

BENCHMARK-BASED REPLACEMENT PAGE (BBPR) STRATEGY:

A NEW WEB CACHE PAGE REPLACEMENT STRATEGY

Wei He

Problem in Lieu of Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

May 2003

APPROVED:

Armin Mikler, Major Professor
Robert Brazile, Committee Member
Krishna Kavi, Chair of the Department of

Computer Science
C. Neal Tate, Dean of the Robert B. Toulouse

School of Graduate Studies

He, Wei. Benchmark-based Page Replacement (BBPR) Strategy: A New Web Cache Page

Replacement Strategy. Master of Science (Computer Science), May 2003, 50 pp., 5 tables, 25

figures, references, 15 titles.

World Wide Web caching is widely used through today's Internet. When correctly deployed, Web

caching systems can lead to significant bandwidth savings, network load reduction, server load

balancing, and higher content availability. A document replacement algorithm that can lower

retrieval latency and yield high hit ratio is the key to the effectiveness of proxy caches. More than

twenty cache algorithms have been employed in academic studies and in corporate communities as

well. But there are some drawbacks in the existing replacement algorithms. To overcome these

shortcomings, we developed a new page replacement strategy named as Benchmark-Based Page

Replacement (BBPR) strategy, in which a HTTP benchmark is used as a tool to evaluate the current

network load and the server load. By our simulation model, the BBPR strategy shows better

performance than the LRU (Least Recently Used) method, which is the most commonly used

algorithm. The tradeoff is a reduced hit ratio. Slow pages benefit from BBPR.

c© Copyright 2003

by

Wei He

ii

ACKNOWLEDGEMENTS

A couple of people I would like to acknowledge here. I wish to thank my advisor-

Dr. Armin R. Mikler, who introduced the idea of this paper and directed me from

the very beginning to the completion. Dr. Mikler gave me constant guidance and

encouragement throughout the paper. His patience and kindness deeply impressed

me. I would like to thank my wife, Guili Sun, for spending a lot of time looking for

literature, checking the grammar and even helping me to execute the program. For

everyone in the NRL (Network Research Lab), I simply say ”Thanks”! They are very

willing to give me valuable advice in our group meeting. I appreciate the Computer

Science Department, who gave me financial support for two years. Without that I

could not imagine I would finish my degree. Last, I would like to say ”thank you” to

my family and all my friends. I wish all the people have a happy life.

iii

CONTENTS

ACKNOWLEDGEMENTS iii

1 Introduction 1

1.1 World Wide Web(WWW) and HyperText Transport Protocol(HTTP) 1

1.2 Proxy Server and Cache . 3

1.3 Need for a Page Replacement Algorithm 6

2 Background 9

2.1 Total Latency . 9

2.2 Review of Existing Cache Management Algorithms 11

2.2.1 Traditional Replacement Policies and their Direct Extensions . 12

2.2.2 Key-based Replacement Policies 13

2.2.3 Function-based Replacement Policies 14

3 Methodology of BBPR 20

3.1 Partitioning the Cache . 21

3.2 Finding the Latency Threshold . 22

3.3 Simulation . 27

4 Result Analysis 32

4.1 Total Requests vs. Hit Ratio . 32

4.2 Average Total Latency . 36

4.3 Detailed Investigation for BBPR . 38

iv

4.3.1 Distribution of Total Latency 38

4.3.2 Incrementing the Latency Threshold 39

4.3.3 Slow Pages Benefit from BBPR 42

4.3.4 Overhead Analysis . 43

5 Summary and Conclusions 45

5.1 Summary of BBPR . 45

5.2 Limitations and Future Work . 47

BIBLIOGRAPHY 49

v

LIST OF TABLES

4.1 URL Files . 32

4.2 5M–Distribution of Total Latency . 37

4.3 6M–Distribution of Total Latency . 38

4.4 Page Replacement in Case 1(α=1.25) and Case 2(α=1.0) 41

4.5 Comparison of Number of Requests Completed in 1 Hour and the Hit

Ratio in Case 1(α=1.25) and Case 2 (α = 1.0) 41

vi

LIST OF FIGURES

1.1 Client and Server with HTTP . 2

1.2 Proxy Server (Proxy server works as an intermediary between the browsers

and the remote web servers by sitting behind the organization’s network) 4

1.3 Cache Works (When the requested files are in the cache, the cached files

will return to the clients directly without fetching through the external

network) . 5

2.1 HTTP File Transfer . 9

3.1 Cache Partition (Cache is divided into two parts by setting replaceable

or nonreplaceable flag. Then when the replacement occurs, it only needs

to select file(s) randomly from the pages with replaceable flag so that

iteration time is saved.) . 21

3.2 System Organization . 22

3.3 Flow Chart of the BBPR Strategy . 23

3.4 Simulation Systems . 28

4.1 1M–Pages Visited in 1 Hour . 33

4.2 1M–Hit Ratio . 33

4.3 2M–Pages Visited in 1 Hour . 34

4.4 2M–Hit Ratio . 34

4.5 3M–Pages Visited in 1 Hour . 35

4.6 3M–Hit Ratio . 35

vii

4.7 4M–Pages Visited in 1 Hour . 35

4.8 4M–Hit Ratio . 35

4.9 5M–Pages Visited in 1 Hour . 36

4.10 5M–Hit Ratio . 36

4.11 5M–Comparison of Average Total Latency 37

4.12 6M–Number of Pages Replaced in 1 Hour by Case 1 and Case 2 . . . 40

4.13 6M slow–Pages Visited in 1 Hour . 42

4.14 6M fast–Pages Visited in 1 Hour . 42

4.15 6M slow–Hit Ratio . 43

4.16 6M fast–Hit Ratio . 43

4.17 Cumulative Overhead of Executing the Benchmark(“6M.in”, Cache

Size = 3MB) . 44

viii

CHAPTER 1

Introduction

1.1 World Wide Web(WWW) and HyperText Transport Protocol(HTTP)

The World Wide Web(WWW) is a large distributed information system that provides

access to shared data objects. The WWW has been experiencing exponential growth

since its origin in 1989. The number of static Web pages increases approximately

15% per month. About 7.3 million new pages are added on the WWW every day.

There are about 32 million domains registered worldwide with about 22 million .com

among them[1]. It is expected that the number of Internet users will continue to grow

strongly in the next five years even during the economic depression. The number of

worldwide Internet users will be 673 million at the end of 2002. By year-end 2005

the number of worldwide Internet users will surpass 1 billion.[2]

HyperText Transport Protocol (HTTP) requests dominates the Internet traffic

up to 90%[3]. HTTP is an application-level protocol with the lightness and speed

necessary for distributed, collaborative, hypermedia information systems. It is a

generic, stateless, object-oriented protocol that can be used for many tasks, such as

name servers, and distributed object management systems, through extension of its

request methods (commands). A feature of HTTP is to represent the typies of data,

which allows systems to be built independently of the data being transferred. HTTP

has been in use by the World Wide Web global information initiative since 1990.

1

HTTP is implemented both at client’s side and server’s side (See Figure 1.1).

Client Server

HTTP

WEB

au,mpeg gif, jpeg html,doc

GET URL HTTP/1.0

HTTP

HTTP/1.0 Document
follows

Figure 1.1: Client and Server with HTTP

A client is an application program that establishes connection for the purpose

of sending requests. A server is an application program that accepts connections

in order to service requests by sending back responses. Client and server can talk

to each other by exchanging HTTP messages. HTTP defines the structure of these

messages and how the client and server exchange the messages. There are two types

of HTTP messages, request messages and response messages. Request messages sent

from the client to the server tell the server what kind of the documents the client

wants and the response messages from the server to the client return the information,

which is either documents the client wants, or error messages. A Web page (also

called a document) consists of objects. An object is simply a file, such as an HTML

file, or a GIF image. There are six basic HTTP document types: HTML, images

2

(e.g. gif), sound (e.g. au and wav), video (e.g. mpeg), dynamic (e.g. cgi), and

formatted (e.g. ps, dvi). HTML is the initial for HyperText Markup Language.

It is the language for publishing hypertext on the WWW. In HTTP 1.0, there are

three different request messages: GET, POST and HEAD. These three commands

are used to fetch the corresponding web content. The HTTP GET command is used

to transfer pages, images, and other content viewed through a Web browser. Similar

to GET, an HTTP HEAD request asks to retrieve only the HTTP response header

for a document but not the document itself. POST passes form data to the server for

use as input to some CGI program. The great majority of HTTP request messages

use the GET method.

1.2 Proxy Server and Cache

Although the Internet backbone capacity increases 60% per year, today’s Internet

users still have to endure the consequences of two major problems: the network

congestion and the server overload. Efforts to improve the performance of the Internet

went back as far as its origin. New strategies must be developed to solve these

problems, otherwise the WWW would become too congested and the webpages could

not be retrieved as needed.

The time of accessing a document from the client to the server is referred as to

retrieval time or total latency. One way to reduce the total latencies, the network

congestion, and the servers’ load is to store the copies of the Web documents in a

proxy server. A proxy server serves as an intermediary between the web browsers and

3

the servers in the World Wide Web. Figure 1.2 shows that the proxy server acts as a

client for requesting documents from a remote server.

Client

Proxy
Server

Remote
Server

Cache

Caching

Response

Request

HTTP HTTP

GET URL HTTP/1.0

HTTP/1.0
Document follows

some.host

Figure 1.2: Proxy Server (Proxy server works as an intermediary between the browsers
and the remote web servers by sitting behind the organization’s network)

The primary use of a proxy server is to allow internal clients access to the Internet

from behind a firewall. It intercepts all requests to the real server to see if it can fulfill

the requests by itself. Otherwise, it forwards the request to the real server. Hence,

it acts as both a server and a client on behalf of different requests. The proxy server

employs specific caching strategies with the goal to optimize access to frequently used

pages.

Figure 1.3 shows that it acts as a server for responding the request from the

browser. Caching refers to the storing of copies of documents and other objects by

4

a proxy server, so that this document is readily available for others who request to

retrieve. The cache is a program’s local store of response messages and the subsystem

that controls its message storage, retrieval, and deletion. Regular HTML files are

usually cacheable. Caching may require a valid Last-Modified header, and may not

cache objects greater than a certain size or subject to other restrictions. A cache stores

cacheable responses in order to reduce the response time and network bandwidth

consumption on future, equivalent requests. HTML documents generated by CGI

scripts can be made cacheable or not by generating an Expires header, though some

proxy server may not cache URLs with “cgi-bin” or a query string. Documents

requiring authorization should not normally be cached.

Client

Cache

HTTP

GET URL HTTP/1.0

HTTP/1.0
Document follows

some.host

Server

Remote
Server

Proxy

Figure 1.3: Cache Works (When the requested files are in the cache, the cached files
will return to the clients directly without fetching through the external network)

5

Proxy caching could improve Internet performance in three ways. First, caching

attempts to reduce the total latency associated with retrieving Web documents. La-

tency can be reduced because the proxy cache is located much closer to the client

than the remote server. Second, caching can lower the network traffic. The network

traffic can be reduced as documents are retrieved from the cache rather than from the

network. Finally, proxy caching can reduce the servers’ load since cache hits do not

need to involve the content provider(server). It may also lower transit costs for access

providers. Therefore, the network traffic, average latency of fetching Web pages and

the load on busy web servers would be reduced.

On the other hand, there are some disadvantages of web caching. First, stale pages

could be serviced due to the lack of proper updating. Second, latency may increase

in case of a cache miss (the case when the page is not in the cache). Third, a single

proxy cache may constitute a bottleneck. Fourth, some websites prefer to have a large

volume of requests, but a proxy cache will reduce a hit rate to the original servers.

Nevertheless, the advantages are deemed more significant than the drawbacks, and

today, web caching is widely used through the Internet.

1.3 Need for a Page Replacement Algorithm

Because of the limited size of a cache, it may be necessary to remove/reduce some

old documents in the cache when the cache is full or above a limit (generally, some

free space is left in case that the cache is overwhelmed with pages). A document

replacement strategy is needed at this time. A document replacement algorithm that

6

can yield high hit ratio is the key to the effectiveness of proxy caches. Since the

replacement algorithm decides which documents are cached and which documents

are replaced, it affects the cache hits of future requests. Many cache algorithms have

been proposed in recent studies, which attempt to minimize cost such as average

latency and network load and at the meantime maximize the hit ratio and the byte

hit ratio. The hit ratio is defined as the percentage of requests that can be served

from previously cached document copies. The byte hit ratio is the percentage of the

number of bytes sent by the cache divided by the total number of bytes sent to its

clients.

In this paper we introduce a new algorithm to minimize the average latency by

using a HTTP benchmark combined with a simple and most commonly used re-

placement algorithm, namely Least Recently Used (LRU). This new strategy is a

Benchmark-Based Page Replacement Strategy (BBPR). A benchmark is a publicly

defined procedure designed to compare the performance of systems. A HTTP(Web)

benchmark is basically a mechanism to generate a controlled stream of Web requests,

with standard metrics to report the results. Generally, a HTTP benchmark consists of

a set of client programs that emit a stream of HTTP requests, and measure the system

response. Usually response time and throughput are measured. Simply speaking, for

a certain system, a HTTP benchmark can be used as a tool to evaluate the workload

of the network and the server by measuring the response time (latency) of HTTP

request. Here we will use this result of benchmark combined with a known strategy

(LRU) to reduce the average latency. The BBPR methodology is to be discussed in

7

more detail in Chapter 3.

The remainder of the paper is organized as follows. First, we will review the

existing replacement algorithms and compare and contrast them. Second, we will

explain our new strategy and the implementation in detail . Third, we will discuss

the results of our experiment and show the difference from the common used LRU

method. Finally, we will conclude with a summary of our proposed replacement

strategy.

8

CHAPTER 2

Background

2.1 Total Latency

When HTTP is used to request a file from a server, it works in the manner shown

in Figure 2.1. TCP (Transmit Control Protocol) is the protocol suite upon which

Time
at client

Time
at sever

Initiate HTTP
connection

Request
object

received

Last byte
received

First byte

τα

Data transferτδ + τε

τβ

Figure 2.1: HTTP File Transfer

the Internet is based. The client sends a TCP connection request to the server. A

9

TCP connection is established with a 3-way handshake. The client sends a TCP SYN

segment to the server. The server sends a TCP SYN segment and acknowledgement

to the client. The client sends an acknowledgement back to the server. The client’s

acknowledgement is combined with the HTTP get file request. When the request is

received at the server, the server begins sending the file to the client. When the entire

file has been received, the transaction is complete. In another way, we can say that

the access time to remote documents (in this paper we refer to as retrieval time or

total latency) is the sum of following parts:

* tα: the time for the client request to reach the server

* tβ: the time at the server to process the request

* tδ: the time for the response to reach the client from the server

* tε: the time at the client to process the response

Times tα, tβ and tε depend on the hardware platforms, operating systems both at the

client and at the server. Time tβ also depends on the server’s software and the load

at the server. Times tα and tδ depend on locality (propagation delay) and network

situation (bandwidth, network workload and routers’ condition etc). Times tβ, tδ and

tε also depend on the size of the document asked by the client.

The proxy server is generally located on the organization’s (like company and

campus) network, so the access time to the pages which are in the cache could be

much reduced because of the near locality. The primary goal of proxy-based cache

is to reduce the amount of retrieval time by reducing the latency caused by network

10

and web server load that are external to the organization. The choice of what kind

of web pages should be cached is very important to the performance of proxy server.

Obviously, the pages with high probability of being visited by the clients are preferred

to be kept. Also, the pages should be kept such that the average latency of retrieving

web pages could be minimized. Hence, we need to not only consider the frequency of

being visited, but also take into account the cost of each cached page.

2.2 Review of Existing Cache Management Algorithms

As we mentioned above, the key factor of the effectiveness of proxy caches is a doc-

ument replacement algorithm that attempts to minimize various costs, such as hit

ratio, byte hit ratio, and average latency of retrieving files. Some replacement al-

gorithms are developed from virtual memory paging replacement as we will discuss

in the first part of this section. There are three primary differences between Web

caching and conventional paging problem. First, the size of Web cache and the size

of Web pages are both variable. Second, because of their different localities it takes

a different amount of time to download different web pages even if they are of the

same size. Third, the users who access the proxy cache vary from a big range, but

there are a few programmed resources that will use the virtual memory paging.

The size and latency/cost of the pages in the cache make web caching more com-

plicated than traditional virtual memory paging replacement. The variable document

sizes in web caching make it much more difficult to determine an optimal replace-

ment algorithm. If a sequence of requests is given to uniform size blocks of memory,

11

the optimal performance is achieved by removing the next farthest request in the fu-

ture. But for variable-size case, determining the optimal replacement has been proven

NP-hard[4].

The latency/cost consideration is even more complicated than the size because

the cost for each page is more dynamic. There are many factors which can effect the

cost, such as size of the page, locality, network load and the servers’ load. Therefore,

the algorithms designed to reduce the cost would be more complex.

The algorithms designed for page replacement can be classified into the following

three categories as suggested in [5] and [6]:

1. Traditional replacement policies and their direct extensions

2. Key-based replacement policies

3. Function-based replacement policies

In this paper we will review totally nineteen different replacement algorithms designed

to reduce the retrieval time in recent studies.

2.2.1 Traditional Replacement Policies and their Direct Extensions

The policies in this category are well-known cache replacement strategies and are

developed from virtual memory page replacement.

* First In First Out (FIFO): removes the page first stored in the cache. The pages

in the cache are associated with time. The earliest cached page will be removed

when the cache is full or the size is greater than a threshold.

12

* Least Recently Used (LRU): removes the least recently accessed page when the

replacement occurs. It is the most common strategy used in today’s proxy cache

and is very straightforward.

* Least Frequently Used (LFU): removes the least frequently accessed page. It is

associated with the frequency of each page in the cache accessed by the client.

The often accessed pages will remain available to be accessed later.

* Pitkow/Recker[7] removes pages in LRU order, but if all pages are accessed

within the same day, the page with the largest size is removed.

The advantage of the policies in this category is its simplicity. The disadvantages of

these policies are that the above policies fail to take into account object sizes except

the last one and they do not consider the cost of each page when caching it.

2.2.2 Key-based Replacement Policies

The replacement strategies in this category remove the pages in the cache based on

a primary key, breaking ties on secondary key, tertiary key, and so on.

* Size: the pages in the cache are removed in order of size, with the largest one

removed first. The cached Web pages with the same size are somehow rare, but

when it happens, ties are broken by using LRU policy or by random selection.

* LRU-MIN: a variant of LRU that is designed in favor of smaller sized objects

so as to minimize the number of pages replaced. Given the size of the incoming

page is S. When the replacement occurs, the pages in the cache with at least

13

size S which are least recently used will be removed. If there are no pages with

size at least S, the pages with size S/2 will be considered, then pages of size at

least S/4, and so on until there is enough free cache space. This algorithm is

also named as Log(Size)+LRU, because largest log(size) is considered.

* LRU-Threshold: it is the same as LRU, but pages larger than a certain threshold

size are never cached. It avoids storing large pages in the cache so that more

pages could be accessed from the cache.

* Hyper-G: a refinement of LFU, break ties using the recency of last use and size.

* Lowest Latency First: minimizes the average latency of retrieving files by re-

moving the document with the lowest download latency first.

The factors affect the overall performance of the replacement algorithms include lo-

cality, size and latency/cost associated with the documents in the cache. The policies

in this category attempt to combine these factors to achieve the best result. But

in the real Web these policies may not always be ideal, because the prioritization

proposed above could not always reflect the reality.

2.2.3 Function-based Replacement Policies

The replacement policies in this category employ a potential cost function derived

from different factors such as time since last access, entry time of the object in the

cache, transfer time cost, object expiration time and so on.

14

* GreedyDual[8]: The name GreedyDual comes from the technique used to prove

that this entire range of algorithms is optimal according to its competitive ratio.

The competitive ratio is essentially the maximum ratio of the algorithm cost to

the optimal offline algorithm’s cost over all possible request sequences[9]. This

algorithm is a range of algorithms which include a generalization of LRU and a

generalization of FIFO. The algorithm associates a value, H, with each cached

page p. At the time the page is cached, H is set as the cost of bringing the page

into the cache. When a replacement occurs, the page with the lowest H value,

minH , is replaced, and then all pages reduce their H values by minH . If a page

is accessed, its H value is restored as its cost. Thus, the H values of recently

used pages retain a larger portion of the original cost than those of pages that

have not been accessed for a long time. In this way, the algorithm combine the

locality and cost of cached pages.

* GreedyDual-Size(GD-Size)[4]: a variation on GreedyDual algorithm. It at-

tempts to combine locality, size and latency/cost concerns effectively to achieve

the best overall performance. GD-Size algorithm extends the GD algorithm by

setting H to cost/size upon an access to a document, where cost is the cost of

bringing the document, and size is the size of the document in bytes.

* Hierarchical GreedyDual(Hierarchical GD): does page placement and replace-

ment cooperatively in a hierarchy.

15

* Hybrid[10]: it sorts cached pages by a utility function and removes the one has

the least utility value to reduce the total latency. The utility value depends on

the following parameters: cθ, the time to connect with server s, bθ the bandwidth

to server s, np, the number of times p has been requested since it was stored

into the cache, and zp the size (in bytes) of document p. The function is defined

as:

f(cθ, bθ) =
(cθ +

Wb

bθ
)(np)

Wθ

zp

whereWb andWn are constants that set the relative importance of the variables

cθ and bθ respectively. Estimates for cθ and bθ are based on the times to retrieve

documents from server s in the recent past.

* Lowest Relative Value (LRV)[11]: it also sorts cached pages by a utility function

and removes the page which has the lowest value. The value is calculated by

the cost and size of each document in the cache. The calculation is based on

extensive empirical analysis of trace data. LRV’s utility functions also consider

locality, cost and size of a document.

* Size-Adjusted LRU (SLRU): orders the pages by the ratio of cost to size and

chooses pages with the best cost-to-size ratio to be replaced first. The best here

means the smallest. The pages with high cost-to-size ratio will benefit from this

algorithm.

* Server-assisted Scheme[12]: removes the pages which are the least likely to be

accessed in the near future. The proxy can also perform pre-fetching based

16

on accurate estimates of future request to avoid burdening the server and the

network with extra transmissions. The hints (in groups called volumes included

in the server response messages are used as tunable parameters to calculate

the future access probabilities of the cached pages. When replacement occurs,

the pages with the lowest future access probabilities will be removed first. A

greedy algorithm is used to construct the volumes, but it incurs a significant

computational overhead. However, another new algorithm named as pairwise

volumes is a faster alternative.

* Least Normalized Cost Replacement (LCN-R) [13]: maximizes the delay-savings

ratio which is a performance metric used to generalized the hit ratio metric by

explicitly considering cache miss cost. The delay-savings ratio(DSR) is defined

as:

DSR =
Sumi(di ∗ hi)

Sumi(di ∗ ri)

where di is the average delay to fetch document Di to cache, ri is the total

number of references to Di and hi is the number of references to Di which were

satisfied from the cache. LNC-R maintains the following statistics with each

cache document Di: li - average rate of reference to document Di, si - size of

document Di, di - delay to fetch document Di to cache. In order to maximize

the DSR, the above statistics are combined into one performance metric, called

profit, defined as profit(Di) = (li ∗ di)/si. LNC-R selects for replacement the

least profitable documents.

17

* Least Normalized Cost W3 Replacement (LCN-R-W3): an extension of LCN-R.

This algorithm bases the estimate of average reference rate not only on the past

reference pattern as LNC-R, but also on the size of the document.

* Bolot/Hoschka Replacement[14]: it uses a weighted rational function based on

the retrieval time associated with each document in the cache to determine

which document should be replaced first. One weight function is suggested as:

W (ti, Si, rtti, ttli) = (w1 ∗ rtti+ w2 ∗ Si)/ttli+ (w3 + w4)/ti

where w1, w2, w3, and w4 are constants, ti is the time since the document was

last referenced, Si is the size of the document, rtti is the time it took to retrieve

the document, ttli is the time to live of the document(i.e., the expected time

until the document will be updated at the remote site, which is also the time

interval until the cached document becomes stale).

The improvement of the policies in this category is that they are aware of the

cost of retrieving pages and consider the factors which determine the cost. Some of

them update the factors dynamically, some of them not. The disadvantage of this

category is their extensive parameterization, which introduces uncertainty about their

performance across the Internet in the real world.

Although there are many different cache replacement algorithms existing, feasible

choices for actual Web proxy cache narrowed down to LRU, SIZE, Hybrid, and LRV.

Some studies [15] [7] say that SIZE outperforms LFU, LRU-threshold, SIZE+LRU,

18

Hyper-G and Pitkow/Recker. Some [11], however, says LRU performs better than

SIZE. Studies in [4] show LFU performs worse than LRU in most cases.

In summary, even with the many algorithms existing, there is no conclusive agree-

ment of which replacement strategy is the best, because the performance of different

policies depends highly on the characteristics of WWW’s traffic. No known policy

can outperform others for all Internet access patterns. Today, most proxy systems

still use some form of the Least-Recently-Used(LRU) replacement algorithm.

We introduce a new cache replacement algorithm to minimize the average latency

by using a HTTP benchmark. The benchmark is used to measure and evaluate the

network load and how busy the server is and then the information will be given to

arrange the cached pages. This new algorithm considers the transfer latency/cost and

the network load and server load to achieve the best overall performance. In next

chapter we will discuss this new algorithm in more detail.

19

CHAPTER 3

Methodology of BBPR

There are three main shortcomings for the existing replacement algorithms. First, the

most commonly used traditional methods consider the frequency of request, some-

times the size of the documents, but they do not take retrieval time into account. Be-

cause the purpose of proxy cache is to minimize the average retrieval time of fetching

the Web pages, ignoring retrieval time may not result in the expected improvement,

especially in cases where retrieval time changes continuously. Second, most strate-

gies that depend on the cost either have too many parameters or use static formulas.

Strong parameter dependency may not reflect accurately the real situation and the

static formulas can not capture the change of the cost dynamically. The cost/latency

of fetching a Web page is not a constant. It may change over time due to the traf-

fic on network and the load of the server. For instance, the total latency of fetching

pages from business websites is generally longer at daytime than at night. In contrast,

the latency for some oversea webpages may be less at daytime than at night due to

the time difference. Therefore, the strategies that order the documents in the cache

according to the static patterns may not be optimal. Third, almost every proposed

algorithm sorts the documents in the cache in a sequence according to a certain value

such as the last access time in LRU and the frequency in LFU. When replacements

occur they will remove the page with least or largest value. This is time-consuming

when there are many documents in the cache because the selection procedure has to

20

iterate through the whole document list to find the lowest or highest valued page. We

developed a new page replacement strategy to overcome these drawbacks. The name

of the new strategy is Benchmark-Based Page Replacement Strategy (BBPR).

3.1 Partitioning the Cache

To reduce the iteration time of finding a page to remove, we separate the documents

in the cache into two parts by assigning a flag called replaceable/non-replaceable to

each individual page (see Figure 3.1). When the cache is full, we will randomly choose

N R

N=Non−replaceable, R=Replaceable

Figure 3.1: Cache Partition (Cache is divided into two parts by setting replaceable or
nonreplaceable flag. Then when the replacement occurs, it only needs to select file(s)
randomly from the pages with replaceable flag so that iteration time is saved.)

one or more pages to be removed only from the pages that have the replaceable flag

set. The pages in the non-replaceable portion will be kept in the cache. Because of

random choice we do not need to go through the entire list to compare the key value.

The flag will be set as replaceable if the total latency of this page is smaller than a cost

threshold which we will see next. Otherwise, the flag will be set to non-replaceable.

21

3.2 Finding the Latency Threshold

The threshold for total latency, which is decided by an HTTP benchmark, is the key

point to our algorithm. The threshold is the limit value that if the total latency of

fetching a Web page is lower than it, a flag will be set as replaceable and this page

will be put into the replaceable portion in the cache. The optimal threshold we are

looking for is the value which could reflect the workload of the network and the servers

precisely and make the cache work most effectively. We use an HTTP benchmark

to calculate an appropriate value. An HTTP benchmark is a simple tool to evaluate

the workload of the network and the server. We establish the relationship between

the benchmark and the proxy server to make the entire system work efficiently (See

Figure 3.2). Figure 3.3 is the flow chart of our new strategy.

Client

Proxy
Server

Remote
Server

Benchmark
Cache

Request
Response

Send Threshold

Randomly

Caching

HTTP

GET URL HTTP/1.0

Document follows

some.host

Request

HTTP
Response

HTTP/1.0

Give a Page

Figure 3.2: System Organization

Clients keep sending HTTP requests to the proxy server. At a certain interval

22

Proxy is on &

record the time

Pass 10 sec?Bench is on

Pick a page
from cache
randomly

Send HEAD
request to
Web Server

Bench receives
the Header info

threshold based
on rec 10 req

Send the
threshold to
proxy server

Clients keep
sending HTTP
requests

Proxy server
receives req

Yes No

Return page
to proxy

Object
available?

in Cache?

Object

from Web

Retrieve page

NoYesCompute total
latency (TL)

Set flag
replaceable non−replaceable

Set flag

Pick page(s)

flag/remove
with replaceable

Yes No

Yes No
TL <= Threshold

flag?
replaceable
Files with Use LRU

to remove

NoYes

Return page

to client

to client
Return error

?

Bench is off
?

is full
Cache

Cache the
newcoming
page/send it

Calculate the

YesNo

Figure 3.3: Flow Chart of the BBPR Strategy

23

time, the benchmark will start to execute. It will randomly pick a page in the cache,

send the HTTP request to the Web server and record the latency of fetching this

page. We will choose the recent total latency of some different Web pages to develop

a formula to derive the threshold and send it to the proxy server. The cache can

set replaceable/non-replaceable flag to different cached pages based on the threshold.

There are three types of HTTP/1.0 request methods:

* GET: is used when the client requests an object. It will respond the client with

the whole content of the requested Web page.

* HEAD: is identical to GET except that the server must not return any Entity-

Body in the response. The meta-information contained in the HTTP headers

in response to a HEAD request should be identical to the information sent

in response to a GET request. This method can be used for obtaining meta-

information about the resource identified by the Request-URI without transfer-

ring the Entity-Body itself. It is often used to test hypertext links for validity,

accessibility, and recent modification. This command will provide an estimated

retrieval time of the page that has to be fetched at some particular point.

* POST: the HTTP client uses the POST method when the user fills out a form.

With a POST method, the client is still requesting a Web page from the server,

but the specific contents of the Web page depend on what the client wrote in

the form fields.

The only purpose of the total latency is to evaluate how busy the network and

24

the server is, and the requests sent by the benchmark will not be used by any clients,

so we do not need to download the entire Web page (large size page transfer will

introduce unnecessary overhead). The method for this purpose we chose is to use the

HEAD command to avoid fetching the whole page.

An array Lr[index] is used to keep track of the total latency of recently chosen

pages by the benchmark. The index is the parameter that determines how many

recently selected pages are used to calculate the threshold. It could be any integer

number. In our design, it is set to 10, which means the total latencies of 10 recently

selected pages are used to calculate the threshold. Before the benchmark is executed,

each item of Lr[] array is initialized to 100ms. Ls is the sum of the latency array, i.e.,

Ls =
9∑

i=0

Lr[i]

Lθ is the total latency of the new page randomly selected by the benchmark. When

the new Lθ arrives, the threshold is updated by the following formula:

Ls =
9∑

i=0

Lr[i]− Lr[k] + Lθ

where Lr[k] is the total latency of the least recently selected page in the previous 10

pages. The latency of the oldest page is subtracted and the latency of the newest

page is added, hence a new Ls is calculated. We can get the threshold by calculating

25

the average latency of these recently selected pages.

threshold = Ls/index

where the index is equal to 10. We can execute our benchmark by picking 20 newest

pages. The interval time can also set to 10 seconds, 20 seconds, 30 seconds, or longer.

To reduce the overhead, we can execute the benchmark between a longer interval.

However, if the interval time is too long, the data may not reflect precisely the current

real network load. Besides, a timeout limit of 500 milliseconds in the benchmark is

set to reduce the overhead caused by sudden change of network’s congestion. If the

retrieval time for a particular page is longer than the timeout limit, this request is

simply ignored.

The problem with the HEAD method is to determine whether the average latency

can reflect the actual load of network and server and the average locality. The la-

tency introduced by using HEAD method includes the time of establishing the socket

between the client and the server and the time of retrieving the header information of

the requested Web page. The size of the headers of all pages is about 300 bytes. We

have found the total time to retrieve the header is almost always less than the latency

of fetching the entire page. Because we choose pages randomly from the cache, our

method is a valid way to set the threshold for the cache. The results of our experiment

show that our method results in a reduced latency as compared to LRU.

LRU is used as a backup replacement strategy. If all pages in the cache have been

set non-replaceable flag, when a replacement has to occur, the pages in the cache

26

can not be removed by the replaceable flag because there are no pages in the cache

with replaceable flag set. At this time, LRU is used as the replacement algorithm.

Since we always replace the pages with the replacement flag set first, so the pages

with larger total latency would stay longer in the cache. There exists a relationship

between the pages replaced by using replaceable flag and the pages replaced by using

LRU. We will discuss this relationship between the cache size and the threshold in

Chapter 4.

3.3 Simulation

A client-server model has been designed for the simulation. The performance by the

BBPR algorithm and the LRU algorithm will be compared. The cached pages are

stored in the local tmp directory in the csp system at our campus. The processor of

the terminal where the simulation executes is a 2GHz Pentium 4 processor. Figure

3.4 shows how the components cooperate in our simulation system.

All the modules have been implemented in JAVA. They include the following

classes: Cache, Configuration, Proxy, Benchmark, Daemon, Data, Client, RandomeInt-

Generator, and url list.

Cache creates a directory named “cache” in the local “tmp” directory to store

the cached files. Manages all caching activities. A hashtable is used to store the

information of all cached files. The information includes the attributes declared in

the Data Class.

Configuration sets configurable parameters of the proxy. This class is used both

27

Client Proxy

Cache

BenchmarkDaemon

url_list

Config

Send HTTP req

Give URLs

Set parameters

Set parameters

Send
threshold

Execute

Listen

Return content

Manage
cache
activities

Caching

Create

thread

Figure 3.4: Simulation Systems

by cache and proxy.

Proxy creates thread to handle one client request. It gets the requested object

from the web server or from the cache, and delivers the bits to the client.

Benchmark chooses a file randomly from the cache and sends a HEAD request to

the web server to measure the latency. Calculates the threshold of total latency for

caching and sends the value of the threshold to Proxy.

Daemon is the web daemon thread. This class creates main socket on port 8080

and listens on it until the user stops it. For each client request, it creates a proxy

thread to handle the request. It records the time and starts to execute the benchmark

at a certain interval time. In our programs, the interval time is set as 10 seconds.

Data includes the attributes of each file, such as size, last access time, total latency,

28

replaceable flag set, and so on.

Client asks the user how long this client program will execute. Then the client

keeps reading the urls from the file urllist.in, generates the corresponding HTTP

requests and fetches the file from the proxy server.

RandomIntGenerator generates random integers.

url list is a log of URLs with different size from 1 Megabyte to 6 Megabyte. It

only includes three types of HTTP documents: html, gif and jpeg. The following is

part of the file:

http://www.unt.edu

http://www.unt.edu/imageassets/americaunited.gif

http://www.unt.edu/imageassets/capitalcampaignsm.gif

http://www.unt.edu/imageassets/eventbitheader.gif

http://www.unt.edu/imageassets/finalindex r10 c1.gif

http://www.unt.edu/imageassets/finalindex r10 c1 f2.gif

http://www.unt.edu/imageassets/finalindex r11 c1.gif

http://www.unt.edu/imageassets/finalindex r11 c1 f2.gif

http://www.unt.edu/imageassets/finalindex r12 c5.gif

http://www.unt.edu/imageassets/finalindex r12 c6.gif

The Client will read from the url list file and send the corresponding http requests

to the Proxy. The detailed information of the url list files will be listed in Chapter 4.

Because we will compare the BBPR algorithm with the commonly used LRU,

29

two different cache classes have been implemented, one for BBPR and the other for

LRU. Since only the proxy cache’s performance based on these two page replacement

algorithms is concerned, all other factors that may influence on the performance are

assumed to be equivalent. Therefore, the two sets of simulation implemented with

BBPR and the corresponding LRU algorithm are always executed simultaneously.

Two aspects of these different algorithms are compared: the number of requests

made in one hour and the hit ratio. The number of requests made in one hour shows

how many requests can be made in one hour. A counter is used to track how many

pages have been retrieved in the Client class. The average total latency of the urls in

the file log can be derived from the counter.

The Client will prompt the user to input the time that the program is to execute.

The program will begin to execute and print out the number of pages that has been

retrieved. Upon completion, the program will print out the total requests. The

following is how the client side looks like:

whe@csp07: java Client

Please input the time this program will run:

Please input the days: 0

Please input the hours: 1

Please input the minutes: 0

Please input the seconds: 0

This program will run 0 days 1 hours 0 minutes 0 seconds.

Run Time = 3600 seconds

30

Finish page 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 5200 5400 5600 5800

6000 6200 6400 6600 6800 7000 7200 7400 7600 7800 8000 8200 8400 8600 8800

9000 9200 9400 9600 9800 10000 10200 10400 10600 10800 11000 11200 11400 11600

11800 12000 12200 12400 12600 12800 13000 13200 13400 13600 13800 14000 14200

14400

Totally, 14492 pages have been visited.

From the output, it is evident that in one hour totally 14492 requests have been

completed.

The urls in “*M.in” are all different and the Client class selects the url from the

file randomly, so the probability of selecting each page is theoretically same. But in

the real world, the popular websites have more visit rate and so do the near located

websites. To account for this phenomenon, the urls with the same host have been

copied in order to let them have higher visit rate in the simulation. For example,

in “1M.in” if only the urls beginning with “www.unt.edu” have been copied 3 times,

these copied unt’s websites will have 3 times visit rate than other websites in “1M.in”.

The total size of this url list file is still same, i.e. 1M, but theoretically the UNT’s

url would be visited more than the rest urls.

31

CHAPTER 4

Result Analysis

This section summarizes the analysis in three parts. In each part we compare the

performance of our method with that of LRU method under different conditions.

First, for different url files with the size ranging from 1 Megabytes to 6 Megabytes,

we compare the number of requests made in one hour and the corresponding hit

ratio. Second, we derive the average total latency and make the comparison with

two algorithms. Third, we give a detailed investigation of BBPR, which includes the

threshold setting, what kind of pages will benefit more from BBPR, and the overhead

introduced in BBPR.

4.1 Total Requests vs. Hit Ratio

Table 4.1 summarizes the information about the total size of all urls and the number

of urls in different url files. From the table we identify the total size of all pages as

Name of URL File Size of File(KB) Number of URLs
1M.in 962 215
2M.in 1942 412
3M.in 2990 702
4M.in 3998 970
5M.in 4978 1167
6M.in 5976 1403

Table 4.1: URL Files

32

well as the number of pages in each url file. For example, in the url file “1M.in”,

there are totally 215 different urls listed. If all the pages are to be cached, the size of

the cache must be at least 962KB.

Six different url files were tested. The size of these six url files changes from

1 Megabytes to 6 Megabytes. Each simulation experiment that implemented the

BBPR method and its corresponding counterpart LRU always execute simultaneously.

Different cache sizes were used, ranging from 10% percent to 50% percent of the total

size of all urls in the url files. The requests made over one hour period are compared

by using the BBPR method and the LRU method.

Figure 4.1 and Figure 4.2 show the results with a set of five cache sizes at 100

KB, 200KB, 300KB, 400KB, 500KB, which is 10%, 20%, 30%, 40% and 50% of the

total size of url list, respectively. Figure 4.1 depicts the comparison of pages visited

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500

of

 R
eq

ue
st

s

Cache Size(KB)

1M--Comparison of Pages Visited in 1 Hour

BBPR
LRU

Figure 4.1: 1M–Pages Visited in 1 Hour

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 100 200 300 400 500

H
it

R
at

io
(%

)

Cache Size(KB)

1M--Comparison of Hit Ratio

BBPR
LRU

Figure 4.2: 1M–Hit Ratio

in 1 hour for the url file “1M.in”. This figure shows that more requests were made by

BBPR as compared to LRU for each cache size. The improvement of BBPR is most

33

significant when the cache size is 500KB, which is half of the total size of url list file.

The reason for large improvement with 500KB cache size is that there are more pages

with replaceable flag set in the cache and hence the time for iterating through the

entire file list reduces more than the smaller cache size. Because more requests were

made in the same time by BBPR as compared to LRU, we conclude that the average

total latency has improved by using BBPR. Figure 4.2 is the comparison of the hit

ratio for the same url file and it shows that the hit ratio is always smaller by BBPR

than by LRU. The reason for this is that with BBPR the pages with replaceable flag

set are removed randomly, which causes those pages with small total latency that

have been visited recently are deleted from the cache.

Figure 4.3 and Figure 4.4 show the comparison of the number of requests made in

one hour and hit ratio for url files “2M.in”, respectively. Identical to the experiment

 10000

 15000

 20000

 25000

 30000

 0 0.2 0.4 0.6 0.8 1 1.2

of

 R
eq

ue
st

s

Cache Size (MB)

2M--Comparison of # of Requests Made in 1 Hour

BBPR
LRU

Figure 4.3: 2M–Pages Visited in 1 Hour

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1 1.2

H
it

R
at

io
(%

)

Cache Size (MB)

2M--Comparison of Hit Ratio

BBPR
LRU

Figure 4.4: 2M–Hit Ratio

with “1M.in”, the number of requests completed in one hour and the hit ratio were

tested with both BBPR and LRU when the cache size is from 10% to 50% of the total

34

size of all files. From the figure, there are more pages fetched by LRU than by BBPR

only for the cache size 400KB. For other cache sizes, BBPR completed more requests

than LRU. When the cache size reaches 1MB, i.e., 50% of the total size of all files, the

difference becomes most apparent for the same reason mentioned for “1M.in”. On

the other hand, as discussed above, the LRU method also achieves higher hit ratio.

 10000

 15000

 20000

 25000

 30000

 35000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

of

 R
eq

ue
st

s

Cache Size(MB)

3M--Comparison of # of Requests Made in 1 Hour

Benchmark
LRU

Figure 4.5: 3M–Pages Visited in 1 Hour

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

H
it

R
at

io
(%

)

Cache Size(MB)

3M--Comparison of Hit Ratio

BBPR
LRU

Figure 4.6: 3M–Hit Ratio

 10000

 15000

 20000

 25000

 30000

 35000

 0 0.5 1 1.5 2

of

 R
eq

ue
st

s

Cache Size(MB)

4M--Comparison of # of Requests Made in 1 Hour

Benchmark
LRU

Figure 4.7: 4M–Pages Visited in 1 Hour

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2

H
it

R
at

io
(%

)

Cache Size(MB)

4M--Comparison of Hit Ratio

BBPR
LRU

Figure 4.8: 4M–Hit Ratio

Figure 4.5 to Figure 4.10 are the results for the url list “3M.in”, “4M.in” and

35

 10000

 15000

 20000

 25000

 30000

 0 0.5 1 1.5 2 2.5

of

 R
eq

ue
st

s

Cache Size(MB)

5M--Comparison with # of Requests Made in 1 Hour

Benchmark
LRU

Figure 4.9: 5M–Pages Visited in 1 Hour

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2 2.5

H
it

R
at

io
(%

)

Cache Size(MB)

5M--Comparison of Hit Ratio

BBPR
LRU

Figure 4.10: 5M–Hit Ratio

“5M.in”. From these results, the BBPR method almost always completed more re-

quests than LRU. Only at 0.8MB cache size for “4M.in”, LRU outperformed BBPR.

As far as the hit ratio is concerned, LRU always results higher hit ratio as previously

discussed.

In summary, from the above results, more requests were completed by BBPR than

by LRU. It shows that using BBPR will achieve lower average total latency than LRU.

However, the LRU method results in a higher hit ratio. Because of the lower hit ratio

the proxy server using BBPR will send more http requests to the remote servers as

compared to LRU. That indicates there will be more network load by using BBPR.

However, the clients will benefit from lower retrieval time.

4.2 Average Total Latency

For “5M.in”, we also derived the distribution of the number of urls and their cor-

responding total latencies without using the cache just before executing the other

36

simulations. The data is shown in Table 4.2.

Total Latency(ms) Number of URLs(totally 1167)
0 to 100 163
100 to 200 540
200 to 300 197
300 to 400 86
400 to 500 71
above 500 110

Table 4.2: 5M–Distribution of Total Latency

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.5 1 1.5 2 2.5

A
ve

ra
ge

 T
ot

al
 L

at
en

cy
(m

s)

Cache Size(MB)

5M--Comparison of Average Total Latency

Without Cache
Benchmark

LRU

Figure 4.11: 5M–Comparison of Average Total Latency

Without cache the average total latency for the total 1167 different pages is 367ms.

The average total latency with our BBPR strategy and with LRU is calculated as

this: atl = 3600/np, where atl is the average total latency, 3600 seconds is the time

for simulation, np is the number of pages visited in one hour. Figure 4.11 shows the

average total latency in each case respectively. This figure shows the average total

37

latency in BBPR is lower than that in the LRU method. The conclusion made here

is the same as that previous discussion.

4.3 Detailed Investigation for BBPR

In this section, a more detailed investigation of the BBPR strategy will be described.

The url list file “6M.in” is taken as an example. The investigation includes whether

longer latency threshold setting will give a better result, the benefit os slow retrieval

pages using BBPR, and the overhead introduced by BBPR.

4.3.1 Distribution of Total Latency

There are totally 1403 different urls in “6M.in”. The total size of these urls is 5976KB.

Table 4.3 shows the distribution of the retrieval latency in this url file log. The laten-

Total Latency(ms) Number of URLs(totally 1403)
0 to 100 142
100 to 200 725
200 to 300 272
300 to 400 118
400 to 500 42
above 500 104

Table 4.3: 6M–Distribution of Total Latency

cies for all urls were obtained without using cache just before the actual experiments

have been conducted. The average retrieval latency is 333ms.

38

4.3.2 Incrementing the Latency Threshold

As described above, LRU is used as a backup replacement algorithm in situations

when the replacement has to occur and there is no pages in the cache with replaceable

flag set. At this point, it has to iterate through the entire file list to find the least

recently used page(s) to remove. Since iterating through the entire file list is time-

consuming, one way to reduce the iteration is to increase the latency threshold value,

which is used to set the replaceable flag. When the threshold is large, there will be

more pages in the cache with replaceable flag set. To see the effect of using larger

threshold, the url list file “6M.in” is investigated. The latency threshold value is

increased by using a coefficient , say α, where α ≥ 1. In the previous experiments,

the 10 most recently were selected pages to calculate the threshold.

Ls =
9∑

i=0

Lr[i]

threshold = Ls/10

Now we let Lr[i] times α, and we can get a new larger threshold. In the experiment,

α is set to 1.25.

Ls =
9∑

i=0

α ∗ Lr[i]

threshold = Ls/10

We compared the number of pages visited in one hour, hit ratio, the number of

pages replaced by BBPR and the number of pages replaced by the LRU method. We

39

refer to the test with α > 1, i.e., α = 1.25, as Case 1 and the test with the threshold

calculated with the coefficient set 1, i.e., α = 1, as Case 2.

Figure 4.12 shows the statistics of the number of pages replaced in 1 hour both in

Case 1 and in Case 2 when the cache size is 0.6MB, which is 10 percent of the size

of total files. When the cache size changes, the situation is similar to what happened

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 10 20 30 40 50 60

of

 P
ag

es
 R

ep
la

ce
d

Time (minute)

Number of Pages Replaced in 1 Hour by Case 1 and Case 2 (6M.in, Cache Size = 0.6MB)

Replaced by Flag in Case 1
Replaced by LRU in Case 1
Replaced by Flag in Case 2
Replaced by LRU in Case 2

Figure 4.12: 6M–Number of Pages Replaced in 1 Hour by Case 1 and Case 2

in Figure 4.12. Table 4.4 shows the number of pages replaced by the replaceable flag

and by LRU iteration when the cache size changes.

From Table 4.4, it is evident that in Case 1 the number of pages replaced due

to the replaceable flag set is larger than the number of pages replaced by LRU, but

in Case 2, the number of pages replaced by using the replaceable flag is smaller as

compared to LRU. Because Case 1 has more pages removed due to the replaceable

flag set, Case 1 can remove more pages by randomly finding replaceable documents

40

of Pages # of Pages # of Pages # of Pages
Cache Size Replaced by Replaced by Replaced by Replaced by
(MB) Flag in Case 1 LRU in Case 1 Flag in Case 2 LRU in Case 2
0.6 8057 5632 4621 9664
1.2 8640 5370 3908 9357
1.8 7381 6295 4464 8989
2.4 8280 5919 8808 5574
3.0 9229 5797 4860 8925

Table 4.4: Page Replacement in Case 1(α=1.25) and Case 2(α=1.0)

in the cache and hence avoid more iteration required by LRU than the iteration in

Case 2.

Table 4.5 lists the number of requests made in 1 hour and the hit ratio both in

Case 1 and in Case 2. Surprisingly, there is no significant difference of the number of

Cache Size # of Requests # of Requests Hit Ratio Hit Ratio
(MB) Made in Case 1 Made in Case 2 in Case 1(%) in Case 2 (%)
0.6 11982 12606 8.1 10.1
1.2 13231 13299 16.3 20.6
1.8 15604 16222 27.8 31.4
2.4 18347 19593 38.8 38.8
3.0 26643 26474 51.3 54.0

Table 4.5: Comparison of Number of Requests Completed in 1 Hour and the Hit
Ratio in Case 1(α=1.25) and Case 2 (α = 1.0)

requests made in Case 1 with Case 2 from the data. The reason is that the hit ratio

in Case 1 is lower than that in Case 2. A lower hit ratio indicates more pages have

to be retrieved from the real server instead of the proxy cache. This lower hit ratio

in Case 1 is a tradeoff of the time saving by less file list iteration.

41

4.3.3 Slow Pages Benefit from BBPR

The BBPR method is designed in favor of pages with slow retrieval latency. We con-

ducted the following experiment to show that slow pages will benefit more than pages

with small latencies from the BBPR strategy. We construct the url list “6M slow.in”

as the following: 100 different urls whose total retrieval time is greater than 500ms

have been selected from “6M.in” and copied in order to let the occurrence of those

urls increase. In the url list “6M slow.in”, these urls have been duplicated four times,

which results in the frequency of those 100 pages being requested is five times larger

than that of other pages. We also construct a url list “6M fast.in” for comparison.

In “6M fast.in”, 100 different pages with the retrieval time lower than 100ms have

been selected and duplicated four times.

 10000

 15000

 20000

 25000

 30000

 35000

 0 0.5 1 1.5 2 2.5 3

of

 P
ag

es

Cache Size(MB)

6M_slow--Comparison with the Number of Requests Made in 1 Hour

Benchmark
LRU

Figure 4.13: 6M slow–Pages Visited in 1
Hour

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 32000

 0 0.5 1 1.5 2 2.5 3

of

 P
ag

es

Cache Size(MB)

6M_fast--Comparison of the Number of Requests Made in 1 Hour

BBPR
LRU

Figure 4.14: 6M fast–Pages Visited in 1
Hour

Figure 4.13 and Figure 4.14 are the comparisons of requests made in one hour

for each url list. Figure 4.15 and Figure 4.16 depict the number of hit ratio for each

42

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.5 1 1.5 2 2.5 3

H
it

R
at

io
 (

%
)

Cache Size(MB)

6M_slow--Comparison with Hit Ratio

Benchmark
LRU

Figure 4.15: 6M slow–Hit Ratio

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.5 1 1.5 2 2.5 3

H
it

R
at

io

Cache Size(MB)

6M_fast--Comparison of Hit Ratio

Benchmark
LRU

Figure 4.16: 6M fast–Hit Ratio

case respectively. From the data shown in these graphs, we can see clearly that for

“6M slow.in” there is a significant improvement of the pages visited in 1 hour by

BBPR. The hit ratio detected by BBPR is very close to that by LRU. Therefore, we

conclude that slow pages will benefit more from BBPR. But there is no significant

difference in the number of requests made for “6M fast.in” by the two replacement

methods, and the hit ratio calculated by BBPR is much lower than LRU. However, we

may still conclude that the slow pages (pages with longer retrieval time) will benefit

from the LRU method.

4.3.4 Overhead Analysis

The BBPR strategy will introduce some overhead when the benchmark executes. It

includes the time of initializing the benchmark, randomly choosing a URL from the

cache, fetching this url from the web server, and calculating the threshold. Figure

4.17 shows the cumulative time that the benchmark program spent by the end of each

43

minutes with the cache size 3MB for “6M.in”.

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

O
ve

rh
ea

d
(s

ec
on

d)

Time (minute)

Overhead Introduced by the Benchmark--6M.in, Cache Size = 3MB

overhead vs. time

Figure 4.17: Cumulative Overhead of Executing the Benchmark(“6M.in”, Cache Size
= 3MB)

The figure shows the cumulative overhead caused by the benchmark over 60 min-

utes is about 50 seconds. To reduce the overhead, we can consider to increase the

time period that the benchmark executes. For example, the execution time of the

benchmark will be reduced by increasing the interval period to execute the bench-

mark from 10 seconds to 20 seconds or 1 minute. However, by doing so, the threshold

calculated by the benchmark will probably less precisely reflect the real situation of

the network than choosing short benchmark executing period.

44

CHAPTER 5

Summary and Conclusions

5.1 Summary of BBPR

World Wide Web caching is widely used through today’s Internet to reduce the net-

work load, servers load and save time to fetch remote documents. The page replace-

ment algorithm plays an important role in the proxy cache. Many page replacement

strategies have been employed both in academic studies and in the application area.

These algorithms can be classified into three categories based on how to execute the

replacement as follows. First, traditional replacement policies and their extensions,

such as FIFO, LRU and LFU, which were derived from the replacement polices used

in operating system. Second, key-based replacement policies, which arrange the re-

placement on some key(s) such as size, lowest latency, etc. Third, function-based

replacement policies, which are based on some function value(s). There is no agree-

ment on which page replacement algorithm is the optimal one. The policies in the

first two categories do not take the document retrieval time into account. Although

some algorithms in the third category consider the document transfer time, they can

not reflect the dynamic load change of the networks and the servers. Another draw-

back of the existing algorithm is that replacement is based on a particular value, such

as size and latency, which is generally a maximum or minimum one among the entire

set. To find this particular value is time consuming.

45

In this paper, to overcome the drawbacks of the existing page replacement algo-

rithms, we introduced a new cache page replacement strategy, i.e., BBPR strategy.

BBPR stands for Benchmark-Based Page Replacement strategy. In BBPR strategy,

an HTTP benchmark is used as a small tool to evaluate the dynamic load of the

Internet. The benchmark helps cache to decide which documents may be removed

when the cache is full by deriving a document retrieval latency threshold. This la-

tency threshold was designed to reflect the dynamic load of the Internet. We have

partitioned the files in the cache into two parts by setting a replaceable flag thereby

reducing the number of iterations through the entire cache file list. When there are

no files with the replaceable flag set in the cache, the LRU method is used as a backup

strategy. Because the dynamic detection of the network load and the server load and

reduction of the file list iteration, BBPR will lower the average documents retrieval

time.

We designed a client-server model to simulate the performance of BBPR. The

simulation mainly focused on two aspects of the proxy cache performance compared

with LRU which is the most commonly used cache document replacement strategy:

the hit ratio and the documents’ average retrieval time. To avoid the other factors

such as time and different platforms that could have effect on the cache performance,

the simulation implemented with BBPR and the corresponding LRU are always exe-

cuted simultaneously and on the same terminal. We conducted the experiments with

different URL files as well as different cache size. From the experimental results,

BBPR effectively improved the average document retrieval latency as compared to

46

LRU. The improvement by BBPR becomes more significant with larger cache size.

Slow request pages benefit more from BBPR than fast pages. However, the tradeoff

of BBPR is a reduced hit ratio. We also investigate how the latency threshold setting

influences the performance of the proxy cache and the overhead introduced by the

benchmark execution.

From our simulation, the performance of proxy cache has been effectively improved

by BBPR as compared with LRU. Therefore, we conclude that the BBPR strategy is

a feasible way to be used in the proxy cache.

5.2 Limitations and Future Work

There are several limitations in the BBPR strategy.

Executing the benchmark program will introduce overhead. Our simulation pro-

grams are implemented in JAVA. One drawback of JAVA is that it does not execute

as efficiently as C/C++. A C/C++ implementation is needed for the future work.

Our simulation only tests HTTP/1.0 requests. Since it does not check the docu-

ments’ TTL (time-to-live) when the documents are cache available, some documents

in the cache may be stale. The simulation is still simple. The client reads the urls

from a url file log and sends them out. We only compared the BBPR strategy with

one other existing strategy – LRU. We only simulated one client, one proxy model.

Therefore, the experimental analysis needs to be expanded to include more clients.

The best simulation is that the implementation of BBPR could be associated

with a real proxy cache as compared with other existing strategies, and then the

47

comparison will be more precise and more persuasive.

The formula we used to set the latency threshold is empirical. More experiments

should be conducted to optimize the latency threshold in order to give more precise

feedback about the network and the server’s load.

48

BIBLIOGRAPHY

[1] http://www.domainstats.com.

[2] http://www.etforecases.com/pr/pr201.htm.

[3] http://www.firstmonday.dk/issues/issue2 7/almeida/.

[4] Pei Cao, Sandy Irani, Cost-Aware WWW Proxy Caching Algorithms.

[5] C. Aggarwal, J.L. Wolf, and P. S. Yu, Caching on the World Wide Web,

IEEE Transactions on Knowledge and data Engineering, Vol. 11, No.1, Jan-

uary/February 1999.

[6] Jia Wang, A Survey of Web Caching Schemes for the Internet .

[7] S.Williams, M.Abrams, C.R.Standbridge, G.Abdulla and E.A.Fox. Removal

Polocies in Network Caches for World-Wide Web Documents. In Proceedings of

the ACM Sigcomm96, August, 1996, Stanford University.

[8] N.Young. The k-server dual and loose competitiveness for paging. Algorith-

mica,June 1994, vol. 11,(no.6):525-41. Rewritten version of “Online caching as

cache size varies”, in The 2nd Annual ACM-SIAM Symposium on Discrete Algo-

rithms, 241-250, 1991.

[9] D. Sleator and R.E.Tarjan. Amortized efficiency of list update and paging rules.

Communications of the ACM, 28:202-208, 1985.

49

[10] R. Wooster and M.Abrams. Proxy Caching the Estimates Page Load Delays. In

the 6th International World Wide Web Conference, April 7-11, 1997, Santa Clara,

CA. http://www6.nttlabs.com/HyperNews/get/PAPER250.html.

[11] P.Lorenzetti, L.Rizzo and L.Vicisano. Replacement Policies for a Proxy Cache.

http://www.iet.unipi.it/luigi/research.html.

[12] E.Cohen, .Krishnamurthy, and J.Rexford, Evaluating server-assisted cache re-

placement in the Web, Proceedings of the European Symposium on Algorithm-98,

1998.

[13] Peter Scheuermann, Junho Shim, Radek Vingralek, A Case for Delay-Conscious

Caching of Web Documents, http://citeseer.nj.nec.com/scheuermann97case.html.

[14] Jean-Chrysostome Bolot, Philipp Hoschka, Performance Engineering of the

World Wide Web, http://www.w3journal.com/3/s3.bolot.html

[15] M.Abrams, C.R.Standbridge, G.Abdulla, S.Williams and E.A.Fox. Caching

Proxies: Limitations and Potentials. WWW-4, Boston Conference, December,

1995.

50

