
A SECURITY MODEL FOR MOBILE AGENT ENVIRONMENTS USING X.509

PROXY CERTIFICATES

Subhashini Raghunathan, B.E.

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

December 2002

APPROVED:

Armin R. Mikler, Major Professor
Steve Tate, Committee Member
Azzedine Boukerche, Committee Member
Tom Jacob, Committee Member
Krishna Kavi, Chair of the Department

of Computer Science
Robert Brazile, Graduate Advisor
C. Neal Tate, Dean of the Robert B. Toulouse

School of Graduate Studies

Raghunathan, Subhashini, A Security Model for Mobile Agents using X.509 Proxy

Certificates. Master of Science (Computer Science), December 2002, 76 pp., 1 table, 9

figures, 37 titles.

Mobile agent technology presents an attractive alternative to the client-server paradigm

for several network and real-time applications. However, for most applications, the lack

of a viable agent security model has limited the adoption of the agent paradigm. This

thesis presents a security model for mobile agents based on a security infrastructure for

Computational Grids, and specifically, on X.509 Proxy Certificates. Proxy Certificates

serve as credentials for Grid applications, and their primary purpose is temporary

delegation of authority. Exploiting the similarity between Grid applications and mobile

agent applications, this thesis motivates the use of Proxy Certificates as credentials for

mobile agents. A new extension for Proxy Certificates is proposed in order to make them

suited to mobile agent applications, and mechanisms are presented for agent-to-host

authentication, restriction of agent privileges, and secure delegation of authority during

spawning of new agents. Finally, the implementation of the proposed security

mechanisms as modules within a multi-lingual and modular agent infrastructure, the

Distributed Agent Delivery System, is discussed.

ACKNOWLEDGEMENTS

Several people have been instrumental in the completion of this work. First of all, I
want to thank my advisor Dr. Mikler for his guidance, insight, patience, and support
throughout my thesis work. Thank you also for helping me find such an interesting
and challenging topic as this, and helping me see what research is all about. The idea
for my thesis sprung from work I had done at Argonne National Laboratories for the
Globus Project

�

, and I would like to thank Steve Tuecke and Von Welch for guiding
me through my work at Argonne and patiently listening and advising me on my ideas
for a thesis.

Sincere thanks to Dr. Tate, Dr. Boukerche, and Dr. Jacob for taking time off their
busy schedules to be a part of my thesis committee. A special thanks to Dr. Tate
for putting up patiently with my incessant questions and doubts. Thanks also to the
Computer Science department and faculty for providing me an opportunity to pursue
my master’s degree at UNT.

My heartfelt thanks go out to the folks at NRL - Prasanna, Vivek, Cliff, John, Kaizar,
Sandeep, for always being around, always ready to help, and always being such a cool
bunch. And my roommates - Anu and Sandhya - thanks for your moral support and
food, and for being such fun people to live with.

Thanks to all my other friends - both here in the USA and in India - who go unmen-
tioned, but definitely not unforgotten. And finally, a warm and loving thanks to my
dad, mom, Badri, and Padmini for their continued support throughout my master’s
degree.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . ii

LIST OF TABLES . v

LIST OF FIGURES . vi

Chapter

1. INTRODUCTION . 1

Security Issues in Mobile Agent Applications . 4

Host Security . 6

Agent Security . 7

Motivating Example . 9

Scope of the Thesis . 11

2. SECURITY FOR GRID APPLICATIONS . 14

Proxy Certificates . 17

Authentication . 20

Restricted Delegation . 22

Grid Computing and Mobile Agents . 25

3. MOBILE AGENT SECURITY USING PROXY CERTIFICATES 27

iii

Agent Creation . 34

Agent Migration . 36

Agent-to-host Authentication . 36

Agent execution on Remote hosts . 41

Agent Authorization . 42

Delegation . 45

4. DESIGN AND IMPLEMENTATION. 51

Implementation Details. 55

Agent-to-DADS Authentication . 56

Agent Authorization . 63

Delegation . 65

5. CONCLUSION . 68

BIBLIOGRAPHY . 71

iv

LIST OF TABLES

4.1 Core GSS-API routines . 60

v

LIST OF FIGURES

1.1 Mobile Agents for Resource Discovery . 9

2.1 Proxy Certificate Format . 18

2.2 Delegation of authority from entity A to entity B . 19

2.3 GSI authentication using X.509 Proxy Certificates . 21

3.1 Agent-to-host Authentication . 39

4.1 Generating a filename for a Proxy Credential . 56

4.2 Agent-DADS Authentication . 57

4.3 Agent Authorization . 63

4.4 Delegation . 66

vi

CHAPTER 1

INTRODUCTION

Most network applications currently employ the client-server model, where both

the client and server are static processes that communicate data over a network using

message passing or Remote Procedure Calls (RPC). Mobile agents present a paradigm

shift in the way we traditionally view network or distributed applications, in that code

travels over the network to where the data is, instead of vice versa as in the client-

server paradigm. The benefits of this approach include reduced bandwidth require-

ments in data filtering applications, reduced network latency in highly interactive

applications, server-side customization of software to add client-specific functionality,

and disconnected operation in mobile client computing [18]. Other application areas

for mobile agents include e-commerce, active networks [34], and deploying new soft-

ware autonomously. Mobile agents are also well suited to distributed applications by

virtue of their ability to clone themselves and designate a clone for each sub-task.

In addition, agents are being proposed as an increasingly attractive solution for real-

time applications such as routing and resource management in networks due to their

reduced network overhead and fault-tolerant properties [23].

1

A mobile agent, in general, is a software entity (program) that acts on behalf

of another entity (individual, organization, etc.). It is autonomous (capable of deci-

sion making), goal-directed, and is capable of suspending execution on one platform,

moving to another platform, and resuming execution on the second platform. This

implies that an agent encapsulates both program code and state variables such as the

program counter, registers, stack, etc. Since an agent is nothing but a program, it

requires a platform that will execute its instructions. Depending upon the language

used to program the agent, it may be executed either as an independent process or in

the context of a language interpretor. In addition, during its lifetime, an agent may

perform various activities such as acquiring resources on a host, migrating from host

to host, communicating with other agents on local or remote hosts, creating clones,

or merging with other agents [23]. All these activities require the co-operation of

the host that the agent executes on. The underlying system on the host that makes

agent applications possible is known as the agent’s infrastructure. Thus, in addition

to providing an execution environment, the infrastructure must support all the func-

tionality required by an agent application. It is also desirable that an infrastructure

be able to support agents varying in their requirements for language, authentication,

fault-tolerance, etc. Many existing agent infrastructures restrict the agents that they

support to a single language and authentication mechanism, and by virtue of their

2

design, to one class of applications. Further, they do not provide interoperability

between other agent infrastructures, which is one of the reasons the agent paradigm

is not prevalent in today’s network applications.

Another major concern with mobile agents is security. The security concerns

for mobile agent applications include and surpass those for traditional distributed

applications. This is due to the fact that mobile agents travel from host to host,

and in doing so may cross over boundaries that define trust domains. The tightest

boundaries are often drawn across the local host itself: processes started on the host

by one of its valid users are assumed to be “safe”, and allowed the same access rights

as the user. This assumption is no longer valid for mobile agent applications, since an

agent executing on a host may not have originated on that host. Trust domains could

be extended to cover an entire network such as a private Local Area Network (LAN),

but in order to support truly distributed applications, agents must be allowed to

cross these boundaries as well. Thus, there is a need to protect hosts from potentially

malicious agents. Similarly, an agent that originates on a host could assume that its

execution environment is safe, but before it begins execution on a remote host, it must

ensure that the latter is not malicious. Thus, security for agent-based computation is

an important issue, and in fact, the lack of a practical security model for agents has

further delayed the adoption of the agent paradigm in distributed applications. The

3

following section examines the security issues related to agents and agent platforms

in a typical agent application.

Security Issues in Mobile Agent Applications

The introduction of code mobility in the mobile agent paradigm gives rise to a

number of issues related to host and agent security. Jansen et al. [21] classify security

threats into three main categories: disclosure of information, denial of service, and

corruption of information, and examine how they apply to an agent system. Farmer

et al. [6], in their paper, classify security goals for agent applications into what is

impossible, what is easy, and what is possible but not easy. Although a number

of different models for agent systems have been proposed [13], for the purpose of

this discussion it is sufficient to consider a simple model consisting of the agent and

the agent platform/host. An agent consists of a persistent code section that stores

instructions, and a data section that stores the agent’s state. The latter could further

be divided into static data that does not change over the lifetime of the agent, and

dynamic data that changes as a result of agent computation as it migrates from host

to host. Here, the agent code and static data together will be referred to as the agent’s

footprint. An agent originates at a host, referred to as its home platform, migrates to

remote hosts to perform its computation, and finally returns to the home platform

4

with its results. As long as the agent remains on its home platform, it is assumed to

be safe from tampering or eavesdropping. This assumption no longer holds true when

the agent begins migrating from host to host. The itinerary of the agent may cause it

to cross the boundaries of the trust domain that it originated in. For instance, if the

agent originated on a host that was part of an internal network behind a firewall, we

could reasonably assume that it would be safe as long as it restricted its migration

to hosts that were protected by the firewall. This assumption, however, restricts

the flexibility and scalability of agent applications. Therefore, when developing a

security model for agents, the assumptions about trust must be kept to a minimum.

The security requirements for a mobile agent system could be examined under two

categories: security for the host and security for the agent. While host security aims

at prevention of tampering, agent security aims at detection of tampering. This is

because a host is a static entity whereas an agent is mobile. An agent executing on

a remote host is vulnerable to eavesdropping and corruption, since the host exercises

complete control over the agent and has unrestricted access to its code and data.

Consequently, it is easier for an agent to detect tampering, e.g., through the use of

cryptographic checksums, than to prevent it.

5

Host Security

A host provides resources and an execution environment for agents that request

its services. Since agents that do no originate on the host could be malicious, a host

must protect its environment and resources from tampering by such agents. Some of

the issues that must be considered here are agent authentication, agent authorization,

code integrity and correctness, and data integrity.

The agent authentication mechanism verifies the identity of the incoming agent,

which is merely the identity of the user on whose behalf the agent acts. If authenti-

cation was successful, the authorization process ensures that any resources requested

by the agent are permitted it as specified by the host’s security policy. Further, a

host must be capable of recognizing and enforcing additional restrictions placed on

the agent by its originator. Code integrity checking ensures that the agent code has

not been tampered with by malicious entities, while code correctness proofs establish

that the agent code executes under the constraints of the host’s security policies [27].

A mobile agent may become malicious if its state is corrupted, even if its code has not

been tampered with. Hence, a host may verify the integrity of an incoming agent’s

state using techniques such as state appraisal functions [7].

All of the above mentioned security measures could be applied by the host before

accepting an agent for execution. If the agent fails any of these checks, it may be

6

denied access to the host’s environment. Thus, host security measures are generally

pro-active.

Agent Security

Depending upon its application and the sensitivity of data generated, an agent

may need to protect its code and data from eavesdropping not only while in transit

but also from the hosts it executes on. Some issues related to agent security are

host authentication, confidentiality and integrity of agent code and data, integrity of

dynamically generated agent data, and secure delegation.

The purpose of host authentication is to ensure that the remote host chosen for

migration by an agent is sufficiently trusted to provide it a secure execution environ-

ment. A simple way to establish the set of trusted hosts is to store it as static data

inside the agent, and authenticate a remote host using certificate-based authentication

mechanisms such as Secure Sockets Layer (SSL) [12]. Upon successful authentication,

the agent may need to migrate to the remote host over open and insecure network

connections. Hence, it is important to keep the contents of the agent confidential to

prevent eavesdropping over the network. Further, some measures must be employed

to ensure integrity of the agent (detect tampering of its code and data) as it tra-

verses the network. Confidentiality could be achieved by encrypting the agent before

7

transmitting it over the network, while integrity could be achieved through the use

of cryptographic hash functions.

Besides hiding its contents from network eavesdroppers, an agent may sometimes

wish to hide the functionality of its code from the host it executes on, for instance,

when the agent uses a proprietary algorithm to predict stock rates. In order to ensure

code privacy, Sander et al. [30] have proposed computing with encrypted functions

and generating encrypted results that are later decrypted by the agent’s originator.

A weaker form of code privacy is provided by obfuscating agent code [19]. During

the course of its execution, the agent may generate data that must be protected

from corruption by potentially malicious hosts that it might visit in future. Partial

Result Authentication Codes (PRACs) allow an agent to encapsulate intermediate

information such that it preserves a property known as forward integrity [36].

One of the most important properties of an agent is its ability to clone itself when

required. This implies that it must delegate or transfer its authority to its clone. The

clone in turn must have the capacity to delegate authority to any agents it creates.

The transfer of authority must be done securely such that it is difficult for a malicious

entity to steal credentials from and impersonate either of the two entities involved in

a delegation.

8

Motivating Example

The following discussion presents an example derived from a paper by Dunne [5]

to illustrate a typical application area of mobile agents, namely, resource discovery in

a heterogeneous network such as the Internet.

������

������

D1

	�	
��

���

D

D : NA’s domain

D1, D2 : Sub−domains

NA

: Agent

: Cloning process

D2

Figure 1.1: Mobile Agents for Resource Discovery

Consider the example network divided into several administrative domains, each

with its own usage and security policies, and managed independently of others. As

illustrated in figure 1.1, the network administrator (NA) of each domain injects a

discovery agent (DA) into the network. The DA’s function is to determine resource

availability within the NA’s domain, hence its itinerary is limited to those nodes

that belong to the NA’s administrative domain. The DA divides its domain into

several sub-domains based on the network topology, clones itself, and designates a

clone for each of these sub-domains. The clone’s itinerary is limited to the nodes

9

that belong to its designated sub-domain. The clones subdivide their domains and

this process continues till the domains are small enough that no further cloning is

required. Whenever a DA visits a node, it updates itself with resource information

on that node, and updates the node with resource information about other nodes it

has previously visited. If two sibling agents (agents having the same parent) happen

to arrive at the same node, the agent that arrived later destroys itself. The clones

propagate resource information to their respective parents until complete resource

information about the entire domain ultimately reaches the original DA.

The above example presents several scenarios where authentication, authorization,

and delegation would be required. In general, an agent created by an entity acts on

behalf of that entity. Thus, the DA acts on behalf of the NA. From a security

standpoint, the following issues are identified:

. The discovery agents must be able to prove to a verifying host that they act on

behalf of the NA. In other words, a DA must authenticate itself to each node

it visits.

. The DA must be able to securely delegate its authority to any clones it creates.

. The NA must have some means of restricting the DA’s authority to accessing

specific files on specific hosts.

10

In later chapters, as mobile agent security issues are addressed, this example will

be revisited to illustrate how security objectives for mobile agent applications could

be achieved.

Scope of the Thesis

This thesis presents a security model for mobile agents that primarily focuses on

the following issues:

� Authentication: A mechanism to authenticate an agent to remote hosts is

presented.

� Authorization: Means to limit the rights of an agent to exactly those that are

required by it to perform its task are discussed. The discussion also considers

how an agent could further limit the rights of agents that it spawns or clones.

� Delegation: Methods are proposed to securely delegate the originator’s au-

thority from the originator to an agent, and from one agent to another. The

delegation mechanism proposed could be used to not only propagate existing

restrictions to the agent receiving the delegation, but also introduce additional

restrictions on it.

11

Mobile agent applications are generally distributed in nature, since agents roam

around a network and access resources on hosts distributed across administrative and

trust domains. Therefore, a security infrastructure for the mobile agent environment

must take into account both the distributed nature and mobility of the entities in-

volved. The security model proposed in this thesis borrows from the Grid Security

Infrastructure (GSI), a security infrastructure for large-scale distributed computing

environments, or Grids, as they are commonly known. In addition, this thesis ad-

dresses the implementation aspects of the model in the context of a specific agent in-

frastructure, the Distributed Agent Delivery System (DADS). The DADS was chosen

because it provides a flexible and modular interface that can support a heterogeneous

blend of agents and agent applications. Therefore, the proposed mechanisms for au-

thentication, authorization, and delegation could easily be incorporated as modules

within the DADS.

The material is organized as follows. Chapter 2 introduces Computational Grids

along with the security requirements of Grid applications. In particular, it focuses

on X.509 Proxy Certificates and their use in authentication and restricted delegation

for Grid applications. Finally, it presents the motivation for applying Grid security

solutions to mobile agents. Following that, Chapter 3 presents a security model for

mobile agents based on GSI, that focuses on authentication of agents, restriction

12

of agent privileges, and secure delegation during spawning of new agents. Next,

Chapter 4 discusses the design of the DADS, its agents, and its component modules,

and explains how the proposed agent security mechanisms could be incorporated into

the DADS as modules. Chapter 5 presents a summary of the thesis along with a

discussion of future work.

13

CHAPTER 2

SECURITY FOR GRID APPLICATIONS

Computational Grids [10] are high-performance distributed computing environ-

ments that provide pervasive access to computational resources through large-scale

resource sharing among multiple heterogeneous networks. Thus, Grids attempt to

provide computing power “on demand” to applications, much like the power grids of

today which supply electricity on demand to consumers. The user in effect pays for

using computational power but not for the cost of the computing equipment itself.

The result is enormous processing power that could be used for complex scientific

computation, modeling and visualization experiments, distributed data mining, and

other super-computing applications [9].

A Grid application differs from traditional distributed applications in several ways.

It is characterized by a large and dynamic user population that shares resources across

large heterogeneous networks. The resource pool itself is large and dynamic and may

include other hosts in the network, file and print servers, cluster computers, etc. Dur-

ing the course of its lifetime, a Grid application started by a user may acquire and

release resources dynamically on several machines. These resources would typically

14

be situated in different geographic locations of the Grid and belong to different ad-

ministrative and trust domains. Hence, it is necessary for the user to be authenticated

by each of the required resources before accessing them. Due to the dynamic nature

of the resource pool and the need for applications to acquire resources continually,

it is not possible to establish trust relationships between the user and resources at

the start of the computation itself. Further, Grid applications are usually long-lived,

requiring several hours or even days to complete. Hence, it is desirable that the user

authenticate herself just once at the start of the computation, and have a user process

authenticate to resources on her behalf as and when required, without further inter-

vention from her. This property is known as single sign-on, and it implies the need

for a mechanism to delegate the user’s authority to processes acting on her behalf.

In addition to single sign-on, delegation is required in situations such as third-party

data transfers, where a user may wish to transfer data between two remote hosts,

say B and C. Instead of authenticating herself to B and reading data from B, then

authenticating herself to C and writing data to C, the user could delegate her author-

ity to both B and C, which could then mutually authenticate each other using the

delegated credential and directly transfer data.

In a Grid, users and resources, by virtue of being located in different administra-

tive domains, may employ different mechanisms for authentication and authorization

15

depending upon the local domain’s security policies. These mechanisms could include

Kerberos1, Unix security, Secure Sockets Layer (SSL), Secure Shell 2, etc. Moreover,

security policies on local sites are generally inflexible and vary widely in terms of cre-

dential requirements from one site to another. It is therefore impractical for a user to

employ different mechanisms to authenticate to different resources. What is required

is a global mechanism that provides inter-domain access to heterogeneous resources

while preserving site-specific security policies. Hence, a security infrastructure for

Grid applications must be able to inter-operate with local security mechanisms while

providing uniform authentication and authorization mechanisms to Grid users and

applications. The Globus Toolkit3 [8], developed under the Globus Project4 [15], pro-

vides core middleware services such as communication, information infrastructure,

data management, fault detection, and security, which are required to support Grid

applications. The Grid Security Infrastructure (GSI) [11, 17], which is the security

component of the Globus Toolkit, was developed to address the security issues typical

of Grid applications. GSI uses Public Key Infrastructure (PKI) and X.509 certificates

to provide SSL-based authentication, confidentiality, and message integrity for Grid

applications. It also provides multi-site authentication while allowing each site to

1 � Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts.
2 � SSH Communications Security, Corporation Finland.
3 � University of Chicago, Chicago, Illinois.
4 � University of Chicago, Chicago, Illinois.

16

define its own security policy and authentication mechanisms. Thus, we could have

different sites participating in a Grid application using GSI for inter-site authentica-

tion, while continuing to use site-specific mechanisms such as Kerberos, Unix security,

etc. for intra-site authentication. Finally, GSI uses Proxy Certificates to achieve the

essential requirements of single sign-on and delegation for Grid applications. Over

the years, GSI has proved to be one of the most successful approaches to providing

Grid security. It has been deployed not only in Grid environments, but also in dozens

of supercomputers and storage systems, thus achieving a level of acceptance reached

by few other security infrastructures [3].

Proxy Certificates

GSI addresses the issues of single sign-on and delegation through the use of X.509

Proxy Certificates, the specification for which is outlined in [32]. A proxy, as the

term implies, stands temporarily in place of the original. An X.509 Proxy Certificate

(PC) is a temporary credential that allows its owner to represent another entity for a

limited time period. The entity that the PC owner stands in for could be either (1)

an end-entity such as a user or service that possesses a valid X.509 certificate issued

by a Certificate Authority (CA), or (2) an entity such as a process that possesses

a valid Proxy Certificate. The user or process that signs a PC is referred to as the

17

Proxy Issuer (PI). Like all X.509 certificates, a PC has its own distinct public and

private key pair. It can sign other PCs, but not any other end-entity certificates.

A PC is derived from its PI’s X.509 certificate, and its format is illustrated in

figure 2.1. Some of the fields of a PC are indicated here:

Version

Signature Algorithm

Issuer Name

Validity period

Subject Name

Subject Public Key

Issuer unique ID

Serial Number

Subject unique ID

X.509v3 extensions

PC extensions

X
.
5
0
9
v
3

C
e
r
t
i
f
i
c
a
t
e

Version (= 1)

Policy restrictions

Certificate Chain
Depth of

Figure 2.1: Proxy Certificate Format

. The Serial Number field is unique amongst all PCs issued by its PI.

. The Issuer field is the same as the Subject field of its PI.

. The Validity period is typically shorter than that of its PI, and is specified at

the discretion of the PI.

. The Subject field is its issuer name (or the subject name of its PI) concatenated

18

with a component that is unique amongst all PCs issued by its PI. This ensures

that each PC has a unique identity.

. The public key in SubjectPublicKeyInfo is a part of a newly generated key

pair, the private key of which belongs to the PC owner.

. If the extensions keyUsage and extKeyUsage are present in the PI’s certificate,

they are present in the PC as well, and may restrict its key usage further.

. The Basic Constraints extension is present and is set to false to indicate that

the PC cannot act as a CA.

In addition, every PC contains a new extension called ProxyCertInfo that iden-

tifies it as a PC and places additional restrictions on its use.

Establish
Secure

Connection

Transm
it req

uest

Entity A Entity B

Transmit PC

Establish
Secure
Connection

 Decrypt pvt key
verify request
 sign PC

 create cert. request
 Generate key pair

Figure 2.2: Delegation of authority from entity A to entity B

19

The purpose of creating a PC is to delegate authority from one entity to another.

Figure 2.2 illustrates the delegation of authority from entity A to entity B located

on different machines in a network. First, A and B mutually authenticate each other

with their respective X.509 credentials using SSL and establish an authenticated,

integrity-checked channel for communication. Next, B generates a key pair, uses it to

create a Proxy Certificate request, and transmits it to A over the channel. Finally,

A verifies that the certificate request conforms to the PC profile, optionally places

restrictions inside the PC, signs it with its private key, and returns it to B. As a

result, B becomes the owner of a proxy credential that represents A.

Authentication

The owner of a proxy credential could use GSI authentication to establish its

identity to a verifier. As illustrated in figure 2.3, a PC owner authenticating itself

to a verifier using GSI must present to the verifier its entire certificate chain starting

from the CA certificate (or the end-entity certificate) to the last PC. The latter could

then apply a path validation algorithm similar to the one employed for X.509 certifi-

cates [20], the differences to which are outlined in the Proxy Certificate draft [32].

The purpose of path validation is to verify the binding between the PC subject name

and public key. Among others, the verifier must ensure that the certificate chain has

20

a valid depth, and that each certificate in the chain is valid at the current time. Addi-

tionally, for each certificate i in the chain, the issuer name of i must equal the subject

name of i − 1, and further, certificate i must be signed by certificate i − 1. Once the

chain is verified, the verifier could issue a challenge using procedures outlined in the

SSL protocol [12] to establish that the authenticating entity was indeed the owner of

the PC presented to the verifier.

validation
Path

PC Chain

Chal
leng

e us
ing

PC p
ubli

c ke
y

PC private key

Response using

PC Owner Verifier

Figure 2.3: GSI authentication using X.509 Proxy Certificates

GSI provides cross-domain authentication through the use of global and local

credentials, and a mapping between the two. Specifically, each user requires a Globus

credential, which is an X.509 credential issued by a Globus CA, and accounts on each

site that the user wishes to access resources on. Each site has a Globus gatekeeper,

a trusted daemon that authenticates users using GSI. In order to access resources on

a local site, the user first authenticates herself to the gatekeeper at that site using

21

her Globus credential. Upon successful authentication, the user’s Globus identity is

mapped to a corresponding local identity, such as a Unix user id, that is recognized by

the site’s security mechanisms, and used for authorization decisions when accessing

the site’s resources. In addition, the delegation of authority from a user/process A to

another process B is mediated through the gatekeeper at process B’s site. Thus, the

Globus credential is used for single sign-on and delegation, while the local credential

is used to enforce site-specific security policies.

Restricted Delegation

An entity that owns a Proxy Certificate could sign additional PCs and delegate

its authority as many times as desired: thus user U could delegate her authority to

process P, which in turn could delegate its authority to process Q, and so on. In

this manner, a chain of authority could be established starting at the end-entity and

ending at the entity that was delegated a proxy credential. At each level of delegation,

the credential consists of the end-entity certificate and a set of Proxy Certificates. The

entity at each level could associate restrictions with the Proxy Certificate that it signs,

to indicate the set of operations that the credential owner at the next level is allowed

to perform. Thus, PCs could be used for restricted delegation of rights.

22

Every Proxy Certificate contains an extension called ProxyCertInfo that identi-

fies the certificate as a PC, and defines any restrictions that the PI may have placed

on its use. This extension is also required to ensure proper path validation of a Proxy

Certificate chain. Through the pCPathLenConstraint field inside this extension, the

PI could specify the depth of the certificate chain that the PC owner may sign, and

thus limit subsequent delegation of the PC. A depth of 0 indicates that the PC cannot

sign any other PCs. The PI could also specify restrictions on the PC’s use through the

proxyPolicy field inside the extension. The purpose of placing policy restrictions in-

side a PC is to limit the amount of authority delegated to it. The set of rights granted

a PC owner is then the intersection of the set of rights in each certificate along the

certificate chain leading to the PC. Therefore, when making authorization decisions

for the PC owner, a verifier must take into account not only the local host’s security

policies, but also the restrictions placed inside the PC. The presence of policies inside

PCs places the burden of authorization decisions on the verifier, since it is expected

to understand the policy language of the restrictions, and is the only entity that can

enforce the restrictions specified in the PC.

The end-entity’s private key is usually stored in encrypted form on her local ma-

chine. In the absence of PCs, single sign-on could be achieved by having a local

process authenticate to resources on the user’s behalf, but this would require the

23

user’s private key to be stored in decrypted form somewhere in memory so that the

process could access it, and thus increase the risk of it being compromised. The use

of Proxy Certificates for single sign-on minimizes exposure of the user’s private key,

since it needs to be decrypted just once, at the time the PC is being created. Be-

yond this, single sign-on and further delegation do not require access to the user’s

private key. The PC’s private key is now stored unencrypted on the machine, but its

compromise does not have as harmful consequences as compromise of an end-entity’s

key for the following reasons. First, the user certificate is usually long-term, and if

compromised, hard to replace. In contrast, a PC has a much shorter validity period

and could be easily created by the user without requiring interaction with any third

party such as a CA. Second, the authority of a PC could be limited by specifying

restrictions on its use through the ProxyCertInfo extension. The same extension

could also be used to limit the depth of the certificate chain created by a PC. Finally,

the keyUsage extension could be placed inside a PC to restrict the usage of its private

key.

The concept of a proxy credential is not unique to GSI. In a paper by Neuman [28],

proxy credentials have been proposed for authorization and accounting in distributed

systems. Kerberos [24] also employs the concept of a Ticket Granting Ticket (TGT),

a temporary user credential that could be used for single sign-on, and forwardable

24

tickets that could be used for delegation. However, the creation of a Kerberos TGT

involves a trusted third party, the Domain Controller. In contrast, a PC can be

created by the end-entity without requiring interaction with any trusted third party.

Further, in order to be useful for inter-domain authentication, Kerberos must also be

used as the intra-domain authentication mechanism, a condition that is not feasible

for Grid applications [3].

The GSI is implemented on top of the Generic Security Services Application Pro-

gramming Interface (GSS-API) [35] to provide a generic interface for authentication

and authorization mechanisms. Currently, GSI uses SSL libraries to provide X.509

certificate-based security services for Grid applications. Implementations of the GSS-

API using Kerberos have also been provided.

Grid Computing and Mobile Agents

The distributed nature of Grid applications very closely resembles that of mobile

agent applications. Thus, both are similar in many respects as outlined below:

• Both applications are characterized by heterogeneity of participating sites with

varying trust levels between constituent sites. Hence, establishment of trust

between two entities may need to cross administrative boundaries.

25

• A mobile agent could be equated to a long-lived process on a Grid, and similar

to a Grid process, is characterized by reduced interaction with the user that

created it.

• Both agents and processes on a Grid must have the power to act on behalf of

the user that created them. Further, they must have the ability to delegate

their authority to other processes or agents.

• In a Grid, the user and resource population is dynamic. Similarly, mobile agents

(which can treated as both user and resource) have a dynamic population.

• Similar to applications on a Grid, mobile agents may acquire resources, create

other agents, and release resources dynamically.

• Both Grid environments and mobile agent environments are designed to be

scalable and capable of large-scale deployment of resources.

Due to the similarity in Grid environments and mobile agent environments, it is

reasonable to conclude that the security infrastructure for Grids could be translated

to the mobile agent environment. Special attention, however, must be paid to the

factors that make the latter different, namely, mobility of the entities involved. The

following chapter outlines mechanisms using Proxy Certificates that address several

important security issues in the mobile agent environment.

26

CHAPTER 3

MOBILE AGENT SECURITY USING PROXY CERTIFICATES

A typical mobile agent application – such as the one illustrated in Chapter 1 –

requires several agent-host and agent-agent interactions that may take place over a

hostile communication channel between entities from different trust domains. Hence,

it is necessary to secure both agents and hosts by providing basic authentication and

authorization mechanisms that could be used for these interactions.

For most systems, decisions about resource access - namely, who might access a

resource and to what extent - are based on the identity of the principal making the

request. This requires that the principal possess a credential and some secret known

only to the principal that could be used to identify it to the resource. Examples

of such credentials are a login/password pair for password-based authentication, a

Ticket Granting Ticket (TGT) for Kerberos, an X.509 certificate and a private key

for Secure Sockets Layer (SSL) authentication, etc. Similarly, a mobile agent must

possess a credential that allows it access to resources on remote hosts. Further, the

agent must delegate this credential to any new agents that it creates. A mobile agent

does not have an identity of its own, but acts on behalf of another entity. Therefore, at

27

all times, the credential must identify the principal that the mobile agent represents.

In a typical agent application, the entity that an agent acts on behalf of could

be any one of the agent’s creator, originator, or home platform. The creator is the

entity that “manufactures” the agent, including its code, static data if required, and

proof of correctness functions. For instance, the creator could be a software firm

specializing in producing agent applications. The originator is the entity that injects

an agent into the network. Typically, the originator (or the organization she belongs

to) would purchase a mobile agent application from a creator and deploy it in their

network. The agent’s home platform is the host it originated on and is considered the

most secure and trusted environment for agent execution. Each of these entities must

have means of uniquely identifying themselves, such as an X.509 certificate issued by

a trusted Certificate Authority (CA). Of these three entities, the host, however, is

inanimate and hence cannot be held responsible for the actions of the agent. In many

cases, the creator too cannot be held responsible for the actions of the agent, but

can at best vouch for the correctness of the agent. Any harm caused by the agent

(due to it becoming malicious, for example) is ultimately the responsibility of the

entity that chooses to deploy it. Therefore, it is the originator that is responsible for

the agent and its actions, and hence for the purpose of this discussion it is assumed

that the agent acts on behalf of its originator. Viewing the agent in this manner has

28

some other advantages: the originator could customize the agent – e.g., change code

parameters – before deploying it in an agent system. Further, in routing and resource

management applications, the originator would typically be the network administrator

of a local network where the agent is deployed, and is likely to have higher privileges

than the creator. Hence, agents carrying their originator’s credentials would have

higher privileges than those carrying their creator’s credentials, and could be used

to perform privileged operations on the hosts they visit, such as updating the host’s

routing table.

For the following discussion, it is assumed that the agent’s originator, as well as

every host in the network that the agent is likely to visit, possesses a valid X.509

certificate issued by a trusted CA. This thesis proposes the use of X.509 Proxy Cer-

tificates (PCs) as credentials for mobile agents. A PC would allow its owner, the

agent, to identity itself as representing its originator for authentication purposes, and

at the same time facilitate the creation of new PCs for any clones that it might create.

Additionally, through the values stored in its fields, a PC could be used to realize

various other desirable security features in the mobile agent environment:

1. A mobile agent is created and deployed in a network for a specific purpose that

lasts a finite amount of time, typically several hours. Hence, it is desirable to

limit the lifetime of the agent to exactly the period of time required for its task.

29

This limits the damage caused by a stolen credential to the time for which it is

valid. The lifetime of a PC could be specified through its Validity field that

lists the start and end time during which it is valid. The validity period of a

certificate chain is the intersection of the validity period of individual certificate

inside the chain.

2. The subject field contains the identity of the agent, which is a concatenation of

its issuer name and a unique field, thus making the agent uniquely identifiable.

This is useful in situations such as logging an agent’s activities on a host. Also,

the agent’s identity along with associated timestamp information could be used

to leave trace information on a host, so that agents visiting the same host in

future could be made aware of the last visitation time of an agent on the host,

and clone or merge as required. The agent’s identity could also be used to

enforce policy restrictions on it. For instance, the originator may create an

agent and propagate its identity, along with restrictions on resource access that

apply to the identity, to other hosts in the network. In addition, a unique

identity makes it possible to specify the agent’s PC in a Certificate Revocation

List (CRL). An agent itself could use another agent’s identity as the basis for

establishing agent-agent communication.

30

3. The keyUsage extension could be used to limit the usage of the PC’s key.

For instance, if the Proxy Issuer (PI) wished to restrict usage of the PC to

authentication alone, a corresponding value for this field may be assigned.

4. The pCPathLenConstraint field inside the ProxyCertInfo extension allows an

agent’s originator to restrict the depth of the descendent tree rooted at the

agent. The agent itself may use this field to restrict the level of delegation

that its child agent may perform. Thus, if the originator creates an agent with

a pCPathLenConstraint of 1, that agent could create clones, but the clones

themselves would not be able to create other agents. The path validation algo-

rithm for PCs must ensure that the depth of the certificate chain is consistent

with the value of the pCPathlenConstraint field for each certificate in the

chain.

5. The ProxyPolicy field inside the ProxyCertInfo extension contains restrictions

on the PC owner’s authority, and could be used by a host in conjunction with its

own security policy to determine the privileges that the PC owner (the agent)

is allowed. The absence of this field indicates an unrestricted proxy, implying

that the proxy owner has the same rights as the Proxy Issuer. This field is

discussed in later sections.

31

In addition to the above-mentioned fields, a new private extension for Proxy Cer-

tificates called AgentInfo is proposed having the following format:

AgentInfo ::= SEQUENCE{

agentHash AgentHash,

delegateInfo DelegateInfo }

AgentHash ::= SEQUENCE{

algorithm AlgorithmIdentifier,

value BIT STRING }

DelegateInfo ::= SEQUENCE{

hostCertificate Certificate,

hostSignature Signature }

The AgentInfo field is created by the PI with the co-operation of the host on

which delegation takes place. The following fields are defined:

agentHash contains a cryptographic hash of the agent’s footprint(i.e. code and static

32

data). It serves as a binding between the PC owner (the agent) and the PC

itself. This field is verified by a host during the authentication process.

delegateInfo contains the hostSignature field, which is a signature using the pri-

vate key of the host on which delegation took place. The signature is computed

over the host id, the time at which delegation took place, and a cryptographic

hash of the agent’s footprint, and may be verified using the host’s public key

stored in hostCertificate. The delegateInfo field could be used by other

hosts to verify the identities of the hosts through which the agent was dele-

gated, and to ensure that delegation took place on trusted hosts only. This

field is similar to the delegationTrace extension proposed in an earlier version

of the X.509 Proxy Certificate draft [33].

The AgentInfo extension is not critical, but applications that rely on this ex-

tension to make authentication decisions for agents may reject an agent whose PC

does not contain this extension. The use of this extension for authentication and

delegation is detailed in further sections.

The security issues in a mobile agent application arise as a result of various inter-

actions between agents and hosts, starting from the time an agent is created to the

time it returns to its home platform. At the time of agent creation, the originator

33

must temporarily delegate her credential to the mobile agent and specify restrictions

on it. During migration to a remote host, the agent must authenticate itself to the

remote host. When executing on the remote host, the latter must verify that each

resource requested by the agent is allowed it as per the host’s policies and the agent’s

restrictions. During the course of its execution, the agent may choose to clone it-

self, which requires that the clone be delegated the agent’s credential and optionally

acquire further restrictions on its authority. In the following sections, the resource dis-

covery example from Chapter 1 is revisited in order to explain how Proxy Certificates

could be used to secure these interactions.

Agent Creation

As illustrated in the example from Chapter 1, the network administrator (NA)

creates a discovery agent (DA) for the purpose of resource discovery. It is assumed

that the private key corresponding to the NA’s X.509 certificate is encrypted with

a pass-phrase and stored on her workstation H1 in a local directory accessible only

to the NA and processes started by her. In order to create the DA and grant it a

temporary credential to represent the NA, the NA generates a Proxy Certificate from

her X.509 certificate containing the following fields:

34

. The subject is the NA’s Distinguished Name (DN) from her end-entity certifi-

cate, concatenated with a unique number.

. The validity period is set to the time for which the DA is expected to be

active, say 12 hours. At the end of this period, a new Proxy Certificate must

be generated if required.

. The delegation depth (pCPathLenConstraint) is left unspecified, allowing un-

limited delegation.

. The restrictions stored in proxyPolicy limit the DA’s authority to accessing

network and user-specific system files on the hosts in its domain.

. A hash of the DA is stored in agentHash, thus binding the DA to its PC.

. The NA engages in an exchange with the local host H1, that results in the cre-

ation of the delegateInfo field containing H1’s signature on its (H1’s) identity,

the current time, and a hash of the DA. This exchange is detailed in a later

section.

The NA supplies a password to decrypt her private key and signs the PC generated

above. The PC along with its unencrypted private key is stored on H1 in the NA’s

local directory. The NA then injects the DA on the host H1.

35

Agent Migration

The function of the DA is to gather resource information about its domain. Thus,

the DA is required to migrate from host to host to perform its function. Before

migration to a remote host can occur, the DA must authenticate itself to the remote

host.

Agent-to-host Authentication

An unprotected mobile agent’s code and data are open to corruption by malicious

hosts or network eavesdroppers, hence a host that allows a remote agent access to

its environment must be presented proof of the agent’s identity and integrity. In the

mobile agents example, the DA represents the NA in all its actions, hence, the DA

must authenticate itself to a host as the NA. Furthermore, the DA must present proof

to the host that it has not been tampered with. The DA could authenticate itself to a

remote host using SSL. However, SSL cannot be used with standard X.509 certificates

in the agent-host authentication scenario, since this would require the agent to possess

the private key of its originator. Equipping the agent with this key is dangerous, since

it allows any malicious platform or network eavesdropper to extract the key from the

agent, thus invalidating the security of the originator’s private key. In fact, it is

almost impossible to store a key securely on an agent [6]. Certain methods such as

36

encrypted functions [1, 4] could be used to protect the privacy of the originator’s key,

but the solutions proposed are only of theoretical interest because of their lack of

efficiency.

An agent cannot carry keys with it: however, it is still possible to prove that it

acts on its originator’s behalf. One way of doing this is to have the agent’s originator

apply a hash function on the agent, sign the hash with her private key, and include

the signed hash along with her certificate in the agent’s data area. A verifying host

would decrypt the signed hash using the public key of the originator, apply the same

hash function on the agent that the originator used, and compare the two hashes.

A match would establish that the originator did indeed sign the agent, hence it is

reasonable to conclude that the agent represents its originator. Further, it proves that

the agent has not been modified in any way inconsistent with its functionality and

thus establishes its integrity. An agent comprises code and data sections, of which the

footprint(code and static data) does not change over its lifetime, hence proving its

integrity is straightforward and follows from the discussion above. Proving integrity of

non-static data, however, is much harder, and is by itself an active research area [22].

This document does not concern itself with non-static data integrity issues.

The method described above establishes the agent’s authenticity as a consequence

of verifying its integrity. While this approach to authentication does not require the

37

agent to carry the private key of its originator, it has some disadvantages:

1. The signed hash of the agent serves as its credential. Since the agent does

not possess keys, it does not have the power to generate new credentials on

its originator’s behalf. Hence, it cannot create new agents on-the-fly that dif-

fer from the original either in code (different functionality) or data (restricted

functionality). This greatly reduces the power and autonomy of the agent.

2. When an agent clones itself, the clones inherit the signed hash from their par-

ent. Since the agent and all its clones possess the same digest, it is impossible

to securely distinguish an agent from its clones. A unique agent identifier is

necessary for activities such as communicating with other agents, merging of

agents, etc.

Agent authentication using Proxy Certificates can overcome the shortcomings of

the authentication mechanism outlined above. Authentication using PCs is a two-

step procedure: first, the agent proves knowledge of its PC’s private key to a remote

host. Second, it transmits itself to the remote host so that the latter may verify

the binding between the agent and its PC. As an example, consider the interaction

between the DA on host H1 authenticating itself to a remote host H2, illustrated in

figure 3.1:

38

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���� ����	
��

Auth:
Step 1

PC pvt
key

PC pvt
key

Host H1 Host H2

GSI Authentication

Authentication OK

Transmit Clone

Verify OK / NOT

Transfer credentials

Clone Step 2
Auth:

Clone DA

Figure 3.1: Agent-to-host Authentication

1. The DA with its proxy credential and H2 with its X.509 credential use the

Grid Security Infrastructure’s certificate exchange and challenge-response phase

to authenticate each other (Chapter 2). During this step, H2 performs path

validation on the DA’s certificate chain consisting of the NA’s certificate and

the DA’s PC. Further, the DA and H2 establish a session key to create a secure

communication channel between them.

2. The DA clones itself and transmits the clone over the channel to H2. H2 com-

putes a hash over the clone and verifies that it matches the agentHash field

inside the DA’s PC. If it does, the DA stands authenticated and H2 sends a

positive response to the DA, otherwise it sends a negative response and termi-

nates the connection.

39

3. Upon receipt of a positive response, the DA uses the session key established

during step 1 to encrypt its credential, including its certificate chain and private

key. It then transfers the same to H2, where it is stored in a directory accessible

to the DA’s identity alone.

4. The DA has now essentially migrated to H2. It therefore destroys its proxy

credential on H1, and then terminates itself. The clone on H2, being an exact

copy of the agent on H1 and possessing the DA’s credential, could function as

the original DA and resume execution on H2.

The above procedure (steps 1–4) is repeated each time the DA migrates to a new

host. Additionally, during step 1, the host could verify the delegateInfo field for

each PC in the agent’s certificate chain, as explained in the next section. During

agent migration, the agent’s credentials are transferred from one host to another over

an encrypted channel, and hence are safe from network eavesdroppers. However,

the remote host that the agent migrates to has complete knowledge of the agent’s

credential. Thus, there is always the possibility that it may misuse the credential and

create malicious agents impersonating the original. In the example, assume that host

H2 is malicious. Since H2 has access to the DA’s proxy credential, it could create a

malicious discovery agent DA2 possessing the same credentials and hence the same

40

set of rights as the original DA, and use it to propagate false resource information in

the network. The agentHash field, by dint of containing a cryptographic hash of the

legitimate DA, guards against this possibility. Therefore, a malicious agent such as

DA2 is prevented from impersonating the DA since the former would fail step 2 of

the authentication process outlined above. Thus, the presence of the agentHash field

ensures that no entity apart from the agent that owns the PC could be authenticated

using the PC. In addition to authentication, the DA’s integrity is established during

step 2.

Agent execution on Remote hosts

Once an agent such as the DA in the agents example migrates to a remote host

such as H2, it begins execution on the host. During the course of its execution, the

agent may require access to the host’s resources such as its file system, operating

system services, etc., which requires that the host authorize these resource requests.

Further, the agent may create new agents or clone itself, which requires a delegation

of authority from the agent to its child agent.

41

Agent Authorization

Authorization is the process of ensuring that the agent performs only those oper-

ations that it is permitted. This requires that the host have knowledge of the actual

set of operations the agent is allowed, and verify each resource requested by the agent

against this set. The simplest method of performing these checks is to grant the

agent the same set of rights as its originator, and leave the task of authorization to

the operating system. For example, assume that the NA has a local account on each

of the machines in the domain of the DA, and that when the DA travels to H2, it

queries the routing table of H2. The DA would be granted access to H2’s routing

table only if the NA herself had access to it. This check could be performed by the

operating system on H2 using the security policies pertaining to local user accounts.

The disadvantage with this approach is that an agent created by an originator, by

dint of acting on its originator’s behalf, may have more rights than the latter intended

it to have. Granting an agent more power than is strictly required to complete its task

is dangerous, especially since agents and their credentials are prone to compromise

by malicious entities. For instance, assume that the NA had root privileges on all

hosts in the DA’s domain. In the absence of restrictions, the DA would automatically

have root privileges on each host it visited, even though all it may require is access

to certain system files. If the DA became malicious, it could use its root privileges to

42

compromise every host in its domain. The amount of damage could be contained by

limiting the validity period of the agent’s proxy credential, but it would be desirable

to have a means of limiting the rights of the agent itself.

One way to achieve this is for the originator to associate a set of rights with an

agent at the time of its creation, and store it as static data inside the agent. When

an agent visits a host and requests resources, the host must consider the restrictions

stored within the agent, in addition to its own local policy, in order to make an

authorization decision for the agent. This approach permits the originator to create

agents with varying rights to perform varying tasks, and serves to further limit the

damage caused by malicious agents. However, once an agent has been created, all its

descendents would have the same rights as the original agent. Since the original rights

are included in the agent’s static data, they cannot be altered without destroying the

agent’s integrity. It would be desirable, however, for an agent to have some means

of restricting the rights of its clones and of other agents it might create dynamically.

Proxy Certificates can be used for this purpose.

A PC generally inherits the rights of its PI. However, the PI could specify restric-

tions on the PC through its proxyPolicy field. The restrictions must be encoded in

a policy language that is understood by the both the entity that specifies (i.e., the

NA) and verifies (i.e., host H2) the restrictions. For example, assume that the NA

43

has read, write, and execute permissions on a file F1 on host H2, and wishes to grant

the DA read and execute permissions for the same. The restriction for the required

right could be of the form DENY F1@H2 WRITE, meaning that write permission on F1

is denied the agent. Similarly, the DA could create another agent DA1 and grant it

read-only access to F1 by specifying a restriction of the form DENY F1@H2 EXECUTE

inside DA1’s PC.

The policies stored in a PC are extracted by the remote host to make authorization

decisions. For each resource requested by an agent, the host must verify that the

request satisfies the following two conditions:

–c1– Is the agent’s identity (i.e. its originator) allowed the operation as specified by

the operating system’s security policies?

–c2– Has the agent’s PI allowed the agent the operation, based on the restrictions

inside the agent’s PC?

In addition, if the agent’s PI is itself a PC, it too must satisfy the conditions listed

above. In other words, the rights associated with a PC are the intersection of the set

of rights specified in every PC along the PC owner’s certificate chain. These rights,

in conjunction with the host’s local security policies, determine the final set of rights

that the agent possesses. When the agent clones itself or creates a new agent, it could

44

further limit the authority of the newly created agent by including policies inside the

latter’s proxy credential as well. Thus, with each level of delegation, the authority

of the agent could be further restricted if required. An agent cannot delegate more

authority than it possesses, but even if it does specify additional rights that it does

not possess, the verifying host ensures through the process described above that these

rights are disregarded while making authorization decisions.

Delegation

Credential delegation is the process by which an entity transfers its identity to

another. The DA in the agents example creates several child discovery agents, which

in turn create new agents as required. Each new agent created must have the capacity

to authenticate itself as the NA. However, it is desirable that each agent be uniquely

identifiable, and further, that the parent agent be able to associate a subset of its

rights with the child’s identity. An entity such as the DA possessing a PC could

delegate its authority to another entity such as its clone DA1 through the credential

delegation process outlined in Chapter 2. This provides the clone with its own PC

that uniquely identifies it, and that contains restrictions placed on its authority by

its parent.

Although credential delegation is a powerful tool, it could be misused by malicious

45

entities. Suppose that the DA, upon migrating to host H2, creates a clone DA1 and

delegates its authority to DA1. This scenario could not be distinguished from one

where the host H2 was malicious, created a malicious discovery agent DA2, and used

the DA’s PC along with its private key to create a new credential for DA2. This

is because the process of delegation involves a signature by the entity, i.e. the DA,

that owns the proxy credential. When a mobile agent performs delegation on a

remote host, the private key of its credential is known to that host as well. Thus, the

host could easily impersonate the DA and create malicious agents without the DA’s

knowledge.

In order to make delegation more secure, the concept of trusted hosts for delegation

is introduced. A trusted host is one that is known to be “safe” for agent execution

and is known to not be compromised. In a network of several hundred hosts, a few

tens of hosts such as firewalls, routers, etc., could be deemed trusted. The set of

trusted hosts could be stored as system-wide data accessible to every entity in the

network, or could simply be established at the discretion of a verifying host. In order

to ensure secure delegation, the following condition is imposed upon the mobile agent

environment:

A mobile agent may delegate its authority to other entities on trusted

hosts only.

46

The delegateInfo field inside a PC supports enforcement of the above rule. At

the time of delegation, the following interaction takes place between the mobile agent

and its host:

1. The agent conveys to its host a hash of the agent that it wishes to delegate its

authority to. This step does not require any authentication checks since these

are done prior to agent execution. Once the agent begins execution on the host,

it is deemed trusted.

2. The host verifies that the agent’s PC (obtained during the authentication phase)

. contains a valid (> 0) value for pCPathLenConstraint,

. has the ability to sign other PCs as specified by the keyUsage extension if

present, and

. is valid at the current time.

3. The host then uses its private key to sign the host id, the current time, and

the agent hash from step 1. The signature, along with the host’s certificate, is

returned to the agent.

4. The agent generates a PC for the agent it wishes to create, includes the host

signature and certificate in the delegateInfo field, and signs the PC.

47

Thus, in the example, if the DA creates a clone DA1 on host H2, the delegateInfo

field for DA1’s PC would contain H2’s certificate, along with H2’s signature on its

identity, time of creation of DA1, and DA1’s hash. When DA1 authenticates itself

to a remote host, the latter would verify the delegateInfo field inside each PC

belonging to DA1’s certificate chain as follows. First, the remote host decrypts the

hostSignature field using the public key stored inside hostCertificate. Next, it

verifies that:

. the host id in the decrypted signature matches that inside hostCertificate,

and further, that it is the identity of a trusted host.

. the hash inside the decrypted signature matches the agentHash field inside the

PC.

. the timestamp inside the decrypted signature is within the validity period of

the PC. This prevents any replay attacks by a malicious host.

The verification of the delegateInfo field is not necessary for the first-level PC,

since the first level of credential delegation from the originator to the mobile agent

created by her is always assumed to have taken place securely. This is because the mo-

bile agent’s PC is signed using the originator’s private key, which is stored encrypted

on the originator’s local host with a pass-phrase known only to her. Therefore, it

48

is difficult for a malicious entity to steal the originator’s private key and create mo-

bile agents at the first level of credential delegation. Thus, the first-level PC can be

considered as secure as the originator’s X.509 credential.

The discussion assumes that the agent itself is not malicious, but this is a valid

assumption since malicious agents are likely to fail authentication and other integrity

checks before they could even begin execution. The proposed delegation mechanism

makes it much harder for malicious entities to impersonate a trusted host as long as

the trusted host itself is not compromised.

The security of the delegation mechanism is dependent on the security of the

trusted hosts themselves. If a trusted host is compromised, all the agents created on

that host are suspect, since they may have been created by a malicious entity on the

compromised host. The risk of compromise could be reduced by applying safeguards

such as firewalls, intrusion detection systems, etc., to protect the trusted hosts, but

it is impossible to prevent all attacks. In such cases, additional safeguards such

as the validity period, restrictions, key usage, delegation depth, etc., that are built

into Proxy Certificates could further reduce the damage caused by a compromised

credential on a host. Further, if a host A is known to be compromised, all other hosts

in the network could refuse to accept agents that have been delegated through the

host A.

49

In this chapter, various mechanisms that are essential to the secure operation

of mobile agent applications have been presented. Each of these mechanisms, when

implemented in the context of an agent infrastructure such as the Distributed Agent

Delivery System (DADS), could be used to provide basic security features for mobile

agent applications. The following chapter describes the operation of these security

mechanisms, and their interface with the DADS, when implemented as modules within

the DADS framework.

50

CHAPTER 4

DESIGN AND IMPLEMENTATION

The Distributed Agent Delivery System (DADS) is being developed as part of an

ongoing research project on mobile agents at the University of North Texas 1 (UNT).

The motivation for the DADS arises from the fact that mobile agents may differ in

their requirements of their corresponding agent platform, based on the application

that they are designed for. For instance, an e-commerce application may emphasize

on security, hence a mobile agent designed for e-commerce must be able to perform

authentication, encryption, etc. Similarly, data transfer applications may require that

agents compress data before transmitting it in order to make transfers more efficient.

The functionality required by an agent must be supported by its underlying infras-

tructure, and in addition, it is desirable that the infrastructure adapt to the varying

needs of agents and agent applications. The DADS is one such agent infrastruc-

ture that provides an extensible and customizable platform for agent applications.

It is influenced in its design by other agent infrastructures, namely AgentTcl [16],

TACOMA [25], and Mole [2].

1The description of the DADS that follows is based on Cliff Cozzolino’s master’s thesis at the
University of North Texas.

51

The DADS is organized into a daemon process and a set of loadable modules,

which may be used to provide a variety of services such as language availability,

security, and fault tolerance. The DADS daemon performs the functions of listening

on a standard TCP port for incoming agents, and managing the set of loaded DADS

modules. A module is a child process started by the main DADS daemon, that

communicates with the daemon using interprocess communication mechanisms. It

receives input from the DADS, processes it, and writes the results back to the DADS.

Further, modules may be chained, such that a module’s output that is sent back to

the DADS serves as input for another module. Modules may be loaded through a

plug-in style interface, making them available to agents as and when required. The

DADS is capable of supporting multiple modules for a single service, such as multiple

language interpreters, multiple security mechanisms, etc., at the same time. Hence,

the DADS can support multi-lingual agents that are not restricted to a particular

design such as a specific security mechanism. In general, modules allow the DADS

to support heterogeneity in agents and agent applications without having to change

the underlying DADS core.

DADS agents, borrowing from TACOMA agents, act as containers for three dis-

tinct segments: a code segment that stores instructions, a data segment that stores

the agent’s state, and a properties segment that describes the agent’s code and data

52

segments. While the code and data segments may contain arbitrary sequences of bits,

the properties segment has a restrictive format consisting of three distinct elements:

Property ID, Property Name, and Sub-properties, together referred to as a property

structure. The Property Id is a standardized number that refers to a particular ser-

vice such as language or security. The Property Name is a string that describes the

Property Id, and the Sub-property field is a list of property structures that further

describe the particular property. Every agent contains a root Agent property, which

in turn may contain sub-properties for each of Language, Security, etc. The Secu-

rity sub-property may contain a sub-property for Authentication, which in turn may

contain sub-properties for PKI, Kerberos, etc. Thus, the properties segment stores

the description of an agent in the form of a hierarchical tree called a property hierar-

chy. Similarly, the DADS on a host contains a property hierarchy rooted at the Host

property, that describes its modules and the services it offers. Loaded modules are

registered as subtrees in the host’s property hierarchy. For instance, an authentica-

tion module for Proxy Certificates may be registered in the subtree

Host → Authentication → PKI.

The presence of the property tree on agents and hosts is essential to the agent

migration process. Since the DADS is capable of supporting a broad range of func-

tionality for agents, it is likely that the DADS on different hosts will offer different

53

services to agents. Hence, a migrating agent must ensure that the remote host it

migrates to can support its requirements. Similarly, the DADS on each host must

verify that an agent satisfies certain requirements such as security, before accepting

it for execution. The DADS facilitates this decision making process via the Trans-

fer Protocol (TP), which defines the exchange of property trees between a migrating

agent and the host it migrates to. The TP consists of three phases. Phase (1) occurs

when the agent connects to a remote DADS daemon and transmits to it a subset of

its property tree describing its requirements. If the DADS can support the agent’s

requirements, it enters phase (2) of the protocol, where the DADS transmits its re-

quirements to the agent. Finally, if the agent supports the DADS’s requirements, the

TP moves into phase (3), where the entire agent is transmitted to the remote host.

At this point, the DADS may invoke an authentication module if specified by the

agent or the DADS, to facilitate authentication between the two entities.

Thus, the DADS allows for the development of a customizable and modular agent

infrastructure that supports a variety of agent languages and security services. The

following section describes the implementation aspects of the proposed mechanisms

for agent authentication, authorization, and delegation, in the context of their in-

terface with the DADS. Further, Application Programming Interfaces (APIs) that

54

facilitate the development of the proposed mechanisms are examined, and some per-

tinent issues regarding implementation of modules for each of the above mechanisms

are discussed.

Implementation Details

In order to realize the proposed agent security model, mechanisms are required to

create proxy credentials with restricted rights, authenticate agents using their proxy

credential, and perform authorization checks for agents based on their proxy creden-

tial. The Grid Security Infrastructure (GSI) implementation, currently at version 2.2,

provides extended functionality to support all these requirements. It is available as

open source software, and hence can readily be adapted to the implementation of a

security model for mobile agents.

The process of agent creation involves a credential delegation step, during which

the originator delegates her X.509 credential to the mobile agent. The agent’s Proxy

Certificate (PC) along with its private key is then stored as a file on the local host.

The GSI implementation provides functionality to generate a proxy credential from

a user’s X.509 credential, and in addition, associate restrictions and other certificate

extensions with the delegated credential. This functionality could be used by an

agent’s originator to generate a PC containing an AgentInfo extension specific to

55

each agent, and optional restrictions on the agent’s authority. The agent itself must

be able to access its credential on the local host for authenticating to remote hosts,

and for destroying the credential when migrating to a different host. This requires

that the originator store some information in the agent’s data section, so that the

agent may reference itself to determine the path to its credential. One possibility,

as illustrated in figure 4.1, is to store a hash of the agent’s identity (i.e. the subject

Distinguished Name in its PC) in its static data, and construct a path to the credential

using this hash. This ensures unique filenames for credentials across all agents.

Subject
ha
sh
(s
ub
je
ct
)

hash(subject) Store PC +Pvt. Key
/tmp/
x509<hash>

Agent’s PC
Agent

Local Storage

Data Section

Code Section

Figure 4.1: Generating a filename for a Proxy Credential

Agent-to-DADS Authentication

Once the agent is injected on the local host, it may be required to authenticate to a

remote host in order to migrate to it. As outlined in Chapter 3, agent authentication

is a two-step procedure: first, the agent proves knowledge of its private key, and then

the host verifies the binding between the agent and its Proxy Certificate. Therefore,

56

the agent authentication mechanism is implemented as two modules within the DADS.

As illustrated in Figure 4.2, agent authentication consists of the following steps:

subtree DADSAgent
(1) Transmit property

(2) Auth. required

(3) GSI Authentication

(4) Auth OK / NOT OK

(5) Transfer

(6) Hash OK / NOT OK

Load

Load

Step 1
Auth:

Auth:
Step 2

Figure 4.2: Agent-DADS Authentication

1. The agent opens a connection to the remote DADS daemon and transmits to

it a part of its property tree containing its requirements for language, security,

etc.

2. The DADS replies with a message that contains its requirements, in this case

authentication, and subsequently invokes the two-step authentication module.

3. The authentication module uses GSI to establish the identity of the remote

agent (step 1). All communication with the remote agent is routed through the

DADS daemon.

4. The authentication module returns to the DADS an OK / NOT OK response

57

to step 1 of authentication, which in turn transmits the response to the remote

agent.

5. If the agent receives a positive reply, it clones itself and transfers the clone to

the remote DADS.

6. The transferred clone is sent to the integrity checking module, which implements

step 2 of authentication. This module uses the agent’s credential obtained in

step 1 of the authentication phase to verify the agent’s integrity against its

certificate.

7. The module send an OK / NOT OK response to the DADS, which transmits

this to the remote agent waiting on the migration step.

8. If the remote agent receives an OK, it may terminate itself or migrate to another

host as desired. If it receives a NOT OK reply, it may select another host in its

itinerary to migrate to, or report the problem to its home platform.

In the above procedure, the exchange of property trees between the agent and the

remote DADS is defined by the Transfer Protocol (TP). However, the TP does not

concern itself with the specifics of the authentication mechanism, which is instead

defined by the authentication protocol. The two-step agent authentication procedure

58

is merely an extension of GSI authentication, and as such, may be implemented using

GSI libraries.

Implementation using the GSS-API

The GSI provides an implementation of the Generic Security Services API (GSS-

API) [26, 35] using OpenSSL libraries. The GSS-API provides a generic interface

for security services to its callers. An application may use the GSS-API to avail of

security services such as authentication, message integrity, etc., without concerning

itself with details of the underlying security mechanism. This facilitates portability,

since applications may be written without a specific security mechanism such as

Kerberos, PKI, etc, in mind. In order to use the GSS-API, an application follows the

procedure outlined below:

1. The application may first acquire credentials that enables it to establish its

identity to authenticating peers.

2. It then initiates the establishment of a security context with its peer. This

is a multi-step exchange, during which the context initiator is authenticated

to the context acceptor. The initiator may optionally require the acceptor to

authenticate itself, and may allow delegation of its authority to the acceptor.

59

3. Once the security context is established, per-message services may be invoked

by either party to encrypt and apply integrity checking on data transferred

between the two parties.

4. Upon completion of the session, the security context is deleted by the respective

applications.

Credential management routines

gss acquire cred Acquire a handle to pre-existing credentials
gss release cred Destroy an existing GSS-API credential
Security context routines

gss init sec context Initiate a security context with a peer
gss accept sec context Accept a security context initiated by a peer
gss delete sec context Destroy an existing security context
Per-message routines

gss get mic Generate a cryptographic MIC for a message
gss verify mic Verify a MIC against a message
gss wrap Attach a MIC to a message and optionally encrypt it
gss unwrap Optionally decrypt a message and verify its MIC

Table 4.1: Core GSS-API routines

Table 4.1 summarizes routines in the GSS-API that facilitate credential acqui-

sition, establishment of security contexts, and per-message security services. The

gss acquire cred routine provides a calling application a handle to a pre-existing

credential, based on the name of the principal whose credential is required. An

existing credential may be freed using the gss release cred routine. A context

60

initiator (i.e. client) may invoke the gss init sec context routine to establish a

security context with a context acceptor (i.e. server). The gss init sec context

routine returns a token that is transmitted to the acceptor, and presented to the

gss accept sec context routine invoked by the acceptor. The resulting token is in

turn transmitted to the initiator. The context establishment routines are invoked in

a loop and the resulting tokens transmitted to the peer, until a security context is

established between the two. The context initiator may request peer authentication

and may delegate its credential to the acceptor by setting appropriate flags in the

parameter list of gss init sec context. Once a security context is established be-

tween the peers, the gss get mic routine may be invoked by either peer to generate

a cryptographic Message Integrity code (MIC) for a message. This routine returns

a token that may be transmitted to the peer along with the message, and may be

verified by the peer using the gss verify mic routine. Similarly, the gss wrap rou-

tine may be used to attach a MIC to a message and optionally encrypt the message.

The corresponding function, gss unwrap is used by a peer to convert a message pro-

cessed by gss wrap back to its original form. This involves optionally decrypting the

message, and verifying its MIC. Finally, the gss delete sec context routine may

be used to discard an existing GSS-API security context.

61

In addition, extensions to the GSS-API have been proposed [31] in order to facil-

itate credential delegation at any time and not just at the time of context establish-

ment. The proposed extensions also allow the initiator of the delegation to associate

restrictions with the delegated credential. Support for these extensions has been

provided in the current release of the GSI (release 2.2).

A module designed for authenticating mobile agents may make use of the GSS-

API implementation provided by the GSI libraries. In particular, the module may

invoke routines to establish a security context with the remote agent. The agent in

turn may initiate a security context with the remote DADS and authenticate itself.

Further, the agent may encrypt its credential before transferring it to the DADS. The

transferred credential, including the agent’s certificate chain and private key, is stored

by the remote DADS on its local storage. The location at which the credential is to be

stored is inferred through a hash of the agent’s identity stored in its data section, as

explained earlier. The agent’s Proxy Certificate chain obtained during authentication

must be retained by the DADS for use in subsequent authorization and delegation

decisions.

62

Agent Authorization

An authenticated agent is executed in its language environment through a lan-

guage module such as a Perl interpreter. Whenever the agent requests system re-

sources, the language module must hand-off the authorization decision to a module

designed for that purpose. Figure 4.3 illustrates the process of authorizing an agent’s

request to access system resources. The procedure consists of the following steps:

������Language
ModuleDADS

: Resource request
: Authorization response

Authori−

Module

Agent

Cert.
Agent

Policy
Local zation

Figure 4.3: Agent Authorization

1. The language module transmits the agent’s request to the DADS. Based on the

agent’s credentials obtained in the authentication phase, the DADS invokes the

appropriate authorization module, and forwards the agent’s resource request to

it.

63

2. Based on the agent’s identity and the restrictions inside its PC, the authoriza-

tion module returns an OK / NOT OK response to the DADS, which is then

transmitted to the language module.

3. Finally, the language module allows the agent’s request (if the response was

OK) or blocks it (if the response was NOT OK).

The agent authorization module may employ the Generic Authorization and Ac-

cess control API (GAA-API) [29] to facilitate authorization decisions on resource

access for agents. The GAA-API supports a variety of security mechanisms and

authorization models. A typical GAA application creates a control structure that

stores callback routines for policy evaluation, and a security context that contains

the current user’s credentials. Policy evaluator callbacks may be installed for any

type of resource and resource access, and are invoked by the GAA-API when the user

attempts to access the specified resource. Thus, the GAA-API provides a framework

for mechanism-independent authorization decisions on resource access. A referential

implementation of the GAA is available from [14].

An authorization module for agents may install a callback to evaluate a resource

requested by an agent against the set of restrictions specified in its PC. The restric-

tions in the agent’s PC may be extracted by the authorization module using functions

64

defined in the GSS-API extension. These restrictions would then be passed to the

policy evaluator callback, along with the agent’s request, to determine if the agent

may be allowed access to the requested resource.

The authorization procedure requires modification of the agent’s language en-

vironment to make it “agent-enabled”, but at the same time simplifies matters by

placing the burden of authorization decisions on the authorization module. Thus, the

language environment may provide wrappers for system calls, which would simply

invoke the authorization module, and based on its response, either allow or deny the

agent access to the requested resource.

Delegation

Before an agent clones itself, it must create a new credential for the clone. The

PC creation process for agents involves a signature on delegation information by the

host that the agent executes on. Hence, before actually creating a clone, an agent

must interact with a delegation module designed for the purpose of signing the agent’s

delegation information using the host’s credentials. This implies that the delegation

module must have the authority to sign information on behalf of the host. Figure 4.4

illustrates the process of delegation of authority from an agent to its clone:

1. The agent computes a hash over the new agent that it wishes to create, and

65

������Language
ModuleDADS

(1
)

3. Create

 PC

1. Hash(new agent)

 Next−level

2. Host Signature
4. Clone request

Module
Delegation

(1)

(2)

(4) Agent

Host Pvt.
Key

Cert.
Agent

(2
)

(2)

(1)

Figure 4.4: Delegation

requests the host’s signature on the same. The request is sent to the language

module and routed to the delegation module through the DADS.

2. The delegation module verifies the agent’s request based on its credentials ob-

tained during the authentication phase. If the request is valid, the module

returns a signature, using the host’s private key, on the agent hash, host iden-

tity, and the current time. Otherwise, it returns a NOT OK message.

3. The delegation module’s response is transmitted to the executing agent. If the

delegation module returns the host signature, the agent may optionally verify

the signature and create a new PC for the clone. Finally, it creates a new agent

by sending a “clone” request to its language module.

66

The delegation module may employ functions defined in the extensions to the

GSS-API to generate a delegated credential for the mobile agent.

The modular design of the DADS makes it easy to add functionality to it such as

PC-based agent security. Since modules do not form a part of the DADS core, they

may be developed independently of the DADS, as long as their interface with the

DADS is well defined. Thus, the mechanisms for agent authentication, authorization,

and delegation, when implemented as DADS modules, customize it to support PC-

based security for agent applications.

67

CHAPTER 5

CONCLUSION

This thesis has proposed a security model for mobile agent applications that is based

on the Grid Security Infrastructure and X.509 Proxy Certificates . A Proxy Certificate

issued to an agent by its originator serves as the agent’s credential for authentica-

tion to remote hosts. The binding between an agent and its credential is maintained

through a cryptographic hash of the agent code and static data stored inside its cer-

tificate. Further, restrictions encoded inside the certificate serve as a basis for making

authorization decisions on resource access for agents. This allows the agent’s origina-

tor a flexible selection of privileges for an agent, suited to the nature of the agent’s

task. The language used for encoding restrictions must be uniformly interpreted by

both the issuer of the agent’s certificate and the host that enforces authorization deci-

sions based on certificate restrictions. Finally, credential delegation, when performed

on trusted hosts, allows an agent to clone itself by creating a new Proxy Certificate for

the clone and associating with it a subset of the parent agent’s rights. Since a Proxy

Certificate is nothing but a Public Key Infrastructure (PKI) credential, the proposed

68

mechanisms offer a scalable solution to achieving security in the mobile agent envi-

ronment. A proof-of-concept implementation of these mechanisms is proposed in the

context of a flexible and scalable agent infrastructure, the Distributed Agent Delivery

System (DADS), which is capable of supporting multiple agent languages and security

mechanisms though its modular interface. The security mechanisms are implemented

as modules within DADS, thus making them flexible and extensible. Thus, future

extensions to the agent security model could be easily incorporated within the DADS

framework.

The proposed authorization mechanism relies upon policy restrictions encoded

inside a Proxy Certificate to make authorization decisions. Although the grammar

and semantics for the policy language have not been discussed, it is obvious that

any such language must be rich enough to describe all resource types that might

be required for a computation and the corresponding operations on the resources.

Another desirable feature in the mobile agent security model is motivated by the

heterogeneous nature of resources accessed by agents and their differing security re-

quirements. Similar to the Grid, different resources may require different kinds of

authentication. The security model presented here could be made interoperable with

participating sites’ local security policies and mechanisms through the co-operation

of the DADS. In order to ensure uniform authentication across resources, the DADS

69

at each participating site could provide functionality for mapping an agent’s proxy

credential to a local credential, similar to the gatekeeper in Globus. This places the

burden of managing multiple agent credentials on the DADS on each participating

host, thus making the agent more light-weight than if it had to maintain multiple

credentials for authenticating to multiple sites.

70

BIBLIOGRAPHY

[1] J. Algesheimer, C. Cachin, J. Camenisch, and G. Karjoth. Cryptographic secu-

rity for mobile code. In Proc. IEEE Symposium on Security and Privacy, pages

2–11, May 2001.

[2] Joachim Baumann, Fritz Hohl, and Kurt Rothermel. Mole - Concepts of a Mobile

Agent System. Technical Report TR-1997-15, 1997.

[3] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, and

V. Welch. A National-Scale Authentication Infrastructure. IEEE Computer,

33(12):60–66, 2000.

[4] C. Cachin, J. Camenisch, J. Kilian, and J. Müller. One-round secure computation

and secure autonomous mobile agents. In Proc. 27th International Colloquium

on Automata, Languages and Programming (ICALP), volume 1853 of Lecture

Notes in Computer Science, pages 512–523, 2000.

[5] Cameron Ross Dunne. Using Mobile Agents for Network Resource Discovery

in Peer-to-Peer Networks. Newsletter of the ACM Special Interest Group on

E-commerce, 2(3):1–9, 2001.

71

[6] W. M. Farmer, J. D. Guttman, and V. Swarup. Security for mobile agents:

Issues and requirements. In Proceedings of the 19th National Information Systems

Security Conference, pages 591–597, Baltimore, MD, 1996.

[7] William M. Farmer, Joshua D. Guttman, and Vipin Swarup. Security for Mo-

bile Agents: Authentication and State Appraisal. In Proceedings of the Fourth

European Symposium on Research in Computer Security, pages 118–130, Rome,

Italy, 1996.

[8] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit.

The International Journal of Supercomputer Applications and High Performance

Computing, 11(2):115–128, Summer 1997.

[9] Ian Foster. The Anatomy of the Grid: Enabling Scalable Virtual Organizations.

Lecture Notes in Computer Science, 2150, 2001.

[10] Ian Foster and Carl Kesselman. The Grid: Blueprint for a new Computing

Infrastructure. Morgan Kaufman, San Francisco, California, 1999.

[11] Ian T. Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A Security

Architecture for Computational Grids. In Fifth ACM Conference on Computer

and Communications Security, pages 83–92, 1998.

72

[12] Alan O. Freier, Philip Karlton, and Philip Karlton. The SSL Protocol Version

3.0, March 1996. Internet draft.

[13] A. Fugetta, G. P. Picco, and G. Vigna. Understanding Code Mobility. IEEE

Transactions on Software Engineering, 24(5):342–361, May 1998.

[14] The GAA-API Homepage: http://www.isi.edu/gost/info/gaaapi.

[15] The Globus Project Website: http://www.globus.org.

[16] Robert S. Gray. Agent Tcl: A Flexible and Secure Mobile-Agent System. In

Proceedings of the Fourth Annual Tcl/Tk Workshop (TCL 96), Monterey, Cali-

fornia, 1996.

[17] The GSI Website: http://www.globus.org/security.

[18] Colin G. Harrison, David M. Chess, and Aaron Kershenbaum. Mobile Agents:

Are they a good idea? Technical report, T. J. Watson Research Center, Yorktown

Heights, New York, 1995.

[19] Fritz Hohl. Time Limited Blackbox Security: Protecting Mobile Agents From

Malicious Hosts. Lecture Notes in Computer Science, 1419:92–113, 1998.

73

[20] R. Housley, W. Ford, W. Polk, and D. Solo. RFC 2459: Internet X.509 Public

Key Infrastructure Certificate and CRL Profile, January 1999. Status: PRO-

POSED STANDARD.

[21] W. Jansen and T. Karygiannis. NIST Special Publication 800-19 - Mobile Agent

Security, 2000.

[22] G. Karjoth, N. Asokan, and C. Gulcu. Protecting the computation results of free-

roaming agents. In Proceedings of the Second International Workshop, MA’98,

pages 195–207, Stuttgart, Germany, 1998.

[23] Neeran M. Karnik and Anand R. Tripathi. Design Issues in Mobile-Agent Pro-

gramming Systems. IEEE Concurrency, 6(3):52–61, July–September 1998.

[24] J. Kohl and C. Neuman. RFC 1510: The Kerberos Network Authentication

Service (V5), September 1993. Status: PROPOSED STANDARD.

[25] Kre J. Lauvset, Dag Johansen, and Keith Marzullo. TOS: A Kernel of a Dis-

tributed Systems Management System, 2000.

[26] J. Linn. RFC 2743: Generic Security Service API Version 2, Update 1, January

2000.

74

[27] George C. Necula. Proof-Carrying Code. In Proceedings of the 24th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Langauges

(POPL ’97), pages 106–119, Paris, January 1997.

[28] B. Clifford Neuman. Proxy-Based Authorization and Accounting for Distributed

Systems. In International Conference on Distributed Computing Systems, pages

283–291, 1993.

[29] T. Ryutov, C.Neuman, and L.Pearlman. Generic Authorization and

Access control Application Program Interface C-bindings, 2000. In-

ternet Draft, CAT Working group draft-ietf-cat-gaa-cbind-05.txt:

http://www.isi.edu/gost/info/gaaapi/doc/drafts/cbind draft5.txt.

[30] T. Sander and C. Tschudin. Towards Mobile Cryptography. In Proceedings of

the IEEE Symposium on Security and Privacy, pages 215–224, Oakland, CA,

USA, 1998. IEEE Computer Society Press.

[31] S.Meder, V.Welch, S.Tuecke, and D.Engert. GSS-API Exten-

sions, 2002. Global Grid Forum (GGF) proposed recommendation:

http://www.gridforum.org/security/ggf5 2002-07/draft-ggf-gss-extensions-

06.PDF.

75

[32] S.Tuecke, D. Engert, Ian Foster, M. Thompson, L.Pearlman, and C.Kesselman.

Internet X.509 Public Key Infrastructure Proxy Certificate Profile, October 2002.

Internet Draft: draft-ietf-pkix-proxy-03.

[33] S.Tuecke, D. Engert, I.Foster, M. Thompson, L.Pearlman, and C.Kesselman.

Internet X.509 Public Key Infrastructure Proxy Certificate Profile, 2001. Internet

Draft: draft-ietf-pkix-proxy-02.

[34] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J.

Wetherall, and Gary J. Minden. A Survey of Active Network Research. IEEE

Communications Magazine, 35(1):80–86, 1997.

[35] J. Wray. RFC 2744: Generic Security Service API Version 2: C-bindings, January

2000.

[36] Bennet S. Yee. A Sanctuary for Mobile Agents. In Secure Internet Programming,

pages 261–273, 1999.

76

