.

In order for a system to be dependable and hence provide good QoS, faults must
be controlled. There are several ways of controlling and dealing with faults, which
include fault avoidance, fault removal, fault evasion and fault tolerance [11].

Fault Avoidance focuses on eliminating faults at the design stage and conse-
quently, the faults do not have to be dealt with later. This technique is especially
effective when faults are known in advance or are uncovered during the design stages.
However, it provides no way of dealing with faults that cannot be corrected at design
stages and that are discovered when the system is deployed and operational.

Fault Removal techniques are used to test and verify the system after it is
designed, but before it becomes completely operational. Fault removal is ineffective

when faults remain hidden. Undetected faults go uncorrected and there is no way to

deal with these faults during operational stages.

Fault Evasion techniques involve observation of the system in order to detect
abnormal behavior. If the observation yields information that suggests that any
component of the system is being subjected to high stress, then measures to reduce
the load on that component should be taken. If, however, deviant behavior is being
exhibited by the system and no obvious reason is visible, then any action that might
compensate for the resulting faults is recommended. Fault evasion does not provide
any guarantees for system safety and integrity. The effectiveness of this technique
depends entirely on the accuracy of observation of the end user, or the effectiveness
of the fault detection system and the evasive maneuvers employed.

Fault Tolerance, on the other hand, ensures that a system is available for use
especially in the presence of faults. Fault tolerance increases the reliability of a system
by trying to deliver the promised services even when the system is experiencing faults.
In the event of multiple faults, services may still be provided, albeit at a degraded
level. This ensures that the system remains operational at all times. Fault-tolerant
capabilities can be viewed as a practical solution that increase reliability, availability,
and consequently dependability of the system. In the absence of faults, the fault-
tolerant mechanism does not interfere with the normal behavior of the system, but

in the presence of faults, it attempts to make the system appear normal to the end

user.
Fault-tolerant systems should be capable of detecting, locating, diagnosing, con-
taining, masking faults, ultimately recovering from faults. Fault detection is the pro-
cess of learning that a fault has occurred. Once fault detection techniques have been
employed, fault location techniques determine the region where the fault occurred.
Fault diagnosis is then employed to determine the reason for the occurred fault, after
which fault containment techniques are used to prevent the fault from propagating
to other regions and thus prevent further faults. Fault masking is a desirable feature
of fault-tolerant systems, which ensures that system services are not affected by the
fault, and that the end user remains completely unaware of the occurrence of the
fault. Finally, fault recovery is the phase where the actual fault repair takes place.
Systems can be classified based on their capability to deal with faults. A fault
detection system can only detect faults [37], a fault diagnosing system can determine
the cause of the fault [13]. A fault-secure system provides an error indication in the
event that a fault occurs and prevents propagation of the fault [23]. This is suited to
systems in which transactions and operations can be retried after the error has been
corrected. A fault masking system, on the other hand, delivers services correctly even
when faults occur and hides the effects of faults from the end user [4]. Fault masking

abilities are especially desirable when faults need to be hidden from applications.

Lastly, a system can be fail-safe, in which case the system deals with a fault by first
attempting to mask it. If that fails, the system is returned to a safe state, so that
catastrophic events are avoided [15]. This might lead to only a fraction of the system’s
capabilities being operational until the faults are corrected, enabling the system to
return to its fault free state.

Fault tolerance is implemented by employing resources that would be unnecessary
in a fault-free system. The following section discusses the use of redundant resources

in fault tolerance.

Fault Tolerance and Redundancy

Fault tolerance is sometimes called redundancy management because of the ex-
tensive use of redundant components in the system [11]. Depending on the kind of
faults addressed, the redundancy used may be spatial, information, or temporal [42].

Spatial (physical) redundancy involves the replication of resources and is com-
monly used to provide fault tolerance in hardware. For instance, the failure of a
hardware component can be masked by using an identical component to perform the
tasks of the failed component. This technique is very effective when a component
experiences a persistent fault or malfunctions and causes computational errors. One

such example of spatial redundancy is Triple Modular Redundancy (TMR) [42]. A

process added to a system to increase its fault tolerant capabilities can also be viewed
as a form of spatial redundancy, as the process would not be required in a fault-free
system. Augmenting a system with additional processes is very effective in provid-
ing system fault tolerance and fault tolerance in software. Self-healing rings [41] use
procedures to automatically re-establish communication after component failures.

Information redundancy implies that extra information is used to detect and
recover from a fault. Parity bits appended to data blocks to enable error detection
could be considered as an instance of information redundancy.

Temporal(time) redundancy deals with transient or periodic faults in an ef-
fective manner [42]. In time redundancy, an operation that is performed but fails is
retried after a time interval. The assumption here is that if an operation is hampered
by a transient fault, repeating it at a time sufficiently past the first try would yield
correct results, since it is highly probable that the fault will not affect both operations.
For example, a temporary spike in noise might render a transmission incoherent, but
if the transmission is retried after an interval, the noise spike would most likely have
subsided and the transmission would be successful. Temporal redundancy is com-
monly used to provide fault tolerance in software. Applications whose state can be
rolled back to the stage before the fault occurred are typically suited to fault tolerance

mechanisms that employ temporal redundancy [2]. Time-out and retry mechanisms

10

used by several communication protocols like Transmission Control Protocol [29] can
also be classified as temporal redundancies.

Depending on the kind of fault tolerance required and the system under consider-
ation, one or many types of redundant resources can be used in conjunction to achieve
fault tolerance. In the following section we outline the necessity of fault tolerance in

routing and the nature of the redundancy required to achieve this fault tolerance.

Fault Tolerance in Routing

Routing is defined as “the process of determining the path taken by data packets
between source and destination” [14]. Routing algorithms can be classified into two
broad categories - global and decentralized [14]. Global routing algorithms require
each router in the network to have complete knowledge of the network topology at all
times. The routing algorithms in such a scheme determine the path to a destination
using this knowledge of the network. On the other hand, routers in decentralized
algorithms possess knowledge of their immediate neighbors only. Neighboring routers
exchange routing information to calculate the path costs to the destinations known
to their neighbors. This process is repeated iteratively until each router calculates

the least cost to all the destinations on the network. Open Shortest Path First

11

(OSPF) [24] is an instance of a global routing algorithm whereas the Routing Infor-
mation Protocol (RIP) [17] is a decentralized routing algorithm.

Existing global and decentralized routing algorithms take a reactive approach to
network component failures. Thus, a router or link failure in the network triggers
recovery measures to reconfigure router information to reflect the change in topology.
However, while the network is re-configuring itself, routing loops could form, leading
to lost or undeliverable packets [22]. This is especially true in RIP, which reacts slowly
to topological changes. Some applications however may be intolerant to such packet
loss. Examples are real-time applications such as process monitoring and control,
data acquisition etc, that place great emphasis on reliability. Consider an assembly
line monitoring system that acquires data regarding the state of the assembly line
process at regular intervals of time. This data is then transmitted to a control center
that monitors the process. Since the state of the system changes with time, the data
acquired at any instant is unique and non-replicable. This implies that data lost dur-
ing transmission is irretrievable. Therefore, time-out and retry mechanisms employed
by end-to-end protocols such as Transmission Control Protocol (TCP) cannot be used
to recover from packet loss. Clearly, these real time applications are unable to sustain
packet-loss and are heavily dependent on the underlying network to provide reliable

packet delivery. Network failures should be transparent to these applications and

12

the services promised by the network should be delivered despite component failures.
This would require network routing to be fault-tolerant.

Fault tolerance in routing will help increase network reliability and provide better
services and is thus a much needed feature. This thesis focuses on providing a fault-

tolerant technique to aid routing and minimize packet loss.

Road Map

Fault tolerance in routing has been an active area of research and several solutions
have been proposed for the same. These solutions include adding with redundant
resources to networks and finding several disjoint and non-disjoint paths between
source and destination, among others. Chapter 2 describes prior work in fault-tolerant
routing and places an emphasis on the algorithms for finding disjoint paths and non-
disjoint paths in a network.

This thesis focuses on providing alternative paths to the primary communication
path between a source and destination. Fault tolerance is provided by computing
multiple paths between source and destination so that the failure of one path does
not disrupt communication. Additional information and processes are required to
implement this fault-tolerant technique. The uniqueness of the thesis lies in the

approach it takes to evaluating the appropriateness of a pair of non-disjoint paths

13

between a source-destination pair. A ’risk’ factor is defined for every pair of paths
between source and destination and this factor denotes the probability that a network
component failure renders both paths invalid and thus tries to serve as a probabilistic
fault-tolerant metric. Chapter 3 details this technique and the simulation used to
evaluate it. The nature and amount of redundancy used to provide the fault tolerance
is also analyzed.

Lastly, chapter 4 summarizes the thesis and suggests further work to be done in

this area.

14

CHAPTER 2

SOLUTIONS FOR ACHIEVING FAULT TOLERANCE
FOR ROUTING SERVICES

Failures at the network level adversely affect applications that rely on network
services for effective performance. Many solutions have been proposed to ensure
recovery of applications after network related failures. We classify these solutions
as reactive or pro-active, based on their approach to dealing with failures. Reactive
solutions initiate recovery measures after the occurrence of a failure, whereas pro-
active solutions take measures to prevent failure when a fault occurs. Fault tolerance
can be viewed as a pro-active approach to failures from this perspective. This chapter
delves into various fault-tolerant schemes that try to prevent network failures from
having a negative impact on application performance.

Some fault-tolerant solutions need to be embedded into the application itself.
Other solutions take existing network services and work to make these services reliable
for the application. Lastly, there have been solutions proposed that advocate fault
tolerance to be integrated into network services as a basic requirement. This chapter

takes a brief look at each of these scenarios.

15

Application Embedded Fault Tolerance

Distributed and client-server applications depend heavily upon network services.
Their implementations build fault tolerance into the application itself and thus enable
the application to independently recover from non-transparent network failures. For
example, online banking systems and distributed file storage are built to provide high
availability while maintaining data integrity and consistency, and their implementa-
tions incorporate the necessary fault tolerance required to achieve these goals. Below,

we briefly outline how such applications try to achieve fault tolerance.

Fault Tolerance in Client-Server Systems

The client-server architecture refers to the relationship between two computer
programs in which the client program makes a service request to the server program,
which fulfills the request [25] . Applications using the client-server architecture across
a network are susceptible to network component failures. For example, consider a
database server that responds to update requests from a client program. If a network
failure causes communication between the server and client to be terminated, the
integrity and consistency of data in the server’s database might be violated. Moreover,
the node on which the server resides could fail, making the server unavailable to the

client. In order to maintain consistency of data in the event of a failure, a rollback

16

and recovery technique in conjunction with message logging is generally used [36].
In addition, to recover from server crashes in a transparent manner and increase
availability of database services, a group of replicated servers may be executed on
different nodes [1]. One of the servers in this group services client requests and is
designated as the primary server, whereas the other servers act as backup. The
primary server periodically updates the backup servers about the state of the system
to maintain database consistency across the group. In the event that the primary
server fails, the application selects one of the backup servers to perform the tasks of
the failed server. In this manner, the client is unaware of any server crashes and the

application provides transparent recovery from failures.

Fault Tolerance in Distributed Systems

In distributed systems, a set of autonomous computers (nodes) linked together
by a network is supported by software that enables the entire set of computers to
operate as a single entity. Applications that operate on distributed systems are gen-
erally unaware of the distributed nature of the underlying services. Therefore, it is
imperative to make underlying node and link failures of the network transparent to
the application.

Fault tolerance in distributed systems is a well-researched domain that can be

17

used to achieve this objective. The most prevalent approach makes use of fault-
tolerant process pairs, where the primary process is provided with a back-up process
performing the same task, but generally on a different node [16]. When a node crash
causes a primary process to fail, the back-up process takes over and resumes execution
from the point where the primary process stopped. As an example, consider Coda,
a distributed file system built for high availability [34]. Coda uses server replication
and stores copies of a file at multiple servers. Thus if one server fails, the file can
be accessed at another server. This is completely invisible to the user who is only
aware of the file and not its storage management. Coda also uses a disconnected
operation technique in the event that no server is available. Files accessed by a client
are cached at the client site. If another client wishes to access these files when a
server is not available, the files are provided from the cached site. When a server
does become available, the modified files are uploaded to the server. This ensures a
limited availability when complete server failure takes place.

Fault-tolerant applications thus ensure that network level failures do not translate
to application failures. However, the design of these applications and their implemen-
tations are made complicated by the inclusion of considerations for fault tolerance. In
order to provide generalized fault tolerance for all applications, solutions have been

developed that take existing network services and work to make these services seem

18

reliable to the applications. Some such solutions are detailed below.

Solutions for Offering Fault Tolerance to Applications

Several protocols and algorithms have been developed with the goal of providing
applications with reliable network services. These protocols bridge the gap between
applications that require reliable services but do not wish to implement fault toler-
ance themselves, and networks that cannot provide the required reliability for these

applications.

Hot Standby Routing Protocol (HSRP)

HSRP is an application level protocol developed by Cisco Systems for the Internet
Protocol (IP) [39]. When a router fails, protocols like Enhanced IGRP and OSPF
converge to allow other routers to take over the functions of the failed router. However
this still does not restore communication for the hosts that had been configured
statically with the IP address of the failed router. Only re-configuration of the default
router address on these hosts restores communication. HSRP eliminates the need for
this manual re-configuration while providing reliable router back up. To facilitate
this, two or more routers use the MAC address and IP network address of a virtual

(non-existent) router. This virtual router represents the group of routers that are

19

meant to backup each other. Each of these routers serves as the default active router
for a network. Hosts on a network are configured with the address of the virtual router
that represents the group in which the default router of this network participates, and
route all their packets to the virtual router. The default router performs the routing
functions for its network. In the event that it fails, one of the other routers in the
group takes over the functions of the failed router and begins to act as the default
active router for this network. HSRP is a very efficient solution as it employs the
services of existing routers to backup a failed router and thereby eliminates the need
for redundant routers. However, HSRP has been developed exclusively for IP and is

thus restricted in its scope of applicability.

Dynamic Routing System (DRS)

DRS is a fault-tolerant pro-active routing algorithm that has been developed
specifically for small networks having not more than 254 hosts [4]. DRS has been
designed for mission-critical applications, and improves fault tolerance by employing
redundant resources for all network components. A pair of links is defined for every
pair of hosts in the network. One link serves as the primary communication channel
while the other acts as a backup in case the primary link fails. A DRS daemon

executes on each host, and continuously polls hosts using ICMP echo requests with

20

the goal of detecting network link failures. If a node cannot be reached due to
failure of both the connecting links, a new route is computed that bypasses the
malfunctioning network links to reach the node. Thus, if link failure is discovered
then the recovery process ensures that a connection to the node is restored before the
need to communicate. Consequently, application performance is not affected. This
is of great importance in mission-critical applications where non-transparent network
failures could imply application failure. However, as already stated, DRS has been
designed for smaller networks and makes use of a completely redundant network. For
larger networks, such a redundancy comes at astronomically high costs. Thus DRS,

is limited in its scope of usability.

Transmission Control Protocol (TCP)

TCP is a transport layer protocol that is designed to provide end-to-end reliable
services for data delivery [29]. TCP makes use of acknowledgements, and time-out
and retry techniques to achieve reliable delivery of data. When TCP transmits a
packet to a destination, it starts a timer to maintain a window of time for receipt
of acknowledgement from the receiver. If the timer expires and no acknowledgement
has been received, TCP assumes that the packet is lost, retransmits the packet, and

restarts the timer. It repeats this operation a predetermined number of times or until

21

an acknowledgement arrives. Thus, TCP tries to shield the application from dealing
with unreliable network services. However, TCP mechanisms of time-out and retry
are not suited to all classes of applications as explained in the example of the process
monitoring system in chapter 1.

Solutions such as HSRP, DRS, and TCP outlined above that provide fault toler-
ance to applications shield applications from network unreliabilities. However, they
do not actually improve network reliability, and consequently in protocols such as
TCP, reliable packet delivery may be provided at the cost of higher network delay.
If network failures are handled at the network layer itself, the overall performance of
network services such as routing can be improved. The following section examines

some solutions to provide fault-tolerant network routing.

Fault Tolerance in Network Routing

Perspectives on fault tolerance in routing have evolved from the days of the initial
ARPANET to the present day Internet. Early routing algorithms were very slow in
reacting to changes in network topology caused by failure of network components [20].
Thus resulted in lost or delayed packets, and consequently degraded routing perfor-
mance. For these algorithms, therefore, quick adaptability to failures was construed

as a fault-tolerant feature [21]. Today, most popular routing algorithms such as OSPF

22

can adapt very well to changes in network topology. Consequently, fault tolerance in
routing is now focused on providing continuous network services and making network
failures transparent to applications.

One of the most popular approaches to fault tolerance in routing determines a set
of multiple paths between source and destination, known as a multipath. A multipath
provides an immediate alternate means of communication in the event of failure of the
primary route between source and destination. If the paths in a multipath have the
least possible cost, then fault tolerance can be provided in conjunction with optimal
routing. The problem of calculating multiple shortest paths for a source-destination

pair is known as the K-shortest paths problem and is summarized below.

The K- Shortest Paths Problem

Listing the K shortest paths (for a given integer K > 1) between a source and
destination in a graph is the known as the K-shortest paths problem [7]. Constraints
can be imposed on this problem by requiring the shortest paths to satisfy conditions
like being loop-free, disjoint, etc. [19]. When no restrictions are considered in the
definition of the path, the problem remains completely unconstrained [19]. Both the
unconstrained and constrained problems have been studied extensively and many

solutions have been proposed [6]. However, since the applicability of the K-shortest

23

paths problem to routing is relevant only if the paths are loopless, we focus solely on
the constrained problem. Additional constraints such as disjointness can be imposed
on a set of loopless paths yielding a disjoint multipath. Both disjoint and non-disjoint

multipaths can be used to provide fault-tolerant routing as outlined below.

Disjoint Multipath Algorithms

Paths in a disjoint multipath may be classified as node-disjoint or link-disjoint.
Two paths between a source-destination pair are said to be node-disjoint if they do
not have any nodes in common excluding the source and the destination. Similarly,

two paths are link-disjoint if they do not have any links in common.

Figure 2.1: Node Disjoint Paths

Consider the set of paths in figure 2.1 with node S as source and node D as the
destination. The path S—I1—I3—D is node disjoint from the path S—I2—I4—D. In
figure 2.2, the paths S—I1—I3—I4—D and S—I2—I3—D are link disjoint. A pair of

24

Figure 2.2: Link Disjoint Paths

node-disjoint paths is also link-disjoint. However, the converse is not necessarily true
as illustrated by the above example.

When a pair of disjoint paths is used for communication where one path acts as
the primary path and the other as a backup, failure of any one path will not disrupt
communication, as the other path remains unaffected. This property makes disjoint
paths very suitable for fault-tolerant routing. Node-disjoint paths are resilient to
both node and link failures whereas link-disjoint paths may be resilient to link-failures
alone. This makes node-disjoint paths preferable to link-disjoint paths for achieving
better fault tolerance. From this point on, with no loss of generality, disjoint paths
will refer to node-disjoint paths unless explicitly stated otherwise.

Several solutions have been proposed to find disjoint paths in a network. One

solution [12] takes a global, distributed approach to finding the K link-disjoint paths

25

from source to destination and requires that all nodes in the network have complete
knowledge of the network topology. The algorithm computes K spanning trees with
the source as the root such that for every vertex, the paths from the vertex to the
root are link disjoint. The algorithm, however, does not attempt to find the shortest
paths.

An algorithm that does calculate the pair of disjoint paths with the least possible
cost from every source to a single destination is presented by Ogier et al. in [27].
In this distributed, asynchronous algorithm, each node is provided with sufficient
information so that it can make routing decisions incrementally to forward packets
over disjoint paths. In the event of topology changes that cause paths to become
invalid, this algorithm converges in a finite amount of time to provide nodes with
information for forwarding packets over a new pair of disjoint paths. The algorithm
has both link-disjoint and node-disjoint versions and has been extended by Chenig et
al. [3] to find the K shortest disjoint paths between source and destination. Another
distributed algorithm to find the shortest node-disjoint paths has been presented by
Sidhu et al. [35]. This algorithm is shown to find more paths than that of Ogier
et al. [27], and also incurs less messaging overhead. It requires the flooding of path
identification information as well as topology related information to various routers

to discover the disjoint paths. Once the paths have been discovered, the algorithm

26

terminates and data packets can be routed along the disjoint paths. Dong et al. [5]
present a distributed algorithm that improves on the above algorithms by eliminating
the need to propagate path identification information and topology related data in
the network. This algorithm forms the basis for this thesis and is explained in chapter
3.

Although disjoint routes provide high resilience to failure, they can incur a great
deal of computational overhead. For many applications, a high degree of resilience is
not warranted if it comes at the cost of heavy overhead. Other classes of applications
place a greater priority on least-cost routing than disjointness of routes. Therefore,
relaxing the disjoint requirement for shortest multipaths yields solutions that are

more suited to such scenarios.

Non-Disjoint Multipath Algorithms

Several algorithms exist to calculate a multipath for a source-destination pair. The
MAximally Disjoint Shortest and Wldest Paths (MADSWIP) algorithm described by
Ogier et al. [26] computes a pair of paths from a source to every destination such that
the paths are as disjoint as possible and either minimize total path cost or maximize
bandwidth. This algorithm is very useful in cases where disjoint paths do not exist

between source and destination. First, a tree (with the source as root) is constructed

27

containing the maximum bandwidth paths from the source to all other nodes. Then,
variables required to construct the disjoint paths are calculated for each node in the
tree, and finally, disjoint paths from the source to all the nodes are computed. This
algorithm also has an application in congestion routing, where traffic is distributed
over two different paths to avoid congestion, packet loss, and delay [40]. However, this
is a centralized algorithm that is an extension to the Surballe and Tarjan centralized
algorithm [38] to find disjoint paths.

An algorithm to compute reliable alternate paths in OSPF was proposed by Pu
et al. [31]. OSPF is a global routing algorithm where every router in the network
has an identical view of the network topology. Each router uses Dijkstra’s algorithm
to construct a minimum spanning tree with itself as the root and thereby finds the
shortest paths to all destinations. Frequent topology changes cause this procedure to
be repeated for each reported failure, thereby degrading the performance of OSPF.
To remedy this, Reliable OSPF (ROSPF) was proposed. ROSPF uses three paths for
communication where one serves as the primary path and the other two as alternate
paths. The algorithm used to compute these paths is based on the logarithmic edge-
weight increment procedure [33]. Once the shortest paths from source to destination
have been calculated, the weights of all the edges in the shortest path are increased by

a large value. This decreases the probability of the same edges being chosen when the

28

shortest path is recalculated, and consequently alternate routes are found. ROSPF
optimizes this procedure to find the shortest paths and also chooses the incremental
value to minimize number of edges shared between the primary and alternate routes.
In addition to calculating multipaths, methods to find the resilience of multipaths to
failure have also been proposed. A method to evaluate the reliability of the alternate
paths found by ROSPF is described by Pu et al. [30]. It first calculates the number of
edges in each path and also calculates the number of edges shared by each path with
the other paths. Using this information, the probability of independent failures of each
path and probability of paths failing simultaneously are calculated. This method takes
into account only link failures but not node failures and therefore does not provide
a complete reliability analysis. However, such an evaluation clearly represents the
resilience of a routing scheme based on multipaths.

Similar work has been conducted by Ganesan et al. [10], where multipath routing
has been used to increase the resilience of a wireless sensor network to node failures.
For each node on the primary path from a source to destination, an alternate path
that does not include that node is found. The set of all such paths for a primary
route forms the multipath. The paper also presents a simulation-based analysis of
the resilience of the multipaths wherein the availability of an alternate path in the

multipath is investigated. For this, each node in the network is caused to fail with

29

a given probability. When a node fails, all the multipaths whose primary route is
affected by the node failure are tested to find if an alternate route is available. The
number of complete failures is recorded, and this represents the resilience of the
multipaths in the network to node failure.

Multipaths have received special attention in wireless ad hoc networks, and several
routing protocols based on multipath routing have been proposed. Ad hoc wireless
networks are a collection of mobile nodes with no central administration used to
operate the network. These networks are characterized by high packet error rates,
and dynamic topology caused by the ability of nodes to enter or leave a network at any
time. Consequently, routing protocols that calculate multiple routes between source
and destination and route packets over these paths simultaneously are able to achieve
better reliability of data transfer and also minimize end-to-end delays, in addition to
achieving fault tolerance in routing. One such multipath routing scheme is the Ad
hoc On-demand Multipath Distance Vector Protocol (AOMDYV) [18]. This protocol
extends an existing Ad hoc On-demand Distance Vector Protocol (AODV) with the
addition of comparatively small overhead. By calculating multiple paths during route
discovery, AOMDYV reduces the need to discover a new path every time a route failure
occurs. In AOMDV, route discovery needs to be initiated only after all the multiple

routes fail, and thus a route failure does not necessarily mean communication failure.

30

In this chapter, several approaches to providing fault tolerance for applications as
well as network services have been examined. One of the algorithms for multipath
routing, proposed by Dong et al. [5] is used in this thesis to develop a new protocol
for fault tolerance in network routing. The following chapter explains the proposed

protocol, along with a risk analysis of the chosen route.

31

CHAPTER 3

THE MULTIPATH FAULT-TOLERANT PROTOCOL
FOR ROUTING

Several approaches to building resilience to network level failures were presented
in the previous chapter. Among them, fault-tolerant routing can be considered to be
the most desirable approach as it mitigates the need for applications to implement
complete fault tolerance within themselves. Applications can instead rely on the
underlying network to provide continuous services, and their implementations can
be streamlined to achieve application service goals and optimizing performance. To
provide fault-tolerant routing, several algorithms to calculate multipaths for source-
destination pairs in a network were presented in Chapter 2. This thesis develops a
new distributed multipath protocol called the Multipath Fault-Tolerant Protocol for
Routing (MFTPR), that operates in conjunction with a routing protocol at the level
of the network layer to increase reliability of routing services. The protocol is based
on a distributed algorithm presented by Dong, Varaiya, and Puri [5] to calculate the
shortest multipath, called the Quasi- Shortest Multipath. Using notation similar to

that in [5], an overview of the algorithm is presented below.

32

Quasi-Shortest Multipath (QSMP)

Consider a network represented as a weighted undirected graph G = {V, E, ¢}
where V is the set of nodes or vertices in the network, £ C V x V is the set of
weighted edges or links in the network, and cost function ¢ : F — R, assigns positive
costs to the edges. Additionally, we assume that no node in the graph has any self-
edges. Lastly, all paths are assumed to be simple (loop-free) paths.

A path p from source s to destination d is represented as p =< s, vy, Vo, ..., Vg, d >
where v; to vi, are the k intermediate nodes from s to d, and links (s, v1), (vg,d) and
(vi,vi41) (1 < i < k) belong to the set E. The node vy that is visited just before
reaching the destination is called the predecessor node of path p. The cost of p is
represented as ¢(p) = c(s,v1) + X, c(vi, viq1) + ¢(vg, d), i.e., the sum of the costs of
all the links in the path. When p is the shortest path from s to d, no other path
from s to d has smaller cost. A multipath from s to d is represented as P,y and is a
collection of simple paths from s to d. When all the paths in Py; are node-disjoint
from one another, the multipath is a node-disjoint multipath.

A quasi-shortest path p =< s,71,79,...,7;,d > is a path, where the subset p’ =<
r1,79,...,75,d > is the shortest path from r; to d but p may not be the shortest

path from s to d. To illustrate this concept, consider the graph shown in figure 3.1.

33

The shortest path from node A to node D (indicated by the dotted lines) is p =<
A, E, D >, whereas the shortest path from node B to node D (indicated by the dashed
lines) is ¢ =< B,C, D >. Thepathr =< A, B,C, D > from A to D is a quasi-shortest
path as it contains the shortest path from B to D, but is not the shortest path from A
to D. A multipath Ps; = {p1,p2, ..., px} is a Quasi Shortest Multipath (QSMP) if the
shortest path ¢ from s to d is in Py, and every path p € Pyy(p # q) is a quasi-shortest
path. When all the paths in a quasi-shortest multipath are disjoint from each other,

it is known as a Quasi Disjoint Multipath (QDMP).

Figure 3.1: Quasi-Shortest Path

The discovery of quasi-shortest paths requires information about the predecessor
of a path. This information is assumed to be computed by the routing protocol
employed by the network, and stored in a node’s routing table. To illustrate the
discovery of alternate paths, consider the graph shown in figure 3.2.

34

Figure 3.2: Graph of a Network

Determining the shortest path from B to F

Routing Table for Node B
using predecessor information

Dest |Next Hop Pred Cost

A A B 1
Step Pred Path
C C B 1
1:BtoF | D {B sy D, F}
D C 2
A A 2 22BtoD | C {B,.....,C,D,F}
E c D 3 3BtoC | B {B,C,D,F}

Figure 3.3: Calculating the Quasi-Shortest Path

35

As seen from the graph, the shortest path from A to F is < A, E, F >. Let us
assume that A wishes to find alternate routes to destination F' that are disjoint from
its primary (shortest) path. When the routing protocol causes the two neighbors A
and B to exchange routing tables, node A can trace the complete shortest path from
B to F using the predecessor information in B’s routing table as shown in figure 3.3.
This path is checked to see if A is present in it and if so, node A realizes that B
cannot offer a quasi-shortest path. However, if A is not present in the traced path,
then node A has discovered a quasi-shortest path to destination F. In this case, the
quasi-shortest path from A to F' is computed to be < A, B,C, D, F >. In order to
check for disjointness, A simply traces its shortest path to F' using its own routing
table and compares the two routes to find if any nodes are in common. In this manner,
when two neighbors exchange routing tables, each node discovers if its neighbor can
offer any quasi-shortest paths, and can test for disjoint paths.

The primary advantage of this algorithm is that it is completely localized and does
not require topology information to calculate alternate routes. The procedure to route
a packet along a quasi-shortest path is also simple, as only the source needs to decide
the neighbor to which it wishes to forward the packet. Once the packet has been
forwarded, it follows the shortest route between the neighbor and the destination,

thereby requiring no change in the routing decision beyond the source.

36

— ™ Shortest Path
-~~~ Alternate Path

Figure 3.4: Possible Alternate Path from Source W to Destination 7

Although QSMP allows a node to discover alternate disjoint paths to a destination,
it cannot be used in situations where a node lies on the shortest path from its neighbor
to a destination. As illustrated by the graph in figure 3.4, the primary(shortest) path
from W to Z is < W, Z >. When W tries to find the quasi-shortest path through the
node X, it receives a negative reply as the shortest path from X to Z passes through
W. If link (W, Z) fails, W cannot communicate with Z instantly even though the
route < W, X, Y, Z > exists.

Another drawback of QSMP is that it does not address issues related to main-
tenance of backup routes and propagation of route failures. Once a backup route
to a destination has been discovered, it is necessary to have a mechanism that can
select the backup route for routing in the event of failure of the primary route. Also,

the route discovery mechanism must be invoked to find a new alternate route to the

37

destination.

This thesis proposes to extend the above QSMP algorithm to build a protocol
that will find more alternate routes than QSMP. Another advantage of using the
protocol is that the fault-tolerant mechanism becomes independent of the routing
algorithm. Therefore, the QSMP algorithm can be applied to all routing platforms
and does not require platform-dependent implementations. The thesis also provides
for maintenance of backup routes through the use of various procedures and messages.
In addition, it presents metrics to evaluate the alternate routes in terms of disjointness
from the main route, and measures the resilience of the discovered multipath to failure.

The following section describes the protocol in detail.

The Multipath Fault-Tolerant Protocol for Routing (MFTPR)

The Multipath Fault-Tolerant Protocol for Routing (MFTPR) seeks to improve
the route discovery mechanism of the QSMP algorithm and provide for maintenance of
backup routes. For this, it is assumed that each node in the network has two tables: a
main routing table and a backup routing table that it uses for routing and forwarding
purposes. We also assume that predecessor information required by QSMP exists in
the main routing table and is provided by the routing algorithm. Furthermore, we

assume that the routing algorithm is a distributed localized algorithm like RIP so as

38

to assume the availability of the least amount of topology information.

MFTPR has also been developed with the goal of separating the route discovery
mechanism from the route selection criteria. Consequently, each node can implement
route selection depending on the criteria that suit it best. In this section, route dis-
covery mechanisms and route maintenance procedures for this protocol are described.
This is followed by a discussion of multipath evaluation techniques and path selection

criteria.

Route Discovery Mechanisms

MFTPR discovers alternate paths when two neighbors exchange their routing
tables by following the QSMP algorithm. However, several routing protocols such
as RIP can be configured for triggered updates so that neighbors are sent update
messages only when there is a change in the routing database, thus making the
updates asynchronous. This means that a node does not know when the next update
from its neighbors will take place. In such a case, if a node wishes to calculate alternate
paths, it has to request the appropriate neighbor for its routing table. This is done
using an UPDATE REQUEST message. The node that receives an UPDATE REQUEST replies
by sending its routing table in an UPDATE REPLY message. The message overhead

incurred due to the UPDATE REQUEST message is equivalent to the size of the routing

39

table. Since the size of a routing table is proportional to the number of nodes in
the network i.e., V, the overhead complexity of this update message is equivalent to
o).

However, when a node wishes to calculate alternate paths for just a single destina-
tion, it is inefficient for the neighbors to send their entire routing tables. In this case,
the source sends a PATH_REQUEST message to the neighbor. This message asks a neigh-
bor for its shortest path to a particular destination. On receiving a PATH REQUEST
message, the neighbor traces its shortest path to the required destination and checks
to see if the source lies on this path. If the path contains the source, then it sends
the source a negative reply in the PATH REPLY message. Otherwise, it sends the path
back to the source. Thus, every path that the source receives is a quasi-shortest path.
The overhead incurred due to this message is proportional to the length of the path
and is equivalent to O(V), although usually much less.

In addition to discovering quasi-shortest paths from a source to a destination,
MFTPR also allows a node to examine all possible quasi-shortest paths of its neigh-
bors to the destination. This allows for the discovery of routes that would otherwise
not be discovered by the QSMP algorithm as illustrated by the following example
(figure 3.5).

Assume that node A wishes to discover all paths to C' that are disjoint from

40

----o Shortest Path
--=--t= Quasi-shortest Path

rrrrrrrr > Quasi-via path

Figure 3.5: Alternate Paths from A to C

its primary route. A routes to C' using the primary route p = {A, E,C}. When
trying to find alternate paths that are disjoint from p, A only discovers the quasi-
shortest path ¢ =< A, B,C > and does not discover the route r =< A, B, D,C >,
even though 7 is completely disjoint from p and can be used as an alternate path to
C. This is because path discovery by the QSMP algorithm is limited to finding the
primary paths of the neighbors to the required destinations. In order to discover r
in MFTPR, node A must request all its neighbors for their possible quasi-shortest
paths using a QUASI VIA PATH REQUEST. When a node receives this request, it sends
a PATH_REQUEST to all its neighbors. On receiving their shortest paths, it calculates
all the quasi-shortest paths that do not contain the source node and sends these

paths back to the source. Thus, on receiving a QUASI VIA PATH REQUEST from A,

41

node B sends not only its shortest path but also the paths ' =< B, D,C > and
s =< B, E,C > back to A. This allows A to discover the path r. We define paths
like 7 to be quasi-via paths, and a multipath that contains the primary path p, quasi-
shortest path ¢ and the quasi-via path r is called a Quasi Multipath. Figure 3.6
indicates the messaging that takes place during discovery of quasi-via paths from

node A to destination C.

\ — p» QUASI_VIA_PATH_REQUEST
)//7 e ——I>= PATH_REQUEST

. ¥
\)
(¢

Figure 3.6: Requests Generated by Node A to Find Quasi-Via Paths to Destination
C

For the graph of figure 3.4, the alternate route < W, XY, Z > is discovered when
node W sends a QUASI VIA PATH REQUEST to its neighbor X, and X sends back its
quasi-shortest path p =< XY, Z >. Therefore, failure of link (W, Z) does not disrupt

communication between nodes W and Z.

42

Thus, quasi-via paths of a node are essentially the quasi-shortest paths of its
neighbors. The inclusion of quasi-via paths in the route discovery procedure allows a
node to find more alternate routes to a destination and thereby provides more options
for routing. The size of a quasi-via path is bounded by the number of nodes V. The
messaging overhead incurred by quasi-via path messages depends upon the number
of neighbors m of the source’s neighbor, and its complexity is O(V x m).

It might be argued that to reduce overhead while calculating the quasi-via path,
it is enough for a node to request for its neighbor’s quasi-shortest path to a given
destination. However, each node may select a quasi-shortest path based on its own
requirements for an alternate route such as disjointness from the main route, shortest
cost, etc. Therefore, using a neighbor’s chosen quasi-shortest path to obtain a quasi-
via path makes the obtained path dependent upon the path selection criteria of its
neighbor. To prevent route discovery mechanisms from being influenced by route
selection policies of neighboring nodes, every node tries to discover all its quasi-via
paths before choosing one as an alternate path.

The disadvantage of using quasi-via paths for alternate routing is that the choice
of path taken by a packet is no longer limited to the source node as the path is not the
next-hop neighbor’s primary path to a destination. Thus, the neighbor needs to know

the quasi-shortest path on which to forward the packet. This can be achieved using

43

source routing wherein the neighbor is informed of the next hop to forward the data
packet. However, source routing requires extra processing at the neighboring router,
which may not always be acceptable. Therefore, MFTPR initiates route discovery
for quasi-via paths only when alternate routes that use quasi-shortest paths are not
existent or not viable.

Once the various routes have been discovered, a node selects the paths it wishes
to use as alternate routes and makes entries for these in the backup routing table.

The backup routing table is updated and maintained by MFTPR as explained below.

Route Maintenance

QSMP always calculates backup routes when two neighbors exchange routing
tables. However, when routing algorithms try to adapt to failures and changes in net-
work topology, routing loops may result and it could be a while before the algorithm
converges to correct these looping paths. For this period of time, the backup paths
computed by QSMP are subject to loops too. To avoid loops, in the event of failure
of a route, MFTPR propagates information about invalid backup routes. In order
to illustrate the message propagation, we consider the following graph of figure 3.7.
The primary routing table for node A is shown in figure 3.8 along with its backup

routing table, which is obtained using MFTPR. The backup routes are selected to be

44

completely disjoint from the primary route with the least possible cost. The backup
routes for nodes B, F, G, and H are quasi-shortest paths, while those for nodes C,

D, and E are quasi-via paths.

Figure 3.7: Maintenance of Backup Routes

Assume that link (A, B) fails as shown in the figure. On failure of the link (A, B),
node A looks into its main routing table and determines all the primary routes that are
invalidated because of loss of the link (A, B). It computes a list of the destinations of
these primary routes, [, = B, D, G. The backup routes in node A’s backup table that

have node B as their next hop are also invalidated. This invalidates backup routes

45

Main Routing Table of Node A Back-up Table

Dest Next Hop Pred Cost Dest NextHop | Cost Via
B B A 1 B H 2 -
C C A 1 C B 6 D
D B B 2 D C 5 E
E Cc Cc 2 E B 5 D
F c E 3 F B 4 -
G B D 3 G c 4 -
H H A 1 H B 2 j

Figure 3.8: Main and Backup Routing Tables for Node A

for the destinations C, F, F, and H. Then, valid backup routes to the affected
destinations B, D, and G are used for routing. The list [affected by failure of
primary routes is then broadcast to all the neighbors of node A. For this purpose an
INVALID ROUTE message is defined. For A the INVALID ROUTE message contains the
list 1 4.

When a neighbor such as C receives an INVALID ROUTE message from A, it follows
the same procedure as A to determine the list of primary routes [that were affected
by failure of A’s primary route to destinations in list [4. It looks into its backup
routing table and invalidates all the entries in the backup table that contain A as the
next hop and have the via field empty and all those paths that have A as the enxt
hop and B as the via entry. It then, initiates the use of valid backup routes to the

affected destinations. Lastly, it sends an INVALID ROUTE message to all its neighbors.

46

This message contains the list of destinations sent by A, i.e., [, as well as its own list
of destinations with failed primary routes (I¢).

When any neighbor k receives this message containing [4, it invalidates all the
Via routes through A and follows the same procedure as above, and computes the list
lr. It then sends the INVALID ROUTE message to its neighbors containing lists [and
I, and discards the list [4. Thus destination lists are propagated twice before being
discarded. This ensures that information about the failed quasi-via routes are also
propagated in addition to the information about failed primary and quasi-shortest
paths.

MFTPR aims to propagate news about failed routes as fast as possible so that
nodes can immediately try to use backup routes where available. Since this mes-
sage propagation is independent of the routing protocol’s convergence characteristics,
MFTPR achieves a degree of autonomy with respect to maintaining and invalidating
backup routes. However, MFTPR fails to provide a means of communication when
both the primary and back-up routes to a destination fail. In such a case, MFTPR
waits for the routing algorithm to converge and find a new primary route to the
destination.

An alternate route to a destination that is not completely disjoint from the primary

may fail simultaneously along with the primary route. Therefore, some means must

47

be provided to evaluate the resilience of a pair of paths to failure so that this can be
taken into account when a node selects an alternate path to a destination. A selected

pair of paths can be evaluated for resilience as discussed below.

Route Selection Policies and Resilience to Failures

MFTPR allows each node to choose alternate paths to destinations based on
the node’s requirements for cost of the path, disjointness, etc. If a node chooses an
alternate path to a destination that is completely disjoint from the primary route,
it is assured of a means of communication to the destination even if a node failure
causes the primary path to fail. However, when the paths chosen are not completely
disjoint from one another, the failure of even one of the non-disjoint components in
these paths can cause both paths to fail at the same time.

In order to evaluate the non-disjointness of two paths, we define a metric called
the Commonality. To measure commonality of two paths, consider a pair of paths
p1 and po for a given source-destination pair. Let [; and Iy be the lengths of p;
and po respectively, where we define the length of a path to equal to the number of
intermediate nodes between the source and destination. Assuming k£ nodes to be in

common between p; and p,, we define a commonality factor between p; and p, as

48

k
- " %1
Chips hth—F) x 100

Chp,p, Tepresents the percentage of the two paths p; and p, that are in common. A
commonality of zero implies that p; and p, are completely disjoint, and commonality
of 100 implies that p; and p, are the same path. As the commonality between p; and
ps increases from zero to 100, the number of network components in common between
them increases, thus increasing the likelihood of simultaneous failure of both paths.

In order to choose a pair of paths, a node can set a threshold for commonality,
and require that no pair of chosen paths have a commonality factor greater than this
threshold. The threshold, in reality, represents the extent to which a node is willing
to compromise on disjointness for a pair of paths, and thereby resilience to failures,
to acquire alternate routes or satisfy other criteria such as minimum cost etc. Thus
using commonality, a tradeoff can be achieved between path cost and the resilience
of the pair of paths to failure.

Although commonality does indicate the likelihood of failure of a pair of paths,
it does not quantify the resilience of a pair of non-disjoint paths to failure. In order

to measure the resilience, we define a risk factor R,,,, as the probability that paths

49

p1 and po fail simultaneously. This risk is dependent on the probability of failure
of any one or more of the k£ nodes that are in common between paths p; and ps.
Each of these k£ nodes is assumed to have failure probability f;, 1 < ¢ < k. It is
assumed that the probability function for f has an exponential distribution. By the
memoryless property of the exponential distribution function [32], the lifetime of a
node is independent of the time at which the probability of failure is being calculated.
We also assume that the failure of any node is an independent event.

When k nodes are common between the paths p; and ps, the failure of any one
of these nodes can cause both paths to fail. Thus the probability that source can
communicate with the destination is equivalent to the probability that none of these
k nodes fail.

Therefore,

P(successful communication) = ((1 — f1) x (1 — fo) x .. x (1 = fx))

Risk is defined as the probability of failure of communication and hence,

Ry p, = 1— P(successful communication)

50

= 1-(0-fi) x (1= f2) x . x (1= fi))

A risk of zero signifies completely disjoint paths. When p; = p,, the main and
backup route are the same, and hence the risk indicates the probability of failure of
the path itself. A low risk implies greater resilience and as the risk increases, the
resilience of the pair of paths to failure decreases. When a pair of paths has a high
commonality factor, the risk measures the actual probability of failure of this pair of
paths. Thus if a node wishes to have a risk of at most x for a pair of paths, it can
select any pair of paths with complete disregard to their commonality as long as the
risk for this pair of paths satisfies z. A tradeoff can be achieved between resilience and
cost of the paths by selecting an alternate path that has the least cost and satisfies
x. From a node’s perspective, risk denotes the probability that communication will
fail.

Although risk represents a realistic measure of failure, its computation requires
each node to have knowledge of the failure probabilities of all the nodes in a network.
This may not be possible in very large networks. In the event that a risk computation
cannot be facilitated, commonality can be used as a criterion for an indirect evaluation
of the resilience of a pair of paths. Using risk and commonality, nodes can choose

to achieve a tradeoff between resilience and other factors such as costs, delays, etc.

51

MFTPR provides modules for calculating these factors and can be configured to
choose backup routes that satisfy the fault tolerance requirements of the node.
In the following section, we present a simulation model of MFTPR and evaluate

its performance.

Simulation and Experiments

To measure the improvement of MFTPR’s route discovery scheme over that of
QSMP, the protocol was simulated using an object-oriented event-based simulator
engine (NRLSIM). In order to implement the protocol, the network is modeled so as
to facilitate fault tolerance wherein each node in the network requires n — 1 number of
alternate paths to all destinations in addition to the primary route. Thus the network
system is viewed as a Fault Tolerance-n (FT-n) system.

The network is simulated using a randomized graph generation algorithm, and the
resulting graph is guaranteed to be connected. At any instant of time, the network
is assumed to have a particular level of fault tolerance, where the level is equivalent
to the average number of routes in the network computed over all source-destination
pairs. The initial fault tolerance level of the system is F'T -1, where only the primary

route between source and destination exists. The primary route may be provided

52

by a distance vector routing algorithm, which implies that each node in the net-
work contains only local topological information. The simulation actually initializes
routing tables at the nodes using Dijkstra’s shortest path algorithm to emulate the
distance vector algorithm. The routing tables are generated to be consistent with
those obtained using the distance vector routing algorithm.

Once the routing databases have been initialized, MFTPR messages are used to
calculate quasi-shortest paths and quasi-via paths from every source to every desti-
nation. For propagation of MFTPR messages, the propagation delay is proportional
to the cost of the link between the sender and receiver of the message. A unit of
link delay is assumed to 0.003 milliseconds and the propagation delay of any link is
equivalent to the product of link cost and the unit of link delay (0.003 ms.). The pro-
cessing delay of the node is assumed to be constant and ignored in this calculation.
Moreover, the message sent over any link is assumed never to be lost, or damaged.
It is also assumed that no topology changes take place during route discovery. The

MFTPR algorithm was tested for networks of varying size and densities.

Experiments and Analysis

The first set of experiments determines the improvement in the number of alter-

nate routes discovered by using quasi-via paths as compared to quasi-shortest paths.

53

Each node is the network is required to find n — 1 alternate routes to each desti-
nation with a maximum commonality of ¢% with the primary route. Initially, all
the nodes in the network find only the quasi-shortest paths that can be as used as
alternate routes to destinations. If a node is unable to find the required number of
alternate paths to a destination, then it initiates the discovery of quasi-via paths to
that destination. At the end of the simulation, the number of nodes that are able to
find T'% of extra alternate paths using quasi-via paths is computed, where T'% is the
threshold for determining the improvement of MFTPR over QSMP. The threshold is
the minimum percentage increase of number of alternate quasi-via paths as compared
to quasi-shortest paths. The experiments were conducted on graphs of different sizes
by varying the number of nodes from 35 to 65, in steps of 10. For each graph size,
the average degree was varied from 3 to 9 in steps of unity and the commonality was
varied from 0% to 30%. The threshold for testing the performance improvement of
MFTPR was varied from 30% to 50%. The percentage of the nodes in the graph that
experienced the threshold amount of improvement has been plotted against varying
densities for a given graph size.

We can see in the graph of Figure 3.9, as the density of a 35 node graph increases
from 4 to 6, there is an increase in the percentage of nodes in the graph that are able

to find 50% more alternate routes that are disjoint from the primary route, using

o4

35

Percer‘n Improvemént

30 |+ E
o
=
0
(o4
9]
3 25| B
o
a
=
L
=
S 20 — E
o
GJ
£
O)
>
<
g 15[E
€
@
=
[
o

10 B

5 Il Il Il Il Il Il Il

2 3 4 5 6 7 8 9 10

Density/ Degree of Network

Figure 3.9: 35 Nodes, Commonality 0%, Threshold 50%

50

T T
Percent Improvement

45 g

40 g

35 B

Percent Improvement of MFTPR over QSMP

5 Il Il Il Il Il Il
3 4 5 6 7 8 9 10
Density/ Degree of Network

Figure 3.10: 45 Nodes, Commonality 0% , Threshold 40%

95

40

T T
Percent Improvement

35 B

25 B

20 B

Percent Improvement of MFTPR over QSMP

10 - B

2 3 4 5 6 7 8 9 10
Density/ Degree of Network

Figure 3.11: 65 Nodes, Commonality 0%, Threshold 50%

30

T T
Percent Improvement

25 - B

20 — g

10 B

Percent Improvement of MFTPR over QSMP

2 3 4 5 6 7 8 9 10
Density/ Degree of Network

Figure 3.12: 65 Nodes, Commonality 30%, Threshold 40%

56

35

T T
Percent Improvement

30 B
25 B
20 B

15 F g

I AERENERERERER

2 3 4 5 6 7 8 9 10
Density/ Degree of Network

Percent Improvement of MFTPR over QSMP

Figure 3.13: Nodes 45, Commonality 30%, Threshold 30%

quasi-via paths. However, as the density of the graph increases, the nodes are able to
find the required number of alternate routes using quasi-shortest paths itself and do
not need to use quasi-via paths to find more routes. A 35 node graph of degree 3 can
be classified as a sparse graph. The reason that quasi-via paths are unable to bring a
marked improvement in the discovery of alternate routes can be attributed to the fact
that most of the network does not contain alternate paths that are disjoint from the
main route. Larger networks that need to find alternate routes that are completely
disjoint from the primary route exhibit similar behavior. This leads us to conclude
that quasi-via paths are more effective when used in a graph that is not dense or

sparse, to find alternate paths that are disjoint from the main route. However, if

57

the alternate paths do not have to be disjoint from the main route, then quasi-via
paths do contribute to finding more alternate routes than quasi-via paths even in
sparse graphs as seen in the graph of Figure 3.13. In the same graph we can also see
that networks with higher density are hardly aided by quasi-via paths to find more
alternate routes than quasi-shortest paths. This can be explained by considering the
commonality factor in addition to the density of the network. As the density of a
graph increases, the number of available paths increase. Quasi-shortest paths are
able to discover a large number of these paths. Further, relaxing the requirement for
disjoint routes yields the required routes using quasi-shortest paths themselves. As a
result, nodes do not try to discover quasi-via paths. Thus, we conclude that quasi-via
paths are more effective in discovering alternate routes that are not disjoint from the
main route in networks that are not dense.

To clearly understand the effect of commonality on the ability of MFTPR to find
more routes, a second set of experiments was conducted that tested the performance
of MFTPR with varying the maximum commonality allowed for a pair paths.

We see in the graph of Figure 3.14, that increasing the allowed commonality for
routes aids MFTPR in finding more paths and thereby, the fault-tolerance level of
the system is increased. It is seen that a commonality of 10% or less has little or no

effect in improving the level of fault tolerance of the system. This can be explained

58

Average Fault Tolerance of the System

Average Fault Tolerance Level of the System

1.9

1.8

1.7

1.6

15

1.4

1.9

18

1.7

1.6

15

14

13

12

11

Greater F‘T —
/—~\+/+777%/F\;
0 10 20 30 40 50 60 70 80

Commonality
Figure 3.14: Nodes 35, Degree 4
Greater F‘T —
//77
l - -

0 10 20 30 40 50 60 70 80

Commonality

Figure 3.15: Nodes 55, Degree 4

59

25

T T
Greater F'I;;‘i,,

21 f / i

1.9 4H/ e

1.8 ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80

Commonality

Average Fault Tolerance of the System

Figure 3.16: Nodes 65, Degree 5

by considering the effect of commonality on a pair of relatively short paths. For
example, if the number of intermediate nodes of the a pair of paths p; and p, were
3 and 5 respectively, then even a single node in common for this pair of paths yields
a commonality of 12.5% and so they do not satisfy the commonality requirement.
For longer pairs of paths, a commonality of 10% still translates to nearly complete
disjoint routes. Thus the increase in commonality from 0% to 10% does very little to
aid MFTPR to find more routes.

However, when the commonality is greater than 10% both shorter and longer
pairs of paths satisfy the criteria for commonality. Thus MFTPR is able to find more

routes that satisfy the commonality requirement and consequently the level of fault

60

tolerance of the network is increases. However, after commonality increases beyond
a particular value, MFTPR is unable to greatly enhance the fault tolerance of the
network system. This is because the longer paths in the network contain too many
nodes and are unable to satisfy most commonality requirements. For instance, in the
extreme case, the longest path in a network visits each and every node in the network
before reaching the destination. Such a path has a 100% commonality with all paths
in the network. For long paths in the network, it is difficult to find routes which visit
nodes that are not in common with the long path. Thus MFTPR reaches a saturation
point beyond which it is unable to find eligible alternate routes in the network even
if the allowed commonality increases. In the graphs of Figure 3.14 and Figure 3.16,
this saturation point is reached at a commonality of 50%. Thus MFTPR is very
effective in finding alternate routes to destinations when the commonality factor is
greater than 10% and lesser than the saturation point for the particular network.
However,increased commonality indicates a higher likelihood of simultaneous failure
of the pair of paths. Consequently, we advocate the use of lower values of commonality,
i.e., between 10% and 30% to achieve a good tradeoff between resilience and more
alternate paths.

We can conclude from the above results that the performance of MFTPR can be

optimized by choosing the appropriate commonality depending on the density of the

61

network.

62

CHAPTER 4

SUMMARY AND FUTURE WORK

An increase in the size of networks along with the advent of the Internet has
resulted in a large number of applications that use the Internet for communication
and other services. However, the Internet does not provide any service quality guar-
antees as it currently uses a best-effort model for routing. Hence, it cannot provide
any guarantees applications that have stringent requirements such as reliable data
delivery. Reliability can be considered a QoS parameter, and increasing reliability of
data delivery can help improve the QoS offered to applications.

Reliability of data delivery in network routing can be improved by incorporating
fault tolerance into the network, thereby increasing its resilience. One of the fault-
tolerant approaches for routing is to use a multipath scheme wherein a set of multiple
routes are calculated between a given source and destination. One of these routes can
be used as the primary route and the others as backup. Upon failure of the primary
path, one of the backup paths can be used for routing, thereby ensuring uninterrupted

communication.

63

Based on the multipath scheme, this thesis has proposed the use of a fault tol-
erant protocol, called the Multipath Fault Tolerant Protocol for Routing (MFTPR),
to improve the reliability of network routing services. The protocol is designed to
work in conjunction with the routing protocol employed by the network and performs
functions related to providing fault tolerance in routing. It is based on a multipath
discovery algorithm, the Quasi-Shortest Multipath (QSMP) [5]. MFTPR extends the
QSMP algorithm and improves on its route discovery scheme while retaining the lo-
calized nature of the algorithm. MFTPR tries to find alternate routes using QSMP’s
route discovery scheme, wherein a node calculates its neighbors’ shortest paths to a
destination and tests these routes for use as an alternate route. An alternate route
resulting from this calculation is called the quasi-shortest path. In the event that
quasi-shortest paths are not found suitable, MFTPR allows the node to request its
neighbors for all their possible quasi-shortest routes. The quasi-shortest paths of a
node’s neighbors to a destination are the node’s quasi-via paths to that destination.
The discovery of quasi-via paths requires extra messaging and additional router pro-
cessing while forwarding a packet along the quasi-via route. However, the very nature
of fault tolerance implies the use of redundancy and overhead. Since MFTPR’s pri-

mary goal is to provide alternate routes for communication, this extra messaging

64

overhead is justifiable when a node is unable to find a required alternate route us-
ing quasi-shortest paths. Simulation of MFTPR has shown a marked increase in the
number of alternate routes as compared to those found by QSMP alone.

MFTPR also provides for maintenance of backup routes in the event of failure of
network components. When a failure occurs, MFTPR propagates information about
the effect of this failure on the backup routes of neighbors. The propagation of failure
is done independently of the routing protocol employed by the network. The basis
for this separation lies in the fact that routing loops can be formed while network
re-configuration takes place through the routing protocol. Thus, any alternate routes
that are calculated or assumed to be available by examining the data in the routing
tables while the routing protocol is trying to converge, may themselves have loops or
may no longer exist due to the failure. By dealing with network failures and providing
for checking the validity of alternate routes, MFTPR ensures that propagation of
route failure takes place immediately, thereby eliminating looping or routing using
incorrect information. This route maintenance comes at an extra cost but is well
justified as it provides the most recent information for a route, and the valid backup
routes computed are loop free paths. In this process, if a node discovers that both
its primary and backup routes to a destination have failed, it waits for the routing

protocol to converge in order to communicate. The route maintenance however, does

65

not try to gather information for backup routes or initiate any route discovery for
the time required for the routing protocol to converge, and thereby does not incur
extra messaging when the network is being flooded with exchange of routing tables.
The compartmentalization of route maintenance also has the advantage that route
maintenance is independent of the routing protocol being used in the network.

MFTPR separates the route discovery mechanism for backup routes from being
influenced by the criteria that decide the choice of an alternate route over other
available alternate routes. For this reason, no node is forced to use its neighbor’s
chosen alternate path. Each node is allowed to discover all the routes to a destination
that can be found using MFTPR, and the node decides which route(s) it wishes to
use for a backup path to a destination.

The choice of alternate routes is generally governed by the need for resilience
to failure of the primary route. Thus, paths that are disjoint from the main route
are generally preferred. However, disjoint paths may not always be available and
moreover, the available disjoint paths may have path costs that are much higher as
compared to the cost associated with the primary route. Some nodes may require
alternate paths to have lower costs and may be willing to tradeoff some resilience in
return for minimized costs. In such cases, non-disjoint paths can be used. However,

while using a pair of non-disjoint paths, it is important to evaluate their resilience

66

to each other’s failures. This thesis proposes a pair of metrics that can be used to
measure the possibility of failure of a pair of paths simultaneously.

The first of the proposed pair of metrics is called the commonality and is a measure
of the non-disjointness of a pair of paths. A non-zero commonality signifies that the
two paths have network components in common. As commonality increases, the
likelihood that the single failed network component leads to simultaneous failure of
both paths increases. Thus commonality is an indication of the resilience of a pair of
paths to simultaneous failure. When a node wishes to select an alternate path from
a number of possible paths, it can choose the path that yields the least commonality
when compared to the main route. The second proposed metric is known as risk and
it measures the probability of simultaneous failure of a pair of paths from a source
to destination. Since risk is calculated using the failure probabilities of each of the
individual nodes that are in common for the pair of path, it can be viewed as a more
direct measure of the resilience of a pair of paths. As the risk factor for the pair of
paths increases, the resilience of this pair to simultaneous failure decreases. However,
the computation of risk requires knowledge of the failure probabilities of the common
nodes of the two paths. If this knowledge is not available, commonality can instead
be used to estimate resilience. MFTPR can be configured to use either of the metrics

to facilitate route selection at the various nodes.

67

In summary, MFTPR tries to find more alternate routes than the QSMP route
discovery algorithm. It also manages information regarding backup routes and tries
to inform other nodes about failed backup routes. Lastly, it separates the route
selection policy from the route discovery mechanism, allowing each node to choose

paths independent of any influence from its neighbors.

Future Work

Since, MFTPR extends the QSMP algorithm, it assumes the availability of in-
formation required by QSMP to calculate alternate routes. However, the routing
protocol would need to be augmented with procedures to calculate the required infor-
mation. In keeping with the principle of separating fault tolerant mechanisms from
routing procedures, it is suggested that a module to calculate the required information
be incorporated into MFTPR.

The applicability of multipath routing is not limited to fault tolerance alone. Mul-
tipath routing is widely used to provide load-balancing for traffic in communication
networks and wireless ad hoc networks. A possible area of future work in MFTPR
would be to sensitize this protocol to dynamic changes in traffic patterns so that
alternate paths can be chosen to avoid congested areas of the network and thereby

minimize end-to-end delays.

68

This thesis has also presented means to analyze the resilience of a pair of non-
disjoint paths. This analysis could be extended to measure the resilience to failure
of a multipath containing more than 2 paths. Theoretical and empirical models for

such analysis is a possible area of future work.

69

1]

BIBLIOGRAPHY

B. Kemme and G. Alonso. Database replication based on group communication,
February 1998. Technical report, Department of Computer Science, ETH Zurich,

No. 289.

B. V. Caenegem, W. V. Parys, F. D. Turck, and P. M. Demeester. Dimensioning
survivable WDM networks. IEEE Journal on Selected Areas in Communications,

16:1146-1157, 1998.

C. Chenig, S. P. R. Kumar, and J. J. Garcia-Luna-Aceves. A distributed algo-
rithm for finding the k disjoint paths of minimum total length. In 28th Annual

Allerton Conference on Communication, Control, and Computing, October 1990.

A. Chowdhury, O. Frieder, E. Burger, D. Grossman, and K. Makki. Dy-
namic Routing System (DRS): fault tolerance in network routing. Com-
puter Networks (Amsterdam, Netherlands), 31(1-2):89-99, 1999. cite-

seer.nj.nec.com/chowdhury99dynamic.html.

Xuanming Dong, Pravin Varaiya, and Anuj Puri. Quasi-shortest Paths for Mul-
tipath Routing in Packet-switched Networks. In Proceedings of the International

Conference on Internet Computing (IC 2002), pages 125-131, June 2002.

70

[6]

[10]

[11]

David Eppstein. Bibliography on algorithms for k shortest paths:

http://liinwww.ira.uka.de/bibliography /Theory/k-path.html.

David Eppstein. Finding the k shortest paths. In Proc. 35th IEEE Sym-
posium on Foundations of Computer Science, pages 154-165, 1994. cite-

seer.nj.nec.com/eppstein97finding. html.

Paul Ferguson and Geoff Huston. Quality of Service: Delivering QoS on the
Internet and in Corporate Networks. John Wiley & Sons, Inc., New York, NY,

1998.

Paul Ferguson and Geoff Huston. Quality of Service in the Internet: Fact, Fiction

or Compromise? In INET’98, Switzerland, Geneva, July 1998.

Deepak Ganesan, Ramesh Govindan, Scott Shenker, and Deborah Estrin.
Highly-resilient, energy-efficient multipath routing in wireless sensor networks.
In In Mobile Computing and Communications Review (MC2R), volume 1, 2002.

citeseer.nj.nec.com/ganesan0lhighlyresilient.html.

W. Heimerdinger and C.Weinstock. A Conceptual Framework for System fault
Tolerance. Technical report, CMU /SEI-92-TR33 ESC-TR-92-033, October 1992.

http://www.sei.cmu.edu/pub/documents/92.reports/pdf/tr33.92.pdf.

71

[12]

[15]

[16]

Alon Itai and Michael Rodeh. The multi-tree approach to reliability in dis-
tributed networks. In Proc. 25th IEEE Symposium on Foundations of Computer

Science, pages 137-147, 1984.

Irene Katzela and Mischa Schwartz. Schemes for fault identification in communi-
cation networks. IEEETNWKG: IEEE/ACM Transactions on Networking IEEE
Communications Society, IEEE Computer Society and the ACM with its Special

Interest Group on Data Communication (SIGCOMM), ACM Press, 3, 1995.

James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down

Approach Featuring the Internet. Addison Wesley, 2000.

Juan Leon, Allan L. Fisher, and Peter Steenkiste. Fail-safe PVM: A Portable
Package for Distributed Programming with Transparent Recovery. Technical

Report CMU-CS-93-124, Feb 93.

David Lomet and Gerhard Weikum. Efficient transparent application recovery
in client-server information systems. In Proceedings of the 1998 ACM SIGMOD
international conference on Management of data, pages 460-471. ACM Press,

1998.

72

[17]

[19]

[20]

[21]

[22]

[23]

[24]

G. Malkin. RFC 2453: RIP version 2, November 1998.

ftp://ftp.internic.net/rfc/rfc1388.txt.

M. Marina and S. Das. On-demand Multipath Distance Vector Routing in Ad
Hoc Networks. In Proceedings of IEEE International Conference on Network Pro-

tocols (ICNP), pages 14-23, 2001. citeseer.nj.nec.com/marina0ldemand.html.

E. Martins, M. Pascoal, and J. Santos. The k shortest paths problem, June 1998.

Research Report, CISUC.

J. M. McQuillan, I. Richer, and E.Rosen. Arpanet routing study - final report.

BBN Report No. 3641, September 1977.

Philip M. Merlin and Adrian Segall. A failsafe distributed routing algorithm.

IEEE Transactions on Communications, 27(9):1280-1287, September 1979.

Microsoft Corp. http://www.microsoft.com.

M.Nicolaidis, S.Manich, and J.Figueras. Achieving Fault Secureness in Parity
Prediction Arithmetic Operators : General Conditions and Implementation. In

Proceedings of the European Design and Test Conference, pages 186-193, 1996.

J. Moy. RFC 2328: OSPF version 2, April 1998.
ftp://ftp.internic.net/rfc/rfc2178.txt.

73

[25]

[26]

28]

[29]

[30]

[31]

The TechTarget Network. http://whatis.techtarget.com.

R. Ogier, B. Bellur, and N. Taft-Plotkin. An efficient algorithm for computing
shortest and widest maximally disjoint paths. Technical report, SRI International

Technical Report, 1998.

Richard G. Ogier, Vlad Rutenburg, and Nachum Shacham. Distributed algo-
rithms for computing shortest pairs of disjoint paths. IFEE Transactions on

Information Theory, 39(2):443-455, March 1993.

The QoS Forum White Paper. The Need for QoS, 1999. Stardust.com Inc.

J. Postel. RFC 793: Transmission control protocol, September 1981.

ftp://ftp.internic.net/rfc/rfc793.txt.

Jian Pu, Eric Manning, Gholamali, and C. Shoja. Routing reliability analysis of
partially disjoint paths. In IEEE Pacific Rim Conference on Communications,
Computers and Signal processing (PACRIM’ 01), volume 1, pages 79-82, August

2001.

Jian Pu, Eric Manning, Gholamali C. Shoja, and Anand Srinivasan. A new

algorithm to compute alternate paths in reliable ospf (rospf). In Proceedings of

74

[32]

[35]

[36]

PDPTA 2001 (the 2001 International Conference on Parallel and Distributed

Processing Techniques and Applications), pages 299-304, June 2001.

Sheldon Ross. Introduction to Probability models, Fourth FEdition. Academic

Press, San Diego, California, 1989.

N. M. Rouphail, S. Ranjithan, W. El Dessouki, T. Smith, and E. D. Brill Jr. A
decision support system for dynamic pre-trip route planning. In Fourth Inter-

national Conference on Application of Advanced Technologies in Transportation,

pages 325-329, June 1995.

M. Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki, Ellen H.
Siegel, and David C. Steere. Coda: A highly available file system for a distributed
workstation environment. [EEE Transactions on Computers, 39(4):447-459,

1990. citeseer.nj.nec.com/satyanarayanan90coda.html.

Deepinder Sidhu, Raj Nair, and Shukri Abdallah. Finding disjoint paths in
networks. In Proceedings of the conference on Communications architecture &

protocols, pages 43-51. ACM Press, 1991.

Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System

Conceptsi, Fourth Edition. McGraw Hill, 2001.

75

[37]

[39]

[40]

Paul Stelling, Cheryl DeMatteis, lan T. Foster, Carl Kesselman, Craig A. Lee,
and Gregor von Laszewski. A fault detection service for wide area distributed

computations. Cluster Computing, 2(2):117-128, 1999.

J. W. Surballe and R. E. Tarjan. A quick method for finding shortest pairs of

disjoint paths. networks, 14:325-336, 1984.

Cisco Systems. http://www.cisco.com.

Taft-Plotkin, B. Bellur, and R. Ogler. Qualityof-service routing using maximally
disjoint paths. In the Seventh International Workshop on Quality of Service,

June 1999.

Andrew S. Tanenbaum. Computer Networks, Third Edition. Prentice-Hall, 1996.

Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems : Principles

and Paradigms. Pearson Education, 2001.

76

