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The objective of this research was to investigate lead speciation in the 

soil/sediment-water environment and to better understand how the species affect lead 

mobility under different environmental conditions. The research involved both field soil 

and sediment samples as well as standard lead solutions. Field samples were fully 

characterized and extracted by aqueous and organic solvents. The results were compared 

and evaluated with the metal speciation model, MINTEQA2. Hydrolytic polymerization 

and organic complexation studies were conducted with standard lead solutions under 

controlled experimental conditions. 

Results of the field samples showed that pH, dissolved cations, ionic strength, 

dissolved organic matter, and nature of the soil/sediment matrix play major roles in the 

distribution and mobility of lead (Pb) from contaminated sites. In the aqueous 

equilibration experiment, the magnitude of Pb2+ solubilization was in the order of 

pH4>pH7>pH9. The results were in good agreement with MINTEQA2 predictions. An 

important finding of the research is the detection of Pb polymerization species under 

controlled experimental conditions. At pH 5.22, Pb polymeric species were formed at rate 

of 0.03 per day. The role of Pb complexation with organic matter was evaluated in both 

field and standard samples. Different methodologies showed three types of organically 

bound Pb. A very small fraction of Pb, in the ppb range, was extractable from the 



contaminated soil by polar organic solvents. Sequential extractions show that 16.6±1.4 % 

of the Pb is organically complexed. Complexation of Pb with fulvic acid provided new 

information on the extent of Pb association with soluble organic matter. 

The overall results of this research have provided new and useful information 

regarding Pb speciation in environmental samples. The results, in several instances, have 

provided verification of MINTEQA2 model’s prediction. They also revealed areas of 

disagreement between the models prediction and the experimental results. A positive note 

regarding the experimental work done in the research is the verification of the mass 

balance in all the repeated experiments. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright 2002 
 

by 
 

Natdhera Sanmanee 

 ii



 iii

ACKNOWLEDGMENTS 

I wish to express my deepest gratitude to my Major Professor, Dr. Farida Y. 

Saleh, for her support, guidance, and patience throughout this work.  My gratitude also 

extends to the other members of my committee: Dr. Kenneth L. Dickson, Dr. Samuel F. 

Atkinson, Dr. Paul F. Hudak, and Dr. Thomas W. LaPoint, each of whom helped me over 

different hurdles.  

I would like to thank the Royal Thai government who granted me the scholarship 

to pursue a doctoral degree in Environmental Science at the University of North Texas 

from 1997 to 2002. Also, for the support to finish this work, I want to thank University of 

North Texas for the Graduate School Scholarship during the 2000-2001 academic year 

and Charles E. & Joann Bond Scholarship for the 2002-2003 academic year. 

Thanks to my friends and other professors who gave their precious time to help 

me on laboratory works including Dr. James Kennedy, Dr. Reid Ferring, Johnny Byers, 

Ahmed Kadry, Margaret Forbes, Elizabeth Roberts, David Garrett, Jessica White, Stacy 

Wright, and Jason Condor. Finally, I would like to thank my husband, Sirichai Sanmanee, 

for his invaluable support and patience.     

 

 

 

 



 iv

 

TABLE OF CONTENTS 

   Page 
 

ACKNOWLEDGMENTS ...............................................................................................   iii 
 
LIST OF TABLES...........................................................................................................  vii 
 
LIST OF ILLUSTRATIONS...........................................................................................   ix 
 
Chapter 
 

1. INTRODUCTION AND LITERATURE REVIEW .....................................    1 
 

1.1   Introduction............................................................................................    1      
             General Statement ............................................................................    1 
             Objectives ........................................................................................    3 
             Research Hypotheses ........................................................................    3 
  
1.2    Literature Review..................................................................................    4 
              Lead Use in Human History ............................................................    4 
              Geochemistry of Lead......................................................................    7 
              Physical and Chemical Properties of Metallic Lead ........................    9 
              Chemistry of Lead in the Aqueous Environment ............................  10 
              Fate and Transport of Lead ..............................................................  14 
              Sorption of Lead on Soil and Organic Matters ................................  18 
              Hydrolysis and Polymeric Species of Lead .....................................  22 
              Toxicity of Lead...............................................................................  30 

 
2. EXPERIMENTAL SECTION.......................................................................  37 

 
2.1   Material and Reagents............................................................................  39    
             Field Soil and Sediment Samples ....................................................  39 
             Reagents............................................................................................  44 
             Stock Lead Solutions ........................................................................  46 
 
2.2   Instrumentation ......................................................................................  47 
             High Performance Liquid Chromatography (HPLC) System...........  47 
             Ion Chromatography (IC) System.....................................................  47 
             Atomic Absorption Spectrophotometer (AAS) System....................  47 
             Total Organic Carbon (TOC) Analyzer with Infrared Detector .......  48 
             Electron Microscope .........................................................................  48 



 v

               Spectrophotometer ..........................................................................  48 
               pH Meter .........................................................................................  48 
               Analytical Balance ..........................................................................  48 
               Drying Oven....................................................................................  48 
 
2.3   Methods..................................................................................................  49 
               Characterization of Soil ..................................................................  49 
               Aqueous Extraction: at pH 4, 7, and 9 ............................................  51 
               Soxhlet Extraction and Kudernal-Danish Experiments ..................  52 
               Sequential Extraction ......................................................................  54 
               Hydrolytic Polymerization Study ...................................................  57 
               Lead-Organic Complexation Study ................................................  59 
 
2.4   Computer Model ....................................................................................  65 
 
2.5   Calculation .............................................................................................  66 

 
3. RESULTS AND DISCUSSION....................................................................  67 

 
3.1   Field Soil and Standard Sediment Experiments.....................................  67 
               Soil Geographical Data, Chemical and Physical Characterizations  67 
               Aqueous Equilibrium Experiments at pH 4, 7, and 9 .....................  78 
               MINTEQA2 Input Parameters........................................................  86 
               HPLC Characterization of pH 4 and 7 Aqueous Extracts...............  88 
               Soxhlet Extraction and Kudernal-Danish Experiment....................  94 
               Sequential Extraction Experiment ..................................................  95 
 
3.2   Hydrolytic Polymerization Study ..........................................................102 
               Ion Chromatography Study.............................................................103 
               Sephadex Column Experiment .......................................................108 
 
3.3   Lead-Organic Complexation Study .......................................................111 
               
3.4   Conclusions and Recommendations ......................................................119 

 
APPENDICIES................................................................................................................124 

 
1. APPENDIX 1...................................................................................................124 

1.1   Definitions of Terms ..............................................................................124 
1.2   Lead Content in Rock-Forming Materials .............................................127 
1.3   Species and Equilibrium Constants under Freshwater Conditions ........129 

 
2. APPENDIX 2...................................................................................................131 

2.1   Previous Studies of Lead Contaminations at GNB Sites .......................131 
 



 vi

3. APPENDIX 3...................................................................................................133 
3.1   MINTEQA2’s Definitions .....................................................................133 
3.2   MINTEQA2’s Outputs of pH 4, 7, and 9...............................................137 
3.3   MINTEQA2’s Input Parameters ............................................................153 
3.4   Pb Distribution by MINTEQA2 at pH 5.2.............................................164 
3.5   Statistic Calculation by SAS Program for Pb:FA..................................169 
3.6   MINTEQA2’s Outputs of Pb:FA...........................................................174 

 
REFERENCES ................................................................................................................181 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vii

 

LIST OF TABLES 

Table                Page 
 
1.1  Lead consumption.....................................................................................................  6 
 
1.2  Some properties of lead ............................................................................................  9 
 
1.3  Classification of Metal Ions ...................................................................................... 11 
 
1.4  Principal aqueous species of lead ............................................................................. 13 
 
1.5  Stability constant of dissolved lead species and their thermodynamic data ............. 15 
 
1.6  K1 and *K1 values for PbOH+................................................................................... 26 
 
1.7  Stability constants of hydrolysis products ................................................................ 28 
 
2.1  Methodologies and instruments ................................................................................ 40 
 
2.2  Names of reagents and their CAS number including their company names ............ 44 
 
2.3  HPLC-experimental conditions ................................................................................ 61 
 
2.4  Ion chromatography column characteristics and operating conditions..................... 62 
 
2.5  GFAAS conditions for Varian and Perkin Elmer atomic absorption  
       spectrophotometers ................................................................................................... 63 
 
3.1  Soil descriptions of sample and reference sites obtained from soil survey of Dallas   
       County, Texas ........................................................................................................... 68 
 
3.2  Other physical and chemical properties.................................................................... 70 
 
3.3   Major cations and anions ......................................................................................... 73 
 
3.4  Percent of major elements in soil samples by total acid digestions.......................... 74 
 
3.5  Major cations and anions in terms of milliequivalent calculated from data in Table  
       3.3.............................................................................................................................. 77 
 



 viii

3.6  Characterization of soil by Electron Microscopy technique..................................... 78 
 
3.7  Comparison of released lead at three different pHs: pH 4, 7, and 9 ......................... 80 
 
3.8  Lead speciations distribution among dissolved and adsorbed species at three  
       different pHs by MINTEQA2................................................................................... 82 
 
3.9  Comparison of other major four metals released (dissolved forms) after equilibrated  
        in pH4 with their total concentrations...................................................................... 84 
 
3.10 Comparison of lead species distributions from different MINTEQA2 inputs with 
        experimental result at pH 4 and ionic strength 0.407 .............................................. 87 
 
3.11 The amounts of total organic carbon in supernatant fractions by TOC analyzer .... 91 
 
3.12 Lead concentrations in each extracted Soxhlet solvent after preconcentrated with  
        Kudernal-Danish technique ..................................................................................... 94 
 
3.13 Lead concentrations in four different fractions by sequential chemical extraction .100 
 
3.14 Lead concentration (%) after eluted through Sephadex column, ionic strength (I)   
        0.004.........................................................................................................................109 
 
3.15 Total areas of UV chromatograms of Pb:FA ...........................................................115 
 
3.16 Lead concentrations in each fraction and their stability constant (K) .....................117 
 
3.17 Percent distribution of lead in each fraction predicted by MINTEQA2..................118 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ix

LIST OF ILLUSTRATIONS 

Figure              Page 
 
1.1    Estimating end uses of lead by International Lead and Zinc Study Group during        
         1996-2000 ...............................................................................................................  6 
 
1.2   Classification of some metals of environmental importance. Stability of complexes  

  increases with increasing ionic and/or covalent index............................................ 12 
 
1.3    Speciation of Pb(II) (10-9 M) under freshwater condition (CT = 2 × 10-3 M) ......... 14 
 
1.4    Schematic diagram of processes controlling the biogeochemical cycling of metals  

  in aquatic environment............................................................................................ 16 
 
1.5   Examples of humic material functional groups available from complexation  
         reaction.................................................................................................................... 17 
 
1.6    Proposed structures of polynuclear lead hydroxyl complexes................................ 25 
 
1.7    Distribution of lead hydroxyl species in terms of pH and α................................... 29 
 
1.8    Distribution of lead hydroxyl species in terms of pH and {Pb(II)tot} ..................... 30 
 
1.9   Field of stability for solids and solubility of lead in system Pb + CO2 + S + H2O at 

  25 °C and 1 atm Pressure. Ionic strength (I) 0.0005............................................... 31 
 
1.10  Phytoplankton bioaccumulation of metals based on metal-ligand complexation  

  Trends ..................................................................................................................... 36 
 
2.1    Experimental outline............................................................................................... 38 
 
2.2   Location of reference soil obtained from nearby I 35 and contaminated soil in front  

  of GNB Technologies, a lead acid storage battery factory ..................................... 41 
 
2.3   Lead contaminated soil sample location collected on April 6, 2000 and other  
         sampling sites in 1996 and 1997............................................................................. 42 
 
2.4   Lead contaminated soil location in front of GNB Technologies Automotive Battery 

  Factory, 1880 Valley View Lane, Farmers Branch, TX 75234-8905..................... 43 
 
2.5    Soxhlet apparatus .................................................................................................... 53 



 x

2.6    Kudernal-Danish apparatus..................................................................................... 55 
 
2.7    Sequential extraction diagram to determine lead speciation from soils ................. 56 
 
2.8    Column experiment with Sephadex C25 resin, flow = 1.1-1.2 ml/min .................. 59 
 
3.1    Soil map of Dallas County, Texas .......................................................................... 69 
 
3.2    Soil diagram............................................................................................................ 71 
 
3.3    Comparison of major elements in the reference and contaminated soils by total 
         acid digestions......................................................................................................... 75 
 
3.4    Comparison of major elements in the reference and contaminated soils by 
         Electron Spectroscopy technique............................................................................ 79 
 
3.5    The comparison of concentrations of calcium, magnesium, aluminum and Iron  
         from the reference soil in dissolved fraction at pH 4 and from total digestion with  
         standard deviations .................................................................................................  85 

 
3.6   The comparison of concentrations of calcium, magnesium, aluminum and Iron  
         from the contaminated soil in dissolved fraction at pH 4 and from total digestion  
        with standard deviations .......................................................................................... 85 
 
3.7    UV chromatograms of pH 4 dissolved fractions of contaminated soil, sample loop  
       20 µl, λ = 254, 280, and 260 nm...............................................................................89 

 
3.8    UV chromatograms of pH 7 dissolved fractions of contaminated soil, sample loop  
       20 µl, λ = 254, 280, and 260 nm...............................................................................90 

 
3.9    UV chromatograms of pH 7 dissolved fractions of contaminated soil that was  
         acidified to pH 4, sample loop 20 µl, λ = 254, 280, and 260 nm ...........................  92 
 
3.10  UV chromatograms of pH 7 dissolved fractions of contaminated soil that was  
         acidified to pH 2, sample loop 20 µl, λ = 254, 280, and 260 nm ...........................  93 
 
3.11  UV chromatograms of dissolved fractions of Soxhlet extracted hexane, sample loop  
         20 µl, λ = 254, 280, and 260 nm.............................................................................  96 
 
3.12  UV chromatograms of dissolved fractions of Soxhlet extracted acetonitrile, sample  
         loop 20 µl, λ = 254, 280, and 260 nm.....................................................................  97 
3.13  UV chromatograms of dissolved fractions of Soxhlet extracted methylene chloride,  
         sample loop 20 µl, λ = 254, 280, and 260 nm ........................................................  98 
  
 



 xi

3.14  UV chromatograms of dissolved fractions of Soxhlet extracted methanol, sample  
         loop 20 µl, λ = 254, 280, and 260 nm.....................................................................  99 
 
3.15  Lead concentrations in four different fractions  with standard deviations by  
         sequential chemical extraction................................................................................100 
 
3.16  Titration curves of 10 ppm Pb in 10 mM NaClO4/HClO4 and blank with 0.011 M  
         NaOH ......................................................................................................................103 
 
3.17  Lead monomeric species at pH 4 during 3 days, mobile phase = 10 mM NaClO4  
         pH 4 ........................................................................................................................105 
 
3.18  Lead polymeric species at pH 5.22 during 7 days, mobile phase = 10 mM NaClO4  
         pH 5.5 .....................................................................................................................105 
 
3.19  Lead polymeric species at pH 7.22 over 24 hours, mobile phase = 10 mM NaClO4  
         pH 5.5 .....................................................................................................................106 
 
3.20  Lead mono- and polymeric species, mobile phase = 10 mM NaClO4  pH 5.5.......107 
 
3.21  Percent lead concentrations in Sephadex fractions with standard deviations, E2 = 2  
         M NaClO4 + 0.02 M HClO4, E3 = 4 M NaClO4 + 0.04 M HClO4, E5 = Saturated  
         K2C2O4 + 0.2 M NaOH...........................................................................................109 
 
3.22  UV chromatograms of lead (Pb):fulvic acid (FA), ratio 1 = 2 × 10-4 M, sample loop 
         = 20 µl, λ = 254 nm, Novapak C18 column ...........................................................112 
 
3.23  UV chromatograms of lead (Pb):fulvic acid (FA), ratio 1 = 2 × 10-4 M, sample loop 
         = 20 µl, λ = 260 nm, Novapak C18 column ...........................................................113 
 
3.24  UV chromatograms of lead (Pb):fulvic acid (FA), ratio 1 = 2 × 10-4 M, sample loop 
         = 20 µl, λ = 280nm, Novapak C18 column ............................................................114 
 
3.25  Percent of lead in each fraction; Fraction I = fraction collected between 0-4 mins, 
         Fraction II = 4-5.5 mins, Fraction III = 5-9 mins, and Fraction IV = 9-11 mins, 
         respectively .............................................................................................................118 



 1

 

CHAPTER 1 

 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

General Statements 

Lead is one of the most persistent pollutants in the environment. In human 

history, it seems probable that the use of primitive furnaces to extract lead from its ores 

was the first such smelting practice recognized by humans. Early uses of lead were for 

building materials, pigments for glazing ceramics, and pipes for transporting water. 

Others in Europe were for decorative fixtures, roofs, pipes, and window in castles and 

cathedrals.1,2 

During 1900s, uses of lead were primarily for ammunition, brass, burial vault 

liners, ceramic glazes, leaded glass and crystal, paints or other protective coatings, water 

lines and pipes, cable covering, caulking lead, and solders.2-4 Uses for lead continued to 

increase with the growth in population and the national economy.2 Even though there was 

a significant shift in lead end-use-patterns by the mid-1980s due to the elimination of the 

use of lead in gasoline, paints, solders, and water systems, demands for lead for industrial 

applications including lead-acid storage batteries are rising.5 

Lead discharged into the environment is toxic to most living organisms.1,4,6,7  

Once it enters their bodies, the bodies never decompose lead into another more easily 

tolerated substances.6 Excess lead in a human body can cause serious damage to the 

brain, kidneys, nervous system, and red blood cells. Usually, children are more 
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susceptible to lead in the lower level than adults.4,8 Because its toxicity is persistent, once 

lead has been dispersed and redeposited into the environment, it will remain to poison 

future generations unless it is controlled or removed.3,4,9 Under the new standards of 

United States Environmental Protection Agency (USEPA), the action level for lead in 

drinking water is 15 parts per billion (ppb) or µg/L. There are more than 40 million U.S. 

residents estimated by USEPA using water that contain lead in excess of the drinking 

water standard.10 

The toxicity of lead has been widely recognized not to relate merely by the total 

concentration.11-19 For this reason, lead bioavailability and its formation have come to 

attention. One of the important factors that affect lead bioavailability is the formation of 

polymeric species, some of which may be soluble.20,21 Another one is partitioning of lead 

between dissolved and sorbed on solid phases especially on organic material.11,15,16 Both 

critically influence metal transport, reactivity, and bioavailability. In different locations, 

the predominance of specific processes will vary depending on types of binding surfaces, 

physical and chemical factors, and their relative abundance in the environment.13-15,17,18 

Since the hydrolysis and polymeric species of lead had been rarely mentioned due 

to the limitations of analytical methods and study of organically bound lead had not been 

clearly clarified, the investigation of lead polymeric and organically bound species was 

conducted in this research under controlled experiments. This is in order to help in better 

understanding fate and behavior of lead including some major factors controlling lead 

speciation. Soil collected in polluted and non-polluted areas were studied including 

standard soil. A new speciation scheme was developed and evaluated. It involved 
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investigations of distribution and speciation of lead in the samples under different 

extraction methods by aqueous and organic solvents, as well as, by the conventional 

sequential extraction method. The aqueous extraction was done under three different pH 

levels and the organic extraction was done by using organic solvents of increasing 

polarity. Major cations, anions, and ligands were analyzed in the target samples and in 

different fractions. Results from all extraction schemes were put in a lead distribution 

diagram. The diagram was evaluated and compared to results of the MINTEQA2—a 

computer prediction model of USEPA. 

Objectives 

1.  To develop a comprehensive scheme to evaluate the speciation of lead 

compounds under different environmental and experimental conditions. 

2.  To investigate lead polymeric species and to evaluate their effects on lead 

mobility. 

3.  To investigate lead-organic complexation and understand how organic 

materials affect lead mobility. 

Research Hypotheses 

1.   In field soil and sediment samples, lead solubilization is primarily dependent 

on pH, ionic strength, soluble organic matter, and the nature of the soild samples. 

2. Organic solvent extraction of field samples gives a direct measure of the  

organically bound lead.  

3. Lead hydrolytic polymerization  species may be contribute to lead mobility in  

the environment. 
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4. Lead complexation with dissolved organic matter affects the mobility and  

transport of lead in the environment. 

 
1.2 Literature Review 

Lead Use in Human History 

 Lead, symbol Pb from the latin plumbum, is one of the most persistent pollutants 

in the environment. Lead has been used throughout much of human history. The 

prehistoric metal apparently was used for glazing pottery by the early Egyptians as far 

back as 7000-5000 BC.1,2 

Elemental lead is very corrosion-resistant, dense, ductile, and malleable. Because 

of its properties, early uses of lead as a construction material in early time included 

building materials, pigments for glazing ceramics, and pipes for transporting water. The 

castles and cathedrals of Europe also contain considerable quantities of lead in decorative 

fixtures, roofs, pipes, and windows.2  

Prior to the early 1900s, uses of lead in the United States were primarily for 

ammunition, brass, burial vault liners, ceramic glazes, leaded glass and crystal, paints or 

other protective coatings, and water lines and pipes.2-4 Technological developments 

during World War I resulted in the addition of bearing metals, cable covering, caulking 

lead, and solders to the list of lead uses.2  

During the 1920s the development of tetraethyl lead (TEL) considerably 

improved the burning characteristics of gasoline in internal combustion engines. This 

resulted in the design of highly efficient engines capable of giving high power and 

economy.2  
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 With the growth in production of public and private motorized vehicles and the 

associated use of starting-lighting-ignition (SLI) lead-acid storage batteries and terne 

metal for gas tanks after World War I, demand for lead increased1,2,5,22 Uses for lead 

continued to increase with the growth in population and the national economy. The use of 

lead for radiation shielding in medical analysis and video display equipment and as an 

additive in gasoline, have contributed the increase of demand for the element. In 1974 on 

a world basis, lead used for batteries and gasoline additives accounted for over 50% of 

the world wide lead consumption.2  

 By the mid-1980s, there was a significant shift in lead end-use patterns. Much of 

the shift was a result of the United States lead consumers compliance with environmental 

regulations that significantly reduced or eliminated the use of lead in gasoline, paints, 

solders, and water systems.2  

More recently, as the use of lead in some products has continued to decline, the 

demand for lead in SLI-type batteries is rising including the demand from industries for 

certain applications, such as motive sources of power for industrial forklifts, airport 

ground equipment, mining equipment, and a variety of non-road utility vehicles, as well 

as stationary sources of power in uninterruptible electric power systems for hospitals, 

computer and telecommunications networks, and load-leveling equipment for electric 

utility companies. The world consumption of lead in 2000 was over 6 million tons and 

86% of the total world consumption belonged to western world as illustrated in Table 1.1.  

 

 



 6

Table 1.1  Lead consumption5 

 Annual Totals 

(Thousand tones) 

 1997 1998 1999 2000 

Europe 1,968 1,951 1,998 2,071 

Africa 121 132 128 126 

America 2,100 2,194 2,247 2,256 

Asia 1,771 1,673 1,810 1,943 

Oceania 70 64 64 50 

World Total 6,030 6,014 6,247 6,446 

Of Which Western World 5,254 5,234 5,436 5,572 

*From International Lead and Zinc Study Group. http://www.ilzsg.org/statistics.asp?pg=lead, Accessed 

5/9/2001. (Used with permission). 

 

The major consumption of lead is for lead-acid storage batteries. Average end use 

patterns from international study by International Lead and Zinc Study Group over the 

last five years are illustrated in Figure 1.1.5  

Batteries (71%)
Pigments (12%)
Rolled Extrusions (7%)
Ammunition (6%)
Cable Sheathing (3%)

 

Figure 1.1  Estimating end uses of lead by International Lead and Zinc Study  

       Group5 during 1996-2000, http://www.ilzsg.org/statistics.asp?pg=eco,  

         Accessed 5/9/2001. (Used with permission). 
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Geochemistry of Lead 

 Lead is the most abundant of natural heavy elements and it occurs in nature as 

four stable isotopes in varying relative amounts: 204Pb (1.2 to 1.6 percent in almost all 

samples), 206Pb (20 to 28%), 207Pb (20 to 23%), and 208Pb (50 to 54%).23  

In addition, four short lived radioactive isotopes: 210Pb, 211Pb, 212Pb, and 214Pb occur in 

nature as decay products of uranium and thorium.1,23,24  

Lead exists in three oxidation states, 0, +2, and +4,1,25 but ionic form (Pb2+) is the 

most abundant.1,23 Lead can be oxidized to Pb4+ under strong oxidizing conditions, such 

as in hot arid areas,1 and few simple compounds of Pb4+ other than PbO2 are stable.23 

According to soft and hard acids and bases (HSAB) concept, Pb2+ prefers soft 

bases such as S2-.26 Most of lead insoluble forms is sulfide ore—galena (PbS).1,23,26 

Divalent lead is also commonly found as the selenide and telluride, as well as in a large 

number of sulfo-salts where it acts as the cation. In moderately oxidizing environments, 

lead is involved in the formation of a large number of minerals, such as lead oxides, 

sulfates, arsentats, phosphates, and carbonates.1 Most of these are very rare, and only 

three are found in sufficient abundance to form mineable deposit: galena (PbS), cerussite 

(PbCO3), and anglesite (PbSO4).1,23,25 During weathering, galena is slowly oxidized by 

atmospheric oxygen to either the sulfate (angelesite) or the carbonate (cerussite), as 

indicated by the following equations: 

 PbS + 2O2 → PbSO4        (1.1) 

 PbS + CO2 + H2O + 2O2  → PbCO3 + H2SO4    (1.2) 

Cerussite usually is formed at a pH above 6 and anglesite at a pH below 6.27  
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Because of its ionic radius (between 1.18 and 1.32 Å), Pb2+ can replace potassium 

(1.33 Å), strontium (1.12-1.27 Å), barium (1.34-1.43 Å), calcium (0.99-1.06 Å), and 

sodium (0.95-1.0 Å) in mineral lattices. Among the silicate minerals, potassium feldspars 

of pegmatites are notable accumulators of lead; micas usually contain less lead than the 

potassium feldspars.1 The lead content in rock-forming minerals is shown in Appendix 

1.2. Lead ore is commonly present together with ores of copper, zinc, silver, arsenic, and 

antimony in complex vein deposits, but lead ore also may occur in a variety of igneous, 

metamorphic, and sedimentary rocks.25 The high concentrations of lead in iron and 

manganese oxides reflect the fact that these compounds have a very strong affinity for 

lead.1  

 The accepted average value for the lead content of the earth’s crust is 15 

mg/kg.23,28  The highest concentrations of lead occur in the upper horizon of the soil with 

small additions, leached down to the subsoil. Parent material influences native lead 

content and soils in suspected ore areas have levels up to 45,000 mg/kg.23 

 Lead content of young residual soils is strongly influenced by the parent rock 

from which they are derived. However, in mature soils developed on deeply weathered 

parent material, other factors may affect and obscure this relationship. These factors 

include oxidation and reduction reactions, organically complexation by organic materials, 

sorption by clay, adsorption of lead by hydroxides of iron and manganese, local solution 

and transportation by organic acids, and cycling by vegetation. In general, lead is more 

mobile in acid soils than in alkaline soils, tending to be leached out of the former and to 

form residual concentrations in the latter.28 
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 Physical and Chemical Properties of Metallic Lead 

 Lead, like most metals, is soft when very pure. Its inherent luster is usually 

masked by a dull surface coating of its oxide.29 It crystallizes in the face-centered cubic 

system with a minimum interatomic distance of 3.492 Å. Important physical attributes of 

metallic lead include high density, softness, flexibility and malleability, low melting 

point, weld ability and low elastic limit. These properties, as well as its high lubricity, 

low electrical conductivity, high corrosion resistance and high coefficient of expansion 

determine its widespread industrial applications.1 The physical and chemical properties of 

lead are shown in Table 1.2.  

Table 1.2  Some properties of lead30 

 
Characteristics 

 

 
Lead properties 

Atomic number 

Atomic weight (g) 

82 

207.19 

Electronic structure [Xe]4f145d106s26p2 

Melting point (˚C)  327.5 

Boiling point (˚C) 1,740 

Ionization enthalpies (kJ mol-1) 

 1st, 2nd,3rd, 4th     

 

715.3, 1450, 3080, 4082 

Electronegativity 1.8 

Covalent radius (Å) 

Ionic radius of Pb2+, Pb4+ (Å) 

1.44 

1.21, 0.775 

Data source: Cotton F, Wilkinson, G. Advanced Inorganic Chemistry, 4th ed.: J. Wiley; 1980.  p. 589-616 
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Chemistry of Lead in the Aqueous Environment 

Lead is classified as a B-type metal cation, also referred as soft acid. B-type metal 

cations have a more readily deformable electron sheath (high polarizability) than A-type 

metals and are characterzed as “soft sphere” cations.31 Table 1.3 shows the classification 

of metal ions in solutions.  

B-type metal ions coordinate preferentially with bases containing I, S, or N as 

donor atoms. 31 “Thus metal ions in this class may bind ammonia more strongly than 

water, CN- in preference to OH-, and form more stable I- or Cl- complexes than F- 

complexes. These metal cations, as well as transition-metal cations, form insoluble 

sulfides and soluble complexes with S2- and HS-.”31 (p.285) 

Regarding the sharing of an electron pair between the central atom and the ligand 

(covalent bond), the tendency toward complex formation increases with the capability of 

the cation to take up electrons (increasing ionization potential of the metal) and with 

decreasing electronegativity of the ligand (increasing tendency of the ligand to donate 

electrons). In the series F, O, N, Cl, Br, I, S, the electronegativity decreases from left to 

right, whereas the stability of complexes with B-type cations increases.31 

 “For transition metal cations, a reasonably well-established rule on the sequence 

of complex stability, the Irving-Williams order, is valid.” 31 (p.285) According to this 

rule, the stability of complexes increases in the series Mn2+ < Fe2+ < Co2+ < Ni2+ < Cu2+ < 

Pb2+ for almost every ligand.26 For classification schemes of electron donors, a simple 

attempt at classifying “hard” and “soft” bases reveal that “hard” and “soft” are not 

absolute, but gradually varying qualities. The so-called HSAB rules indicate the 
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Table 1.3  Classification of Metal Ions.31 

 

*From Stumm, W, Morgan, JJ. Aquatic Chemistry, 3rd edition: Copyright © 1996 by J. Wiley & Sons, Inc;  

Table 6.3 p. 284, (This material is used by permission of J. Wiley & Sons, Inc). 
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preference of hard acids to associate or react readily with hard bases and soft acid with 

soft bases.31 

By taking into account bonding due to both covalent and ionic interactions, the 

covalent index, Χm
2 can be plotted versus an ionic index, Ζ2/r (Χm = metal ion 

electronegativity, Ζ = charge of metal, r = ionic radius of metal) to differentiate between 

type A, borderline, and type B metals (showed in Figure 1.2). The covalent index is a 

reflection of the ability of the metal to accept electrons from a donor ligand. The ionic 

index measures the possibility of ionic bond formation. So, more highly charged species 

tend to be found on the right-hand side of the diagram. These are also the species that 

tend to act as Bronsted acids.32 
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Figure 1.2  Classification of some metals of environmental importance. Stability  

                    of complexes increases with increasing ionic and/or covalent index.  

                    31,32 Adapted from Nieboer, E. and Richardson, D.H. The Replacement of the  

                        Nondescriptive Term Heavy Metals by a Biologically and Chemically Significant  

                        Classification of Metal Ions, Environ. Pollut. Ser, 1980. B 1, 3-26  
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The tendency for formation of complexes with ligands other than water is 

generally in the order type B metals > borderline metals > type A metals. The type B 

metals also form more stable complexes with oxygen-donating compounds than do 

borderline and type A metals.31,32 

Assuming that lead is present within the typical ‘normal’ concentration range in 

water and the water contains carbonate, sulfate, and chloride at levels approximately 

equal to that found in average river water, the principal inorganic aqueous species of lead 

at pH4, 7, and 9 are shown in Table 1.4.32  

Table 1.4  Principal aqueous species of lead.32 

pH = 4 pH =7 pH = 10  

Oxidizing 

environment 

Reducing 

environment 

Oxidizing 

environment 

Reducing 

environment 

Oxidizing 

environment 

Reducing 

environment 

Lead Pb2+ 

PbSO4
0 

Pb2+ Pb2+ 

PbOH+ 

PbHCO3
+ 

PbCl+(sw) 

PbSO4
0(sw) 

Pb2+ 

PbOH+ 

PbHCO3
+ 

PbCl+(sw) 

 

Pb(OH)2 

PbCO3 

Pb(CO3)2
2- 

Pb(OH)2 

PbCO3 

Pb(CO3)2
2- 

Note: sw = seawater, pH ~ 8, Coordinated water molecules are not included in the formula.  

Data source: Vanloon, GW, Duffy, SJ. Environmental Chemistry: A Global Perspective: Oxford University 

Press, Inc.; 2000. Table 1.4 p. 266 

 

Stability constant of dissolved lead species and their thermodynamic data is 

shown in Table 1.5. Speciation of Pb(II) under freshwater conditions calculated by 

Stumm and Morgan 31 is shown in Figure 1.3. 
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Figure 1.3  Speciation of Pb(II) (10-9 M) under freshwater conditions (CT = 2 ×  

                   10-3 M). (Points are calculated.) For species and equilibrium constants  

                               see Appendix 1.3 31 (From Stumm, W, Morgan, JJ. Aquatic Chemistry, 3rd 

                                      edition: Copyright © 1996 by J. Wiley & Sons, Inc;  Figure 6.15 p. 296, (This  

                                      material is used by permission of J. Wiley & Sons, Inc). 

 

Fate and Transport of Lead 

 Lead like other trace metals can be transported into different environmental 

compartments. The cycling of the trace metals involves a common set of biogeochemical 

processes, which are illustrated schematically in Figure 1.4.  

Processes that remove metals to solid phases are particularly important in 

mitigating the effects of contaminant metals introduced into aquatic ecosystems.33 For 

example, the amount of lead leached from a soil sample, spiked with 1.840 mg/kg of 

water-soluble lead, decreased with increasing amounts of peat loading.11 



 15

Table 1.5  Stability constant of dissolved lead species and their thermodynamic data. 

 
Species 

 

 
Stability constant 

(log K) 

 
∆ G0

f 
kJ 

 
(kcal) 

 
References 

Pb2+ 

PbOH+ 
Pb (OH)2

0 

Pb (OH)3
- 

Pb3(OH)4
2+ 

Pb4(OH)4
4+ 

Pb6(OH)8
4+ 

Pb4+ 

PbF+ 
PbF2

0 
PbCl+ 
PbCl2

0 

PbCl3
- 

PbCl4
2- 

PbClO3
+ 

Pb(ClO3)2
0 

PbBr+ 
PbBr2

0 
PbBr3

- 

PbI+ 

PbI2 
PbI3

- 

PbI4
2- 

PbSO4
0 

Pb(NO3)+ 
Pb(P2O7)2- 
PbHPO4

0 
Pb(HPO4)2

2- 
PbH2PO4

+ 
PbCO3

0 
Pb(CO3)2

2- 
PbCSN+ 
Pb(CSN)2

0 

 
7.83 
10.8 
13.9 
32.7 
36.7 
69.4 
pE0 28.6 
2.0 
3.4 
1.6 
1.8 
1.7 
1.4 
-0.32 
-0.61 
1.8 
2.6 
3.0 
2.0 
3.15 
3.92 
4.47 
2.8 
1.07 
11.2 
15.5 
2.37 
21.1 
6.4 
9.8 
0.89 
1.15 

-24.4 
-226.4 
-400.8 
-575.7 
-888.7 
-936.4 
-1802.5 
-302.5 
 
 
-164.8 
-297.1 
-408.4 
-557.3 
-25.9 
-27.6 
 
 
 
-64.4 
-109.2 
-132.2 
-204.6 
-784.5 
-141.8 
-2007.5 
 
-2216.3 
 
-588.7 
-1136.0 
63.2 
154.4 

(-5.8) 
(-54.1) 
(-95.8) 
(-137.6) 
(-212.4) 
(-223.8) 
(-430.8) 
(-72.3) 
 
 
(-39.4) 
(-71.0) 
(-97.6) 
(-133.2) 
(-6.2) 
(-6.6) 
 
 
 
(-15.4) 
(-26.1) 
(-31.6) 
(-48.9) 
(-187.5) 
(-33.9) 
(-479.8) 
 
(-529.7) 
 
(-140.7) 
(-271.5) 
(15.1) 
(36.9) 

Generally accepted 
(a) 
(a and d) 
(a and d) 
(b and c) 
(b and c) 
(b and c) 
(a) 
(d) 
(d) 
(a and d) 
(a and d) 
(a and d) 
(a and d) 
(a) 
(a) 
(a and d) 
(d) 
(d) 
(a) 
(a) 
(a) 
(a) 
(a and d) 
(a) 
(a) 
(d) 
(a) 
(d) 
(a) 
(a) 
(a) 
(a) 

(a) Summarized by Nriagu,19781  

(b) Olin, 196034  

(c) Olin, 196020 

(d) Summarized by Morel and Janet, 199335 
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Figure 1.4  Schematic diagram of processes controlling the biogeochemical  

                               cycling of metals in aquatic environment  

 

Lead sorbs on surface soils or suspended solids that are rich with organic matter such as 

humic material.32 An example of lead binding with a functional group of organic 

materials given by Vanloon and Kraemer32 is in the reaction below:  

 

Because the tendency for formation of complexes with ligands other than water is 

generally in the order type B metals > borderline metals > type A metals as described in 
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the previous section, Pb(II)— a type B metal has large stability constants. Complexation 

in these cases involves covalent bonding and bidentate chelates are likely important.32 

Other examples of humic material functional groups are shown in Figure 1.5. 

OH
OH

COOH
OH

COOH
COOH

C = C
H H

HOOC COOH

COOH

OH
OCH3

1, 2-Dihydroxybenzene (DHB)
pK1= 9.36,  pK2 = 12.98

Salicylic Acid (SA)
pK = 12.38= 2.98,  pK1 2 = 2.95,  pK

Phthalic Acid (PA)
pK1 = 5.412

= 1.91,  pK
Maleic Acid (MA)
pK1 2 = 6.33

Vanillic Acid (VA)
pK = 4.361  

Figure 1.5  Examples of humic material functional groups available from  

                               complexation reaction.32,35,60  

 

 Nevertheless, toxic organic compounds can be broken down into nontoxic 

constituents; barring transmutation, the potential toxicity of metals can never be 

completely eliminated.33 The partitioning of metals between dissolved and sorbed on 

solid phases critically influences metal transport, reactivity, and bioavailability. It is 

widely recognized, however, that metal bioavailability and toxicity are not determined 

merely by the total, dissolved metal concentrations. The distribution of the metal among 

various inorganic and organic metal species governs bioavailability, which is related to 
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the free metal concentration or activity. In different locations, the predominance of 

specific process will vary. For instance, in comparison of lead adsorbed on six soils, lead 

was found mostly in exchangeable and oxide bound fractions. The study showed that the 

heavy metal adsorption and speciation reaction did not reach equilibrium within a day in 

soils dominated by layer-silicates and poorly crystalline oxide minerals. The 

‘equilibrium’ adsorption data from conventional adsorption experiments should be, 

therefore, of limited value in predicting the fate of heavy metals incorporated into soils 

having such clay mineral composition. The experimental result also showed that the 

heavy metal retaining capacity of soils could not simply be related to the total iron oxide 

content of soils.13  

Lead is commonly regarded as being geochemically immobile.1 It may be derived 

from natural or anthropogenic sources. The low concentration of lead in surface waters is 

evidence that lead is not readily solubilized during chemical weathering.1,31 The sorption 

equilibrium for lead is approached quite rapidly. Organic matter was determined to be the 

primary immobilization agent for ionic lead. Fixation by interaction with clay minerals or 

by surface adsorption processes appeared to be of less consequence.13,23  

Sorption of Lead on Soil and Organic Matters 

 Sorption to soils and sediments is of great importance to the health and well being 

of humans because sorption is a primary line of defense between disposal sites and 

pathways to man. Intentional of inadvertent anthropogenic inputs of metals to 

environment increase the concentration of metals in surface soils and waters. The 

sorption of these metals by soils and sediments is the most important and immediate 
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means whereby their concentrations in waters are reduced before contact and uptake by 

fish and other aquatic food sources. Sorption also reduces the concentration of these 

metals before they reach municipal water supplies and groundwater and before contact 

with livestock or agricultural products via irrigation water. 

 Because there are many factors that control sorption of metals on soils, such as 

pH, redox potential, organic matters, and types of binding surfaces,11-19,36 sorption on 

soils and sediments may vary from location to location, and from one condition to 

another condition. Virtually, no predictive capability currently exists to anticipate the 

adsorption of metals from soil solutions and natural waters without incurring large 

uncertainties. Most of them come from lack of interpretative ability and capability to 

predict adsorption quantitatively stems from an inadequate basic understanding of the 

factors affecting sorption, particularly the nature of principal sorbing substrates, specific 

sorption sites, and the mechanisms of sorption. Thus, recent interest in this area is 

encouraging, and a review of the factors affecting metal sorption is timely.37  

“Lead that exists in soils in an ion exchangeable form or is bound to carbonates is 

potentially more hazardous than lead which is bound to iron and manganese oxides or to 

organic matter.”15 (p.5152) The amount of lead leached from a soil sample, spiked with 

1.840 mg/kg of water-soluble lead, decreased with increasing amounts of peat loading.11 

Good correlation between the solubilities of lead and dissolved organic carbon in 

contaminated Boreal Forest Soil showed that organic colloids/particles were of great 

importance in transporting lead from surface soil to mineral soil. Released lead from 

surface layer is reimmobilized in mineral soil mainly through the adsorption of ionic Pb2+ 
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or organic lead colloids. Increasing liming (increasing pH) does not always decrease the 

solubility and bioavailability of lead if it enhances the higher formation of dissolved 

organic lead complexes.15 Sorption isotherms of lead in weathered porous material 

indicated that at any given pH, lead adsorbed more strongly in the surface soil compared 

to the subsurface soil material.16 Batch experiments indicated that lead sorption was more 

affected by soil organic matter and hydroxy-interlayered vermiculite present in surface 

soil than by iron oxides present in subsurface soil material.16  

Since the organic materials such as humic and fulvic acids have many functional 

groups, determining their stability complexation constants with metals are difficult 

especially when the competitive effects among cations, including protons, and the 

influence of ionic strength need to take into account. Thus, it usually results in a 

relatively broad distribution of complex stability constants, K.38-42 The logarithmic (log) 

K of lead-humic complexation by Susetyo, et al. published in 1991 using fluorescence 

titrations was 5.2 and the value was used in the MINTEQA2 version 4.02, a computer 

software of USEPA, in calculation lead Gaussian distribution. 40,43 Christensen, et al. 

published in 1999 cited that the model and its default database gave the best estimates of 

Cu and Pb complexation for both leachate-polluted ground water samples.42 Another 

study using an ion-selective electrode found the approximate log K of lead with Suwanee 

humic acid equal to 4.92 ± 0.36. The log K of Pb-Fulvic acid (FA) by Weber and Saar 

when the Pb:FA equal to 1:1 at the 2 × 10-4 M FA was 4.69.38 They also found that Pb2+ 

removal from solution increased when Pb2+-FA began to precipitate, implying 

mechanisms of Pb2+ removal other than complexation.38 
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Lead sorption in clays usually increases with increasing pH, decreasing 

solid/solution ratio, and decreasing ionic strength. In the study of lead retention in 

smectite, at the same concentration of lead—2mM, increasing ionic strength from 10 mM 

to 50 mM decreases lead sorption about half at the pH below the lead hydrolysis point. 

This indicates that the mechanism of lead sorption in the low pH range was primarily ion 

exchange.17 In this study, MINTEQA2 simulation of lead speciation at different pH 

shows that only aqueous Pb2+ and PbNO3
+ exist at pH below 5.2. In the range of pH 5.3 

to 5.6, a small percentage of aqueous PbCO3 and PbHCO3
+ are predicted to be present, 

and at pH above 5.6, aqueous PbOH+ is predicted to be formed.17 

Adsorption mechanisms of lead on montmorillonite by conducting equilibrium 

and X-ray absorption structure (XAS) spectroscopy studies indicated that lead could be 

adsorbing via two mechanisms, depending on ionic strength.14 At low ionic strength 

(I=0.006 M) lead adsorption is pH-independent: 97% of the available lead is removed 

from solution at pH 4.42 and 100% at pH 8.0, respectively. XAS results reveal that at pH 

4.48-6.4 the local atomic structure (LAS) surrounding the adsorbed lead is similar to the 

LAS surrounding aqueous Pb2+, confirming that the adsorption mechanism is outer-

sphere complexation. At higher ionic strength (I=0.1 M) lead adsorption is pH-dependent, 

suggesting inner-sphere complexation as the adsorption mechanism: 43% of the available 

lead is removed from the solution at pH 4.11 and 98.9% at pH 7.83. XAS results show 

that the LAS surrounding the adsorbed lead atom is similar to the LAS surrounding 

reference compounds in which lead is forming covalent bonds (Pb4(OH)4
4+ (aq) and a 

sample of γ-Al2O3 with lead adsorbed via inner-sphere complexation). These similarities 
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indicate that lead is forming inner-sphere complexes on the montmorillonite at this ionic 

strength and pH.14 In studying the competitive sorption of copper and lead on the 

hematite (at the oxide-water interface), at very low pH, copper and lead were 

predominantly adsorbed as outer-sphere surface complex (SO-Me+). At slightly acidic to 

high pH, the inner-sphere surface species of both metals (SOMe+) dominated the 

calculated adsorbed amounts.36 With increasing site density, ∆pK of the stability 

constants for protonation reactions increased and metal surface complexes decreased 

steadily.36 

In summary, lead adsorbed more on soil that contains higher organic content such 

as surface soils.15,16 Sorption of lead is also pH and ionic strength dependent.14,36 At low 

ionic strength, outer-sphere complexations seem to control the adsorption of lead and 

take all of the soluble lead from water, but at higher ionic strength, inner-sphere 

complexations are dominate and leave the considerable soluble lead at lower pH 

range.14,36 Increasing the pH does not always increase the iron-oxide bound complex of 

lead if it enhances the organic dissolved lead species. In considering the surface oxide 

site density varied from 2 to 20 sites/nm2, the experimental data and model calculations 

exhibit no surface saturation on hematite in the pH range from 3 to 11.36  

Hydrolysis and Polymeric Species of Lead 

 Hydrolysis, in inorganic chemistry, refers specifically to introduction of HOH or 

OH into a molecule or ion resulting in converting to new ionic species or to 

precipitates—oxides, hydroxides, or basic salts. “In all solution environments, the bare 

metal ions are in continuous search of a partner. All metal cations in water are hydrated; 
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that is, they form aquo complexes.”31 (p.258) This is not surprising since most metal 

atoms form strong bonds to oxygen, and the OH- ligand is always present in water at 

concentrations which can be varied over an unusually wide range (>1 to < 10-14 m). A 

general formation reaction for a soluble hydrolysis product might be written as 

 XMz+ + yOH-  ⇌ Mx(OH)y
(xz-y)+      (1.4) 

 Because of the number and diversity of the hydroxide complexes which can be 

formed in solution, the resulting chemical behavior of a given metal in a given valence 

can be a complicated function of pH and concentration and if the identity and stability of 

the hydrolysis products are not known. This is because the hydroxide complexes formed 

are often polynuclear, which means they contain more than one metal ion. This can result 

in the formation of a far greater variety of species than would be the case if only 

mononuclear species were formed during the hydrolysis of a cation. The diversity of 

possible species and the number which can appear more or less simultaneously greatly 

complicate the problem of identifying them and determining their stability. Even today, 

hydrolytic polymerization of most metal ions in aquatic systems is still not quite 

understood. Other limitations include the lack of fast and reliable analytical methods and 

the precipitation of insoluble hydro-oxo and hydroxy-oxo-metal phases which may not be 

stable. Because of these difficulties, it is perhaps not surprising that, although cation 

contamination has been studied for a century, only few occasional cases have mentioned 

about hydrolysis products.  
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 Hydrolysis reactions usually are catalyzed by acids and bases, but also occur with 

water more slowly without benefit of catalysts. The general kinetic expression for 

hydrolysis of many neutral chemicals (RX) in water can be expressed as 

 d[RX}/dt = kh[RX] =(kA[H+] + k΄N[H2O] + kB[OH-])[RX]   (1.5) 

where kA, kB, and k΄N are process rate constant for the acid-, base-catalyzed, and neutral 

(water) processes, respectively. The concentration of water is usually constant and is 

always much greater than that of the chemical RX; therefore k΄N[H2O] is constant, kN. 

The pseudo first-order rate constant (K) is the observed rate constant for hydrolysis at a 

specific pH and temperature 

 K = kA[H+] + kN + kB[OH-]       (1.6) 

At constant pH, [H+] and [OH-] are constant, and Equation 1.6 may be rewritten as 

 d[RX]/dt = K[RX]        (1.7) 

 ln(C0/Ct) = Kt         (1.8) 

 Equation 1.6 shows that hydrolysis reactions are pH dependent. At high or low 

pH, the first or last term is usually dominant, whereas kN is often most important near pH 

7. From K, the half-life of the hydrolysis reaction is  

t1/2 = ln2/K         (1.9) 

  In addition to H+, OH-, and H2O, other chemical species in surface waters may act 

as acids or bases to promote hydrolysis, in the presence of general acid or base Z, the 

first-order rate expression for loss of chemical has an additional term for Z. 

 K =  kA[H+] + kN + kB[OH-] + kz[Z]      (1.10) 
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Where kz and [Z] are the rate constant and concentration for Z. “The most important 

effect of general acid or base catalysis is found in laboratory experiments that use buffers 

such as phosphate to control pH. Buffer anions may catalyze hydrolysis, leading to 

erroneously high values for rate constants.” 44 (p.103) To avoid or reduce the problem, 

low concentrations of buffers—millimolar rage, should be applied. Anionic species in 

natural waters can cause general base catalysis as well, but these effects are usually 

minimal. 44 

 Because lead exits in aqueous solution almost entirely as Pb (II) species,1 Pb (II) 

forms a number of hydroxide complexes. Lead monomeric species are PbOH+, Pb(OH)2
0, 

and Pb(OH)3
-  and lead polymeric species are Pb2OH3+, Pb3(OH)4

2+, Pb4(OH)4
4+, and 

Pb6(OH)8
4+.1,21,45,46 Their proposed structures of polynuclear lead hydroxy complexes are 

shown in the Figure 1.6.  

 

Figure 1.6  Proposed structures of polynuclear lead hydroxy complexes1,21  (From  

                                      Nriagu, JO. The Biogeochemistry of Lead in the Environment Part A:  

                        Elsevier/North-Holland Biomedical Press; 1978. Figure 8.1, p.226, (Used with  

                        permission).) 

Stability constants of a metal (M) with a ligand (L) can be obtained from the 

reaction, 
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 MLn-1 + L = MLn        (1.11) 
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and stability constants of a metal (M) with a protonated ligand (HL) can be obtained from 

the reaction, 

 MLn-1 + HL = MLn + H+       (1.12) 
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Cumulative reactions are written as 

 mM + nL = MmLn        (1.13) 

 βnm = nm
nm

LM
LM

}{}{
}{  

For protonated ligands *βnm is used. K1 and *K1 values for PbOH+ are shown in 

Table 1.6. 

Table 1.6  K1 and *K1 values for PbOH+ 1 

 
Log K1 

 

 
Log *K1 

 
Comments 

7.52 

7.82 

6.9 

-6.49 

-6.18 

-7.1 

-7.9 

-7.8 

-7.93 

-8.84 

Uncertain ionic strength (I) 

Corrected to I = 0 

In 1 M KNO3 

In 3 M NaClO4 

In 0.3 M NaClO4 

In 2 M NaClO4 

In 2 M NaClO4 

*From Nriagu, JO. The Biogeochemistry of Lead in the Environment Part A: Elsevier/North-Holland 

Biomedical Press; 1978. Table 8.1, p.224, (Used with permission). 



 27

Obviously ionic strength and medium interaction have contributed to the 

disparities. Lead is known to form a variety of simple and mixed nitrate complexes of 

moderate stability, and thus those measurements made in concentrated nitrate solutions 

are likely to include these species.1 Perchlorate solutions are preferred since they 

generally give no medium interactions.20,34,45,46  Examples of possible reactions cited by 

Olin34 and Olin and Carell45 in 3 M NaClO4 are; 

Pb2+ + H2O   ⇌    PbOH+ + H+   β1,1 = 10-7.9  (1.14) 

2Pb2+ + H2O   ⇌    Pb2OH3+ + H+   β1,2 = 10-6.4  (1.15) 

3Pb2+ + 4H2O   ⇌    Pb3(OH)4
2+ + 4H+  β4,3 = 10-22.87  (1.16) 

4Pb2+ + 4H2O   ⇌    Pb4(OH)4
4+ + 4H+  β4,4 = 10-19.25  (1.17) 

6Pb2+ + 8H2O   ⇌    Pb6(OH)8
4+ + 8H+  β8,6 = 10-42.1     (1.18) 

Other hydrolysis constants are summarized by Baes and Mesmer21 in Table 1.7.  

Distribution of hydrolysis product at ionic strength 1 m and 25 °C at three 

different total lead concentrations is shown in Figure 1.7. Distribution of lead hydroxy 

species in terms of pH and {Pb(II)tot} is shown in Figure 1.8.  

In Figure 1.8, the overwhelming dominance of PbOH+ at moderate pH values and lead 

activities is obvious. Pb(OH)3
- dominates above pH 10.95, and the polynuclear species 

above log {Pb(II)tot} = -3. However, in the system that contains carbonates, lead prefers 

to form complex with carbonates than hydroxides as shown in Figure 1.5 and 1.9. 

Therefore, lead hydrolytic polymeric species could be found only if the carbonate species 

in the water are eliminated. 



Table 1.7  Stability constants of hydrolysis products21 

Medium Temp 
(° C) 

PbOH+ Pb2OH3+ Pb4(OH)4
4+ Pb6(OH)8

4+ Pb3(OH)4
2+ Pb(OH)2 Pb(OH)3

- Reference

1.5 M Mg(ClO4)2 

1.5 M Ba(ClO4)2 

3 M NaCl 

3 M NaClO4 

3 M NaClO4 

0.3 M NaClO4 

3 M NaClO4 

0.3 M NaClO4 

0.6 M Ba(NO3)2 

0.06 M Ba(NO3)2 

2 M NaClO4 

2 M NaNO3 

25 

25 

25 

25 

25 

25 

25 

25 

20 
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 Figure 1.7  Distribution of lead hydroxy species in terms of pH and α (the  

                               fraction of total dissolved lead that the species makes up)1,21 (a)  

                              {Pb(II)tot} = 10-9, (b) 10-5, and (c) 10-1 (a and c from Nriagu, JO. 

                                     The Biogeochemistry of Lead in the Environment Part A: Elsevier/North- 

                                     Holland Biomedical Press; 1978. Table 8.2, p.227 (Used with permission) and b  

                                    from Baes, C, Mesmer, R. The Hydrolysis of Cations: Copyright © 1976 by J. Wiley 

                                     and Sons, Inc. Figure15.9 p. 364. This material is used with permission by J.Wiley  

                                     and Sons, Inc. 
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Figure 1.8  Distribution of lead hydroxy species in terms of pH and {Pb(II)tot}.  

                               The lines are equal activity boundaries.1 (From Nriagu, JO. 

                                     The Biogeochemistry of Lead in the Environment Part A: Elsevier/North- 

                                     Holland Biomedical Press; 1978. Table 8.3, p.228, (Used with permission).) 

 

Toxicity of Lead 
 

Lead is toxic to humans and animals when it is ingested especially ionic lead 

(Pb2+). The body mistakes Pb2+ for Ca2+. The Pb2+ then attaches to and disrupts enzymes 

essential to the functioning of the brain and other cells. Because it is an element, the body 

never decomposes Pb2+ into another more easily tolerated substance.6  

Although adults are susceptible to the toxic effects of lead, children are at higher 

risk. Most of the lead that is absorbed into a child’s brain remains there all his life time. A  

 



31 

 

Figure 1.9  Fields of stability for solids and solubility of lead in system Pb + CO2  

                   + S + H2O at 25 °C and 1 atm. Pressure, ionic strength (I) 0.005.47 

         (From Hem, JD. Inorganic Chemistry of Lead in Water, Lovering TG. editor,  

         Lead in the Environment: U.S. Government Printing Office; 1976. Figure 1 p. 6) 

Pb(OH2)
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child’s mental and physical development can be irreversibly stunted by lead.4,6 In the 

United States, the National Center for Environmental Health estimates that about 4.4% of 

children aged 1 to 5 have high level of lead in their bodies.8 Excess lead in the human 

body can cause serious damage to the brain, kidneys, nervous system and red blood cells. 

At very high levels of lead exposure, lead poisoning can cause mental retardation, coma, 

convulsions, and even death. More commonly, children are poisoned through chronic, 

low-level exposure which can cause reduced IQ and attention span, hyperactivity, 

impaired growth, reading and learning disabilities, hearing loss, insomnia, and a range of 

other health, intellectual, and behavioral effects.4,8  

Lead is also a systemic poison and can induce deleterious effects in living 

organisms. For example, as an electropositive metal, lead has a high affinity for the 

sulfhydryl (SH) group. Enzymes that depend on the SH group as the active site are 

therefore, inhibited by lead. In this case, lead reacts with the SH group on the enzyme 

molecule to form mercaptide, leading to inactivation of the enzyme.7 The following 

reaction depicts such a relationship: 

 2RSH + Pb2+ → R-S-Pb-S-R + 2H+      1.14 

 Examples of the sulfhydryl-dependent enzymes include adenyl cyclase and amino 

transferases. Adenyl cyclase catalyzes the conversion of ATP to cyclic AMP needed in 

brain neurotransmission. Aminotransferases are involved in transamination and thus 

important in amino acid metabolism. Divalent lead (Pb2+) is similar in many aspects to 

calcium (Ca2+) and may exert a competition action in body processes such as 

mitochondrial respiration and neurological functions. Lead can interact with nucleic 
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acids, leading to either decreased to increased protein synthesis. Lead can impair the 

formation of red blood cells. The mechanism involved in the impairment is that lead 

inhibits both δ-aminolevulinic acid dehydratase and ferrochelatase. These two key 

enzymes are involved in heme biosynthesis.7 

 Lead is very toxic. Once lead has been dispersed and redeposited in the 

environment, it will remain to poison living generations of children unless it is controlled 

or removed.3,4,9 Under the new standards of United States Environmental Protection 

Agency (USEPA), lead is considered a hazard if there are greater than 400 mg/kg of lead 

in bare soil in children’s play areas or 1200 mg/kg average for bare soil in the rest of the 

yard.48  The standard for drinking water currently is 15 part per billion (ppb) or µg/L.10 

EPA estimates that more than 40 million U.S. residents use water that contain lead in 

excess of the standard for drinking water.10 

 Plants exposed to high levels of lead from ambient air and soils can accumulate 

the metal and manifest toxicity. The toxicity and presence of other trace metals vary 

greatly among plant species. Based on in vitro studies, toxicity sequence have been 

determined for several species. Lead can decrease cell division at very low concentrations 

and inhibits the electron transport in corn mitochondria.7 As summarized by Landis and 

Yu (published in 1999), Barley plants were shown to be more sensitive to lead than to 

chromium, cadmium, nickel, or zinc, and exposure to relatively high levels of lead was 

shown to inhibit seed germination. The effect of lead on germination, however, was 

found to be less severe compared to several other metals such as cadmium, arsenic, and 
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mercury. Following plant uptake, lead moves into the food chain and thus can affect 

animals and humans.7  

 In the aquatic environment, metal bioavailability is influenced by physical, 

chemical, and biological factors. “Physical factors include temperature, phase association 

(solid, liquid, or gas), physical adsorption, sequestration by occlusion within a solid 

phase, or depositional regime as dictated by water movement. Chemical factors include 

those influencing speciation at thermodynamic equilibrium, complexation kinetics, lipid 

solubility, and phase transitions such as those associated with precipitation, 

coprecipitation, or chemical adsorption. Both organic and inorganic species contribute to 

these phenomena. A myriad of biological factors can also modify bioavailability  

including trophic interactions, biochemical or physiological adaptation, microhabitat 

utilization, animal size and age, and particular species characteristics. Physical and 

chemical factors can also interact with these biological factors. For example, temperature, 

pH, or Cl- can modify gill function and, consequently, uptake of dissolved metals.” 49 

(p.39)  

 A major class of chemicals that affects bioavailability is the ligand. Ligand 

influence may be direct, such as sequestering the metal by complexation, or indirect, such 

as influencing gill function.49 As mentioned in the section 1.4, class B metals have a 

particularly high affinity of the binding sites containing N/S donor ligands.31 Therefore, 

organisms containing N/S binding sites such as surface and subsurface proteins will be 

bound.50 The toxicity of metals on organisms is generally in the order type B metals > 

borderline metals > type A metals.31 
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 “The aquo ion is thought to be the most available species, although other 

complexes may also be taken up. Consequently, the effect of ligands on metal 

bioavailability is often deemed a direct result of dissolved ligand competition with 

binding sites on the gill or gut surface for the free metal ion.”49 (p.44) Ligands possessing 

O atoms would have high affinities for class A metals and tendencies for ionic bond 

formation, e.g., carboxyl or phenolic groups, and those possessing N or S, e.g., amino or 

sulfhydryl groups would have high affinities for class B metals.  

From the study of metal bioaccumulation in cultured phytoplankton by Fisher 

published in 1986), the volume concentration factor (VCF = amount of metal per unit cell 

volume/amount per unit seawater volume) was measured for phytoplankton exposed to 

metals ranging from weakly complexed to hydrolysis-dominated.51 Figure 1.10 shows a 

clear correlation between these VCF values and the log of the solubility products for the 

corresponding metal hydroxides. There is a gradual increase in VCF with a plateau 

occurring for hydrolysis dominated metals. In Figure 2.10a, class B metals show stronger 

complex than class A metals. Plots of metals that have intermediate tendencies for 

hydrolysis, i.e., 11< log –Kso MOH <23 in Figure 1.10d against either Z2/r of ∆β showed 

no marked improvement in prediction metal VCF, suggesting that neither characteristic 

alone dominated the correlation.  However, nonparametric analyses of Fisher’s data 

suggest that both were significantly correlated (α = 0.05) with the VCF.49,51 
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Figure 1.10  Phytoplankton bioaccumulation of metals based on metal-ligand  

                                 complexation trends. a) relating the volume concentration factor  

                                 (VCF) to the log of the solubility products for the pertinent metal  

                                 hydroxides. (51 cited in 49)  b) and c) show the less obvious effects of                     

                                 Z2/r and ∆β on the VCF. For metals intermediate between  

                                 hydrolysis-dominated and weakly complexed metals (11< log –Kso  

                                 MOH <23) (in d)), ∆β has a clear influence, but the log-Kso MOH  

                                 still fits best. 49 (From Newman MC, Jagoe CH. Ligands and the Bioavailability  

                                        of Metals in Aquatic Environments. Hemelink JL, Landrum PF, Bergman HL,  

                                        Benson WH, editors. Bioavailability: Physical, Chemical, and Biological  

                                        Interactions: Lewis Publishers & CRC Press Inc.; 1994. p. 45, (Used with  

                                        permission).)  
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CHAPTER 2 

 

EXPERIMENTAL SECTION 

 

 As shown in the previous chapter, studies on metals transport mobility and 

bioavailability have been limited by the lack of a comprehensive scheme to evaluate the 

organically bound metal species and the contribution of metal hydroxy complexes to the 

overall soluble metal fraction. The overall objective of this research is to develop such 

scheme utilizing field soil samples, standard sediment and standard Pb solutions. 

 In this research, two schemes and one computer model were used to study the 

distribution and behavior of lead species. One involved investigations of distribution and 

speciation of lead in contaminated soils and sediment samples under different extraction 

methods by aqueous and organic solvents. The second scheme involved a hydrolytic 

polymerization and organic complexation experiments using standard lead (Pb) solutions. 

Figure 2.1 shows the experimental outline. Homogenized soils were extracted with 

aqueous buffers at three pH levels. The organic extraction scheme involved the extraction 

of the solid samples with organic solvents of increasing polarity. Major cations, anions, 

and ligands were analyzed in the target samples. 

 Soils samples were fully characterized in terms of the major cations, anions, 

cation exchange capacity (CEC), and total organic carbon content. Table 2.1 shows the 

methodology and instrument used for measurement of different parameters. For the soil 

samples, aliquots of samples were subjected to aqueous buffer extraction at three pH
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Figure 2.1  Experimental outline 
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levels and Soxhlet organic solvent extraction using solvents of increasing polarity. 

Results from both extraction schemes were put in a lead distribution diagram. The 

diagram was evaluated and compared to results of the MINTEQA2 prediction model (a 

computer software of United States Environmental Protection Agency (USEPA)), and the 

conventional sequential extraction scheme. 

 In the second scheme, the hydrolytic polymerization study involved the use of ion 

and column chromatography to separate and verify the formation of Pb polymeric 

species. The organic complexation study involved the complexation with aquatic fulvic 

acid at three molar ratios. 

 
2.1 Material and Reagents 

Field Soil and Sediment Samples 

Three types of soil samples were used in this study. Two were from sites near an 

automotive battery factory and one was a standard river sediment number 1645 purchased 

from U.S. Department of Commerce National Bureau of Standards, Washington, D.C. 

20234. The Dallas soil samples were collected by Stacy Wright, an environmental 

specialist of the City of Farmer Branch. One of the samples is referred to as reference soil 

and the second is referred to as contaminated soil. The reference soil was obtained from a 

non-polluted area nearby as shown in Figure 2.2. The contaminated soil was obtained at 

the front of GNB Technologies Automotive Battery Factory, 1880 Valley View Lane, 

Farmers Branch, TX 75234-8905 as shown in Figures 2.2, 2.3, and 2.4. Both samples 

were surface soil samples collected on April 6, 2000 and were air dried under room 

temperature. Dried samples were homogenized and filtered by passing through 68 µm 



 40

nylon sieve. The homogenized sieved samples were used throughout the experiment. 

Standard sediment sample was used as received. 

Table 2.1   Methodologies and instruments  

 
Parameters or Experiments 

 

 
Methodologies 

 
Instruments 

Soil Characterization 

     Cations 

     Anions 

 

      

     Cation Exchange Capacity  

      

 

Acid Digestion 

Chromatographic Methods 

Dry Weight/Acid Digestion 

Ascorbic Colorimetric Method  

Compulsive Exchange Method  

 

AAS 

IC 

 

Spectrophotometer 

pH & conductivity 

meters 

Hydrolysis and Polymeric Species 

     Cation Exchange Chromatography 

 

     Column Experiment  

 

Chromatographic Method 

Acid Digestion 

Acid Digestion 

 

IC 

AAS 

AAS 

Aqueous Extraction  

 

     Total Organic Carbon (TOC) 

Soxhlet or Organic Extraction 

 

     Kudernal-Danish Preconcentration 

 

Acid Digestion 

Chromatographic Methods 

Combustion-Infrared Method 

Acid Digestion 

Chromatographic Methods 

Acid Digestion 

Chromatographic Methods 

AAS  

HPLC 

TOCA 

AAS 

HPLC 

AAS 

HPLC 

Lead-Organic Complexation Chromatographic Method HPLC 

Sequential Extraction Series of Chemical Extraction AAS 

 Note:  AAS = Atomic Absorption Spectrophotometer 

            IC = Ion Chromatography  

            TOCA = Total Organic Carbon Analyzer 

            GC = Gas Chromatography 

             HPLC = High Performance Liquid Chromatography 
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Figure 2.2  Locations of the reference soil obtained from nearby I-35 and the  

contaminated soil in front of GNB Technologies, a lead acid storage    

battery factory located at Farmer Branch, Texas 75234-8905 
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 Figure 2.3 Lead contaminated soil sample location collected on April 6, 2000 and  

                  other sampling sites in 1996 and 1997. The data of previous study  

      are in Appendix 2.1.  
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a) Lead contaminated soil sample on April 6, 2000 

 

b) Closer look of contaminated soil sample site on April 6, 2000 

Figure 2.4 Lead contaminated soil location in front of GNB Technologies  

      Automotive Battery Factory, 1880 Valley View Lane, Farmers  

      Branch, TX 75234-8905, April 6, 2000. (Photo taken by Stacy Wright) 



 44

Reagents 

 All reagents and chemicals used are listed in Table 2.2. The sources of 

manufacture and Chemical Abstracts Service (CAS) number are included for each. 

Table 2.2  Names of reagents and their CAS number including their company names 
 

 
Reagents 

 

 
CAS No. 

 
Company 

Cations 
 
   Aluminum standard reference solution 

- solute aluminum chloride 
- dilute hydrochloric acid 
- water 

 
   Iron standard reference solution 

- solute ferric nitrate 
- nitric acid 2% 
- water 

 
   PbNO3 
 
   MnO2 

 

   CaCO3 

 

   Magnesium standard powder 
 
   NaCl 
 
   KCl 
 
   CaCl 
 
   La(NO3)3·6H2O 
 
Anions 
 
   Na2SO4 

 

    KNO3 

 

    CH3COOH 
   
   KH2SO4 
 
   Phenolphthalein indicator 
 

 
 
 

7784-13-6 
7647-01-0 
7732-18-5 

 
 

7782-61-8 
7697-37-2 
7732-18-5 

 
10099-74-8 

 
1313-13-9 

 
471-34-1 

 
No. CAS No. 

 
7647-14-5 

 
7447-40-7 

 
7647-01-0 

 
10277-43-7 

 
 
 

7757-82-6 
 

7757-79-1 
 

64-19-7 
 

7778-77-0 
 

77-09-8 

 
 
 
Fisher Scientific 
Fisher Scientific 
Fisher Scientific 
 
 
Fisher Scientific 
Fisher Scientific 
Fisher Scientific 
 
Sigma 
 
Fisher Scientific 
 
Fisher Scientific 
 
Mallinckrodt 
 
EM Science 
 
Fisher Scientific 
 
J.T. Baker 
 
J.T. Baker 
 
 
 
Fisher Scientific 
 
Baker 
 
EM Science 
 
Fisher Scientific 
 
Eastman 
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Table 2.2 (Continued) 
 

 
Reagents 

 

 
CAS No. 

 
Company 

   NaOH pellets 
 
   Percholric acid  
 
   H2SO4          
  
  (NH4)6Mo7O24·4H2O     
 
   K(SbO)·C4H4O6·1/2 H2O       
 
   Ascorbic acid   
 
   D-gluconic acid, sodium 
 
   Boric acid 
 
   Na2B4O7·10 H2O 
 
Total organic carbon (TOC) 
 
  C8H5KO4 

 
   H2PO4 

 
Cation exchange capacity (CEC) 
 
   BaCl2·2H2O 
 
   Ammonium Chloride 
 
   MgSO4·7H2O 
 
Aqueous 
 
   NaC2H3O2·3H2O 
 
   Na2HPO4·7H2O 
 
 
   O-Phosphoric acid 
 
Soxhlet extraction by organic solvents 
 
   Hexane 
 
   Acetonitril 
 

1310-73-2 
 

7601-90-3 
 

7664-93-9 
 

12054-85-2 
 

28300-74-5 
 

50-81-7 
 

527-07-1 
 

10043-35-3 
 

1303-96-4 
 
 
 

877-24-7 
 

7664-93-9 
 
 
 

10326-27-9 
 

12125-02-9 
 

10034-99-8 
 
 
 

6131-90-4 
 

7782-85-6 
 
 

7664-38-2 
 
 
 

110-54-3 
 

75-05-8 
 

VWR 
 
Baker 
 
EM Science 
 
Sigma 
 
Sigma 
 
Sigma 
 
Aldrich 
 
Fisher Scientific 
 
Fisher Scientific 
 
 
 
Fisher Scientific 
 
Fisher Scientific 
 
 
 
EM Science 
 
Baker 
 
Fisher 
 
 
 
Fisher Scientific 
 
Mathesen Coleman & Bell 
Manufacturing Chemists 
 
Fisher Scientific 
 
 
 
Fisher Scientific 
 
Fisher Scientific 
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Table 2.2 (Continued) 
 
 

 
Reagents 

 

 
CAS No. 

 
Company 

  Chloride 
 
   Methanol 
 
   Nitric acid 
  
  Lead nitrate 
 
Sequential extraction 
 
   MgCl2·6 H2O 
 
   NH2OH·HCl 
    
 
   H2O2 

 
Ammonium acetate 
 
Sodium perchlorate 
 
Perchloric acid 
 
Pyridine 
 
Potassium oxalate 
 
Fulvic acid 

 
 

75-05-2 
 

67-56-1 
 

7697-37-2 
 

10099-74-8 
 
 
 

7791-18-6 
 

5470-11-1 
 

 
7722-84-1 

 
631-61-8 

 
7601-89-0 

 
7601-90-3 

 
110-86-1 

 
6487-48-5 

 
No CAS no. 

Fisher Scientific 
 
Fisher Scientific 
 
Fisher Scientific 
 
Fisher Scientific 
 
 
 
Fisher Scientific 
 
AVOCADO Research 
Chemicals Ltd. 
 
Fisher Scientific 
 
Fisher Scientific 
 
Sigma and Aldrich 
 
J.T. Baker 
 
Sigma and Aldrich 
 
Fisher Scientific 
 
International Humic 
Substances Society (IHSS) 
 

 
 

Stock Lead Solutions  

 Lead stock solutions were prepared differently depending on the types of 

experiments. For hydrolytic polymerization study, 1000 mg/L lead was prepared with 

carbonate free water that was acidified with HClO4 till its pH was less than 2 (~1.87). For 

the other experiments, lead stock solution was prepared with Milli-Q® water (obtained 
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from Milli-Q® water purification system, Millipore Corporation) that was acidified with 

HNO3 till its pH less than 2. 

 
2.2 Instrumentation 

 
High Performance Liquid Chromatography (HPLC) System 

Hewlett Packard (HP) 1090 LC system was equipped with an ultraviolet-visible 

(UV-Vis) photodiode array (PDA) detector, DR-5 ternary solvent delivery pump, HP 85 

B Computer, and HP 7470 plotter. Two columns were used. One was HP ODS Hypersil 

C18 column, 5 µm, 200 mm length × 2.1 mm i.d. and the other one was Nova-Pak® C18, 

3.9 × 300 mm, 60 Å. 4 µm column obtained from Millipore Corporation. 

Ion Chromatography (IC) System 

 HPLC Water 501 solvent delivery system with single pump connected with either 

Water IC-Pak anion exchange column serial no. T00321A 01, size 4.6 × 150 mm or 

cation exchange column IonPac CS5A 4 mm P/N 46100 Dionex Chromatography. 

Millipore Waters conductivity detector model 430 was used and connected with Water 

740 Data Module. Both were obtained form Millipore Corporation. 

Atomic Absorption Spectrophotometer (AAS) System 

1.  A Perkin Elmer Model 2380 atomic absorption spectrophotometer was 

equipped with an Impact Bead nebulizer and either a graphite furnace (GFAAS) or an 

air/acetylene flam source. All of the data results were shown on a digital screen.  
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2.  Varian SpectrAA-600 with Zeeman background correction was connected with 

GTA-100 and graphite furnace. A Pentium III 120 mHz was used to control the program 

and store data. The data then was printed through HP4000 printer. 

Total Organic Carbon (TOC) Analyzer with Infrared Detector 

 Thermo Environmental Instruments Inc., ThermoGlasTM Analytical Instruments 

1200 TOC Analyzer. 

Electron Microscope 

  JEOL Technics Ltd instrument, JSTM- 300 Scanning Microscope 

Spectrophotometer 

 Beckman DU-64 Spectrophotometer  

pH Meter 

Orion Research Digital Ion Analyzer model 501, equipped with an Orion pH Ross 

electrode model 8103.  Calibration of the pH meter was accomplished using analytical 

reagent grade pH buffers from the Ricca Chemical Co., of Arlington, Texas.  Two point 

calibrations were used throughout the research. 

Analytical Balance 

 Analytical balance XA-200 DS with 5 digits-accuracy was obtained from Fisher 

Scientific. 

Drying Oven 

1. A low temperature oven, 103-105 °C was obtained from Lab-Line 

Instruments, Inc. 
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2. A high temperature oven, up to 1,200 °C, Type 600 Furnace was obtained  

from Thermolyne. 

 
2.3 Methods 

 
Characterization of Soil 

1. Soil Type 

Soil samples were passed through a sieve, pore size 2 mm to separate gravel. 

Forty grams of soil were analyzed to determine sand, silt, and clay by sedimentation 

method according to the Methods of Soil Analysis.52 The ratio of each fraction would 

designated the type of the soils.53 54 Generally clay particle is less than 0.002 mm. Silt 

particle is less than 0.02 mm, and sand is bigger than 0.02 mm. The analysis was 

performed by Johnny Byers, a teaching assistant and master candidate student in Applied 

Geography Department at University of North Texas. 

2. Soil Color 

Air dried soils were compared with Munsell chart color.55 

3. Moisture Content 

Air dried soils were heated at 103-105 °C for 24 hours and quantified dried 

weight according to Standard Methods56 for measuring total solid. The remaining weight 

represented the total solid and the lost weight was quantified as the moisture content. 

Three replicates were made and reheated and weighted until weight change was less than 

4% of the previous weight. 
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4. pH 

Soil sample of 0.5 g was equilibrated in 10 mL. water till there was no change of 

pH (approximate 5-6 days). 

5. Cation exchange capacity (CEC) 

Compulsive exchange method according to Methods of Soil Analysis Part 3 

Chemical Methods57 was applied to all soils. The soils were initially saturated with 

barium ion (Ba2+) and then brought to an ionic strength similar to that of the original soil 

solution. The Ba2+ was then exchanged by magnesium ion (Mg2+) by addition of MgSO4, 

which precipitated BaSO4(s). After readjustment of the ionic strength to value comparable 

to that of the soil solution, the quantity of Mg2+ adsorbed (=CEC) was estimated as the 

loss of Mg2+ from the MgSO4 solution added. 

6. Volatile and fixed organic carbon 

Dried soils from above the method (103-105 °C) were ignited according to 

Standard Methods56 to a constant weight at 500 ± 50 °C. The remaining solids 

represented the fixed total solids while the weight lost on combustion represented the 

volatile solids. 

7.  Cations: Aluminum (Al), Calcium (Ca), Iron (Fe), Potasium (P), Lead (Pb), 

Magnesium (Mg), Manganese (Mn), and Sodium (Na) 

All cations were analyzed by the leaching technique which involved heating 1 g 

soil with 30 mL 10% HNO3 on a hotplate for 15 minutes. Total Digestion Method 

according to Standard Method56 was also applied to the analysis of lead in order to 

compare the results with the leaching technique. All samples were filtered with 0.45 µm 
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pore size of Nuclepore polycarbonate membrane filter obtained from Whatman. Filtrates 

were analyzed by flame AAS and only Al was done by Perkin Elmer GFAAS. Electron 

microscope technique was also applied to air dried soil to determine mineral content. 

Analysis was performed by David Garett, an Electron Microscope technician at 

University of North Texas. 

7. Anions: Sulphate (SO4
2-), Nitrate (NO3

-), Chloride (Cl-), Bicarbonate (HCO3
-),  

Carbonate (CO3
2-), and Phosphate (PO4

3-) 

Soluble sulphate, nitrate, chloride, and bicarbonate were analyzed by ion 

chromatography. Soluble anions were leached from soil samples by equilibrating 3 g of 

soil with 60 mL Milli-Q® water for 5 days before they were injected into IC 501 system. 

The IC experimental conditions are shown in Table 2.4. 

Total phosphate was analyzed by digestion with perchloric and nitric acid 

according to Methods of Soil Analysis Part 3 Chemical Methods.58 The digested samples 

were analyzed for the total amount of phosphate by the ascorbic acid colorimetric method 

according to Standard Methods with a spectrophotometer.56    

8. Silicon Dioxide (SiO2) 

Silicon dioxide was defined by measuring dry weight of soil residue after 

excessive digestion with perchloric and nitric acids till pale yellow sand-like residue was 

apparent. 

Aqueous Extraction: at pH 4, 7, and 9 

One gram soil was equilibrated with 100 mL. of each buffer and shaken for 7 days 

in an Erlenmayer flask closed with parafilm. The slurry was then centrifuged at 3,000 
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rpm for 40 minutes. The aqueous liquid was divided into two parts. The one that was 

filtered was called soluble fraction and the other one that was not filtered was called 

supernatant. 

The supernatant of 30 mL total volume was acidified with 3.3 mL HNO3 and 

heated for 15 minutes. Then, it was filtered with Nuclepore polycarbonate membrane 

filter pore size 0.45 µm. The filtrate was analyzed for total lead. The soil residue was 

divided into two portions. One portion was digested with 30 mL of 10% HNO3 for 15 

minutes and the second was used to measure the moisture content. Moisture content of 

the soil residue was determined by drying known weight at 103 °C 24 hours, reheated 

and weighted until weight change was less than 4% of the previous weight.  

Digested supernatant and digested residue were analyzed for lead by Flam AAS 

and the filtrates were analyzed by Varian GFAAS. The Varian conditions are shown in 

Table 2.5. Only filtered or soluble fraction of pH 4 experiment was analyzed for four 

major metals namely Mg, Ca, Al, and Fe. Filtered fractions of pH4 and 7 were also 

analyzed by HPLC using gradient program I as shown in Table 2.3. The supernatants 

obtained from aqueous extraction at pH 4, 7, and 9 were also analyzed for total organic 

carbons by injecting 200 µL into TOC analyzer. 

Soxhlet Extraction and Kudernal-Danish Experiments 

 Ten grams of soil were put into a thimble which was inserted into a Soxhlet 

apparatus as shown in Figure 2.5. The method is based on repeated extraction of the soil 

sample by condensed organic solvent. Once the level of the solvent in the thimble had 

reached the siphon valve, it would flow down into the round flask below and be reheated 
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to condense again. This represented a complete cycle. A series of organic solvents of 

increasing polarity, which included of hexane, acetonitrile, methylene chloride, and 

methanol, were applied to the soil sample and extracted for 360 cycles each.  

After completing the extraction cycles, all organic solvents were adjusted to 80 mL and 

divided into two parts. One was stored for further analysis by HPLC according to the 

experimental conditions in Table 2.3. The experimental conditions were modified from 

the studies of Saleh and Ong (published in 1989)59 and Saleh and Liao (published in 

1994).60  

Methanol 
170 mL

Methylene 
Chloride 
150 mL

Acetonitrile 
130 mL

Organic 
Solvent Series 

Final Volume of 
each solvent 

=  80 mL

Soxhlet 
Units

Hexane 
120 mL

Solvent

Water inlet

Water outlet Pressure 
Release

Thimble

Hot Plate

Soil 
Sample 
10g

Solvent

Control Sample
 

  
Figure 2.5  Soxhlet apparatus 
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 The other half of solvents was preconcentrated with Kudernal-Danish apparatus 

as shown in the Figure 2.6. The purpose of this method was to concentrate the volume of 

extracted organic solvents with minimum loss of organic solvents. The heating 

temperature was controlled at 100 °C by using water bath. The final volume was brought 

down to 10 or 15 mL. This fraction was further analyzed by Varian GFAAS. The 

conditions are in Table 2.5. 

Sequential Extraction  

A series of sequential extraction was applied to 2 g soil in order to separate lead in 

different fractions as shown in Figure 2.7. The extraction procedures were basically from 

Tessier, et al. (published in 1979),61 but was slightly modified according to Morrow, et al 

(published in 1996)62 and Wada, et al. (published in 1999).13 The following steps were 

followed. 

1. Water exchangeable fraction was extracted from the soil by shaking for 1 hour 

with 16 mL of 1 M MgCl2. Then, it was centrifuged at 3,500 rpm for 30 mins. The 

liquid was withdrawn and acidified with HNO3 to pH lower than 2 and was later analyzed 

by AAS. The residue was washed with 16 mL Milli-Q® water, centrifuged and 

transferred to the next step. The washing solution was discarded. 

2. Oxide bound fraction was extracted from the residue of step 1 by refluxing for 

6 hours at 96±2 °C with 40 mL of 0.04 M NH2OH•HCl in 25 (v/v)% acetic acid. Then, it 

was centrifuged and washed with Milli-Q® water the same as in step 1. 

3. Organically complexed fraction was extracted from the residue from step 2 by 

adding 10 mL of 30% H2O2 and 6 mL of 0.02 M HNO3 adjusted to pH 2 with HNO3, and  
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Water

Hot Plate

Liquid 
Sample

Kudernal-Danish 
Concentration Factor (KDF)
KDF = Original / Concentrated Volumn
Hexane = 4
Acetonitrile = 2.67
Methylene Chloride = 4
Methanol = 2.67

Control Sample
 

 

Figure 2.6  Kudernal-Danish apparatus 
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Sequential Extraction Diagram 

 
 

                                             Soil 2 g 
 
                                                             shaking 

                                                                       Step 1 
 - Exchangeable fraction 
 
                                                             centrifuge and wash with 16 mL Milli-Q® water 

 refluxing 
 

                                  S                                    Step 2 
      - Oxide bound fraction 
 
                                                             centrifuge and wash with 16 mL Milli-Q® water 

 refluxing 
 

                                                                          Step 3 
     - Organically complex fraction 
 

  
 
 centrifuge and wash with 16 mL Milli-Q® water 
 refluxing  
 
                                                                                         
                                                                                            Step 4 

       - Residual fraction 
 
 

                                                 centrifuge  
 
                                                        AAS 

Figure 2.7  Sequential extraction diagram to determine lead speciation from soils 

 

 

 

  1 M MgCl2 16 mL    1hr 

96±2° C 6 hrs 
0.04 M NH2OH • HCl 40 mL 

85±2° C 5 hrs pH 2 
0.02 M HNO3 6 mL, 

30% H2O2  10 mL and another  
6 mL of H2O2 after 2 hrs. 

95±2° C 1 hr 
65% (v/v) HNO3 6 mL 
30% (v/v) HCl 4 mL 
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the mixture was heated to 85±2 °C  for 2 hours with occasional agitation. A second 3 mL 

aliquot of 30%H2O2 (adjusted to pH 2 with HNO3) was added and the sample was heated 

again to 85±2 °C for 3 hours with intermittent agitation. After cooling, 10 mL of 3.2 M 

Ammonium acetate in 20 (v/v)% HNO3 were added and the sample was diluted to 30 mL 

and agitated continuously for 30 minutes. The addition of Ammonium acetate was 

designed to prevent adsorption of the extracted metals onto the oxidized soil or sediment. 

Finally, the fraction was centrifuged and washed with Milli-Q® water the same as 

mentioned in step 1. 

4. The Residual fraction was extracted from the residue of step 3 by refluxing at 

95±2 °C for 1 hour with 6 mL of 65 (v/v)% HNO3 and 4 mL of 30 (v/v)% HCl. Then, it 

was centrifuged and separated the aqueous fraction to further analyze by AAS. 

Hydrolytic Polymerization Study 

 Three methodologies were applied for study of lead hydrolytic polymerization 

species. All experiments were done under stream of nitrogen to prevent the formation of 

insoluble PbCO3. The first methodology was a pH titration study. The second and third 

involved IC and column chromatography (CC). The pH titration study was done by 

titrating lead to form hydroxide and polymeric species. NaOH was used as a titrant. The 

titration continued till lead started to form a polymer and eventually precipitate. The 

results of the pH titration study allowed the proper selection of the pH of the eluents in 

the IC and CC experiments. 

 In the ion chromatography experiment, 250 ml of standard lead 10 mg/L was 

prepared from Pb stock solution. The selected range of pH for polymeric species was 4.7- 
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7.2 and the pH for monomeric species was 4. Criteria used to select the pHs were based 

on the literature as shown in Figure 1.7 and my preliminary study of polymeric species. 

The literature showed that no polymeric species would be formed at pH 4 or less. This 

pH was selected to compare monomeric lead with polymeric species at pH 5.5 where the 

preliminary study indicated that polymeric species would be formed. All medium and 

mobile phase in this experiment were 10 mM NaClO4 adjusted to the desirable pHs with 

HClO4 or NaOH. All samples were run through HPLC Water 501 using cation exchange 

column and conductivity detector. IC conditions are shown in Table 2.4. 

The Sephadex column chromatography experiment was modified from studies of 

Cr(III) by Mabamalu.63 Sephadex C-25 1.3 g was dissolved in 50 mL Milli-Q® water and 

packed into a column diameter 1 cm as shown in Figure 2.8.  The resin was equilibrated 

with 10 ml 1M NaClO4 and 0.01 M HClO4 (E1) before an aliquot of 5 mL sample of 5 

mg/L lead adjusted pH to 5.2 (E0) was applied. Then, series of eluents of increasing ionic 

strength were used. Five eluents were used as shown in Figure 2.8. One milliliter of the 

next eluent was always used to elute the previous eluent into the container and combined 

as a previous fraction. Milli-Q® water was applied thereafter before a mixture of strong 

base of saturated K2C2O4 and NaOH was added as a final eluent (E5). Two moles of 

NaClO4 and 0.02 M HClO4 (E2) and 4M NaClO4 and 0.04 M HClO4 (E3) were analyzed 

by Flame AAS. E0, E1, 6M NaClO4 and 0.06 M HClO4 (E4), Mlli-Q® water, and E5 were 

analyzed by Varian GFAAS. The conditions are shown in Table 2.5. 
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Sephadex 
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8 
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E1 pH2 (15mL)
1M NaClO4+0.01M

HClO4 

E2 pH1.4 (30mL)
2M NaClO4+0.02M

HClO4

E3 pH0.6 (30mL)
4M NaClO4+0.04M

HClO4

E4 pH0 (30mL)
6M NaClO4+0.06M

HClO4

E5 pH13.6 (20mL)
Sat. K2C2O4+0.2M

NaOH

Milli-Q
15 mL

 

Figure 2.8  Column experiment with Sephadex C25 resin, flow = 1.1-1.2 mL/min 

 

Lead-Organic Complexation Study 

 The design of this experiment is based on earlier studies by Saleh and Ong 

(published in 1989)59 and Saleh and Liao (published in 1994).60  In this experiment fulvic 

acid (FA) was mixed with Pb in 0.01 M phosphate buffer. The molar ratios of Pb: FA 

were 0:0, 0:1, 1:1, 1:2, and 1:3, respectively. The formula weight of FA was considered 

equal to 1,000 g. One thousand milligrams per liter of FA was prepared by weighting 0.1 
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g of FA dissolving with Milli-Q® water into 100 mL volumetric flask. Ten milliliters of 

1000 mg/L of standard Pb was adjusted with Milli-Q® water to make a standard Pb 200 

mg/L in 50 mL volumetric flask. Phosphate buffer concentrate (0.4 M, pH 7) was 

prepared by dissolving 12.7 g of monopotassium hydrogen phosphate (MW. 136.1) and 

32.15 g of di-sodium hydrogen phosphate heptahydrate (MW 268.1) into 500 ml Milli-

Q® water. 0.1 M of buffer solution was made by four-fold dilutions of phosphate buffer 

concentrate (0.4 M, pH 7).  

The 0.02%, 200 mg/L, or 2 × 10-4 M FA was prepared by adding 2 mL of 1000 

mg/L FA into 10 mL volumetric flask. One milliliter of 0.1 M buffer was added to make 

the concentration of 0.01 M buffer. Later, 41.4 mg/L or 2 × 10-4 M was added by adding 

2.1 mL from 200 mg/L Pb solution. The higher ratios of FA were prepared by adding 

more FA volumes two and three folds, respectively giving FA concentrations of 4 × 10-4 

M and 6 × 10-4 M. The mixtures after adjusting the volumes were set for 3 days in the 

refrigerator at 10 °C for equilibration. They were allowed to achieve the room 

temperature and filtered by 0.45 µm nylon filter prior to inject into the HPLC. Selected 

wavelengths were 254, 260, and 280 nm, respectively. The mobile phase consisted of 

acetonitrile and Milli-Q® water acidified with acetic acid to pH = 2.9. The gradient 

elution program II in Table 2.3 was used. 

In this study, a preparative experiment involved the collection of several fractions 

from the HPLC of all the samples. Six fractions representing the entire elution time of 25 

minutes were collected. The volumes of each fraction were adjusted to 10 mL before  



 

Table 2.3  HPLC-experimental conditions 

 

Gradient 

program 

 

Mobile 

phase 

 

pH at  

25 °C 

 

Gradient 

time 

 

% A 

 

% B 

 

Column type 

 

Samples 

I 

 

 

 

II 

A: H2O + 0.01 % AcH 

B: CH3CN 

 

 

A: H2O + 0.45 % AcH 

B: CH3CN 

4.0 

 

 

 

2.9 

t0 min 

t2 min 

t16-20 mins 

 

t0 min 

t2 min 

t4 min 

t5 min 

t6 min 

t7 min 

t8-13  mins 

t15 min 

t20-25 mins 

99 

70 

15 

 

80 

70 

50 

40 

20 

18 

16 

15 

99 

1 

30 

85 

 

20 

30 

50 

60 

80 

82 

84 

85 

1 

Hypersil ODS C18, 5 µm, 

200 mm length × 2.1 mm 

i.d.; flow = 0.3 mL/min  

 

Novapak® C18, 4 µm, 300  

mm length × 3.9 mm i.d.; 

flow = 0.4 mL/min  

 

Soxhlet solvent extractants 

of contaminated soil and  

soluble fractions of pH4 and 

7 

Pb-FA complexation 

Experiment 61
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analyzed by Perkin Elmer GFAAS. Each sample was injected directly into the GFAAS 

three times each. The GFAAS condition was shown in Table 2.5. The series of standard 

was made from Pb stock solution 1000 mg/L and adjusted the volume with 1% HNO3. 

Table 2.4  Ion chromatography column characteristics and operating conditions 
 

 

Ion Chromatography 

 

 

Anions 

 

Pb 

Characteristics 

     Type 

     Guard column 

     Functionality 

 

     Particale size (µm) 

     Exchange capacity (µeq/mL) 

Operating conditions 

     Mobile phase 

     Flow rate (mL/min) 

     Back pressure (psi) 

     Sample injection size (µL) 

     Detector sensitivity (µS) 

Integrator parameters 

     Attenuation 

     Minimum peak area integrated 

     Minimum peak height integrated 

     Minimum peak width integrated 

     Chart speed (cm/min) 

 

Waters IC-PAK A HC 

Waters Guard PAK 

Polymethacrylate/quaternary 

ammonium 

10 

30 ± 3 

 

Borate/gluconate 

2.0 

1100 

200 

50 

 

8 

0.0 

4.0 

0.1 

2 

 

IonPac CS5A 

IonPac CG5A 

Sulfonic alkanol quaternary 

ammonia 

9 

20-40 

 

Sodium perchlorate 

1.0 

1100 

1000 

500 

 

32 

0.0 

10 

0.1 

1 

 

 

 

 



 

Table 2.5  GFAAS conditions for Varian and Perkin Elmer atomic absorption spectrophotometers 

 
Experiment 

Type  
of GFAAS 

 
Step 

Temp 

(°C) 

Time 

(seconds) 

Flow 

Conditions 

(L/min) 

 
Matrix Modification 

 
Standard Preparation 

Sample 

Dilution 

Factor 

Aqueous Extraction 

Dissolved pH4 

 

 

 

 

 

 

 

Dissolved pH7 and 9 

 

Soxhlet Extraction 

Hexane 

 

Acetonitrile 

 

Methylene Chloride 

 

Methanol 

Varian 

Program I 

 

 

 

 

 

 

 

Program I 

 

 

Program II 

 

Program III 

 

Program IV 

 

Program V 

 

1 

2 

3 

4 

5 

6 

7* 

8* 

 

 

 

1 

2-8 

1 

2-8 

1 

2-8 

1 

2-8 

 

85 

95 

120 

400 

400 

400 

2100 

2100 

 

 

 

55 

Same as I 

65 

Same as I 

35 

Same as I 

55 

Same as I 

 

5 

40 

10 

5 

1 

2 

1 

2 

 

 

 

60 

 

60 

 

60 

 

60 

 

3 

3 

3 

3 

3 

0 

0 

0 

 

 

 

3 

 

3 

 

3 

 

3 

 

Phosphoric acid 

5 µL co-injection 

 

 

 

 

 

 

None 

 

 

Same as I 

 

Same as I 

 

Same as I 

 

Same as I 

 

In 1% HNO3  

 

 

 

 

 

 

 

In 1% HNO3 

 

 

Same as I 

 

Same as I 

 

Same as I 

 

Same as I 

 

None 

 

 

 

 

 

 

 

None 

 

 

None 

 

None 

 

None 

 

None 
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Table 2.5  (Continued) 

 
Experiment 

Type  
of GFAAS 

 
Step 

Temp 

(°C) 

Time 

(seconds) 

Flow 

Conditions 

(L/min) 

 
Matrix Modification 

 
Standard 

Preparation 

Sample 

Dilution 

Factor 

Hydrolytic 

Polymerization  Study 

For E0, E1, E4, Milli-

Q® water, and E5 

 

 

 

 

 

 

Lead-Organic 

Complexation Study 

 

 

Varian 

Program VI 

 

 

 

 

 

 

 

 

Perkin 

Elmer 

 

 

1 

2 

3 

4 

5 

6 

7* 

8* 

 

1 

2 

3* 

4 

 

85 

95 

120 

500 

500 

500 

2100 

2100 

 

130 

500 

2300 

30 

 

5 

40 

10 

5 

1 

2 

1 

2 

Ramp/Hold 

10/40 

10/90 

2/10 

5/10 

 

3 

3 

3 

3 

3 

0 

0 

0 

 

0.15 

0.15 

0 

0.15 

 

5 µl  of phosphoric 

acid 1000 µL/L  

co-injection 

 

 

 

 

 

 

None 

 

 

In 1% HNO3 

Quality control was 

done by checking 

with standard 

addition technique. 

 

 

 

 

 

 

In 1% HNO3 

 

 

 

 

E0 = 12.5 

E1 = 12.5 

E4 = 40 

Milli-Q® 

water = 40 

E5 = 16.7 

 

 

Fraction 

I = 6.25 

II = 16.7 

III = 166.7 

IV = 12.5 

V = 6.25 

VI = 2.5 

* Atomization step, λ = 283.3 nm 
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2.4 Computer Model 

 Lead species were compared with theoretical model, MINTEQA2 version 4.02 

which was available from the USEPA.43 Principally, the model is appropriate for 

calculation the equilibrium composition of dilute solutions containing trace metals in  

laboratory or natural aqueous systems. It can be used to calculate the mass distribution 

among the dissolved, adsorbed, and multiple solid phases under a variety of conditions 

including a gas phase with constant partial pressure. A comprehensive database is 

adequate for solving a broad range of problems without need for additional user-supplied 

equilibrium constants. The thermodynamic database includes 30 organic components and 

over 500 species. Accessory databases are provided for modeling the adsorption of 

various metals to an iron-oxide surface and for modeling the complexation or metals with 

dissolved natural organic matter by using Gaussian distribution model. The primary user-

supplied input data for the model are the total dissolved concentrations of system 

components (e.g., Ca2+, Mg2+, Pb2+, SO4
2-, Cl-, etc.).  The input data into the model in this 

research was in the form of total concentration. The setting condition always allowed 

solid to precipitate. The definitions of components and species, and model predictions are 

in Appendix 3.1. 
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2.5 Calculation 

Hydrolytic Polymerization Study 
 
 Rate of the reaction was considered first order reaction. Its kinetic formation 

constant (K) was calculated from the equation below. 

   kteCC −= 0        (2.1) 

C = the concentration of Pb at time t,  
 

C0 = the concentration of Pb at t = 0 
 
Its half life (t1/2) was; 

   
k

t 693.0
2/1 =        (2.2) 

 
Lead-Organic Complexation Study 
 
 Conditional stability constant based on ligand complexation constant (K) with i 

bonding sites was calculated from the equations below. 

   
∑

∑=
][][

][

)()(

)(

freeifree

bondi

LPb
PbL

K      (2.3) 

   
])[]([

][
PbPbLPb

PbPb
K

TT

T

+−
−

=      (2.4) 

 LT = Total stoichiometric concentrations of ligand 

 PbT = Total stoichiometric concentrations of Pb 

An average 1:1 metal-to-ligand stoichiometry was assumed for the mixtures of binding 

sites. 
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CHAPTER 3 

 

RESULTS AND DISCUSSION 

 

 The results of the research are organized into three major sections. The first 

section presents the results of the field soil and standard sediment experiments. The 

second section presents the results of the hydrolytic polymerization experiments. The 

third section presents the results of the lead-organic complexation experiment. 

3.1 Field Soil and Standard Sediment Experiments 

Soil Geographical Data, Chemical and Physical Characterizations 

 Soils samples collected from the automotive battery factory that were designated 

reference and contaminated soils were fully characterized for their chemical and physical 

properties. The purchased sediment soil was not fully characterized because it had been 

changed out of its original texture already. So, only some parameters would be discussed 

for this sediment. 

The two sample soils showed their different origins as indicated in a soil survey of 

Dallas County as shown in Table 3.1.64  The survey indicated that contaminated site was 

Silawa fine sandy loam (as shown in Figure 3.2) with brown color which was similar to 

the color of analyzed contaminated soil as shown in Table 3.2 and Figure 3.3. However, 

the reference site was a Wilson-Urban land complex with dark grayish brown clay loam. 

This was different from the reference soil collected for the study which was slightly 

greenish yellow. The collected contaminated soil also contains a lot of gravel around 



 

 

Table 3.1  Soil descriptions of sample and reference sites obtained from soil survey of Dallas County, Texas64   

Site Soil name Area Depth 

(inches) 

Color Type Permeability Landuse Class 

Contaminated 

Site 

 

 

 

 

 

 

 

 

 

Reference Site 

Silawa fine sandy 

loam 1 to 3 percent 

slopes 

 

 

 

 

 

 

 

 

Wilson-Urban land 

complex, 0 to 2 

percent slopes           

60% Wilson         

30% Urban            

10% Other 

10-50 

acres 

 

 

 

 

 

 

 

 

 

15 to a 

few 

hundred 

acres 

0-10 

 

10-19 

 

19-34 

 

34-44 

 

44-80 

 

 

0-5 

 

5-42 

42-56 

 

56-64 

 

Brown fine sandy 

loam 

Yellowish red sandy 

clay loam 

Reddish yellow 

sandy clay loam 

Reddish yellow fine 

sandy loam 

Reddish yellow 

loamy fine sand 

 

Dark grayish brown 

clay loam 

dark gray clay 

Very dark gray and 

olive brown 

Light to olive brown 

clay 

Neutral 

 

Slightly acid 

 

Medium 

acid 

Strongly 

acid 

Medium 

acid 

 

Middle 

alkaline 

Neutral 

Neutral 

 

Moderately 

alkaline 

Moderate 

 

 

 

 

 

 

 

 

 

 

Very slow 

Pasture 

and 

cropland 

 

 

 

 

 

 

 

 

Wilson 

soil has 

medium 

potential 

for urban 

uses 

Sandy loam 

range site 

 

 

 

 

 

 

 

 

 

Was not 

assigned 

Data source: Coffee DR, Hill RH, Ressel DD. Soil Survey of Dallas County, Texas United States Department of Agriculture Soil Conservation Service 

in Cooperation with Texas Agricultural Experiment Station; 1980. pp. 65-69. 
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Figure 3.1  Soil map of Dallas County, Texas64 (*Modified from: Coffee DR, Hill RH, Ressel DD. Soil Survey of Dallas County,  

                       Texas United States Department of Agriculture Soil Conservation Service in Cooperation with Texas Agricultural Experiment  

                       Station; 1980. p. 154. 
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Table 3.2  Other physical and chemical properties 

 
Properties 

 

 
Reference Soil 

 
Contaminated Soil 

 
Standard Sediment

 
Type of  Soil 

Gravel (%)* 

Sand (%)* 

Silt (%)* 

Clay (%)* 

Color  (Hue/Value/Chroma) 

sandy loam 

0.3 

60.04 

36.26 

3.7 

5Y/4/4 

sandy loam 

15.4 

67.96 

30.44 

1.6 

YR10/4/4 

NM 

NM 

NM 

NM 

NM 

NM 

Moisture Content (%)± SD  

(CV%) 

11.38 + 0.25 

(2.2%) 

5.94 + 0.76 

(12.8%) 

NM 

pH at 22 °C ± SD  

(CV%) 

7.83+0.01  

(0.1%) 

8.15+0.04 

 (0.5%) 

8.15+0.02  

(0.2%) 

Cation Exchange Capacity (m M/kg)** 140 66.2 0 

Volatile Solid (%)± SD (CV%) 5.68+0.26 (4.6%) 2.63+0.1 (3.8%) 9.15 + 0.2 (2.2%) 

Fixed Solid (%)± SD (CV%) 94.32+0.26 (0.3%) 97.37+0.1(0.1%) 90.85 +0.2(0.2%) 

* = Single measurement from original soils 300 g, ** single measurement from 30 g soils, SD = Standard 

deviation, No. of replication (n) = 3, CV = Coefficient of variation, NM = Not measured 

 

15.4% of its weight and the reference soil contains only 0.3%. The ratios of sand, silt, and 

clay of both soils indicate that they both are sandy loam as shown in Figure 3.2. The 

slightly difference of the collected soils’ properties from the survey data might be 

because of the weathering and changing of the surface soils from anthropogenic and 

natural sources.  
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Figure 3.2  Soil diagram 

 

Both subsurface soils and their permeability were also significantly different. 

Even though the surface soil was neutral at the contaminated site, the soils underneath 

were more acidic. It implies that the cations leached from the surface soils could 

penetrate downward to the groundwater faster when it was compared to the reference soil 

where the subsurface soils were neutral and alkaline. The permeability of contaminated 

soil was moderate and the reference soil was very slow. This would increase the 

movement of the metal cations to further distance in the contaminated region than in the 

reference region. 
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The reference soil contains more moisture content around 11.38% and the contaminated 

soil contains 5.94% as illustrated in Table 3.2. The pHs of reference, contaminated soils, 

and standard sediment after equilibrating in water for 3 days at 22 °C are 7.8, 8.1, and 8.2 

and their cation exchange capacities are 140, 66.2, and 0 m M/kg, respectively. Volatile 

solid (VS) is the highest in standard sediment, 9.15%. In the reference and contaminated 

soils, VSs are 5.68 and 2.63 %, respectively. On the contrary, fixed solid (FSs) is the 

highest in contaminated soil, 97.37%. They are 94.32 and 90.58% in reference soil and 

standard sediment.  

Major cations and anions in both soils were analyzed. The results are shown in 

Tables 3.3, 3.4, and Figure 3.3. The most abundant elements found in the two soils are 

aluminum, calcium and iron. The order of the concentrations of the three elements in 

reference soil is Calcium (Ca) > Ion (Fe) > Aluminum (Al) and for the contaminated soil 

is Fe>Ca>Al. Total lead concentration in the reference, contaminated soil, and standard 

sediments are 18.5, 100.4, and 618 mg/kg, respectively based on dry weight. 

Silicon dioxide (SiO2) was found to be major component in both soils. They were 

7.496 × 105 mg/kg and 7.094 × 105 mg/kg in the reference and contaminated soils, 

respectively. The other two major anions are carbonate and phosphate. The carbonate was 

found to be 2.1 × 104 mg/kg and 3.3 × 104 mg/kg, respectively. For the phosphate, it was 

2.2 × 103 mg/kg in reference soil and 1.8 × 103 mg/kg in contaminated soil. Other soluble 

anions are sulphate, nitrate and bicarbonate. There was no soluble chloride present in the 

water after equilibrated both soils for 3 days. 
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Table 3.3  Major cations and anions 

 

Major Ions 

 

 

Reference Soil 

mg/kg (±SD) (CV%) 

 

Contaminated Soil 

mg/kg (±SD) (CV%) 

 
Major Cations 

           Aluminum (Al3+) 

 
 

6,360 ± 120 (1.9%) 

 
 

7,252 ± 271 (3.7%) 

           Calcium (Ca2+) 9,133 ± 115 (1.3%) 12,466 ± 407 (3.3%) 

           Iron (Fe2+) 7,951 ± 315 (4.0%) 17,713 ± 266 (1.5%) 

           Potassium (K+) 174.5 ± 0 (0%) 144 ± 0 (0%) 

           Lead (Pb2+) 18.5 ± 0.9 (4.9%) 100.4 ± 1.4 (1.4%) 

           Magnesium (Mg2+) 1,490 ± 50 (3.4%) 1,120 ± 39 (3.5%) 

           Manganese (Mn2+) 314.3 ± 4.6 (1.5%) 438.2 ± 5.7 (1.3%) 

           Sodium (Na+) 289.3 ± 65.8 (22.7%) 198.1 ± 24.2 (12.2%) 

   

Major Anions   

           Soluble Sulfate (SO4
2-) 64.3 ± 3.8 (5.9%) 816.7 ± 5.8 (0.7%) 

           Soluble Nitrate (NO3
-) 0.68 ± 0.038 (5.6%) 0.34 ± 0.007 (2.1%) 

           Soluble Chloride (Cl-) 0 ± 0 (0%) 0 ± 0 (0%) 

           Soluble Bicarbonate (HCO3
-) 2.88 ± 0.3 (10.4%) 2.11 ± 0.1 (4.7%) 

           Total Carbonate (CO3
2-) 20,800 ± 300 (1.4%) 33,000 ± 0 (0%) 

           Total Phosphate (PO4
3-) 

Silicon Dioxide (SiO2) 

2,200.6 ± 43.5 (2.0%) 

7.496 × 105 ± 2,000 (0.3%) 

1,849.8 ± 40.8 (2.2%) 

7.094 × 105 ± 1,000 (0.1%) 

SD = Standard deviation, No. of replicate (n)= 3 or 4, CV = Coefficient of variation  
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Table 3.4  Percent of major elements in soil samples by total acid digestions 

 

Major Elements 

 

 

Reference Soil (%) 

 

Contaminated Soil (%) 

Aluminum (Al) 16.06 12.29 

Calcium (Ca) 23.06 21.13 

Iron (Fe) 20.07 30.03 

Potassium (K) 0.44 0.24 

Lead (Pb) 0.05 0.17 

Magnesium (Mg) 3.76 1.9 

Manganese (Mn) 0.79 0.74 

Sodium (Na) 0.73 0.34 

Silicon (Si) 35.04 33.16 

 

 

The percentages of all measured elements are shown in Table 3.4 and Figure 3.3. 

Silicon (Si) was found to be the most abundant in the two soils accounting for 35.04% in 

the reference soil and 33.16% in the contaminated soil. Fe accounted for 20.07% in and 

30.03% in both soils, respectively. That explained the more brown color in the 

contaminated soil than in the reference soil because of the red color of iron oxide. Lead 

(Pb) was found at 0.17% in the contaminated soil and 0.05% in the reference soil. Other 

elements that were analyzed included Al, Ca, potassium (K), magnesium (Mg), 

manganese (Mn) , and sodium (Na). The order of the elements in reference soil was 

Si>Ca>Fe>Al>Mg>Mn>Na>K>Pb and the order in contaminated soil was 

Si>Fe>Ca>Al>Mg>Mn>Na>K>Pb. 
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a) Comparison of major elements in the reference and contaminated soils by total 

acid digestions 
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      b)   Pie chart of major elements in the reference and contaminated soils 

Figure 3.3  Comparison of major elements in the reference and  contaminated 

        soils by total acid digestions (Al = Aluminum, Ca = Calcium, 

                    Fe = Iron, K = Potassium, Pb = Lead, Mg = Magnesium,                         

        Mn = Manganese, Na = Sodium, Si = Silicon) 
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 All cations and anions can be presented in terms of millieqivalent per liter 

(meq/L) as shown in Table 3.5. The order of cations in the reference soil was 

Al>Ca>Fe>Mg>Na>Mn>K>Pb and the order in the contaminated soil was 

Al>Fe>Ca>Mg>Mn>Na>K>Pb. The charges made the orders different from the orders of 

their concentrations. The sum of cations in the reference soil was 1.597 and 2.184 meq/L 

in contaminated soil. The sum of anions was 0.717 and 1.14 meq/L, respectively. The 

highest concentrations of anions in both soil was CO3
2-. It attributed more than 96% of 

the total milliequivalents of anions.  

 Electron microscope technique was used to roughly estimate the mineral contents 

of the soils. Most minerals found by this method are similar to those measured by the wet 

technique. The results are shown in Table 3.6 and Figure 3.4. The order of magnitude for 

concentrations in the reference soil was Si>Al>Fe>K>Ca>Cu>Titanium (Ti) and for the 

contaminated soil was Si>Fe>Al>Ca>K>Ti>Sulfur (S). Comparison of the two methods 

indicates that the major four abundance elements found are Si, Fe, Ca, and Al in both 

soils.   

 In summary, both reference and contaminated soils were sandy loam with a 

slightly different in the compositions. The higher Fe concentration in contaminated soil 

made the reddish color appearance. It contained more gravels than the reference soil. The 

lead concentration in the reference soil, coming from natural deposition and non-point 

source, was a little higher than the average lead in the earth’s crust which was 15 mg/kg 

1,28while the concentration in the contaminated soil was 5.4 times higher than in the 

reference. Furthermore, the contaminated soil had lower CEC than the reference soil. 
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Table 3.5  Major cations and anions in terms of milliequivalent calculated from data in   

      Table 3.3 

 

Ions  

 

 

Reference Soil 

(milliequivalent/L) 

 

Contaminated Soil 

(milliequivalent/L) 

     Major Cations 

Al3+ 

Ca2+ 

Fe2+ 

K+ 

Pb2+ 

Mg2+ 

Mn2+ 

Na+ 

      Sum of Cations 

 

     Major Anions 

SO4
2- 

NO3
- 

Cl- 

HCO3
- 

CO3
2- 

PO4
3- 

      Sum of Anions 

 

7.07 × 10-1 

4.57 × 10-1 

2.85 × 10-1 

4.46 × 10-3 

1.79 × 10-4 

1.22 × 10-1 

1.14 × 10-2 

1.26 × 10-2 

1.597 

 

 

1.34 × 10-3 

1.1 × 10-5 

0 

4.72 × 10-5 

6.93 × 10-1 

2.26 × 10-2 

0.717 

 

8.06 × 10-1 

6.23 × 10-1 

6.34 × 10-1 

3.68 × 10-3 

9.7 × 10-4 

9.18 × 10-2 

1.59 × 10-2 

8.61 × 10-3 

2.184 

 

 

1.71 × 10-2 

5.48 × 10-6 

0 

3.46 × 10-5 

1.1 

1.99 × 10-2 

1.14 
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Table 3.6  Characterization of soil by Electron Microscopy technique 

 

Ions 

 

 

Reference Soil (%) 

 

Contaminated Soil (%) 

 

Aluminum (Al) 

 

18.45 

 

15.56 

Calcium (Ca) 3.19 4.77 

Copper (Cu) 1.71 0 

Iron (Fe) 11.37 18.77 

Potassium (K) 3.47 3.36 

Sulfur (S) 0 0.84 

Silicon (Si) 60.42 55.36 

Titanium (Ti) 1.4 1.35 

   
* Data based on average of two replicates  

  

Together with its geographical properties—higher permeability and acidity in the 

underneath regions, the lead in contaminated soil was expected to be leached and move to 

further distance than of the reference soil in which it was less permeability, neutral and 

alkaline in the subsurface areas. 

Aqueous Equlibration Experiments at pH 4, 7 and 9 

 The objectives of these experiments were to evaluate the release of lead and other 

ions solubilization under environmentally relevant pH conditions. Samples were 

equilibrated for seven days in a closed system as described on pages 51-52. Samples were 

analyzed for dissolved, supernatant, and residual lead concentrations. Results are present 

in Table 3.7. To verify the mass balance results were compared to the total lead content in 
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 a)  Comparison of major elements in the reference and contaminated soils by      

      Electron Spectroscopy technique 
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        b)  Pie chart of major elements in the reference and contaminated soils 

Figure 3.4  Comparison of major elements in the reference and contaminated 

                    soils by Electron Spectroscopy technique (Si = Silicon, Al = Aluminum, 

  Fe = Iron, K = Potassium, Ca = Calcium, Cu = Cupper, Ti = Titanium, 

                    and S = Sulfur)  
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Table 3.7  Comparison of released lead at three different pHs: pH 4, 7, and 9 

 

pH 

Dissolved 

(mg/kg) 

±  SD (CV%) 

Supernatant 

(mg/kg) 

±  SD (CV%) 

Residue 

(mg/kg) 

±  SD (CV%) 

 

% Recovery* 

pH 4 

      Reference Soil** 

 

      Contaminated Soil** 

     

      Standard Sediment 

 

pH 7 

     Reference Soil 

 

     Contaminated Soil 

     

     Standard Sediment 

 

pH 9 

     Reference Soil 

      

     Contaminated Soil 

     

 Standard Sediment 

 

1.3±0.09 

(6.9%) 

25.2±2.2 

(8.7%) 

105.1±2.6 

(2.5%) 

 

0.06±0.015 

(25%) 

0.06±0.04 

(66.7%) 

ND* 

 

 

ND 

 

ND 

 

ND* 

 

1.7±0.3  

(17.6%) 

25.8±3.3 

(12.8%) 

109.1±3.8 

(3.5%) 

 

3.3±0.28  

(8.5%) 

7.7±0.29 

(3.8%) 

NM 

 

 

1.1±0.18 

(16.4%) 

3.7±0.32 

(8.6%) 

NM 

 

18.6±2.2 

(11.8%) 

70.1±8.1 

(11.6%) 

561.1±37 

(6.6%) 

 

16.8±0.9 

(5.4%) 

94.5±4.3 

(4.6%) 

652.7±7.3 

(1.1%) 

 

23.05±1.5 

(6.5%) 

106.47±4.6 

(4.3%) 

633.67±5.6 

(0.9%) 

 

109.9 

 

95.5 

 

108.4 

 

 

108.4 

 

101.8 

 

105.8 

 

 

130.54 

 

109.7 

 

102.5 

*% Recovery = {(Supernatant + Residue)/total lead}100 

SD = Standard deviation, No. of replicate (n) = 3; ** n = 4, CV = Coefficient of variation 

ND = Lower than detection limit (1 µg/L), ND* = Lower than detection limit (1 mg/L) 

NM = Not measured 
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the original samples.   

Only dissolved fraction at pH 4 gave a significant release of lead. This supported 

the idea of substitution in which abundance H+ could replace metal ions and resulted in 

Pb2+ release. The amounts of released Pb in the dissolved fractions of reference, 

contaminated soils, and standard sediment at pH 4 were 1.3, 25.2, and 105.1 mg/kg, 

respectively. This accounted for 7, 26.4, and 18.7% of their initial Pb contents. The 

supernatant fractions contained slightly higher of Pb than the dissolved fractions. The 

percent of Pb in the supernatant fractions were 9.1, 27, and 19.4%, respectively. The 

results indicate that almost all of Pb in the supernatant fractions is dissolved.  

    The dissolved fractions at pH7 and 9 of the reference and contaminated soil are 

very small compared to their supernatant factions. At pH 7, the percentages of dissolved 

Pb are 0.4 and 0.06% while the supernatant fractions are 19.6 and 8.1%, respectively. At 

pH 9, the dissolved fractions of both soils are lower than 1 µg/L. However, the 

percentages of Pb in the supernatant fractions are 4.8 and 3.5%, respectively. This 

indicates that the higher pH results in the lower release of Pb in both the dissolved and 

supernatant fractions. Moreover, the higher pH also contributed Pb in the supernatant 

fraction rather than in the dissolved fraction. This indicates the Pb is associated with 

colloidal or particulate matters or involved in formation of a bigger species.  

MINTEQA2 model (a computer software from United States Environmental 

Protection Agency (USEPA)) was used to predict the distributions of Pb species in the 

contaminated soil and the results are shown in the Table 3.8.  At pH 4 the model predicts 

that 30% of Pb would be ionic lead (Pb2+). The model prediction is very close to my  
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Table 3.8  Lead speciations distribution among dissolved and adsorbed species at three  

                  different pHs by MINTEQA2 

 
pH 

 

 
Species 

 
Fraction Associated (%) 

4 

 

 

 

7 

 

 

 

9 

Pb2+ 

PbDOM 

Pb[Acetate] 

Pb[Acetate]2 

Pb2+ 

PbDOM 

PbCO3 (aq) 

PbHCO3+ 

PbDOM 

PbOH+ 

Pb(OH)2 (aq) 

Pb(CO3)2
2- 

PbCO3 (aq) 

30.0 

10.2 

51.5 

7.9 

3.6 

87.6 

4.7 

3.7 

4.3 

6.8 

1.4 

41.6 

45 

Note: MINTEQA2’s calculations are in Appendices 3.2, DOM = Dissolved Organic Matters 

 

experiment,  27%. Other fractions that MINTEQA2 predicted are PbDOM, Pb[Acetate], 

and Pb[Acetate]2. These species might not be in the soluble forms as the fractions found 

in my experiment shown that they were in the residue.  The full MINTEQA2 calculations 

of pH4 are shown in Appendix 3.2. 

At pH 7, MINTEQA2 predicts only 3.6% of Pb would be Pb2+ while in my 

aqueous experiment the results shows 7.7% in the supernatant fraction. It should be noted 
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that the dissolved fraction contributed only to 0.06% which means that most fraction was 

not ionic lead. MINTEQA2 also indicated that 3.7% would be PbHCO3
+. Both Pb2+ and 

PbHCO3
+ containing ionic charges that might associate with colloid species and that 

would make a total of 7.3% which is close to the experimental results. The other two 

fractions that MINTEQA2 predicted are PbDOM and PbCO3 which equaled to 87.6% 

and 4.7% respectively. These two species are more likely to occur as a residue as they 

add up to 92.3% which is close to the experimental result of 94.5%. The full MINTEQA2 

calculations of pH 7 are shown in Appendix 3.2.   

 At pH 9 as shown in Table 3.8, MINTEQA2 predicts that all Pb species would be 

bound and no ionic lead would be present. These support the data from the aqueous 

experiment where no lead is detected over 1 µg/L  in the dissolved fraction. However, the 

contribution of lead in supernatant around 3.7% might come from some adsorbed species 

associated with colloidal particles. Nevertheless, the residue still yield 106.47% of lead 

indicating the majority of the species was bound species the same as calculation by 

MINTEQA2. The full MINTEQA2 calculations of pH 9 are shown in Appendix 3.2. 

 The other four majors metals leached in dissolved fractions at pH4 are shown in 

Table 3.9. Figures 3.5 and 3.6 shows comparison between the concentrations and the 

solubilized ion at pH 4. For the reference soil, Mg, Al, and Fe are 18.7, 1.4, and 0% of 

their total concentration, respectively. For the contaminated soil, they are 33.1, 4.4, and 

12.2%, respectively. On the contrary, the concentrations of Ca in both soils were 

increased to be 120% in reference soil and 125% in contaminated soil. This is due to the 

interaction of the acetate buffer and carbonate in the soil resulting in the release of  
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Table 3.9  Comparison of other major four metals released (dissolved forms) after   

                  equilibrated in pH 4 with their total concentrations. 

 

Type of soils 

Calcium 

(mg/kg)  

±  SD (CV%) 

Magnesium 

(mg/kg) 

± SD (CV%) 

Aluminum 

(mg/kg) 

±  SD (CV%) 

Iron 

(mg/kg) 

±  SD (CV%) 

Reference Soil 

       Total Digestion 

    

       pH 4** 

 

Contaminated Soil 

       Total Digestion 

        

       pH 4** 

 

Standard Sediment 

       Total Digestion 

       pH 4 

 

9,133.3±115.5 

(1.3%) 

10,950±0 

(0%) 

 

12,465.8±12.5 

(0.1%) 

15,562.5±0  

(0%) 

 

NM 

32,583.3±2,796 

(8.6%) 

 

1,490±3.4 

(0.2%) 

278.1±13 

(4.7%) 

 

1,119.5±39.1 

(3.5%) 

370.3±3.1 

(0.8%) 

 

NM 

6,100±151.6 

(2.5%) 

 

6,360±120 

(1.9%) 

95.6±6.8  

(7.1%) 

 

7,252±271.4 

(3.7%) 

320±1.8  

(0.6%) 

 

NM 

842.7±20.3 

(2.4%) 

 

7,951±314.6 

(4.0%) 

ND 

- 

 

17,713±265.6 

(1.5%) 

2,168.8±32.7 

(1.5%) 

 

NM 

5,110±70.6 

(1.4%) 

NM = not measured, ND = Lower than detection limit (0.5 mg/L) 

SD = Standard deviation, No. of replicate (n) = 3; ** n = 4, CV = Coefficient of variation 

 

calcium ion (Ca2+) in solution. 

In summary, at the pH 4 where H+ is dominant, Pb2+ can be leached from the soil 

as shown in the experimental data and in the calculation by the MINTEQA2. The pH 7 

shows lower released amount of Pb2+ while the pH 9 is the least. Other four major cations 

also released at pH 4. Since equilibrating at pH 4 was just leaching ions, other cations 

were expected to be less than their total concentrations. This was true in the case of Mg,  
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Figure 3.5  The comparison of concentrations of calcium (Ca), magnesium (Mg),  

                    aluminum (Al), and Iron (Fe) from the reference soil in dissolved  

                    fraction at pH4 and from total digestion with standard deviations 
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Figure 3.6  The comparison of concentrations of calcium (Ca), magnesium (Mg),  

                    aluminum (Al), and Iron (Fe) from the contaminated soil in dissolved  

                    fraction at pH4 and from total digestion with standard deviations 
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Al, and Fe. Calcium concentration was close to its total concentration due to 

solubilization of CaCO3 at pH 4 caused by acetic acid.  The MINTEQA2 version 4.02 

seemed to predict lead species quite well among three tested pHs. The equilibrium 

constants of these species were close to the experiment values. Thus, MINTEQA2 has 

given good agreement with my experimental results.  

MINTEQA2 Input Parameters 

 In evaluating the validity of MINTEQA2 selection of the proper input parameters 

is crucial. As seen from the previous discussion, there was good agreement between the 

experimental results and the model’s prediction. However, when the model is applied to 

environments conditions, it is hard for the users to measure all parameters of the solids 

and aqueous samples. Using different parameter model’s predictions for the contaminated 

soil and standard sediment were used and were compared to the experimental results as 

shown in Table 3.10. The table gives an idea for the users to select needed parameters.  

For the contaminated soil, equilibrated with acetate buffer at pH4, ionic strength 0.407 

and DOM 50.6 mg/L was used.  

The model was applied with three scenarios. In the first scenario, input parameters 

included all parameters and PbTotal and precipitation was allowed for all solids. In the 

second scenario, input parameter included soluble cations including Pb(II) and in the 

third scenario, only soluble Pb(II) was used. No precipitation was allowed in the second 

or third scenarios. Results in Table 3.10 shows that first and second scenarios are close 

and in good agreement with the experimental results.  
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Table 3.10  Comparison of lead species distributions from different MINTEQA2 inputs  

                    with experimental result at pH 4 and ionic strength 0.407 

MINTEQA2 

Input 

Pb2+ 

(%) 

PbDOM 

(%) 

Pb[Acetate] 

(%) 

Pb[Acetate]2 

(%) 

Contaminated soil 

(Same ionic strength, pH, DOM, and buffer) 

     PbTotal & All parameters* 

     Pb(II) & 4 soluble major cations**  

     Pb(II) ** 

Experimental result 

 

Standard sediment 

(Same Pb(II), 4 soluble major cations, ionic strength, 

pH, and buffer, but vary DOM) 

     DOM = 91.5 mg/L**   (10% of VS) 

     DOM = 176 mg/L**    (19.2% of VS) 

     DOM = 915 mg/L**    (100% of VS) 

Experimental result 

 

 

30.0 

29.9 

19.2 

27 

 

 

 

 

30.4 

27.3 

11.0 

17 

 

 

10.2 

11.3 

5.0 

NM 

 

 

 

 

10.5 

19.4 

67.4 

NM 

 

 

51.5 

51.0 

43.0 

NM 

 

 

 

 

51.4 

46.2 

18.7 

NM 

 

 

7.9 

7.8 

32.8 

NM 

 

 

 

 

7.8 

7.0 

2.8 

NM 

*Precipitation is allowed for all solids. ** Precipitation is not allowed. NM = not measured.  

MINTEQA2’s inputs and Pb distributions are in Appendix 3.3.  

 

The standard sediment was not fully characterized as the soil samples. Arbitrary 

values were used for DOM based on the percentage of volatile solids (VS) as levels of 

DOM were chosen as 10%, 19.2%, and 100% of the experimental VS. As shown in Table 

3.10, Pb2+ distribution depends on the amount of DOM as well as the major soluble 

cations. It is also noted that concentrations of the soluble cations in the standard sediment 

are much higher than in the soil samples (as shown in Table 3.9). The exercise shows that 

users should characterize aqueous samples in terms of pH, ionic strength, major soluble 
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cations and DOM in order to make reasonable prediction of Pb distribution using 

MINTEQA2. 

In summary, the MINTEQA2 model is useful to save the cost of analysis in which 

many samplings are needed. In this experiment, with the fixed matrix conditions, the 

needed parameters are the four major soluble cations and the DOM for Pb species 

prediction. Nevertheless, the laboratory experiment is still needed to obtain the accurate 

result whether there is any more needed factor when the model is applied form different 

locations to locations or different conditions to conditions.  

HPLC Characterization of pH 4 and 7 Aqueous Extracts 

 The aqueous extracts were analyzed by reversed phase high performance liquid 

chromatography (RP-HPLC) from Hewlett Packard as described on page 52 using 

gradient program I in Table 2.3. Figures 3.7 and 3.8 show chromatograms of the 

contaminated soil extract at pH 4 and 7, respectively. No significant difference between 

the control and the sample can be detected. The weak signal may be attributed to the 

dissolved organic matters in the sample. The MINTEQA2 model in Table 3.7 predicts 

10.2% PbDOM. This amount would account for 5 mg/L while the detection limit of this 

method was 15 mg/L. Furthermore, since any injection that was made into RP-HPLC was 

filtered through 45 µm filter paper, dissolved organic matter (DOM) that was expected to 

be found with this method might not be able to pass through the filter. Supernatant 

fractions were all analyzed for total organic carbon (TOC) as described in page 52. The 

results are shown in Table 3.11. The data of TOC at pH 4 are questionable due to the 

interference of acetate buffer. 
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Figure 3.7  Ultraviolet (UV) chromatograms of pH 4 dissolved fractions of contaminated soil, sample loop 20 µL, λ = 254,  

                    280, and 260 nm. Condition I in Table 2.3 
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Figure 3.8  UV chromatograms of pH 7 dissolved fractions of contaminated soil, sample loop 20 µL, λ = 254, 280, and  

                   260 nm. Condition I in Table 2.3. 
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Table 3.11  The amounts of total organic carbon (TOC) in supernatant fractions  

Supernatant at Different pH Reference Soil 

(mg/kg) ±  SD (CV%) 

Contaminated Soil 

(mg/kg) ±  SD (CV%) 

pH 4 

pH 7 

pH 9 

57.5±35.9 (62.4%) 

41.9±1.4 (3.3%) 

32.09±5 (15.6%) 

50.6±7.8 (15.4%) 

18.5±1.6 (8.6%) 

18.4±3.2 (17.4%) 

SD = Standard deviation, No. of replicate (n) = 3, CV = Coefficient of variation 
 
 

Another attempt was made on pH 7 extract of contaminated soil by adjusting the 

pH to 4 and 2 in order to enhance the signal of DOM and PbDOM. This is because the 

MINTEQA2 predicts that 87.6 % of lead is bound into dissolved organic matter (as 

shown in Table 3.8). However, as shown in the Figures 3.9 and 3.10, there is no 

improvement in the ultraviolet (UV) signals in both figures. This might be because of 

adjustment of these pHs diluting the DOM since its original pH of supernatant was a little 

above the detection limit, 18.5 mg/L, compared with fulvic acid, 15 mg/L. As mentioned 

earlier, filtering supernatant before injection into the RP-HPLC might also filter some 

DOM and PbDOM too. As a result, DOM and PbDOM could not be detected from 

aqueous experiment directly. 

In summary, leaching of PbDOM from the aqueous experiment at pH 4 and 7 

showed no different signal from the control. This might be because of the low 

concentrations of the samples and their matrix problems. Matrix modification by 

adjusting to lower pH could not improve the signal. This might be because the dilution 

factor made the sample out of range; otherwise, the form of PbDOM might not be able to  
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Figure 3.9  UV chromatograms of pH 7 dissolved fractions of contaminated soil that was acidified to pH4, sample loop  

                   20 µL, λ = 254, 280, and 260 nm. Gradient program I in Table 2.3. 
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Figure 3.10  UV chromatograms of pH 7 dissolved fractions of contaminated soil that was acidified to pH 2, sample  

                     loop 20 µL, λ = 254, 280, and 260 nm. Gradient program I in Table 2.3. 
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penetrate through the filter as the MINTEQA2 predicted that the amount of PbDOM 

corresponded to the fraction in the residue rather than in the dissolved fraction as 

discussed in the previous section. 

Soxhlet Extraction and Kudernal-Danish Experiments 

 The objective of these experiments was to extract the organically bound Pb from 

the contaminated soil sample using a series of organic solvents of increasing polarity. The 

experiment was performed as described on page 52-54 and as shown in the Figures 2.5-

2.6. Extracts of each solvent phase were analyzed by RP-HPLC and by graphite furnace 

atomic absorption spectroscopy (GFAAS) from Varian. In the GFAAS analysis, the 

drying steps of each extraction solvent were changed from the default database to be 

around 85% of its boiling point and drying times were extended to 60 seconds. Table 

3.12 shows the Pb concentrations in the organic solvent extracts. Trace amounts of Pb 

Table 3.12  Lead concentrations in each extracted Soxhlet solvent after preconcentrated  

                    with Kudernal-Danish technique 

 
Fractions ordered by polarity 

 

 
Lead concentration (mg/kg) 

± SD (CV%) 
 

Hexane 

Methylene chloride 

Acetonitrile 

Methanol 

Extracted soil residue 

Sum 

Total 

Recovery (%)* 

ND 

ND 

4.34 × 10-3 ± 0.77 × 10-3  (17.7%) 

42.63 × 10-3 ± 2.33 × 10-3 (5.5%) 

102.5 

102.55 

100.4 

102.1 

ND = Lower than detection limit, 1 µg/L; SD = Standard deviation,  No. of replication (n) = 3, CV = 

Coefficient of variation, *Recovery (%) = (Sum/Total ) × 100 
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were detected only in the acetonitrile and the methanol extracts at concentrations of 4.34 

× 10-3 and 42.63 × 10-3 mg/kg, respectively. The table also shows that most of the Pb is 

still associated with the soil residue. The sum of the organically bound Pb represents only 

0.05% of the total Pb in the contaminated soil sample. The 

solvent Soxhlet extracts were also analyzed by RP-HPLC. Figures 3.11-3.14 shows the 

UV chromatograms. 

 The chromatograms show no difference of the UV absorption of the control and 

contaminated soil samples. Even though lead was detected in the acetonitrile and 

methanol extracts as shown in Table 3.12, the concentrations were in the ppb range which 

was very small. Thus, any absorption that might occur would not be noticed on the 

chromatograms.  

 In summary, the Soxhlet extraction and Kudernal-Danish experiments shed some 

light on the nature of the organically bound Pb in the contaminated soil sample. The 

results indicate that none of the organically bound Pb is completely non-polar. The 

amount of Pb extracted in the methanol is almost ten times higher than that extracted with 

acetonitrile. This indicates that Pb-organic complex is more of a polar nature. The RP-

HPLC chromatograms provided fingerprints of the extracts but no distinction could be 

made between the control and the sample. 

Sequential Extraction Experiment 

The objective of this experiment was to apply the conventional chemical 

extraction method to the soils and sediment samples and to compare the results with the.
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Figure 3.11  UV chromatograms of dissolved fractions of Soxhlet extracted hexane, sample loop 20 µL, λ = 254,  

                      280, and 260 nm. Gradient program I in Table 2.3. 
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Figure 3.12  UV chromatograms of dissolved fractions of Soxhlet extracted acetonitrile, sample loop 20 µL, λ =  

                      254, 280, and 300 nm. Gradient program I in Table 2.3. 
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Figure 3.13  UV chromatograms of dissolved fractions of Soxhlet extracted methylene chloride, sample loop 20 µL,  

          λ = 254, 280, and 300 nm. Gradient program I in Table 2.3. 
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Figure 3.14  UV chromatograms of dissolved fractions of Soxhlet extracted methanol, sample loop 20 µL, λ = 254,  

                      280, and 300 nm. Gradient program I in Table 2.3. 
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Table 3.13  Lead concentrations in four different fractions by sequential chemical  

                    extraction 

 

Fractions 

Reference Soil 

(mg/kg) 

± SD (CV%) 

Contaminated  Soil 

(mg/kg) 

± SD (CV%) 

Standard Sediment 

(mg/kg) 

± SD (CV%) 

Exchangeable 

Oxide Bound 

Organically Complexed 

Residual 

Sum 

      Total 

      % Recovery* 

0 

9.2±0.7 (7.6%) 

0 

9.2±0.7 (7.6%) 

18.39 

18.5 

99 

0 

67.8±2.0 (2.9%) 

16.3±1.4 (8.6%) 

13.8±1.3 (9.4%) 

97.9 

100.4 

97.5 

0 

560.9±8.9 (1.6%) 

0 

50.3±5.2 (10.3%) 

608.8 

618.17 

98.4 

*% Recovery = Sum ÷ Total Lead, SD = Standard deviation, No. of replicate (n) = 3, CV = Coefficient of 

variation 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.15  Lead concentrations in four different fractions with standard  

                                  deviations by sequential chemical extraction 
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other methods used to investigate the field samples. The results are shown in Table 3.13 

and Figure 3.15 

Most of the Pb was found in the oxide bound fractions. They accounted for 50, 

69.3, and 92.1% in the reference, contaminated soils, and standard sediment, respectively. 

The residual fractions accounted for 50, 14.1, and 8.3%, respectively. Only in 

contaminated soil, lead was found in the organic complex fraction, 16.6%.  

 It should be noted that lead organic complexed concentration seemed to be much 

higher than measured by Soxhlet extraction in which the concentrations were in ppb 

level. This indicated the varieties of organic functional groups on soil that might not be 

extractable with the organic solvents. The oxide bound fractions also related to their 

properties. Since both reference and contaminated soils were sandy loam, oxide and 

hydroxide of Fe and Al might play an important role in this fraction, especially 

contaminated soil which contained more Fe as indicated by its more reddish color. The 

residual fractions of all three samples are usually of less concern since they would not be 

leached to become toxic into the environment. So, these fractions usually attribute as an 

inherent mineral in soils. In the reference soil where the lead came from its ore origin and 

non-point source, this fraction accounted for 50% while in contaminated soil where it was 

contaminated from the battery factory, the lead in this fraction was only 14.1%. Thus, 

there would be more available lead that could be leached from soil into the environment 

in the contaminated soil than in the reference soil. 

 In summary, even though sequential extraction could not determine how much of 

lead would be leached into the environment directly, it could give an idea of the potential 



 

102 

of lead that could become available. As known that the toxicity of lead would depend on 

the environmental condition, change of pH, ionic strength, and other chemicals or species 

would affect on the mobility of lead. Examples are shown in the aqueous extraction 

experiment where the amount of dissolved Pb2+ at each pH was changed accordingly. 

However, the sequential extraction was still useful in giving the information of how much 

lead in the certain fractions that could be leached into the environment and what action 

that might be effect directly and indirectly to the fractions.  

3.2  Hydrolytic Polymerization Study 

 The study of lead hydrolytic polymerization species involved three types of 

experiments. The first one involved pH titration curve to establish the pH range for 

polymeric species formation. The second and third experiments involved the use of ion 

and column chromatography to isolate the polymeric species. All polymerization 

experiments were performed under nitrogen to eliminate formation of lead carbonate.  

 As shown in the literature review, Pb2+ can form a number of hydroxide 

complexes which are monomeric and polymeric species.1,20,21,34,45,46 The pH titration was 

performed by titrating solutions with and without Pb with certain concentration of base as 

described on pages 57-59.  Figure 3.16 shows the titration of Pb 10 mg/L in 10 mM 

NaClO4 medium with 0.011 M NaOH. The blank curve shows the titration of 10 mM 

NaClO4, at pH 4, without Pb. The titration curves indicate that OH- groups in the sample 

were utilized to form hydroxyl species with Pb as the amount of NaOH in the sample line 

was higher than of the blank at the same pH.  The range of pH between 4.7 and 7.2 

showed uptake OH- without precipitation. As a result, a pH range between 5 and 7.2 was 
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chosen to study the hydrolysis of lead in the subsequent chromatography experiments. 

For monomeric study, pH4 was used. 
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Figure 3.16  Titration curves of 10 mg/L Pb in 10 mM NaClO4/HClO4 and blank  

                      with 0.011 M NaOH 

 
 
Ion Chromatography (IC) Study 
 

 The objective of the IC experiment was to detect and isolate Pb polymeric species 

using IC. Hydrolytic polymerization of chromium—Cr(III) had been successfully 

separated by IC in our research laboratory.63 The studies indicated that products of 

hydrolytic polymerization of Cr(III) after fractionation on Sephadex column using eluents 

of increasing ionic strength could be detected by IC with UV detector. The IC separation 

of the monomers and low oligomers was achieved with a low mixed resin column using 
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eluent consisting of 2M NaCLO4/0.02M HClO4 at pH 4.5. In the aged sample, the 

dimeric and trimeric Cr(III) species were detected in the second fraction of the aged 

sample at k’ of 1.09 and 1.70, respectively. The third fraction also contained trimeric 

species with k’ of 1.79. The overall Cr(III) recovery from all Sephadex fractions was 

100.76%. 

 In this experiment, the same strategy was applied. The sephadex column with 

increasing ionic strength eluents was used as illustrated in the Figure 2.8. The low mixed 

resin column was also used with the lower ionic strength at 10 mM NaClO4 at pH 4 for 

the monomer and at pH 5.5 for the polymer. Because Pb monomeric and polymeric 

species did not absorb any UV region, conductivity detector was used instead of the UV 

detector. Because of the nature of the conductivity detector, a strong ionic strength 

solution could not be used as a mobile phase. 

In the study of monomeric species, as reviewed from the literature (Figure 1.7) 

and as illustrated in the preliminary study in Figure 3.16, at pH below 4 only monomeric 

species could exist without further hydrolysis. In this IC experiment at pH 4, only 

monomeric Pb species are predominant as shown in the Figure 3.17. The figure shows no 

significant change of an area of monomeric peaks at retention time (tr) 11 mins after 3 

days. 

At pH 5.22, IC chromatograms indicated progressive appearance of peak at tr 

12.951 minutes with increased signals on day 7, as shown in Figure 3.18. It was also 

noted that the sample pH increased from 5.12 on day 3 to 9.11 on day 7 and was 

associated with some precipitation of white murky flakes in the solution. 
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5.02.50 7.5 10.0 12.5 15.0 17.5

Time (Min)

a) Baseline pH = 4

b) o day, pH = 3.63

c) 3 days, pH = 3.71

 

Figure 3.17  Lead monomeric species at pH 4 during 3 days, mobile phase = 10   

                      mM NaClO4 pH 4, IC-condition as shown in Table 2.4. 

c) 3 days, pH = 5.12

Time (Min)
0 2.5 5.0 7.5 12.510.0 15.0 17.5

b) 0 day, pH = 5.22

d) 7 days, pH = 9.11

20.0

a) Baseline 

 

Figure 3.18  Lead polymeric species at pH 5.22 during 7 days, mobile   

                     phase = 10 mM NaClO4 pH 5.5, IC-condition as shown in Table 2.4.  
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In order to gain more signal for the polymeric species, the experiment was 

repeated but the sample pH was raised to 7.22 while the mobile phase pH was remained 

the same, 5.5. As shown in the Figure 3.19, an increased signal was apparent at tr  

between 9 and 11 minutes. The sample pH decreased from 7.22 at 2.5 minutes to 5.87 

after 1,442.5 minutes indicating utilizing consumption of OH- via hydrolysis. 

 

. 
5.02.50 7.5 10.0 12.5 15.0 17.5

Time (Min)

a) Baseline

b) 2.5 min, pH = 7.22

c) 181.5 min, pH = 6.54

d) 1442.5 min, pH = 5.87

 

Figure 3.19  Lead polymeric species at pH 7.22 over 24 hours, mobile   

                      phase = 10 mM NaClO4 pH 5.5, IC-condition as shown in Table  

                      2.4  
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To confirm that the peak found in Figure 3.19 was not monomeric species, a fresh 

sample at pH ~ 4 was prepared. Both aged sample from Figure 3.19 and its mobile phase 

were acidified with HClO4 to pH ~ 4 where the monomeric species had been found 

previously (Figure 3.17). The result shown in Figure 3.20 indicated that lead polymeric 

species did exist. Aged sample that was acidified to pH 3.68 had two peaks. The first 

peak occurred at tr around 9 minutes similar to the fresh sample at pH 3.44 which showed 

monomeric species at the same tr. The other peak indicates formation of polymeric 

species at longer tr.  

 In summary, the IC experiments confirmed the formation of Pb polymeric 

species. However, the quality of the chromatograms and the peak resolution were 

5.02.50 7.5 10.0 12.5 15.0 17.5

Time (Min)

a) Mobile phase after adjusted,         
pH = 3.99

b) Fresh sample, pH = 3.44

c) Aged sample after adjusted 
pH = 3.68

 

Figure 3.20  Lead mono- and polymeric species, mobile phase = 10 mM  

                     NaClO4 pH 5.5 acidified to 3.99, IC-condition as shown in Table  

                     2.4  
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unsatisfactory. Several factors contributed to this situation. First, the conductivity 

detector was used to detect Pb species which contributed to the weak signal. In case of 

the Cr(III) study, UV detector was used which had more enhanced signal at wave length 

436 nm.63 Second, due to the high atomic weight of Pb, conductivity signals showed 

broad peaks. Additional difficulties were encountered due to irreversible sorption of Pb 

on the IC column and inability to obtain satisfactory mass balance in the preparative 

experiments. Due to these problems, the IC experiment was discontinued at this point.  

Sephadex Column Experiment 

 The objective of Sephadex column chromatograph was to separate the polymeric 

fractions and to establish a mass balance of all the Pb species. The experiment was 

performed as described in pages 57-59 and in Figure 2.8, the medium was Milli-Q® 

water (obtained from Milli-Q® water purification system, Millipore Corporation) free of 

carbon dioxide and the pH was adjusted to 5.22 by using 0.2 M pyridine giving the ionic 

strength of solution (I) = 0.004. The major eluting solution compositions were still 

NaClO4/HClO4 with a series of stronger concentrations. The last eluent was saturated 

K2C2O4 with NaOH. The concentrations in each fraction were shown in the Table 3.14 

and Figure 3.21.  

As shown in the Table 3.14 and Figure 3.21, two major fractions were separated 

throughout the experiment. The largest fraction was eluted by a mixture of 2M NaClO4 

and 0.02 M HClO4 (E2) accounted for 83.55% at day 0. Later, it gradually decreased to 

74.85% at day 14. While lead fraction in E2 was decreasing, lead fraction in 4M NaClO4 

and 0.04 M HClO4 (E3) was increasing. Over 14 days, lead in E3 fraction was increased  
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Table 3.14  Lead concentration (%) after eluted through Sephadex columns, ionic  

        strength (I) 0.004 

 

Fractions 

Day 0  

± SD (CV%) 

Day 2 

± SD (CV%) 

Day 14 

± SD (CV%) 

First 5 ml of 5 ppm Pb (E0) 

1M NaClO4 + 0.01M HCLO4 (E1) 

2M NaClO4 + 0.02M HCLO4 (E2) 

4M NaClO4 + 0.04M HCLO4 (E3) 

6M NaClO4 + 0.06M HCLO4 (E4) 

Milli-Q 

Saturated K2C2O4 + 0.2 M NaOH (E5) 

Average Recovery (%) 

pH of Sample 

ND 

ND 

83.55 ± 4.6 (5.5%) 

16.45 ± 4.6 (28%) 

ND 

ND 

ND 

98.5 

5.22 

ND 

ND 

80.15 ± 3.3 (4.1%) 

19.83 ± 3.3 (16.6%) 

ND 

ND 

0.25 ± 0.04 (16%) 

97.7 

4.2 

ND 

ND 

74.85 ± 0.5 (0.7%) 

25.1 ± 0.6 (2.4%) 

ND 

ND 

ND 

103.3 

4.05 

SD = Standard deviation, No. of replicate (n) = 2 ; ND = less than detection limit 1 µg/L, CV = Coefficient 

of variation 
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Figure 3.21  Percent lead concentrations in Sephadex fractions with standard  

                     deviations, E2 = 2 M NaClO4 + 0.02M HCLO4, E3 = 4M NaClO4 +  

                     0.04M HCLO4, and E5 = Saturated K2C2O4 + 0.2 M NaOH 
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from 16.45 to 25.1% accounting for 52.6% of the initial concentration. 

In column chromatography, the first eluted fraction is usually a smaller molecule 

which is Pb2+ and the latter fraction is the bigger molecules which are polymeric or other 

bigger ionic molecules such as PbOH+ and Pb(OH)3
-. The first eluted fraction in the 

experiment was E2. This faction decreased while the latter fraction which was E3 

increased indicating the change of Pb2+ to be other forms.  

 The results of the Sephadex experiment show recovery of all Pb species ranging 

from 98.5 at day 0, to 97.7 on day 2 and 103 on day 14. The data show gradual increases 

of E3, respectively. Lead polymeric species with first order kinetic constant (K) of 0.03 

per day (day-1) and half life of 23 days 

 As shown in Figures 1.7, trimeric and tetrameric lead polyhydroxy species 

(Pb3(OH)4)2- and Pb4(OH4)4- may be formed at Pb(II) total concentration of 10-5 M to  

10-1 M. At total Pb (II) concentration of 10-5, Pb trimeric species may contribute to up to 

28% of the total Pb (II) concentration at pH range between 7.5 and 11. At total Pb (II) 

concentration of 10-1 M, tetrameric Pb hydroxyl species may contribute up to 72% of the 

total Pb (II) concentration at pH range between 4.7 and 8.8. Trimeric Pb hydroxyl species 

may contribute up to 4 percent of the total Pb concentration at pH range between 6.4 and 

12. 

 Data from this experiment were used in MINTEQA2 (as illustrated in Appendix 

3.4). The model predicts that 99.6% of lead would be soluble (Pb2+) and its final pH 

would be 5.243. This contradicts to the experimental results where the pH moved 

downward to 4.25 and 4.05 eventually, indicating OH- loss to form polymeric species. 
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The disagreement between the model and the experiment may be due to the lack of an 

appropriate kinetic polymeric database species.  

In summary, lead hydrolysis could appear at pH 5.22. Once it was forming, the 

reaction took OH- from water yielding lower pH. In this experiment, the longer 

experimenting time the lower pH of sample would be. There was no further investigation 

for how far of the pH would reduce or in the other words, there was no determination of 

the end point of polymeric species in this experiment. Further investigation of the kinetics 

and equilibrium of Pb hydroxyl species is highly recommended to evaluate their role in 

the fate and distribution of Pb species, especially under reduced conditions that may 

prevail in hazardous waste sites.  

3.3  Lead-Organic Complexation Study 

 The objective of this experiment was to study Pb complexation with fulvic acid 

(FA) to gain more understanding of the role of metals organics complexation in aquatic 

systems. The approach used in this experiment was to utilize purified FA and standard Pb 

solution to calculate Pb-FA conditional stability constant and to compare the results with 

published values and MINTEQA2 predictions. The experiment was conducted as 

described on page 59-62. Samples were analyzed by RP-HPLC using gradient program II 

as shown in Table 2.3. Figures 3.22 to 3.24 show UV chromatograms of the samples at 

three wave lengths, 254, 260 and 280 nm. Table 3.15 shows the total areas of the 

chromatograms at the three wave lengths. Chromatograms of uncomplexed FA (Pb:FA =  
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Figure 3.22  UV chromatograms of lead (Pb):fulvic acid (FA), ratio 1 = 2 × 10-4  

                                 M, sample loop = 20 µL, λ = 254 nm, Novapak® C18, gradient  

          elution condition II as shown in Table 2.3 

 

λ = 254 nm 
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Figure 3.23  UV chromatograms of lead (Pb):fulvic acid (FA), ratio 1 = 2 × 10-4  

                                 M, sample loop = 20 µL, λ = 260 nm, Novapak® C18, gradient  

          elution condition II as shown in Table 2.3. 

 

λ = 260 nm 
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Figure 3.24  UV chromatograms of lead (Pb):fulvic acid (FA), ratio 1 = 2 × 10-4  

                                 M, sample loop = 20 µL, λ = 280 nm, Novapak® C18, gradient  

          elution condition II as shown in Table 2.3. 

 

λ = 280 nm 
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Table 3.15  Total areas of UV chromatograms of Pb:FA 

 

Pb:FA 

Total Area 

at λ 254 nm 

± SD (CV%) 

Total Area 

at λ 260 nm 

± SD (CV%) 

Total Area 

at λ 280 nm 

± SD (CV%) 

 

Ratio of Area at 

280/254 

0:1* 

 

1:1* 

 

1:2 

 

1:3 

2,276.8 ± 451.3 

(19.8%) 

2,337.0 ± 262.2 

(11.2%) 

6,299.0 ± 333.7 

(5.3%) 

13,902.3 ± 3,670.0  

(26.4%) 

1,925.8 ± 400.2 

(20.8%) 

1,901.3 ± 177.9 

(9.4%) 

4,699.0 ± 243.6 

(5.2%) 

8,094.5 ± 1,333.4 

(16.5%) 

4,397.5 ± 445.6 

(10.1%) 

5,012.0 ± 287.3 

(5.7%) 

8,933.5 ± 576.2 

(6.4%) 

13,090.8 ±1,371.5 

(10.5%) 

1.93 

 

2.14 

 

1.41 

 

0.94 

* There is no significantly difference between total areas of Pb:FA = 0:1 and 1:1.  

The statistic is shown in Appendix 3.5, SD = Standard deviation, No. of replicate (n) =3 and 4, CV =      

Coefficient of variation 

 

0:1) shows the resolution of at least seven absorption peaks. The peaks between tr 4 and 

5.5 minutes represent the hydrophilic components of FA. The peaks between tr 9 and 11 

minutes represent the hydrophobic components of FA. Total UV absorption areas at wave 

lengths 254 and 260 nm are comparable (2,276 and 1,925). Total UV absorption at λ 280 

nm is almost double of these values 4,397.5. The ratio of UV absorption areas at 

λ280/λ254 is taken as indication of sample degree of aromaticity or double bond 

conjugation. Chromatograms of uncomplexed FA are comparable to earlier 

characterization of FA by the same technique in our laboratory Saleh and Liao.60 

Chromatograms of 1:1 Pb-FA did not show notable difference from the uncomplexed FA, 

as confirmed by statistical analysis of the total absorption areas in Appendix 3.5. The 

λ280/λ254 area ratio is 2.14 indicating the same level of aromaticity or conjugation as 
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the uncomplexed FA. Results are not surprising since earlier RP-HPLC chromatograms 

of pH4 and 7 did not reveal new features. 

 Examination of chromatograms of 1:2 and 1:3 Pb:FA shows the resolution of the 

same number of peaks but with stronger absorption intensities. The ratio of area at 

λ280/λ254 are 1.42 and 0.94 for the 1:2 and 1:3 Pb:FA, respectively. The decreases 

indicate that FA-Pb molar ratio affects notable changes in the overall structure of FA, 

resulting in less aromaticity or conjugation. 

 From the preparative complexation experiment described on pages 59-62, 

fractions were analyzed for Pb by Perkin-Elmer GFAAS as shown in Table 2.5. Results 

are shown in Table 3.16 and Figure 3.25. Conditional stability constants were calculated 

for fractions II and III-IV. The table shows good recoveries of the total amount of Pb in 

each sample. The first fraction which corresponds to the void volume represents Pb2+ 

species. The second fraction could be attributed to the first binding site in FA molecule. 

The conditional stability constant for this site are 3.36, 3.04, and 2.75, for the 1:1, 1:2, 

and 1:3 Pb:FA, respectively. Fractions III and IV were combined and the stability 

constant for the combined site are 4.31, 3.95, and 3.71, for the 1:1, 1:2, and 1:3 Pb:FA, 

respectively. Several Pb-FA models are reported in the literature with binding sites 

ranging from two to seven.38-42 Table 3.16 shows comparison between the amount of Pb 

in each fraction. 

 As shown in Table 3.17, MINTEQA2 predicts that 62.7% is PbDOM. This value 

is very close to the experimental data of 61.2% for the combined fractions of Pb:FA 1:1. 



 

 

Table 3.16  Lead concentrations in each fraction and their stability constant (K), Pb = lead and FA = fulvic acid 

 
Fraction No. 
Time (mins) 

 

 
I 

0 – 4  
µg ± SD (CV%) 

 

 
II 

4 – 5.5 
µg ± SD (CV%) 

 

 
III 

5.5 – 9 
µg ± SD (CV%) 

 

 
IV 

9 – 11 
µg ± SD (CV%) 

 

 
V 

11 - 15 

 
VI 

15 – 25 

 
Total 
(µg) 

 
Recovery 

(%) 

Pb:FA 

0:1 

 

1:1 

(% of 1:1) 

Log K 

 
 

1:2 

(% of 1:2) 

Log K 

 

1:3 

(% of 1:3) 

Log K 

 

 

0 

 

0.09 ± 0.01 (11.1%) 

13.45 

 

 

0.03 ± 0.02 (66.7%) 

3.75 

 

 

0.05 ±0.03 (60.0%) 

7.46 

 

0 

 

0.17 ± 0.04 (23.5%) 

25.37 

←   3.36  → 

 

0.22 ± 0.04 (18.2%) 

27.5 

←  3.04  → 

 

0.16 ± 0.03  (18.8%) 

23.88 

←  2.75  → 

 

0 

 

0.34 ± 0.03 (8.8%) 

50.75 

← 

 

0.47 ± 0.05(10.6%) 

58.75 

← 

 

0.39 ± 0.06(15.4%) 

58.21 

← 

 

0 

 

0.07 ± 0.01 (14.3%) 

10.45 

4.31     → 

 

0.09 ± 0.02 (22.2%) 

11.25 

3.95     → 

 

0.08 ± 0.03 (37.5%) 

11.94 

3.71     → 

 

0 

 

0 

(0) 

 

 

0 

(0) 

 

 

0 

(0) 

 

0 

 

0 

(0) 

 

 

0 

(0) 

 

 

0 

(0) 

 

0 

 

0.67 

(100) 

 

 

0.8 

(100) 

 

 

0.67 

(100) 

 

- 

 

91.27 

 

 

 

104.55 

 

 

 

87.38 

 
* The concentration among Pb:FA equal to 1:1, 1:2. and 1:3 at between 9 to 11 mins are not significantly different. The statistic is shown in Appendix 

3.5. SD = Standard deviation, No. of replicate (n) = 3 and 4, CV = Coefficient of variation, Detection limit = 1µg/L 
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Figure 3.25  Percent of lead in each fraction with its standard deviation; Fraction  

                     I = fraction collected between 0-4 minutes, Fraction II = 4-5.5  

                     minutes, Fraction III = 5.5-9 minutes, and Fraction IV = 9-11  

                     minutes, respectively 

 

Table 3.17  Percent distribution of lead in each fraction predicted by MINTEQA2 

 
Pb:DOM 

 
Pb2+(%) 

 
PbDOM (%) 

 
Log K 

1:1 

1:2 

1:3 

37.3 

18.9 

10.9 

62.7 

81.1 

89.1 

5.255 

5.268 

5.277 

Note: FA concentration was input as DOM. Charge on DOM species were calculated based on speciation. 

MINTEQA2’s calculations are in Appendix 3.6 

 

Pb:FA
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Even though MINTEQA2 used different value of log K, 5.255 into the model, the results 

are still close. At higher Pb:FA molar ratios of 1:2 and 1:3, MINTEQA2 predicted 81.1%. 

and 89.1% PbDOM, respectively. The experimental results in Table 3.14 show less 

percentages possibly due to difference in the logarithmic stability constant (log K) values.  

Published data of log K on Pb-FA38 and Pb-humic acid (HA)39 are 4.69 and 4.92. 

The calculated log K in this study, 4.31 is in good agreement with the values. The lower 

log K for Pb-FA than Pb-HA is not surprising. It is generally known that FA has simpler 

structure than HA. 

In summary, the Pb-FA complexation study provided new information an the 

extent of Pb association with organic matter. The results of the 1:1 Pb-FA are in good 

agreement with MINTEQA2 prediction and with published stability constant data. 

Additional research is needed to identify the nature and number of binding sites in DOM 

and the extent of their contribution to the overall fate and transport of Pb in the aquatic 

environment.  

3.4 Conclusions and Recommendations 
 
 The objective of this research was to develop a comprehensive scheme to evaluate 

the speciation of lead compounds under different environmental and experimental 

conditions. The research focused on lead hydrolytic polymerization and interactions with 

organic ligands to better understand how the species affect lead mobility under different 

environmental conditions. The research involved both field soil and sediment samples as 

well as standard lead solutions. In this research, two schemes were developed. One was 

the investigation of distribution and speciation of lead under different extraction 



 

120  

methods—aqueous and organic solvent extractions. The other was hydrolytic 

polymerization and organic complexation experiments using standard lead solutions. The 

results were compared and evaluated with the MINTEQA2 model. The following 

conclusions and recommendations are based on the results and observations attained in 

the research, within the experimental parameters previously described: 

1.  According to the geographical data of the soil samples and their properties, 

lead in the contaminated soil would be more mobile than in the reference soil.  Other 

factors that aggravate the mobility, such as the change of pH and ionic strength would 

result in increased mobility and transport of lead from on location to another. In the 

aqueous equilibration experiment, the magnitude of the Pb2+ solubilization is in the order 

of pH 4> pH 7> pH 9 and the results are in agreement with MINTEQA2 predictions. 

2.  MINTEQA2 was executed with different input parameters to establish the 

minimum required data. Results show that users should characterize aqueous samples in 

terms of pH, ionic strength, major soluble cations, and DOM in order to make good 

model’s predictions.  

3.  In the Soxhlet extraction and Kudernal-Danish preconcentration study, the 

amount of lead extracted in the methanol was 42.63 × 10-3 mg/kg and was almost ten 

times higher than that extracted with acetonitrile. This indicates that lead-organic 

complex is more of a polar nature. Other less polar solvents did not extract any 

measurable amounts of lead. The organically extracted lead was in the part per billion 

range. 
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4.  Sequential extraction experiment could not determine how much of lead would 

be leached into the environment directly but gave the relevant background information on 

the bound lead in different fractions. The organically complexed lead by this method was 

much higher than measured by the Soxhlet extraction. This indicates presence of 

insoluble organic matter that might not be extractable with the organic solvents. The 

higher content of lead in the oxide bound fractions of the contaminated soil than of the 

reference soil relates to their properties in which the contaminated soil contains three 

times more iron.  

 5.  In the hydrolytic polymerization study, the pH titration established the pH 

range for polymeric species formation. The IC experiments confirmed the formation lead 

polymeric species and the Sephadex experiment established the kinetics of 

polymerization and predicted an excellent mass balance of all lead species. The overall 

results of these experiments indicate that lead polymeric species can be formed at pH 

greater than 5.22 and may contribute up to 52.6% of the initial total lead concentration. 

Lead polymerization rate constant at pH 5.22 was 0.03 per day and its t1/2 was 23 days. 

Due to lack of an appropriate kinetic polymeric species data base in MINTEQA2, the 

model did not predict polymeric species. The detection of soluble lead polymerization 

species is an important finding of this research. Further research is recommended to 

establish the structures, equilibrium, and kinetic constants for their formations either by 

inventing a new detector that is compatible with ion chromatography or by utilizing a 

new methodology to investigate metal ions polymeric species. It is also recommended to 
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modify MINTEQA2 to account for the formation of metals polymeric species such as 

Pb(II) and Cr(III).   

 6.  Pb-FA complexation experiment provided new information on the extent of 

lead association with organic matter. Mass balances of lead in different fractions were 

excellent. Calculated lead conditional stability constants were in good agreement with 

MINTEQA2 model data base and with published data. At 1:1 Pb-FA molar ratio, 61.2% 

of lead was bound to FA, and MINTEQA2 predicted 62.7% PbDOM at the same molar 

ratio. At higher Pb-FA molar ratios the experimental result were lower than model 

prediction possibly due to differences between the experimental and the model’s stability 

constants at the higher molar ratio. Further research is recommended in order to better 

understand the nature and number of binding sites in DOM and their contribution to the 

over all fate and transport of lead in the aquatic environment. As new analytical tools are 

developed, our understanding of the structure and interactions of natural organic ligands 

are likely to improve. 

 In summary, this research has provided new information on the distribution and 

mobility of different lead species in the soil/sediment-water environment. New 

methodologies for evaluation of organically bound lead species and lead polyhydroxy 

species have been developed. Furthermore, the results in several instances have provided 

verification of MINTEQA2 model’s prediction. The results also revealed areas of 

disagreement between the models prediction and the experimental data. A final positive 

note regarding the experimental work done in the research is the verification of the mass 
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balance in all the repeated experiments which is an approach that is highly recommended 

in environmental research. 
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APPENDIX 1 

APPENDIX 1.1 

DEFINITIONS OF TERMS 
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DEFINITIONS OF TERMS 

 
“Sorption is used as a general term, encompassing both adsorption and 

absorption. Precipitation reactions are specifically excluded from the definition of 

sorption.”37 (p.84) 

 “Adsorption is used to describe that portion of metal binding to particle surfaces, 

which is readily reversible. It is a portion of the mass sorbed that is appropriately 

described by the surface complexation model of adsorption. A definition of reversibility 

should specify the time frames over which both adsorption and desorption occurs. 

Additional research is needed.”37 (p.84) 

 “Absorption is used herein to describe that portion of sorption that possesses a 

significant time dependency. It is presumed that the rate of absorption is limited by one or 

more diffusion barriers. The time dependency may result from diffusion into pores whose 

size may require the sorbing ions to diffuse through an electric field to reach the interior 

of aggregates. Solid state diffusion into the structure of the solid is also propable.”37 

(p.85) 

 Ligands are anions or molecules which form coordination compounds with 

metals. Ligands occupying one, two, three, etc., positions are referred to as unidentate, 

bidentate, tridentate, etc. Complex formation with multidentate ligands is called 

chelation, and the complexes are called chelates. If there is more that one meta atom 

(central atom) in a complex, it is called multi- or polynuclear complexes.31 
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 Ions pairs are ions of opposite charge that approach within a critical distance 

effectively form an ion pair and are no longer electrostatically effective (outer-sphere 

complexes).31 “The metal ion or the ligand or both retain the coordinated water when the 

complex compound is formed; that is, the metal ion and the base are separated by one or 

more water molecules.”31 (p. 255) 

 Complexes refer to most stable entities that result from the formation of largely 

covalent bonds between a metal ion and an electron-donating ligand—the interacting 

ligand is immediately adjacent to the metal cation—are called complexes (inner-sphere 

complexes).31 (p.255) 
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APPENDIX 1.2 

LEAD CONTENT IN ROCK-FORMING MATERIALS 
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Table A1.2  Summary of published analyses of lead content of igneous and metamorphic  

                     rocks.28  

Rock type  

 No. of analyses 

Lead content (ppm) 

        Range              Arithmetic average               Median            

Granitic rocks 
Granodiorite, adamellite 
Diorite, quartz diorite 
Alkalic rocks 
Ultramafic rocks 

536 
317 
122 
153 
34 

 

0-200 
0-80 
0-76 

0-500 
0-37 

 

25.0 
22.0 
14.0 
22.0 
2.0 

 

18 
16 
11 
16 
… 

 
 
Rhyolite, obsidian 
Latite, quartz latite 
Dacite, rhyodacite 
Andesite 
Basalt, gabbro, diabase 
Trachyte, phonolite 
 
Gneiss 
Schist 
Amphibolite 

 
273 
49 

121 
203 
372 
33 

 
274 
81 
51 

 
0-200 
0-50 

0-300 
0-150 
0-100 
0-60 

 
0-80 

0-100 
0-50 

 
21.0 
25.0 
12.0 
12.0 
7.5 

18.0 
 

20.0 
15.0 
11.0 

 
18 
21 
11 
8 
4 

16 
 

12 
15 
9 

 
…  = no data 
 
*From Fleischer M. Lead in Igneous and Metamorphic Rocks and in Their Rock-Forming Minerals. 
Lovering TG, editor. Lead in the Environment: United States Prining Office; 1976. Table 8, p. 27 
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APPENDIX 1.3 

SPECIES AND EQUILIBRIUM CONSTANTS  

UNDER FRESHWATER CONDITIONS 
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Table A1.3  Pb(II) Speciation in Fresh Water.31 

 

 

*From Stumm, Warner and Morgan, James J. 1996 Aquatic Chemistry, 3rd edition, Copyright © 1996 by J. 

Wiley & Sons, Inc;  Tableau 6.4a p. 294, (This material is used by permission of J. Wiley & Sons, Inc). 
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     APPENDIX 2 

APPENDIX 2.1 

PREVIOUS STUDIES OF LEAD CONTAMINATIONS AT GNB SITES  

BY DELTA ENVIRONMENTAL CONSULTANTS, INC 
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Table A2.1  Previous studies of lead contamination at GNB sites by Delta Environmental  

                    Consultants, Inc 

 
Year 

 

 
Sample I.D. 

 
Total Lead (mg/kg) 

1996 

 

 

 

 

 

 

 

 

 

 

1997 

874-96-140 

874-96-141 

874-96-142 

874-96-143 

874-96-144 

874-96-145 

874-96-146 

874-96-147 

874-96-148 

874-96-149 

874-96-150 

874-97-673 

874-97-674 

874-97-675 

874-97-676 

874-97-677 

874-97-678 

874-97-679 

874-97-680 

874-97-681 

874-97-682 

874-97-683 

65 

80 

29 

33 

35 

182 

27 

50 

10 

13 

<0.01 

67 

178 

39 

95 

73 

30 

153 

17 

80 

29 

<0.010 
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APPENDIX 3 

APPENDIX 3.1 

MINTEQA2’S DEFINITIONS 
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COMPONENTS AND SPECIES DEFINITIONS 

 
Type I Components as Species in Solution 

 These are the components themselves defined as actual chemical species. As 

mentioned above, in the general case, a component need not be an actual chemical 

species. The set of available components in MINTEQA2 happens to include components 

that are all bona fide chemical species (excepting the electrostatic components). Thus, all 

(non-electrostatic) components in a MINTEQA2 problem will also be defined as Type I 

species. 

Type II Other Species in Solution or Adsorbed 

 These are all dissolved species other than those that are Type I. These may be 

complexes or free ions, for example, Cr3+ (the component for Cr3+ is Cr(OH)2
+). In so far 

as components may be thought of as reactants, Type II species may be considered 

aqueous and adsorption reaction products. 

Type III Species with Fixed Activity 

 Generally, these are either species that are present at fixed equilibrium activity or 

are mock species that define a fixed equilibrium activity relationship between two real 

species. Examples of a Type III species are any solids that are explicitly constrained to be 

present at equilibrium (not subject to complete dissolution; an infinite solid), any 

components whose activities are explicitly constrained to a given equilibrium value (e.g. 

fixed pH or pe), any gases whose partial pressures are explicitly constrained to a given 

equilibrium pressure, or any mock species whose equilibrium activity is explicitly 
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constrained to an equilibrium value (such as a redox couple that fixes the equilibrium 

activity ratio of two components that form a redox pair.) 

Type IV Finite Solids 

 These are solid phases that are presumed present initially or precipitate from the 

solution. In the latter case, the appropriate components are depleted in the aqueous phase 

to “create” the precipitated solids. With MINTEQA2, it is also possible to specify one or 

more precipitated solids as present initially at some given amount (per liter basis). For 

those Type IV solids that are specified as present initially, the entire amount may dissolve 

if equilibrium demands it and the concentrations of the appropriate components will then 

be supplemented in the aqueous phase. 

Type V Possible (Undersaturated) Solids 

 These are solid phases that are defined in MINTEQA2; however, they are not 

oversaturated, do not oversaturated, do not physically exist, and thus have no direct 

impact on the equilibrium problem. When the solution becomes oversaturated with 

respect to a particular possible solid, and if that solid is more oversaturated than any other 

possible solid composed of the same components, MINTEQA2 will precipitate that solid 

depleting the aqueous phase concentrations of the appropriate components. The newly 

precipitated solid is then re-assigned as a Type IV species. If any Type IV solid dissolves 

completely so that its entire mass is shifted to the aqueors phase, that solid is reassigned 

as Type V. Note that in PRODEFA2 and in the listing of input data that MINTEQA2 

includes in its output file, Type V solids are referred to as POSSIBLE solids. In the 
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listing of equilibrated results however, Type V species are referred to as 

UNDERSATURATED solids. 
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APPENDIX 3.2 

MINTEQA2’S OUTPUTS OF pH 4, 7, AND 9 
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MINTEQA2’S OUTPUT OF pH 4 

 
Part 1 and Part 4 

________________________________________________________________________________ 
______________________________ PART 1 of OUTPUT FILE ___________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS: 17-SEP-2002  TIME: 16: 1:49 
 
 
Lead Equlibrating with Acetate Buffer at pH4  (with DOC) of contaminated soil                            
File name pH4_(3)                                                           
Component file (COMP.DBS):           comp.dbs    COMP v4.00 09/30/1999        
Thermodynamic file (THERMO.UNF):     thermo.unf  THERMO V4.00 09/30/1999      
Gaussian DOM file (GAUSSIAN.DBS):    gaussian.dbsGAUSSIAN V4.00 09/30/1999    
Solids file (TYPE6.UNF):             type6.unf   TYPE6 V4.00 09/30/1999       
 
-------------------------------------------------------------------------------- 
 Temperature (Celsius):  25.00 
 Units of concentration: mg/L  
 Ionic strength:  0.407 molal; FIXED 
 If specified, carbonate concentration represents total inorganic carbon. 
 Do not automatically terminate if charge imbalance exceeds 30%  
 Precipitation is allowed for all solids in the thermodynamic database and 
   the print option for solids is set to: 1 
 Maximum iterations: 500 and use convergence assist measure 
 The method used to compute activity coefficients is: Davies equation       
 Intermediate output file  
 
------------------------------------------------------------------------------- 
    330  0.000E+00   -4.00 y 
     30  7.252E+01   -1.57 y 
    150  1.247E+02   -1.51 y 
    281  1.771E+02   -1.50 y 
    410  1.440E+00   -3.43 y 
    600  1.004E+00   -4.31 y 
    460  1.120E+01   -2.34 y 
    470  4.380E+00   -3.10 y 
    500  1.386E+03   -1.22 y 
    770  7.405E+03   -0.11 y 
    732  8.170E+00   -3.07 y 
    140  3.300E+02   -1.26 y 
    580  1.849E+01   -2.71 y 
    992  3.558E+03   -1.22   
    144  0.000E+00   -6.00   
 
 H2O has been inserted as a COMPONENT 
  3   1 
    330     4.0000     0.0000 
 
INPUT DATA BEFORE TYPE MODIFICATIONS 
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   ID        Name       ACTIVITY GUESS    log GUESS   ANAL TOTAL 
    330  H+1                 1.000E-04        -4.000   0.000E+00 
     30  Al+3                2.692E-02        -1.570   7.252E+01 
    150  Ca+2                3.090E-02        -1.510   1.247E+02 
    281  Fe+3                3.162E-02        -1.500   1.771E+02 
    410  K+1                 3.715E-04        -3.430   1.440E+00 
    600  Pb+2                4.898E-05        -4.310   1.004E+00 
    460  Mg+2                4.571E-03        -2.340   1.120E+01 
    470  Mn+2                7.943E-04        -3.100   4.380E+00 
    500  Na+1                6.026E-02        -1.220   1.386E+03 
    770  H4SiO4              7.762E-01        -0.110   7.405E+03 
    732  SO4-2               8.511E-04        -3.070   8.170E+00 
    140  CO3-2               5.495E-02        -1.260   3.300E+02 
    580  PO4-3               1.950E-03        -2.710   1.849E+01 
    992  Acetate             6.026E-02        -1.220   3.558E+03 
    144  DOM1                1.000E-06        -6.000   0.000E+00 
      2  H2O                 1.000E+00         0.000   0.000E+00 
 
------------------------------------------------------------------------------- 
 *** SPECIAL PARAMETERS for Dissolved Organic Matter: 
     Percent Organic Carbon:                        50.00 
     DOC (mg/L):                                          50.60 
     Molecular Weight (g):                        1000.00 
     Charge on DOM species are calculated based on speciation 
 
  ** DOC COMPONENT 144: 
     Total Acidity (umol/mgC):                     1.00 
     Total site concentration (mol/L):            5.060E-05 
 
     The ratio Cs/Cn is:                                  0.50 
 
------------------------------------------------------------------------------- 
 
 
     Charge Balance: UNSPECIATED 
 
       Sum of CATIONS=  8.635E-02 Sum of ANIONS =  7.311E-02 
 
       PERCENT DIFFERENCE =  8.301E+00  (ANIONS - CATIONS)/(ANIONS + CATIONS) 
 
 
 
              ------------------------------------------------------ 
               IMPROVED ACTIVITY GUESSES PRIOR TO FIRST ITERATION:  
                    Al+3        Log activity guess:    -2.61        
                    Fe+3        Log activity guess:    -5.91        
                    Mn+2        Log activity guess:    -4.09        
                    H4SiO4      Log activity guess:    -1.11       
                    SO4-2       Log activity guess:    -4.07        
                    CO3-2       Log activity guess:   -10.94        
                    PO4-3       Log activity guess:   -15.28        
                                                                    
              ------------------------------------------------------ 
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______________________________________________________________________________ 
______________________________ PART 4 of OUTPUT FILE _________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS: 17-SEP-2002  TIME: 16: 1:49 
 
                 PERCENTAGE DISTRIBUTION OF COMPONENTS AMONG 
              TYPE I and TYPE II (dissolved and adsorbed) species 
 
 
DOM1         
          40.1     Percent bound in species #    144   DOM1                  
 
           9.5     Percent bound in species #1443300   H DOM                 
 
          39.2     Percent bound in species #1440300   Al DOM                
 
          10.1     Percent bound in species #1441500   Ca DOM                
 
 
Acetate      
          20.7     Percent bound in species #    992   Acetate               
 
          78.6     Percent bound in species #3309921   H[Acetate]            
 
 
Ca+2         
          94.5     Percent bound in species #    150   Ca+2                  
 
           5.1     Percent bound in species #1509920   Ca[Acetate]           
 
 
CO3-2        
          99.3     Percent bound in species #3301401   H2CO3 (aq)            
 
 
K+1          
          99.6     Percent bound in species #    410   K+1                   
 
 
SO4-2        
          85.1     Percent bound in species #    732   SO4-2                 
 
           1.9     Percent bound in species # 307320   AlSO4+                
 
           4.3     Percent bound in species #1507320   CaSO4 (aq)            
 
           7.9     Percent bound in species #5007320   NaSO4-                
 
 
Mg+2         
          93.5     Percent bound in species #    460   Mg+2                  
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           6.2     Percent bound in species #4609920   Mg[Acetate]           
 
 
PO4-3        
          96.5     Percent bound in species #3305801   H2PO4-                
 
           1.8     Percent bound in species #1505802   CaH2PO4+              
 
 
Na+1         
          99.6     Percent bound in species #    500   Na+1                  
 
 
Pb+2         
          30.0     Percent bound in species #    600   Pb+2                  
 
          10.2     Percent bound in species #1446000   Pb DOM                
 
          51.5     Percent bound in species #6009921   Pb[Acetate]           
 
           7.9     Percent bound in species #6009922   Pb[Acetate]2          
 
 
H2O          
          94.1     Percent bound in species # 303300   AlOH+2                
 
           5.8     Percent bound in species # 303301   Al(OH)2+              
 
 
H+1          
          18.6     Percent bound in species #3301401   H2CO3 (aq)            
 
          80.7     Percent bound in species #3309921   H[Acetate]            
 
 
H4SiO4       
         100.0     Percent bound in species #    770   H4SiO4                
 
 
Fe+3         
           6.6     Percent bound in species #1442810   Fe DOM                
 
           1.8     Percent bound in species #2813300   FeOH+2                
 
          27.4     Percent bound in species #2813301   Fe(OH)2+              
 
           4.9     Percent bound in species #2815800   FeHPO4+               
 
           2.7     Percent bound in species #2819920   Fe[Acetate]           
 
          34.5     Percent bound in species #2819921   Fe[Acetate]2          
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          21.8     Percent bound in species #2819922   Fe[Acetate]3          
 
 
Mn+2         
          91.6     Percent bound in species #    470   Mn+2                  
 
           8.3     Percent bound in species #4709920   Mn[Acetate]           
 
 
Al+3         
          84.0     Percent bound in species #     30   Al+3                  
 
          13.1     Percent bound in species #1440300   Al DOM                
 
           1.7     Percent bound in species # 303300   AlOH+2                
 
           1.1     Percent bound in species # 307320   AlSO4+                
 
______________________________________________________________________________ 
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MINTEQA2’S OUTPUT OF pH 7 

Part 1 and Part 4 

________________________________________________________________________________ 
______________________________ PART 1 of OUTPUT FILE ___________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS: 17-SEP-2002  TIME: 23: 0: 4 
 
 
Lead Equlibrating with Phosphate Buffer at pH7 (with DOC)  of contaminated soil                             
File name pH7_(6)                                                           
Component file (COMP.DBS):           comp.dbs    COMP v4.00 09/30/1999        
Thermodynamic file (THERMO.UNF):     thermo.unf  THERMO V4.00 09/30/1999      
Gaussian DOM file (GAUSSIAN.DBS):    gaussian.dbsGAUSSIAN V4.00 09/30/1999    
Solids file (TYPE6.UNF):             type6.unf   TYPE6 V4.00 09/30/1999       
 
-------------------------------------------------------------------------------- 
 Temperature (Celsius):  25.00 
 Units of concentration: mg/L  
 Ionic strength:  0.368 molal; FIXED 
 If specified, carbonate concentration represents total inorganic carbon. 
 Do not automatically terminate if charge imbalance exceeds 30%  
 Precipitation is allowed for all solids in the thermodynamic database and 
   the print option for solids is set to: 1 
 Maximum iterations: 500 and use convergence assist measure 
 The method used to compute activity coefficients is: Davies equation       
 Intermediate output file  
 
------------------------------------------------------------------------------- 
    330  0.000E+00   -7.00 y 
     30  7.252E+01   -1.57 y 
    150  1.247E+02   -1.51 y 
    281  1.771E+02   -1.50 y 
    410  1.440E+00   -3.43 y 
    600  1.004E+00   -4.31 y 
    460  1.120E+01   -2.34 y 
    470  4.380E+00   -3.10 y 
    500  2.060E+03   -1.05 y 
    770  7.405E+03   -0.11 y 
    732  8.170E+00   -3.07 y 
    140  3.300E+02   -1.26 y 
    580  8.521E+03   -1.05 y 
    144  0.000E+00   -6.00   
 
 H2O has been inserted as a COMPONENT 
  3   1 
    330     7.0000     0.0000 
 
INPUT DATA BEFORE TYPE MODIFICATIONS 
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   ID        Name       ACTIVITY GUESS    log GUESS   ANAL TOTAL 
    330  H+1                 1.000E-07        -7.000   0.000E+00 
     30  Al+3                2.692E-02        -1.570   7.252E+01 
    150  Ca+2                3.090E-02        -1.510   1.247E+02 
    281  Fe+3                3.162E-02        -1.500   1.771E+02 
    410  K+1                 3.715E-04        -3.430   1.440E+00 
    600  Pb+2                4.898E-05        -4.310   1.004E+00 
    460  Mg+2                4.571E-03        -2.340   1.120E+01 
    470  Mn+2                7.943E-04        -3.100   4.380E+00 
    500  Na+1                8.913E-02        -1.050   2.060E+03 
    770  H4SiO4              7.762E-01        -0.110   7.405E+03 
    732  SO4-2               8.511E-04        -3.070   8.170E+00 
    140  CO3-2               5.495E-02        -1.260   3.300E+02 
    580  PO4-3               8.913E-02        -1.050   8.521E+03 
    144  DOM1                1.000E-06        -6.000   0.000E+00 
      2  H2O                 1.000E+00         0.000   0.000E+00 
 
------------------------------------------------------------------------------- 
 *** SPECIAL PARAMETERS for Dissolved Organic Matter: 
     Percent Organic Carbon:                        50.00 
     DOC (mg/l):                                    18.50 
     Molecular Weight (g):                        1000.00 
     Charge on DOM species are calculated based on speciation 
 
  ** DOC COMPONENT 144: 
     Total Acidity (umol/mgC):                     1.00 
     Total site concentration (mol/l):             1.850E-05 
 
     The ratio Cs/Cn is:                             0.50 
 
------------------------------------------------------------------------------- 
 
 
     Charge Balance: UNSPECIATED 
 
       Sum of CATIONS=  1.167E-01 Sum of ANIONS =  2.857E-01 
 
       PERCENT DIFFERENCE =  4.200E+01  (ANIONS - CATIONS)/(ANIONS + CATIONS) 
 
 
 
              ------------------------------------------------------ 
               IMPROVED ACTIVITY GUESSES PRIOR TO FIRST ITERATION:  
                    Al+3        Log activity guess:    -7.92        
                    Fe+3        Log activity guess:   -11.94        
                    Mn+2        Log activity guess:    -4.09        
                    H4SiO4      Log activity guess:    -1.11        
                    SO4-2       Log activity guess:    -4.06       
                    CO3-2       Log activity guess:    -5.67       
                    PO4-3       Log activity guess:    -6.83        
                                                                    
              ------------------------------------------------------ 
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______________________________________________________________________________ 
______________________________ PART 4 of OUTPUT FILE _________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS: 17-SEP-2002  TIME: 23: 0: 9 
 
 
 
                 PERCENTAGE DISTRIBUTION OF COMPONENTS AMONG 
              TYPE I and TYPE II (dissolved and adsorbed) species 
 
 
DOM1         
          87.6     Percent bound in species #    144   DOM1                  
 
           1.2     Percent bound in species #1443300   H DOM                 
 
           2.8     Percent bound in species #1441500   Ca DOM                
 
           8.4     Percent bound in species #1444600   Mg DOM                
 
 
SO4-2        
          89.1     Percent bound in species #    732   SO4-2                 
 
          10.7     Percent bound in species #5007320   NaSO4-                
 
 
Mg+2         
          27.4     Percent bound in species #    460   Mg+2                  
 
          10.9     Percent bound in species #4605801   MgH2PO4+              
 
          60.9     Percent bound in species #4605802   MgHPO4 (aq)           
 
 
CO3-2        
          85.1     Percent bound in species #3301400   HCO3-                 
 
          12.8     Percent bound in species #3301401   H2CO3 (aq)            
 
           1.8     Percent bound in species #5001401   NaHCO3 (aq)           
 
 
K+1          
          90.7     Percent bound in species #    410   K+1                   
 
           9.3     Percent bound in species #4105800   KHPO4-                
 
 
Na+1         
          86.2     Percent bound in species #    500   Na+1                  
 
          13.7     Percent bound in species #5005800   NaHPO4-               
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PO4-3        
          53.1     Percent bound in species #3305800   HPO4-2                
 
          32.6     Percent bound in species #3305801   H2PO4-                
 
          14.0     Percent bound in species #5005800   NaHPO4-               
 
 
H2O          
          93.4     Percent bound in species #3300020   OH-                   
 
           5.7     Percent bound in species # 303302   Al(OH)4-              
 
 
H+1          
          38.0     Percent bound in species #3305800   HPO4-2                
 
          46.7     Percent bound in species #3305801   H2PO4-                
 
          10.0     Percent bound in species #5005800   NaHPO4-               
 
           3.8     Percent bound in species #3301400   HCO3-                 
 
           1.2     Percent bound in species #3301401   H2CO3 (aq)            
 
 
Fe+3         
          89.5     Percent bound in species #2813301   Fe(OH)2+              
 
           6.5     Percent bound in species #2813302   Fe(OH)3 (aq)          
 
           4.0     Percent bound in species #2815800   FeHPO4+               
 
 
H4SiO4       
          99.8     Percent bound in species #    770   H4SiO4                
 
 
 
Mn+2         
          97.3     Percent bound in species #    470   Mn+2                  
 
           2.6     Percent bound in species #4701400   MnHCO3+               
 
 
Pb+2         
           3.6     Percent bound in species #    600   Pb+2                  
 
          87.6     Percent bound in species #1446000   Pb DOM                
 
           4.7     Percent bound in species #6001401   PbCO3 (aq)            
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           3.7     Percent bound in species #6001402   PbHCO3+               
 
 
Ca+2         
          33.3     Percent bound in species #    150   Ca+2                  
 
           4.0     Percent bound in species #1441500   Ca DOM                
 
          53.8     Percent bound in species #1505800   CaHPO4 (aq)           
 
           2.1     Percent bound in species #1505801   CaPO4-                
 
           6.2     Percent bound in species #1505802   CaH2PO4+              
 
 
Al+3         
           3.6     Percent bound in species # 303301   Al(OH)2+              
 
           4.9     Percent bound in species # 303303   Al(OH)3 (aq)          
  

          91.3     Percent bound in species # 303302   Al(OH)4-              
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MINTEQA2’S OUTPUT OF pH 9 

Part 1 and Part 4 

________________________________________________________________________________ 
______________________________ PART 1 of OUTPUT FILE ___________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS: 17-SEP-2002  TIME: 23:45:34 
 
 
Lead equilibrated with Borate Buffer at pH9 (with DOC)  of contaminated soil                    
File name pH9_(1)                                                           
Component file (COMP.DBS):           comp.dbs    COMP v4.00 09/30/1999        
Thermodynamic file (THERMO.UNF):     thermo.unf  THERMO V4.00 09/30/1999      
Gaussian DOM file (GAUSSIAN.DBS):    gaussian.dbsGAUSSIAN V4.00 09/30/1999    
Solids file (TYPE6.UNF):             type6.unf   TYPE6 V4.00 09/30/1999       
 
-------------------------------------------------------------------------------- 
 Temperature (Celsius):  25.00 
 Units of concentration: mg/L  
 Ionic strength:  0.711 molal; FIXED 
 If specified, carbonate concentration represents total inorganic carbon. 
 Do not automatically terminate if charge imbalance exceeds 30%  
 Precipitation is allowed for all solids in the thermodynamic database and 
   the print option for solids is set to: 1 
 Maximum iterations: 500 and use convergence assist measure 
 The method used to compute activity coefficients is: Davies equation       
 Intermediate output file  
 
------------------------------------------------------------------------------- 
    330  0.000E+00   -9.00 y 
     30  7.252E+01   -1.57 y 
    150  1.247E+02   -1.51 y 
    281  1.771E+02   -1.50 y 
    410  1.440E+00   -3.43 y 
    600  1.004E+00   -4.31 y 
    460  1.120E+01   -2.34 y 
    470  4.380E+00   -3.10 y 
    500  3.574E+03   -0.81 y 
    770  7.405E+03   -0.11 y 
    732  8.170E+00   -3.07 y 
    140  3.300E+02   -1.26 y 
    580  1.849E+01   -2.71 y 
    144  0.000E+00   -6.00   
     90  3.109E+04   -0.30   
 
 H2O has been inserted as a COMPONENT 
  3   1 
    330     9.0000     0.0000 
 
INPUT DATA BEFORE TYPE MODIFICATIONS 
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ID        Name       ACTIVITY GUESS    log GUESS   ANAL TOTAL 
    330  H+1                 1.000E-09        -9.000   0.000E+00 
     30  Al+3                2.692E-02        -1.570   7.252E+01 
    150  Ca+2                3.090E-02        -1.510   1.247E+02 
    281  Fe+3                3.162E-02        -1.500   1.771E+02 
    410  K+1                 3.715E-04        -3.430   1.440E+00 
    600  Pb+2                4.898E-05        -4.310   1.004E+00 
    460  Mg+2                4.571E-03        -2.340   1.120E+01 
    470  Mn+2                7.943E-04        -3.100   4.380E+00 
    500  Na+1                1.549E-01        -0.810   3.574E+03 
    770  H4SiO4              7.762E-01        -0.110   7.405E+03 
    732  SO4-2               8.511E-04        -3.070   8.170E+00 
    140  CO3-2               5.495E-02        -1.260   3.300E+02 
    580  PO4-3               1.950E-03        -2.710   1.849E+01 
    144  DOM1                1.000E-06        -6.000   0.000E+00 
     90  H3BO3               5.012E-01        -0.300   3.109E+04 
      2  H2O                 1.000E+00         0.000   0.000E+00 
 
------------------------------------------------------------------------------- 
 *** SPECIAL PARAMETERS for Dissolved Organic Matter: 
     Percent Organic Carbon:                        50.00 
     DOC (mg/L):                                          18.40 
     Molecular Weight (g):                        1000.00 
     Charge on DOM species are calculated based on speciation 
 
  ** DOC COMPONENT 144: 
     Total Acidity (umol/mgC):                     1.00 
     Total site concentration (mol/L):            1.840E-05 
 
     The ratio Cs/Cn is:                                   0.50 
 
------------------------------------------------------------------------------- 
 
 
     Charge Balance: UNSPECIATED 
 
       Sum of CATIONS=  1.885E-01 Sum of ANIONS =  1.233E-02 
 
       PERCENT DIFFERENCE =  8.772E+01  (ANIONS - CATIONS)/(ANIONS + CATIONS) 
 
              ------------------------------------------------------ 
               IMPROVED ACTIVITY GUESSES PRIOR TO FIRST ITERATION:  
                    Al+3        Log activity guess:   -15.86        
                    Fe+3        Log activity guess:   -17.23        
                    Mn+2        Log activity guess:    -4.09        
                    H4SiO4      Log activity guess:    -1.14        
                    SO4-2       Log activity guess:    -4.05        
                    CO3-2       Log activity guess:    -3.59        
                    PO4-3       Log activity guess:    -7.07        
                                                                    
              ------------------------------------------------------ 
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______________________________________________________________________________ 
______________________________ PART 4 of OUTPUT FILE _________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS: 17-SEP-2002  TIME: 23:45:38 
 
 
 
                 PERCENTAGE DISTRIBUTION OF COMPONENTS AMONG 
              TYPE I and TYPE II (dissolved and adsorbed) species 
 
 
H3BO3        
          18.8     Percent bound in species #     90   H3BO3                 
 
           2.0     Percent bound in species #5000901   NaH2BO3 (aq)          
 
          16.9     Percent bound in species #3300900   H2BO3-                
 
           3.4     Percent bound in species #3300901   H5(BO3)2-             
 
          58.9     Percent bound in species #3300902   H8(BO3)3-             
 
 
Na+1         
          93.4     Percent bound in species #    500   Na+1                  
 
           6.4     Percent bound in species #5000901   NaH2BO3 (aq)          
 
 
SO4-2        
          79.2     Percent bound in species #    732   SO4-2                 
 
          20.5     Percent bound in species #5007320   NaSO4-                
 
 
DOM1         
          76.5     Percent bound in species #    144   DOM1                  
 
          22.0     Percent bound in species #1441500   Ca DOM                
 
           1.5     Percent bound in species #1444600   Mg DOM                
 
 
K+1          
         100.0     Percent bound in species #    410   K+1                   
 
 
CO3-2        
           8.8     Percent bound in species #    140   CO3-2                 
 
          79.7     Percent bound in species #3301400   HCO3-                 
 
           7.9     Percent bound in species #5001400   NaCO3-                
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           3.2     Percent bound in species #5001401   NaHCO3 (aq)           
 
 
H2O          
          93.8     Percent bound in species #3300020   OH-                   
 
           5.6     Percent bound in species # 303302   Al(OH)4-              
 
 
H+1          
           4.9     Percent bound in species #5000901   NaH2BO3 (aq)          
 
          42.5     Percent bound in species #3300900   H2BO3-                
 
           4.3     Percent bound in species #3300901   H5(BO3)2-             
 
          49.4     Percent bound in species #3300902   H8(BO3)3-             
 
 
H4SiO4       
          84.3     Percent bound in species #    770   H4SiO4                
 
          15.6     Percent bound in species #3307700   H3SiO4-               
 
 
Fe+3         
           5.7     Percent bound in species #2813301   Fe(OH)2+              
 
          38.5     Percent bound in species #2813302   Fe(OH)3 (aq)          
 
          55.9     Percent bound in species #2813303   Fe(OH)4-              
 
 
PO4-3        
          62.4     Percent bound in species #3305800   HPO4-2                
 
           1.2     Percent bound in species #1505801   CaPO4-                
 
          35.3     Percent bound in species #5005800   NaHPO4-               
 
 
Mn+2         
          97.4     Percent bound in species #    470   Mn+2                  
 
           1.0     Percent bound in species #4703300   MnOH+                 
 
           1.5     Percent bound in species #4701400   MnHCO3+               
 
 
Al+3         
          99.9     Percent bound in species # 303302   Al(OH)4-              
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Ca+2         
          36.8     Percent bound in species #    150   Ca+2                  
 
          60.4     Percent bound in species #1500901   CaH2BO3+              
 
           1.2     Percent bound in species #1441500   Ca DOM                
 
           1.2     Percent bound in species #1501401   CaCO3 (aq)            
 
 
Pb+2         
           4.3     Percent bound in species #1446000   Pb DOM                
 
           6.8     Percent bound in species #6003300   PbOH+                 
 
           1.4     Percent bound in species #6003301   Pb(OH)2 (aq)          
 
          41.6     Percent bound in species #6001400   Pb(CO3)2-2            
 
          45.0     Percent bound in species #6001401   PbCO3 (aq)            
 
 
Mg+2         
          49.4     Percent bound in species #    460   Mg+2                  
 
           1.1     Percent bound in species #4601400   MgCO3 (aq)            
 
          48.8     Percent bound in species #4600901   MgH2BO3+              
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Pb (II) & 4 SOLUBLE MAJOR CATIONS 

Part 1 and Part 4 (Only Pb (II)) 

________________________________________________________________________________ 
______________________________ PART 1 of OUTPUT FILE ___________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS:  1-OCT-2002  TIME: 16:22: 4 
 
 
Soluble cations at pH4 (equilibrated with acetate buffer) of contaminated soil               
File name so_(1)                                                            
Component file (COMP.DBS):           comp.dbs    COMP v4.00 09/30/1999        
Thermodynamic file (THERMO.UNF):     thermo.unf  THERMO V4.00 09/30/1999      
Gaussian DOM file (GAUSSIAN.DBS):    gaussian.dbsGAUSSIAN V4.00 09/30/1999    
Solids file (TYPE6.UNF):             type6.unf   TYPE6 V4.00 09/30/1999       
 
-------------------------------------------------------------------------------- 
 Temperature (Celsius):  25.00 
 Units of concentration: mg/L  
 Ionic strength:  0.407 molal; FIXED 
 If specified, carbonate concentration represents total inorganic carbon. 
 Do not automatically terminate if charge imbalance exceeds 30%  
 Precipitation is allowed only for those solids specified as ALLOWED 
   in the input file (if any). 
 Maximum iterations: 200 
 The method used to compute activity coefficients is: Davies equation       
 Intermediate output file  
 
------------------------------------------------------------------------------- 
    330  0.000E+00   -4.00 y 
    600  2.520E-01   -5.91 y 
    150  1.556E+02   -2.56 y 
    460  3.703E+00   -3.94 y 
     30  3.200E+00   -4.45 y 
    992  3.558E+03   -1.22 y 
    500  1.386E+03   -1.22 y 
    144  0.000E+00   -6.00   
    280  2.169E+01   -3.41   
 
 H2O has been inserted as a COMPONENT 
  3   1 
    330     4.0000     0.0000 
 
INPUT DATA BEFORE TYPE MODIFICATIONS 
 
   ID        Name       ACTIVITY GUESS    log GUESS   ANAL TOTAL 
    330  H+1                 1.000E-04        -4.000   0.000E+00 
    600  Pb+2                1.230E-06        -5.910   2.520E-01 
    150  Ca+2                2.754E-03        -2.560   1.556E+02 
    460  Mg+2                1.148E-04        -3.940   3.703E+00 
     30  Al+3                3.548E-05        -4.450   3.200E+00 
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    992  Acetate             6.026E-02        -1.220   3.558E+03 
    500  Na+1                6.026E-02        -1.220   1.386E+03 
    144  DOM1                1.000E-06        -6.000   0.000E+00 
    280  Fe+2                3.890E-04        -3.410   2.169E+01 
      2  H2O                 1.000E+00         0.000   0.000E+00 
 
------------------------------------------------------------------------------- 
 *** SPECIAL PARAMETERS for Dissolved Organic Matter: 
     Percent Organic Carbon:                        50.00 
     DOC (mg/L):                                    50.60 
     Molecular Weight (g):                        1000.00 
     Charge on DOM species are calculated based on speciation 
 
  ** DOC COMPONENT 144: 
     Total Acidity (umol/mgC):                     1.00 
     Total site concentration (mol/L):             5.060E-05 
 
     The ratio Cs/Cn is:                             0.50 
 
------------------------------------------------------------------------------- 
 
 
     Charge Balance: UNSPECIATED 
 
       Sum of CATIONS=  6.985E-02 Sum of ANIONS =  6.071E-02 
 
       PERCENT DIFFERENCE =  7.000E+00  (ANIONS - CATIONS)/(ANIONS + CATIONS) 
 
 
 
              ------------------------------------------------------ 
               IMPROVED ACTIVITY GUESSES PRIOR TO FIRST ITERATION:  
                    Al+3        Log activity guess:    -3.97        
                    Fe+2        Log activity guess:    -3.41        
                                                                    
              ------------------------------------------------------ 
 
______________________________________________________________________________ 
______________________________ PART 4 of OUTPUT FILE _________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS:  1-OCT-2002  TIME: 16:22: 4 
 
 
                 PERCENTAGE DISTRIBUTION OF COMPONENTS AMONG 
              TYPE I and TYPE II (dissolved and adsorbed) species  
 
Pb+2         
          29.9     Percent bound in species #    600   Pb+2                  
 
          11.3     Percent bound in species #1446000   Pb DOM                
 
          51.0     Percent bound in species #6009921   Pb[Acetate]           
 
           7.8     Percent bound in species #6009922   Pb[Acetate]2          
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Pb (II) 

Part 1 and Part 4 (Only Pb (II)) 

________________________________________________________________________________ 
______________________________ PART 1 of OUTPUT FILE ___________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS:  1-OCT-2002  TIME: 17:36:27 
 
 
Soluble cations at pH4 (equilibrated with acetate buffer) no 4 ions of contaminate soil              
File name so_(111)                                                          
Component file (COMP.DBS):           comp.dbs    COMP v4.00 09/30/1999        
Thermodynamic file (THERMO.UNF):     thermo.unf  THERMO V4.00 09/30/1999      
Gaussian DOM file (GAUSSIAN.DBS):    gaussian.dbsGAUSSIAN V4.00 09/30/1999    
Solids file (TYPE6.UNF):             type6.unf   TYPE6 V4.00 09/30/1999       
 
-------------------------------------------------------------------------------- 
 Temperature (Celsius):  25.00 
 Units of concentration: mg/L  
 Ionic strength:  0.407 molal; FIXED 
 If specified, carbonate concentration represents total inorganic carbon. 
 Do not automatically terminate if charge imbalance exceeds 30%  
 Precipitation is allowed only for those solids specified as ALLOWED 
   in the input file (if any). 
 Maximum iterations: 200 
 The method used to compute activity coefficients is: Davies equation       
 Intermediate output file  
 
------------------------------------------------------------------------------- 
    330  0.000E+00   -4.00 y 
    600  2.520E-01   -5.91 y 
    992  3.558E+03   -1.22 y 
    500  1.386E+03   -1.22 y 
    144  0.000E+00   -6.00 y 
 
 H2O has been inserted as a COMPONENT 
  3   1 
    330     4.0000     0.0000 
 
INPUT DATA BEFORE TYPE MODIFICATIONS 
 
   ID        Name       ACTIVITY GUESS    log GUESS   ANAL TOTAL 
    330  H+1                 1.000E-04        -4.000   0.000E+00 
    600  Pb+2                1.230E-06        -5.910   2.520E-01 
    992  Acetate             6.026E-02        -1.220   3.558E+03 
    500  Na+1                6.026E-02        -1.220   1.386E+03 
    144  DOM1                1.000E-06        -6.000   0.000E+00 
      2  H2O                 1.000E+00         0.000   0.000E+00 
 
------------------------------------------------------------------------------- 
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 *** SPECIAL PARAMETERS for Dissolved Organic Matter: 
     Percent Organic Carbon:                        50.00 
     DOC (mg/L):                                    50.60 
     Molecular Weight (g):                        1000.00 
     Charge on DOM species are calculated based on speciation 
 
  ** DOC COMPONENT 144: 
     Total Acidity (umol/mgC):                     1.00 
     Total site concentration (mol/L):             5.060E-05 
 
     The ratio Cs/Cn is:                             0.50 
 
------------------------------------------------------------------------------- 
 
 
     Charge Balance: UNSPECIATED 
 
       Sum of CATIONS=  6.059E-02 Sum of ANIONS =  6.070E-02 
 
       PERCENT DIFFERENCE =  9.120E-02  (ANIONS - CATIONS)/(ANIONS + CATIONS) 
 
 
 
______________________________________________________________________________ 
______________________________ PART 4 of OUTPUT FILE _________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS:  1-OCT-2002  TIME: 17:36:27 
 
 
 
                 PERCENTAGE DISTRIBUTION OF COMPONENTS AMONG 
              TYPE I and TYPE II (dissolved and adsorbed) species 
 
Pb+2         
          19.2     Percent bound in species #    600   Pb+2                  
 
           5.0     Percent bound in species #6009922   Pb[Acetate]2          
 
          43.0     Percent bound in species #1446000   Pb DOM                
 
          32.8     Percent bound in species #6009921   Pb[Acetate]           
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DOM = 10% OF VS 

Part 1 and Part 4 (Only Pb (II)) 

________________________________________________________________________________ 
______________________________ PART 1 of OUTPUT FILE ___________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS:  1-OCT-2002  TIME: 15:47:58 
 
 
Soluble cations at pH4 (equilibrated with acetate buffer) of standard sediment               
File name so_(22)                                                           
Component file (COMP.DBS):           comp.dbs    COMP v4.00 09/30/1999        
Thermodynamic file (THERMO.UNF):     thermo.unf  THERMO V4.00 09/30/1999      
Gaussian DOM file (GAUSSIAN.DBS):    gaussian.dbsGAUSSIAN V4.00 09/30/1999    
Solids file (TYPE6.UNF):             type6.unf   TYPE6 V4.00 09/30/1999       
 
-------------------------------------------------------------------------------- 
 Temperature (Celsius):  25.00 
 Units of concentration: mg/L  
 Ionic strength:  0.407 molal; FIXED 
 If specified, carbonate concentration represents total inorganic carbon. 
 Do not automatically terminate if charge imbalance exceeds 30%  
 Precipitation is allowed only for those solids specified as ALLOWED 
   in the input file (if any). 
 Maximum iterations: 200 
 The method used to compute activity coefficients is: Davies equation       
 Intermediate output file  
 
------------------------------------------------------------------------------- 
    330  0.000E+00   -4.00 y 
    600  1.051E+00   -5.91 y 
    150  3.258E+02   -2.56 y 
    460  6.100E+01   -3.94 y 
     30  8.427E+00   -4.45 y 
    992  3.558E+03   -1.22 y 
    500  1.386E+03   -1.22 y 
    144  0.000E+00   -6.00   
    280  5.110E+01   -3.04   
 
 H2O has been inserted as a COMPONENT 
  3   1 
    330     4.0000     0.0000 
 
INPUT DATA BEFORE TYPE MODIFICATIONS 
 
   ID        Name       ACTIVITY GUESS    log GUESS   ANAL TOTAL 
    330  H+1                 1.000E-04        -4.000   0.000E+00 
    600  Pb+2                1.230E-06        -5.910   1.051E+00 
    150  Ca+2                2.754E-03        -2.560   3.258E+02 
    460  Mg+2                1.148E-04        -3.940   6.100E+01 
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     30  Al+3                3.548E-05        -4.450   8.427E+00 
    992  Acetate             6.026E-02        -1.220   3.558E+03 
    500  Na+1                6.026E-02        -1.220   1.386E+03 
    144  DOM1                1.000E-06        -6.000   0.000E+00 
    280  Fe+2                9.120E-04        -3.040   5.110E+01 
      2  H2O                 1.000E+00         0.000   0.000E+00 
 
------------------------------------------------------------------------------- 
 *** SPECIAL PARAMETERS for Dissolved Organic Matter: 
     Percent Organic Carbon:                        50.00 
     DOC (mg/L):                                          91.50 
     Molecular Weight (g):                        1000.00 
     Charge on DOM species are calculated based on speciation 
 
  ** DOC COMPONENT 144: 
     Total Acidity (umol/mgC):                     1.00 
     Total site concentration (mol/L):            9.150E-05 
 
     The ratio Cs/Cn is:                                  0.50 
 
------------------------------------------------------------------------------- 
 
 
     Charge Balance: UNSPECIATED 
 
       Sum of CATIONS=  8.480E-02 Sum of ANIONS =  6.084E-02 
 
       PERCENT DIFFERENCE =  1.645E+01  (ANIONS - CATIONS)/(ANIONS + CATIONS) 
 
              ------------------------------------------------------ 
               IMPROVED ACTIVITY GUESSES PRIOR TO FIRST ITERATION:  
                    Al+3        Log activity guess:    -3.55        
                    Fe+2        Log activity guess:    -3.04        
                                                                    
              ------------------------------------------------------ 
 
 
______________________________________________________________________________ 
______________________________ PART 4 of OUTPUT FILE _________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS:  1-OCT-2002  TIME: 15:47:59 
 
                 PERCENTAGE DISTRIBUTION OF COMPONENTS AMONG 
              TYPE I and TYPE II (dissolved and adsorbed) species 
 
Pb+2         
          30.4     Percent bound in species #    600   Pb+2                  
 
          10.5     Percent bound in species #1446000   Pb DOM                
 
          51.4     Percent bound in species #6009921   Pb[Acetate]           
 
           7.8     Percent bound in species #6009922   Pb[Acetate]2          
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DOM = 19.2% OF VS 

Part 1 and Part 4 (Only Pb (II)) 

________________________________________________________________________________ 
______________________________ PART 1 of OUTPUT FILE ___________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS:  2-OCT-2002  TIME: 14:21:54 
 
 
Soluble cations at pH4 (equilibrated with acetate buffer)                   
File name so_std176                                                         
Component file (COMP.DBS):           comp.dbs    COMP v4.00 09/30/1999        
Thermodynamic file (THERMO.UNF):     thermo.unf  THERMO V4.00 09/30/1999      
Gaussian DOM file (GAUSSIAN.DBS):    gaussian.dbsGAUSSIAN V4.00 09/30/1999    
Solids file (TYPE6.UNF):             type6.unf   TYPE6 V4.00 09/30/1999       
 
-------------------------------------------------------------------------------- 
 Temperature (Celsius):  25.00 
 Units of concentration: mg/L  
 Ionic strength:  0.407 molal; FIXED 
 If specified, carbonate concentration represents total inorganic carbon. 
 Do not automatically terminate if charge imbalance exceeds 30%  
 Precipitation is allowed only for those solids specified as ALLOWED 
   in the input file (if any). 
 Maximum iterations: 200 
 The method used to compute activity coefficients is: Davies equation       
 Intermediate output file  
 
------------------------------------------------------------------------------- 
    330  0.000E+00   -4.00 y 
    600  1.051E+00   -5.91 y 
    150  3.258E+02   -2.56 y 
    460  6.100E+01   -3.94 y 
     30  8.427E+00   -4.45 y 
    992  3.558E+03   -1.22 y 
    500  1.386E+03   -1.22 y 
    144  0.000E+00   -6.00   
    280  5.110E+01   -3.04   
 
 H2O has been inserted as a COMPONENT 
  3   1 
    330     4.0000     0.0000 
 
INPUT DATA BEFORE TYPE MODIFICATIONS 
 
   ID        Name       ACTIVITY GUESS    log GUESS   ANAL TOTAL 
    330  H+1                 1.000E-04        -4.000   0.000E+00 
    600  Pb+2                1.230E-06        -5.910   1.051E+00 
    150  Ca+2                2.754E-03        -2.560   3.258E+02 
    460  Mg+2                1.148E-04        -3.940   6.100E+01 
     30  Al+3                3.548E-05        -4.450   8.427E+00 
    992  Acetate             6.026E-02        -1.220   3.558E+03 
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    500  Na+1                6.026E-02        -1.220   1.386E+03 
    144  DOM1                1.000E-06        -6.000   0.000E+00 
    280  Fe+2                9.120E-04        -3.040   5.110E+01 
      2  H2O                 1.000E+00         0.000   0.000E+00 
 
------------------------------------------------------------------------------- 
 *** SPECIAL PARAMETERS for Dissolved Organic Matter: 
     Percent Organic Carbon:                        50.00 
     DOC (mg/L):                                   176.00 
     Molecular Weight (g):                        1000.00 
     Charge on DOM species are calculated based on speciation 
 
  ** DOC COMPONENT 144: 
     Total Acidity (umol/mgC):                     1.00 
     Total site concentration (mol/L):             1.760E-04 
 
     The ratio Cs/Cn is:                             0.50 
 
------------------------------------------------------------------------------- 
 
 
     Charge Balance: UNSPECIATED 
 
       Sum of CATIONS=  8.480E-02 Sum of ANIONS =  6.108E-02 
 
       PERCENT DIFFERENCE =  1.626E+01  (ANIONS - CATIONS)/(ANIONS + CATIONS) 
 
              ------------------------------------------------------ 
               IMPROVED ACTIVITY GUESSES PRIOR TO FIRST ITERATION:  
                    Al+3        Log activity guess:    -3.55        
                    Fe+2        Log activity guess:    -3.04        
                                                                    
              ------------------------------------------------------ 
______________________________________________________________________________ 
______________________________ PART 4 of OUTPUT FILE _________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS:  2-OCT-2002  TIME: 14:21:55 
 
 
                 PERCENTAGE DISTRIBUTION OF COMPONENTS AMONG 
              TYPE I and TYPE II (dissolved and adsorbed) species  
 
 
Pb+2         
          27.3     Percent bound in species #    600   Pb+2                  
 
          19.4     Percent bound in species #1446000   Pb DOM                
 
          46.2     Percent bound in species #6009921   Pb[Acetate]           
 
           7.0     Percent bound in species #6009922   Pb[Acetate]2          
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DOM = 100% OF VS 

Part 1 and Part 4 (Only Pb (II)) 

________________________________________________________________________________ 
______________________________ PART 1 of OUTPUT FILE ___________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS:  2-OCT-2002  TIME: 14: 8:24 
 
 
Soluble cations at pH4 (equilibrated with acetate buffer) of standard sediement              
File name so_(222)                                                          
Component file (COMP.DBS):           comp.dbs    COMP v4.00 09/30/1999        
Thermodynamic file (THERMO.UNF):     thermo.unf  THERMO V4.00 09/30/1999      
Gaussian DOM file (GAUSSIAN.DBS):    gaussian.dbsGAUSSIAN V4.00 09/30/1999    
Solids file (TYPE6.UNF):             type6.unf   TYPE6 V4.00 09/30/1999       
 
-------------------------------------------------------------------------------- 
 Temperature (Celsius):  25.00 
 Units of concentration: mg/L  
 Ionic strength:  0.407 molal; FIXED 
 If specified, carbonate concentration represents total inorganic carbon. 
 Do not automatically terminate if charge imbalance exceeds 30%  
 Precipitation is allowed only for those solids specified as ALLOWED 
   in the input file (if any). 
 Maximum iterations: 200 
 The method used to compute activity coefficients is: Davies equation       
 Intermediate output file  
 
------------------------------------------------------------------------------- 
    330  0.000E+00   -4.00 y 
    600  1.051E+00   -5.91 y 
    150  3.258E+02   -2.56 y 
    460  6.100E+01   -3.94 y 
     30  8.427E+00   -4.45 y 
    992  3.558E+03   -1.22 y 
    500  1.386E+03   -1.22 y 
    144  0.000E+00   -6.00   
    280  5.110E+01   -3.04   
 
 H2O has been inserted as a COMPONENT 
  3   1 
    330     4.0000     0.0000 
 
INPUT DATA BEFORE TYPE MODIFICATIONS 
 
   ID        Name       ACTIVITY GUESS    log GUESS   ANAL TOTAL 
    330  H+1                 1.000E-04        -4.000   0.000E+00 
    600  Pb+2                1.230E-06        -5.910   1.051E+00 
    150  Ca+2                2.754E-03        -2.560   3.258E+02 
    460  Mg+2                1.148E-04        -3.940   6.100E+01 
     30  Al+3                3.548E-05        -4.450   8.427E+00 
    992  Acetate             6.026E-02        -1.220   3.558E+03 
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    500  Na+1                6.026E-02        -1.220   1.386E+03 
    144  DOM1             1.000E-06        -6.000   0.000E+00 
    280  Fe+2                9.120E-04        -3.040   5.110E+01 
      2  H2O                  1.000E+00         0.000   0.000E+00 
 
------------------------------------------------------------------------------- 
 *** SPECIAL PARAMETERS for Dissolved Organic Matter: 
     Percent Organic Carbon:                        50.00 
     DOC (mg/L):                                   915.00 
     Molecular Weight (g):                        1000.00 
     Charge on DOM species are calculated based on speciation 
 
  ** DOC COMPONENT 144: 
     Total Acidity (umol/mgC):                     1.00 
     Total site concentration (mol/L):            9.150E-04 
 
     The ratio Cs/Cn is:                                  0.50 
 
------------------------------------------------------------------------------- 
 
 
     Charge Balance: UNSPECIATED 
 
       Sum of CATIONS=  8.480E-02 Sum of ANIONS =  6.315E-02 
 
       PERCENT DIFFERENCE =  1.463E+01  (ANIONS - CATIONS)/(ANIONS + CATIONS) 
 
              ------------------------------------------------------ 
               IMPROVED ACTIVITY GUESSES PRIOR TO FIRST ITERATION:  
                    Al+3        Log activity guess:    -3.55        
                    Fe+2        Log activity guess:    -3.04        
                                                                    
              ------------------------------------------------------ 
______________________________________________________________________________ 
______________________________ PART 4 of OUTPUT FILE _________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS:  2-OCT-2002  TIME: 14: 8:25 
 
 
 
                 PERCENTAGE DISTRIBUTION OF COMPONENTS AMONG 
              TYPE I and TYPE II (dissolved and adsorbed) species 
 
  
Pb+2         
          11.0     Percent bound in species #    600   Pb+2                  
 
          67.4     Percent bound in species #1446000   Pb DOM                
 
          18.7     Percent bound in species #6009921   Pb[Acetate]           
 
           2.8     Percent bound in species #6009922   Pb[Acetate]2          
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APPENDIX 3.4 

Pb DISTRIBUTION BY MINTEQA2 

AT pH 5.22 
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Pb DISTRIBUTION AT pH 5.22 

Part 1-6 
 

________________________________________________________________________________ 
______________________________ PART 1 of OUTPUT FILE ___________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS: 17-SEP-2002  TIME:  7:44:44 
 
 
Lead Perchlorate pH 5.22                                                    
File name Pb_(1)                                                            
Component file (COMP.DBS):           comp.dbs    COMP v4.00 09/30/1999        
Thermodynamic file (THERMO.UNF):     thermo.unf  THERMO V4.00 09/30/1999      
Gaussian DOM file (GAUSSIAN.DBS):    gaussian.dbsGAUSSIAN V4.00 09/30/1999    
Solids file (TYPE6.UNF):             type6.unf   TYPE6 V4.00 09/30/1999       
 
-------------------------------------------------------------------------------- 
 Temperature (Celsius):  25.00 
 Units of concentration: MOLAL 
 Ionic strength:  0.004 molal; FIXED 
 If specified, carbonate concentration represents total inorganic carbon. 
 Do not automatically terminate if charge imbalance exceeds 30%  
 Precipitation is allowed for all solids in the thermodynamic database and 
   the print option for solids is set to: 1 
 Maximum iterations: 200 
 The method used to compute activity coefficients is: Davies equation       
 Intermediate output file  
 
------------------------------------------------------------------------------- 
    330  6.026E-06   -5.22 y 
    600  2.410E-05   -4.62 y 
    492  2.410E-05   -4.62 y 
 
 H2O has been inserted as a COMPONENT 
 
INPUT DATA BEFORE TYPE MODIFICATIONS 
 
   ID        Name       ACTIVITY GUESS    log GUESS   ANAL TOTAL 
    330  H+1                 6.026E-06        -5.220   6.026E-06 
    600  Pb+2                2.399E-05        -4.620   2.410E-05 
    492  NO3-1               2.399E-05        -4.620   2.410E-05 
      2  H2O                 1.000E+00         0.000   0.000E+00 
 
 
     Charge Balance: UNSPECIATED 
 
       Sum of CATIONS=  5.423E-05 Sum of ANIONS =  2.410E-05 
 
       PERCENT DIFFERENCE =  3.846E+01  (ANIONS - CATIONS)/(ANIONS + CATIONS) 
 
 
 



 

166  

_______________________________________               _______________________________ 
______________________________ PART 2 of OUTPUT FILE _________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS: 17-SEP-2002  TIME:  7:44:45 
 
____________________ CONSTRAINTS ON COMPONENT ACTIVITIES __________________ 
 
          As specified, this chemical system is OPEN with respect 
          to the following components:  
 
                H2O          
          ------------------------------------------------------ 
          Activities of the following components are constrained 
          by the species shown: 
 
                  COMPONENT          SPECIES             TYPE 
                    H2O            H2O                     3 
________________________________________________________________________________ 
______________________________ PART 3 of OUTPUT FILE ___________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS: 17-SEP-2002  TIME:  7:44:45 
 
PARAMETERS OF THE COMPONENT MOST OUT OF BALANCE: 
 
     ITER      NAME       TOTAL mol/L   DIFF FXN   LOG ACTVTY    RESIDUAL 
      0   NO3-1           2.410E-05  -1.032E-07    -4.62000    1.007E-07 
      1   NO3-1           2.410E-05   1.710E-06    -4.61814    1.708E-06 
      2   H+1             6.026E-06   1.315E-09    -5.24332    7.035E-10 
 
 ID No      Name    Total Conc(M)    Conc (M)  log Activity   Diff fxn 
  330  H+1            6.026E-06     6.115E-06    -5.24341   -4.833E-15 
  600  Pb+2           2.410E-05     2.401E-05    -4.73877    4.749E-15 
  492  NO3-1          2.410E-05     2.409E-05    -4.64788   -1.870E-18 
    2  H2O            0.000E+00    -8.852E-08     0.00000    0.000E+00 
----------------------------------------------------------------------------- 
Type I - COMPONENTS AS SPECIES IN SOLUTION 
 
 ID No      Name                Conc (M)     log Act  Charge  Act Coef New logK 
    330 H+1                     6.115E-06   -5.24341    1.00   0.93374    0.030 
    600 Pb+2                    2.401E-05   -4.73877    2.00   0.76015    0.119 
    492 NO3-1                   2.409E-05   -4.64788   -1.00   0.93374    0.030 
----------------------------------------------------------------------------- 
 Type II - OTHER SPECIES IN SOLUTION OR ADSORBED 
 
 ID No      Name                Conc (M)     log Act  Charge  Act Coef New logK 
6004921 Pb(NO3)2 (aq)           2.318E-13  -12.63452    0.00   1.00092    1.400 
3300020 OH-                     1.889E-09   -8.75359   -1.00   0.93374  -13.967 
6003300 PbOH+                   8.658E-08   -7.09235    1.00   0.93374   -7.567 
6003301 Pb(OH)2 (aq)            4.505E-12  -11.34594    0.00   1.00092  -17.094 
6003302 Pb(OH)3-                8.516E-18  -17.09953   -1.00   0.93374  -28.061 
6003303 Pb2OH+3                 4.334E-11  -10.63112    3.00   0.53954   -6.129 
6003304 Pb3(OH)4+2              9.738E-18  -17.13065    2.00   0.76015  -23.769 
6003305 Pb(OH)4-2               4.518E-24  -23.46412   -2.00   0.76015  -39.580 
6003306 Pb4(OH)4+4              3.214E-18  -17.96941    4.00   0.33389  -19.512 
6004920 PbNO3+                  6.503E-09   -8.21664    1.00   0.93374    1.200 
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Type III - SPECIES WITH FIXED ACTIVITY  
 
  ID No      Name                Conc (M)     New logK    Enthalpy 
      2 H2O                    -8.852E-08      0.000       0.000 
 
----------------------------------------------------------------------------- 
 
 Type V - UNDERSATURATED SOLIDS (not present at equilibrium) 
 
  ID No      Name                Conc (M)     New logK    Enthalpy 
2060000 MASSICOT                7.146E-08    -12.894      66.848 
2060001 LITHARGE                1.133E-07    -12.694      65.501 
2060002 PbO:0.3H2O              5.862E-08    -12.980       0.000 
2060004 Pb(OH)2                 3.963E-03     -8.150      58.534 
2060005 Pb2O(OH)2               2.033E-15    -26.188       0.000 
 
 
______________________________________________________________________________ 
______________________________ PART 4 of OUTPUT FILE _________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS: 17-SEP-2002  TIME:  7:44:45 
 
 
 
                 PERCENTAGE DISTRIBUTION OF COMPONENTS AMONG 
              TYPE I and TYPE II (dissolved and adsorbed) species 
 
 
H+1          
         101.5     Percent bound in species #    330   H+1                   
 
 
Pb+2         
          99.6     Percent bound in species #    600   Pb+2                  
 
 
NO3-1        
         100.0     Percent bound in species #    492   NO3-1                 
 
 
H2O          
           2.1     Percent bound in species #3300020   OH-                   
 
          97.8     Percent bound in species #6003300   PbOH+                 
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______________________________________________________________________________ 
______________________________ PART 5 of OUTPUT FILE _________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS: 17-SEP-2002  TIME:  7:44:45 
 
               ------------------------------------------------------ 
               ----------- EQUILIBRATED MASS DISTRIBUTION ----------- 
 
 
IDX     Name            DISSOLVED            SORBED            PRECIPITATED 
                      mol/L    percent    mol/L    percent    mol/L    percent 
 
330  H+1            6.026E-06   100.0   0.000E+00     0.0   0.000E+00     0.0 
600  Pb+2           2.410E-05   100.0   0.000E+00     0.0   0.000E+00     0.0 
492  NO3-1          2.410E-05   100.0   0.000E+00     0.0   0.000E+00     0.0 
  2  H2O            8.852E-08   100.0   0.000E+00     0.0   0.000E+00     0.0 
 
 
     Charge Balance: SPECIATED 
 
      Sum of CATIONS =  5.422E-05 Sum of ANIONS   2.410E-05 
 
     PERCENT DIFFERENCE =   3.847E+01  (ANIONS - CATIONS)/(ANIONS + CATIONS) 
 
     EQUILIBRIUM IONIC STRENGTH (m) =   4.000E-03 
 
     EQUILIBRIUM pH                 =   5.243 
 
     DATE ID NUMBER:        20020917 
     TIME ID NUMBER:         7444578 
 
 
________________________________________________________________________________ 
______________________________ PART 6 of OUTPUT FILE ___________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS: 17-SEP-2002  TIME:  7:44:45 
 
 
Saturation indices and stoichiometry of all minerals 
 
    ID No     Name                 SI    Composition by stoich. of components 
  2060000 MASSICOT                -7.146 [  1.000]600 [  1.000]  2 [ -2.000]330 
  2060001 LITHARGE                -6.946 [  1.000]600 [  1.000]  2 [ -2.000]330 
  2060002 PbO:0.3H2O              -7.232 [ -2.000]330 [  1.000]600 [  1.330]  2 
  2060004 Pb(OH)2                 -2.402 [ -2.000]330 [  1.000]600 [  2.000]  2 
  2060005 Pb2O(OH)2              -14.692 [  2.000]600 [  3.000]  2 [ -4.000]330 
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APPENDIX 3.5 

STATISTIC CALCULATION BY SAS PROGRAM 

FOR Pb:FA 
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STATISTIC CALCULATION 

BY SAS 

Statistics used to compare between two means for the areas of with (Pb:FA  1:1) 

and without lead (Pb:FA 0:1) were Independent T-Test for parametric distribution data 

and Mann Whitney U Test or Wilcoxon Two-Sample Test for non-parametric distribution 

data. From the distributions of the data as shown in Table A3.5.1, at wavelength 254 and 

260 nm non-parametric tests were applied while at wavelength 280 nm, a parametric test 

was applied. 

For comparing between three means of the concentrations lead of organically 

bound fraction at between 9 to 11 minutes as data was shown in Table A3.5.2, since one 

was parametric and the other two data were non-parametric distributions both parametric 

(One-Way Parametric ANOVA) and non-parametric (Kruskal-Wallis One-Way 

Multisample Test) were run to compare the results. 

Conclusion of statistic tests 

1.  There is no significant difference between total areas at 254 nm of Pb:FA = 0:1 

and 1:1, Mann Whitney U Test, P = 0.5959, α = 0.05. 

2.  There is no significant difference between total areas at 260 nm of Pb:FA = 0:1 

and 1:1, Mann Whitney U Test, P = 0.3074, α = 0.05. 

3.  There is no significant difference between total areas at 280 nm of Pb:FA = 0:1 

and 1:1, Independent T Test, P = 0.6689, α = 0.05. 
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4.  There are no significant differences among Pb:FA 1:1, 1:2, and 1:3 at between 

9 to 11 minutes both by One-Way Parametric ANOVA, P =0.6205, α = 0.05 and 

Kruskal-Wallis One-Way Multisample Test, P = 0.2963, α = 0.05. 
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Table A3.5.1   Total areas of fulvic acid with and without lead and when the ligand 

was incresed    
     

Pb:FA Total area Total area Total area   
0:1 at 254 nm* at 260 nm** at 280 nm***   
R1 1,971 1,669 4,068   
R2 1,972 1,635 4,057   
R3 2,112 1,787 4,317   
R4 3,052 2,612 5,148   

Mean 2,276.8 1,925.8 4,397.5   
SD 451.3 400.2 445.6   

      
Pb:FA Total area Total area Total area   

1:1 at 254 nm* at 260 nm** at 280 nm***   
R1 1,989 1,661 4,630   
R2 2,400 1,957 5,083   
R3 2,622 2,086 5,323   

Mean 2,337.0 1,901.3 5,012.0   
SD 262.2 177.9 287.3   

      
      

Pb:FA Total area Total area Total area   
1:2 at 254 nm at 260 nm at 280 nm   
R1 5,788 4,464 8,081   
R2 6,717 5,098 9,618   
R3 6,294 4,548 8,774   
R4 6,397 4,686 9,261   

Mean 6,299.0 4,699.0 8,933.5   
SD 333.7 243.6 576.2   

      
Pb:FA Total area Total area Total area   

1:3 at 254 nm at 260 nm at 280 nm   
R1 7,949 6,010 10,787   
R2 16,466 8,780 13,707   
R3 13,848 7,982 13,480   
R4 17,346 9,606 14,389   

Mean 13,902.3 8,094.5 13,090.8   
SD 3,670.0 1,333.4 1,371.5   

      
* There is no significant difference between total areas at 254 nm of Pb:FA = 0:1 and 1:1, 
    Mann Whitney U Test, P=0.5959,  α=0.05.    
**There is no significant difference between total areas at 260 nm of Pb:FA = 0:1 and 1:1, 
    Mann Whitney U Test, P=0.3074, α =0.05.    
***There is no significant difference between total areas at 280 nm of Pb:FA = 0:1 and 1:1, 
     Independent T Test, P=0.6689,  α=0.05.    
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Table A3.5.2    Lead concentrations in each fraction of organically bound lead  
 
                          study; Pb = lead and FA = fulvic acid      
         

Pb:FA Time    

0:1 0-4 4-5.5 5.5-9 9-11 11-15 15-25 
Total 
(ug)  

R1 0 0 0 0 0 0 0  
R2 0 0 0 0 0 0 0  
R3 0.005 0.002 0.004 0.003 0 0 0.01  

Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
SD 0.00 0.00 0.00 0.00 0.00 0.00 0.01  

         
         

Pb:FA Time   Recovery 

1:1 0-4 4-5.5 5.5-9 9-11* 11-15 15-25 
Total 
(ug) % 

R1 0.081 0.174 0.347 0.065 0 0 0.667 90.6 
R2 0.11 0.132 0.36 0.074 0 0 0.676 91.8 
R3 0.09 0.21 0.299 0.074 0 0 0.673 91.4 

Average 0.09 0.17 0.34 0.07 0.00 0.00 0.67 91.27 
SD 0.01 0.04 0.03 0.01 0.00 0.00 0.00 0.61 

Total injection = 0.736 ug       
         

Pb:FA Time   Recovery 

1:2 0-4 4-5.5 5.5-9 9-11* 11-15 15-25 
Total 
(ug) % 

R1 0.041 0.26 0.48 0.097 0 0 0.878 114.3 
R2 0.05 0.24 0.41 0.12 0 0 0.78 101.6 
R3 0.024 0.174 0.491 0.065 0 0 0.754 98 
R4 0 0.207 0.518 0.076 0 0 0.801 104.3 

Average 0.03 0.22 0.47 0.09 0.00 0.00 0.80 104.55 
SD 0.02 0.04 0.05 0.02 0.00 0.00 0.05 6.99 

 Total injection = 0.768 ug       
         

Pb:FA Time   Recovery 

1:3 0-4 4-5.5 5.5-9 9-11* 11-15 15-25 
Total 
(ug) % 

R1 0.058 0.149 0.36 0.057 0 0 0.624 81.3 
R2 0.0495 0.172 0.347 0.061 0 0 0.63 82 
R3 0 0.194 0.36 0.127 0 0 0.681 88.7 
R4 0.083 0.127 0.482 0.057 0 0 0.749 97.5 

Average 0.05 0.16 0.39 0.08 0.00 0.00 0.67 87.38 
SD 0.03 0.03 0.06 0.03 0.00 0.00 0.06 7.53 

  Total injection = 0.768 ug       
* The concentrations among Pb:FA equal to 1:1, 1:2, and 1:3 at 9 to 11 mins are not  
    significantly different (Kruskal-Wallis one-way multisample test, P=0.2963, α = 0.05). 
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APPENDIX 3.6 

MINTEQA2’S OUTPUTS OF Pb:FA 
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Pb:FA = 1:1 
 

Part 1 and Part 4 
 
________________________________________________________________________________ 
______________________________ PART 1 of OUTPUT FILE ___________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS: 23-SEP-2002  TIME: 10: 1:23 
 
 
Pb:FA = 1:1                                                                 
File name org_(111) add buffer                                              
Component file (COMP.DBS):           comp.dbs    COMP v4.00 09/30/1999        
Thermodynamic file (THERMO.UNF):     thermo.unf  THERMO V4.00 09/30/1999      
Gaussian DOM file (GAUSSIAN.DBS):    gaussian.dbsGAUSSIAN V4.00 09/30/1999    
Solids file (TYPE6.UNF):             type6.unf   TYPE6 V4.00 09/30/1999       
 
-------------------------------------------------------------------------------- 
 Temperature (Celsius):  25.00 
 Units of concentration: MOLAL 
 Ionic strength:  0.029 molal; FIXED 
 If specified, carbonate concentration represents total inorganic carbon. 
 Do not automatically terminate if charge imbalance exceeds 30%  
 Precipitation is allowed only for those solids specified as ALLOWED 
   in the input file (if any). 
 Maximum iterations: 200 
 The method used to compute activity coefficients is: Davies equation       
 Intermediate output file  
 
------------------------------------------------------------------------------- 
    330  0.000E+00   -3.80 y 
    600  1.780E-04   -3.75 y 
    144  0.000E+00   -6.00 y 
    410  4.700E-03   -2.33   
    500  3.000E-03   -2.52 y 
    580  1.070E-02   -1.97 y 
 
 H2O has been inserted as a COMPONENT 
  3   1 
    330     3.8000     0.0000 
 
INPUT DATA BEFORE TYPE MODIFICATIONS 
 
   ID        Name       ACTIVITY GUESS    log GUESS   ANAL TOTAL 
    330  H+1                 1.585E-04        -3.800   0.000E+00 
    600  Pb+2                1.778E-04        -3.750   1.780E-04 
    144  DOM1                1.000E-06        -6.000   0.000E+00 
    410  K+1                 4.677E-03        -2.330   4.700E-03 
    500  Na+1                3.020E-03        -2.520   3.000E-03 
    580  PO4-3               1.072E-02        -1.970   1.070E-02 
      2  H2O                 1.000E+00         0.000   0.000E+00 
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------------------------------------------------------------------------------- 
 *** SPECIAL PARAMETERS for Dissolved Organic Matter: 
     Percent Organic Carbon:                        50.00 
     DOC (mg/L):                                        200.00 
     Molecular Weight (g):                        1000.00 
     Charge on DOM species are calculated based on speciation 
 
  ** DOC COMPONENT 144: 
     Total Acidity (umol/mgC):                     1.00 
     Total site concentration (mol/L):            2.000E-04 
 
     The ratio Cs/Cn is:                                  0.50 
 
------------------------------------------------------------------------------- 
 
 
     Charge Balance: UNSPECIATED 
 
       Sum of CATIONS=  8.056E-03 Sum of ANIONS =  3.266E-02 
 
       PERCENT DIFFERENCE =  6.043E+01  (ANIONS - CATIONS)/(ANIONS + CATIONS) 
 
 
 
              ------------------------------------------------------ 
               IMPROVED ACTIVITY GUESSES PRIOR TO FIRST ITERATION:  
                   PO4-3       Log activity guess:   -13.94        
              ------------------------------------------------------ 
 
 
______________________________________________________________________________ 
______________________________ PART 4 of OUTPUT FILE _________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS: 23-SEP-2002  TIME: 10: 1:24 
 
 
 
                 PERCENTAGE DISTRIBUTION OF COMPONENTS AMONG 
              TYPE I and TYPE II (dissolved and adsorbed) species 
 
 
Pb+2         
          37.3     Percent bound in species #    600   Pb+2                  
 
          62.7     Percent bound in species #1446000   Pb DOM                
 
 
DOM1         
          33.7     Percent bound in species #    144   DOM1                  
 
          10.5     Percent bound in species #1443300   H DOM                 
 
          55.8     Percent bound in species #1446000   Pb DOM                
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Pb:FA = 1:2 
 

Part 1 and Part 4 
 
________________________________________________________________________________ 
______________________________ PART 1 of OUTPUT FILE ___________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS: 23-SEP-2002  TIME: 10: 6:32 
 
 
Pb:FA = 1:1                                                                 
File name org_(222) add buffer                                              
Component file (COMP.DBS):           comp.dbs    COMP v4.00 09/30/1999        
Thermodynamic file (THERMO.UNF):     thermo.unf  THERMO V4.00 09/30/1999      
Gaussian DOM file (GAUSSIAN.DBS):    gaussian.dbsGAUSSIAN V4.00 09/30/1999    
Solids file (TYPE6.UNF):             type6.unf   TYPE6 V4.00 09/30/1999       
 
-------------------------------------------------------------------------------- 
 Temperature (Celsius):  25.00 
 Units of concentration: MOLAL 
 Ionic strength:  0.029 molal; FIXED 
 If specified, carbonate concentration represents total inorganic carbon. 
 Do not automatically terminate if charge imbalance exceeds 30%  
 Precipitation is allowed only for those solids specified as ALLOWED 
   in the input file (if any). 
 Maximum iterations: 200 
 The method used to compute activity coefficients is: Davies equation       
 Intermediate output file  
 
------------------------------------------------------------------------------- 
    330  0.000E+00   -3.48 y 
    600  1.850E-04   -3.73 y 
    144  0.000E+00   -6.00 y 
    410  4.700E-03   -2.33   
    580  1.070E-02   -1.97 y 
    500  3.000E-03   -2.52 y 
 
 H2O has been inserted as a COMPONENT 
  3   1 
    330     3.4800     0.0000 
 
INPUT DATA BEFORE TYPE MODIFICATIONS 
 
   ID        Name       ACTIVITY GUESS    log GUESS   ANAL TOTAL 
    330  H+1                 3.311E-04        -3.480   0.000E+00 
    600  Pb+2                1.862E-04        -3.730   1.850E-04 
    144  DOM1                1.000E-06        -6.000   0.000E+00 
    410  K+1                 4.677E-03        -2.330   4.700E-03 
    580  PO4-3               1.072E-02        -1.970   1.070E-02 
    500  Na+1                3.020E-03        -2.520   3.000E-03 
      2  H2O                 1.000E+00         0.000   0.000E+00 
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------------------------------------------------------------------------------- 
 *** SPECIAL PARAMETERS for Dissolved Organic Matter: 
     Percent Organic Carbon:                        50.00 
     DOC (mg/L):                                   400.00 
     Molecular Weight (g):                        1000.00 
     Charge on DOM species are calculated based on speciation 
 
  ** DOC COMPONENT 144: 
     Total Acidity (umol/mgC):                     1.00 
     Total site concentration (mol/L):            4.000E-04 
 
     The ratio Cs/Cn is:                                  0.50 
 
------------------------------------------------------------------------------- 
 
 
     Charge Balance: UNSPECIATED 
 
       Sum of CATIONS=  8.070E-03 Sum of ANIONS =  3.322E-02 
 
       PERCENT DIFFERENCE =  6.091E+01  (ANIONS - CATIONS)/(ANIONS + CATIONS) 
 
 
 
              ------------------------------------------------------ 
               IMPROVED ACTIVITY GUESSES PRIOR TO FIRST ITERATION:  
                    PO4-3       Log activity guess:   -14.58        
                                                                    
              ------------------------------------------------------ 
 
______________________________________________________________________________ 
______________________________ PART 4 of OUTPUT FILE _________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS: 23-SEP-2002  TIME: 10: 6:34 
 
 
 
                 PERCENTAGE DISTRIBUTION OF COMPONENTS AMONG 
              TYPE I and TYPE II (dissolved and adsorbed) species 
 
 Pb+2         
          18.9     Percent bound in species #    600   Pb+2                  
 
          81.1     Percent bound in species #1446000   Pb DOM                
 
 
DOM1         
          35.4     Percent bound in species #    144   DOM1                  
 
          27.0     Percent bound in species #1443300   H DOM                 
 
          37.5     Percent bound in species #1446000   Pb DOM                
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 Pb:FA = 1:3 

 
Part 1 and Part 4 

  
________________________________________________________________________________ 
______________________________ PART 1 of OUTPUT FILE ___________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS: 23-SEP-2002  TIME: 10:18:51 
 
 
Pb:FA = 1:3                                                                 
File name org_(333) add buffer                                              
Component file (COMP.DBS):           comp.dbs    COMP v4.00 09/30/1999        
Thermodynamic file (THERMO.UNF):     thermo.unf  THERMO V4.00 09/30/1999      
Gaussian DOM file (GAUSSIAN.DBS):    gaussian.dbsGAUSSIAN V4.00 09/30/1999    
Solids file (TYPE6.UNF):             type6.unf   TYPE6 V4.00 09/30/1999       
 
-------------------------------------------------------------------------------- 
 Temperature (Celsius):  25.00 
 Units of concentration: MOLAL 
 Ionic strength:  0.029 molal; FIXED 
 If specified, carbonate concentration represents total inorganic carbon. 
 Do not automatically terminate if charge imbalance exceeds 30%  
 Precipitation is allowed only for those solids specified as ALLOWED 
   in the input file (if any). 
 Maximum iterations: 200 
 The method used to compute activity coefficients is: Davies equation       
 Intermediate output file  
 
------------------------------------------------------------------------------- 
    330  0.000E+00   -3.46 y 
    600  1.850E-04   -3.73 y 
    144  0.000E+00   -6.00 y 
    410  4.700E-03   -2.33   
    500  3.000E-03   -2.52 y 
    580  1.070E-02   -1.97 y 
 
 H2O has been inserted as a COMPONENT 
  3   1 
    330     3.4600     0.0000 
 
INPUT DATA BEFORE TYPE MODIFICATIONS 
 
   ID        Name       ACTIVITY GUESS    log GUESS   ANAL TOTAL 
    330  H+1                 3.467E-04        -3.460   0.000E+00 
    600  Pb+2                1.862E-04        -3.730   1.850E-04 
    144  DOM1                1.000E-06        -6.000   0.000E+00 
    410  K+1                 4.677E-03        -2.330   4.700E-03 
    500  Na+1                3.020E-03        -2.520   3.000E-03 
    580  PO4-3               1.072E-02        -1.970   1.070E-02 
      2  H2O                 1.000E+00         0.000   0.000E+00 
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------------------------------------------------------------------------------- 
 *** SPECIAL PARAMETERS for Dissolved Organic Matter: 
     Percent Organic Carbon:                        50.00 
     DOC (mg/L):                                        600.00 
     Molecular Weight (g):                        1000.00 
     Charge on DOM species are calculated based on speciation 
 
  ** DOC COMPONENT 144: 
     Total Acidity (umol/mgC):                     1.00 
     Total site concentration (mol/L):            6.000E-04 
 
     The ratio Cs/Cn is:                                  0.50 
 
------------------------------------------------------------------------------- 
 
 
     Charge Balance: UNSPECIATED 
 
       Sum of CATIONS=  8.070E-03 Sum of ANIONS =  3.378E-02 
 
       PERCENT DIFFERENCE =  6.143E+01  (ANIONS - CATIONS)/(ANIONS + CATIONS) 
 
 
 
              ------------------------------------------------------ 
               IMPROVED ACTIVITY GUESSES PRIOR TO FIRST ITERATION:  
                   PO4-3       Log activity guess:   -14.62        
                                                                   
              ------------------------------------------------------ 
______________________________________________________________________________ 
______________________________ PART 4 of OUTPUT FILE _________________________ 
  MINTEQA2  v4.02   DATE OF CALCULATIONS: 23-SEP-2002  TIME: 10:18:52 
 
 
 
                 PERCENTAGE DISTRIBUTION OF COMPONENTS AMONG 
              TYPE I and TYPE II (dissolved and adsorbed) species 
 
 Pb+2         
          10.9     Percent bound in species #    600   Pb+2                  
 
          89.1     Percent bound in species #1446000   Pb DOM                
 
 
DOM1         
          37.4     Percent bound in species #    144   DOM1                  
 
          35.1     Percent bound in species #1443300   H DOM                 
 
          27.5     Percent bound in species #1446000   Pb DOM                
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