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Fields, Christopher J., Comparative biochemistry and genetic analysis of nucleoside

hydrolase in Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas fluorescens. Doctor

of Philosophy (Biology), December 2002, 139 pp., 7 tables, 39 illustrations, 208 references, 3

chapters

The pyrimidine salvage enzyme, nucleoside hydrolase, catalyzes the irreversible

hydrolysis of nucleosides into the free nucleic acid base and D-ribose. Nucleoside hydrolases

have varying degrees of specificity towards purine and pyrimidine nucleosides. In E. coli, three

genes were found that encode homologues of several known nucleoside hydrolases in protozoa.

All three genes (designated yaaF, yeiK, and ybeK) were amplified by PCR and cloned. Two of

the gene products (yeiK and ybeK) encode pyrimidine-specific nucleoside hydrolases, while the

third (yaaF) encodes a nonspecific nucleoside hydrolase. All three were expressed at low levels

and had different modes of regulation.

As a comparative analysis, the homologous genes of Pseudomonas aeruginosa and P.

fluorescens (designated nuh) were cloned. Both were determined to encode nonspecific

nucleoside hydrolases. The nucleoside hydrolases of the pseudomonads exhibited markedly

different modes of regulation. Both have unique promoter structures and genetic organization.

Furthermore, both pseudomonad nucleoside hydrolases were found to contain an N-terminal

extension of 30-35 amino acids that is shown to act as a periplasmic-signaling sequence. These

are the first two nucleoside hydrolases, to date, that have been conclusively demonstrated to be

exported to the periplasmic space. The physiological relevance of this is explained.
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CHAPTER 1

INTRODUCTION

Pyrimidine biosynthesis

The biosynthesis of pyrimidines is a pathway that is present in all but the most parasitic

of organisms. Biosynthesis of uridine-5’-triphosphate (UTP) and cytidine-5’-triphosphate (CTP)

is essential because they are required precursors of RNA; if these compounds are not synthesized

de novo, then they must be supplied through various salvage routes. Furthermore, CTP also acts

as a precursor of 2’-deoxycytidine-5’-triphosphate (dCTP), while UTP is the precursor of 2’-

deoxythymidine-5’-triphosphate (dTTP). Both dTTP and dCTP (pyrimidine

deoxyribonucleotides) are required precursors of DNA synthesis.

Enzymes involved in pyrimidine metabolism have continuously been explored, to various

degrees of success (Gero et al., 1984; Seymour et al., 1994; Parkin et al., 1997), as therapeutic

targets due to their importance in cellular metabolism. Here, a brief synopsis of the steps leading

to the biosynthesis of the ribonucleoside triphosphates is presented using Escherichia coli as a

model.

Synopsis of the de novo pathway

Here we will discuss the de novo pathway leading to the formation of UTP and CTP, as

shown in Figure 1.1.
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Figure 1.1 - The E. coli pyrimidine biosynthetic pathway.
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Carbamoyl phosphate synthetase (CPSase, carA and carB, EC 6.3.5.5)

The first reaction leading to the formation of pyrimidines is the formation of the high-

energy compound carbamoyl phosphate (CP). This compound is also the precursor of arginine

and therefore represents a branch point in the pyrimidine pathway. This reaction, catalyzed by

the enzyme carbamoyl phosphate synthetase, is extremely energy-intensive, requiring two

molecules of adenosine-5’-triphosphate (ATP) to form carbamoyl phosphate from the precursors

bicarbonate and glutamine or ammonium (Anderson and Meister, 1965). CPSase is a large

enzyme complex composed of two subunits; subunit A (encoded by carA) is a glutaminase,

which acts to remove the R-group amide from the glutamine donor, while subunit B (encoded by

carB) acts as the general synthetase domain. The synthetase domain has two distinct ATP

binding sites, one for each catalyzed in the reaction (Rubio and Cervera, 1995). The first domain

catalyzes the phosphorylation of the CP precursor carboxyphosphate from bicarbonate and ATP,

while the second domain combines the carboxyphosphate with the glutaminase-formed

carbamate. The two CarB subunit domains appear to be an internal gene duplication, as the N-

terminal and C-terminal domains have a high degree of similarity to one another (Nyunoya and

Lusty, 1983). The crystal structure has been solved for the E. coli enzyme and represents one of

the more complex protein structures solved to date, detailing how CP is synthesized in a long,

tunnel-like pathway through the molecule (Thoden et al., 1997) and has several novel

mechanisms for allosteric regulation and substrate-channeling (Liu et al., 1994b). The E. coli

CPSase is allosterically regulated by several effectors. UMP (uridine-5’-monophosphate)

negatively regulates the enzyme, while ornithine and IMP (inosine-5’-monophosphate) both

activate (Anderson, 1977). Each of the effectors has a specific binding site. The allosteric

effector-binding sites for UMP and IMP overlap the ATP-binding site in the carboxy-terminal
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domain of the synthetase subunit, leading to sigmoidal kinetics for Mg-ATP (Boettcher and

Meister, 1982).

In E. coli, the carAB genes are expressed as an operon and are negatively regulated at the

transcriptional level in a complex interaction several transcription factors. Two promoters are

present upstream of the operon. Promoter P2 is regulated by ArgR (Charlier et al., 1988;

Kilstrup et al., 1988), while the other, P1, is regulated by a more complex interaction between

the UMP kinase product (PyrH), IHF, and the protein CarP (also known as PepA) (Charlier et al.,

1995a; Charlier et al., 1995b).

Aspartate transcarbamoylase (ATCase, pyrB and pyrI, EC 2.1.3.2)

The reaction leading to the formation of N-carbamoyl aspartate is catalyzed by the

enzyme aspartate transcarbamoylase, arguably the most characterized and studied enzyme in

biology. The E. coli enzyme is one of the two original models for end-product (allosteric)

regulation and transcriptional repression (Roof et al., 1982; Roland et al., 1985; Gouaux and

Lipscomb, 1988a; Gouaux and Lipscomb, 1988b). Several reviews have been written about this

enzyme (O’Donovan and Neuhard, 1970; Kantrowitz and Lipscomb, 1988; Kantrowitz and

Lipscomb, 1990; Stevens et al., 1991a; Lipscomb, 1994; Neuhard and Kelln, 1996), therefore a

detailed discussion will not be made here. However, several key points need to be made.

ATCase in bacteria has been separated into three classes (Figure 1.2, Bethell and Jones,

1969). The first group, Class A, is represented by the enzyme complex found in a wide range of

phylogenetically distinct bacteria and is a large (~480 kDa) dodecameric holoenzyme composed

of two subunits: two trimers made up of the catalytic polypeptide (pyrB, 36 kDa) and three
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ATCase Class Holoenzyme Polypeptide structure Representative organisms

Class A

(480 kDa)

Class B

(300 kDa)

Class C

(100 kDa)

=pyrB (catalytic)

  (36 kDa)

=pyrC’ (active or inactive

  dihydroorotase)

 (45 kDa)

=pyrB (catalytic)

  (34 kDa)

=pyrI (regulatory)

  (17 kDa)

=pyrB (catalytic)

  (34 kDa)

Inactive DHOase

Pseudomonas putida

Pseudomonas aeruginosa

Active DHOase

Thermus sp.

Deinococcus radiophilus

Mycobacterium smegmatis

Streptomyces coelicolor

Escherichia coli

Salmonella typhimurium

Serratia marcescens

Erwinia herbicola

Proteus vulgaris

Citrobacter freundii

Pyrococcus abyssi

Neisseria meningitidis

Vibrio natriegens

Bacillus subtilis

Bacillus cauldolyticus

Streptococcus pyogenes

Stenotrophomonas maltophila

Figure 1.2 - Classes of bacterial ATCases.
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dimers composed of dihydroorotase or a dihydroorotase-like polypeptide (pyrC or pyrC’,

respectively, 45 kDa). The active dihydroorotase subunit would likely play a role in substrate

channeling (Van de Casteele et al., 1997). However, the purpose of the pyrC’-encoded subunit

remains to be elucidated. It is currently hypothesized to play a role as structural “glue” for the

two catalytic trimers as the trimers are inactive when expressed alone. A regulatory role may

also exist for this subunit (C. J. Fields, work in progress). This group has a disparate mode of

regulation, with ATP normally acting as an inhibitor (Bergh and Evans, 1993; Shepherdson and

McPhail, 1993; Schurr et al., 1995; Kenny et al., 1996; Vickrey et al., 2002). ATP binds to the

catalytic subunit (Bergh and Evans, 1993), unlike the class B enzymes.

The second group, Class B, is the most characterized and best represented by the ATCase

holoenzyme found in E. coli and other enteric bacteria and in the Archaea. This class is

structurally similar to Class A above, with a dodecameric structure composed of two catalytic

trimers (polypeptide size of 34 kDa) and three dimers (polypeptide size of 17 kDa) (Bothwell

and Schachman, 1974). The dimers, in this case, are the product of the pyrI gene and act as

regulatory subunits (Roof et al., 1982). ATP, UTP (uridine 5’-triphosphate) and CTP (cytidine

5’-triphosphate) bind to the N-terminal region on the PyrI polypeptide (Figure 1.3, Xi et al.,

1994), allowing for allosteric activation of ATCase in the case of ATP, or inhibition in the case

of CTP and UTP (the latter acting only in the presence of CTP) (Wild et al., 1989). The

allosteric transition can be seen by the sigmoidal kinetics noted for the substrate aspartate. The

crystal structure for the native holoenzyme and several mutants has been solved to 1.8 Å,

allowing for the mechanism of allosteric inactivation to be viewed (Figure 1.3, Honzatko et al.,

1982; Lipscomb, 1994). Unlike the Class A enzymes, Class B ATCases are able to form a
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Figure 1.3 - Aspartate transcarbamoylase from E. coli. In the three-fold axis, the numbered

subunits r and c designate the regulatory and catalytic subunits, respectively. In the two-fold

axis, the allosteric transition from the T state (tight, or less active) to R (relaxed, or more active)

is shown. zn – zinc- binding; cp –carbamoyl-phosphate binding; asp – aspartate-binding, al –

allosteric binding site. Modified, with permission, from Gouaux et al., 1989; Gouaux and

Lipscomb, 1989.



8

functional trimer that lacks allosteric regulation due to the loss of the PyrI regulatory dimers and,

therefore, exhibits Michaelis-Menten kinetics. An unusual variant of this class is found in the

bacteria Thermotoga maritima and Treponema denticola, both of which have a regulatory

subunit fused to the catalytic subunit (Chen et al., 1998). The T. maritima enzyme is still

currently being characterized and is in the process of having its structure elucidated by X-ray

crystallography (R. Cunin, personal communication).

Class C, best characterized by Bacillus, is a simple trimer of three catalytic polypeptides

of ~34 kDa. This class, much like the E. coli trimer, lacks allosteric regulation and has

Michaelis-Menten kinetics for aspartate (Baker et al., 1995). The enzyme has been crystallized

to 3.0 ��Stevens et al., 1991b), revealing a structure is similar to the E. coli trimer.

A fourth class (Class D) is currently being proposed to include the unusually large

ATCase from Burkholderia cepacia and other related bacteria. This holoenzyme is composed of

two catalytic trimers and three DHOase dimers, much like the Class A enzymes. In this case, the

catalytic PyrB polypeptide has an N-terminal extension of ~80 amino acid residues that increases

the total polypeptide size to 47 kDa (Farinha et al., 2000). The total size of the enzyme is

thought to be 550 kDa; smaller sizes have been seen that likely arise from the active trimer

dissociating from the DHOase dimers (Linscott et al., 1994). The N-terminal extension

represents an unique feature for this group of enzymes that continues to be investigated (G. A.

O’Donovan, unpublished results).

The pyrBI genes in E. coli are located in a single operon and are controlled by the

concentration of UTP in the cell through an attenuation mechanism involving a leader peptide, a

rho-independent terminator, and UMP-rich regions in the transcript (Roof et al., 1982; Navre and

Schachman, 1983; Roland et al., 1985). Transcriptional initiation of the pyrBI operon is further
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regulated by transcriptional slippage, referred to as reiterated transcription, due to high UTP

concentrations (Liu et al., 1994a).

Dihydroorotase (DHOase, pyrC, EC 3.5.2.3)

The enzyme DHOase catalyzes the cyclization of N-carbamoyl-aspartate to form the first

ringed structure, dihydroorotate. The enzyme from E. coli has been cloned and characterized

(Sander and Heeb, 1971; Washabaugh and Collins, 1984; Washabaugh and Collins, 1986; Brown

and Collins, 1986; Collins and Brown, 1990; Brown and Collins, 1991) and is a homodimer.

The crystal structure has been recently determined (Thoden et al., 2001). A full review has been

published on the evolutionary history of this enzyme (Fields et al., 1999) and is currently in

revision for an update to include current genome sequences.

Dihydroorotate dehydrogenase (DHOdehase, pyrD, EC 1.3.3.1)

The enzyme dihydroorotate dehydrogenase catalyzes the only redox reaction involved in

pyrimidine metabolism, removing two hydrogens from the substrate dihydroorotate to form the

first true pyrimidine, orotate. DHOdehase is a membrane-bound enzyme complex that has

bound a flavin mononucleotide cofactor (Larsen and Jensen, 1985). The electron acceptor for the

E. coli enzyme is though to be ubiquinone or menaquinone, which carries the electrons from

dihydroorotate to fumarate (Kerr and Miller, 1968; Andrews et al., 1977).

The E. coli pyrC and pyrD genes are regulated in a similar manner (Vial et al., 1993;

Sorensen et al., 1993; Liu and Turnbough, Jr., 1994a; Liu and Turnbough, Jr., 1994b). Increased

CTP pools in the cell cause transcriptional initiation to occur at a site which enables the

formation of a stem-loop structure. The stem-loop structure sequesters the ribosomal binding
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site, shutting down gene expression. In low levels of CTP, the transcript starts at the

downstream G residue, destabilizing the stem-loop and allowing translation of the gene products

to occur. Furthermore, the PurR repressor has been found to regulate gene expression for both

pyrC and pyrD; in high purine nucleotide pools, DHOase and DHOdehase are slightly repressed

due to the action of the PurR repressor (Choi and Zalkin, 1990).

Orotate phosphoribosyltransferase (OPRTase, pyrE, EC 2.2.4.10)

The addition of 5’-phosphoribosyl-1’pyrophosphate (PRPP) to the pyrimidine ring is

catalyzed by the enzyme orotate phosphoribosyltransferase. OPRTase belongs to a much larger

family of enzymes, the phosphoribosyltransferases (PRTases), that catalyze similar reactions

(Jensen, 1983). The primary sequence of OPRTases, like most other PRTases, contain a motif

known to bind PRPP (Carrey, 1994).

The regulation of pyrE expression occurs through a mechanism similar to that seen for

the E. coli pyrBI operon. However, the leader peptide is actually an expressed protein, rphH,

encoding the enzyme RNase pH, involved with tRNA modification (Andersen et al., 1991;

Andersen et al., 1992).

Orotidine-5’-monophosphate (OMP) decarboxylase (OMPdecase, pyrF, EC 4.1.1.23)

One of the most efficient enzymes known is OMP decarboxylase, which removes the

carboxylate group at position 6 on the pyrimidine intermediate OMP. This is the single step in

the pathway that is truly irreversible and helps drive the pathway towards biosynthesis of UMP

(Beak and Siegel, 1976). The pyrF gene in Salmonella typhimurium is in a small operon

containing the gene orfF, which is translationally coupled to pyrF (Theisen et al., 1987). The
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expression of pyrF is negatively regulated by a uridine nucleotide and a guanosine nucleotide

(Kelln et al., 1975; Kelln et al., 1975; Jensen, 1989).

Uridine-5’-monophosphate kinase (UMP kinase, pyrH, EC 2.7.4.3)

The E. coli pyrH gene product is a UMP-specific kinase that is identical to the E. coli

gene smbA (Smallshaw and Kelln, 1992). UMP kinase converts UMP to UDP (uridine-5’-

diphosphate); however, it has recently been implicated in the pyrimidine-specific regulation of

the carAB operon. In this case, UMP kinase is thought to act as a signaling protein that enables

the CarP protein to bind to the P1 region when the UMP levels are high (Kholti et al., 1998).

Nucleoside diphosphate kinase (Ndk, ndk, EC EC 2.7.4.6)

The nonspecific enzyme nucleoside diphosphate kinase catalyzes the conversion of any

nucleoside diphosphate to its respective triphosphate. The enzyme can utilize any NTP or dNTP

as a phosphate donor for any NDP or dNDP (Ohtsuki et al., 1984).

Cytidine-5’-triphosphate synthase (CTP synthase, pyrG, EC 6.3.4.2)

The last step in pyrimidine biosynthesis is the formation of cytidine-5’-triphosphate

(CTP) by the enzyme CTP synthetase. The enzyme acts as a glutamine amidotransferase in

order to supply the amino group to form CTP, utilizing one ATP in the process (von der et al.,

1985).
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Overview of pyrimidine salvage reactions

The salvage of pyrimidines is an important series of reactions present, in some form, in

all organisms. The ability to utilize and recycle preformed pyrimidines and purines prevents the

energetically expensive route to forming these compounds through coordinate regulation of both

biosynthetic and salvage reactions. Furthermore, the breakdown products of RNA and DNA can

be utilized in many organisms as a source of carbon, nitrogen, and energy.

Here, a brief synopsis of the pathways involved in the salvage and regeneration of

pyrimidines is presented.

Degradation of RNA

The half-life (t½ ) of bacterial messenger RNA (mRNA) transcripts, in comparison, to

eukaryotic mRNA, is extremely short The average t½ is 2.4 minutes at 37°C but can range from

20 seconds to as long as 50 minutes (Regnier and Arraiano, 2000). Various mechanisms are

responsible for the targeting and degradation of mRNA. Here, I cover the pathways leading to

the generation of nucleoside monophosphates; a full review is available which is more

comprehensive (Regnier and Arraiano, 2000).

Bacterial mRNA is targeted for degradation by various means. The addition of a poly(A)

tail by the bacterial poly (A) polymerase leads to the degradation of the targeted RNA by a large

complex called the “degradosome” (Miczak et al., 1996). This complex consists of several

enzymes, including the single-stranded endonuclease RNase E, polynucleotide phosphorylase

(PNPase), and RhlB, a DEAD-box protein (a family of proteins having the motif aspartate-

glutamate-alanine-aspartate, or DEAD) that specifically binds RNA (Py et al., 1996). The rate of
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degradation depends on many factors, not limited to the secondary structure of the message,

presence of as poly(A) tail, and ribosomal protection of the message during translation (Py et al.,

1996).

RNase E degradation acts to cleave at A-U-rich regions in the RNA sequence, normally

proceeding from the 5’ to the 3’ end of the mRNA. Secondary structures that stabilize the

mRNA at the 5’ or 3’ end can be cleaved by the double-stranded endonuclease RNase III, thus

freeing up the exposed ends for further breakdown. Fragments cleaved by RNase E and RNase

III are rapidly broken down by an exonuclease reaction; normally this can be phosphorolysis by

the “degradasome”-associated PNPase to the nucleoside diphosphates, or by hydrolysis from

RNase II, releasing nucleoside monophosphates (Regnier and Arraiano, 2000). These are then

subject to further degradation, as seen below.

Breakdown of monophosphates

Nucleoside monophosphates liberated during mRNA degradation can be reutilized

through the action of specific NMP kinase, such as CMP or UMP kinase. Nucleoside

diphosphates can also be reutilized through the nonspecific enzyme reaction catalyzed by

nucleoside diphosphate kinase. However, little is known about the breakdown of NMPs to

unphosphorylated nucleosides or bases in the cytoplasm.

In some bacteria, the nucleoside monophosphates can be cleaved into the base and D-

ribose-5-phosphate. The enzyme AMP nucleosidase is one well-characterized example (Leung

and Schramm, 1984). Pyrimidine nucleoside 5’ monophosphate (NMP)-specific nucleosidases

have been reported for some bacteria, including Neisseria meningitidis (Jyssum, 1989),

Pseudomonas oleovorans (Sakai et al., 1971), and E. coli (Neuhard, 1983).
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The removal of the 5’ phosphate is also possible; this reaction is attributed to the action

of 5’-nucleotidase (EC 3.1.3.5, Knofel and Strater, 1999). 5’-nucleotidase activity has been

reported for Pseudomonas aeruginosa (Bhatti et al., 1976). The role that these play in the control

of cytoplasmic nucleotide pools is dubious, however, as 5’-nucleotidases are generally exported

outside of the cell or are localized in the periplasmic space. However, it can’t be ruled out that

some activity may occur prior to export.

Transport of nucleosides and bases

Nucleosides and bases may also be imported into the cell through various transport

routes. They must be also be able to negotiate the outer and inner membrane for Gram-negative

cells. Outer membrane nucleoside transport in E. coli requires the channel-forming protein Tsx

(Hantke, 1976), but there have been no reports describing how bases traverse the outer

membrane.

Transport of pyrimidine bases across the inner membrane requires one of the two systems

encoded by nupG and nupC (Munch-Peterson and Mygind, 1983). Transport of bases requires

the more substrate-specific permeases; separate transporters have been found for cytosine and

uracil (Munch-Peterson and Mygind, 1983).

Deaminations

The enzymes cytidine deaminase (cdd) and cytosine deaminase (codA) are able to

hydrolyze the amino group of cytidine and cytosine to form uridine and uracil, respectively. The

E. coli cytidine deaminase (EC 3.5.4.5) is the main route for the conversion of cytidine to uridine



15

(Ashley and Bartlett, 1984). Cytosine deaminase (EC 3.5.4.1), although not as active, is able to

convert cytosine hydrolytically to uracil (Katsuragi et al., 1987).

Nucleoside kinases

A single enzyme in E. coli, uridine kinase (udk, EC 2.7.1.48), is capable of adding a

phosphate to the 5’ hydroxyl group of both pyrimidine ribonucleosides (Valentin-Hansen, 1978).

This enzyme, in effect, bypasses the need for 5’-phosphoribosyl-1’pyrophosphate in the uracil

phosphoribosyltransferase reaction.

Cytidine-monophosphate (CMP) kinase

Cytidine 5’-monophosphate (CMP), catalyzed by uridine kinase, can be converted to

cytidine 5’ diphosphate by the specific enzyme CMP kinase (cmk, EC.2.7.4.14) (Beck et al.,

1974). This is considered a salvage enzyme as it is not required for growth.

Uracil phosphoribosyltransferase

The regeneration of intracellular UMP pools occurs through the action of uracil

phosphoribosyltransferase (upp, EC 2.4.2.9) (Rasmussen et al., 1986). The enzyme in E. coli is

specific for uracil; no other nucleic acids are catalyzed, although 5-subsituted uracil analogues

such as 5-fluorouracil are easily converted.

Nucleoside phosphorylases

Breakdown of nucleosides occurs through two separate routes. The first, described here

briefly, is the action of uridine phosphorylase (udp, EC 2.4.2.3). This enzyme is able to carry out
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the reversible cleavage of the -N-glycosyl bond to release ribose-1-phosphate and uracil (Leer

et al., 1977). The enzyme has no action for cytidine.

The second enzyme, nucleoside hydrolase, is the focus of this dissertation and is

described in much greater detail below.

Nucleoside hydrolase

The enzyme nucleoside hydrolase (NH, EC 3.2.2.1) catalyzes the hydrolysis of the -N-

glycosyl bond in nucleosides. The NHs are characterized based on their substrate specificity and

their ability to hydrolyze ribo- or deoxyribonucleotides, the former by far the more prevalent.

The enzyme is found in a wide range of organisms, including bacteria (Takagi and Horecker,

1957; Lee, 1991; Beck, 1995), plants (Camici et al., 1979), fungi (Magni, 1978), protozoa

(Degano et al., 1998; Shi et al., 1999), and insects (GenPept #AAG22352, among others). They

have not been found in higher organisms, including humans, and therefore have been exploited

as possible targets for antimicrobial chemotherapy, mainly for some of the parasitic protozoans.

Some organisms may have more than one gene encoding NHs In these cases, the paralogous

NHs normally display a difference in substrate specificity that allow for the degradation of a

wide range of nucleosides.

Several different protozoan nucleoside hydrolases have been cloned and sequenced.

Many of the first were cloned in an attempt to exploit them as targets for antimicrobial action as

many parasitic protozoans, such as Leishmani major, Crithidia fasciculata, and Trypanosoma

brucei, do not have a purine de novo pathway and thus require extrcellular purines for RNA and

DNA synthesis. The first cloned and characterized protozoan NH was the inosine-uridine

preferring nucleoside hydrolase (IUNH) from the protozoan Crithidia fasiculata (Parkin et al.,
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1991). As the name suggests, the most activity has been recorded for the purine nucleoside

inosine (I) and the pyrimidine nucleoside uridine (U); however, some activity still remains for

the other nucleosides and therefore it is considered relatively nonspecific. Several more NHs

from protozoans were cloned more recently, including an IUNH from Leishmania major, a

nonspecific nucleoside hydrolase from Leishmania donovani (Cui et al., 2001), and purine-

specific nucleoside hydrolases from several trypanosomes, such as Trypanosoma brucei (Parkin,

1996) and Trypanosoma vivax (Versees et al., 2001). The trypanosomal NHs are all purine-

specific and designated as IAGNH, for inosine-adenosine-guanosine specific nucleoside

hydrolases. This finding led to a detailed structural comparison of the T. vivax enzyme to that of

C. fasciculata

Several nucleoside hydrolases from other organisms have been studied. The nucleosidase

from Saccharomyces cerevisiae has been characterized as a copper-containing enzyme (Magni et

al., 1976) that is uridine-specific. The gene that encoded the enzyme has been recently cloned

(Mitterbauer et al., 2002) and has a significant degree of similarity to the protozoan nucleoside

hydrolases. Bacterial nucleoside hydrolases have been characterized from several Pseudomonas

(Lee, 1991) species and have been found to have little specificity for nucleosides but are

recalcitrant to deoxynucleosides. The notable exception to this is the report of a pyrimidine-

preferring nucleoside hydrolase from Pseudomonas fluorescens (Terada et al., 1967); this may be

a strain-specific issue, however as most have been found to have a wide substrate specificity.

The NH from Ochrobactrum anthropi (Ogawa et al., 2001) has been classified as a purine-

specific NH.

The catalytic mechanism of nucleoside hydrolysis catalyzed by NHs was first described

by Schramm and others (reviewed in Schramm, 1997). The mechanism relies on an
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oxocarbenium intermediate structure. The reaction mechanism is similar to that seen for the

enzyme AMP nucleosidase (Leung and Schramm, 1984) and the powerful cytotoxin Ricin A-

chain, the castor bean-derived toxin that became infamous when it was used to assassinate the

Bulgarian dissident Georgi Markov in 1978 (Schramm, 1997).

The crystal structure of the Crithidia fasciculata IUNH

The crystal structure for the Crithidia fasciculata IUNH, the Leishmania major IUNH,

and the Trypanosoma vivax IAGNH (see below) have been solved. Comparisons between IUNH

structures revealed that the C. fasciculata and L. major nucleoside hydrolases were practically

identical in structure, including several key residues involved in catalysis and in the tetrameric

quaternary structure (Shi et al., 1999). A Rossman-like fold was found at the N-terminus; this

fold, known to bind nucleotides, is missing the phosphate-binding consensus GXGXXG. This

missing consensus is replaced by two of the five residues (Asp-, Asp-, Asp-, Asp-, Thr-), which

coordinate a calcium ion in order to stabilize the oxocarbenium transition state and activate the

water nucleophile (Schramm, 1997). The bound calcium ion acts also to hold the oxocarbenium

transition state by coordinating the 2’ and 3’ hydroxyls as well as the water nucleophile, which is

used to attack the -N-glycosyl bond. Furthermore all the hydroxyl groups are multiply

hydrogen-bonded, stabilizing the structure in the binding pocket. Protonation of the leaving

group is accomplished by the proton-donating residue His-241 prior to oxocarbenium activation

(Gopaul et al., 1996) revealing that ribonucleosides would more likely be catalyzed than

deoxyribonucleosides due to a lack of the 2’ hydroxyl group. The 5’ hydroxyl group was held by

several key hydrogen bonds; the addition of a phosphate group in this position is thought to

prevent binding due to the repelling charge and could explain why many nucleotides cannot act
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as substrates for this enzyme (Degano et al., 1998). Another discovery was that the base portion

of the nucleoside made no specific contacts with the IUNH enzymes; rather, several key

hydrophobic interactions were present that held the nucleoside in place, including several that

resembled base stacking interactions, such as seen in DNA and RNA, likely explaining the lack

of substrate specificity (Parkin et al., 1997).

The purine-specific IAGNH of Trypanosoma vivax

The Trypanosoma vivax IAGNH crystal structure (Versees et al., 2001) has added a new

dimension about substrate specificity. The enzyme is 1000-10000 times more specific towards

the naturally occurring purine bases inosine, adenosine, and guanosine over the pyrimidine bases

due to a faster turnover rate and a higher substrate affinity for the purine. Furthermore, they are

relatively resistant to the transition-state inhibitors constructed for the Crithidia IUNH (Versees

et al., 2001). The colorimetric substrate p-nitrophenyl- -D-ribofuranoside (p-

nitrophenylriboside) was a relatively poor substrate (Versees et al., 2001). Moreover, the

enzyme is thought to require either multiple protonations or other electron-leaving effects in

order to reach the transition state (Versees et al., 2001). The IAGNH and the IUNH differ

substantially in the primary sequence; these differences are mainly in the regions that surround

the pocket known to sequester the base portion of the nucleoside. All the above characteristics

suggested that that the enzyme catalyzes nucleoside hydrolysis by a slightly different

mechanism. The crystal structure (Versees et al., 2001) revealed that the enzyme quaternary

structure also differs; the IAGNH is a dimer as opposed to a tetramer. The calcium ion is

coordinated by four aspartate residues and a threonine residue, as found with the IUNHs. The

pKa range of kcat (maximal enzymatic turnover) indicates that two residues are likely to act as
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proton donors, with pKa values of 5.5 and 8.5. Therefore, both must be protonated during

enzyme catalysis. The likely acidic proton donor (pKa or 5.5) is Asp-40; however, the more

basic proton donor (pKa = 8.5) has not been determined.

The purine moiety of the nucleoside is involved in a base-stacking interaction that

involves two tryptophan residues (Trp-83 and Trp-260) in the IAGNH; since the purine is

heterocyclic, this stacking interaction enhances the enzyme’s specificity for purine nucleosides.

In other words, this interaction leads to a “sandwiching” effect in which the purine base is

stacked, edge-to-edge, between the tryptophan residues. Pyrimidine nucleosides are not

heterocyclic and will not stack edge-to-edge, but edge-to-face. Therefore, pyrimidine

nucleosides would be much more difficult to accommodate in the binding pocket compared to

purine nucleosides (Versees et al., 2001). This is evidenced in more recent work (Versees et al.,

2001), which has determined that mutants lacking the two tryptophan residues also lack purine

substrate specificity. Furthermore, the natural substrate inosine was determined to bind in an

anti-conformation in IAGNH, in contrast to the syn-conformation that has been found for the

substrate analogue 3-deaza-adenosine in previous crystal structures for IUNH and IAGNH

(Versees et al., 2001). Both tryptophan residues still interact with the purine base in a base-

stacking arrangement. Notably, no other residues have been found close to the purine base that

would protonate it as a leaving group. Therefore, it has been suggested that the base-stacking

interaction itself might allow for partial activation due interactions between the molecular

orbitals surrounding the tryptophan residues and the purine base. Orbital interactions would

strengthen the base-stacking interaction upon protonation of the purine base by Asp-40; this

would then stabilize the transition state and allow catalysis to proceed (Versees et al., 2001).

This represents a major difference in catalysis between the two different nucleoside hydrolases
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and adds to the that fact that, while the two enzymes may have similarity in their primary

sequence, several key differences in their substrate specificity and catalytic mechanism

demonstrate the continual evolution of this enzyme.

Conclusion

In this dissertation, I will detail the substrate specificity and regulation of the cloned

genes encoding nucleoside hydrolases from three bacteria.

In Escherichia coli, I determine the presence of three nucleoside hydrolases through

scanning of the genome sequence. The individual genes were amplified by the polymerase chain

reaction and cloned. The substrate specificity and possible modes of regulations for each gene

were determined

In a comparative analysis, nucleoside hydrolases are also cloned and characterized from

Pseudomonas aeruginosa and Pseudomonas fluorescens. The substrate specificity and modes of

regulation were determined for each enzyme. Furthermore, a model is elucidated involving the

potential physiological role for the nucleoside hydrolase involving nucleoside degradation.
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CHAPTER 2

CLONING AND CHARACTERIZATION OF THREE ISOGENIC NUCLEOSIDE

HYDROLASES FROM Escherichia coli K-12

Introduction

The salvage of nucleosides and bases is a ubiquitous series of reactions that is present, at

least in part, in all organisms. In Escherichia coli, many enzymes have been implicated in the

recycling of purines and pyrimidine bases and nucleosides. As shown in Figure 2.1, E. coli can

utilize bases and nucleosides by various routes (Neuhard and Kelln, 1996).

Nucleosides can be catabolized by either a phosphorylytic or a hydrolytic cleavage at the

-N-glycosyl bond (Figure 2.2). These reactions are catalyzed by nucleoside phosphorylases and

nucleoside hydrolases, respectively. A pyrimidine-specific nucleoside hydrolase activity had

previously been reported for E. coli (Beck, 1995; O’Donovan and Shanley, 1995), Salmonella

typhimurium (Beck et al., 1996), and several pseudomonads (West, 1988; Terada et al., 1967;

Sakai and Omata, 1976). A recent comprehensive study (Beck, 1995) reported nucleoside

hydrolase activity in all bacterial samples tested. Furthermore, degradative activity towards

uridine, as evidenced by 5-fluorouridine sensitivity, had been noted in uridine phosphorylase-

deficient E. coli strains (Neuhard, 1983). Mutants in this activity had not been isolated

previously, leading to the hypothesis that 5-fluorouridine was cleaved by thymidine

phosphorylase in low concentrations (Neuhard, 1983).

The nucleoside hydrolases and the catalytically-related monophosphate glycosylases

(such as CMP glycosylase) are able to hydrolyze either nucleosides or nucleoside
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monophosphates at the -N-glycosyl bond, leaving a pentose sugar (ribose, deoxyribose, or

ribose-5-phosphate) and a base (Figure 2.2; Neuhard and Kelln, 1996). Either the pentose or the

base can be reutilized to form more nucleoside triphosphates or be broken down for carbon,

nitrogen, or energy (Vogels and Van der Drift, 1976). Previously, cloned activities for

nucleoside hydrolases have been reported for the parasitic protozoans Crithidia fasiculata

(Parkin et al., 1991) and Trypanosoma brucei brucei (Pellé et al., 1998). All display significant

activity towards purine nucleosides, with some activity for pyrimidine nucleosides. However,

none displayed activity towards nucleoside monophosphates (NMPs), indicating that any activity

that would hydrolyze the -N-glycosyl bond would likely be catalyzed by another enzyme.

In this section, I focus on nucleoside hydrolysis in E. coli. Three homologues of

nucleoside hydrolases have been found in E. coli (ORFs yeiK, ybeK, and yaaF) using the

complete genome sequence (Blattner et al., 1997). All three E. coli genes have been cloned from

the E. coli chromosome. Cloned genes have been expressed in order to determine their

specificities. The deduced amino acid sequence is compared to the crystallized nucleoside

hydrolases from C. fasciculata and L. major in order to determine potential catalytic residues and

protein-substrate contacts. The proposed primary structure for the ybeK -encoded nucleoside

hydrolase (YbeK-NH) is used in a comparative modeling simulation to determine the possible

mechanisms of pyrimidine specificity and the potential structure of the active site.
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Figure 2. 1 – Pyrimidine salvage pathway reactions in E. coli K-12. Orange arrows ( ) – salvage

reactions, black arrows ( ��- de novo reactions to CTP formation, green arrows ( ), reactions

leading to formation of DNA precursors dCTP and dTTP, dashed arrows – imported compounds.
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Figure 2. 2 – Hydrolytic and phosphorylytic breakdown of uridine and UMP.
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Materials and Methods

Abbreviations and common names used

A list of abbreviations is shown in Table 2.1.

Chemicals and Supplies

All chemicals used, except the following, were purchased from Sigma-Aldrich. Agarose,

Lennox-based LB medium, and Tris (free base) were purchased from Fisher Scientific. A DNA

band prep kit was used for extracting DNA from agarose gels (Prep-a-Gene™, BioRad Corp.,

Hercules, CA, www.biorad.com). Pfu polymerase, used in all PCR amplifications, was

purchased from Stratagene Corp. (La Jolla, CA, www.stratagene.com). The plasmid pZeRO2.1

was obtained from Dr. John Knesek (Texas Woman’s University, Denton, TX) and originated

from Invitrogen Corp. (Carlsbad, CA, www.invitrogen.com). All automated sequencing was

performed by Lone Star Labs, Inc (San Antonio, TX). Primers used for PCR amplification were

purchased from Integrated DNA Technologies, Inc. (Coralville, IA), or Biosynthesis, Inc.

(Lewisville, TX)

Bacterial strains and media

The E. coli strains and plasmids listed in Table 2.2 were used in this study. All strains

were grown in LB medium. Media were solidified with 1.5% agar when needed. Media were

also supplied with the following additional components, where applicable: IPTG (1mM),

kanamycin (50 g/ml), and ampicillin (100 g/ml).
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Table 2.1 – List of abbreviations

Abbreviation Full Name

A Adenine

AR Adenosine

ATP adenosine 5'-triphosphate

bp base pair

C Cytosine

CAA N-carbamoyl aspartate (carbamoyl aspartic acid)

CDP cytidine 5'-diphosphate

CMP cytidine 5'-monophosphate

CR Cytidine

CTAB cetyltrimethylammonium bromide

CTP cytidine 5'-triphosphate

dC 2’-deoxycytidine

dCDP 2’-deoxycytidine 5'-diphosphate

dCMP 2’-deoxycytidine 5'-monophosphate

dCTP 2’-deoxycytidine 5'-triphosphate

ddH2O distilled deionized water

DHOA dihydroorotate (dihydroorotic acid)

DNA deoxyribonucleic acid
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Abbreviation Full Name

dT 2’-deoxythymidine

dTDP 2’-deoxythymidine 5'-diphosphate

dTMP 2’-deoxythymidine 5'-monophosphate

DTT Dithiothreitol

dTTP deoxythymidine 5'-triphosphate

dU deoxyuridine

dUMP deoxyuridine 5'-triphoshate

dUTP deoxyuridine 5'-triphoshate

EDTA ethylenediaminetetraacetic acid

G Guanine

Gln Glutamine

GR Guanosine

HCO3- bicarbonate

HEPES N-2-hydroxyethylpiperazine-N'-2-ethansulfonic acid

Hx hypoxanthine

HxR Inosine

IAGNH inosine-adenosine-guanosine preferring nucleoside hydrolase

IPTG isopropyl-B-D-galactoside

IUNH inosine-uridine preferring nucleoside hydrolase
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Abbreviation Full Name

kb kilobase pairs

kDa Kilodalton

LB

Luria-Bertani media, composed of 10g tryptone, 5g yeast extract, 5 g

NaCl

NDP Nucleoside 5’-diphosphate

NH Nucleoside hydrolase

NMP Nucleoside 5’-monophosphate

NTP Nucleoside 5’-triphosphate

OA Orotate (orotic acid)

OMP Orotidine 5’-monophosphate

PCR Polymerase chain reaction

Pfu Pyrococcus furiosis

RNA ribonucleic acid

SDS sodium dodecylsulfate

T Thymine

TE 10 mM Tris-HCl-1 mM EDTA, pH 8.0

Tris tris(hydroxylmethyl)aminomethane

TSS Transformation and Storage Solution

U Uracil

UDP uridine 5’-diphoshate
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Abbreviation Full Name

UMP uridine 5’-monophoshate

UR Uridine

UTP uridine 5’-triphoshate
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Table 2.2 – List of strains, plasmids, and primers

E. coli Strains Source

K12 wild type ECGS*

TOP10F' F´{lacIq Tn10 (TetR)} mcrA .(mrr-hsdRMS-

mcrBC) 80lacZ M15 lacX74 deoR recA1

araD139 (ara-leu)7697 galU galK rpsL (Str
R
)

endA1 nupG

Invitrogen

Plasmids

pZeRO2.1 KanR cloning vector with lacZ-ccdA fusion Invitrogen

J. Knesek

pCJF2 pZeRO2.1 with yaaF PCR fragment in EcoRV site

in orientation with the Plac promoter

This study

pCJF2r pZeRO2.1 with yaaF PCR fragment in EcoRV site

in opposite orientation from Plac promoter

This study

pCJF3 pZeRO2.1 with ybeK PCR fragment in EcoRV site

in orientation with the Plac promoter

This study

pCJF3r pZeRO2.1 with ybeK PCR fragment in EcoRV site

in opposite orientation from Plac promoter

This study

pCJF4r pZeRO2.1 with yeiK PCR fragment in EcoRV site

in opposite orientation from Plac promoter

This study

S=H52��� Isolated pZeRO2.1 derivative with ~100 bp

deletion in multiple cloning site

This study

Primers

yaaF For CTCCGGATATTCTGGTGCAG This study

yaaF Rev TTTTCAGAGTAACCAGCGCA This study

ybeK For GACGCTTTCTTCGATGATCC This study

ybeK Rev ATTTGGAATTAATTGCGCGG This study

yeiK For GTATCGGCTGAAACATCCGT This study

yeiK Rev CGCTGTACGCCATCACTTTA This study

* E. coli Genetic Stock Center
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Chromosomal DNA Isolation

A modified method using CTAB (Ausubel, 2001) was used to isolate chromosomal DNA

and to remove carbohydrates which interfered with PCR. Briefly, a 5 ml LB culture of the

bacterium of interest was grown to saturation in LB medium, Lennox mix (this was normally an

overnight culture). 1.5 ml of the overnight culture was harvested in a table-top centrifuge

(10,000 x g for 30 seconds). The pellet was resuspended in 567 µl TE buffer by repeated

pipetting and vortexing. 30 µl of 10% SDS and 3 µl of proteinase K stock solution (10 mg/ml)

were added to the mix by inverting several times, and the samples were incubated at 65°C for 10

minutes. NaCl (using a 5 M stock solution) was added to a final concentration of 0.7 M (the

added volume varied slightly per experiment, normally due to differences in growth and strains).

0.1 volume of CTAB/NaCl solution (20% CTAB in 150 mM NaCl) was then added by inversion.

Extraction was performed using an equal volume of chloroform/isoamyl alcohol (24:1), avoiding

vortexing due to potential shearing of DNA. A clarification spin at 10,000 rpm for 5 minutes

was used to separate phases (a white interface indicates the removal of polysaccharide). The top

layer was removed with a clipped-off blue pipette tip and transferred to a new tube. The

extraction using CTAB/NaCl was repeated before extracting twice using an equal volume of

phenol/chloroform/isoamyl alcohol (25:24:1, using equilibrated phenol at pH 8.0). After a

clarification spin, the supernatant was removed to a new tube, in which the DNA was

precipitated using 0.6 vol of isopropanol. The pellet was washed with 70% ethanol to remove

salts. The pellet was dried in vacuo and resuspended in 50-500 l of TE (pH 8.0). Typically, the

concentration of DNA isolated ranged from 100-1000 ng/ l.
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Cloning and sequence determination

An outline of the procedure is shown in Figure 2.3. Primers were constructed that

flanked the coding region of ybeK and yaaF from the complete E. coli genome sequence (Table

1.1). The program Prophet 5.0™ (BBN Systems and Technologies, Inc., Cambridge, MA) was

used to pick optimal primer pairs based upon several constraints, including distance (300 base

pairs 5’ and 3’ of each gene), Tm of approximately 60°C, GC content of 50%, and a 3’ end GC

clamp to enhance primer binding to the template. PCR amplifications using the high fidelity

enzyme Pfu polymerase were performed using the following parameters: 95°C chromosomal

DNA melting (1 minute), 60°C annealing (45 sec), 72°C extension (3 minutes, 45 seconds for

the E. coli genes) for 16 cycles; then 14 cycles utilizing the previous parameters with a 1°C

lower annealing temperature and 20 seconds longer extension time. The PCR was allowed to

proceed after all 30 cycles with a 10 minute cleanup step at 72°C, after which it was analyzed on

a 0.8 % agarose gel (Figure 2.5). Discrete bands were obtained, as shown in Figure 2.5. These

were loaded on a preparative gel using wider lanes and the same conditions for running as above,

loading the remaining PCR reaction into the individual wells.

Electrophoresed PCR products were removed from the individually prepared gel slices

using the Prep-a-Gene kit. All steps were carried out at room temperature unless otherwise

described. After agarose gels were electrophoresed to resolve the individual bands (1-1.5 hours),

each gel was carefully cut to isolate the individual bands, preventing cross-contamination with

other PCR products or the molecular weight markers. Isolated gel fragments were added to

Eppendorf tubes and spun down to determine an approximate volume, using a ratio of 1 g/ml

(the slices were normally less than 0.5 ml). The Prep-a-Gene™ binding buffer (6 M sodium

perchlorate, 50 mM Tris-HCl, 10 mM EDTA, pH 8.0) was added next (3 volumes of the
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Figure 2.3 – Outline of cloning procedure.



50

Figure 2.4 – PCR reaction products.
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original gel slice). The gel slices were incubated at 65°C for 10 minutes or until the gel slice

dissolved. 5 l of Prep-a-Gene™ DNA binding matrix (diatomaceous earth in 1x TE) were

added and the solution was incubated at room temperature, with gentle agitation, for 5-10

minutes. The matrix, with the bound DNA, was collected by centrifugation, after which the

pellet was washed twice with 125 l of Prep-a-Gene™ Wash Buffer (50% ethanol, 400 mM

NaCl, 20 mM Tris-HCl, 2 mM EDTA pH 8.0, at room temperature). After aspiration of the

remaining ethanol, the matrix pellet was dried in vacuo for 3 minutes. Elution of the bound

DNA was accomplished by addition of 10 l of Prep-a-Gene Elution Buffer (TE, pH 7.5) for 15

minutes at 37°C. After collection, the supernatant was removed, and an additional back-elution

of the matrix was performed with 10 l of Elution Buffer. A clarifying step was performed in

which remaining matrix was removed by centrifugation. The DNA is the supernatant was

ethanol-precipitated and dried in vacuo.

The three E. coli PCR products were blunt-end ligated directly into the EcoRV site of

pZeRO2.1 (Invitrogen); the procedure used is outlined in Figure 2.3. All ligations were

transformed into E. coli strain TOP10F’, made competent using either the TSS protocol (Chung

et al., 1989) or Hanahan’s method (Hanahan et al., 1991). Transformants were plated onto LB

agar containing 50 µg kanamycin per ml and 1 mM IPTG in order to screen for clones.

Resulting plasmids were screened for inserts, and positive clones were end-sequenced to confirm

the insert. Once confirmed, the plasmids were amplified using a midi-prep column purification

system (Qiagen). The bulked plasmids were sequenced (Lone Star Labs, Inc.). Plasmid,

pZeRO2.1∆, which has a non-inducible ccdB gene from a small deletion (~100 bp) in the

multiple cloning site, was used as a negative control during induction studies due to the

background of the native E. coli NHs.
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Nucleoside hydrolase enzyme assay

Cultures of E. coli TOP10F’ cells containing each cloned gene were in 2 liters of LB

broth with 50 µg kanamycin per ml. At an OD600 of 0.6 (mid-log phase), IPTG was added to a

final concentration of 125 µM. Induction of the cloned genes was allowed to proceed for 6

hours. Cells were pelleted at 10,000 x g, resuspended in breaking buffer (50 mM HEPES pH

7.3, 0.1 mM DTT, 100 m EDTA, 100 M CaCl2) at a concentration of 1g/ml, based on the wet

weight of the cells. Cells were sonicated twice (2 minutes apiece) using a Branson Cell Disrupter

200 with a duty cycle setting of 0.2-0.3 at 50% pulse rate. Cell debris was pelleted at 25,000 x

g, and the cell-free extract was removed to a new tube and assayed directly. Nucleoside

hydrolase activity was detected using a scaled-down version of the reducing sugar assay (Parkin

et al., 1991), in a final volume of 100 l. Final reaction mixtures contained 10 l of enzyme, 50

mM HEPES pH 7.3, and 5 mM nucleoside (except guanosine, which was 2 mM final).

Reactions were initiated with the addition of 10 l of cell extract and allowed to proceed for 20

minutes. A background blank to determine native NH activity in E. coli was run for each sample

by using 10 µl of cell extract in 50 mM HEPES, pH 7.3 (100 µl total). Reactions were stopped

by the addition of 100 µl of 0.1 M ZnSO4, equilibrated using 100 µl of 0.1 M NaOH, and

centrifuged at 14,000 x g for 5 minutes to remove precipitated proteins. Samples of 75 µl from

each reaction supernatant were added (in duplicate) to a 96-well microtiter plate using a

micropipettor, after which 150 µl of a 1:1 mix of color mix A (4% Na2CO3, 1.6% glycine,

0.0045% CuSO4•5H2O) and B(0.12% neocuproine) was added. Color development was

accomplished by covering the microtiter plate with plastic wrap and developing in a 65°C water

bath for 10 minutes (addition of tape to cover the microtiter plate wells was avoided due to
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reaction of the color mix to the polysaccharide from the tape). Reactions were read on a

microtiter plate reader (BioTek Corp., Winooski, VT) using a filter set at 450nm. Enzyme

activity was determined by comparison against a D-ribose standard curve (0.01-0.16 µmoles of

D-ribose dissolved in the reaction buffer above and added to the same microtiter plates before

color development). New standard curves were generated with each set of assays due to some

variability in color development per set of reaction. A typical reducing sugar standard curve is

shown in Figure 2.5. Protein concentrations were determined by the method of Bradford

(Bradford, 1976) using lysozyme as a standard (an example is shown in Figure 2.6).

Software used

ClustalX 1.81 was used for constructing a multiple sequence alignment using the default

parameters (Jeanmougin et al., 1998). Alscript v. 2.0 (Barton, 1993) was used for detailing the

multiple alignment. Other sequences used in the alignment were : Crithidia fasciculata IUNH

(GenPept #AAC47119), Leishmania major IUNH (CAC24663), Mycobacterium tuberculosis

IUNH (CAA15778), and Saccharomyces cerevisiae URH1 (Q04179). The crystal structures for

the C. fasciculata IUNH (Degano et al., 1996) and L. major IUNH (Shi et al., 1999) were

obtained from the Protein Databank server (www.rcsb.org/pdb/; Berman et al., 2000). Analysis

of the three E. coli nucleoside hydrolase-encoding open reading frames was accomplished by

using the EMBOSS suite of programs (Rice et al., 2000) on the Human Genome Mapping

Project server (Medical Research Council, Hinxton, UK, www.hgmp.mrc.ac.uk) .
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Figure 2.5 – Standard determination for the reducing sugar assay. Normal standard assays use

eight different concentrations including a blank for checking background absorbance.
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Figure 2.6 – Bradford protein concentration assay, using lysozyme as a standard.
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The GC content, codon adaptation index, and codon usage bias were calculated using the

program CodonW (Sharp and Matassi, 1994). Potential transcription factor binding sites were

located using the matrix searching program MatInspector 3.5 (© Genomatix Software, München,

Germany; Werner, 2000), utilizing a remodeled data set for the known transcription factors from

E. coli (McGuire et al., 2000). Analysis of the promoter region of the three genes for potential

promoters was accomplished using the E. coli matrices and MatInspector 3.5; alternately, the

web server at the Drosophila Genome Web Site (www.fruitfly.org/seq_tools/promoter.html) was

used with the prokaryotic setting. Potential secondary structures, indicating the presence of

terminators, were located in the sequence using the program RNAStructure 3.71 (© David

Mathews, Michael Zuker, and Douglas Turner; Mathews et al., 1999) and were visualized using

the program RNADraw (Matzura and Wennborg, 1996). The current list of finished and

unfinished microbial genomes was searched at NCBI (www.ncbi.nlm.nih.gov/cgi-

bin/Entrez/genom_table_cgi) using the program TBLASTN (© National Center for

Biotechnology Information, Washington, D.C.; Altschul et al., 1997). Structural modeling was

accomplished using the SWISS-MODEL server (Guex and Peitsch, 1997). Analysis of the

YbeK-generated structure was accomplished using the Visual Molecular Dynamics (VMD) suite

(© Board of Trustees of the University of Illinois, Urbana, IL; Humphrey et al., 1996).

Results and Discussion

Cloning and expression of yeiK, ybeK, and yaaF

The PCR reaction products for the three hydrolase genes were shown in Figure 2.4. All

fragments isolated were of the approximate size predicted from sequence analysis. This was

confirmed by sequencing the inserts after cloning into the vector pZeRO2.1. Using pZeRO2.1 as
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a cloning vector improved efficiency of cloning due to the lethality of the ccdA gene (a toxin for

DNA gyrase). The resulting constructs were: pCJF2 (yaaF), pCJF3 (ybeK), and pCJF4r (yeiK)

(Figure 2.7). The cloning efficiency was about 8 positive clones per 10 colonies with the

exception of the yeiK gene, with a lower cloning efficiency (~20%) and only in the reverse

orientation. This is likely to be due to a fusion of the N-terminus of the gene downstream of

yeiK to the C-terminus of ccdA, thus reactivating the lethal CcdA protein. This has been

confirmed by an in silico cloning experiment using the sequence given (Figure 2.8) and gives

some indirect evidence that the downstream gene (yeiJ) is likely to be translated into a viable

protein. The other genes were also cloned in the reverse direction but were not used further.

Induction and expression of the cloned nucleoside hydrolase genes

All gene products were induced in E. coli TOP10F’ during log phase growth, using a

control TOP10F’ strain containing plasmid with no insert and a deletion in the multiple cloning

site. The results are shown in Figure 2.9. A preliminary report of these results was given

previously (Fields et al., 2000). An increase in the presence of D-ribose is seen in the induced

clones versus the control. YaaF has activity for uridine, cytidine, adenosine, and inosine, and

some activity for guanosine.

YbeK, in contrast, has specificity for uridine and cytidine, with little or no activity for the

purine nucleosides. The YeiK enzyme, which only cloned in reverse, was not induced.

However, an increase of activity is noted for the pyrimidine nucleosides, and a slight increase is

noted for some purine nucleotides (Fields et al., 2000). A later study has confirmed these results

and has also indicated that the yeiK gene product is a pyrimidine-preferring nucleoside hydrolase

(Petersen and Moller, 2001).
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Figure 2. 7 – Plasmid constructs pCJF2, pCJF3, pCJF4r
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Figure 2.8 – Hypothetical plasmid construct of yeiK gene in orientation with the promoter
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Figure 2.9 – Specific activity of induced nucleoside hydrolase clones from plasmids pCJF2, pCJF3, pCJF4r
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Multiple alignment and analysis of the translated nucleoside hydrolase genes

A sequence comparison was made using the currently known nucleoside hydrolases and

their homologues. The alignment (Figure 2.10) reveals that most residues necessary for catalysis

are conserved throughout all the sequences, including those known to bind Ca
++

and the ribose

moiety hydroxyl groups (Degano et al., 1996). Notably, all three enzymes have a higher degree

of similarity to the Crithidia fasciculata nucleoside hydrolase than to the recently characterized

T. vivax IAGNH (Versees et al., 2001). Accordingly, this latter crystal structure was not used in

comparative studies. It is proposed that the catalytic mechanism will be quite similar to that seen

for the IUNH’s (Degano et al., 1996; Shi et al., 1999).

Structural Analysis

Comparison of the gene product is shown in Table 2.3. YaaF and YbeK share the closest

similarity and likely arose from a more recent common ancestor, while YeiK represents a more

ancient homologue. This is unusual, as YeiK and YbeK share substrate specificity. However,

the fluid nature of substrate specificity is not unusual for this family of enzymes, as is noted by

the low similarity of the S. cerevisiae URH1 (uridine-preferring nucleoside hydrolase) to all of

the structures. As no residues are currently known that specifically hydrogen bond the nucleic

acid moiety of the nucleoside in the characterized NH active sites (Degano et al., 1996; Shi et al.,

1999; Versees et al., 2001), it is likely that several varying factors may contribute to pyrimidine

preference, such as unique hydrogen-bond interactions in the pyrimidine-specific NHs that is not

present in the others. The purine base for the T. vivax IAGNH also relies on a unique base-

stacking interaction to prevent pyrimidine bases from entering (Versees et al., 2001).
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Figure 2.10 – Multiple alignment of nucleoside hydrolase homologues. The Ca
++

-binding

residues are designated by green up arrows ( ) under the alignment; residues known to bind the

2’- and 3’ hydroxyls are shown as blue down arrows ( ) above the alignment. His-241 (C.

fasciculata primary sequence numbering) is shown with a red circle ( ). Secondary structural

elements for each E. coli gene shown were predicted by the PHD server (Rost et al., 1994).

Structural elements from the two IUNHs were obtained from the Protein Structure Database

(Berman et al., 2000).
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Table 2.3 – Statistical analysis of E. coli NHs.

Numbers below the diagonal: # residues identical

# residues similar

# residues with gaps

Numbers above the diagonal: % identity

% similarity

% gapped
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YaaF 2% 2% 3% 3% 8% 10%

136 39% 34% 34% 30% 28%

188 60% 54% 55% 48% 46%

YbeK 7 1% 1% 2% 7% 9%

115 123 37% 39% 26% 27%

171 189 59% 59% 49% 45%

YeiK 9 6 1% 2% 6% 7%

110 110 120 75% 27% 25%

169 173 187 84% 50% 44%C. fasciculata

IUNH 11 6 4 0% 6% 7%

113 108 126 239 26% 26%

173 177 188 268 46% 44%

L. major IUNH 12 9 7 3 6% 8%

93 99 86 90 84 22%

154 155 158 162 150 42%

M. tuberculosis 28 23 21 21 20 9%

85 97 93 86 91 77

150 158 156 153 152 145

S. cerevisiae 36 31 27 27 28 34
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Therefore, the pyrimidine-specific NHs from E. coli, YbeK and YeiK, likely represent a

potential new class of pyrimidine-preferring nucleoside hydrolase. To investigate this and

determine if the active site residues would possibly have the same conformation, a structural

comparison was utilized to examine the substrate binding pocket and determine the relative

positions in comparison to the C. fasciculata IUNH.

Structure-based modeling using the YbeK gene product revealed that the position of

several key residues is conserved when threaded into the structure for the C. fasciculata IUNH

(Figure 2.11). The binding pocket was slightly enlarged when compared to the Crithidia IUNH

(Figure 2.12). This enlargement in the active site is anomalous, as one would expect steric

hindrance in the active site that would prevent purines from binding. However, since this is a

simple modeling approach, several drawbacks should be noted. Water molecules and other

compounds present in the original structure are not present in the model; therefore some

molecular spacing may be off in the site. The use of a threaded structure, in effect, creates a

predisposed notion of what the active sight may resemble when the true catalytic mechanism or

substrate binding may be quite different, as found for the trypanosomal IAGNHs (Versees et al.,

2001).
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Figure 2.11 – Proposed catalytic site of E. coli YbeK nucleoside hydrolase. Aspartate residues

are in red, histidine residues are blue, threonine and asparagine residues are in green, and

aliphatic residues and hydrophobic residues are in white. The molecule in the middle is a

transition state inhibitor (phenyl-imino-ribitol, or PIR) and the grey sphere directly below is the

coordinated calcium ion.



67

Figure 2.12 – Surface layering of the E. coli YbeK active site. The surface of the NH and PIR

are colored by charge (reds hues = acidic, blue hues = basic, gold hues = neutral). The

iminophenyl group of the substrate inhibitor PIR is shown in the background in the potential

binding cleft. No apparent structures are present that would occlude purines.
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Figure 2.13 – C. fasciculata binding site. The large area present around the iminophenyl group,

which would allow for both purines and pyrimidines to bind.
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Analysis of the genes and promoter regions

Analysis of yaaF revealed a large region upsteam of the gene that is likely to contain a

promoter. When this region was scanned for possible
70

sites, several potential candidate

promoters emerged. One was later confirmed by Petersen and Moller as the true promoter

(Petersen and Moller, 2001) and is shown in Fig 2.14. Due to its genetic isolation from other

genes, with a separation upstream of 65 bp from the gene lytB and downstream of dapB by 166

bp from the gene, it is believed the yaaF gene expressed as a simple monocistronic message (Fig

2.14a). A structure resembling a rho-independent terminator is also found upstream (Figure

2.14b), which likely acts as the transcriptional terminator for the lytB gene. No potential DNA

binding sites were located using the current dataset of E. coli transcription factor binding sites.

However, a putative
70

consensus was located in this region (Fields et al., 2000) which has now

been confirmed as the true promoter (Petersen and Moller, 2001).

The ybeK gene also appears isolated, being separated upstream from the gene gltL by 117

bp and downsteam from ybeW by 83 bp. A single
70

-dependent promoter has been found for

this gene and has been confirmed (Petersen and Moller, 2001). A likely CRP-binding site was

located upstream of the start using MatInspector (Fig 2.15a), while a potential rho-independent

terminator has also been located in the downstream region of the gene (Figure 2.15b).

However, no catabolite repression has been associated with this gene (Petersen and Moller,

2001); it is possible that this site may still represent a CRP-binding site that is activated or

repressed in specific conditions and should be characterized further.

Escherichia coli and the closely related genus Salmonella differ with respect to the

presence of the gene yeiK. This gene is actually part of a larger cluster of genes found in three E.

coli strains and several species of Shigella. This gene cluster has not been found in other
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enterics, however, and may be a recent introduction in the E. coli genome. This cluster also

includes two putative nucleoside transport proteins (yeiM and yeiJ) and a cAMP-dependent

transcriptional activator related to CAP (yeiL), which has been recently characterized (Beck,

1995). The intergenic region between the divergently transcribed yeiK and yeiL have potential

DeoR, CytR, CRP, and ArcA binding sites (Figure 2.16a; alignments in Figure 2.17). DeoR and

CytR are known to play a role in the regulation of other nucleoside salvage enzymes, including

all three nucleoside phosphorylases (Neuhard and Kelln, 1996). An alignment of the potential

transcription factor binding sites is shown in Figure 2.16. The E. coli catabolite repression

protein (CRP) is also needed for proper CytR gene regulation. Notably, the CRP binding site is

located next to the potential CytR site; this is normally seen CytR sites (Rasmussen et al., 1996).

Also, a potential Rho-independent terminator is located between yeiK and yeiJ, which encodes a

potential nucleoside permease (Figure 2.16b). As the dissociation energy is quite high for this

structure, it likely forms to terminate yeiK transcription. The gene yeiJ, therefore, may only be

expressed in conditions which allow read-through of the terminator (antitermination). This

possibility is currently being explored (C. Petersen, personal communication).

As shown for Table 2.4, the GC content and the codon adaptation index varies quite

considerably for each gene. The yaaF gene has a much higher percentage of G+C (56.5%) than

the average E. coli genes (~50.1%). Furthermore, the codon adaptation index (CAI), which is

close to 3, indicates that this gene should be expressed at low levels,as experimentally shown.

The ybeK and yeiK genes both are expected to be moderately expressed (CAI above 3.5).
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Figure 2.14 – Genetic organization of yaaF.

a) Upstream region of yaaF. The promoter, transcriptional start site, and ribosomal binding site

are designated.
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Figure 2.15 – Genetic organization of ybeK.

a) 5’ upstream region of ybeK. The CRP is shown as a green box. The promoter and

transcriptional start site, and ribosomal binding site are designated.
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b) 3’ downstream region of ybeK. The rho-independent transcriptional terminator 3’ of the stop

codon of ybeK is shown above the sequence.
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Figure 2.16 – Genetic organization of yeiK.

a) Promoter region of yeiK. The potential CRP, ArcA, CytR, DeoR, and FNR binding sites are

shown. The promoters, transcriptional start sites, and ribosomal binding sites for both yeiL and

yeiK are designated.
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b) Downstream terminator region of yeiK. Rho-independent transcriptional terminator 3’ of the

stop codon of yeiK.
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Table 2.4 – Analysis of E. coli open reading frames

Gene CAI CBI Fop Nc GC3s GC

ybeK 0.377 0.257 0.557 46.47 0.487 51.0%

yeiK 0.36 0.266 0.569 50.53 0.562 52.2%

yaaF 0.302 0.163 0.5 52.2 0.586 56.5%

Figure 2.17 – Alignment of potential transcription factor binding sites.
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Conclusions

Three genes for nucleoside hydrolases have been identified in E. coli and confirmed by

enzyme analysis. Two of the genes (ybeK and yeiK) encode pyrimidine-preferring nucleoside

hydrolases, while the third gene (yaaF) encodes a relatively nonspecific nucleoside hydrolase. A

recent report (Petersen and Moller, 2001), which confirmed these results, has also shown that the

NHs encoded by these genes do not cleave deoxyribonucleosides. Furthermore, deletion of these

genes does not cause a detectable phenotype in normally growing E. coli cells. It is not currently

understood why E. coli contains three nucleoside hydrolases for activity, especially knowing that

one (YaaF) is capable of cleaving both purine and pyrimidine nucleosides. However, several

potential hints now exist as to how at least two of the genes may be controlled which could

explain their physiological relevance. Petersen and Moller (Petersen and Moller, 2001) reported

that the yaaF gene appears to be catabolite-repressed when grown using glucose as a carbon

source, regardless of the absence of a CRP-like binding site in the promoter region of the gene.

This is corroborated by analysis using a luciferase-based DNA microarray (Van Dyk et al.,

2001), which indicates that yaaF expression increased approximately 8-fold in conditions in

which nalidixic acid was added. This suggests that the yaaF gene product may be regulated by a

novel mechanism involving DNA supercoiling. Also using a DNA microarray, another study

(DeLisa et al., 2001) has identified approximately 242 E. coli genes which are induced or

repressed in the presence of autoinducer 2 (AI-2), currently an uncharacterized molecule

important for E. coli quorum sensing. The yeiK gene, encoding a pyrimidine-preferring NH, was

one of the most induced genes, with a 25.4-fold increase in expression. This could be directly

related to the intergenic region, described above, which yeiL and yeiK share. A recent study

(Anjum et al., 2000) has indicated that the yeiL gene, upstream of yeiK and which encodes a
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CRP/FNR homologue, is regulated by a mechanism that involves aerobic and anaerobic control.

The present study has located several more potential binding sites in this region, including

several for integration host factor (IHF), the leucine response protein (Lrp), and the anaerobic

regulator FNR (Figure 2.16a). It is worth noting that the DeoR, ArcA, and FNR sites all overlap

the -10 and -35 regions of yeiL and yeiK and that ArcA and FNR are both involved in the

regulation of genes involved in anaerobic cell growth (Gunsalus and Park, 1994). Furthermore,

the finding (Anjum et al., 2000) that the yeiL gene seems to be activated in a stage during cell

death in nitrogen-starved conditions is likely to involve some cell clustering due to higher cell

densities; this could explain the induction seen for the quorum-sensing molecule AI-2 (Van Dyk

et al., 2001).

The location of potential regulatory sites upstream of the yeiK gene is important.

However, the work of Petersen and Moller (2001) found that cytR and deoR mutants did not

induce or repress the expression of a yeiK-lacZ fusion on a plasmid. However, their experiments

did not include examination of the upstream gene yeiL (the potential catabolite repressor,

discussed above), and that the presence of multiple transcription factor binding sites in this

intergenic region indicate the regulation of this gene cluster is much more complex and may rely

on varying several conditions (cell growth, presence of AI-2, presence of repressing catabolites,

and presence of nucleosides).

The presence of multiple nucleoside hydrolases in the E. coli genome easily explains why

mutants for these activities have never been recovered. Multiple separate yet simultaneous

mutations would need to occur in distal areas of the genome. It could also explain the lack of a

mutant for the CMP glycosylase activity, which would cleave the N-β-glycosyl bond in a manner

similar to these hydrolases (Figure 2.2). However, the work by Petersen and Moller (Petersen
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and Moller, 2001) indicates that the three nucleoside hydrolase genes are unable to hydrolyze

nucleoside monophosphates, and the knowledge about the structure of three nucleoside

hydrolases (Degano et al., 1996; Shi et al., 1999; Versees et al., 2001) has led to the postulation

that monophosphorylated nucleotides may not act as substrates. Although the presence of

nucleoside hydrolase activity in E. coli is now indisputable, the physiological purpose for the

presence of three nucleoside hydrolases remains a mystery.
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CHAPTER 3

CLONING AND CHARACTERIZATION OF nuh ENCODING NUCLEOSIDE HYDROLASE

IN Pseudomonas aeruginosa PAO1 AND Pseudomonas fluorescens Pf0-1

Introduction

The enzyme nucleoside hydrolase (NH) is involved in the initial steps of nucleoside

catabolism by catalyzing the hydrolytic cleavage of the -N-glycosyl bond (Chapter 2, Fig. 2.2)

to release a free base and ribose. These compounds can be further converted into carbon and

nitrogen sources for the organism. NHs are classified based upon the specificity of the enzyme

for purine or pyrimidine ribonucleosides, although some rare NHs are able to catalyze the

reaction with deoxyribonucleosides (Cui et al., 2001). The gene encoding NH was first cloned

and sequenced from parasitic protozoa (Parkin et al., 1991, Gopaul et al., 1996). More recently,

several NHs have been characterized from bacteria, including E. coli (Lee, 1991; Beck, 1995;

Petersen and Moller, 2001) and Ochrobactrum anthropi (Ogawa et al., 2001). All of the

characterized NHs so far have mixed substrate specificities, either utilizing only purines, only

pyrimidines, or a mix of purines and pyrimidines.

The pyrimidine salvage pathway differs substantially between E. coli and Pseudomonas

(Figure 3.1). Most of the key E. coli salvage enzymes are not present, including all nucleoside

phosphorylases, nucleoside kinases, and cytidine deaminase (West and Chu, 1986; West, 1988;

Beck, 1995; West, 1996); one exception recently found (Beck, 1995) is the presence of uridine

phosphorylase activity in Pseudomonas putida PRS1. Despite the lack of many salvage

enzymes, some nucleoside and base conversions still occur. Significant among these is the
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presence of a single nucleoside hydrolase. This enzyme has been characterized previously in

Pseudomonas aeruginosa (Lee, 1991; Beck, 1995; West, 1996) and P. fluorescens (Terada et

al., 1967; West, 1988).

In this chapter, I discuss the cloning and characterization of the NHs from P. aeruginosa

PAO1 and P. fluorescens Pf0-1. Although the primary amino acid sequences are 84% similar

and encode nonspecific nucleoside hydrolases, the nuh gene for each organism differs in its

genetic organization and enzyme induction. Here, I show that NHs for both Pseudomonas

species are localized in the periplasmic space. I also examine possible physiological

explanations for the presence of a periplasmic nucleoside hydrolase.

Materials and Methods

Abbreviations used

Abbreviations are listed in Table 3.1.

Bacterial strains and media

Bacterial strains, plasmids, and primers are listed in Table 3.2. P. aeruginosa and P.

fluorescens were grown in 50 ml batch cultures for all experiments determining substrate

specificity, enzyme induction, and cellular localization. Cells were grown in a modified basal

salts medium (PC, containing 67 mM KH2PO4, 42 mM NaOH, 2 mM MgSO4•7H2O, 180 M

FeSO4•7H2O, and 100 M CaCl2•2H2O; the last three components were added after autoclaving

from a 200x stock solution in 2% hydrochloric acid, referred to as R-salts) (Kunz et al., 1998).

The medium contained 20 mM of a carbon source (glucose, succinate, or ribose, where

specified) and 20 mM (NH4)2SO4. PNC medium is PC medium with the ammonium sulfate



88

rihA

rihB

rihC

rihA

rihB

rihC

udkudk

udp

upp

codA

cdd

UC

URCR

UC

URCR

UMPCMP

UDPCDP

UTPCTP
pyrG

ndkndk

pyrH

nuh nuh

CMP
glycosylase(?)

CMP
glycosylase

upp

codA

cmk
de novo synthesis

UMPCMP

UDPCDP

UTPCTP
pyrG

ndkndk

pyrHcmk
de novo synthesis

Escherichia

coli

Pseudomonas
aeruginosa

Pi

Rib-1-PRib Rib Rib Rib

5’

nucleotidase

mRNA

5’

nucleotidase

mRNA

Figure 3.1 – Pyrimidine salvage circuits of E. coli and Pseudomonas aeruginosa.
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Table 3.1 – List of abbreviations.

Abbreviation Full Name

A Adenine

AR Adenosine

ATP adenosine 5’-triphosphate

bp base pair

C Cytosine

CAA N-carbamoyl aspartate (carbamoyl aspartic acid)

CDP cytidine 5’-diphosphate

CMP cytidine 5’-monophosphate

CR Cytidine

CTAB cetyltrimethylammonium bromide

CTP cytidine 5’-triphosphate

dC 2’-deoxycytidine

dCDP 2’-deoxycytidine 5'-diphosphate

dCMP 2’-deoxycytidine 5'-monophosphate

dCTP 2’-deoxycytidine 5'-triphosphate

ddH2O distilled deionized water

DHOA dihydroorotate (dihydroorotic acid)

DNA deoxyribonucleic acid
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Abbreviation Full Name

dT 2’-deoxythymidine

dTDP 2’-deoxythymidine 5'-diphosphate

dTMP 2’-deoxythymidine 5'-monophosphate

DTT Dithiothreitol

dTTP deoxythymidine 5'-triphosphate

dU deoxyuridine

dUMP deoxyuridine 5'-triphoshate

dUTP deoxyuridine 5'-triphoshate

EDTA ethylenediaminetetraacetic acid

G Guanine

Gln Glutamine

GR Guanosine

HCO3- bicarbonate

HEPES N-2-hydroxyethylpiperazine-N'-2-ethansulfonic acid

Hx hypoxanthine

HxR Inosine

IAGNH inosine-adenosine-guanosine preferring nucleoside hydrolase

IPTG isopropyl-B-D-galactoside

IUNH inosine-uridine preferring nucleoside hydrolase
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Abbreviation Full Name

kb kilobase pairs

kDa Kilodalton

LB

Luria-Bertani media, composed of 10g tryptone, 5g yeast extract, 5 g

NaCl

MES 2-(N-morpholino)-ethanesulfonic acid

NDP Nucleoside 5’-diphosphate

NH Nucleoside hydrolase

NMP Nucleoside 5’-monophosphate

NTP Nucleoside 5’-triphosphate

OA Orotate (orotic acid)

OMP Orotidine 5’-monophosphate

PCR Polymerase chain reaction

Pfu Pyrococcus furiosis

RNA ribonucleic acid

SDS sodium dodecylsulfate

T Thymine

TE 10 mM Tris-HCl-1 mM EDTA, pH 8.0

Tris tris(hydroxylmethyl)aminomethane

TSS Transformation and Storage Solution

U Uracil
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Abbreviation Full Name

UDP uridine 5’-diphoshate

UMP uridine 5’-monophoshate

UR Uridine

UTP uridine 5’-triphoshate
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Table 3.2: Strains, plasmids, and primers

*Pseudomonas Genetic Stock Center

E. coli Strains

TOP10F’ F´{lacIq Tn10 (TetR)} mcrA .(mrr-hsdRMS-

mcrBC) 80lacZ M15 lacX74 deoR recA1

araD139 (ara-leu)7697 galU galK rpsL (Str
R
)

endA1 nupG

Invitrogen

Pseudomonas Strains

P. aeruginosa PAO1 Wild-type PSGS*

P. fluorescens Pf0-1 Wild-type, environmental isolate Casaz et

al., 2001

Plasmids

pZeRO2.1 KanR cloning vector with lacZ-ccdA fusion Invitrogen

pCJF5 pZeRO2.1 with P. aeruginosa nuh PCR fragment in

HindIII/SpeI site in orientation with the Plac

promoter

This study

pCJF7 pZeRO2.1 with P. fluorescens nuh PCR fragment

in HindIII/XbaI site in orientation with the Plac

promoter

This study

Primers

Panuh-for CCCCCAAGCTTCCAGGCCCTGTACCTGCAAC

Panuh-rev GGACTAGTGCGGAAACTCTATCTGGCCG

Pfnuh-for CCCAAGCTTGCAAAACCGAGGACGAGG

Pfnuh-rev GCTCTAGAAAATATAAGCAATCCCGCCC
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added to a final concentration of 20 mM before autoclaving. All samples grown for experiments

were performed in triplicate.

Enzyme repression and induction experiments used the following conditions. For

detection of catabolite repression or ribose regulation, cells were grown in PNC medium

containing 20 mM of glucose, ribose, or succinate, where appropriate. For determination of

enzyme induction using free nucleic acids and nucleosides, cells were grown in PNC medium

containing 20 mM glucose, 20 mM (NH4)2SO4, and 1 mM of the compound of interest

(nucleoside or base). Guanine induction was not tested as it posed problems due to its low

solubility and high acidity after addition to solution. All samples were grown to 100 Klett Units

(KU) using a #54 green filter.

Starvation experiments were conducted as follows. For glucose starvation, cells were

grown in PNC to 100 Klett units in a 50 ml Klett flask. The cells were aseptically pelleted at

12,000 x g, and resuspended in 50 ml of PC medium containing 20 mM (NH4)2SO4 and 0.1 mM

glucose. The cells were allowed to grow for a 24 hour period after which they were harvested,

sonicated, and assayed as detailed below. For nitrogen starvation, cells were initially grown and

harvested as described above for glucose starvation. The cells were resuspended in PC medium

containing 20 mM glucose and 0.1 mM (NH4)2SO4. The cells were allowed to grow for 24

hours, after which they were harvested, as above, and sonicated.

Determination of cellular localization

For the determination of enzyme localization, cells were grown in Tris-buffered medium

(T medium, consisting of 50 mM Tris-HCl pH 7.3, with 1x final concentration of R-salts)

(Harold, 1963). The following were added for growth: 0.3 mM potassium phosphate buffer (pH
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7.0), 20 mM glucose, 1 mM uridine, and 20 mM (NH4)2SO4 (final concentration). This medium

was chosen in order to facilitate detection of alkaline phosphatase and phospholipase C, both

periplasmic enzyme markers (Poole and Hancock, 1984). Cells were grown to 100 Klett units

and processed as follows. Cells were pelleted at 12,000 x g and the resulting supernatant was

saved for future assays (this fraction was designated SM, for “spent medium”). Pelleted cells

were treated using 2 ml of a modified sphaeroblasting solution (0.2 M CaCl2, 50 mM Tris-HCl,

pH 8.0) in order to release the periplasmic contents (Poole and Hancock, 1984). After gently

resuspending the pellet, the resulting mix was added to a shaker bath at 30 °C. After 15 minutes,

the cells were added to a 4°C ice bucket for an additional 15 minutes. This cycling step was

repeated twice between 30°C and 4°C (15 minutes at each temperature) in order to heat-shock

proteins in the outer membrane. After pelleting the cells, the supernatant was saved and

designated fraction P1. The pelleted cells were resuspended in 2 ml sphaeroblasting solution and

the above extraction procedure was repeated once more. The resulting supernatant was

designated fraction P2. Cells were pelleted, resuspended in 50 mM Tris-HCl (pH 7.5) with 10

m CaCl2, and sonicated. The resulting cell suspension was centrifuged at 10000 x g for 15

minutes, the supernatant was removed and designated CX, for “cell extract,” and the pellet was

resuspended in 50 mM Tris-HCl (pH 7.5), 0.1% Triton X-100. This final fraction was

designated CM, for “cell membrane.” All samples were prepared at least three times for assay.

Cloning and sequence determination

Pseudomonas aeruginosa PAO1 and P. fluorescens Pf0-1 DNA were prepared exactly as

detailed in Chapter 2. A strategy similar to that used for cloning the E. coli NH genes was
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utilized in order to clone the two Pseudomonas nuh genes. However, some slight modifications

were included in order to force-directionally ligate the genes into the multiple cloning site.

Primers were designed by using the program Prophet™ (ver. 5.0, BBN Systems and

Technologies, Inc., Cambridge, MA) to pick five pairs of optimal primers, using the same

conditions set forth to pick the primers for E. coli, (Tm=60°C, G+C=50%, GC-clamp at 3’ end).

However, a larger region (500 bp 5’ and 3’ of the ORF) was amplified in order incorporate any

potential promoter region. The primers used for amplifying the P. aeruginosa and P. fluorescens

nuh gene are listed in Table 3.1. Extensions incorporating restriction sites were included in the

5’ end of the optimal forward (HindIII) and reverse (SpeI) primers calculated by Prophet 5.0™.

Pseudomonas aeruginosa nuh was amplified by PCR using the following parameters: 95°C

chromosomal DNA melting (1 minute), 60°C annealing (45 sec), 72°C extension (4 minutes,15

seconds) for 16 cycles; then 14 cycles utilizing the previous parameters with a 1°C lower

annealing temperature and 20 seconds longer extension time. The PCR was allowed to proceed

after all 30 cycles with a 10 minute cleanup step at 72°C, after which it was analyzed on a 1%

agarose gel. P. aeruginosa nuh amplified PCR products (Figure 3.2) and pZeRO2.1 were

digested using HindIII and SpeI and electrophoresed using 1x TAE in a 0.8% gel for 1.5 hours.

The resulting bands were purified as described before (Chapter 2) and cloned into HindIII/SpeI-

cut pZeRO2.1 (Fig 3.3). Transformants in TOP10F’ were selected based on conditions described

in Chapter 2.

The primers for the nuh gene of P. fluorescens were designed with a similar strategy in

mind (Table 3.1). The forward and reverse primers were extended to include cut sites for

HindIII (Pfnuh-for) and XbaI (Pfnuh-rev). The P. fluorescens nuh gene was amplified similarly

but using the following changes in conditions: 95°C chromosomal DNA melting (1 minute),
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Figure 3.2 - Pseudomonas aeruginosa PAO1 PCR reactions.

kan

disruptedlacZ-ccdA

disruptedlacZ-ccdA

HindIII (277)

SpeI (2327)

PAO1 nuh

pCJF5
5323 bp

rbsD

nuh

kan

pCJF7

5298 bp

Figure 3.3 – Plasmid maps
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59°C annealing (45 seconds), 72°C extension (4 minutes, 30 seconds) for 16 cycles; then 14

cycles utilizing the previous parameters with a 2°C lower annealing temperature and 15 seconds

longer extension time. The PCR was allowed to proceed after all 30 cycles with a 10 minute

cleanup step at 72°C, after which it was analyzed on a 1% agarose gel. The resulting PCR

product was digested, gel-purified using the technique described above and in Chapter 2, and

ligated into HindIII/XbaI-cut pZeRO2.1 (Figure 3.3). The rest of the transformation procedure is

as described previously (Chapter 2).

Nucleoside hydrolase enzyme assay

Each Pseudmonas nuh gene was transformed into E. coli strain TOP10F’. The

transformants were grown in 2 L of LB broth with 50 µg kanamycin per ml. At an OD600 of 0.6,

IPTG was added to a final concentration of 125 µM. Induction of the cloned genes was allowed

to proceed for 6 hours. Cells were pelleted at 10,000 x g, resuspended in breaking buffer (50

mM HEPES pH 7.3, 0.1 mM DTT, 0.1 mM EDTA) at a concentration of one gram wet weight of

cells per ml and sonicated twice (2 minutes apiece) using a Branson Cell Disrupter™ 200 (with a

duty cycle setting of 0.2-0.3 at 50% (pulse). Cell debris was pelleted at 25,000 x g, and the cell-

free extract was removed to a new tube and assayed directly. Nucleoside hydrolase activity was

detected using a modification of the reducing sugar assay (Parkin et al., 1991) using a final

volume of 100 l. Final reaction conditions were 50 mM HEPES (pH 7.5), 5 mM nucleoside

(except guanosine, which was 2 mM final). Reactions were initiated with the addition of 10 l of

cell extract and allowed to proceed for 20 minutes. A background blank was run for each clone

by using 10 µl of cell extract in 50 mM HEPES, pH 7.3 (100 µl total). Reactions were stopped

by the addition of 100 µl of 0.1 M ZnSO4, equilibrated using 100 µl of 0.1 M NaOH, and
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centrifuged at 14,000 x g for 5 minutes to remove precipitated proteins. 75 µl of each reaction

supernatant were added in duplicate to a 96-well microtiter plate, after which 150 µl of a 1:1

mix of color mix A (4% Na2CO3, 1.6% glycine, 0.0045% CuSO4•5H2O) and B (0.12% 2,9-

dimethyl-1,10-phenanthroline) was added. The microtiter plate was covered with plastic wrap

and developed in a 65°C water bath for 10 minutes. Enzyme activity was determined by

comparison against a D-ribose standard curve (0.01-0.16 µmoles, Figure 2.6). Protein

concentrations were determined using lysozyme as a standard (Bradford, 1976).

Cells grown in minimal medium in studies on gene induction and enzyme localization

were assayed as above with the following exceptions. The nucleoside hydrolase assay was

conducted using 50 mM Tris-HCl pH 7.5, 10 M CaCl2, and 5 mM uridine in a final volume of

200 l. The nucleoside used (uridine) was not varied per assay to maintain similar conditions

throughout. Protein concentrations for enzyme induction and enzyme localization were

determined using the DC™ assay (BioRad Corp., Hercules, CA; www.biorad.com) using bovine

-globulin as a standard. An example of a DC™ assay standard curve is shown in Figure 3.4.

Aspartate transcarbamoylase assay

The enzyme aspartate transcarbamoylase (ATCase) was assayed using a modified version

of the standard protocol (Prescott and Jones, 1969). In brief, three microliters of the cell-free

extract for each sample was added, in triplicate, to wells in a microtiter plate. 4 l of a tribuffer

stock (1 M MES, 0.51 M N-ethylmorpholine, 0.51 M diethanolamine, pH 8;Leger and Herve,

1988) was added to each well containing the sample, and the volume was increased to 80 l with

ddH2O. 10 l of 200 mM L-aspartate (potassium salt) was added with a multichannel pipettor.

The plate was equilibrated by gently placing on a submerged platform in a 30°C water bath and
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allowed to incubate for 3 minutes. Standards (0-0.016 mol DL-carbamoyl aspartate) were also

added to empty wells in triplicate. The reaction was initiated by addition of 10 l of 100 mM

carbamoyl phosphate using a multichannel pipettor, allowing 10 second increments per row.

Appropriate blanks, in which water was added instead of carbamoylphosphate, were prepared for

each sample. The microtiter plate with samples was then incubated in a 37°C water bath for 20

minutes after the entire plate was covered using plate-sealing tape. The assay was stopped by the

addition of the color mix, which is one part color mix A (0.8% w/v 2,3 butanedione monoxime in

5% v/v acetic acid) to two parts color mix B (1% antipyrine in 50% sulfuric acid), and the

microtiter plate was covered and incubated at 65°C in the presence of light for 2.5 hours.

Specific activity was calculated for each sample using the loaded standards by comparing the

absorbance of the standards and the samples at an absorbance of 450 nm. An example of the

carbamoyl aspartate standard curve generated is shown in Figure 3.5.

Alkaline phosphatase assay

Alkaline phosphatase was assayed using a modification of a standard protocol (Hancock,

1999) with p-nitrophenylphosphate (pNPP) as substrate. In brief, 10 l sample of cell extract

was added to a microtiter plate in triplicate. 40 l of ddH2O and 50 l of 100 mM Tris-HCl pH

7.5 were added. The microtiter plate was placed in the preprogrammed microtiter plate reader at

room temperature; at this point, 100 l of pNPP stock solution (0.5 mg/ml pNPP in 50 mM Tris-

HCl, pH 7.5) was quickly added to each well. The wells in the plate were continuously read at

405 nm to monitor the increase of p-nitrophenol over time. The reaction was allowed to proceed

for 10 minutes. The reaction rate was determined from the linear region of the p-nitrophenol

absorbance curve. After 10 minutes, the measurement was stopped. The plate was allowed to
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Figure 3.4 – Standards determined using the DC microtiter plate assay. Assays were performed

in triplicate.
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Figure 3.5 – Standards used for the determination of carbamoyl aspartate concentration. Assays

were performed in triplicate.
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remain in the plate reader for 30 minutes-1 hour or until absorbance reached a plateau, and a

second absorbance reading was made to determine the extinction coefficient (0.38 moles

hydrolyzed per one unit of absorbance at 405 nm). Alkaline phosphatase specific activity was

calculated using the rate of hydrolysis for the sample (measured as mOD/min), multiplying by

the extinction coefficient, and dividing by the protein concentration as determined by the DC

assay.

Phospholipase C assay

Phospholipase C was assayed in a similar manner as for alkaline phosphatase. The

assays were set up in a similar manner and volume as above; the stock solution used in this case

consisted of 3 mg nitrophenylphosphorylcholine (pNPC) per ml in 0.25 M Tris-HCl pH 7.5 and

60% (v/v) glycerol. The absorbance was monitored at 405 nm. Extinction coefficients and

specific activity were calculated in a similar manner as above (in this case, 0.24 moles formed

per absorbance unit).

Software used

Sequence and primer analysis was performed using PROPHET™ (as stated above) and

the EMBOSS package (Rice et al., 2000). The CloneIt server (Lindenbaum, 1998) was used to

determine the optimal restriction sites for cloning the nuh gene from P. aeruginosa and P.

fluorescens.

Matrix searches were performed using the program MatInspector (ver. 2.2, © Genomatix

Software, München, Germany; Werner, 2000); the matrices were created from the sequences for

all known transcription factor binding sites in E. coli (McGuire et al., 2000) and the few from
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Pseudomonas aeruginosa PAO1 (Anderson, 1977; Charlier et al., 1988; Mohr et al., 1992;

Miczak et al., 1996).

Protein localization prediction was determined using the PSORT server (Nakai and

Horton, 1999) and the SignalP server (ver. 2.0; Nielsen et al., 1999). Multiple alignment of NH

amino acid sequences and protein signal regions was performed using the program ClustalX (ver.

1.81; Thompson et al., 1997), using a gap penalty of 8 and a gap extension penalty of 0.1.

Sequence post-processing was carried out using the Alscript packages (ver. 2.0; Barton, 1993) at

the Human Genome Mapping Project Resource Center (or HGMP, funded by the Medical

Research Council in the UK; www.hgmp.mrc.ac.uk). Sequences used in the alignment are:

Pseudomonas fluorescens Pf0-1 (Joint Genome Institute), P. putida KT2440 (TIGR), P.

fluorescens SBW25 (Sanger Institute), P. syringae (TIGR), P. aeruginosa (AAG03533),

Ralstonia solanoceareum (CAD16255), Crithidia fasciculata (Q27546), Leihmania major

(CAC24663), Saccharomyces cerevisiae (AAG44107), Schizosaccharomyces pombe

(CAB91168), Escherichia coli YbeK (AAC73752), E. coli YeiK (AAA60514), E. coli YaaF

(AAB40852). Alignment coloring (as seen in Figure 3.15a and b) was performed using the

program GeneDoc (ver. 2.6.002; Nicholas and Nicholas, 2001).

Protein structure threading was accomplished using the Swiss-Model web server (Guex

and Peitsch, 1997) using the C. fasciculata IUNH as a model. The protein model acquired was

compared to the predicted secondary structure determined by the PHD server (Rost et al., 1994)

for determining the accuracy of the multiple alignment.
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Figure 3.6 – Genetic organization of the P. aeruginosa nuh gene
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Figure 3.7 – Potential terminator located 3’ of the nuh gene. G = -27.28 kcal/mol.
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Results and Discussion

Analysis of nuh genes in Pseudomonas aeruginosa and Pseudomonas fluorescens

The genetic organization for the nuh genes, as revealed by the genome sequence of

Pseudomonas aeruginosa, is shown in Figure 3.6. During investigation into the cellular

localization of the Pseudomonas NH, it became apparent that the P. aeruginosa NH was

exported outside of the cytoplasm into the periplasmic space. This prompted a reanalysis of the

upstream region of the gene and located two sequencing mistakes. During the annotation phase

of the P. aeruginosa genome project, an initial start codon was placed at the far 3’ end of the

fragment (shown in Figure 3.6 next to the second potential RBS). This was due to the presence

of a potential ribosomal-binding site, the coincident length of the ORF when compared to the E.

coli ORFs (detailed in Chapter 2), and the lack of a second start upstream. When the final

sequence was analyzed, a base change in the upstream sequence changed one codon from a TGA

to a TCA and extended the sequence to the immediately preceding start codon, which has a

functional ribosomal binding site. This change has since been corrected with the Pseudomonas

genome project organizers (Fiona Brinkman and Bob Hancock, personal communication). A

second correction further upstream was also made that did not affect the coding sequence. The

sequence of the cloned nuh gene from pCJF5 also confirmed these changes.

The PAO1 nuh gene is relatively isolated from the upstream gene (PA0142, encoding a

putative chlorohydrolase) and the downstream gene (PA0144, encoding an unknown protein). A

putative transcriptional terminator structure is located between nuh and PA0144 (Figure 3.4).

Using the program MatInspector™, two potential
54

promoter elements (Farinha et al., 1993;

Merrick, 1993) were located approximately 30 bp upstream of the translational start. An

alignment against known
54

promoters is shown in Figure 3.8. As the upstream untranslated
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PAO1_NUH_P :

PAO1_NUH_P :

ABNIFH :

ACFIXABC :

ACNIFH :

ADAZU :

AEHOXS :

AVFIXABCX :

AVIGLNA :

AVIMONFE :

AVINIFA :

AVINIFBQ :

AVINIFF :

AVINIFH2A :

AVINIFREG :

AVINIFUSV :

AVNIFE :

AVNIFL :

BSLEVANOP :

ECCELY :

ECHEVOP :

ECHYP :

ECOFDHF :

ECOGLNA :

ECOHISPUR2 :

ENTNIFHAA :

HSNIFABX :

KPGLNA :

KPNIFAB :

KPNIFF :

KPNIFH01 :

KPNIFJ :

KPNIFXUS :

KPNIFZM :

KPNNACP :

KPNNIFEPR :

KPNNIFL :

KPNNIFLA :

MLCGSA :

MXAHA :

PAAZU :

PANIRAX :

PRNIFDK :

PSEALGC_al :

PSEHRPL :

PSEPHHYD :

PSEXYLA :

PVGLNABC :

RCANIFPRA :

RCNIF :

RCNIFAB :

RHBGLNB :

RHBNIFB :

RHMDCTABD :

RHMFIXA :

RHMFIXABCX :

RHMNIFAX :

RHMNIFB :

RHMNIFDK :

RHMNIFDKZ :

RHMNIFH1X :

RHMNIFKDH3 :

RLDCTA :

RLFIXZ :

RLGLNA :

RLNIFAB :

RRGLNBA :

RRNIFJ :

RSPNIFHD :

S52478 :

STYARGTR :

STYDHUA :

STYGLNAA :

TFENIFHDK :

TGGCCCGCAACTGGCT

TGGCTAGACTTGTGGC

TGGCACGGGGGATGCA

TGGTACGACACTTGCT

TGGCACCACCCTTGCT

AGGCATGTGCCTGGCG

TGGCGCACATCCTGCG

TGGTACGGCTGTTGCA

TGGCATGAAACTTGCT

TGGCACAGACGCTGCA

TGGCACAGACGCTGCA

CGGCACGGGTATTGCT

TGGTCTGCTTCTTGCT

TGGCACCGCCCTTGCT

TGGTGCTGCAGGTGCC

TGGTGCTGCAGGTGCC

TGGTACAGGCATTGCA

CGGCACAGGATTTGCT

TGGCACGATCCTTGCA

TGGCGGCGGTGTTGCA

TGGCACAAAAAATGCT

TGGCACAATTATTGCT

TGGCATAAAAGATGCA

TGGCACAGATTTCGCT

TGGCATAAGACCTGCA

TGGTACAAACACTGCA

GGGCATGAAGTTTGCT

TGGCACAGATTTCGCT

TGGTACAGCATTTGCA

TGGCACAGCCTTCGCA

TGGTATGTTCCCTGCA

TGGCACAGGCTGTGCT

TGGTATCGCAATTGCT

TGGCCGGAAATTTGCA

TGGCAAGCAAATTGCA

TGGAGCGCGAATTGCA

GGGCGCACGGTTTGCA

GGGCGCACGGTTTGCA

TGGCACTTAACTCGCG

TGGCACGCCATCTGCT

CGGCACATCTG.TGCT

TGGAGCCGAGGTTGCT

TGGCATGCTCGTTGCA

CGGGCAACGCACTGCC

TGGCACGGTTATCGCA

TGGCACAGCCGTTGCT

TGGCATGGCGGTTGCT

TGGCATGGTTTTCGCA

TGGCACGATGGCTGCT

TGGCACGCTTCTTGCT

TGGCACGGTTCTTGCT

TGGCATAGACCCTGCT

CGGCATGCAAGTTGCT

TGGCACGCATGTTGCT

TGGCACGAATGATGCA

TGGCACGACTTTTGCA

TGGCATGGCTTTTGCG

TGGCATAGCTGTTGCT

TGGCATGCTGGTTGCA

TGGCATGCCGGTTGCA

TGGCACGGGTTTTGAA

TGGCACGGCTTTTGAA

TGGCACGGCGATTGCG

TGGCTCCCTCTATGCC

TGGCACGATATCTGCA

TGGCATCGCTCTTGCT

TGGCACGAGGCGTGAT

TGGAGACGCGACAGCG

TGGCACGCTGGGTGCA

TGGCACGAAGGTTGCT

TGGCATAAGACCTGCA

TGGCACGATAGTCGCA

TGGCACAGATTTCGCT

TGGCACGGCCCTTGCA

tGGca tGc

Figure 3.8 – Alignment of the putative P1 and P2 of P. aeruginosa nuh to other known
54

promoters.
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Figure 3.9 – Genetic organization of the P. fluorescens nuh gene
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region would be rather short, it is expected that the PAO1 NH message may be degraded

relatively quickly due to the lack of a 5’ hairpin structure (Regnier and Arraiano, 2000). The low

activity later noted for the PAO1 NH may be related to this. A weak match was also found for

S
, the stationary phase sigma factor. This could explain the low constitutive nature of

expression of nuh in P. aeruginosa, as
S

and
70

have some overlapping binding specificities

(Nguyen and Burgess, 1997).

The P. fluorescens nuh, unlike that of P. aeruginosa, is located in a different region of the

chromosome and appears to be the distal gene in a large operon (Figure 3.9) encoding genes

involved in D-ribose catabolism (Iida et al., 1984; Lopilato et al., 1984). The genes for this

operon are arranged in a different order from that seen for E. coli (rbsBACRKD for Pseudomonas

fluorescens, rbsDACBKR in E. coli) (Lopilato et al., 1984). This operon also includes the gene

for the ribose repressor (RbsR; Mauzy and Hermodson, 1992), suggesting that nuh expression

may be regulated by one of its products. In the upstream, region of the ribose operons in several

different pseudomonads, conserved regions have been located which denote the positions of the

promoter region and potential RbsR-binding site (Figure 3.10). The roles of ribose and nitrogen

in regulating the Pseudomonas nuh genes were investigated further.

Enzyme specificity and regulation of NH expression

A prior analysis of the substrate specificity of the NHs from Pseudomonas has shown it

to be somewhat nonspecific (Lee, 1991). This was investigated using the induction system for

the cloned P. aeruginosa NH. The results are shown in Figure 3.11 and confirm the lack of

specificity.
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Figure 3.10 – Alignment of upstream of Pseudomonas rbs operons, revealing the operator binding site and the promoter (indicated as

marked).
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Figure 3.12 – Regulation under different conditions of growth of P. aeruginosa NH expression.

Experimental conditions are as described in Materials and Methods.

Abbreviations: Carbon sources: GLUCOSE = 20 mM glucose; SUCC = 20 mM succinate;

RIBOSE = 20 mM ribose.

Nucleosides and bases (1 mM of each) : AR (adenosine); GR (guanosine); HxR (inosine); UR

(uridine); CR (cytidine); A (adenine); Hx (hypoxanthine); U (uracil); C (cytosine).

Starvation experiments: N-STARVE (nitrogen starvation); C-STARVE (carbon starvation);

STAT (stationary phase of growth).
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The nuh genes from P. aeruginosa PAO1 and P. fluorescens Pf0-1 are present in each

genome within entirely different genetic contexts. The PAO1 nuh (Figure 3.6) is monocistronic

and may be regulated by
54

. Experiments were performed to determine if the gene was

regulated under these conditions or if other factors play a role. The wild-type P. aeruginosa

PAO1 strain was grown under various conditions, as described in Materials and Methods. The

results are shown in Figure 3.12. A noticeable increase in NH was observed when the cells were

starved for nitrogen for 24 hours, with nuh expression being induced 15-fold, thus confirming the

role of a nitrogen- regulated factor such as
54

. Expression of nuh under carbon starvation was

similar to that for stationary phase (5.5-fold vs. 4-fold); both may be due to the action of
S
,

which regulates during stationary phase and under starvation conditions (Hengge-Aronis, 1999).

A weak match to a
s

promoter is found overlapping the two
54

promoters and may represent a

third promoter site (Figure 3.9; Nguyen and Burgess, 1997). A significant increase in NH

activity was also seen for the carbon source ribose. The source for this is currently unknown, as

no potential binding sites for RbsR or other transcription factors were located upstream. This

does not rule out the direct action of a regulatory factor other than RbsR or an indirect effect

from RbsR. Another potential factor is the long generation time that P. aeruginosa has when

utilizing ribose as a carbon source (26.4 hours). The addition of succinate does not catabolite-

repress the protein’s expression (MacGregor et al., 1996). Uridine is the strongest nucleoside

inducer (6-fold) and is likely to represent the real inducer, as other nucleosides tested (adenosine,

guanosine, inosine, and cytidine) only increased expression 2-3 fold, a factor that may be due to

induction from the breakdown product ribose. Also, the bases increased nuh expression quite

significantly (range of 3.5 to 5.5-fold), with adenine being the highest. Addition of adenine is

known to deplete PRPP pools in E. coli through allosteric inhibition of PRPP synthetase and
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regulation of the encoding gene prs (J. Neuhard, personal communication). The effect that

adenine has may represent some connection with PRPP metaoblism. This could also result from

a positive feedback loop indicating the presence of pyrimidines and purines, both being a rich

source of nitrogen for the cell (Chu and West, 1990; Kim and West, 1991). Regulation of nuh

from PAO1 likely represents some form of mixed-mode regulation, perhaps via the actions of

alternative sigma factors and possible regulatory proteins.

The expression of the P. fluorescens nuh represents a much more straightforward and yet

more extreme induction (Figure 3.13). Under conditions where glucose is a carbon source, the

specific activity is very low, less than half seen for P. aeruginosa grown in the same conditions.

However, upon addition of ribose, NH activity is induced approximately 67-fold. Ribose thus

represents the true inducer as the nucleosides (which carry the ribose moiety) induced enzyme

activity while the bases (lacking the ribose group) showed little to no significant increase in NH

activity. Another factor is that the generation time for growth on ribose is approximately 130

minutes, much shorter than for P. aeruginosa. A noticeable drop in activity is also seen under

starvation conditions but is not present in the stationary phase culture; this could be due to

complete loss of NH activity under stressed conditions. In these conditions, NH activity could

be wasteful. The aspartate transcarbamoylase of Bacillus is degraded under conditions of carbon

or nitrogen starvation in the cell (Hu and Switzer, 1995). It is possible that this represents a

similar mechanism.

A summary of the data is shown in Table 3.3.
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Figure 3.13 – Regulation under different conditions of growth of P. fluorescens NH expression.

Experimental conditions are as described in Materials and Methods.

Abbreviations : Carbon sources: GLUCOSE = 20 mM glucose; SUCC = 20 mM succinate;

RIBOSE = 20 mM ribose.

Nucleosides and bases (1 mM of each) : AR (adenosine); GR (guanosine); HxR (inosine); UR

(uridine); CR (cytidine); A (adenine); Hx (hypoxanthine); U (uracil); C (cytosine).

Starvation experiments : N-STARVE (nitrogen starvation); C-STARVE (carbon starvation);

STAT (stationary phase of growth).
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Table 3.3: Summary of enzyme induction studies

P. aeruginosa P. fluorescens

Spec.
Activity

Std.
Dev

Fold-
Difference

Spec.
Activity

Std.
Dev

Fold-
Difference

Glucose 15.71 3.30 1.00 7.13 2.55 1.00

Succinate 18.23 1.29 1.16 6.04 2.22 0.85

Ribose 72.95 4.89 4.64 476.35 4.73 66.77

Adenosine 39.21 3.06 2.50 266.22 27.34 37.32

Inosine 45.10 1.75 2.87 198.24 15.33 27.79

Guanosine 43.08 3.01 2.74 208.19 24.66 29.18

Uridine 98.06 3.22 6.24 279.11 18.49 39.12

Cytidine 28.54 1.64 1.82 287.22 17.57 40.26

Adenine 88.07 10.45 5.61 10.03 1.41 1.41

Hypoxanthine 66.44 3.53 4.23 15.42 3.53 2.16

Uracil 61.33 4.05 3.90 12.48 5.77 1.75

Cytosine 59.29 4.76 3.77 3.54 7.40 0.50

Nit. Starvation 236.74 13.47 15.07 0.02 21.61 0.00

Carb. Starvation 87.32 8.84 5.56 0.05 31.23 0.00

Stationary phase 64.45 2.64 4.10 16.45 9.82 2.31
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Multiple alignment and analysis of the N-terminal signaling peptide

The multiple alignment of the known Pseudomonas nucleoside hydrolase sequences in

shown in Figure 3.14. The N-terminal extension of all Pseudomonas nucleoside hydrolase is

approximately 10-15 amino acids longer than the other nucleoside hydrolases, with the exception

of the R. solanocearum putative NH, which is also believed to be exported outside the cell (as

predicted by the programs PSORT and SignalP). The Ochrobactrum anthropi purine-specific

nucleosidase (Ogawa et al., 2001) also is thought to represent an exported NH; this has never

been experimentally determined, however. Residues known to bind the Ca
++

(required for

enzyme activity) and the ribose moiety are all present (Figure 3.14, Degano et al., 1996; Degano

et al., 1998; Shi et al., 1999), indicating that the Pseudomonas nucleoside hydrolases are likely to

have a catalytic mechanism similar to that of the nonspecific IUNH from Crithidia fasciculata

(Degano et al., 1996).

SignalP analysis graphs for the P. aeruginosa and P. fluorescens NHs are shown in

Figure 3.15. The alignment of the signal sequences, shading for the amino acid properties, is

shown in Figure 3.15a. The consensus SecA-dependent signal motifs are present, with a basic

N-terminus, followed by a hydrophobic cluster of residues and the cleavage site (Nielsen et al.,

1999). The proposed cleavage region is relatively conserved in all the sequences (Figure 3.15a

and b) and is thus likely to represent the true cleavage site.

Cellular localization studies of Pseudomonas NHs

The above information predicts that NHs from Pseudomonas may be exported. However,

it cannot predict whether the enzymes will be excreted into the extracellular milieu or retained in

the periplasmic space. To determine this, cells were grown and fractionated into the extracellular
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Figure 3.14 – Multiple alignment of nucleoside hydrolases. Stars (�) indicate residues involved in Ca
++

-binding, boxes ( ) represent

residues known to bind hydroxyls on the nucleoside ribosyl group.
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LKNNASKVVSDILNEYVKGDMEH.YGIPGGPVHDATVVAYLLKPSLFTGREVN.........VVVDSREGPTFGQTIVDWYDGLKQPKNAFWVENGDAQGFFDLLTERLARLK......

LGNNAGKLVDGILNEYVKLDMEH.YGLPGGPVHDASVIAWLLKPELFSGRQIN.........VAIDTREGIGFGQTVADWYGTLKQPQNVFWVEDGNAQGFFDLLTERLKRLK......

VNNQASKRVVDILNAYITHDMDV.YGIPGGPVHDASVIAYLLKPELFSGRRIH.........MSIDSREGPTFGQTIADWYGVLKRPANVLWVEQGDAQGLFDLLSARLARLE......

LGNRCGAIVADIMAAEIAYQKTR.RGVERAPMYDPTAVGYLFDPSMFNGRKVN.........VVVETAGQWTLGETVVDWEGRSGRAPNAMWIHDVDADRFYAALLDSVAKLP......

IGNPVSTIVAELLDFFLEYHKDEKWGFVGAPLHDPCTIAWLLKPELFTSVERW.........VGVETQGKYTQGMTVVDYYYLTGNKPNATVMVDVDRQGFVDLLADRLKFYA......

L.NRTGKMLHALFSHYRSGSMQS.....GLRMHDLCAIAWLVRPDLFTLKPCF.........VAVETQGEFTSGTTVVDIDGCLGKPANVQVALDLDVKGFQQWVAEVLALAS......

AGGPAGELFSDIMNFTLKTQFEN.YGLAGGPVHDATCIGYLINPDGIKTQEMY.........VEVDVNSGPCYGRTVCDELGVLGKPANTKVGITIDTDWFWGLVEECVRGYIKTH...

VGTKPAAFMLQILDFYTKVYEK..EHDTYGKVHDPCAVAYVIDPTVMTTERVP.........VDIELNGALTTGMTVADFRYPRPKNCRTQVAVKLDFDKFWCLVIDALERIGDPQ...

VDTNPARFMLEIMDYYTKIYQSN.RYMAAAAVHDPCAVAYVIDPSVMTTERVP.........VDIELTGKLTLGMTVADFRNPRPEHCHTQVAVKLDFEKFWGLVLDALERIGDPQ...

NNSKLRELFLELFQFFAHTYKDMQGFESGPPIHDPVALMPLLEFYGWDPSSAVGFRYKRMDISCIDDVFNENSGKIIIEKEYPNDSDVGTIIGLDLNIQYFWDQIFEALNRADKMSTIG

LPNRVGPVVAAWLRMEKAYEAKK.YGTDGGPLHDPNTVMWLLRPDIYSGRKVN.........VQIETQSELTMGMSVVDWWQVGLLPANVTFLRTVDDDEFYEVLIERLGRLP......

: 350

: 342

: 342

: 341

: 333

: 351

: 311

: 304

: 313

: 314

: 315

: 378

: 310

Possible periplasmic

signaling sequence
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component (spent medium, SM), periplasmic fractions (P1 and P2), cytoplasmic fraction (cell-

free extract, CX), and cell membrane fraction. Markers for the cytoplasmic space (aspartate

transcarbamoylase) and periplasmic space (alkaline phosphatase and phospholipase C) were

assayed to determine their proximity in relation to the NHs. Determination of activities in the

spent medium fraction was highly variable due to low protein concentration and the presence of

pigments produced in phosphate starvation (a condition needed for induction of alkaline

phosphatase and phospholipase C); this fraction was not used further in this study. As is seen in

Figure 3.16 and 3.17, a significant percentage of the NH activity is localized in the periplasmic

fractions, along with alkaline phosphatase and phospholipase C activity. Due to the localization

of known periplasmic enzyme activities with nucleoside hydrolase, the NHs are concluded to be

exported into the periplasmic space.
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Figure 3.15 – Alignments of signal peptide sequences.

a) Alignments of signal peptide sequences showing sequence conservation. Shading

indicates degree of homology (red – 100%, orange – 80%, blue – 60%). Amino acids

are grouped based upon evolutionary relatedness as determined by the PAM 250 matrix

(Dayhoff, 1978).

�������������������������������������������������
3BDHUXJLQR����065$$53&15)&6///*/$//03$6/3/6$$(79$
3BIB3I���B������0+5<$4./+4/,5*////69,7$7*$4$$(.,'
3BIB6%:��B������045*/37/.1/)569///6$/7$$6$4$$(.,'
3BV\ULQJDH�������07/,4)654),5*$///6//67$$94$$(.5'
3BSXWLGDB1������������0/.6//4*99)0$��$$67/4$$�3,'
5BVRODQB1+���0$7)319355$)/1/96/)$**$//3$664$9*/6$
�������������������������������������������������

b) Alignment showing conservation of amino acid characteristics between sequences. Red

background – charge (white text = positive, green = negative). Light green background –

hydrophobic (red text = aliphatic, white =aromatic).

P_aerugino : .MSRAARPCNRFCSLLLGLALLMPASLPLSAAETVA
P_f_Pf0-1_ : ...MHRYAQKLHQLIRGLLLLSVITATGAQAAEKID
P_f_SBW25_ : ...MQRGLPTLKNLFRSVLLLSALTAASAQAAEKID
P_syringae : ....MTLIQFSRQFIRGALLLSLLSTAAVQAAEKRD
P_putida_N : .........MLKSLLQGVVFMA..AASTLQAA.PID
R_solan_NH : MATFPNVPRRAFLNLVSLFAGGALLPASSQAVGLSA

Basic Cleavage

Hydrophobic
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Figure 3.16 – SignalP prediction. The C score represents the raw cleavage site score; S score

represents probable signal peptide score; Y score represents the combined score of the above two

(Nielsen et al., 1999)

Pseudomonas aeruginosa

Pseudomonas fluorescens
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Figure 3.17 – Localization of P. aeruginosa NH. Results shown are assays from two

independent samples.
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Figure 3.18 – Localization of P. fluorescens NH. Results shown are assays from two

independent samples.
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Conclusions

Unlike the E. coli NHs, whose existence remains an enigma (Chapter 2), the

Pseudomonas NHs seem to play a specific role in nucleoside catabolism. This has been

previously stated by others (West and Chu, 1986; West, 1988; Lee, 1991; Beck, 1995; West,

1996). The finding that the pseudomonads have significant problems in transporting

nucleosides, though, had become evident in recent studies (West, 1996); the genome annotation

also revealed that P. aeruginosa lacked all known homologues currently known to transport

nucleosides (Munch-Peterson and Mygind, 1983; Wang and Giacomini, 1999). This represents

an interesting quandary, as one now has to explain how Pseudomonas is able to utilize

nucleosides as nitrogen and carbon sources without being able to transport them into the

cytoplasm. This would be solved if the nucleoside hydrolase were, instead, exported into the

periplasmic space to meet the incoming nucleoside. The permeability of the Pseudomonas

periplasmic space is variable and is dependent on the conditions presented to the cell, such as the

presence of antibiotics (Hancock and Bellido, 1992; Hancock, 1998). In E. coli, the protein Tsx

is involved with outer membrane permeability for nucleosides (Munch-Peterson and Mygind,

1983). A close homologue for Tsx is not present in the Pseudomonas aeruginosa genome

(Stover et al., 2000). However, significant matches (expectation values of < 10
-80

) have been

found for Tsx in the unfinished genomes of two other pseudomonads, including P. fluorescens

Pf0-1 and P. syringae, suggesting that they are able to transport nucleosides efficiently into the

periplasmic space. A distant homologue is found in P. aeruginosa (expectation value of 10
-7

),

but the gene, designated PA0165, is highly divergent and may not play an active role in
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transporting nucleosides, as a BLASTP search (Altschul et al., 1997) using PA0165 only picked

up homologues involved in atrazine degradation (GenBank # AAK50329).

Cleavage of nucleosides in the periplasmic space would allow for ribose and the

respective bases to be imported into the cytoplasm by their specific transporters (Munch-

Peterson and Mygind, 1983; Iida et al., 1984). The respective bases could be further utilized as

sources of nitrogen or nucleotides (Vogels and Van der Drift, 1976; Neuhard, 1983; Nygaard,

1983). The ribose moiety is phosphorylated to form ribose-5-phosphate upon entry into the

cytoplasm (Iida et al., 1984; Lopilato et al., 1984). In E. coli, ribose-5-phosphate is required to

form PRPP (via the action of phosphoribosylpyrophosphate synthetase) or is metabolized by the

pentose phosphate pathway through which fructose-6-phosphate, glyceradehyde-3-phosphate,

and other carbon sources are made. In Pseudomonas, ribose catabolism is likely to occur

through the formation of glyceraldehyde-3-phosphate, which can be utilized in glycolysis, and

fructose-6-phosphate, which can be catabolized by conversion into glucose-6-phosphate and

further processing via the Entner-Doudoroff pathway (Temple et al., 1998).

If the transport of ribose were defective, growth would be severely impaired. In P.

fluorescens, the gene immediately upstream is rbsD, a protein known to play a role in ribose

catabolism but with an unknown function. Impairment in rbsD has been found to cause a defect

in the transport of ribose (Oh et al., 1999), leading to a dramatic decrease in ribose import prior

to phosphorylation by the enzyme ribokinase. The fact that the nuh gene is located quite far

from the rbs genes in P. aeruginosa (approximately 2 Mbp), and that the rbsBACKRD-nuh

operon organization is conserved in all other sequences Pseudomonas species indicates that a

major gene rearrangement has occurred. Upon closer inspection, it was determined that the rbsD

gene is no longer present at the 3’ end of the rbs operon in P. aeruginosa and, through a BLAST
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homology search, is not located anywhere on the chromosome. It may have been lost as a

consequence of the rearrangement of nuh in the genome. This explains the longer generation

time (26.4 days in P. aeruginosa compared to 130 minutes in P. fluorescens) as ribose import

would be decreased, analogous to the rbsD mutants in E. coli, leading to a longer generation time

due to the decreased growth rate.

Another potential reason for Pseudomonas to have a periplasmic NH is from catabolism

of RNA breakdown products. Any carbon and nitrogen source in a nutrient-poor environment

would be utilized. When cells lyse, massive amounts of nucleic acids are released. RNases are

found everywhere (Regnier and Arraiano, 2000); therefore it would be expected that

extracellular nucleotide monophosphates would increase over time. Conversion of these into

nucleosides would occur through the action of extracellular or cytoplasmic 5’nucleotidase

(Bhatti et al., 1976). NH would break down these into bases and ribose to obtain carbon and

nitrogen. As DNA has recently been found to sustain E. coli as a carbon source (Finkel and

Kolter, 2001), one would expect that the catabolically diverse pseudomonads would be able to do

the same and more. A summary of the proposed physiological scheme is shown in Figure 3.19.
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