
RESOURCE EFFICIENT AND SCALABLE ROUTING USING

INTELLIGENT MOBILE AGENTS

Kaizar Abdul Husain Amin, B.E.

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

May 2003

APPROVED:

Armin R. Mikler, Major Professor
Azzedine Boukerche, Committee Member
Ram Dantu, Committee Member
Robert Brazile, Graduate Advisor
Krishna Kavi, Chair of the Department

of Computer Science
C. Neal Tate, Dean of the Robert B. Toulouse

School of Graduate Studies

Amin, Kaizar Abdul Husain, Resource Efficient and Scalable Routing

using Intelligent Mobile Agents. Master of Science (Computer Science), May

2003, 74 pp., 1 table, 16 figures, 51 titles.

Many of the contemporary routing algorithms use simple mechanisms

such as flooding or broadcasting to disseminate the routing information avail-

able to them. Such routing algorithms cause significant network resource

overhead due to the large number of messages generated at each host/router

throughout the route update process. Many of these messages are waste-

ful since they do not contribute to the route discovery process. Reducing

the resource overhead may allow for several algorithms to be deployed in a

wide range of networks (wireless and ad-hoc) which require a simple routing

protocol due to limited availability of resources (memory and bandwidth).

Motivated by the need to reduce the resource overhead associated with rout-

ing algorithms a new implementation of distance vector routing algorithm

using an agent-based paradigm known as Agent-based Distance Vector Rout-

ing (ADVR) has been proposed. In ADVR, the ability of route discovery

and message passing shifts from the nodes to individual agents that traverse

the network, co-ordinate with each other and successively update the routing

tables of the nodes they visit.

ACKNOWLEDGMENTS

Several people have supported me during the course of my Masters program. I would

like to take this opportunity to thank them all. Firstly, I would like to thank my

parents who have supported me emotionally throughout my academic career. They

have always encouraged me to realize my dreams. I would also like to thank Dr.Mikler

who has been my adviser, friend, and guardian in the last three years. He is the

epitome of a perfect teacher. I am grateful to him for all his valuable time spent

to teach me the essence of honest research and the value of commitment. I feel very

fortunate to have worked with him and look forward to working with him again in the

coming years. Thanks to my wife Aneesa for making me realize that there is more to

life than a Masters thesis. She has been my inspiration and has helped me maintain

my focus. I would also like to thank Gaurang, Nikhil, Glyco, and Prasanna for being

my family away from home and helping me through difficult times. Thanks to the

members of my thesis committee for their important time and valuable comments.

ii

CONTENTS

Page

ACKNOWLEDGEMENTS . ii

LIST OF TABLES . vi

LIST OF FIGURES . vii

1 INTRODUCTION 1

1.1 Intelligent Mobile Agents . 1

1.2 Network Routing . 6

1.2.1 Central versus Distributed . 7

1.2.2 Static versus Dynamic . 8

1.2.3 Shortest-Path versus Heuristic . 9

1.3 Dynamic Distributed Shortest-Path Routing 9

1.3.1 Link State Algorithms . 9

1.3.2 Distance Vector Algorithms . 11

1.4 Mobile Agents in Routing . 14

1.5 Thesis Overview . 18

2 AGENT-BASED DISTANCE VECTOR ROUTING (ADVR) 20

2.1 Principles . 20

iii

2.2 Routing Table Selection Algorithm . 23

2.3 Agent Migration Strategy . 25

2.4 Agent Population . 29

3 SIMULATION ENVIRONMENT 37

3.1 Simulation Model . 37

3.2 Network Model . 39

3.3 Tools . 43

3.3.1 Graph Generator . 43

3.3.2 Network Animator . 43

4 EXPERIMENTAL ANALYSIS 46

4.1 Definitions . 46

4.1.1 Analysis of Path-Cost Convergence . 47

4.1.2 Analysis of Route Discovery . 52

4.1.3 Analysis of Routing Overhead . 53

4.1.4 Analysis of Agent Population in ADVR 58

5 SUMMARY AND FUTURE WORK 62

5.1 Summary . 62

5.2 Future Work . 65

iv

5.3 Broader Impact . 66

BIBLIOGRAPHY 68

v

LIST OF TABLES

2.1 Convergence Time and Routing Overhead for Different Agent Population 30

vi

LIST OF FIGURES

2.1 Selection of Routing Table Entries by the Agent 24

2.2 Agent Routing Table Selection Algorithm 24

2.3 Migration Strategy using Edge Pheromones 27

2.4 Comparison of Routing Overhead with Path-Cost Convergence 30

2.5 Population Control using Node Pheromones 33

3.1 RSim (Routing SIMulator) . 38

3.2 Simulation Model for DVR . 40

3.3 Simulation Model for ADVR . 41

3.4 Pseudo-random Graph Generation Algorithm 42

3.5 Network Animator . 44

4.1 Pat-Cost Convergence . 48

4.2 Response to Network Failure . 49

4.3 Route Discovery . 51

4.4 Instantaneous Routing Overhead . 54

4.5 Average per Hop Packet Delay . 56

4.6 Dynamic Control of Agent Population 59

vii

CHAPTER 1

INTRODUCTION

The research conducted as a part of this thesis addresses two issues. Firstly, it presents

a new routing algorithm using mobile agents that is inherently scalable and resource

efficient to be applied to large communication networks. Secondly, it validates the

application of mobile agents to intrinsically distributed and asynchronously parallel

problems. Further, it introduces some novel concepts for multi-agent coordination

and autonomous population control mechanism to enhance the performance of the

agent-based solution. The inferences derived from this thesis are supported by the

results from carefully designed experiments.

1.1 Intelligent Mobile Agents

Software agents, softbots, intelligent agents, and mobile agents are terms that origi-

nally evolved from the domain of artificial intelligence [18]. However, they are applied

to solve problems in a wide range of domains including distributed object architec-

tures, expert systems, distributed algorithms, adaptive self-learning systems, collab-

orative communities, peer-to-peer communication, and security infrastructures. For

1

the rest of this thesis we use the terms agents, mobile agents, and software agents

interchangeably. Software agents are distinctively different from software programs

in that they can be highly specialized to meet the requirements of the end-user. Fur-

ther, agents are proactive in nature whereby, they take the initiative in undertaking

a task rather than awaiting a pre-defined condition. Finally, agents are autonomous

and adaptive thereby targeting their resources towards a goal oriented approach.

There is no formal and succinct definition for mobile agents. However, in general

an agent can be described as a long-lived goal-oriented computational entity. It

operates autonomously under a certain user controlled policy migrating among host

nodes continuing the same thread of execution and acting on behalf of a user [28].

In other words, an agent encapsulates a thread of execution, a code segment, and

a data segment. The code segment is customized to achieve the end-task desired

by the user. At any network node, the agent may suspend its thread of execution,

migrate to another node of its choice, and resume the thread of execution from the

point where it was previously suspended. Intuitively, one may argue that an agent

mechanism is similar to a process migration system [17]. However, it must be noted

that in a process migration system, the decision to migrate the process and the choice

of the new host machine is invested in the migration system, whereas, in an agent

system these decisions are taken by the agent itself. Further, one can compare agent

2

execution with the execution of Java applets. In this regard it is essential to note that

an applet is a small piece of code that is downloaded from the server and executed

on the client machine in its entirety, whereas an agent is a segment of code that is

executed on a remote machine, resuming its execution from the point where it was

previously suspended.

Based on the above discussion, it is reasonable to mention that agents may contain

several (or all) of the following characteristics:

� Intelligence: It enables the agent to interact with its environment and translate

the knowledge gathered by it towards its individual goal. A reactive agent can

sense the environment and adapt its behavior thereby leading to an optimal

progress. On the other hand, a proactive agent can sense the environment and

modify the environment itself thereby implicitly affecting its future actions.

� Autonomy: It allows the agent to make decisions and act upon them without

explicit control of an external user. Autonomy is an important property that

distinguishes agents from conventional programs by attributing agents with a

decision making capability.

� Communication: It allows the agent to exchange information gathered by it

to the end-user. Although the agent operates autonomously, it is essentially a

3

piece of code that acts on behalf of a user, and hence must have a capability to

effectively communicate with the user.

� Collaboration: It provides a framework where individual agents can commu-

nicate among themselves and take shared responsibilities in accomplishing a

common tasks. This is the most important characteristics in multi-agent sys-

tems (MAS) [15].

� Mobility: It allows agents to migrate from one network terminal to another. It

is the attribute that make agents conducive for distributed systems and network

applications.

� Goal-oriented: It is the characteristics that helps the agent to modify its imme-

diate local actions thereby always moving towards a global goal.

It is apparent that mobile agents can be used for a large number of intrinsically

distributed applications. Agent systems are used in several cases to replace the con-

ventional client-server paradigm. Client-server communications require a handshake

protocol including request submission, security negotiations, parameter exchanges,

and result delivery. A mobile agent based approach can considerably reduce network

bandwidth by avoiding multiple connections and communications between the client

and server by migrating an agent to the server that only returns back with the desired

4

results. In high performance computing applications [16] that generate large sets of

data, it is a more elegant solution to migrate the code that analyzes this data to the

data itself thereby significantly reducing bandwidth latency. A mobile agent is also

a considerable candidate to replace conventional remote procedure call (RPC) [49] in

several cases. RPC is a protocol that allows a user or a program to request a service

from another remote machine. In RPC communications, the client has to remain on-

line until it receives a final reply from the remote terminal. If the user disconnects, the

entire RPC communication must be restarted. An agent based approach will benefit

a mobile user that is intermittently connected to the network. The client can create

an agent with the desired task and disconnect from the network. The agent will then

migrate itself to the remote host, accomplish the task, return to the host machine,

and hold the results till the client connects to the network again. Mobile may agents

also offer an efficient solution to complex problems involving extensive workflows and

itineraries. Complicated workflow dependencies between distributed tasks can be ex-

pressed as an agent itinerary and dispatched with the customized agent [7]. The agent

exploits it resources, migrating to individual services making important information

exchanges, and finally returning to the end-user with the end-results.

For mobile agents to migrate across heterogeneous platforms, adapt to its envi-

ronment, communicate with its users, and collaborate with other agents it must be

5

supported by an underlying agent hosting infrastructure. In other words, an agent

can perform only those functions on a host that are supported by the agent hosting

environment. It is the function of the hosting environment to translate the agent

instructions into local machine instructions, provide the agents with the appropriate

resources, negotiate security policies with the agent, and protect the agent from a

malicious user. For any host to be agent-aware, it must have the hosting environment

deployed on it. There are certain characteristics that are required from any agent

hosting system. It must provide a security model that is flexible enough to protect

both the host and the agent. The system should be capable of hosting different types

of agents written in various languages. Since agents perform autonomous actions, it

is the the responsibility of the hosting system to provide with robust, fault tolerant

services capable of recovering the agent and the associated data in the event of a

fatal error. The most popular agent hosting environments in use are Tracy [8], IBM

Aglets
�
(IBM Corp., www.ibm.com) [23], TACOMA [25], and AgentTCL [21].

1.2 Network Routing

Routing is the process of discovering, selecting, and maintaining paths from one

node to another and using these paths to deliver data packets. It is an important

aspect of network communication since it effects many other characteristics of network

6

performance. An efficient routing mechanism can get significantly complex due to

the fact that it may involve all the nodes in the network. Routing algorithms can be

broadly classified under the following categories:

� Central versus Distributed

� Static versus Dynamic

� Shortest-Path versus Heuristic

1.2.1 Central versus Distributed

In central routing, a central or master node is assigned the task of computing the

routes between different nodes in the network. This node is also responsible of com-

municating these routes to individual nodes in the network. A central routing ap-

proach has several disadvantages and is rarely used in practice. It offers a single point

of failure, where the entire routing algorithm fails if the master node stops function-

ing. Secondly, it results in a hot-spot in the network. A hot-spot is a small region

in the network that experiences high traffic and congestion, therefore becoming the

bottleneck of network performance. Since all the routing information is generated by

the master node, the network region around this node experiences large volumes of

data.

7

Distributed routing algorithms on the other hand divide the entire routing process

into smaller sub-tasks that are executed in parallel at individual nodes. The network

nodes communicate among themselves independent of any central controller, thereby

resulting in a more robust system. Distributed routing algorithms are deployed in

most of the networks and will be considered exclusively in this thesis.

1.2.2 Static versus Dynamic

Static routing, also referred to as oblivious routing depends on fixed routes between

nodes. The routes selected between end-nodes are predetermined by the network

managers at the time of network startup. Any change in the routing policy is reflected

by the managers by explicitly changing the routes at every node in the network. This

scheme requires constant human monitoring to update the routes reflecting an up-to-

date network.

Dynamic routing, also known as adaptive routing automatically utilizes infor-

mation about the network characteristics such as link costs, traffic congestion, and

network failures to deduce routing paths at run-time. It requires minimum human

control and is used in most networks due to its implicit flexibility.

8

1.2.3 Shortest-Path versus Heuristic

A shortest-path routing algorithm chooses the minimal cost paths between end-nodes.

Minimum costs between nodes are computed from either the local knowledge or global

knowledge about the network gathered by the individual node. Shortest-path routing

algorithms such as distance vector and link state algorithms are most widely used in

contemporary networks and will be the center of discussion in this thesis.

Heuristic routing extracts data such as packet delay and quality of service pa-

rameters from incoming packets over a period of time to optimize the routing process

based on some heuristic function [36]. Such class of algorithms are application specific

and have very limited use.

1.3 Dynamic Distributed Shortest-Path Routing

As mentioned earlier, this thesis concentrates on dynamic distributed shortest-path

routing algorithms. All the routing algorithms in this class can be conveniently di-

vided into: Link State Algorithms and Distance Vector Algorithms.

1.3.1 Link State Algorithms

The link-state approach is a brute force approach, where each node maintains its view

of the entire network. The node locally executes some algorithm, generally based on

9

the Dijkstra’s shortest-path algorithm, to compute the shortest-path routes from itself

to every other node in the network. In order to maintain a consistent and up-to-date

view of the network, the nodes exchange topological information among themselves

by means of flooding. Every node floods the information about its current view of the

network to its peers. Upon receiving an update from other nodes, the algorithm for

shortest-path routes is locally run to modify the routing table appropriately. Since,

every node is required to maintain information about each of the O(n2) edges in the

network, it requires a storage space of O(n2), where n is the number of nodes in the

network. The computational complexity of a link-state algorithm is a function of the

shortest-path algorithms executed locally at the nodes. The most common algorithm

to compute shortest paths in a link-state routing algorithm is the Dijkstra’s shortest-

path algorithm which has an algorithmic complexity of O(n2). Some examples of the

link-state protocol are the new Arpanet routing protocol [32], Open Shortest Path

First (OSPF) [40], and IS-IS (Intermediate System - Intermediate System) [42].

The popularity of link-state algorithms can be attributed to the fact that they

are free from long term routing loops. Since these algorithms are loop-free, they

are marked by a considerable faster convergence when compare to the loop-prone

counterparts, distance-vector algorithms. Their responsiveness is further improved by

the flooding mechanism employed by them to exchange routing information. However,

10

this improvement in convergence and responsiveness in the link-state algorithms is

not without a price. As mentioned earlier, all link-state algorithms are characterized

by large memory requirements at the node, O(n2), to store the network information.

Further, the message overhead in link-state algorithms is aggravated by the fact that

every topological change perceived by the node is flooded throughout the network.

The high message and computational complexity incurred by these algorithms make

them less scalable. These complexities can be reduced by dividing the network into

a hierarchical structure. Nevertheless, a hierarchical approach makes the link-state

algorithms highly complex, thereby making them difficult to configure and maintain.

1.3.2 Distance Vector Algorithms

Distance-vector routing algorithms, also known as Distributed Bellman-Ford algo-

rithms, have the shortest-path computations based on the distributed version of the

Bellman-Ford equation [4]. In distance-vector algorithms, every node maintains a

distance table, where it stores the shortest-path (distance) information to all the des-

tinations in the network from each of its neighbors. The node, locally applies the

Bellman-Ford equation to the distance table to compute the routing table that pro-

vides the shortest distance to each of the destinations and the next hop used to reach

11

that destination. The nodes maintain an up-to-date version of their distance and rout-

ing tables by exchanging the routing tables with their respective neighbors at regular

intervals or when the distance to a destination has changed. Every node requires a

storage space of O(nE), where E is the average degree of the network. Some popular

examples of the distance-vector routing algorithms are the old Arpanet routing proto-

col [32], Routing Information Protocol (RIP) [22], Exterior Gateway Protocol (EGP)

[34], Border gateway Protocol (BGP) [45], Diffusion Update Algorithm (DUAL) [19],

Extended Bellman-Ford Algorithm [9], and the Optimal Algorithm (OP) [44].

The distributed version of the Bellman-Ford algorithm described above is marked

by its simplicity and ease of maintenance. Since a change in the routing table is

broadcasted only to its immediate neighbors and not to all the nodes in the network,

the distance-vector algorithms have a considerably lower message overhead than their

respective link-state counterparts. Further, the computational complexity at each

node is O(n). However, the distributed Bellman-Ford class algorithms have several

major drawbacks. The convergence of these algorithms after a link or node failure

can be extremely slow due to the looping problem and/or the counting to infinity

problem. The looping problem arises if a path from a node to any destination visits the

same node twice. The counting to infinity problem arises when a node continuously

increments the distance to a destination till the distance reaches some predefined

12

infinity.

Certain distance-vector routing algorithms implement special mechanisms in ad-

dition to the basic Bellman-Ford equation in order to reduce or avoid the looping

and counting to infinity problem. RIP implements mechanisms such as split horizon,

hold down, and poison reverse to reduce the looping problem. However, none of these

methods are able to solve the problem completely. BGP exchanges the entire routing

path in its routing messages, thereby avoiding loops. Several other algorithms use

synchronization mechanisms among the nodes to avoid the looping problem at all

instances [19, 24, 33]. Some of them use synchronization among nodes over multi-

ple hops, whereas some synchronize over a single hop. Nevertheless, synchronization

mechanisms require additional protocol overhead and make the algorithm more com-

plex. Certain algorithms such as the Extended Bellman-Ford and the Optimal Algo-

rithm (OP) store additional information in their routing tables to avoid the looping

problem. They store the predecessor information, which is the second-to-last node in

the path to the destination [9, 44]. With this additional information, the nodes are

able to break any long-term routing loops formed in the network.

It is apparent that there is a wide variety of different routing algorithms available

in literature. The routing algorithm used for a particular network entirely depends

on the requirements and characteristics of the network and has to be decided by the

13

network managers, as there is no algorithm that satisfies all the requirements.

1.4 Mobile Agents in Routing

Most of the work in agent-based network routing is biologically inspired and based

on insect colonies. It relies on the stigmergy principles of insect colonies, where in-

dividual insects such as ants exhibit a simple behavior while collective communities

of these insects exhibit complex problem solving capabilities. Considerable research

has been conducted in mapping the foraging activities of ants to routing and net-

work management activities of mobile agents. Real ants are represented as artificial

agents that traverse the network collecting specific information from their environ-

ment and coordinating their actions through pheromones. A Pheromone is a volatile

chemical released by insects in the environment to indirectly communicate with the

other members of the community. On the basis of this information the agents make

several decisions to adapt their behavior (reactive agents) and/or change the existing

environment affecting their future actions (proactive agents).

Schoonderwoerd et al. implemented a network-centric algorithm, that utilizes an

ant-based approach for routing and network management in virtual circuit switched

networks [46]. This approach was implemented in symmetric telephone networks

where identical costs were associated with the links in both directions. Routing

14

agents travel the network from a source (s) to a destination (d). On their way,

the agents collect information about the path (in terms of routing hops). At every

intermediate node through d, the agents update the routing table entry for the s with

the information collected on the journey from s. It is based on a valid assumption that

in a symmetric network, the characteristics of a route from a source to a destination

is the same as its reverse path. Individual nodes maintain a probabilistic routing

table rather than a fixed shortest-path routing table, whereby a node can select any

neighbor to route the traffic with a non-zero probability. Routing agents traversing

the network update the routing probabilities for a neighbor based on the data collected

by them during their journey. Hence, as per the principles of reinforcement learning,

a good, non-congested route will be more likely to be used by nodes to forward their

data traffic.

The approach adopted by Schoonderwoerd et al. provided load-balancing in sym-

metric circuit switched networks. However, in asymmetric packet switched networks

the estimate of the distance of a route in one direction is different than that in the

reverse direction. Therefore, an agent moving from a source s to destination d cannot

accurately update the routing table at d based on the information gathered during

its journey. For this reason, AntNet introduces the concept of two types of agents,

namely, the forward agent and the backward agents [11, 12, 13]. At regular intervals,

15

every node generates a forward agent that selects a destination at random and moves

towards that destination using the probabilistic routing tables of intermediate nodes.

On their way agents collect the path information. At the destination, the forward

agent transforms itself into a backward agent and backtracks towards the source.

The backward agent uses the exact reverse path of the forward agent and updates

the probabilistic routing tables of intermediate nodes for destination d based on the

information collected by the forward agent.

AntNet, also referred as backward routing, offers a robust adaptive routing ap-

proach in asymmetric packet switched networks. However, it is intrinsically slow since

it requires the agent to reach the destination before any updates to the routing tables

can be made. Co-operative Asymmetric Forward routing (CAF routing) combines

the approach used by Schoonderwoerd et al. and AntNet to eliminate backward rout-

ing in asymmetric networks. Every node n stores the traffic characteristics (average

packet delays) from its neighbors j. This statistical information is utilized by forward

routing agents moving from n to j in order to update the probabilistic routing table

in j. Thus eliminating the need for backward agents.

Other approaches that exploit agents for routing and network management schemes

in circuit switched networks benefit from the concepts of Swarm Intelligence [50, 51].

Such an approach draws from the concept of multiple colonies of agents coexisting

16

and in some cases coordinating with each other working towards independent goals.

A similar approach was introduced by Minar et al., where a population of agents con-

tinuously traverse the network maintaining a brief history of its journey [26, 37, 38].

At every node visited, the agent updates the routing table of the node. The agents

co-ordinate among themselves by sharing the history information with other agents

on the same node, thereby attaining information about parts of the network without

actually visiting it. They analyze the performance of their mechanism with different

migration strategies of agents and with different agent populations.

Every agent-based strategy described above has it own individual goal. The rout-

ing algorithms based on the ant-approach offers an efficient adaptive routing algorithm

that provides load balancing in the communication networks. The agent-routing ap-

proach utilizing a population of agents that co-ordinate among themselves provide

a robust and fault-tolerant routing mechanism in networks. This thesis emphasizes

on the use on intelligent mobile agents to provide a resource efficient and scalable

routing approach in large communications network.

17

1.5 Thesis Overview

Many of the contemporary routing algorithms use simple mechanisms such as flooding

or broadcasting to disseminate the routing information available to them. Such rout-

ing algorithms cause significant network resource overhead due to the large number of

messages generated at each host/router throughout the route update process. Many

of these messages are wasteful since they do not contribute to the route discovery pro-

cess. Reducing the resource overhead may allow for several algorithms to be deployed

in a wide range of networks (wireless and ad-hoc) which require a simple routing

protocol due to limited availability of resources (memory and bandwidth). Motivated

by the need to reduce the resource overhead associated with routing algorithms a new

implementation of distance vector routing algorithm using an agent-based paradigm

known as agent-based distance vector routing (ADVR) has been proposed. In ADVR,

the ability of route discovery and message passing shifts from the nodes to individual

agents that traverse the network, co-ordinate with each other and successively update

the routing tables of the nodes they visit. The approach presented in this thesis is

similar to that adopted by Minar et al. [26, 37, 38]. However, rather than carrying the

entire history of their journey, the agents in ADVR efficiently distribute the routing

information by employing an elegant communication and coordination mechanism.

18

Agents carrying minimal information with them, co-ordinate with other agents on

the same node to make sure that they visit the entire network rather than clustering

in specific parts of the network. In order to further reduce the resource overhead in

ADVR, this thesis introduces a distributed control mechanism, whereby, the agent

population can be dynamically controlled based on the resource overhead incurred in

the network.

Chapter 2 explains the generic principles of an agent-based distance vector rout-

ing scheme giving a detailed analysis of its migration strategies. It also discusses

the rationale behind maintaining an agent population and formulates techniques in

achieving it. Chapter 3 gives a detailed overview of the experimental environment

and presents the model of the event-driven simulator and various utility tools used

for performance analysis in this thesis.Chapter 4 provides an experimental analysis of

ADVR with respect to its performance in different aspects of network routing. The

results obtained in ADVR is compared with the conventional version of distributed

Bellman-Ford. Chapter 5 summarizes this thesis and gives the direction and scope

for future research.

19

CHAPTER 2

AGENT-BASED DISTANCE VECTOR ROUTING (ADVR)

An extensive overview of the agent-technology and the use of intelligent mobile agents

in the network routing domain was provided in the previous chapter. A detailed

introduction to the agent-based routing mechanism implemented as a part of this

thesis is outlined in this section. It explains the different aspects of the agent-based

routing mechanism, such as the agent migration strategy and the dynamic control of

agent population. An analysis of the experiments conducted with agent-based routing

is presented in the next section.

2.1 Principles

As explained in Chapter 1, distance vector routing (DVR) algorithms has an ad-

vantage over link state routing algorithms with respect to simplicity, memory, and

computation. Therefore, the work done in this thesis exclusively concentrates on

DVR-class of algorithms. Distance vector is a simple, parallel, asynchronous, and a

completely distributed routing algorithm implemented in different flavors in a large

number of networks [30]. Every node ni in the network updates its routing table

20

using the Bellman-Ford equation [4, 30]:

D(i, j) =



















0 ∀ i = j

min[d(i, k) +D(k, j)] ∀ nk adjacent to ni

(2.1)

where D(i, j) represents the distance of the best route from node ni to node nj

currently known to ni. d(i, k) represents the cost of traversing the link from node ni to

node nk. Any node ni that receivesD(k, j) from a neighbor nk, computesD(i, j) based

on equation(2.1) and integrates this value in its routing table. If the routing table of

ni is updated, the changes are broadcasted to all the neighbors, which in turn perform

the same algorithm. Hence, a change in the routing table of one node can potentially

cause a burst of broadcast messages throughout the network. This is an undesired

phenomenon referred to as the broadcast storm problem. These broadcasted messages

consume several important network resources such as network bandwidth, routing

queues, and the processing power of the nodes. Further, the generation of these

routing messages increases non-linearly with the size of the network, making them

highly unscalable.

The agent-based solution proposed in this thesis replaces the routing messages

in the network with an active population of agents. Rather than individual nodes

exchanging routing information, mobile agents continuously traverse the network. At

21

each node, they monitor the routing table and improve the existing routes based on

the information gathered by them. After updating the routes, the agents select the

updated routing table, choose a neighboring node, and migrate to it repeating the

entire activity. This agent-based routing mechanism is called as Agent-based Distance

Vector Routing (ADVR).

Agents in ADVR can be formally described as: Λ(i, x, y, Rx, γ), where Λ is an

Agent with ID i migrating from node nx to node ny, carrying the routing table Rx

and using the migration strategy γ to move among adjacent nodes. Hence, agents

start at arbitrary nodes and migrate to adjacent nodes using γ. Upon arriving at a

node ny, an agent Λ(i, x, y, Rx, γ) updates the routing table ry based on the Bellman-

Ford equation [4]:

D(y, j) = min(D(y, j), [d(y, x) +D(x, j)]) ∀ nj in Rx
(2.2)

where D(x, j) is an entry in Rx representing the shortest distance to nj from nx. After

performing the update at ny, the agent selects Ry and migrates to an adjacent node

using migration strategy γ. It is apparent that ADVR relies on the effectiveness of the

distributed Bellman-Ford equation. However, the message overhead is considerably

reduced and is bounded by the number of agents in the network.

22

2.2 Routing Table Selection Algorithm

At every node the agent has to make a decision regarding the routing data it would

carry to the next node. This decision plays an important role in providing a resource

efficient solution with ADVR. If the agent carries the entire routing table available at

each node, it would incur excessive overhead in transferring redundant data. On the

other hand, if the agent selected a subset of total routing data available at the node, it

would unnecessarily delay the propagation of important routing information to nodes

with sub-optimal routes. The flexibility adopted by the agents in selecting the routing

data reflects the inherent degree of intelligence acquired by it. In order to limit the

routing data carried by the agents to a minimum, the agents undertake certain book

keeping functions at every node, also known as the routing table selection algorithm.

Agents identify routing table entries that have been modified, yet have not been

transferred to a particular neighbor. Every entry ei in the routing table rx of node

nx has a neighborhood vector vi associated with it. The neighborhood vector is

essentially a list of boolean flags corresponding to the neighbors of nx. An entry

vi[y] is set to 1 if ei has been transferred to the corresponding neighbor y. At every

node nx, the agent performs the routing table selection algorithm as described in

Figure 2.2 to choose a subset Rx from the routing table rx. At startup, all the flags

23

Nodex
rx

e1
e2
e3
e4

e0

Rx
e0

e4

e1

Agent
 (Migrating to Node 0)

0 1 2

1
0

1

1

0
1

1
0

1

1

1
0
0
0
0

ie

Figure 2.1: Selection of Routing Table Entries by the Agent

INITIALIZATION OF NEIGHBORHOOD VECTOR
1. ∀ei:
2. vi[y] := 1, ∀ neighboring node ny

SELECTION OF ROUTING ENTRIES
3. ∀ei:
4. for neighbor ny, if (vi[y] == 1)
5. Add ei to Rx

6. set vi[y] := 0

CHANGE IN ROUTING TABLE
7. ∀ei that is changed:
8. ∀y, vi[y] := 1

PERIODICALLY AFTER ∆t

9. ∀ei:
10. vi[y] := 1, ∀ neighbor ny whose entry has expired

Figure 2.2: Agent Routing Table Selection Algorithm

24

are set, i.e., vi := 1 ∀ei. Upon selecting a neighbor ny of the current node nx, an

agent Λ(i, x, y, Rx, γ) will carry only those entries ei in Rx for which vi[y] == 1. The

agent copies each entry ei that is to be transferred to the neighboring node ny to

its data segment, and sets the corresponding boolean flag vi[y] == 0. Further, any

routing table entry ei that is modified by an agent will have all its flags vi reset to

1. To facilitate robustness and fault tolerance, all flags vi ∀ei will expire after some

time ∆t and reset (i.e., vi := 1). Resetting flags after ∆t enables nodes to re-transmit

routing updates that may have been lost during previous transmission attempts.

2.3 Agent Migration Strategy

The mere replacement of messages with agents and the design of mechanisms that

facilitate an optimized selection of information to be transferred between network

nodes are insufficient to guarantee adequate performance of route discovery and main-

tenance. Even though each agent can be viewed as an individual, the movement of all

agents must be coordinated in order to prevent agents from forming clusters in some

parts of the network while neglecting to migrate to other parts. This coordination

manifests itself in what is referred to as an agent migration strategy (γ).

An agent follows a migration strategy to determine the next node to visit (i.e., a

neighbor of the current node). It is imperative that an agent-based system carefully

25

chooses its migration strategy as there is no consensus on a single globally optimal

strategy. A method suitable for one application can produce unwanted side effects for

others. The simplest migration strategy is a random selection among all neighbors

with uniform probability [1, 26, 37, 38]. Although simple, the random nature of this

strategy could severely degrade the performance of ADVR, as certain areas of the

network may remain unvisited for long periods.

Another candidate for agent migration strategy is the depth-first search of the net-

work based on network information carried by the agents [37]. This scheme requires

that agents maintain a migration history carrying records of their previous node vis-

itations and refrain from migrating to recently visited nodes. Systems implementing

such a scheme could benefit from population of agents exchanging their migration his-

tory, thereby informing other agents of recently visited nodes. Multiple agents on the

same node exchange their migration history and make migration decisions based on

the combined migration history to visit an unvisited node. However, it was observed

that by exchanging their migration history, all the agents on a given node contain the

same global visitation history thereby making similar decisions resulting in clustering

of agents in specific parts of the network while leaving other parts unvisited. Further,

carrying the migration history as a part of agent payload increases the agent size

imposing an overhead on the system resources.

26

Time = t
0

Node A

Agent
60%

23%

15%

Time = t
1

Node A

100%

21%

52%

Agent

Figure 2.3: Migration Strategy using Edge Pheromones

A biologically inspired migration strategy derives from the concepts of stigmergy

[11, 46]. Stigmergy is the mechanism used by naive insects to communicate with

each other via changes in the local environment. Most of the migration strategies

based on this scheme simulate foraging activities of ants. Ants in search of food leave

a trail of pheromone, an exponentially decaying volatile chemical, to indicate their

presence along a path. Other ants sense the strengths of these pheromone trails and

follow the path of the strongest trail. Although this strategy has shown impressive

results in certain adaptive routing applications, it tends to favor migration patterns,

preventing uniform distribution of agents throughout the network. Hence, it may not

be a feasible solution for a mechanism such as ADVR that require agents to explore

the entire network with equal probabilities.

It is apparent that an ordered traversal of the network is advantageous for an agent

population to uniformly distribute across the network. However the need to remember

27

the migration itinerary must be eliminated. Further, the stigmergetic characteristics

of insect colonies can be exploited to facilitate a communication mechanism between

agents. Hence, the migration strategy employed in ADVR combines the strengths

of exploratory feature of the depth-first-search and the biologically inspired commu-

nication mechanism. That is, with very little knowledge of the network, the agents

communicate with each other via the environment and perform the depth-first-search

on the network as a community. The agents do not carry any network information as

a part of their payload. They simply indicate their presence by leaving pheromone

trails. While the ant pheromones are used to attract other members of the community

[46, 11, 50], in ADVR, pheromones repel other agents. An agent traversing a link

xy from node nx to ny deposits a pheromone on xy. Another agent migrating from

nx will chose a link with the weakest pheromone value thereby migrating to a least

recently visited region of the network. For example, Figure 2.3 shows that the agent

arriving at node A (time = t0) selects the edge with least pheromone value. It also

shows that the while traversing the edge, the agent deposits pheromone trails on it

preventing other agents to immediately follow itself. This class of pheromones, that

assist in agent migration strategy is referred to as edge pheromones.

It must be noted that agents migrating on the basis of edge pheromones will

eventually form a migration pattern selecting the adjacent nodes in a fixed order.

28

Agents traversing the network using a fixed pattern may result in certain unwanted

side-effects. Therefore, in order to break any such rigid patterns, the agents choose

the next node at random with a small probability, thereby breaking the fixed order of

node visitations. In other words, at every node, the agent may choose the migration

strategy based on edge pheromones with a large probability (α) or randomly select

the adjacent node with a small probability (1− α).

2.4 Agent Population

While an appropriate migration strategy may facilitate the performance of route

discovery and maintenance, it contributes little towards solving the problem of re-

source efficiency. There is no strict definition for resource efficiency. In fact, resource

efficiency is rather relative to the amount of resources that are available, the com-

plexity of the task to be performed, and the level of performance (i.e., in terms of

convergence, quality of routes, routing cost etc) expected from the algorithm. For

agent-based routing, all routing traffic for route discovery and maintenance is carried

by the constituent agents in the system. Hence, it is the size of the agent population,

which manifests the resource overhead. In fact, if the size of the population is static,

it represents an upper bound on the degree of message concurrency, and hence the

resource overhead. The message activity in conventional routing algorithms (DVR)

29

Agents Convergence Time Average Routing Overhead

Measured (ms) Normalized Measured (KB/ms) Normalized

10 150 1.0 4.73 0.30
15 85 0.57 7.91 0.51
20 78 0.52 9.70 0.63
25 59 0.39 12.27 0.80
30 47 0.31 15.44 1.0

Table 2.1: Convergence Time and Routing Overhead for Different Agent Population

is in principle uncontrolled and depends on time and size of the network. However in

ADVR it is limited by the number of agents that constitute the agent population.

0

0.2

0.4

0.6

0.8

1

1.2

10 Agents 15 Agents 20 Agents 25 Agents 30 Agents

N
or

m
al

iz
ed

 V
al

ue
s

Path-Cost Convergence
Average Protocol Overhead

Figure 2.4: Comparison of Routing Overhead with Path-Cost Convergence

A large population of agents would increase the parallelism of ADVR resulting in

an improved convergence [1]. However, it is extremely important to analyze the agent

30

overhead in terms of consumption of bandwidth and computational cycles. Increas-

ing the agent population will improve the path-cost convergence of the algorithm at

the expense of increased resource demands. Table 2.1 displays the convergence time

and average routing overhead for different agent population. Figure 2.4 shows the

normalized convergence time and average routing overhead for multiple agent popula-

tion. The average routing overhead was calculated by dividing the cumulative routing

overhead encountered in ADVR till convergence by the convergence time. It can be

seen from Figure 2.4 that the convergence time and routing overhead are inversely

related to each other. It was observed that a large agent population has a signif-

icantly lower convergence time owing to its parallelism. Although low convergence

time is desirable, it has other side effects. A larger agent population has a significantly

larger average message overhead because a substantial number of agents traverse the

network concurrently imposing resource requirements on the network. For scalable

systems, the average overhead should be as low as possible. Therefore it is apparent

that significantly large agent population, resulting in high average overhead ham-

per the scalability of ADVR. On the other hand, a very small agent population will

hinder the performance of ADVR, in terms of convergence times and reactivity to

the dynamic behavior of networks. Hence, there is a need for a mechanism that is

capable of adjusting the agent population as close to the optimal value as possible.

31

This will result in an acceptable path-cost convergence without producing excessive

average overhead. It can be observed from Figure 2.4 that for such an optimal agent

population the difference in the normalized convergence time and normalized aver-

age overhead must be minimum. In the given example 15 agents would result in

an optimal trade-off between convergence time and resource overhead. It is easy to

make such conclusions about the optimal population after the simulation results have

been obtained. However, in the absence of such post-simulation analysis, it is diffi-

cult to obtain a balance between route convergence and resource overhead. Further,

the unpredictable behavior of dynamic networks continuously vary the importance of

the two conflicting requirements. Thus, it is necessary that an adaptive multi-agent

system provides an efficient control mechanism that allows a dynamic control of the

agent population to balance the convergence time against resource overhead in the

network.

Changing the agent population dynamically in response to its environment is a

complex issue in the absence of a central controller. Individual agents lacking a

bird’s eye view of the network are unable to make global assessments regarding the

resource availability and the characteristics of the network. Therefore, it requires a

high degree of coordination among agents to analyze the global environment from

local information. To facilitate such a coordination, ADVR once again exploits the

32

Time = t
0

Agent

Node A

Pheromone = X
Node

Agent

Agent

Agent

Node A

Node A

 X < Cloning Threshold

X > Terminate Threshold

Node A

Cloning Threshold <= X <= Terminate Threshold

Time = t
1

Figure 2.5: Population Control using Node Pheromones

33

principles of stigmergy. Mobile agents with minimum cognitive capabilities commu-

nicate with each other using pheromones, establishing an infrastructure that assists

them in assessing their environment. Pheromones that aid the agents in population

control are referred to as node pheromones.

The strength or intensity of node pheromones can be expressed by the equation

e−(∆t), where ∆t is the time since the deposition of the pheromone. An agent visiting a

node nx at time t2 extracts the value of the node pheromone that was deposited at time

t1 (t1 < t2) using the equation e−(t2−t1). If this value is above a certain termination

threshold (Ψ), the agent kills itself. On the other hand, if the node pheromone

value reduces below a cloning threshold (Ω), the agent clones itself. However if

Ω ≤ e−(∆t) ≤ Ψ, the agent neither clones nor kills itself. Before leaving nx, the

agent deposits additional node pheromone at time t2. The values of Ψ and Ω can

be controlled dynamically to indicate the availability of local resources at the nodes.

Hence, when an agent realizes that the resource availability at a node is low, it

dynamically manipulates the values of Ψ and Ω, such that successive agents visiting

the same node have a higher probability of killing themselves. Likewise, when an

agent realizes that the local agent visitation on a node is low, signifying slow route

convergence, it manipulates Ψ and Ω to increase the local agent population. A flexible

mechanism can combine other factors to control the population of agents including

34

the path-cost convergence time.

ADVR implementing a dynamic agent population may start with a single agent or

an arbitrary number of agents. Nevertheless, the agents coordinate among themselves

and dynamically adjust to a particular range of population based on the values of

Ψ and Ω. Values of Ψ and Ω may vary asynchronously at individual nodes causing

constant fluctuations in the agent population in the network. However, an appropriate

mapping of Ψ and Ω to the resource availability must reflect the global state of the

network based on local information, thereby reducing extreme fluctuations in agent

population at individual nodes. Mapping these thresholds in a distributed fashion to

the global state of the network based on local information is beyond the scope of this

thesis.

It is important that the agents are highly responsive to changes in the network

conditions. For example, any failure in the network must be reflected in the routing

tables of individual nodes as soon as possible to avoid any long-term or short-term

routing loops. To accomplish this task, a node that detects a failure in the network

generates special type of agents called as auxiliary agents. Auxiliary agent propagate

the negative information regarding the network failure within its neighborhood. They

are special because they are not subject to the rules governing the agent population

using node pheromones. In other words, when a node detects a failure in the network

35

it generates a suitable number of auxiliary agents to traverse each of the adjacent

edge and carries the new information to its immediate neighbors. Making these

agents immune to the population control mechanism guarantees the propagation of

important routing information without the agent terminating itself. On the other

hand, allowing an unrestricted lifespan to an agent can monotonically increase the

agent population over a period of time. Therefore, auxiliary agents are characterized

by a hop count, which signifies the number of migrations they can make before being

subject to the population control mechanism. This ensures that when a network

failure occurs, the agent population is increased, sustained at this increased level for

a sufficient time for the new information to propagate, and finally reduced to optimize

the network resources.

36

CHAPTER 3

SIMULATION ENVIRONMENT

A detailed discussion including the basic principles and migration strategy in agent-

based distance vector routing (ADVR) was presented in the previous section. An

extensive description of the simulation and experimental environment is provided in

this chapter. An analysis of different performance issues of ADVR in comparison

with conventional distance vector routing is depicted in the next chapter.

3.1 Simulation Model

In order to analyze and compare the performance of ADVR with conventional DVR,

an object-oriented discrete event-driven simulator was implemented. This simulator

will be referred to as RSim (Routing SIMulator) throughout this thesis. RSim models

the physical entities in the target system as objects. Interaction between these entities

is mapped as an event (ei, ti), where ei is some action to be performed at time ti.

As shown in Figure 3.1, to the heart of RSim is the simulation engine that main-

tains the global time of the system and manipulates a set of events (ei, ti). The

37

Time
Global

Priority Event Queue

Events

Routing
Table

Protocol

Node Link Graph

Packet Queue Agent

Simulation Engine

Monitor
Performance Event

Generator

Abstraction of Physical System

Figure 3.1: RSim (Routing SIMulator)

simulation engine maintains the set of events as a heap (priority queue) in an as-

cending order of time. The engine selects the event (ei, ti) such that ti < tx,∀(ex, tx),

executes the routines associated with it, and advances the global system time to ti.

The execution routines associated with the event ei abstract the characteristics of

the physical event by calling routines on the objects that model the physical entities.

Physical entities such as network node, communication link, routing queue, mobile

agent, data packet, routing table, and network graph are represented by correspond-

ing software components, each of them capable of generating events to communicate

with other entities. Further, RSim uses a sophisticated performance monitor to record

different statistical data generated during the course of simulation.

38

3.2 Network Model

A physical network is represented in RSim as an undirected connected graph G(V,E)

with |V | vertices and |E| edges. An edge xy in the graph connects nodes nx and

ny in both directions. Asymmetric weights are associated with edges in both direc-

tions. The weight of the edge can change to any positive value during the course of

the simulation to reflect network characteristics. RSim assumes a reliable network,

thereby avoiding the complexities of network layer protocols that handle data loss

and corruption.

Further, every node in the graph represents a store-and-forward router, which is

characterized by a limited buffer space and processing speed. A link connecting two

nodes is characterized with a specific link capacity. Following the example of a popular

implementation of DVR, namely the Routing Information Protocol (RIP) [22], RSim

assumes a variable sized packet with a maximum of 512 bytes. Each packet consists

of a 4 byte header and variable payload. Each entry in the routing table occupies

20 bytes in the payload. For fairness, both, DVR and ADVR, use the same packet

characteristics.

Figure 3.2 shows the simulation model for DVR. Every node has an input queue

whereby all incoming packets are queued. The average service rate for the input

39

Routing Table

Process
Routing

Input Queue

Node

Output Queue

Input Link

Output Link

Figure 3.2: Simulation Model for DVR

queue depends on the processing rate of the router which can be in the range of

300000− 500000 packets per second (pps) [10, 43]. Every node has a routing process

which inspects the input queue. The routing process is responsible for routing data

packets to the appropriate output interface as well as maintaining the routing table.

Each outgoing link (interface) is associated with an output queue whose service rate

is controlled by the transmission rate of the link. The transmission rate of the link

is given by 1/Tt, where Tt is the transmission time for one packet. For experiments

conducted with RSim, a link capacity of 10 Mbps is assumed, which gives an average

transmission rate of approximately 2500 packets per second (pps). Hence it is clear

that a majority of the queuing would occur at the output queues due to its slow

40

Output Queue

Agent Module

Agent 1 Agent n

Process
Routing

Input Queue

Routing Table

Agent Queue

Input Link

Node

Output Link

Figure 3.3: Simulation Model for ADVR

service rate.

Figure 3.3 shows the simulation model for ADVR. It has an additional module

for agent management which provides a runtime environment for agents. The agent

management module provides the framework for agent transmission, reception, pop-

ulation control, and route maintenance functions. All agent related packets (agent

code and agent data) are forwarded to the agent management module where they are

queued in the agent queue. Agents (agent code) are activated by the agent manage-

ment module from the agent queue and receive their respective data (agent data).

Depending on the data received by the agents, they update the routing table. On

completion of its task, the agent is transmitted by this module to the next node using

41

Initialization

1. set A← V
2. set B ← {}
3. set C ← {}
4. set D ← {}

Spanning Tree

5. v ← randomly chosen vertex from set A
6. B ← {v}
7. A← A− {v}
8. for each v ∈ A chosen randomly, do
9. u← randomly chosen vertex from B
10. C ← C + {{u, v}, {v, u}}
11. A← A− {v}
12. B ← B + {v}

Satisfy graph degree

13. for each edge {u, v} ∈ V × V , {u, v} /∈ C, do
14. if u 6= v then
15. D ← D + {{u, v}}
16. while |C| < e do
17. {u, v} ← random edge in D
18. C ← C + {{u, v}, {v, u}}
19. D ← D − {{u, v}, {v, u}}

Figure 3.4: Pseudo-random Graph Generation Algorithm

its migration strategy. The routing process is responsible for routing incoming regular

data packets to the appropriate interfaces using the routing table maintained by the

agents.

42

3.3 Tools

Several utility tools were developed along with RSim to accomplish certain specialized

task. These tools were extensively used for the experimental analysis conducted as a

part of this thesis.

3.3.1 Graph Generator

The graph generator was developed to construct a pseudo-random, connected, undi-

rected graph G(V,E) with |V | nodes and e = |E| edges. As shown in Figure 3.4,

the graph is generated in a two step process. First, the graph generator builds a

random spanning tree containing |V | − 1 edges in set C, hence ensuring that the

graph is connected. Secondly, it adds e− (|V | − 1) random edges from S −C, where

S = {u×v|u 6= v;u, v ∈ V }, to make e edges in total. Features to control the average

node degree of G, δ(G), have been implemented, whereby e = δ(G)×|V |
2

. It must be

noted that this algorithm biases the graph with a few nodes with a higher degree.

3.3.2 Network Animator

The Network Animator (NAM) [14] is a Tcl/Tk based utility tool used to visualize

network simulation traces. It has the capability to read large animation data recorded

by simulators and animate the real world packet trace data. It is highly customizable

43

Figure 3.5: Network Animator

44

and is generally used with the Network Simulator (NS) [31]. The visualization module

of RSim acts as an adapter to convert the events generated by RSim into a format

understandable by NAM. It produces a trace-file with information regarding the net-

work topology, nodes, links, queues, packet transmission, and network connectivity

(See Figure 3.5). Such a visualization mechanism served as a useful tool in evaluating

the influence of several parameters in RSim.

45

CHAPTER 4

EXPERIMENTAL ANALYSIS

The simulation environment for the experimental analysis of this thesis is discussed in

the previous chapter. The analysis and performance evaluation of DVR and ADVR

is conducted in this chapter. The next chapter will summarize this thesis describing

the scope of future research work on this topic.

4.1 Definitions

Before discussing the experimental results, it is essential that we establish a vocabu-

lary that will be useful in our further discussions.

Definition 1 Instantaneous Routing Load (IRL) of a routing algorithm at a given

time is defined as the routing load or the number of routing messages concurrently

traversing the network at that instant.

Definition 2 Peak Instantaneous Routing Load (Peak IRL) of a routing algorithm

is the maximum IRL throughout the period of its execution.

Definition 3 Network::(o, d) is defined as a randomly connected network with order

(number of nodes) o and average degree d.

46

Definition 4 Path-Cost convergence of the algorithm is defined as the process where

every node in the network has a shortest-path route to every other node in the network.

Definition 5 Route discovery is the process where every node in the network obtains

a route for every other node in the network.

4.1.1 Analysis of Path-Cost Convergence

In order to verify the utility of ADVR, it is imperative to show that ADVR will

converge with any number of agents. Further, it is vital to compare the convergence

performance with conventional DVR in order to compare the two approaches in vari-

ous scenarios. It is the characteristics of DVR that every change in the routing table

of an individual node is broadcasted to its immediate neighbors. Additionally, the

entire routing table of every node is broadcasted periodically to each of its neigh-

bors. These events occur asynchronously making use of message concurrency, which

in turn causes DVR to be highly reactive to small changes. Hence, any change in a

single routing table may have a cascading effect initiating a sequence of broadcasts

throughout the network. Such an aggressive parallelism in DVR may result in bursts

of update messages within the network. Conversely, ADVR implements controlled

parallelism characterized by the number of agents in the network. Although ADVR

47

0

5

10

15

20

25

30

0 20 40 60 80 100 120

of

 N
od

es
 C

on
ve

rg
ed

Time (ms)

DVR
5 Agent ADVR

10 Agent ADVR
20 Agent ADVR

(a) Network::(30, 3)

0

5

10

15

20

25

30

0 50 100 150 200 250

of

 N
od

es
 C

on
ve

rg
ed

Time (ms)

DVR
5 Agent ADVR

10 Agent ADVR
20 Agent ADVR

(b) Network::(30, 6)

Figure 4.1: Pat-Cost Convergence
48

0

5

10

15

20

25

30

0 50 100 150 200 250

of

 N
od

es
 C

on
ve

rg
ed

Time (ms)

DVR
10 Agent ADVR
20 Agent ADVR

Figure 4.2: Response to Network Failure

can replicate the behavior of DVR, routing information, encapsulated in the agent

payload, is generally propagated to only one neighbor. Such an approach restricts

the outburst of routing packets due to small changes. Nevertheless, controlled par-

allelism reduces the sensitivity of the algorithm, thereby exhibiting a relatively slow

convergence.

It can be shown, that in a static network, a single agent can achieve the conver-

gence of routing tables at all nodes in the network, provided that it uses an appropriate

migration strategy, which allows for complete traversal of the network. Nevertheless,

49

a single agent is insufficient to complete this task in a time that is comparable to

that of concurrent messaging in DVR. Hence, in order to achieve a comparable per-

formance with DVR, a population of agents will have to be deployed in the network.

The number of agents in the network mark the degree of parallelism in ADVR. These

agents implicitly cooperate and coordinate with each other, thereby accelerating the

process of path-cost convergence.

It is shown in Figure 4.1(a) that a small agent population (¿ o), where o is the

order of the network, exhibits a slow yet comparable convergence with respect to

DVR. It is evident that the small agent population cannot successfully compete with

the aggressive parallelism of DVR. However, by increasing the agent population to

some value (< o) the convergence of ADVR can outperform that of DVR. It must

be noted that although a small population of agents have a degree of parallelism

less than DVR, they are capable of outperforming DVR since they do not experience

large queuing delays due to aggressive messaging. It can be observed in Figure 4.1(b)

that the path-cost convergence in ADVR is further reduced in denser networks. The

increased density causes the agents to traverse more edges, therefore taking a longer

time to converge. Hence, a larger agent population is required in a dense network to

achieve the same performance as that in a sparse network.

Throughout the course of its existence, the topology of the network can change

50

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

of

 N
od

es
 C

om
pl

et
el

y
C

on
ne

ct
ed

Time (ms)

DVR
5 Agent ADVR

10 Agent ADVR
20 Agent ADVR

(a) Network::(30, 3)

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

of

 N
od

es
 C

om
pl

et
el

y
C

on
ne

ct
ed

Time (ms)

DVR
5 Agent ADVR

10 Agent ADVR
20 Agent ADVR

(b) Network::(30, 6)

Figure 4.3: Route Discovery
51

due to several reasons such as node and link failures. It is essential that a routing al-

gorithm detect these failures and converge to the new shortest-paths without causing

large unwanted delays in data delivery. Hence, it is important to analyze the re-

sponsiveness of the routing algorithm in the event of topological changes. Figure 4.2

compares the convergence time of the routing algorithms in Network::(30, 6) after a

major topological change. It is evident that ADVR with a reasonable population of

agents using the concept of auxiliary agents can converge from topological changes in

times comparable to DVR. Once again it is apparent that ADVR with a larger agent

population produces convergence results better than DVR.

4.1.2 Analysis of Route Discovery

Route discovery plays an important role in the performance of communication net-

works. It is crucial to evaluate any routing algorithm with respect to the speed at

which nodes in the network obtain a route for every other node in the network. Even

if these routes are sub-optimal, they provide a benchmark to measure the availability

of the network to be used by other applications. Figure 4.3(a) depicts the number of

nodes that acquire complete connectivity to all other nodes in the network over time.

It is observed that the aggressive parallelism in DVR facilitates quick assimilation of

network connectivity for DVR. On the other hand, a small population of constituent

52

agents, manifesting small concurrency are insufficient to discover routes as rapidly

as DVR. Like path-cost convergence, route discovery in ADVR can be improved to

outperform DVR by escalating the agent population, thereby increasing the degree of

concurrency. Even though increasing the number of agents in the network increases

the resource consumption by agents, it is lower as compared to DVR. It is imper-

ative to note that the performance of ADVR in terms of route discovery is greatly

affected by the migration strategy adopted by the agents. Again, it is evident from

Figure 4.3(b) that performance of ADVR is hampered by increased network density

due to the increased number of edges that must be traversed by the agents.

4.1.3 Analysis of Routing Overhead

As mentioned in Chapter 2, DVR attributes its sensitivity to the large number of rout-

ing messages exchanged by the nodes. The number of concurrent routing messages

in a network implementing DVR is a function of time and network size. However,

the number of concurrent routing messages in ADVR is constant and manifested in

the number of constituent agents. Since the number of agents in the network can be

adjusted as per resource overhead, ADVR can provide a highly scalable solution to

the routing problem. In order to evaluate the scalability of any routing algorithm, it

is essential to analyze the instantaneous routing load (IRL) incurred in the algorithm.

53

0

20

40

60

80

100

120

140

0 2 4 6 8 10

IR
L

(K
B

)

Time (ms)

DVR
10 Agent ADVR
20 Agent ADVR

(a) Network::(30, 3)

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10

IR
L

(K
B

)

Time (ms)

DVR
30 Agent ADVR
60 Agent ADVR

(b) Network::(100, 6)

Figure 4.4: Instantaneous Routing Overhead
54

For an algorithm to be scalable, the IRL in the network should be as low as possible at

all times and without large variations. Figure 4.4(a) shows the average IRL for DVR

and ADVR measured every 0.5 milliseconds. It was observed that in a stable state

of the network, the IRL in both algorithms is fluctuating around a constant value.

However, it is interesting to see the Peak IRL of the algorithms in the event of an

unstable network. Owing to its aggressive parallelism, DVR experiences a large flow

of messages at network startup. Although such parallelism helps DVR with a slightly

faster convergence, the peak routing load in DVR is several magnitudes larger than

that of ADVR. Even with a larger population of agents that converges faster than

DVR, the peak routing load in significantly smaller than DVR. It is evident from Fig-

ure 4.4(b) that an increase in network size and density produces an excessive increase

in the peak IRL for DVR. Such a sharp increase in routing traffic implies its lack of

scalability and can cause an overflow of transmission queues, thereby contributing to

jitter, packet loss, and/or congestion in large networks implementing DVR. Among

other things, the non-scalable characteristics of DVR restricts its use in large net-

works. Conversely, ADVR exhibits its scalability by maintaining its low and stable

peak IRL, proportional to the number of agents in the network.

Figure 4.5 shows the average delays experienced by data traffic in an unstable

network. Application data exchanged between network nodes experience variable

55

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200

P
ac

ke
t D

el
ay

 p
er

 H
op

(m
s)

Time (ms)

DVR
20 Agent ADVR
40 Agent ADVR

Figure 4.5: Average per Hop Packet Delay

56

queuing and transmission delays depending on the stability of the network. It can

be seen that with DVR, any change in the network topology severely hampers the

performance of the network due to increased IRL. This ultimately increases the queue

lengths at individual nodes causing data packets from other applications to experi-

ence excessively large queuing delays. This problem is not encountered in ADVR

since the IRL never increases beyond a certain small value which is indirectly con-

trolled by adjusting the agent population. It must be noted that increasing the agent

population to a significantly large number does not necessarily increase the average

packet delays. This enables the agent-based mechanism to be used in networks that

are required to satisfy strict Quality of Service (QoS) assurances even in the event of

major topological changes.

The RSim simulation model assumes that the agent code segment consumes 100

bytes of the IP packet. To reduce the resource overhead, it is imperative to consider

the structure of the agents. If the agent code segment is excessively large, the agent

will consume significant amounts of resources in terms of bandwidth, memory, and

computing cycles. Conversely, if the code segment is severely restricted, it may be

impossible to supply some of the agents with sufficient intelligence to optimize their

task performance. In order to reduce the size of the code segment, it is possible to

supply the agents code as pre-loadable software modules at each node. The behavior

57

of these modules can be controlled by a set of parameters that are provided by the

agent upon arrival at that node. These parameters will replace the code segment that

is otherwise carried by the agents, resulting in smaller light-weight agents that may

consume less bandwidth. Nevertheless, this approach does not eliminate the problem

of resource consumption, it simply shifts the resource overhead from the link (i.e.,

bandwidth) to the node (i.e., computation).

4.1.4 Analysis of Agent Population in ADVR

Experiments conducted for this thesis assume that a mechanism to map the values

of Ψ (Termination Threshold) and Ω (Cloning Threshold) to the global state of the

network based on local information exists and is used by the agents in ADVR. Hence,

the values of Ψ and Ω are consistent at all the individual nodes in the network. Fig-

ure 4.6(a) shows the convergence of the agent population in Network::(30, 3). The

experiment was conducted with constant values for the thresholds (Ψ = 0.75 and

Ω = 0.25). The purpose of the experiments was to demonstrate the ability of the

population control mechanism in ADVR to control the agent population in the net-

work. It was observed that irrespective of the initial population, the agent population

converges to a small range. Networks initialized with a small number of agents es-

calate the agent population to a certain value. However, the escalation of agent

58

0

20

40

60

80

100

120

140

0 50 100 150 200

of

 A
ge

nt
s

Time (ms)

Initial Population = 1
Initial Population = 30

Initial Population = 100
Initial Population = 130

(a) Variation in Agent Population with Ψ = 0.75 and Ω = 0.25

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

of

 A
ge

nt
s

Time (ms)

Initial Population = 1
Initial Population = 30

Initial Population = 100
Initial Population = 130

(b) Variation in Agent Population with different values of Ψ and Ω

Figure 4.6: Dynamic Control of Agent Population
59

population occurs at every node flooding the network with excessive agents. Never-

theless, the system responds to the overhead manifested by an excessive number of

agents and autonomously reduces the population as a function of the corresponding

pheromone thresholds. On the other hand, networks initialized with a large number

of agents realize the per-agent overhead and continuously reduce the number until it

reaches a population that has a small deviation about a mean value.

Although Figure 4.6(a) shows the convergence of agent population in the network

based on some fixed values of Ψ and Ω, the resource utilization in a real network will

change dynamically thereby requiring the values of Ψ and Ω to be adapted. This

results in a continuous adjustment of the constituent agent population. Figure 4.6(b)

shows the control of agent population in the network with varying values of Ψ and Ω.

A vector, < time(ms),Ψ,Ω >,was applied to the agent system, where time denotes

the simulation time in milliseconds when the new values of Ψ and Ω would be reflected

in the network. The values for the vectors that have been supplied in this experi-

ment are as follows: < 0, 75, 25 >,< 200, 90, 40 >,< 400, 60, 10 >,< 600, 95, 45 >

,< 800, 55, 5 >. It can be seen that the control mechanism is highly responsive to

the variation in threshold values and dynamically adjusts the agent population ap-

propriately. It should be noted that such a control mechanism is extremely useful,

not only to control the agent population based on the resource overhead, but also

60

to control the population based on other requirements. For example, an agent-based

system that desires low convergence time, irrespective of the incurred overhead, can

dynamically scale the agent population by appropriately adjusting the values of Ψ

and Ω. There are a variety of different mechanisms that are deemed appropriate

for the adaptation of threshold values as a function system behavior. In ADVR, for

example, each node may observe the number of changes to the local routing table

that occur with each visit of an agent. Here, a large number of updates may indicate

highly dynamic network behavior and may warrant a setting of threshold that result

in an increased agent population. In contrast, few or no routing table updates for

some period of time is indicative of a network whose conditions have stabilized. In

the interest of preserving resources, the constituent agent population may now be

reduced by adapting Ψ and Ω correspondingly. While this mechanism provides a pos-

sible solution to the problem of mapping system behavior to threshold values, it does

not help to determine the appropriate population levels. Hence the adjustments of Ψ

and Ω must be supported by a simple learning algorithm that can aid in suppressing

oscillations of agent population.

61

CHAPTER 5

SUMMARY AND FUTURE WORK

An analysis of the experimental evaluations of ADVR was presented in the previous

chapter. A summary of the entire thesis and the scope of future work within this

research topic is depicted in this chapter. The impact of the findings in this research

on several other distributed application is also discussed here.

5.1 Summary

This thesis describes a distance vector routing scheme based on the mobile agent

paradigm – Agent-based Distance Vector Routing. One of the major disadvantages

of conventional implementations of distance vector routing algorithms is that their

corresponding resource overhead is generally unbounded. In the proposed ADVR,

the routing messages are replaced by a population of agents. The corresponding

message activity is thus bounded by the number of constituent agents in the network.

However, by limiting the number of agents in order to control resource overhead, the

degree of concurrency which the algorithm can employ is restricted as well.

According to ADVR, a group of agents traverse the network visiting network

62

nodes. At each individual node, the agent executes the distributed Bellman-Ford

equation, therefore collectively converging all the nodes in the network with the

shortest-path routes to every other node. The agents execute a special routing

table selection algorithm by which they only propagate selected information from

one node to another. Multiple agents communicate with each other using synthetic

pheromones. They co-ordinate their activity in order to equally distribute themselves

throughout the network without forming agent clusters. It was shown that larger

the agent population, the better was the path-cost convergence. Nevertheless, the in-

creased agent population also increases the average routing overhead. This suggests

that an optimal population of agents must be deployed in the network to satisfy the

performance and resource overhead requirements of the network. ADVR employs a

pheromonal approach which autonomously controls the agent population. The agents

can dynamically terminate or clone themselves as a function of the pheromone value

detected at the node, the Cloning Threshold (Ω), and the Termination Threshold

(Ψ). In order to enhance the responsiveness of ADVR in the event of a topological

change, an additional concept of auxiliary agent was introduced. The auxiliary agents

with a limited hop count help to propagate the new topological information within

the neighborhood of the failed node or link.

63

Several experiments have been conducted to analyze the performance of the agent-

based distance vector routing scheme. In particular, importance was given to the

path-cost convergence, route discovery, and instantaneous routing load (IRL) of

ADVR. Experiments were also conducted to verify the distributed and dynamic ma-

nipulation of the agent population in the candidate network. It was verified that

although DVR is aggressively reactive in path-cost convergence and route discovery,

ADVR with a small agent population produces a comparable result. Further, ADVR

with a substantial number of agents can closely compete with the performance of

DVR, at times outperforming it. It was analyzed that the use of auxiliary agents

by ADVR in the wake of network failures enhances the responsiveness of ADVR to

rapidly converge to the new routes. With the help of carefully crafted experiments, it

was shown that the message activity in DVR was significantly higher when compared

to that of ADVR. Every change in the network topology produces an excessively

large number of routing messages in DVR due to its broadcast storm problem. This

large message activity further increased with an increased network density. It was

observed that such large routing loads in the network using DVR causes excessive

queuing delays for data packets from other applications in the network. This causes

unwanted jitter and data loss thereby severely hampering the performance of the net-

work. Experiments with the dynamic population control mechanism show that the

64

agent population can be effectively controlled by adjusting the value of Ω and Ψ to

reflect the appropriate state of the network. Irrespective of the initial agent popula-

tion, the distributed control mechanism results in a small range of agents deployed in

the network. The population of these agents can be changed dynamically at run-time

by appropriately changing the values of Ω and Ψ.

5.2 Future Work

The results gathered in this thesis are extremely encouraging. However, it is impor-

tant to validate the experimental results with sufficient analytic proofs. Carefully

designed theoretical derivations must prove the validity of several concepts intro-

duced in this thesis. It is essential to prove that single and multiple agents employing

the pheromone-enabled migration strategy will visit all the nodes and edges in the

network and converge the network to its shortest-path routes.

In order to provide a flexible and dynamic population control mechanism, it is nec-

essary to represent the global state of the network into a set of independent threshold

values (Ω and Ψ). Further, these threshold values must be appropriately deduced form

the local environment of individual nodes and must be flexible enough to respond to

rapid network changes. This is a complex research project and will draw results from

several aspects of computer science including artificial intelligence, decision theory,

65

and graph theory.

The robustness of the agent-based routing mechanism can be furthered improved

by designing a work sharing logic between the agents. A group of agents will com-

municate with each other to logically partition the physical network into equal sized

sectors. The agents will then equally distribute themselves among those partitioned

sectors each group taking care of its sector. All the concepts introduced in this the-

sis will then be applied within individual sectors. In other words, such an approach

provides a hierarchical framework to the agent-based mechanism increasing its fault

tolerance and scalability.

It must be noted that the feasibility and performance analysis of ADVR is a

significant yet incomplete part of a larger research topic. In order to fully justify

the application of ADVR to contemporary networks it is essential to have a working

implementation of the new routing algorithm. The deployment of such an application

onto physical machines will help to understand several requirements and limitations

of the agent-based approach in the real world.

5.3 Broader Impact

The results of this thesis are expected to provide alternative ways to design and im-

plement resource efficient and scalable routing algorithms. Particularly in view of the

66

recent developments in ad-hoc and mobile networks, agent-based solutions to routing

may be alluring as the such system are inherently fault tolerant. While the main

objective of this thesis is on routing, agent-based solutions are deemed suitable for

many other distributed network centric applications. Network monitoring, for in-

stance, could take advantage of the mechanisms developed as part of this approach.

The dynamic population control mechanisms facilitate the design of adaptive solutions

for monitoring processes or sensors that undergo complex dynamics and cannot rely

on statically designed schedules and itineraries. The distributed control mechanisms

described above may help to coordinate the actions of otherwise autonomous agents

to find a global monitoring strategy. The management of large networks and dis-

tributed computing environments can take advantage of the mobile agent paradigm

and the tools designed for this research. By exploiting mobility and intelligence,

agents facilitate system fault tolerance through the expedient discovery of redundant

communication paths and/or alternative computing platforms. Resource manage-

ment and distributed cluster scheduling in support of scientific applications in Grid

computing may take advantage of such properties. In general, it is expected that this

thesis and its corresponding results will motivate the design of agent-based solutions

for large scale system-level applications.

67

BIBLIOGRAPHY

[1] K. Amin, J. Mayes and A. Mikler, Agent-based Distance Vector Routing. Proceed-

ings of the Third International Workshop, MATA 2001, Montreal, Canada, August

2001.

[2] K. Amin and A. Mikler, Dynamic Agent Population in Agent-based Distance Vec-

tor Routing. ISDA2002: Second International Workshop on Intelligent Systems

Design and Applications, Atlanta, USA, August 2002.

[3] R. Beckers, J. Deneuborg, and S. Goss, Trails and U-turns in the Selection of a

Path of the Ant Lasius Niger. In J. theor. Biol. Vol., 1992.

[4] R. Bellman, Dynamic Programming. Princeton University Press, 1957.

[5] D. P. Bertsekas and R. G. Gallager, Data Networks. Prentice-Hall, 1987.

[6] A. Bieszczad, B. Pagurek, and T. White,Mobile Agents for Network Management.

IEE Communications Surveys, 1998.

[7] J. M. Bradshaw, Software Agents. AAAI Press, Menlo Park, California/The MIT

Press.

68

[8] P. Braun, C. Erfurth, and W. R. Rossak, An Introduction to the Tracy Mobile

Agent System. Technical Report No. 2000, Friedrich-Schiller-Universitat Jena, In-

stitut fur Informatik, September 1999.

[9] C. Cheng, R. Riley, S. Kumar, and J.J. Garcia-Luna-Aceves, A Loop-Free Ex-

tended Bellman-Ford Routing Protocol without Bouncing Effect. Computer Com-

munications Review, Vol. 19(4):224–236, September 1989.

[10] Cisco, Product Specification of Cisco 7300 Series Internet Routers.

[11] G. Di Caro and M. Dorigo, AntNet: A Mobile Agents Approach to Adaptive

Routing. Tech. Report, IRIDIA/97-12, Universit Libre de Bruxelles, Belgium.

[12] G. Di Caro and M. Dorigo. AntNet: Distributed Stigmergetic Control for Com-

munications Networks. Journal of Artificial Intelligence Research, 1998.

[13] G. Di Caro and M. Dorigo, An Adaptive Multi-Agent Routing Algorithm Inspired

by Ants Behavior. Proceedings of PART98 - 5th Annual Australasian Conference

on Parallel and Real-Time Systems, pages 261–272. Springer-Verlag, 1998.

[14] D. Estrin, M. Handley, J. Heidemann, S. McCanne, Y. Xu, and H. Yu, Network

Visualization with the VINT Network Animator NAM. Technical Report 99-703b,

University of Southern California, March 1999.

69

[15] R. A. Flores-Mendez, Towards a Standardization of Multi-Agent System Frame-

works. ACM Crossroads, Summer 1999.

[16] I. Foster and C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit.

The International Journal of Supercomputer Applications and High Performance

Computing, 11(2):115-128, Summer 1997.

[17] D. Freedman, Experience Building a Process Migration System for Unix. Pro-

ceedings of the USENIX Winter Conference, pages 349–355, January 1991.

[18] A. Fugetta , G. P. Picco, and G. Vigna, Understanding Code Mobility. IEEE

Transaction, Software Engineering 24(5), 342-361, 1998

[19] J.J. Garcia-Luna-Aceves, Loop-Free Routing Using Diffusing Computations.

IEEE/ACM Trans. Networking, 1:130–141, February 1993.

[20] J. J. Garcia-Luna-Aceves and S. Murthy, A Path-Finding Algorithm for Loop-

Free Routing. IEEE/ACM Transactions on Networking, Vol. 5, No. 1, February

1997.

[21] R. Gray, D. Kotz, G. Cybenko, and D. Rus, Agent Tcl. In: W. Cockayne and

M. Zyda (eds) Mobile Agents: Explanations and Examples, Manning Publishing,

1997.

70

[22] C. Hedrick, Routing Information Protocol. RFC 1058, June 1988.

[23] IBM Software, The IBM Aglets Workbench. Website:

http://www.trl.ibm.co.jp/aglets.

[24] J.M. Jaffe and F.M. Moss, A Responsive Routing Algorithm for Computer Net-

works. IEEE Trans. Commun., Vol. COM-30, No. 7, July 1982.

[25] D. Johansen, R. van Renesse, and F.B. Schneider, An Introduction to the

TACOMA Distributed System—Version 1.0. Technical Report 95-23, Dept. of Com-

puter Science, Univ. of Troms and Cornell Univ., Troms, Norway, June 1995.

[26] K. Kramer, N. Minar, and P. Maes, Tutorial: Mobile Software Agents for Dy-

namic Routing. Mobile Computing and Communications Review, 1999.

[27] J. F. Kurose and K. W. Ross, Computer Networking, A Top Down Approach

Featuring the Internet. Addison-Wesley, 2001.

[28] P. Maes, Agents that Reduce Work and Information Overload. Communications

of the ACM, July 1994, Vol 37 No.7.

[29] T. Magendanz, K. Rothermel, and S. Krause, Intelligent Agents: An Emerging

Technology for Next Genereation Telecommunications. The Proceedings of INFO-

COM 96, San Fransisco CA, March 1996.

71

[30] G. S. Malkin and M. E. Steenstrup, Distance-Vector Routing. In M. E. Steen-

strup, editor, Routing in Communications Networks, pages 83–98, Prentice Hall,

1995.

[31] S. McCanne and S. Floyd, NS (Network Simulator). Website: http://www-

nrg.ee.lbl.gov.

[32] J. M. McQuillan, I. Richer, and E. Rosen, The New Routing Algorithm for the

Arpanet. IEEE Transaction on Communication, 28(5):711–719, May 1980.

[33] P. M. Merlin and A. Segall, A Failsafe Distributed Routing Protocol. IEEE Trans.

Commun., vol. 27, September, 1979.

[34] D. Mills, Exterior Gateway Protocol. Network Information Center RFC 904, April

1984.

[35] A. R. Mikler and V. Chokhani, Agent Based Wave Computation: Towards Con-

trolling the Resource Demand. Proceedings of the International Workshop IICS

(Innovative Internet Computing Systems) 2001, Ilmenau, Germany, June 2001.

[36] A. R. Mikler, J. S. K. Wong, and V. G. Honavar, Quo Vadis - Adaptive Heuris-

tics for Routing in Large Communication Networks. Proc of the 3rd International

Conference on Telecommunication Systems, Modeling and Analysis (1995): 66-75.

72

[37] N. Minar, K. Kramer and P. Maes, Cooperating Mobile Agents for Mapping

Networks. Proceedings of the First Hungarian National Conference on Agent Based

Computing, 1998.

[38] N. Minar, K. Kramer and P. Maes, Cooperating Mobile Agents for Dynamic

Network Routing. Proceedings of the Software Agents for Future Communications

Systems, Springer-Verlag, 1999, ISBN 3-540-65578-6.

[39] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge University

Press, 1995.

[40] J. Moy, OSPF version 2. Internet Draft, RFC-2178, July 1997.

[41] S. Murthy, Routing in Packet-Switched Networks using Path-Finding Algorithms.

Dissertation thesis, University of California - Santa Cruz (Computer Engineering),

September 1996.

[42] D. Oran, OSI IS-IS Intra-Domain Routing Protocol. IETF RFC 1142, 1990.

[43] Packet Engines, Product Specification of PowerRail 1000 Routing Switch.

[44] B. Rajagopalan and M Faiman, A New Responsive Distributed Shortest-Path

Routing Algorithm. ACM SIGCOMM, 1989.

73

[45] Y. Rekhter and T. Li, A Border Gateway Protocol 4. RFC 1771, March 1995.

[46] R. Schoonderwoerd, O. Holland, and J. Bruten, Ant-like Agents for Load Bal-

ancing in Telecommunications Networks. Proceedings of the First International

Conference on Autonomous Agents, pages 209–216. ACM Press, 1997.

[47] D. Subramanian, P. Druschel, and J. Chen, Ants and Reinforcement Learning:

A Case Study in Routing in Dynamic Networks. IJCAI (2) 1997: 832-839.

[48] D. L. Tennenhouse and D. Wetherall, Towards an Active Network Architecture.

Proceedings of Multimedia Computing and Networking, San Jose CA, 1996.

[49] A. Tripathi and T. Noonan, Design of a Remote Procedure Call System for

Object-Oriented Distributed Programming. Software-Practice and Experience, Vol.

28(1), 23-47, January 1998.

[50] T. White, Routing with Swarm Intelligence. Technical Report SCE97 -15, Sys-

tems and Computer Engineering Department, Carleton University, September,

1997.

[51] T. White and B. Pagurek, Towards Multi-Swarm Problem Solving in networks.

Proceedings of the Third International Conference on Multi-Agent Systems (IC-

MAS ’98), July 1998.

74

