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Let 1, 2, 3, 5, 8, … denote the Fibonacci sequence beginning with 1 and 2, and then 

setting each subsequent number to the sum of the two previous ones. Every positive integer n can 

be expressed as a sum of distinct Fibonacci numbers in one or more ways. Setting R(n) to be the 

number of ways n can be written as a sum of distinct Fibonacci numbers, we exhibit certain 

regularity properties of R(n), one of which is connected to the Euler ϕ –function. In addition, 

using a theorem of Fine and Wilf, we give a formula for R(n) in terms of binomial coefficients 

modulo two. 
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1. Introduction of the Fibonacci Numbers and Their Generalizations

In 1202, an Italian mathematician, Leonardo Pisano, who was called Fibonacci, published

a book called Liber Abaci, the earliest Western publication that mentions the Fibonacci

sequence. He posed the following question. How many rabbits can be produced in a year

from a single pair of rabbits if each pair produces a new pair each month, starting in its

second month, with the additional assumption that rabbits never die? The answer is given

by the Fibonacci numbers, 1, 2, 3, 5, 8, 13, 21, 34, . . . , which are defined by f0 = f1 = 1, and

fk = fk−1 +fk−2, for all k ≥ 2. It turns out that in month k, there are fk-many rabbits. Even

though this is the most well-known example using the Fibonacci numbers, this sequence in

fact turns up in the studies of Indian scholars at least by 200 B.C.

In the sixth century A.D., the Indian mathematician Virahanka studied, in detail, San-

skrit vowel sounds. In the twelfth century, the Indian philosopher Hemachondra wrote a

text which revisited the work of Virahanka. Sanskrit vowel sounds can be characterized as

long and short. The question at the time was how many combinations of vowel sounds there

were of a given length assuming that the long vowel sound was twice the length of the short

one. The answer here is also given by the Fibonacci numbers. For example,

Length 1 : S

Length 2 : SS, L

Length 3 : SSS, SL, LS

Length 4 : SSSS, SSL, LSS, SLS, LL

Length 5 : SSSSS, SSSL, SSLSS, SLSS, LSSS, SLL,LSL,LLS

Fibonacci visited India before writing the Liber Abaci and studied the numeration system

used there. In addition, he also studied these vowel sounds and mentions them specifically

in his text.

One way to calculate the nth Fibonacci number in terms of elementary functions involves

the well-known Golden Ratio φ = 1+
√

5
2
. The Golden Ratio φ is the positive solution of the

equation x2 − x − 1 = 0. In 1753, R. Simson, a Scottish mathematician, showed that the

ratios of consecutive Fibonacci numbers, fn

fn−1
, converge to φ. Binet’s formula, so named in
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honor of the French mathematician Binet but actually attributed to Euler, gives a closed

formula for the nth Fibonacci number in terms of elementary functions; f(n) = φn−(1−φ)n
√

5
.

There is also a closed formula in terms of matrices whose eigenvalues are related to φ.

The Fibonacci numbers appear in various academic fields as well as nature. The number

of petals on flowers, arrangements of seeds on flower heads, and the spirals on pine cones can

all involve Fibonacci numbers [37], [41]. There have been numerous analyses of well-known

musical compositions [37], [29], such as Beethoven’s Fifth, in order to detect any adherence

to the Fibonacci numbers or φ. In addition, Fibonacci numbers occur in Pascal’s triangle and

Lozanic’s triangle, in cryptography in relation to pseudorandom number generators [53], [39],

in theoretical physics in relation to quasicrystals [4], in the run-time analysis of the Euclidean

algorithm [53], and in numeration systems in [6], [12], [17], [18], [20], [36], [37], [38], [40],

[54] for example. The list is long and the above-mentioned occurrences do not come close to

exhausting it.

There are many generalizations of the Fibonacci numbers and the Fibonacci recurrence

relation. A first example is the Lucas numbers, which keep the Fibonacci recurrence re-

lation but use different initial conditions, L0 = 2 and L1 = 1. So, the Lucas numbers are

2, 1, 3, 4, 7, 11, 18, 29, . . . . Alternative generalizations of the Fibonacci numbers are obtained

by changing the linear recurrence relation. For example, the Pell numbers are defined as

follows: P0 = 0, P1 = 1, and for n ≥ 2, Pn = 2Pn−1 +Pn−2. Even other processes for general-

ization have been used, such as adding two consecutive numbers further back in the sequence

or extending the Fibonacci sequence and its generalizations to negative numbers. In this

text, we will consider a natural generalization of the Fibonacci recurrence relation leading

to the m-bonacci numbers. Instead of adding the two most recent numbers to get the next

one, m-bonacci requires adding the m most recent. For each m ≥ 2, we define the m-bonacci

numbers by Fk = 2k for 0 ≤ k ≤ m−1 and Fk = Fk−1 +Fk−2 + · · ·+Fk−m for k ≥ m. Notice

that when m = 2, these are the Fibonacci numbers. When m = 3, we obtain the Tribonacci

numbers, 1, 2, 4, 7, 13, 24, 44, 81, . . . .
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1.2. The Infinite Fibonacci Word

There is an infinite word ω associated with the Fibonacci sequence. It is called the infinite

Fibonacci word and is the fixed point of the morphism

τ : 0 7→ 01

1 7→ 0.

To generate ω, we iterate τ, beginning with 0. Using the rule that every 0 gets replaced

by 01 and every 1 gets replaced by 0, we get τ 0(0) = 0, τ 1(0) = 01, τ 2(0) = 010, τ 3(0) =

01001, τ 4(0) = 01001010, . . . . The infinite Fibonacci word ω is equal to

lim
n→∞

τn(0) = 010010100100101001010 . . . .

It is the fixed point of τ since τ(ω) = ω, meaning if every 0 is replaced by 01 and every 1 by

0 in ω, we still have ω. Note that 11 and 000 can never occur in ω. The word 11 can never

appear because there is no way to concatenate 01 and 0 to get it. The word 00 never occurs

because it would have come from an iteration of τ applied to 11. A couple of observations

relating the Fibonacci numbers to ω are the following.

• The lengths of the iterations of τ are the Fibonacci numbers.

• The finite word obtained by the nth iteration of τ contains fn-many 0’s and fn−1-

many 1’s. For example, the fourth iteration of τ produces 01001010, which contains

f4 = 50’s and f3 = 31’s.

The Fibonacci word ω is probably the most well-known example of a Sturmian word, an

infinite word having exactly n+ 1 factors of length n. See [7]. For example, the four factors

of length 3 of the Fibonacci word are {100, 010, 001, 101}. The words 011, 110, 111, and 000,

cannot occur since there are no 000’s and 11’s. A random binary sequence has 2n-many

factors of length n, and a periodic sequence has less than n + 1-many factors of length n.

Periodic sequences eventually repeat and random sequences are anything but predictable. A

Sturmian word is as close to periodic as one can get without actually being periodic.

The study of Sturmian words dates back to the astronomer J. Bernoulli III (1772) in [5]

and there is also early work by Christoffel and Markoff in [13], [44], but the first comprehen-

sive study of Sturmian words was given by G.A. Hedlund and M. Morse in 1940 in [30]. In

this 1940 paper, Hedlund and Morse discuss Sturmian words in terms of symbolic dynamics.

The term Sturmian is introduced in this paper to honor the mathematician Jacques Charles
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François Sturm. Sturmian words can be characterized by an arithmetic formulation which

provides a link from combinatorics to number theory. They also appear in ergodic theory [46],

computer graphics [11], and crystallography [43] and have been additionally characterized

in terms of the continued fraction expansions of irrational numbers, palindromic closures,

return words, left- and right-special factors, and suffix replication. See [16], [47], and [51] for

example.

A generalization of Sturmian words are Arnoux-Rauzy sequences, introduced in a 1991

paper [3] by P. Arnoux and G. Rauzy, which are infinite words on three symbols having

exactly 2n + 1 factors of length n. The most well-known example of an Arnoux-Rauzy

sequence is the Tribonacci sequence which is the fixed point of the morphism

τ : 0 7→ 01

1 7→ 02

2 7→ 0.

The Tribonacci word ν = 0102010010201 . . . , and has a similar relationship to the Tribonacci

numbers as ω does with the Fibonacci numbers. The lengths of the iterations of τ are the

Tribonacci numbers, (Tn)n≥0. τ
0(0) = 0, τ 1(0) = 01, τ 2(0) = 0102, τ 3(0) = 0102010, τ 4(0) =

0102010010201, . . . . For n ≥ 3, in the nth iteration of τ, the number of 0’s is Tn−1, the number

of 1’s is Tn−2, and the number of 2’s is Tn−3. The Tribonacci sequence and Tribonacci word

can be used together to obtain what is called the Rauzy fractal. The Rauzy fractal can be

used to tile the plane in two different ways, one of which is actually periodic. See [8] and [9].

1.3. Numeration Systems and the Fibonacci Numbers

A numeration system is a base or a sequence of numbers together with an alphabet that

allows us to represent numbers. In this sense, the notion of a numeration system is very basic

and natural. Typically, when one thinks of a numeration system, the base β is a natural

number that signifies intent to write another natural number in terms of powers of β, where

the number of times we can use a given power of β is 0, . . . β−1. In this case, we call β together

with the alphabet A = {0, . . . , β − 1} a standard numeration system. The β-representation

of an integer n ≥ 0 is a finite word dk . . . d0 over the alphabet A = {0, . . . , β − 1} where

n =
∑k

i=0 diβ
i. Such a representation is unique if dk 6= 0. For example, when β = 10 and

A = {0, . . . , 9}, we have our usual base-ten numeration system. Another common numeration

system (base two) is given by β = 2 and A = {0, 1}. The base-ten representation of 6752 is

4



just 6752 but since, as a sum of powers of two, 6572 = 4096 + 2048 + 256 + 128 + 32 + 8 + 4,

its base-two representation is 1100110101100.

An extension of this idea, still using a natural number for the base β and alphabet

A = {0, . . . , β − 1}, allows us to represent a non-negative real number x as an infinite

sequence (xi)i≤k, where x =
∑

i≤k(xiβ
i). Further, we can use a real number β > 1 as a base to

represent real numbers in the interval [0, 1] as an infinite sequence. Though many extensions

of the idea of a standard numeration system have been studied, we shall be concerned with

the numeration system that arises by replacing the base with a strictly increasing sequence

of integers. General information about numeration systems can be found in [24].

Let U = (un)n≥0 be a strictly increasing sequence of integers with u0 = 1.A representation

dk . . . d0 of a non-negative integer n is called the normal U -representation of n, if it is produced

by the greedy algorithm which is defined as follows. If uk ≤ n < uk+1, then dk = b n
uk
c,

di = bn−(dkuk+...+di+1ui+1)
ui

c, for i = 0, . . . , k − 1. Then n = dkuk + . . . + d0u0 and the normal

representation of n, obtained by the greedy algorithm, is dk . . . d0.

The Fibonacci, and more generally the m-bonacci, sequence together with the alphabet

A = {0, 1} determines a numeration system [24]. For example, 41 = 34 + 5 + 2 and so a

representation of 41 in the Fibonacci base is 10001010. However, 41 = 21 + 13 + 5 + 2 so

that another representation is 1101010. In the Fibonacci numeration system, to get other

representations, a 100 can be replaced by a 011 and vice versa, because instead of using

fk, for some k, we can use fk−1 and fk−2 if these numbers are not already in use (and vice

versa). For m-bonacci, 10m can be replaced by 01m and vice versa. This implies that in the

Fibonacci (m-bonacci) numeration system, representations are not necessarily unique, unlike

base 10 and base 2. However, for every positive integer n, there is a canonical representation

of n obtained from the greedy algorithm. In our Fibonacci (m-bonacci) case, we shall call

this the Zeckendorff (m-Zeckendorff) representation and denote it Z(n), or Zm(n) in the case

of m-bonacci.

The m-Zeckendorff representation has several notable properties; we shall list a few here.

• Because Zm(n) is obtained from the greedy algorithm, it has no occurrences of 1m.

In particular, in the case of Fibonacci (m = 2), there are no occurrences of 11.

• Because all other representations of n are obtained from Zm(n) by substituting 01m

for 10m, Zm(n) is the lexicographically largest representation.
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• An integer n has a unique representation in the m-bonacci base if and only if

Zm(n) contains no occurrences of 0m. In the case of Fibonacci, n has a unique

representation if and only if Z(n) contains no occurrence of 00, which occurs if and

only if Z(n) is a prefix of (10)∞, which occurs if and only if n = fk − 1 for some

Fibonacci number fk.

There in fact is a connection in the Fibonacci case between the Zeckendorff represen-

tations of all integers and the infinite Fibonacci word. We will begin with 0 and say that

Z(0) = 0. Reading the last entry in each representation beginning from 0, we recover the

infinite Fibonacci word. The following is Z(0), Z(1), Z(2), . . . .

0,1, 10, 100, 101, 1000, 1001, 1010, 10000, 10001, 10010, 10100, 10101, 100000, . . . .

1.4. The Function R(n)

Since a representation of n in Fibonacci (m-bonacci) is not necessarily unique, unlike

base ten or two, it is a natural question to ask how many representations n has. We set

R(n), or Rm(n) in the case of m-bonacci, to be the number of representations n has in the

Fibonacci (m-bonacci) base.

Example 1.1. Let n = 50. We see that Z(50) = 10100100. All other representations are

obtained by replacing 100 by 011. We then have the following 6 representations (arranged

in decreasing lexicographic order) so that R(50) = 6:

10100100

10100011

10011100

10011011

1111100

1111011

Many mathematicians have studied the function R and representations of integers in the

Fibonacci base. C. G. Lekkerkerker was the first (in 1952) to publish a work [40] on the

Fibonacci numeration system. In this work, he showed that the Zeckendorff representation

of an integer is unique. In a 1965 paper [20], H. H. Ferns gives the number of integers N

in the interval fn ≤ N < fn+1 that have m-many 1’s in their Zeckendorff representations.

D. Klarner, in a 1966 paper [36], gives a formula for R(fn − 1) and bounds on R(N) for

6



fn ≤ N ≤ fn+1 − 1. In a 1968 paper [12], L. Carlitz gives a formula for R(n) in very

special cases, when Z(n) contains one, two, or three 1’s. Carlitz gives explicit formulae

in these special cases but states, “While explicit formulas are obtained for r = 1, 2, 3 in

a canonical representation, the general case is very complicated.” E. Zeckendorff (of the

so-called Zeckendorff representation) did not publish a paper on the Fibonacci numeration

system until 1972 [54] but claims that in 1939 he had a proof that the so-called Zeckendorff

representation is unique. In 2001, J. Berstel published a paper [6] expressing R(n) as a

product of 2× 2 matrices. In this paper, he states, “ As already mentioned, the behavior of

R(n) is rather irregular as a function of n.′′ Earlier in the paper, Berstel had said that after

some experimentation, the function R seems rather erratic. In 2005 [38], P. Kocábová, Z.

Masácová, and E. Pelantová, extended Berstel’s result to m-bonacci numbers using material

that appears in [17] and gave maxima for Rm(n).

1.5. Main Results of the Thesis

Chapters 2 and 3: Contrary to Berstel’s remark that the behavior of R seems rather

erratic, the sequence R(n) exhibits quite a rigid structure when represented as an array of

rows where the kth row has length fk−1. We study regularity properties of R in Chapters 2,

3, and 4. In Chapter 2, we discuss a palindromic property of the sequence as well as different

recursive methods for generating R(n). A first method for generating R(n) can be found in

section 2.1 and a second method in section 2.3. The palindrome structure of R(n) is discussed

in section 2.2 with the main result being Proposition 2.3. The representation of R as an array

gave rise to a new algorithm, for computing R(n) using Fibonacci towers (to be defined in

Chapter 3), which is closely related to the Euclidean algorithm. This new algorithm allows

us to see structure in {R−1(n)}. Given m, the set R−1(m) = {n : R(n) = m} is infinite but

it is finitely generated in the sense that there are a finite number of words, called m-basis

words, so that any word w having m representations is either an m-basis word or can be

written as w = uv, where u is an m-basis word and v is a prefix of (10)∞. A relation between

the number of these m-basis words and the Euler φ-function is given in Theorem 3.10.

Chapter 4: A theorem of Fine and Wilf, in [21], allows a definition of special words

associated with these towers. In chapter 4, using a recursive definition for R(n) and the

structure of these Fine and Wilf words, we obtain a formula for R(n) as a product of sums

7



of binomial coefficients modulo 2. This formula, given in Theorem 4.1, provides a resolution

to the work started by Carlitz.

Chapter 5: At a conference on the Fibonacci infinite word, in Turku, Finland, in Oc-

tober, 2006, Jean Berstel presented a never-ending open problem. Choosing any identity

involving the Fibonacci numbers, interpret this identity combinatorially in terms of the Fi-

bonacci word. He mentioned two specifically that he had attempted and had not yet found

a combinatorial interpretation. One of these,

f2n =
n∑

i=0

(
n

i

)
fn−i and f2n+1 =

n∑
i=0

(
n

i

)
fn−i+1,

is addressed in the last chapter. The main result can be found in Theorem 5.15.

The material in Chapters 2, 3, and 4 is joint work with my advisor, Luca Zamboni, and

has been published in papers [17] and [18]. The material in Chapter 5 will soon be submitted

for publication.

A general reference for combinatorics on words, which includes Sturmian words and

numeration systems, is [42].
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CHAPTER 2

ALGORITHMS FOR GENERATING R(n).

2.1. Introduction

In this chapter, we demonstrate structure in the sequence R(n) that seems to have been

previously unnoticed. J. Berstel’s remark in [6] that R(n) is rather erratic as a function of n

was an inspiration to search for regularity properties of the sequence. This structure is more

apparent when the sequence is represented as a two-dimensional array (shown in Figure 2.1)

having row lengths equal to Fibonacci numbers. The array consists of an infinite number of

rows L1, L2, L3, . . . where the kth row Lk contains fk−1 terms of the sequence 1.

L1 : 1

L2 : 1

L3 : 21

L4 : 221

L5 : 32231

L6 : 33242331

L7 : 4335244253341

L8 : 443635526446255363441

L9 : 5447366385572664846627558366374451

L10 : 5548477396693885T5772866T4884T6682775T58839669377484551
...

...
...

Figure 2.1. Schematic Representation of the Sequence (R(n))n≥1

The sequence (R(n))n≥1 is simply the concatenation of the blocks Lk so

(R(n))n≥1 = 112122132231332423314335244253341443635526446255363441 · · ·

We begin, in Section 2.2, with a decomposition of R(n) and a recursive combinatorial

construction for the above 2-dimensional representation of R(n). That is, we give a recipe

for generating the kth row Lk from earlier rows Lj with j < k. In Section 2.3, we explain

1In L10 the entry T denotes the value 10.
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the underlying palindrome structure of each row Lk mentioned above. Finally, in Section

2.4, we consider a different decomposition of R(n) and an alternate recursive algorithm for

generating R(n). With respect to this second decomposition of R(n), it is natural to consider

another sequence, which we denote (d(n))n≥0, that gives the coefficients in the power series

expansion of the infinite product

F (x) =
∞∏

k=1

(1− xfk) = (1− x)(1− x2)(1− x3)(1− x5)(1− x8)(1− x13) · · · .

See [2]. A different algorithm for generating the coefficients d(n) was originally discovered

by Tamura [49] but remains unpublished.

2.2. The First Algorithm

Denote, by {0, 1}∗, the set of all finite words w = w1w2 · · ·wk with wi ∈ {0, 1}. To each

w = w1w2 · · ·wk ∈ {0, 1}∗ with w1 = 1, we associate a positive integer nw defined by

nw = w1fk + w2fk−1 + · · ·+ wk−1f2 + wkf1.

We say that w is a representation of nw in the Fibonacci base.

Given n ∈ Z>0, set

Ω(n) = {w = w1w2 · · ·wk ∈ {0, 1}∗ |w1 = 1 and nw = n}

and put R(n) = #Ω(n). For w ∈ Ω(n), we write R(w) for R(nw). For each w ∈ Ω(n), we

have |Z(n)| − |w| ∈ {0, 1}. Thus, we define

Ω+(n) = {w ∈ Ω(n) | |w| = |Z(n)|}

and

Ω−(n) = {w ∈ Ω(n) | |w| = |Z(n)| − 1},

and put R+(n) = #Ω+(n) and R−(n) = #Ω−(n). Then for each n, we have R+(n) ≥ 1,

R−(n) ≥ 0, and R(n) = R+(n) + R−(n). For example, it follows from Example 1.1 that

R+(50) = 4 and R−(50) = 2. For w ∈ Ω(n) we write R+(w) and R−(w) for R+(nw) and

R−(nw) respectively.

We now give a lemma that will be used repeatedly.

Lemma 2.1. Let w be a Zeckendorff word. Then:

(i) R+(fr) = R+(10r−1) = 1 for each r ≥ 1.
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(ii) R+(10`w) = R(w) whenever ` ≥ 1.

(iii) R−(10`w) = R(10`−2w) whenever ` ≥ 3.

(iv) R−(100w) = R(w).

(v) R−(10w) = R−(w).

(vi) R(100w) = 2R(w).

(vii) If w = vu with v ∈ {0, 1}∗ and u a prefix of (10)∞, then R−(w) = R−(v) and

R+(w) = R+(v).

Proof. As for items (i) and (ii), R+(n) counts the number of representations of n where

the left-most 1 remains unchanged. For (iii), R−(10`w) = R(0110`−2w) = R(10`−2w). For

(iv), R−(100w) = R(011w) = R(w). For (v), to calculate R−(10w), we count the number of

representations of 10w where the left-most one is replaced by a 0. For this to happen, the

left-most 1 of w also must be replaced by a 0. Thus, R−(10w) = R−(w). For (vi), R(100w) =

R+(100w) + R−(100w) = R(w) + R(w) = 2R(w). Finally, (vii) holds because a prefix of

(10)∞ contributes nothing for new representations. �

We next give a recursive combinatorial construction for the sequence R(n). We begin

with a recursive construction of a sequence (xn)n≥1 ∈ N∞, which we shall see coincides with

the sequence R−(n). In order to define the sequence (xn), we arrange it schematically as

shown below in a 2-dimensional array consisting of an infinite collection of rows so that each

row k ≥ 0 contains fk entries of the sequence (xn) (see Figure 2.2.)

row 0 : x1

row 1 : x2

row 2 : x3 x4

row 3 : x5 x6 x7

row 4 : x8 x9 x10 x11 x12

row 5 : x13 x14 x15 x16 x17 x18 x19 x20

row 6 : x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

Figure 2.2. Schematic Representation of the Sequence (xn)

The following statements all follow from the lengths of the rows of Figure 2.2.
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• The first entry in row k is xfk+1
. Hence xn is in row k, if and only if |Z(n)| = k+1.

• If xn is in row k, then the entry below xn in row k + 1 is xn+fk
.

• For k ≥ 3, each of the first fk−3 entries of row k has three or more entries above

it in the same column. We denote this section of row k by Ak. Each of the next

fk−4 entries of row k has exactly two entries above it in the same column (we put

f−1 = 0). We denote this section of row k by Bk. Each of the next fk−3 entries of

row k has exactly one entry above it in the same column. We denote this section

of row k by Ck. Each of the remaining fk−2 entries of row k has no entry above it

in the same column. We denote this section of row k by Dk.

• xn ∈ Ak+1 if and only if fk+2 ≤ n < fk+2 + fk−2. xn ∈ Bk+1 if and only if

fk+2 +fk−2 ≤ n < fk+2 +fk−1. xn ∈ Ck+1 if and only if fk+2 +fk−1 ≤ n < fk+2 +fk.

xn ∈ Dk+1 if and only if fk+2 + fk ≤ n < fk+3.

• An entry xn ∈ Ak if and only if Z(n) begins in 10000, xn ∈ Bk if and only if Z(n)

begins in 10001, xn ∈ Ck if and only if Z(n) begins in 1001, and xn ∈ Dk if and

only if Z(n) begins in 101.

• xn belongs to row k if and only if xn+fk+1
belongs to Ck+1 ∪Dk+1.

We put x1 = x2 = x4 = 0 and x3 = 1. This defines rows 0, 1 and 2. Having defined

rows 0, 1, 2, . . . , k for k ≥ 2, we now describe how to obtain row k + 1 from prior rows. We

consider three cases:

Case 1. If xn belongs to Ak+1, then the column containing xn has at least three entries

above xn:

...

row k − 2 · · · xn−fk−fk−1−fk−2

row k − 1 · · · xn−fk−fk−1

row k · · · xn−fk

row k + 1 · · · xn

and we set

xn = xn−fk
+ xn−fk−fk−1

− xn−fk−fk−1−fk−2
.(1)

12



Case 2. If xn belongs to Bk+1 then the column containing xn has two entries above xn:

row k − 1 · · · xn−fk−fk−1

row k · · · xn−fk

row k + 1 · · · xn

and we set

xn = xn−fk
+ xn−fk−fk−1

.(2)

Case 3. If xn belongs to Ck+1 ∪Dk+1 then xn−fk+1
belongs to row k and we set

xn = xn−fk+1
,(3)

in other words Ck+1 ∪Dk+1 is obtained by simply copying row k.

These recursive rules define the sequence (xn) shown in Figure 2.2 below.

row 0 : 0

row 1 : 0

row 2 : 10

row 3 : 110

row 4 : 21110

row 5 : 22121110

row 6 : 3223122121110

row 7 : 3324233132231 22121110

row 8 : 4335244253341 33242331 3223122121110

row 9 : 4436355264462︸ ︷︷ ︸
A9

55363441︸ ︷︷ ︸
B9

4335244253341︸ ︷︷ ︸
C9

332423313223122121110︸ ︷︷ ︸
D9

...
...

...

Figure 2.3. Schematic Representation of the Sequence (R−(n))n≥1

Proposition 2.2. R−(n) = xn for each n ≥ 1.

Proof. Clearly R−(1) = R−(2) = R−(4) = 0, and R−(3) = 1. To show that R−(n) = xn for

n ≥ 4, it suffices to show that R−(n) satisfies the same recursive conditions which defined

(xn) in Cases 1-3 above. In doing so we will make repeated use of Lemma 2.1.
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Case 1. Suppose xn belongs to Ak+1. Then we can write Z(n) = 10`w for some ` ≥ 4 and

for some Zeckendorff word w. Then

R−(n) = R−(10`w)

= R(10`−2w)

= R−(10`−2w) +R+(10`−2w)

= R−(10`−2w) +R+(10`−3w)

= R−(10`−2w) +R+(10`−3w) +R−(10`−3w)−R−(10`−3w)

= R−(10`−2w) +R(10`−3w)−R−(10`−3w)

= R−(10`−2w) +R−(10`−1w)−R−(10`−3w)

= R−(n− fk+2 + fk) +R−(n− fk+2 + fk+1)−R−(n− fk+2 + fk−1)

= R−(n− fk − fk−1) +R−(n− fk)−R−(n− fk − fk−1 − fk−2)

as required by (1).

Case 2. Suppose next xn belongs to Bk+1. Then we can write Z(n) = 1000w for some

Zeckendorff word w. This gives us that

R−(n) = R−(1000w)

= R(10w)

= R−(10w) +R+(10w)

= R−(10w) +R(w)

= R−(10w) +R−(100w)

= R−(n− fk+2 + fk) +R−(n− fk+2 + fk+1)

= R−(n− fk − fk−1) +R−(n− fk)

as required by (2).
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Case 3. Suppose xn belongs to Ck+1 ∪ Dk+1. In this case according to (3) we must show

that R−(n) = R−(n− fk+1). We proceed by induction on k. The result is readily verified for

k ≤ 2.

For k ≤ 2, the result is shown explicitly.

R−(1) = 0 = x1

R−(2) = R−(10) = 0 = x2

R−(3) = R−(100) = 1 = x3

R−(4) = R−(101) = 0 = x4

R−(5) = R−(1000) = 1 = x5

R−(6) = R−(1001) = 1 = x6

R−(7) = R−(1010) = 0 = x7

We consider two subcases. The first (which does not require induction hypothesis) is

when Z(n) = 10010w for some {0, 1}-word w. In this case we have

R−(n) = R−(10010w)

= R(10w)

= R−(1000w)

= R−(n− fk+2 + fk+1 − fk−1)

= R−(n− fk+1 − fk − fk−1 + fk + fk−1

= R−(n− fk+1).

The second sub-case is when Z(n) = 10w for some Zeckendorff word w. In this case

R−(n) = R−(10w)

= R−(w)

= R−(n− fk+2)

= R−(n− fk+2 + fk) (by inductive hypothesis)

= R−(n− fk+1).

The inductive hypothesis applies to the next-to-last equality for the following reasons.

Since xn is inDn+1, fk ≤ n−fk+2 < fk+1. This implies that fk+1+fk−2 = 2fk ≤ n−fk+2+fk <
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fk+1 + fk = fk+2. Thus xn − fk+2 + fk is in Ck ∪ Dk. So by the inductive hypothesis,

R−(xn − fk+2 + fk) = R−(xn − fk+2 + fk − fk) = R−(xn − fk+2).

�

Having constructed the sequence R−(n) we use Lemma 2.1 to compute the sequence R(n).

We have that R(n) = R(Z(n)) = R−(100Z(n)) so that R(n) is obtained from the previous

chart by concatenating the Ck for k ≥ 3. Putting Lk = Ck+2, we obtain the schematic

representation of (R(n)) given in Figure 2.1.

We end this section by making a few observations; the first three are immediate, the

fourth is discussed in the next section of this chapter, and the last one will be discussed in

Chapter 3.

• Lk has fk−1 entries.

• The first entry of Lk is R(fk), and hence the last entry of Lk is R(fk+1 − 1) = 1.

• R(n) is in level Lk if and only if |Z(n)| = k.

• For k ≥ 3, level Lk can be written in the form Lk = Wk1 where Wk is a palindrome

of length fk−1 − 1.

• For each integer m ≥ 1, there exists a positive integer rk(m) such that for each

k ≥ 2m, the integer m occurs exactly rk(m) times in level Lk. For instance, in

each row Lk for k ≥ 6, the value 3 is assumed exactly 4 times, so that rk(3) = 4.

Similarly, in each row Lk for k ≥ 8, the value 4 is assumed exactly 6 times, so that

rk(4) = 6.

2.3. The Underlying Palindrome Structure of R(n)

Proposition 2.3. The sequence (R(n))n≥1 can be factored in the form

(R(n))n≥1 = 11W31W41W51W61 · · ·

where Wk is a palindrome of length fk−1 − 1 for each k ≥ 3.

Proof. We saw in the previous section that (R(n))n≥1 factors as (R(n))n≥1 = 11L3L4L5L6 · · ·

where Lk has length fk−1 and the first and last entries of Lk are R(fk) and R(fk+1 − 1) = 1

respectively. Thus writing Lk = Wk1 we see that (R(n))n≥1 = 11W31W41W51W61 · · · and

that the length of Wk is fk−1 − 1. To see that each Wk is a palindrome, we consider an entry

R(n) in Wk. Hence, |Z(n)| = k and n 6= fk+1 − 1. Let Z(n) denote the {0, 1}-word obtained

from Z(n) by exchanging 0s and 1s. Since Z(n) begins in 10, it follows that Z(n) begins in
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01, and thus deleting the first 0 in Z(n) we obtain that 0−1Z(n) ∈ Ω(n̂) for some positive

integer n̂.

To show that Wk is a palindrome, it suffices to show

• R(n) = R(n̂)

• n − fk = fk+1 − 2 − n̂; in other words, the entries R(n) and R(n̂) are located the

same distance away from the ‘center’ of Wk.

The first point is clear since the number of elements congruent to z(n) under the relation

011 ≡ 100 (which is R(n)) is equal to the number of elements congruent to Z(n) under the

same relation (which is R(n̂)). As for the second point, we show n+ n̂+2 = fk+1 +fk = fk+2.

Now n+ n̂ can be represented as 11 · · · 1︸ ︷︷ ︸
k

in the Fibonacci base. Hence,

Z(n+ n̂) =

 (10)`01 if k = 2`+ 1

(10)`0 if k = 2`

which implies Z(n+n̂+2) = 1000 · · · 0︸ ︷︷ ︸
k+2

. Since 1000 · · · 0︸ ︷︷ ︸
k+2

is a representation of fk+2, n+n̂+2 =

fk+2, as needed.

�

2.4. A Second Algorithm for Generating R(n)

In this section, we present a second recursive construction for generating R(n) based

on an alternate decomposition of R(n). We begin by defining Ωodd(n) to be the set of all

w ∈ Ω(n) having an odd number of 1’s and Ωev(n) to be the set of all w ∈ Ω(n) having an

even number of 1’s, and set Rodd(n) = #Ωodd(n) and Rev(n) = #Ωev(n). This gives rise

to the decomposition

R(n) = Rodd(n) +Rev(n).

In this context it is also natural to consider the difference

d(n) = Rodd(n)−Rev(n).

The sequence d(n) may also be defined as the coefficients in the power series expansion of

the infinite product

F (x) =
∞∏

k=1

(1− xfk) = (1− x)(1− x2)(1− x3)(1− x5)(1− x8)(1− x13) · · ·
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More precisely:

F (x) =
∞∑

n=0

−d(n)xn.

In an unpublished paper, Tamura gives an ingenious recursive construction for generating

the sequence of coefficients (d(n))n≥0. In what follows, we will present a different algorithm

for constructing d(n). Once again our approach involves arranging the sequence (d(n))n≥0 in

a 2-dimensional array as shown in Figure 2.4 below:

row 0 : d(0)

row 1 : d(1)

row 2 : d(2)

row 3 : d(3) d(4)

row 4 : d(5) d(6) d(7)

row 5 : d(8) d(9) d(10) d(11) d(12)

row 6 : d(13) d(14) d(15) d(16) d(17) d(18) d(19) d(20)
...

...
...

...
...

...
...

...
...

...

Figure 2.4. Schematic Representation of the Sequence (d(n))n≥0

We observe that for k ≥ 1, row k contains fk−1 entries of the sequence d(n) beginning

with d(fk) and ending with d(fk+1 − 1).

Figure 2.4 illustrates the first 11 rows of this 2-dimensional representation of the sequence

d(n). Here 1̄ denotes the value −1. A first observation is that the sequence assumes only the

values {1̄, 0, 1}. Also, as is the case with the sequence R(n), the sequence d(n) exhibits certain

regularity properties when represented in this fashion. In fact, we observe that row 2k is of

the form U2k(1̄)k+1 where U2k is a palindrome. And, if for a {1̄, 0, 1}-word U = u1u2 . . . un,

we put U∗ = ūn . . . ū2ū1 (U∗ is obtained from U by first reflecting the word, then exchanging

1’s and 1̄’s) then row 2k + 1 is of the form U2k+1(1̄)k where U2k+1 satisfies U∗
2k+1 = U2k+1.

We now state the key lemma which will be the basis for the algorithms for generating

R(n) and d(n).

Lemma 2.4. Let k ≥ 3. Then:
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row 0 : 1̄

row 1 : 1

row 2 : 1

row 3 : 01̄

row 4 : 001̄

row 5 : 1001̄1

row 6 : 11̄0001̄11

row 7 : 01̄1̄100001̄1101̄

row 8 : 001̄0111̄0000001̄1101̄001̄

row 9 : 1001̄100101̄1̄10000000001̄1101̄001̄1001̄1

row 10 : 11̄0001̄111̄0011̄001̄0111̄000000000000001̄1101̄001̄1001̄111̄0001̄11
...

...
...

Figure 2.5. 2-Dimensional Representation of the Sequence (d(n))n≥0

(i) For fk+1 ≤ n ≤ fk+1 + fk−2 − 1, we have

Rev(n) = Rodd(n− fk+1 + fk−1) +Rodd(n− fk+1)

and

Rodd(n) = Rev(n− fk+1 + fk−1) +Rev(n− fk+1).

(ii) For fk+1 + fk−2 ≤ n ≤ fk+1 + fk−2 + fk−3 − 1, we have

Rev(n) = Rodd(n− fk+1) +Rev(n− fk+1)

and

Rodd(n) = Rodd(n− fk+1) +Rev(n− fk+1).

(iii) For fk+1 + fk−1 ≤ n ≤ fk+1 + fk−1 + fk−2 − 2, put n̂ = fk+1 + fk+2 − n− 2. Then

we have

Rev(n) = Rev(n̂)

and

Rodd(n) = Rodd(n̂)
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whenever k + 1 is even, while

Rev(n) = Rodd(n̂)

and

Rodd(n) = Rev(n̂)

whenever k + 1 is odd.

(iv) For n = fk+2 − 1 we have

Rev(n) = 0 and Rodd(n) = 1

whenever k ≡ 0, 1 mod 4 and

Rev(n) = 1 and Rodd(n) = 0

whenever k ≡ 2, 3 mod 4.

Proof. We first note that case (1) is equivalent to the Zeckendorff representation of n

beginning in 1000, case (2) to the Zeckendorff representation of n beginning in 1001, case (3)

to the Zeckendorff representation of n beginning in 101 which is not a prefix of (10)∞, and

case (4) to the Zeckendorff representation of n being equal to the prefix of (10)∞ of length

k + 1.

In order to verify (1), we observe that:

#
(
Ωodd(n) ∩ Ω1(n)

)
= Rev(n− fk+1),

#
(
Ωodd(n) ∩ Ω0(n)

)
= Rev(n− fk+1 + fk−1),

# (Ωev(n) ∩ Ω1(n)) = Rodd(n− fk+1),

# (Ωev(n) ∩ Ω0(n)) = Rodd(n− fk+1 + fk−1).

Thus

Rodd(n) = Rev(n− fk+1) +Rev(n− fk+1 + fk−1),

and

Rev(n) = Rodd(n− fk+1) +Rodd(n− fk+1 + fk−1).
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In case (2), we consider the representations of n of the form 100w and 011w, for some

{0, 1}-word w, and we note that w = n−fk+1. The following observations will complete case

(2).

• w has odd many 1’s if and only if 100w has even many 1’s.

• w has even many 1’s if and only if 011w has even many 1’s.

• w has even many 1’s if and only if 100w has odd many 1’s.

• w has odd many 1’s if and only if 011w has odd many 1’s.

The first two items above imply that

Rodd(n) = Rev(n− fk+1) +Rev(n− fk+1 + fk−1),

and the second two items imply that

Rev(n) = Rodd(n− fk+1) +Rodd(n− fk+1 + fk−1).

In case (3), note that if n is on row k+ 1, then so is n̂. Since Ω(n̂) is obtained from Ω(n)

by exchanging 0’s and 1’s, we have the following.

• If k + 1 is even then Rev(n) = Rev(n̂) and Rodd(n) = Rodd(n̂).

• If k + 1 is odd then Rev(n) = Rodd(n̂) and Rodd(n) = Rev(n̂).

Finally in case (4), we have that Z(n) is the only representation of n and that if k ≡ 0, 1

mod 4 then Z(n) contains an odd number of 1’s, while if k ≡ 2, 3 mod 4 then Z(n) contains

an even number of 1’s. �

The following is an immediate consequence of the above lemma:

Corollary 2.5. Let k ≥ 3. Then:

(i) For fk+1 ≤ n ≤ fk+1 + fk−2 − 1, we have

R(n) = R(n− fk+1 + fk−1) +R(n− fk+1)

and

d(n) = − (d(n− fk+1 + fk−1) + d(n− fk+1)) .

(ii) For fk+1 + fk−2 ≤ n ≤ fk+1 + fk−2 + fk−3 − 1, we have

R(n) = 2R(n− fk+1)
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and

d(n) = 0.

(iii) For fk+1 + fk−1 ≤ n ≤ fk+1 + fk−1 + fk−2 − 2, we have

R(n) = R(n̂)

and

d(n) = d(n̂)

whenever k + 1 is even, while

R(n) = R(n̂)

and

d(n) = −d(n̂)

whenever k + 1 is odd.

(iv) For n = fk+2 − 1 we have

R(n) = 1 and d(n) = 1

whenever k ≡ 0, 1 mod 4 and

R(n) = 1 and d(n) = −1

whenever k ≡ 2, 3 mod 4.

The above corollary provides a recursive algorithm for computing the k + 1st row of the

2-dimensional representations of R(n) and d(n). First, we discuss the algorithm in the case

of d(n).

Computing directly the values for rows 0, 1, 2, and 3 of Figure 2.4, we get

d(0) = Rodd(0)−Rev(0) = −1

d(1) = Rodd(1)−Rev(1) = 1

d(2) = Rodd(10)−Rev(10) = 1

d(3) = Rodd(100)−Rev(100) = 0

d(4) = Rodd(101)−Rev(101) = −1

Now let k ≥ 3, and suppose we have computed rows 0, 1, 2, . . . , k of Figure 2.4. We now

compute the entries in row k + 1.
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• The first fk−2 entries of row k+1 are computed as follows: We form an array of 3 rows

each consisting of fk−2 columns: The top row consists of the first fk−2 entries of d(n); the

middle row is given by row k − 1 of Figure 2.4; the bottom row (to be computed) consists

of the first fk−2 entries of row k + 1. This array is shown in Figure 2.6.

d(0) d(1) d(2) d(3) · · · d(fk−2 − 1)

d(fk−1) d(fk−1 + 1) d(fk−1 + 2) d(fk−1 + 3) · · · d(fk−1 + fk−2 − 1)

d(fk+1) d(fk+1 + 1) d(fk+1 + 2) d(fk+1 + 3) · · · d(fk+1 + fk−2 − 1)

Figure 2.6. The Computation of Row k+ 1 of the 2-Dimensional Represen-

tation of d(n)

It follows from Corollary 2.5 that the entries in the bottom row are computed by:

d(n) = − (d(n− fk+1 + fk−1) + d(n− fk+1)) .(4)

In other words, each entry in the bottom row is the negated sum of the two entries above it.

• The next fk−3 entries are all equal to 0.

• Following this block of 0’s, the next fk−2 − 1 entries of row k+ 1 are the reflections (or

mirror images) of the first fk−2 − 1 entries (of row k + 1) in case k + 1 is even; otherwise, if

k + 1 is odd we must, after reflecting, exchange 1’s and 1̄’s.

• Finally the last entry is 1 if k ≡ 0, 1 mod 4 and 1̄ otherwise.

• We conclude this discussion of (d(n))≥0 by illustrating the algorithm with an example.

Example 2.6. Taking k = 7, we compute row 8 of Figure 2.4. The first f5 = 8 entries of

row 8 are obtained by writing the first 8 terms of the sequence d(n) over row 6 and negating

the sum of the terms in each of the 8 columns as shown below:

1̄ 1 1 0 1̄ 0 0 1̄

1 1̄ 0 0 0 1̄ 1 1

0 0 1̄ 0 1 1 1̄ 0

In other words the first 8 entries are 001̄0111̄0. We next adjoin a block of f4 = 5 many

0’s to obtain 001̄0111̄000000. Next, since 8 is even, we adjoin the reflection of the initial 7
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entries generated thus far to obtain the palindrome 001̄0111̄0000001̄1101̄00. Finally, since

k = 7 ≡ 3 mod 4, we adjoin 1̄ so that

row 8 = 001̄0111̄0000001̄1101̄001̄.

We end this chapter by giving the recursive construction of the sequence R(n) which is

based on its even/odd decomposition. Since this construction relies heavily on Corollary 2.5,

it is very similar to the construction given for the sequence d(n). First, define R(0)=1 and

suppose we have computed rows 1, 2, . . . , k of Figure 2.1. We now compute the entries in

row k + 1.

• For the first fk−2 entries of row k + 1, we have a similar array as for d(n). We form an

array of 3 rows each consisting of fk−2 columns: The top row consists of the first fk−2 entries

of R(n), using R(0) = 1; the middle row is given by row k− 1 of Figure 2.1; the bottom row

(to be computed) consists of the first fk−2 entries of row k+1. This array is shown in Figure

2.7.

R(0) R(1) R(2) R(3) · · · R(fk−2 − 1)

R(fk−1) R(fk−1 + 1) R(fk−1 + 2) R(fk−1 + 3) · · · R(fk−1 + fk−2 − 1)

R(fk+1) R(fk+1 + 1) R(fk+1 + 2) R(fk+1 + 3) · · · R(fk+1 + fk−2 − 1)

Figure 2.7. The Computation of Row k+ 1 of the 2-Dimensional Represen-

tation of R(n)

It follows from Corollary 2.5 that the entries in the bottom row are computed by:

R(n) = R(n− fk+1 + fk−1) +R(n− fk+1).(5)

So each entry in the bottom row is the sum of the two entries above it.

• For the next fk−3 entries: By Corollary 2.5, R(n) = 2R(n− fk+1). Since fk+1 + fk−2 ≤

n ≤ fk+1 + fk−2 + fk−3 − 1, then fk−2 ≤ n− fk+1 ≤ fk−1 − 1. This implies these entries are

simply twice row k − 2.

• The next fk−2 − 1 entries of row k+ 1 are the reflections (or mirror images) of the first

fk−2 − 1 entries of row k + 1.

•Finally the last entry is 1.
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CHAPTER 3

A PARTICULAR REGULARITY PROPERTY OF R(n)

3.1. Basis Words and Rank

The next two sections are devoted to studying the structure of all Zeckendorff words Z(n)

such that R(n) = m, for m ≥ 1. We begin by giving a matrix formulation of Lemma 2.1

which will in turn allow us to recover a recent result of Berstel in [6] for computing R(n)

from the Zeckendorff representation of n.

Lemma 3.1. Let w be a Zeckendorff word. Then

(i)

 R0(10`w)

R1(10`w)

 =

 1 1

0 1

  R0(10
`−2w)

R1(10
`−2w)

 for l ≥ 3

(ii)

 R0(100w)

R1(100w)

 =

 1 1

1 1

  R0(w)

R1(w)



(iii)

 R0(10w)

R1(10w)

 =

 1 0

1 1

  R0(w)

R1(w)


Using the identities  1 1

0 1

d−1  1 1

1 1

 =

 d d

1 1


 1 1

0 1

d  1 0

1 1

 =

 d+ 1 d

1 1


we deduce that for any Zeckendorff word w

 R0(10rw)

R1(10rw)

 =

 d r
2
e b r

2
c

1 1

  R0(w)

R1(w)

 for r ≥ 1.

This yields the following result due to Berstel1:

1The matrices occurring in Berstel’s formulation of the same result differ slightly from ours as a conse-

quence of notational differences.
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Proposition 3.2. [Berstel [6]] Let w = 10r110r2 · · · 10rk with rj ≥ 1. Then

R(w) = R(w1) = R0(w1) +R1(w1)

= (1 1)

 k∏
j=1

 d rj

2
e b rj

2
c

1 1

  0

1


Let m be a positive integer. Let R−1(m) = {n ≥ 1 |R(n) = m}. We also define for m ≥ 2

B(m) = {w = 10r110r2 · · · 10rk |rj ≥ 1, rk ≥ 2, and R(w) = m}

and B(1) = {ε} where ε denotes the empty word. Then it follows that n ∈ R−1(m) if and

only if Z(n) = wu where w ∈ B(m) and u is a (possibly empty) prefix of (10)∞. We call an

element w = 10r110r2 · · · 10rk ∈ B(m) a m- basis word2 While for each m the set R−1(m) is

infinite, the set B(m) is finite. The cardinality of B(m) will be denoted by

rk(m) = #B(m)

and called the m-rank.

Lemma 3.3. For each m ≥ 2, the longest m-basis word has length 2m.

Proof. Let m ≥ 2, and consider the word 102m−1. Then it follows from Berstel’s result that

R(102m−1) = (1 1)

 d2m−1
2

e b2m−1
2

c

1 1

  0

1

 = (1 1)

 m m− 1

1 1

  0

1

 = m.

Hence 102m−1 is a m-basis word of length 2m.

We next claim that any m-basis word w is of length less than or equal to 2m. The proof is

by induction on m. In case m = 2, then the only basis words are 100 and 1000. Next suppose

that for all 2 ≤ m′ < m, each m′-basis word is of length less than or equal to 2m′, and let w

be a m-basis word. If w is of the form w = 10k, then it is easy to see that k ≤ 2m− 1, since

otherwise R(w) > m. So we can suppose w is of the form w = 10kw′ for some Zeckendorff

word w′. We now use Lemma 3.1 and consider three cases: a) k = 1, b) k = 2, and c) k ≥ 3.

Since the arguments in each case are essentially identical, we consider only the first case. In

2In [25] such words are called relational words, a term stemming from earlier terminology introduced in

[1].
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this case we see that:  R0(w)

R1(w)

 =

 1 0

1 1

  R0(w
′)

R1(w
′)

 .

Putting m′ = R(w′), it follows that m′ = R(w′) = R1(w) < R(w) = m. Since w′ is an

m′-basis word, by induction hypothesis we have that the length of w′ is less than or equal

to 2m′ which in turn is less than or equal to 2m − 2. Hence the length of w is less than or

equal to 2m. �

Proposition 3.4. Let m ≥ 1, and let k ≥ 2m. Then level Lk of Figure 1 contains exactly

rk(m) occurrences of m.

Proof. Consider the rk(m) infinite words {w(10)∞ |w ∈ B(m)}. Then by taking the prefix

of length k of each of the rk(m) infinite words, we obtain rk(m) distinct Zeckendorff words

of length k each having precisely m different representations in the Fibonacci base. Hence,

this gives rise to rk(m) occurrences of the integer m in level Lk of Figure 1. But since each

occurrence of m in Lk must arise in this way, we see that Lk has exactly rk(m) occurrences

of m. �

Recall that each Lk may be written as Lk = Wk1 where Wk is a palindrome of length

fk−1 − 1. In particular, for infinitely many k, the length of Wk is even. Hence:

Corollary 3.5. The constant rk(m) is an even number for each m ≥ 2.

Let m ≥ 2, and let w = 10r110r2 · · · 10rk ∈ B(m). It follows from Proposition 3.2 that

if rk is even, then 10r110r2 · · · 10rk+1 ∈ B(m), while if rk is odd (and hence rk ≥ 3), then

10r110r2 · · · 10rk−1 ∈ B(m). In fact if rk is even, then d rk+1
2
e b rk+1

2
c

1 1

  0

1

 =

 d rk

2
e b rk

2
c

1 1

  0

1


while if rk is odd, then

 d rk−1
2
e b rk−1

2
c

1 1

  0

1

 =

 d rk

2
e b rk

2
c

1 1

  0

1


Hence for each m-basis word ending in an even number of 0’s, there is a m-basis word

ending in an odd number of 0’s and vice versa. This gives an alternate argument to the

fact that rk(m) is even. For m ≥ 2, denote by B0(m) (respectively B1(m)) the set of all
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m-basis words ending in an even (respectively odd) number of 0’s and set rki(m) = #Bi(m)

for i ∈ {0, 1}.

3.2. Fibonacci Towers

Associated to each of the matrices in Lemma 3.1 are mappings f00, f01, f001 : Z+ ×Z+ →

Z+ × Z+ defined as follows:

 1 1

0 1

 −→ f00 : (a, b) 7→ (a+ b, b)

 1 0

1 1

 −→ f01 : (a, b) 7→ (a, a+ b)

 1 1

1 1

 −→ f001 : (a, b) 7→ (a+ b, a+ b)

Note that f00 and f01 are each one-to-one, while f001 is generally many to one.

Let m ≥ 2. We now consider all arrays of the form

(xk, yk)

(xk−1, yk−1)

(xk−2, yk−2)
...

(x1, y1)

such that xk + yk = m, (x1, y1) = (1, 1), and such that for each 1 ≤ j ≤ k − 1, we have

(xj+1, yj+1) = fuj
(xj, yj)

for some uj ∈ {00, 01, 001}.

We call such an array a m-Fibonacci tower of height k. The mappings fu1 , fu2 , . . . , fuk−1

between the various levels will be called stair maps and the words u1, u2, . . . , uk−1 stair

indeces. Clearly, each Fibonacci tower is uniquely determined from its associated stair maps,

and hence stair indeces. We let

T (m) = {m-Fibonacci towers}
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and put τ(m) = #T (m).

Let T ∈ T (m) be am-Fibonacci tower of height k with associated stair indeces u1, u2, . . . , uk−1.

We define ψ(T ) to be the Zeckendorff word

ψ(T ) = 1uk−1uk−2 · · ·u100.

Then it follows from Proposition 3.2 that R(ψ(T )) = m. Moreover, since ψ(T ) ends in an

even number of 0’s, we deduce that ψ(T ) is an even m-basis word, i.e., ψ(T ) ∈ B0(m). Hence

we obtain a mapping ψ : T (m) → B0(m).

Proposition 3.6. The mapping ψ : T (m) → B0(m) is a bijection. Hence rk(m) = 2τ(m).

Proof. Consider an even m-basis word w ∈ B0(m). Then it is easy to see that w can be

written in the form w = 1uk−1uk−2 · · ·u100 for some choice of k and words ui ∈ {00, 01, 001}.

Moreover, this representation of w is unique. Let T be the (unique) Fibonacci tower whose

associated stair indeces are uk−1, uk−2, . . . , u1. Then T ∈ T (m) and we have ψ(T ) = w.

Hence ψ is both one-to-one and onto. �

Let T ∈ T (m) be a m-Fibonacci tower with stair indeces uk−1, uk−2, . . . , u1. Let T ′ denote

the m-Fibonacci tower of height k with stair indeces u′k−1, u
′
k−2, . . . , u

′
1 where (01)′ = 00,

(00)′ = 01, and (001)′ = 001. Then for all 1 ≤ j ≤ k, we have (x′j, y
′
j) = (yj, xj). In other

words, the tower T ′ is obtained from T by reversing the coordinates at each level 1 ≤ j ≤ k.

Then:

Lemma 3.7. ψ(T ′) = Z(ψ(T )).

Proof. Recall that ψ(T ) is the word obtained from ψ(T ) by exchanging 0’s and 1’s. Here

Z(ψ(T )) denotes the unique Zeckendorff word in the equivalence class of ψ(T ).

In order to prove the lemma, we must show that

Z(1uk−1uk−2 · · ·u100) = 1u′k−1u
′
k−2 · · ·u′100.

We proceed by induction on k. For k = 1, we must show that Z(1u100) = 1u′100 where

u1 ∈ {01, 00, 001}. In case u1 = 01, we have

Z(10100) = Z(01011) = 10000 = 1(01)′00.

If u1 = 00, we have

Z(10000) = Z(01111) = 10100 = 1(00)′00.
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If u1 = 001, we have

Z(100100) = Z(011011) = 100100 = 1(001)′00.

We next suppose that

Z(1uk−1uk−2 · · ·u100) = 1u′k−1u
′
k−2 · · ·u′100

holds and we show that

Z(1ukuk−1uk−2 · · ·u100) = 1u′ku
′
k−1u

′
k−2 · · ·u′100

for uk ∈ {01, 00, 001}. We consider only the first case of uk = 01, as the arguments in the

remaining two cases are essentially identical. We have

Z(101uk−1uk−2 · · ·u100) = Z(011uk−1 · · ·u100)

= Z(011u′k−1 · · ·u′100)

= 100u′k−1 · · ·u′100

= 1(01)′u′k−1 · · ·u′100

as required. �

We observe that for T ∈ T (m), we have T ′ 6= T unless all stair indeces for T are 001 in

which case m = 2n for some n. Thus we deduce that

Lemma 3.8. τ(m) is even if and only if m is not of the form 2n for some n. Hence rk(m)

is divisible by 4 whenever m is not of the form 2n for some n.

Example 3.9. We consider the case m = 7. There are six 7-Fibonacci towers T1, T2, . . . , T6.

They are

T1

(1, 6)

(1, 5)

(1, 4)

(1, 3)

(1, 2)

(1, 1)

T2

(2, 5)

(2, 3)

(2, 1)

(1, 1)

T3

(3, 4)

(3, 1)

(2, 1)

(1, 1)

T4 = T ′3

(4, 3)

(1, 3)

(1, 2)

(1, 1)

T5 = T ′2

(5, 2)

(3, 2)

(1, 2)

(1, 1)

T6 = T ′1

(6, 1)

(5, 1)

(4, 1)

(3, 1)

(2, 1)

(1, 1)
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The associated stair indeces are 01, 01, 01, 01, 01 for T1, 00, 01, 01 for T2, 00, 00, 01 for T3,

01, 01, 00 for T4, 01, 00, 00 for T5 and 00, 00, 00, 00, 00 for T6. Hence

B0(7) = {1010101010100, 100010100, 100000100, 101010000, 101000000, 1000000000000}

and

B1(7) = {10101010101000, 1000101000, 1000001000, 1010100000, 1010000000, 10000000000000}

Hence rk(7) = 12.

We note that in the previous example the mapping f001 never occurs. This is because

the mapping f001 only occurs in a Fibonacci tower between level j and level j + 1 whenever

xj+1 = yj+1. Because 7 is a prime number, the only level j in which xj = yj is when j = 1.

In fact, starting with any pair of positive integers (a, b) whose sum is m, there exists one

or more m-Fibonacci towers whose top level is given by the pair (a, b). If a < b, then the

next level down is (a, b − a). If a > b, then the next level down is (a − b, b). On the other

hand if a = b, then the next level down consists of any pair of positive integers (a′, b′) whose

sum a′ + b′ = a = b. It is well known that by iterating this process of leaving the smaller

coordinate the same while subtracting it from the larger coordinate eventually yields the pair

(d, d) where d = gcd(a, b). Thus if gcd(a, b) = 1, then there is one and only one Fibonacci

tower whose top level is (a, b). In particular, if m is prime, then for any pair of positive

integers (a, b) whose sum is m, there is a unique m-Fibonacci tower whose top level is (a, b).

If m is not prime, then for each positive integer 1 ≤ d < m dividing m, there are

φ(m/d) distinct pairs (a, b) whose sum is m and whose greatest common divisor is d, where

φ denotes the Euler φ- function. Each such pair (a, b) will generate in a unique way (from

the top down) the upper levels of a m-Fibonacci tower (with top level (a, b)) until the level is

reached consisting of the pair (d, d). At which point there are τ(d) different ways of continuing

the tower downward. (In case d = 1, we adopt the convention τ(1) = 1). In other words, for

each pair of positive integers (a, b) whose sum is m and whose greatest common divisor is d,

there are τ(d) many m-Fibonacci towers whose upper level is (a, b).

In summary we have:
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Theorem 3.10. Let m ≥ 2 be a positive integer. Then the number of m-Fibonacci towers

is given by:

τ(m) =
∑

1≤d<m; d|m

φ(m/d)τ(d).

Hence

rk(m) = 2

 ∑
1≤d<m; d|m

φ(m/d)τ(d)

 .

In particular if m is prime we have rk(m) = 2φ(m) = 2(m− 1).

For m ≥ 2, let

Fac(m) = {(n1, n2, . . . , nk)|nj ≥ 2 and
k∏

j=1

nj = m}.

For instance, Fac(16) = {(16), (2, 8), (8, 2), (4, 4), (2, 2, 4), (2, 4, 2), (4, 2, 2), (2, 2, 2, 2)}.

Then using the above formula together with a straightforward induction argument (on

m) we obtain:

Corollary 3.11. For each m ≥ 2 we have

τ(m) =
∑

(n1,n2,...,nk)∈Fac(m)

φ(n1)φ(n2) · · ·φ(nk)

and

φ(m) =
∑

(n1,n2,...,nk)∈Fac(m)

(−1)k+1τ(n1)τ(n2) · · · τ(nk).

For instance, τ(16) = φ(16) + 2φ(2)φ(8) + φ(4)2 + 3φ(2)2φ(4) + φ(2)4 while φ(16) =

τ(16)− 2τ(2)τ(8)− τ(4)2 + 3τ(2)2τ(4)− τ(2)4.
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CHAPTER 4

A FORMULA FOR Rm(n)

4.1. Introduction and Preliminaries

For each m ≥ 2, we define the m-bonacci numbers by Fk = 2k for 0 ≤ k ≤ m − 1 and

Fk = Fk−1 + Fk−2 + · · · + Fk−m for k ≥ m. When m = 2, these are the usual Fibonacci

numbers. Each positive integer n may be expressed as a sum of distinct m-bonacci numbers

in one or more different ways. That is, we can write n =
∑k

i=1wiFk−i where wi ∈ {0, 1}

and w1 = 1. Call the associated {0, 1}-word w1w2 · · ·wk a representation of n. One way

of obtaining such a representation is by applying the “greedy algorithm.” Recall, that this

representation obtained by the greedy algorithm is the m-Zeckendorff representation, which

does not contain m consecutive 1’s, and is denoted by Zm(n) [54]. For example, taking m = 2

and applying the greedy algorithm to n = 50, we obtain 50 = 34 + 13 + 3 = F7 + F5 + F2

which gives rise to the representation Z2(50) = 10100100. A {0, 1}-word w beginning in 1

and having no occurrences of 1m will be called a m-Zeckendorff word.

Other representations arise from the fact that an occurrence of 10m in a given represen-

tation of n may be replaced by 01m to obtain another representation of n, and vice versa.

Thus a number n has a unique representation in the m-bonacci base if and only if Zm(n)

does not contain any occurrences of 0m. For example, again taking m = 2 and n = 50 we

obtain the following 6 representations (arranged in decreasing lexicographic order):

10100100

10100011

10011100

10011011

1111100

1111011

We are interested in the sequence Rm(n) which counts the number of distinct partitions

of n in the m-bonacci base. More precisely, given n ∈ Z>0, we set

Ωm(n) = {w = w1w2 · · ·wk ∈ {0, 1}∗ |w1 = 1 and n =
k∑

i=1

wiFk−i}
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and put Rm(n) = #Ωm(n). For w ∈ Ωm(n), we will sometimes write Rm(w) for Rm(n). Also,

we let R≤m(w) denote the number of representations of n which are less than or equal to w

in the lexicographic order. As Zm(n) is the largest representation of n with respect to the

lexicographic order, it follows that Rm(n) = R≤m(Zm(n)).

In this chapter, a formula for Rm(n) is given that involves sums of binomial coefficients

modulo 2. The proof makes use of the well-known Fine and Wilf Theorem [21]. In order

to state the main result, we first consider a special factorization of Zm(n) : Either Zm(n)

contains no occurrences of 0m (in which case Rm(n) = 1), or Zm(n) can be factored uniquely

in the form

Zm(n) = V1U1V2U2 · · ·VNUNW

where

• V1, V2, . . . , VN and W do not contain any occurrences of 0m.

• 0m−1 is not a suffix of V1, V2, . . . , VN .

• Each Ui is of the form

Ui = 10m−1xk0
m−1xk−1 · · · 0m−1x00

m

with xi ∈ {0, 1}.

We shall refer to this factorization as the principal factorization of Zm(n) and call the Ui

indecomposable factors. We observe that in the special case of m = 2, the factors Vi are

empty. Each indecomposable factor Ui may be coded by a positive integer ri whose base 2

expansion is 1xkxk−1 · · ·x0; in other words ri = 1 · 2k+1 + xk · 2k + · · ·x1 · 2 + x0.

Given a positive integer r whose base 2 expansion is 1xkxk−1 · · ·x0, we set

[r] = 10m−1xk0
m−1xk−1 · · · 0m−1x00

m.

We now state our main result:

Theorem 4.1. Let m ≥ 2. Given a positive integer n, let Zm(n) = V1U1V2U2 · · ·VNUNW be

the principal factorization of the m-Zeckendorff representation of n as defined above. Then

the number of distinct partitions of n as a sum of distinct m-bonacci numbers is given by

Rm(n) =
N∏

i=1

ri∑
j=0

(
2ri − j

j

)
(mod 2)

where [ri] = Ui for each 1 ≤ i ≤ N.
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4.2. Proof of Theorem 4.1

Let Zm(n) = V1U1V2U2 · · ·VNUNW be the principal factorization of Zm(n) described

above. Then the number of partitions of n is simply the product of the number of partitions

of each indecomposable factor:

(†) Rm(n) =
N∏

i=1

Rm(Ui).

In fact, any representation of n as a sum of distinct m-bonacci numbers may be factored

in the form

V1U
′
1V2U

′
2 · · ·VNU

′
NW

where for each 1 ≤ i ≤ N, U ′
i is an equivalent representation of Ui. To see this, we first

observe that since the Vi and W contain no 0m, we have Rm(Vi) = Rm(W ) = 1. So the only

way that Vi or W could change in an alternate representation of n would be as a result of

a neighboring indecomposable factor. If Vi contains an occurrence of 1, then since Vi does

not end in 0m−1, the last occurrence of 1 in Vi can never be followed by 0m. In other words

the last 1 in Vi can never move into the Ui that follows. If Vi contains no occurrences of 1,

then Vi = 0r with r < m−1. Since the indecomposable factor Ui−1 preceding Vi ends in Km

many consecutive 0’s (for some K ≥ 1), any equivalent representation of Ui−1 either ends in

0m or in 1m, and since Vi does not begin in 0m, any representation of Ui−1 terminating in 1m

will never be followed by 0m. In other words, no 1 in Ui−1 can ever move into Vi or in the

following Ui. A similar argument applies to the indecomposable factor UN preceding W.

Thus in view of (†) above, in order to prove Theorem 4.1, it remains to show that for

each positive integer r = 1 · 2k+1 + xk · 2k + · · ·x1 · 2 + x0, we have

(††) Rm([r]) =
r∑

j=0

(
2r − j

j

)
(mod 2).

For each positive integer n, there is a natural decomposition of the set Ωm(n) of all

partitions of n in the m-bonacci base. Let F be the largest m-bonacci number less than or

equal to n. We denote by Ω+
m(n) the set of all partitions of n involving F and Ω−

m(n) the

set of all partitions of n not involving F, and set R+
m(n) = #Ω+

m(n) and R−m(n) = #Ω−
m(n).

Clearly

Rm(n) = R+
m(n) +R−m(n).

We will make use of the following recursive relations:
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Lemma 4.2. Let U = 10m−1xk0
m−1xk−1 · · · 0m−1x00

m with xi ∈ {0, 1}. Then

R+
m(10m−110m−1xk0

m−1xk−1 · · · 0m−1x00
m) = Rm(U) = R+

m(U) +R−m(U)

R−m(10m−110m−1xk0
m−1xk−1 · · · 0m−1x00

m) = R−m(U)

R+
m(10m−100m−1xk0

m−1xk−1 · · · 0m−1x00
m) = R+

m(U)

R−m(10m−100m−1xk0
m−1xk−1 · · · 0m−1x00

m) = Rm(U) = R+
m(U) +R−m(U)

Proof. It is easy to see that w ∈ Ω+
m(10m−1U) if and only if w is of the form w = 10m−1w′

for some w′ ∈ Ωm(U). Whence R+
m(10m−1U) = Rm(U). Similarly, w ∈ Ω−

m(10m−1U) if and

only if w is of the form w = 01mw′ for some w′ ∈ Ω−
m(U). Whence R−m(10m−1U) = R−m(U).

A similar argument applies to the remaining two identities. �

Fix a positive integer r = 1 · 2k+1 + xk · 2k + · · ·x1 · 2 + x0. The above lemma can be used

to compute Rm([r]) as follows: We construct a tower of k + 2 levels L0, L1, · · · , Lk+1, where

each level Li consists of an ordered pair (a, b) of positive integers. We start with level 0 by

setting L0 = (1, 1). Then Li+1 is obtained from Li according to the value of xi. If Li = (a, b),

then Li+1 = (a, a + b) if xi = 0, and Li+1 = (a + b, b) if xi = 1. It follows from Lemma 5.8

that Lk+1 = (R+
m([r]), R−m([r])). Hence Rm([r]) is the sum of the entries of level Lk+1.

By the well known Fine and Wilf Theorem [21], given a pair of relatively prime numbers

(p, q), there exists a {0, 1}-word w of length p + q − 2 (unique up to isomorphism) having

periods p and q, and if p and q are both greater than 1, then this word contains both 0’s

and 1’; in other words, 1 = gcd(p, q) is not a period. We call such a word a Fine and Wilf

word relative to (p, q). Moreover it can be shown (see [50] for example) that if both p and q

are greater than 1, then the suffixes of w of lengths p and q begin in different symbols. We

denote by FW (p, q) the unique Fine and Wilf word relative to (p, q) with the property that

its suffix of length p begins in 0 and its suffix of length q begins in 1.

We now apply this to the ordered pair (p, q) = (R+
m([r]), R−m([r])). It is well known that

FW (R+
m([r]), R−m([r]))01 is given explicitly by the following composition of morphisms:

FW (R+
m([r]), R−m([r]))01 = τx0 ◦ τx1 ◦ · · · ◦ τxk

(01)

where

τ0(0) = 0 τ0(1) = 01

τ1(0) = 10 τ1(1) = 1
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(see for instance [31, 50]).

Let

α(r) = |FW (R+
m([r]), R−m([r]))01|1

and

β(r) = |FW (R+
m([r]), R−m([r]))01|0

. In other words, α(r) is the number of occurrences of 1 in FW (R+
m([r]), R−m([r]))01 and β(r)

the number of 0’s in FW (R+
m([r]), R−m([r]))01.

In summary:

Rm([r]) = R+
m([r]) +R−m([r])

= R+
m([r]) +R−m([r])− 2 + 2

= |FW (R+
m([r]), R−m([r]))|+ 2

= |FW (R+
m([r]), R−m([r]))01|

= |τx0 ◦ τx1 ◦ · · · ◦ τxk
(01)|

= |τx0 ◦ τx1 ◦ · · · ◦ τxk
(01)|1 + |τx0 ◦ τx1 ◦ · · · ◦ τxk

(01)|0
= α(r) + β(r)

= |τ1 ◦ τx0 ◦ τx1 ◦ · · · ◦ τxk
(01)|1

= α(2r + 1).

The key step in the proof of Theorem 4.1 is to replace the sum of the periods R+
m([r])+R−m([r])

of the Fine and Wilf word FW (R+
m([r]), R−m([r])) by the sum of the number of occurrences

of 0’s and 1’s in FW (R+
m([r]), R−m([r]))01.

The following basic identities are readily verified:

• α(1) = β(1) = 1.

• α(2r) = α(r).

• β(2r) = α(r) + β(r).

• α(2r + 1) = α(r) + β(r).

• β(2r + 1) = β(r).

• β(r) = α(r + 1).

Summarizing we have
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Proposition 4.3. Let U = 10m−1xk0
m−1xk−1 · · · 0m−1x00

m with xi ∈ {0, 1}. Let r be the

number whose base 2 expansion is given by 1xkxk−1 · · ·x0. Then Rm(U) = α(2r + 1) where

the sequence α(r) is defined recursively by:

• α(1) = 1

• α(2r) = α(r)

• α(2r + 1) = α(r) + α(r + 1).

We now consider a new function ψ(r) defined by ψ(1) = 1, and for r ≥ 1

ψ(r + 1) =

2j≤r∑
j=0

(
r − j

j

)
(mod 2).

We will show that ψ(r) and α(r) satisfy the same recursive relations, namely ψ(2r) = ψ(r)

and ψ(2r+ 1) = ψ(r) +ψ(r+ 1). Thus, α(r) = ψ(r) for each r, thereby establishing formula

(††).

We shall make use of the following lemma:

Lemma 4.4.
(

n
k

)
(mod 2) =

(
2n+1

2k

)
(mod 2) +

(
2n

2k+1

)
(mod 2).

Proof. This follows immediately from the so-called Lucas’ identities:
(

2n
2k+1

)
= 0 (mod 2)

for 0 ≤ k ≤ n− 1, and
(

n
k

)
=

(
2n+1

2k

)
(mod 2) for 0 ≤ k ≤ n. �

Proposition 4.5. For r ≥ 0 we have ψ(2r+2) = ψ(r+1) and for r ≥ 1 we have ψ(2r+1) =

ψ(r) + ψ(r + 1).

Proof. By Lemma 4.4 we have

ψ(r + 1) =

2j≤r∑
j=0

(
r − j

j

)
(mod 2)

=

2j≤r∑
j=0

((
2r − 2j + 1

2j

)
(mod 2) +

(
2r − 2j

2j + 1

)
(mod 2)

)

=
r∑

i=0

(
2r + 1− i

i

)
(mod 2)

= ψ(2r + 2).

As for the second recursive relation we have
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ψ(2r + 1) =
r∑

j=0

(
2r − j

j

)
(mod 2)

=

2i≤r∑
i=0

(
2r − 2i

2i

)
(mod 2) +

2i≤r−1∑
i=0

(
2r − 2i− 1

2i+ 1

)
(mod 2).

But

(
2r − 2i

2i

)
(mod 2) =

(2r − 2i)!

(2i)!(2r − 4i)!
(mod 2)

=
(2r − 2i+ 1)!

(2i)!(2r − 4i+ 1)!
(mod 2)

=

(
2r − 2i+ 1

2i

)
(mod 2)

=

(
r − i

i

)
(mod 2) by Lemma 4.4.

Hence
2i≤r∑
i=0

(
2r − 2i

2i

)
(mod 2) =

2i≤r∑
i=0

(
r − i

i

)
(mod 2) = ψ(r + 1).

Similarly

(
2r − 2i− 1

2i+ 1

)
(mod 2) =

(2r − 2i− 1)!

(2i+ 1)!(2r − 4i− 2)!
(mod 2)

=
(2r − 2i− 1)!

(2i)!(2r − 4i− 1)!
(mod 2)

=

(
2r − 2i− 1

2i

)
(mod 2)

=

(
r − 1− i

i

)
(mod 2) by Lemma 4.4.

Hence
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2i≤r−1∑
i=0

(
2r − 2i− 1

2i+ 1

)
(mod 2) =

2i≤r−1∑
i=0

(
r − 1− i

i

)
(mod 2) = ψ(r).

It follows that ψ(2r + 1) = ψ(r) + ψ(r + 1). �

Having established that α(r) = ψ(r) for each r ≥ 1, we deduce that:

Corollary 4.6. Let U = 10m−1xk0
m−1xk−1 · · · 0m−1x00

m with xi ∈ {0, 1}. Let r be the num-

ber whose base 2 expansion is given by 1xkxk−1 · · ·x0. Then Rm(U) =
∑r

j=0

(
2r−j

j

)
(mod 2).

This concludes the proof of Theorem 4.1.

4.3. Concluding Remarks

4.3.1. A formula for R≤m(w)

The proof applies more generally to give a formula for R≤m(w) for each representation w

of n. In other words, given w ∈ Ωm(n), then either w does not contain any occurrences of

0m (in which case R≤m(w) = 1) or w may be factored in the form

w = V1U1V2U2 · · ·VNUNW

where the Vi and W do not contain any occurrences of 0m and the Vi do not end in 0m−1,

and where the Ui are of the form

Ui = 10m−1xk0
m−1xk−1 · · · 0m−1x00

m

with xi ∈ {0, 1}. Each factor Ui is coded by a positive integer ri whose base 2 expansion is

1xkxk−1 · · ·x0. It is easy to see that any representation of n less than or equal to w may be

factored in the form

V1U
′
1V2U

′
2 · · ·VNU

′
NW

where for each 1 ≤ i ≤ N, U ′
i is an equivalent representation of Ui. Hence R≤m(w) =∏N

i=1Rm(Ui), from which it follows that

R≤m(w) =
N∏

i=1

ri∑
j=0

(
2ri − j

j

)
(mod 2).
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4.3.2. Episturmian numeration systems

Let A be a finite non-empty set. Associated to an infinite word ω = ω1ω2ω3 . . . ∈ AN

is a non- decreasing sequence of positive integers E(ω) = E1, E2, E3, . . . defined recursively

as follows: E1 = 1, and for k ≥ 1, the quantity Ek+1 is defined by the following rule. If

ωk+1 6= ωj for each 1 ≤ j ≤ k, then set

Ek+1 = 1 +
k∑

j=1

Ej.

Otherwise let ` ≤ k be the largest integer such that ωk+1 = ω`, and set

Ek+1 =
k∑

j=`

Ej.

In particular, note that Ek+1 = Ek if and only if ωk+1 = ωk.

Set N (ω) = {Ek|k ≥ 1}. For E ∈ N (ω) let k ≥ 1 be such that E = Ek. We define

σ(E) = ωk and say that E is based at ωk ∈ A. We also define the quantity ρ(E), which we

call the multiplicity of E, by ρ(E) = #{i ≥ 1|E = Ei}.We can write N (ω) = {x1, x2, x3, . . .},

where for each i ≥ 1, we have xi < xi+1. Thus we have that ω = σ(x1)
ρ(x1)σ(x2)

ρ(x2) . . . .

It can be verified that the setN (ω) defines a numeration system (see [34]). More precisely,

each positive integer n may be written as a sum of the form

(∗) n = mkxk +mk−1xk−1 + · · ·+m1x1

where for each 1 ≤ i ≤ k we have 0 ≤ mi ≤ ρ(xi) and mk ≥ 1. While such a representation of

n is not necessarily unique, one way of obtaining such a representation is to use the “greedy

algorithm”. In this case we call the resulting representation the Zeckendorff representation of

n and denote it Zω(n). We call the above numeration system a generalized Ostrowski system

or an Episturmian numeration system. In fact, the quantities Ei are closely linked to the

lengths of the palindromic prefixes of the characteristic Episturmian word associated to the

directive sequence ω (see [32, 33, 34, 35]). In the case where #A = 2, this is known as the

Ostrowski numeration system (see [6, 10, 45]). In the case where A = {1, 2, . . . ,m} and ω

is the periodic sequence ω = (1, 2, 3, . . . ,m, )∞, then the resulting numeration system is the

m-bonacci system defined earlier.

Given an infinite word ω = ω1ω2ω3 . . . ∈ AN, we are interested in the number of distinct

ways of writing each positive integer n as a sum of the form (*). More precisely, denoting
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by Â the set {â|a ∈ A}, we set Rω(n) = #Ωω(n) where Ωω(n) is the set of all expressions of

the form

(∗∗) σ̂(xk)
mk

σ(xk)
ρ(xk)−mk σ̂(xk−1)

mk−1

σ(xk−1)
ρ(xk−1)−mk−1 · · · σ̂(x1)

m1

σ(x1)
ρ(x1)−m1

in (A∪ Â)∗, such that n = mkxk +mk−1xk−1 + · · ·+m1x1 where N (ω) = {x1, x2, x3, . . . |1 =

x1 < x2 < x3 . . .} and where 0 ≤ mi ≤ ρ(xi) and mk ≥ 1.1 For w ∈ Ωω(n) we sometimes

write Rω(w) for Rω(n).

Just as in the previous section, we begin with a unique special factorization of the Zeck-

endorff representation of n. In this case, this factorization was originally defined by Justin

and Pirillo (see Theorem 2.7 in [34]). We factor Zω(n) as

Zω(n) = V1U1V2U2 · · ·VNUNW

where for each 1 ≤ i ≤ N, we have that Ui is a ai- based maximal semigood multiblock for

some ai ∈ A. Moreover, any other representation of n may be factored in the form

Zω(n) = V1U
′
1V2U

′
2 · · ·VNU

′
NW

where U ′
i is an equivalent representation of Ui (see Theorem 2.7 in [34]). Thus, as before

(see (†)) we have

Rω(n) =
N∏

i=1

Rω(Ui).

For each 1 ≤ i ≤ N, the factor Ui corresponds to a sum of the form

mKxK +mK−1xK−1 + · · ·+mkxk

for some K > k with mK 6= 0. In addition, for each K ≥ j ≥ k, we have that if mj 6= 0,

then σ(xj) = ai [34]. In other words the only “accented” symbol occurring in Ui is ai, i.e.,

Ui ∈ (A ∪ {âi})∗.

Associated to Ui is a {0, 1}-word ν(Ui) = νKνK−1 . . . νk, where νK = 10 and

• νj = ε (the empty word) if σ(xj) 6= ai,

• νj = 10 if σ(xj) = ai and mj = ρ(xj),

• νj = 010 if σ(xj) = ai and 0 < mj < ρ(xj), and

1Our notation here differs somewhat from that of Justin and Pirillo in [34]. For instance, in [34] the

authors use the notation ā for in lieu of our â. Also instead of the expression (**), they consider the reverse

of this word.
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• νj = 00 if σ(xj) = ai and mj = 0.

By comparing the matrix formulation given in Corollary 2.11 in [34] used to compute Rω(Ui)

with the matrix formulation given in Proposition 4.1 in [6], we leave it to the reader to verify

the following:

Proposition 4.7. Rω(Ui) = R2(ν(Ui)).

In other words computing the multiplicities of representations in a generalized Ostrowski

numeration system may be reduced to a computation of the multiplicities of representations

in the Fibonacci base.

Example 4.8. We consider the example originally started in Berstel’s paper [6] and later

revisited by Justin and Pirillo as Example 2.3 in [34] of the Ostrowski numeration system

associated to the infinite word ω = a, a, b, b, a, a, a, b, b, a, a, b, b, a, a, a, b, . . . . It is readily

verified that

N (ω) = {1, 3, 7, 24, 55, 134, 323, . . .},

σ(1) = σ(7) = σ(55) = σ(323) = a, σ(3) = σ(24) = σ(134) = b, and ρ(1) = 2, ρ(3) = 2,

ρ(7) = 3, ρ(24) = 2, ρ(55) = 2, ρ(134) = 2, ρ(323) = 3. Applying the greedy algorithm we

obtain the following representation of the number 660

660 = 2(323) + 0(134) + 0(55) + 0(24) + 2(7) + 0(3) + 0(1).

So Zω(660) = ââabbaabbââabbaa. which is a semigood multiblock based at a. We deduce that

ν(Zω(660)) = 10 · ε · 00 · ε · 010 · ε · 00

or simply ν(Zω(660)) = 100001000.

Following the algorithm of Corollary 2.11 of [34] due to Justin and Pirillo, we obtain

q1 = 2, q2 = 4, p1 = 2, p2 = 2, c1 = c2 = 1, so that

Rω(660) = (1, 0)

 0 2

0 3

  0 2

0 3

  1

1

 = 6

In contrast, applying the algorithm in Proposition 4.1 of [6] due to Berstel to the Zeck-

endorff word ν(Zω(660)) = 100001000, we obtain d1 = 4, d2 = 3 so that

R2(ν(Zω(660))) = (1, 1)

 1 1

2 2

  1 1

1 2

  1

0

 = 6
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as required2.

2In [6], Berstel computes Rω(660) in a different way by using the matrix formulation of Proposition 5.1

in [6] which applies to an Ostrowski numeration system.
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CHAPTER 5

TILINGS OF CERTAIN FACTORS OF THE FIBONACCI WORD

5.1. Introduction

Sturmian words are infinite words on a two-letter alphabet that have exactly n+1 factors

of length n. The Fibonacci word ω = 01001010010010100101001001010010 . . . is probably

the most common example of a Sturmian word [7] and is the limit of the sequence of words

defined as follows.

u0 = 0, u1 = 01, and uk = uk−1uk−2 for all k ≥ 2.

Alternately, ω is the fixed point of the substitution

τ : 0 7→ 01

1 7→ 0.

It is a straightforward inductive proof to show that τ k(0) = uk, for each k ≥ 1.

Jean Berstel, while attending a conference in 2006, suggested that others at the confer-

ence attempt to give combinatorial descriptions of all the various identities related to the

Fibonacci numbers. In this chapter, I will give a description of the following identities in

terms of tilings of certain factors of the Fibonacci word.

Let the Fibonacci numbers be defined as f0 = 0, f1 = 0, and set fn = fn−1 + fn−2 for all

n ≥ 2. Then

f2n =
n∑

i=0

(
n

i

)
fn−i and f2n+1 =

n∑
i=0

(
n

i

)
fn−i+1.

5.2. Palindromic Prefixes of the Fibonacci Word

A subword w of a Sturmian word s is left special if 0w and 1w both occur in s, and we say

that an infinite binary word s is a characteristic Sturmian word if all the prefixes of s are left

special. In addition, the palindromic closure of an finite word u is the shortest palindrome

u(+) having u as a prefix. A. de Luca, in [15], gives a characterization of Sturmian words in

terms of palindromic closures.

Proposition 5.1. (de Luca) An infinite binary word s is a characteristic Sturmian word if

there exists an infinite binary word ∆(s) = a0a1 · · · with infinitely many occurrences of both

letters such that s = limn→∞wn where w0 = ε and wn+1 = (wnan)(+), for n ≥ 0.
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∆(s) = a0a1 · · · is called the directive sequence of s. In the case of Fibonacci, ∆(ω) =

01010101 . . . . Figure 5.1 shows the first few palindromic prefixes of ω.

w0 = ε

w1 = 0

w2 = 010

w3 = 010010

w4 = 01001010010

w5 = 0100101001001010010

w6 = 01001010010010100101001001010010
...

...
...

Figure 5.1. The First Few Palindromic Prefixes of the Infinite Fibonacci Word

In [47], R. Risley and L.Q. Zamboni give another construction of these palindromic

prefixes based on suffix replication. Let ∆ = a0a1a2a3 . . . = 0101 . . . be the directive sequence

of ω. As the letters of ∆ are added, they are marked by ˆ. So, w1 = 0̂ and wn+1 = wnânvn,

where vn is the longest suffix of wn containing no ân. Figure 5.2 shows the palindromic

prefixes of ω obtained using the method in [47].

w0 = ε

w1 = 0̂

w2 = 0̂1̂0

w3 = 0̂1̂0̂010

w4 = 0̂1̂0̂0101̂0010

w5 = 0̂1̂0̂0101̂00100̂1010010

w6 = 0̂1̂0̂0101̂00100̂10100101̂001001010010
...

...
...

Figure 5.2. Palindromic Prefixes of the Infinite Fibonacci Word Using the

“Hat” Algorithm
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Lemma 5.2. For n even, wn = wn−110wn−2 and for n odd, wn = wn−101wn−2.

Proof. Clearly, the proposition is true for n = 2, 3. We proceed by induction on n.

Suppose n+ 1 is odd. We show that wn+1 = wn01wn−1.

We know, since wn+1 = (wn0)+, that wn+1 = wnu, and by the hat algorithm, u is the

suffix of wn that begins in the last 0̂ of wn. So, wn = zu = z0̂v11̂v2, where 0̂v1 is the last

0̂ of wn−1 and 1̂v2 is the last 1̂ of wn. Again, by the hat algorithm, wn = wn−11̂v2, and by

the induction hypothesis, wn = wn−110wn−2. So, 1̂v2 = 10wn−2. Similarly, 0̂v1 = 01wn−3.

Together, this gives us that u = 0̂1wn−31̂0wn−2. However, by the induction hypothesis,

wn−1 = wn−201wn−3, but wn−1 = wn−310wn−2 since each wi is a palindrome. So, u = 01wn−1

and thus, wn+1 = wn01wn−1 as needed.

If n+ 1 is even, a completely symmetric argument shows wn+1 = wn10wn−1.

�

Lemma 5.3. For each n ≥ 1, |wn| = fn+2 − 2 = f1 + f2 + · · ·+ fn.

Proof. We proceed by induction on n. By Lemma 5.2, wn = wn−1abwn−2, where a, b ∈

{0, 1}, a 6= b. Then,

|wn| = |wn−1|+ |wn−2|+ 2

= fn+1 − 2 + fn − 2 + 2

= fn+2 − 2

= f1 + · · ·+ fn

�

In [15], de Luca gives the following proposition.

Proposition 5.4. A palindrome word w has the period p < |w| if and only if it has a

palindrome prefix (suffix) of length |w| − p.

We use Proposition 5.4 to establish that wn has periods fn and fn+1.

Proposition 5.5. For each n ≥ 1, wn is the unique word (up to isomorphism) of length

fn − 2 beginning in 0 and having periods fn and fn+1.

Proof. By Lemma 5.2, wn = wn−1abwn−2, where a, b ∈ {0, 1}, a 6= b, and by definition,

wn−1 and wn−2 are palindromes. By Proposition 5.4, to show that wn has period fn, it

remains to show that |wn−1| = |wn| − fn.
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|wn−1| = fn+1 − 2

= fn+1 + fn − 2− fn

= fn+2 − 2− fn

= |wn| − fn

Again, by Proposition 5.4, to show that wn has period fn+1, it remains to show that

|wn−2| = |wn| − fn+1.

|wn−2| = fn − 2

= fn+1 + fn − 2− fn+1

= fn+2 − 2− fn+1

= |wn| − fn+1

�

5.3. Singular Factors of the Fibonacci Word

Let un = z1z2 · · · zfn+1 be the prefix of ω of length fn+1. The kth conjugate of un is defined

to be zk+1 · · · zfn+1z1 · · · zk, and set Cn = {w|w is a conjugate of un}. In [52], it is shown that

all the conjugates of un are factors of ω and that |Cn| = fn. In other words, each element in

Cn is distinct. In addition, it is shown that if n is odd, 01 is a suffix of un and if n is even,

10 is a suffix of un.

Since there are fn+1-many factors of length fn in ω, there is one factor of length fn that

is not an element of Cn. Call this factor the nth singular factor and denote it sn. In [52], sn

is defined in the following way. If un = zab, where a, b ∈ {0, 1} and a 6= b, then the singular

word sn of length fn is azb−1. In addition, it is shown that sn defined in this way is a factor

of ω but is not an element of Cn. Thus, the two definitions are equivalent.

Set S0 = 0, and for all n > 0, Sn =

 0wn−10 (n odd)

1wn−11 (n even)
and Fn = 0wn−11.

Proposition 5.6. Sn is the singular factor of the ω of length fn+1.

Proof. Since wn−1 has length fn+1 − 2, wn−1 is a prefix of un. If n is odd, 01 is a suffix of

un, and if n is even, 10 is a suffix of un. Therefore,

un =

 wn−101 (n even)

wn−110 (n odd)
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Thus if n is even, sn = 1wn−11 = Sn and if n is odd, sn = 0wn−10 = Sn. �

Remark 5.7. • Since Sn is the singular factor of length fn+1, Fn must be a congugate

of un.

• Sn is a palindrome since wn−1 is.

5.4. Tilings

We now describe the identities

f2n =
n∑

i=0

(
n

i

)
fn−i and f2n+1 =

n∑
i=0

(
n

i

)
fn−i+1

with tilings.

For each n, we say Sn is a tile of type n. We show that F2n can be tiled by
(

n
0

)
-many tiles

of type n,
(

n
1

)
-many tiles of type n− 1, . . . , and

(
n
n

)
-many tiles of type 0, and that F2n+1 can

be tiled by
(

n
0

)
-many tiles of type n+ 1,

(
n
1

)
-many tiles of type n, . . . , and

(
n
n

)
-many tiles of

type 1.

First, we show that {Sn} and {Fn} satisfy the following recursive relations.

Proposition 5.8. • Sn = Sn−2Sn−3Sn−2.

• F2n = F2n−2F2n−1.

• F2n+1 = F2nF2n−1.

Proof. The proof depends on Lemma 5.2.

For n odd,

Sn = 0wn−10

= 0wn−210wn−30

= 0wn−301wn−410wn−30

= Sn−2Sn−3Sn−2

For n even,
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Sn = 1wn−11

= 1wn−201wn−31

= 1wn−310wn−401wn−31

= Sn−2Sn−3Sn−2

F2n = 0w2n−11

= 0w2n−201w2n−31

= 0w2n−310w2n−21 since w2n−1 is a palindrome.

= F2n−2F2n−1

F2n = 0w2n1

= 0w2n−110w2n−21

= F2nF2n−1

�

Next, we define some new words recursively in terms of {Sn}. We will show then that

{Fn} can be defined in terms of these new words, and making this definition will allow us to

complete the proof of the main theorem.

Definition 5.9. First, we define y0 = S1S2, ỹ0 = (y0)
+1 = S3S2, and for n ≥ 1, yn =

ỹn−1yn−1, and ỹn = (yn)+1 where (yn)+1 is an increase in the subscripts of yn.

Next, we define z0 = S1S0, z̃0 = (z0)
+1, and for n ≥ 1, zn = zn−1z̃n−1, and z̃n = (zn)+1

where (zn)+1 is an increase in the subscripts of zn.

Lemma 5.10. znz̃n = ỹn

Proof. We proceed by induction on n.

For the base cases, z0z̃0 = S1S0S1S2 = S3S2 = ỹ0, and

z1z̃1 = S1S0S1S2S3S2S1S2 = S3S2S3S4 = ỹ1.
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zn+1z̃n+1 = znz̃n(zn+1)
+1

= znz̃n(znz̃n+1)
+1

= ỹn(ỹn)+1

= (yn)+1(ỹn)+1

= (ỹnyn)+1

= (yn+1)
+1

= ỹn+1.

�

Lemma 5.11. ỹnyn = z̃n+1

Proof. Again, we proceed by induction.

For the base case, ỹ0y0 = S3S2S1S2 = ṽ1.

ỹn+1yn+1 = (yn+1)
+1yn+1

= (ỹnyn)+1ỹnyn

= (z̃n+1)
+1z̃n+1

= (z̃n+1)
+1(zn+1)

+1

= (zn+1z̃n+1)
+1

= (zn+2)
+1

= z̃n+2.

�

Definition 5.12. Let F ′
0 = 0, F ′

1 = 01, F ′
2 = z0, F

′
3 = y0, and for all k > 3,

F ′
k =

 ỹjyj j = k−5
2
, k odd,

zj z̃j j = k−4
2
, k even.

Proposition 5.13. Fn = F ′
n for all n ≥ 0.

Proof. To complete the proof, we show that the {F ′
n} satisfy the same recursive relations

as the {Fn} in Proposition 5.8. First, we show for n ≥ 2, F ′
2n+1 = F ′

2nF
′
2n−1; we use Lemma

5.10.
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F ′
2n+1 = ỹn−2yn−2

= zn−2z̃n−2ỹn−3yn−3

= F ′
2nF

′
2n−1.

Next, we show for n ≥ 2, F ′
2n = F ′

2n−2F
′
2n−1; we use Lemma 5.11.

F ′
2n+1 = zn−2z̃n−2

= zn−3z̃n−3ỹn−3yn−3

= F ′
2n−2F

′
2n−1.

�

Lemma 5.14.
(

n−1
k−1

)
+

(
n−1

k

)
=

(
n
k

)
.

Proof. (
n−1
k−1

)
+

(
n−1

k

)
= (n−1)!

(k−1)!(n−k)!
+ (n−1)!

k!(n−1−k)!

= (n− 1)!( k
k!(n−k)!

+ (n−k)
k!(n−k)!

)

= (n− 1)!( n
k!(n−k)!

)

= n!
k!(n−k)!

=
(

n
k

)
�

Theorem 5.15. For n ≥ 2,

(i) F2n can be tiled by
(

n
0

)
-many tiles of type n,

(
n
1

)
-many tiles of type n−1, . . . , and

(
n
n

)
-many

tiles of type 0.

(ii) F2n+1 can be tiled by
(

n
0

)
-many tiles of type n + 1,

(
n
1

)
-many tiles of type n, . . . , and(

n
n

)
-many tiles of type 1.

Proof. We first show by induction that (i) holds.

By induction, we have that F2n−2 can be tiled by
(

n−1
0

)
-many tiles of type n − 1,

(
n−1

1

)
-

many tiles of type n − 2, . . . , and
(

n−1
n−1

)
-many tiles of type 0. We also have that F2n−1 can

be tiled by
(

n−1
0

)
-many tiles of type n,

(
n−1

1

)
-many tiles of type n − 1, . . . , and

(
n−1
n−1

)
-many

tiles of type 1. Since F2n = F2n−2F2n−1, we combine the number of tiles for F2n−2 and F2n−1,

making use of Lemma 5.14.
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We have
(

n
0

)
-many tiles of type n,

(
n−1

0

)
+

(
n−1

1

)
=

(
n
1

)
-many tiles of type n− 1,

(
n−1

1

)
+(

n−1
2

)
=

(
n
2

)
-many tiles of type n − 2, . . . ,

(
n−1
k−1

)
+

(
n−1

k

)
=

(
n
k

)
-many tiles of type n −

k, . . . ,
(

n−1
n−2

)
+

(
n−1
n−1

)
=

(
n

n−1

)
-many tiles of type 1, and

(
n
n

)
-many tiles of type 0, as needed.

We next show by induction that (ii) holds.

Since F2n+1 = F2nF2n−1, we begin by checking the tilings of F2n and F2n−1. By induction,

F2n−1 can be tiled as
(

n−1
0

)
-many tiles of type Sn,

(
n−1

1

)
-many tiles of type n − 1, . . . , and(

n−1
n−1

)
-many tiles of type 1. By Proposition 5.13,

F2n = zn−2z̃n−2 = ỹn−2 = (yn−2)
+1 = (ỹn−3yn−3)

+1.

But, F2n−1 = ỹn−3yn−3. This implies that F2n can be tiled with the same number of

tiles as F2n−1 with the tile types increased one unit. Thus we have
(

n
0

)
-many tiles of type

n + 1,
(

n−1
0

)
+

(
n−1

1

)
=

(
n
1

)
-many tiles of type n,

(
n−1

1

)
+

(
n−1

2

)
=

(
n
2

)
-many tiles of type

n− 1, . . . ,
(

n−1
k−1

)
+

(
n−1

k

)
=

(
n
k

)
-many tiles of type n− k− 1,

(
n−1

k

)
+

(
n−1
k+1

)
=

(
n

k+1

)
-many tiles

of type n− k, . . . ,
(

n−1
n−2

)
+

(
n−1
n−1

)
=

(
n

n−1

)
-many tiles of type 2, and

(
n
n

)
-many tiles of type 1,

as needed. �
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