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Psychology and Behavioral Medicine), August 2002, 73 pp., 7 tables, 61 reference titles. 

 The purpose of the study was to explore perceptual-motor differences between 

blind and sighted adults from a neuropsychological perspective, and to analyze 

differences within the blind group. Perceptual-motor abilities were examined using the 

Comprehensive Vocational Evaluation System (CVES), a vocational rehabilitation and 

neuropsychological battery designed for use with blind populations. The data were 

processed using Analysis of Covariance. Results showed that sighted persons had better 

motor abilities, while persons with blindness were more skilled at haptic identification of 

shape and texture. Analysis within the blind group showed that texture identification 

skills are better when blindness occurs earlier in life and to the extent that the blindness is 

total. Later onset blindness and the retention of some functional vision may not lead to a 

refocusing of attentional states necessary to develop haptic images. New neural 

connections may develop in persons with congenital/total blindness, a hypothesis in line 

with recent neuroradiological findings that occipital lobe activation occurs when 

congenitally blind individuals engage in tactile processing tasks. One implication of the 

findings is that teaching individuals who retain some functional vision to read Braille is 

probably counterproductive. These individuals would be better served by learning to use 

a CCTV and large print books. Future researchers should examine blindness from a 

multivariate perspective, examining subsets of blind groups based on age at onset, visual 

status, and other pertinent variables. Other implications are discussed and 

recommendations for future research are provided. 
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CHAPTER 1 

 

INTRODUCTION 

The abilities of persons who are blind have been studied for centuries, with 

philosophers citing the performance of individuals who were blind to defend their 

theories about the development of ideas (Heller, 1991). It was not until the mid 20th 

century that researchers began studying the characteristics of visually impaired/blind 

(VI/B) populations to gain practical information about real world ability levels. Revesz 

(1950) and Worchel (1951) both conducted research on haptic (the ability to sense 

objects through active sensory manipulation of those objects) and spatial abilities of 

individuals who were blind and came to several conclusions that were highly influential 

at the time. For example, Revesz hypothesized that tactile sensation was inferior to 

vision, and that visual imagery was necessary to obtain information about shapes. This, 

for Revesz, left the congenitally blind at a distinct disadvantage for processing 

information.  

Worchel (1951), like Revesz, found haptic and spatial deficits in congenitally 

blind individuals. These deficits, according to Worchel, were caused by reliance of the 

congenitally blind subjects on the haptic sense alone to assimilate spatial information. 

Worchel argued that the haptic sense was an inferior means of incorporating spatial 

information compared to the use of visual imagery. Both Revesz (1950) and Worchel 

(1951) concluded, based on their findings, that blind persons had inferior sensory 

processing and spatial abilities compared to the sighted population.  
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Other thinkers, most notably Piaget (Piaget & Inhelder, 1969) and Luria (1973), 

postulated that haptic and motor functions were important to the development of higher 

order cognitive abilities. Piaget suggested that the slower development of blind 

individuals could be understood as being caused by a lack of experience with the 

environment. Luria’s theory surmised that complex multisensory integration was 

necessary for cognitive development and that interaction with the environment was 

necessary for this integration to occur. The implication of Luria’s ideas was that cognitive 

development would be delayed if the necessary experiences were lacking. Juurmaa 

(1973) and others have argued that perceptual-motor differences between blind and 

sighted children are caused in part by slower (but not less efficient) development of the 

haptic sense in contrast to the visual sense. The implication of this argument is that 

differences may disappear as children grow into adults.   

A strong link exists between perceptual and motor abilities in persons who are 

blind. For example, haptic perception involves manipulation of objects with the hand in 

such a way that an accurate mental representation of the object and its characteristics 

(e.g., size; shape; texture; configuration) can be formed. By this definition, motor 

functioning is inseparable from haptic perceptual ability; movement is involved in all 

haptic sensing. Therefore, perceptual and motor functioning should ideally be examined 

together.   

Our current understanding of individuals who are blind is complicated by the fact 

that research has yielded equivocal findings. Some studies comparing the perceptual-

motor functioning of VI/B and sighted subjects found advantages for the sighted groups; 

others found advantages for the VI/B groups; still others found no significant differences. 
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The topic has both theoretical and practical importance. From a theoretical standpoint, 

data could increase our understanding of compensatory brain mechanisms following loss 

of vision. For example, recent research using brain-imaging tools suggests that the 

occipital lobes of totally blind individuals are actively involved in the processing of 

information (Roder, Rosler, Hennighausen, & Nacker, 1996; Roder, Rosler, & 

Hennighausen, 1997; Rosler, Roder, Heil & Hennighausen, 1993). In practical terms, 

VI/B children lag behind sighted peers about one year in reading achievement (Rankin & 

Caton, 1976), oral reading skill and mathematics (Daugherty, 1977). Haptic 

discrimination skills may develop at a slower rate than comparable visual skills (Easton 

& Benzen, 1987; Juurmaa, 1973), so some differences between blind and sighted children 

may disappear in adults. New data comparing the perceptual motor functioning of VI/B 

and sighted adults could aid in the development of more effective interventions for the 

visually impaired population.  

Overview of Research  

Research on the perceptual-motor functioning of blind and sighted individuals has 

led to inconclusive findings. The most common research design compares a sighted 

control group with congenitally and adventitiously blind subjects. Those persons with 

congenital blindness (a minority of the blind population) have never seen and therefore, 

cannot use vision to assist them in perception. The performance of sighted groups 

compared to congenitally blind subjects may increase understanding of perceptual-motor 

abilities with and without the assistance of visual imagery.  

An extensive review of the literature examining differences in perceptual motor 

functioning of VI/B and sighted individuals reveals mixed findings. Some studies have 
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indicated an advantage in haptic ability for congenitally blind persons, specifically in 

recall of textures and in shape and tactile pattern recognition of unfamiliar objects 

(Heller, 1989a; Heller, 1989b; Heller & Kennedy, 1990). Many more studies have found 

haptic, spatial and motor advantages for the sighted population. Sighted groups 

performed better than congenitally blind groups in tactile pattern recognition of familiar 

objects (Shimizu, Saida, & Shimura, 1993); formation of a cognitive map (Fletcher, 

1980); spatial form synthesis (Garry & Ascarelli, 1969; Groenveld & Jan, 1992); concept 

development (Caton, 1977); and fine and gross motor functioning (Daughtery & Moran, 

1982).  

A consideration of factors that may influence the perceptual-motor functioning of 

individuals with blindness may increase understanding of the differences between blind 

and sighted groups. The impact of developmental factors and life experiences on 

emerging perceptual-motor functions is important to consider. A review of Piaget’s 

developmental theories is useful in this regard, particularly from the perspective of the 

limited exploratory experience of blind children during the sensorimotor stage (Piaget & 

Inhelder, 1969).  The limitations of experience secondary to blindness probably 

contribute to differences in sensory and motor processing between congenitally blind and 

sighted individuals.  

A second important factor to consider involves differences in sensory-perceptual 

developmental processes between blind and sighted persons. Juurmaa (1973) contends 

that haptic differences between persons with blindness and sighted individuals disappear 

as the haptic sense develops over time. Developmental processes also appear to influence 

performance on mental rotation tasks and the use of mental imagery (Hollins, 1985).  
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Neuropsychological and neuroradiological findings are a third factor that may 

improve understanding of perceptual motor abilities of blind populations. In studies of 

individuals who are totally blind, occipital lobe activation is observed during 

somatosensory and auditory processing tasks. This occipital activation does not occur in 

sighted persons, suggesting that different processing mechanisms are at work in blind 

subjects (McCallum & Curry, 1993; Roder et al., 1997; Rosler et al., 1993). Finally, a 

consideration of research design issues may lead to a better understanding of the 

methodological problems found in studies using VI/B populations. A summary and 

justification for the importance of examining perceptual and motor functioning in blind 

and sighted adults is set forth.   

Differences in Perceptual-Motor Functioning of Blind and Sighted Individuals 

The following section reviews the evidence comparing performance of 

congenitally blind, adventitiously blind, and sighted individuals on perceptual-motor 

tasks. The goals of the literature review are to examine these sometimes contradictory 

findings, then to present some possible explanations for the results.  

Advantages of blind over sighted persons 

 Contrary to myths that persons with blindness have enhanced perceptual abilities, 

few studies have shown an advantage in sensory functioning for VI/B individuals. The 

advantages that have been found are in the areas of texture recall and pattern recognition. 

Research has shown that blind persons have equal or superior texture recall compared to 

sighted subjects (Heller, 1982; Heller, 1989a; Walker & Moylan, 1994). In one study, 

blind and sighted individuals were given verbal descriptions of simple objects using color 

or texture descriptors (i.e., yellow square, rough triangle). After a distracter task, subjects 
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felt a geometric shape cue and were asked to recall the color or texture of the objects. 

VI/B and sighted groups performed similarly when recalling the shape’s color, but the 

VI/B group was significantly better at recalling surface texture (Walker & Moylan, 

1994).  

One explanation for the finding involves haptic imagery. Research has shown that 

haptic imagery gradually replaces visual imagery in adventitiously blind individuals 

(Hollins, 1985), while congenitally blind individuals appear to use haptic imagery 

exclusively. The superior texture recall ability of VI/B subjects emerged gradually based 

on length of time spent without sight, suggesting that enhanced haptic imagery in blind 

individuals may assist them in identifying textures (Walker & Moylan, 1994).  

Persons with blindness also perform better than sighted persons in shape and 

pattern recognition tasks that have no recognizable visual component (Heller, 1989b; 

Heller & Kennedy, 1990). Heller (1989b) used raised line drawings to communicate 

picture information to groups of congenitally and adventitiously blind and sighted 

individuals. Both blind and sighted subjects correctly identified most raised line drawings 

of common objects. Interestingly, a clear advantage was found for the adventitiously 

blind subjects over both the congenitally blind and sighted groups. Heller attributed the 

performance of the adventitiously blind to having more experience with pictures than 

congenitally blind individuals and better tactile skills than sighted persons. Increased 

retention of shape information by persons with blindness was also found under conditions 

of high memory demand (Davidson, Barnes, and Mullen, 1974).  
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Advantages of sighted over blind persons 

As early as 1950 (Revesz, 1950; Worchel, 1951), multiple researchers have found 

perceptual and motor advantages of sighted in comparison to blind populations. 

Performance of sighted groups was superior to that of VI/B groups on measures of 

pattern recognition, spatial synthesis, abstraction ability, mental rotation, recognition of 

optically familiar shapes, and motor strength and balance. These findings have influenced 

educational and vocational opportunities of persons who are blind, as well as influencing 

public policy decisions affecting blind populations. The following section will examine 

studies that found better performance of sighted persons in comparison to individuals 

who are blind. 

Haptic recognition of familiar objects was examined in congenitally and 

adventitiously blind and sighted adults. Raised pins were used to simulate two-

dimensional (1.5 mm) and three-dimensional (up to 10 mm) stimuli. The task involved 

haptic exploration of the raised pins and identification of familiar objects from this haptic 

information. Individuals who were congenitally blind had a significantly lower 

percentage of correct responses on both two-dimensional and three-dimensional stimuli 

than did the late blind and sighted subjects. Inferior pattern recognition in persons with 

congenitally blindness may be a result of decreased environmental experience (Shimizu, 

Saida, & Shimura, 1993).  

Superior spatial abilities have been found in sighted children. Fletcher (1980) 

compared 34 blind and 34 sighted children matched for age and general intellectual 

ability as measured by teacher rating. The participants explored a room either freely or by 

predetermined route, and then were questioned regarding the placement of furniture in 
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the room. Some questions could be answered by a route type serial learning whereas 

others required formation of a cognitive map. The sighted participants performed 

significantly better than the participants who were blind. Blind participants performed 

better on route type questions than on map questions; sighted participants performed 

equally well on either route or map questions (Fletcher, 1980). The results suggest that 

individuals with blindness tend to encode spatial information by learning a sequential 

series of steps rather than by formation of a cognitive map. However, Easton and Bentzer 

(1987) found that both blind and sighted subjects encode verbal route descriptions into 

cognitive maps to guide finger tracings.  

Many children with blindness learn to verbalize spatial concepts without direct 

experience of those concepts. As language develops, blind children often apply rote 

learning to their understanding of spatial concepts, having had limited experiences from 

which to apply meaning (Hill & Hill, 1980). This lack of practical experience makes 

conceptualization of abstract symbols a much more challenging task for individuals who 

are blind (Rubin, 1964). 

Groenveld and Jan (1992) found that totally blind persons had significantly lower 

performance on the Wechsler Intelligence Scale for Children ®-Revised (WISC-R ®, 

1974) Similarities subtest, thought to measure abstract reasoning ability. The authors 

noted that totally blind individuals responded in a concrete manner with information they 

had overheard or memorized. Some researchers (Garry & Ascarelli, 1969; Groenveld & 

Jan, 1992) suggest that the abstract reasoning deficits of persons who are blind may be 

related to deficits in spatial skills. In contrast to sighted persons ability to use vision, 

individuals with blindness are dependent on the haptic sense to understand space. For 
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example, many children who are blind understand the word “here” only in the temporal 

sense (i.e. right now), not in the spatial sense of here as opposed to there. Children with 

blindness also have difficulty understanding of the position of objects (i.e. upright, front, 

back, right, and left).  These deficits in understanding spatial relationships may affect the 

development of abstract thinking ability.  

Conceptual skills may develop more slowly in children who are blind than in 

sighted children. A test of concept development for sighted children, the Boehm Test of 

Basic Concepts ®, was adapted for use with blind children as The Tactile Test of Basic 

Concepts (Caton, 1977). The tactile version was used as a measure of concept 

development in children with blindness. Results comparing blind and sighted children 

found no overall differences in concept formation between grades K-2. Interestingly, 

children with blindness performed slightly better than their same-aged sighted peers in 

kindergarten, while sighted children performed better than blind peers in first and second 

grades. This finding suggests that sighted children may learn concepts more quickly than 

children with blindness (Caton, 1977). 

Numerous differences in motor abilities have been found in studies comparing 

blind and sighted children and adolescents. Daugherty and Moran (1982) examined the 

motor abilities of visually impaired and sighted children aged 7 to 18, assessing gross and 

fine motor abilities using the Tactual Performance Test and Finger Oscillation Test, 

respectively. These tests are part of the Halstead-Reitan Neuropsychological Battery® 

(Reitan & Wolfson, 1993). Children and adolescents with visual impairments had 

significantly lower motor abilities than their sighted peers (Daugherty and Moran, 1982).  
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A group of German researchers (Troster, Hecker, & Brambring, 1994) examined 

the motor development of 10 children with congenital blindness in a longitudinal study of 

the first three years of life. The children received early intervention and their parents 

received counseling on effectively working with children who are blind. Results of the 

study found only slight developmental delays in posture and balance, compared to 

sighted peers. Larger delays in self-initiated locomotion were found. Since this group of 

children and their parents received special interventions, the results may underestimate 

motor impairments of children with blindness in the general population. 

Another study of the motor development of VI/B children (Adelson & Fraiberg, 

1994) found that children with blindness had lower muscle tone, poorer posture, and 

lower motor skills than sighted peers. Studies have also reported that blind children are 

less physically fit than their sighted peers (George, Patton, & Purdy, 1975; Seelye, 1983). 

For example, Seelye (1983) used a fitness test to compare levels of physical fitness, 

finding that 94% of children with normal vision, 84% of children with low vision, and 

only 46% of legally blind children passed the fitness test. Data also indicate that sighted 

children are physically stronger than children with blindness. For example, studies have 

found weakness of the upper body in children who were blind (Jarowski & Evans, 1981) 

and weak hip extensors compared to children with normal vision (Wyatt, 1997). 

Influential Factors 

The preceding review of the data showed equivocal results regarding differences 

in perceptual motor abilities of blind and sighted persons. Several factors probably 

contribute to the differences in processing and motor functioning. For one, experiential 

factors influence emerging perceptual motor abilities. Piaget’s developmental theory 
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suggests that limited exploration of their environment may contribute to perceptual-motor 

deficits of VI/B individuals in comparison to sighted peers.  

Second, complex sensory-perceptual abilities may develop at slower speeds in 

those who are deprived of the visual sense. Juurmaa (1973) has suggested that processing 

differences between blind and sighted persons disappear as the haptic sense develops 

over time. Research supporting his claim is reviewed.  

A third factor that may explain perceptual-motor processing differences comes 

from neuroradiology. Neuroradiological findings show differences in cortical activation 

patterns between blind and sighted individuals during encoding and transforming of 

haptic images. Specifically, activation in the occipital lobes of blind but not sighted 

persons during tactile and auditory processing tasks has led some researchers to argue 

that different processing mechanisms are at work in blind individuals. Each of these 

factors is examined in the following section.  

Environmental exploration. 

Piaget, in his theory of cognitive development, stressed the importance of 

experience in the learning process. The sensorimotor stage in particular is related to 

learning through active exploration of the immediate environment. (Piaget & Inhelder, 

1969). According to Piaget, children construct two types of knowledge from experience; 

physical knowledge occurs from observing the effect of one’s actions on objects, while 

logical-mathematical knowledge occurs when logical relationships between objects are 

formed. The visually impaired infant or toddler has more limited ability to explore his or 

her surroundings, thus is handicapped in the ability to form logical relationships based 

upon experience (Piaget & Inhelder, 1969). Several studies indicate that children with 
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blindness pass through Piaget’s developmental stages much more slowly than do sighted 

children (Gottesman, 1973; Simpkins and Stevens, 1974; Tobin, 1972).  

From the framework of Piaget’s sensorimotor stage, the motor development of 

individuals who are blind may be inferior to that of sighted persons for several reasons. 

Blind infants must rely on auditory cues to stimulate active movements. The ability to 

process auditory information does not occur until the eighth month, so delays in self-

initiated locomotion occur. Second, fine motor tasks such as grasping are also negatively 

affected by a lack of vision. Third, parents are limited in their ability to interact with their 

blind infants or toddlers. Parents are often unsure where the infants’ attention is directed 

because of the limited reactions towards their caregivers of infants with blindness. The 

blind infants, in turn, are unsure of when their parents are attending to them, making it 

more difficult for the parents to “react contingently” (Troster, Hecker, & Brambring, p. 

63, 1994). Thus, infants who are blind receive little reinforcement for exploratory 

behaviors. Finally, parents of VI/B children frequently overprotect them due to fears of 

injury.  

As children who are blind grow older, they may explore less than their sighted 

peers due to anxiety about self-initiated locomotion. Difficulty evaluating the safety of 

the environment leads many blind children to avoid exploring their surroundings. This 

avoidance of self-initiated locomotion makes it difficult for children with blindness to 

decrease their anxiety. As Jones (1975) has argued, this deprives VI/B children of the 

movement necessary to obtain an understanding of space through the haptic sense. 

Subsequently, the lack of motor experience makes control of body posture and balance 

more difficult for individuals with blindness.  
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Possible effects of this “environmental deprivation” include deficiencies in 

academic performance. Studies indicate that achievement test score differences exist 

between visually impaired and sighted children. Academically, blind children tend to lag 

behind sighted children one to one and one-half years in reading achievement (Rankin 

and Caton, 1976). For example, Daugherty (1977) found that visually impaired print 

readers from grades 1 through 12 lagged two years behind their sighted peers in oral 

reading skill and 0.8 years behind in mathematics. The educational variance between 

blind and sighted children is probably related in part to differences in haptic functioning; 

an exploration of the haptic processing of blind and sighted adults may lead to 

interventions that will assist blind persons in the development of their perceptual-motor 

abilities. 

 Developmental variance. 
 

The development of sensorimotor abilities may occur more slowly in persons with 

blindness. Juurmaa (1973) hypothesized that some of the variance in perceptual-motor 

functioning between blind and sighted persons could be explained by the relatively 

slower development of haptic abilities in persons with blindness. He reasoned that haptic 

ability develops more slowly than visual ability; this gave sighted persons an advantage 

in comparisons between younger blind and sighted subjects. Juurmaa contended that as 

individuals age, the haptic frame of reference matures, and differences between blind and 

sighted individuals disappear (Juurmaa, 1973).  

Support for this hypothesis was found in research examining the ways in which 

congenitally blind and sighted subjects remember route descriptions. A study by Easton 

& Bentzen (1987) found that both blind and sighted subjects encode verbal route 
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descriptions into cognitive maps to guide finger tracing. This finding is in contrast to a 

long-standing belief that the imagery abilities of individuals with blindness are deficient 

or underdeveloped in comparison to sighted individuals (Pick, 1974; Warren, 1970; 

Warren, 1977). Other studies show that the amount of time since onset of blindness 

influences visual imagery (Hollins, 1985) and that haptic mental rotation ability is more 

consistent for adult blind persons in comparison to adult sighted persons (Marmor & 

Zaback, 1976).  

Other research supporting the possibility that perceptual abilities of VI/B develop 

more slowly than sighted persons includes Hollins’ (1985) finding that the use of mental 

imagery changes based on length of time since blindness. In the study, six blind and four 

sighted subjects were given two tests of mental imagery, one test using pictorial and the 

other test using non-pictorial imagery. Results showed that the longer a subject had been 

blind, the less he or she used pictorial imagery (Hollins, 1985). In persons with 

adventitious blindness, haptic imagery gradually replaced visual imagery based on length 

of time since the loss of vision occurred. Persons with congenital blindness appear to use 

haptic imagery exclusively. 

A study by Marmor and Zaback (1976) found differences in mental rotation 

ability between sighted, adventitiously and congenitally blind subjects. Haptic mental 

rotation is the ability to formulate a mental image of a design that has been haptically 

examined, and to manipulate that image in a measurable way. The sighted group had the 

quickest mental rotation ability, followed by the adventitiously blind group, then the 

congenitally blind group (Marmor & Zaback, 1976).  
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Neuroradiological findings. 

Differences in perceptual-motor abilities of blind and sighted individuals may be 

related to different processing pathways in the brain. Researchers have examined 

processing differences in persons with blindness using brain-imaging tools such as fMRI 

(functional magnetic resonance imaging), PET (positron emission tomography), and 

SPECT (single photon emission computed tomography). The findings reveal increased 

blood flow in the occipital cortex of blind persons during tactile stimulation and Braille 

reading (Sadato et al., 1996; Uhl, Franzen, Podreka, Steiner, & Deecke, 1993). 

Slow event-related potentials (ERPs) of the electroencephalogram are particularly 

suited to the study of brain changes during processing episodes because ERPs have a 

faster time resolution than fMRI, PET, or SPECT. ERPs show brain response to discrete 

stimuli better than other radiological methods. Slow ERPs occur during specific 

processing episodes in response to a discrete stimulus and last for milliseconds to a few 

seconds. Moreover, the difficulty of a task is expressed in the amplitude of the negative 

slow ERP wave; i.e. More difficult tasks show a higher amplitude. The maximum slow 

ERPs occur over cortical areas that are believed to be essential for processing that 

particular type of information (McCallum & Curry, 1993). Rosler and Roder examined 

ERPs in persons with blindness in several studies, which are reviewed below (Roder et 

al., 1996; Roder et al., 1997; Rosler et al., 1993).  

Rosler et al. (1993) examined slow ERPs during a haptic mental rotation task in 

congenitally and adventitiously blind and sighted adult participants. Subjects initially 

explored an alpha-numeric tactile stimulus in upright display, then explored the same 

stimulus in upright or rotated placement. Subjects had to decide if the two stimuli had the 
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same or different rotation. During the task, subjects who were blind showed a significant 

negative slow ERP shift over the occipital cortex compared to sighted subjects. In 

addition, the shift increased as the angularity of the two stimuli increased, suggesting that 

processing effort was highly correlated with occipital lobe activation in the blind 

participants. The occipital lobe activation did not occur in sighted subjects.  

Roder et al. (1997) monitored slow event-related brain potentials in sighted and 

congenitally blind young adults during processing of haptic images. Both sighted and 

blind subjects had slow negative shifts over the frontal cortex during initial processing, 

over the left parietal cortex during encoding of the image from the contra-lateral hand, 

and over the central parietal cortex during transformation of the image. Differences in 

haptic processing were found in the occipital lobe, where slow waves were observed only 

in subjects who were blind. The involvement of the occipital lobe during haptic 

processing in persons with blindness may indicate the occipital areas are involved in 

specific non-visual processing. Although significant slow ERP differences were found, 

no actual differences in performance of the blind and sighted groups were noted.  

Two lines of thought have developed to explain these findings. One argument 

proposes that occipital activation in persons with blindness provides evidence of occipital 

lobe involvement in specific information processing. Proponents of this argument site 

research showing enhanced amplitude in the occipital cortex of blind persons during 

processing of somatosensory tasks (Rosler et al, 1993). 

However, occipital activation in subjects with blindness also occurs during 

processing of non-tactile sensory tasks (i.e. auditory tasks). Roder et al. (1996) examined 

slow ERPs during processing of simple auditory and somatosensory discrimination tasks 
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and found negative slow ERPs in subjects who were blind regardless of sensory stimulus, 

suggesting that occipital activation in persons with blindness is not modality specific.  

The second explanation of these findings, proposed by Roder et al. (1996), 

suggests that occipital activation may be the result of decreased efficiency of inhibitory 

neurons in the occipital cortex. Roder cites several lines of evidence to support this view. 

First, the occipital activation is not modality specific (Alho, Kujala, Paavilainen, 

Summala, & Naatanen, 1993; Roder et al, 1996). The occipital lobe seems to activate 

whenever non-specific attention demanding processing occurs in other sensory modalities 

(i.e. somatosensory, auditory). Second, inhibitory neurons may not function as effectively 

in the occipital cortices of blind individuals. Intracortical inhibition is normally mediated 

by GABA-nergic interneurons. However, Jones (1993) found a reduction of GABA in 

area 17 of visually deprived primates, suggesting decreased efficiency of inhibitory 

neurons in the visual cortex of individuals with blindness. A third point supporting the 

“decreased efficiency” view involves ERP measurement. A negative slow ERP shift 

during a task indicates activation of excitatory neurons, while a positive slow ERP 

change is correlated with activation of inhibitory neurons. Subjects with blindness clearly 

have more negative slow ERP shift in the occipital lobes during haptic and auditory 

processing tasks, suggesting a higher level of cortical activation in these areas. However, 

positive slow ERP shifts (which indicate activation of inhibitory neurons) are 

significantly lower in the occipital cortices of blind individuals compared to sighted 

(Roder et al., 1996). The finding suggests that deactivation/inhibition of cortical cells in 

the occipital lobes is less pronounced in blind persons than in sighted.  
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Whether occipital activation in the blind during sensory processing tasks is the 

result of compensatory processing of somatosensory and auditory information or, 

alternatively, is due to decreased efficiency of inhibitory neurons in occipital cortices is 

an unanswered question requiring further research. The current study should provide a 

better understanding of how these differences affect the processing abilities of blind and 

sighted persons. 

Research Design Issues 

Research design in studies of persons with blindness has several inherent 

challenges. In order to understand these challenges, an early influential study (Worchel, 

1951) is examined, then general research design problems are outlined. Worchel (1951) 

was interested in understanding the roles that the visual and haptic senses played in form 

discrimination. His subjects included 33 congenitally and adventitiously totally blind 

persons matched by age and sex to a blindfolded sighted control group. Subjects ranged 

in age from 8 to 21.Worchel gave subjects a series of blocks carved into simple geometric 

shapes. In the first experiment, the blocks were presented to one hand. In the second 

experiment, the blocks were larger and subjects were allowed to use both hands to 

explore. The ability of subjects to identify the blocks was tested by asking subjects to 

draw and verbally describe each block immediately after each stimulus presentation. The 

sighted group performed better than the blind group. In addition, adventitiously blind 

subjects had more accurate drawings and descriptions than the congenitally blind 

subjects. Worchel interpreted the inferior performance of subjects that were congenitally 

blind as evidence of spatial deficits in blind individuals. These findings had important 
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implications for the education of individuals with blindness, but there were flaws in 

Worchel’s methodology. 

First, his population had a mean age of 14, and many of his subjects were much 

younger. Recent data suggest that haptic ability develops more slowly in VI/B individuals 

(Easton and Bentzen, 1987; Juurmaa, 1973), so generalizing findings from child and 

adolescent subjects to adults is probably not valid. Second, Worchel had subjects draw 

with pencil and paper, then he drew conclusions about their spatial abilities from the 

results. Children with blindness have limited experience with pencil and paper, so their 

inferior performance compared to sighted children may have been based on lack of 

experience with drawing, not inferior spatial ability. Less biased tests have been 

developed that use non-visual means to assess spatial ability in both blind and sighted 

persons (e.g. The Cognitive Test for the Blind; Dial, Mezger, Gray, & Chan, 1988). 

The current study was designed to correct several research design problems found 

in past studies. Many studies have inadequate power to find real differences due to their 

small number of subjects. These subjects usually were further divided into congenitally 

and adventitiously blind groups. Due to the resulting lack of power, important differences 

between blind and sighted persons may have gone undetected. The current study was 

conducted with a database of 471 VI/B individuals, which should provide the necessary 

statistical power to detect differences between groups.  

A second weakness of some studies was neglecting to correct for possible 

confounding variables such as age and gender. Correction by age is necessary to account 

for haptic developmental differences as well as the decline of motor skills in later years 

of the lifespan. Motor tests should also be corrected for gender to account for strength 
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differences between males and females. The MDS incorporates norms that correct for age 

and gender, eliminating the need for matched samples. Other potential confounds include 

age of onset of blindness and level of visual impairment. The current study will examine 

these variables and account for their influence as necessary.  

Typically, studies comparing two groups of subjects match the groups by 

intellectual ability. However, this variable is confounded in comparisons of blind and 

sighted groups for several reasons. For example, the educational backgrounds of blind 

and sighted persons are vastly different and not easily comparable. Reading is a more 

difficult and less rewarding task for most persons who are blind than for sighted 

individuals. For visually impaired persons, reading may involve the use of a print 

enlarger; for totally blind persons, Braille reading is required. In contrast, the experience 

of reading for sighted persons is often highly reinforcing. Additionally, the sensorimotor 

development of children with blindness is adversely affected by limited exploration of 

their environment (Piaget & Inhelder, 1969), which can affect aspects of intellectual 

development. For example, persons with blindness frequently obtain lower scores on 

several of the Wechsler Adult Intelligence Scale ® - Revised (WAIS-R ®) subtests in 

spite of actual ability to solve verbal problems (Kaskel, 1994). Since cognitive and 

perceptual-motor functions correlate moderately in group data, matching groups on the 

basis of IQ may actually bias the results in an unintended direction. For these reasons, it 

is inappropriate to match blind and sighted groups based on measures of intellectual 

functioning when comparing perceptual-motor functions between the groups.  

Many studies of persons with blindness use assessment instruments that were not 

normed on blind populations. A classic example of this problem was Worchel’s (1951) 
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use of pencil and paper drawings to evaluate the spatial abilities of blind persons. In a 

more recent example, Daughtery and Moran (1982) studied the motor abilities of blind 

and sighted persons using motor tests that were not normed on a blind population.  

The goal of the current study is to explore differences in perceptual-motor 

functioning between normal groups of blind and sighted adults. The sample of VI/B 

individuals in this study is considered to be representative of the normal blind population 

for two reasons. First, the large number of subjects in this sample (N = 471) makes it 

much more likely that the sample is representative of the blind population. Second, the 

exclusion of subjects with a variety of disabling conditions increases the likelihood of a 

normal sample. The current study employed a battery of tests designed for use with the 

VI/B persons. The Comprehensive Vocational Evaluation System ® (CVES ®; Dial, 

Chan, et al., 1991) incorporates cognitive, sensory, and motor tests that have good to 

excellent reliability for use with VI/B groups. 

Summary and Hypotheses 

No clear pattern of differences between blind and sighted persons emerges from 

the current literature. Data comparing perceptual and motor functioning demonstrates that 

blind persons have an advantage in analysis of texture and optically unfamiliar shape; in 

contrast, sighted persons perform better on tests of pattern recognition, spatial synthesis, 

abstraction ability, mental rotation, and the identification of optically familiar shapes. 

Perceptual-motor abilities may develop more slowly in blind children, and differences 

found at younger ages may narrow as individuals with visual impairments develop their 

haptic sense and continue to gain experience in their environment. The haptic and motor 

abilities of blind adults are, to a large extent, simply unknown. The goal of this study was 
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to better understand perceptual-motor differences between blind and sighted adults. The 

statistical technique of analysis of covariance (ANCOVA) was used to meet this goal. 

The study also examined differences within the blind group, based on age at onset of 

blindness and level of visual impairment. Dependent variables for all of the analyses were 

obtained from the Comprehensive Vocational Evaluation System (Dial, Chan, et al., 

1991), a neuropsychological battery designed for use with blind populations.   
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CHAPTER 2 

 

METHOD 

Subjects 

Data for subjects who were blind were obtained from archival records of 471 

VI/B consumers of the Texas Commission for the Blind (TCB). These consumers 

received a standard vocational evaluation that included the Comprehensive Vocational 

Evaluation System (CVES), a test battery designed specifically for blind individuals. 

Subject data were obtained from raw data files with identifying information removed. 

Table 2 (Appendix C) provides the breakdown of etiology of blindness.  

The VI/B subjects consisted of 274 males (58.2%) and 197 females (41.8%), with 

ages ranging from 18 to 65 (M = 31.5, SD = 12.7). The subjects were distributed by race 

as follows: 232 (49.3%) Caucasian, 85 (18.0%) African American, 146 (31.0%) 

Hispanic, and 8 (1.7%) other. A right hand preference was reported by 86.6 % of the 

VI/B subjects, while 13.4 % reported a left hand preference.  

Two groups of normal sighted subjects served as a comparison group to the 

visually impaired/blind group. One group of sighted subjects was obtained from 

employees of the Texas Commission for the Blind in four Texas cities (Austin, San 

Antonio, Dallas, and Ft. Worth). TCB employees were initially contacted by email and 

offered the opportunity to participate in a research study. In return for their participation, 

TCB employees received a certificate for 3 ½ hours of disability training. The certificate 

was used to meet part of their job requirements for disability training. A second group of 

sighted subjects was obtained from a group of students who were taking an 
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undergraduate assessment class in the Rehabilitation Department at the University of 

North Texas. These students received extra credit in their assessment class in return for 

their voluntary participation in the study. None of the subjects received monetary 

compensation. A copy of the informed consent letter can be found in Appendix A.  

The sighted subjects consisted of 15 males (34.9%) and 28 females (65.1%), with 

ages ranging from 19 to 65 (M = 42.8, SD = 11.5). The distribution by race was as 

follows: 33 (76.7%) Caucasian, 4 (9.3%) African American, and 6 (13.9%) Hispanic. A 

right hand preference was reported by 93.0 % of the sighted subjects, while 7.0 % 

reported a left hand preference. 

Subjects in both the VI/B group and the sighted group were selected based on the 

following criteria:  

1. The Comprehensive Vocational Evaluation System was administered to all 

subjects.  

2. All subjects were between the ages of 18-65.  

3. Subjects with the following secondary disabilities were excluded: brain damage; 

seizure disorder; mental retardation; cerebral palsy; learning disorder; history of 

substance abuse; renal failure, peripheral neuropathy, and hearing impairment. 

In addition, subjects who were visually impaired/blind (VI/B) were selected based on a 

corrected visual acuity of 20/70 or less. Sighted subjects were free of visual impairment 

(corrected visual acuity better than 20/70). 

Instruments 

Neuropsychological data was obtained using the Comprehensive Vocational 

Evaluation System (CVES; Dial, Chan, et al., 1991). The CVES is a neuropsychological 
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system that assesses behavior in three factors: verbal-spatial-cognitive; sensory-motor; 

and emotional-coping. The CVES was adapted for use with the blind from the McCarron-

Dial System ® (MDS ®), which was originally developed for vocational assessment 

(Blackwell, Dial, Chan, & McCollum, 1985; Packard, Hencke, & McCollum, 1976). The 

MDS was later utilized as a neuropsychological assessment battery and successfully 

differentiated brain damaged from non-brain damaged groups at 93% accuracy (Dial, 

Chan, and Norton, 1990), a level comparable to that of the Halstead-Reitan and Luria-

Nebraska assessment batteries (Goldstein & Shelly, 1984; Kane, Sweet, Golden, Parsons, 

& Moses, 1981). The CVES was normed on a sample of 1,100 subjects that were visually 

impaired. In a subset of that group containing 300 brain damaged and 300 non-brain 

damaged subjects, the CVES correctly classified 85% of the subjects (Dial, Chan, et al., 

1991). Data for the current study was obtained from those parts of the CVES battery that 

pertained to perceptual motor skills, including selected subtests of the Cognitive Test for 

the Blind (CTB); the Haptic Sensory Discrimination Test (HSDT); and the McCarron 

Assessment of Neuromuscular Development – Blind Adaptation (MAND-BA). The 

sighted subjects were also given the Wechsler Adult Intelligence Scale – Revised for a 

separate study.  

The Cognitive Test for the Blind. 

The Cognitive Test for the Blind (Dial, Mezger, Gray, Chan, & Massey, 1991) is an 

intellectual assessment designed for use with VI/B populations. The CTB was normed on 

individuals who were visually impaired or blind. The current study utilized four measures 

from the CTB: the Verbal Factor score was used to obtain an estimate of the overall 

verbal ability of the subjects; the Pattern Recall and Spatial Analysis subtests were used 
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to obtain estimates of specific spatial abilities of VI/B and sighted persons; finally, the 

Spatial Factor score was examined to obtain estimates of overall spatial abilities. Please 

see Appendix B for a detailed description of the CTB variables used in the analysis.  

The Haptic Sensory Discrimination Test. 

The primary sensory component of the CVES is the Haptic Sensory 

Discrimination Test (McCarron & Horn, 1979). Haptic ability involves manipulation of 

objects with the hand in such a way that an accurate mental representation of the object 

and its characteristics can be formed. The HSDT measures haptic memory and the ability 

to discriminate shapes, sizes, textures, and spatial configurations. An HSDT total 

standard score is obtained, along with standard scores for the right and left sides of the 

body. See Appendix B for detailed information on the HSDT. 

The McCarron Assessment of Neuromuscular Development – Blind Adaptation. 

The McCarron Assessment of Neuromuscular Development – Blind Adaptation 

(MAND-BA; McCarron & Dial, 1986) consists of five fine and five gross motor tests. 

The tests are combined to form an overall motor factor score, fine and gross motor index 

scores, and four factor scores, which include Kinesthetic Integration (KI), Bimanual 

Dexterity (BD), Muscle Power (MP), and Persistent Control (PC). These tests tap into a 

variety of neuromuscular functions, including body strength, balance, coordination, and 

speed and direction of movement. The MAND-BA has shown excellent test-retest 

reliability (r = .99; McCarron & Dial, 1986). See Appendix B for information on MAND 

subtests and Factor Scores.  
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Procedure 

The testing procedure for sighted subjects was essentially the same as the VI/B 

subjects experienced in the clinical office. Initially subjects read and signed an informed 

consent form (Appendix A). Subjects were then provided with a brief description of the 

purpose of the study. They were also informed of the intended use of their test scores as 

part of a sighted group to be compared to groups of VI/B individuals. The subjects were 

told that testing would include assessment of perceptual and motor skills as well as 

problem solving abilities. Subjects were also informed prior to the initiation of testing of 

the need to wear a blindfold during some of the testing. Rationale for the blindfold was 

provided (e.g. to simulate the experience of blind individuals during testing). Sighted 

subjects were blindfolded during administration of the CTB, HSDT, and verbal WAIS-R 

subtests. Well-trained doctoral students in psychology collected and scored the sighted 

group data. Demographic data were obtained at initiation of testing, including 

information about gender, ethnicity, age, hand preference, occupation, and educational 

level.  

Data analysis 

The purpose of the current study was to investigate perceptual-motor differences 

that may exist between VI/B and sighted populations. CVES data for both the blind and 

sighted groups were transformed to scaled or standard scores using the means and 

standard deviations derived from the blind group’s raw scores. Demographic data were 

then analyzed to determine if the blind and sighted groups differed on any of these 

variables. Differences in age or years of education were examined using t- tests. Chi-

square analyses were used to examine differences in gender, race, and handedness. 
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The statistical technique of analysis of covariance (ANCOVA) was used to 

compare the perceptual motor abilities of persons with blindness and sighted individuals. 

All analyses were performed using the Statistica Version 5.1 (1996) software program. 

The first analysis focused on investigating differences between blind and sighted groups. 

The goal of the second analysis was to determine if differences exist within the VI/B 

group based on level of visual impairment. Three levels of visual impairment were 

examined: Visually Impairment (visual acuity from 20/70 to 20/200); Legal Blindness 

(visual acuity of 20/200 or less; and Total Blindness (no vision or can discern only light 

and dark). Classification of level of visual impairment had been made at the time of 

assessment based on review of records and communication with the referral source. The 

third analysis examined the influence that age at onset of blindness had on perceptual 

motor abilities. Age of Onset was examined using four operationally defined levels: 

Congenital (0-1 years); Early (2-5 years); School Age (6-18 years); and Adult (over 18). 

Dependent variables for all analyses were obtained from the CVES battery, and included 

CTB, HSDT, and MAND variables that contained a perceptual motor component. See 

Table 1 (Appendix C) for a list of the CVES variables included in the analyses. Based on 

analysis of demographic data, Education was used as a covariate for the analysis of blind 

versus sighted groups. Age of onset of blindness served as a covariate for the analysis of 

the level of Visual Impairment. Finally, level of Visual Impairment served as the 

covariate for the analysis of Age of Onset of Visual Impairment. 
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CHAPTER 3 

 

RESULTS 

Comparisons of Blind and Sighted Persons 

were used to evaluate Differences in age and education between the blind and 

sighted group were analyzed using t- tests, while Chi-square analyses were used to 

analyze differences in gender, ethnicity, and handedness. Demographic information is 

presented in Tables 3 and 4 (Appendix C). As seen in Table 3, significant differences 

were observed for age, t (514) = 6.20, p < .001, with the blind group (M = 30.5) lower 

than the sighted group (M = 42.7). Differences were also found for years of education t 

(401) = 15.09, p < .001, with the blind group (M = 12.1) significantly lower than the 

sighted group (M = 15.8). As shown in Table 4, significant differences were observed for 

gender, with more males in the VI/B group and more females in the sighted group, χ² (1, 

N = 514) = 8.68, p < .01. Differences were also observed for race, with the blind group 

containing a lower percentage of Caucasians and a greater percentage of African 

Americans and Hispanics than the sighted group, χ² (3, N = 514) = 12.11, p < .01 (See 

Table 4). Non-significant differences were observed for handedness χ² (1, N = 514) = 

1.55, p > .05. Age, Gender, and Ethnicity differences were controlled for by standard 

norming procedures of the CTB, HSDT, and MAND. Analysis of covariance (ANCOVA; 

Covariate: Education) was used to control for differences in education. Post-hoc analysis 

of significant variables was performed using Tukey’s Honestly Significant Difference 

(HSD).  
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The means, standard deviation, and ANCOVAs for all CVES components are 

presented in Table 5 (Appendix D). Results for the CTB indicated no differences in 

verbal intellectual ability between the two groups, once the effects of education were 

covaried. Therefore, differences in perceptual motor abilities could not be due to 

differences in verbal intelligence. No differences in spatial ability were found between 

the blind and sighted groups.  

Sensory composite scores were not different. However, differences were found in 

specific sensory discrimination abilities. The Shape and Configuration scaled scores were 

higher in the blind than in the sighted group, with both tests reaching a significance level 

of p < .05. The Texture scaled score difference approached significance, p = .06, with the 

sighted group having higher scores than the blind group.  

Sighted adults had significantly better motor abilities than adults with blindness. 

Several MAND subtests scores were significantly higher for sighted persons, including 

Beads in a Box, Beads on a Rod, Nut and Bolt, Finger Nose Finger, and Heel-Toe Walk, 

all at p < .001 significance level. Additionally, the Standing On One Foot subtest was 

significant at the p < .01 level, while the Hand Strength and Jumping subtests were 

significant at the p < .05 level. Only the Rod Slide subtest showed a significant advantage 

for persons with blindness over sighted persons, p < .001.   

Six of the seven MAND factor scores also revealed significant differences 

between blind and sighted groups, with the sighted group having better scores in each 

case. The Total Motor Score, Gross Motor Index, Kinesthetic Integration and Bimanual 

Dexterity were all significant at p < .001.  The Fine Motor Index showed a significance 

level of p < .01, while the Muscle Power score was significant at p < .05.  
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Comparisons within the Blind Group 

Visual Status. 
 

The second analysis used Visual Status as the Independent Variable, with three 

levels: Visual Impairment (VI), Legal Blindness (LB), and Total Blindness (TB). 

ANCOVAs were used to evaluate age, education, and age at onset differences between 

the three visual status groups. Differences were observed for age, F (2, 468) = 6.44, p < 

.01 and for age at onset of visual impairment, F (2, 406) = 14.66, p < .001. No differences 

were observed between the groups based on years of education, F (2, 468) = .52, p > .05. 

Chi-square was used to analyze differences in gender and ethnicity. No differences were 

found for gender, χ² (2, N = 471) = .98, p > .05, or ethnicity χ² (6, N = 471) = 3.14, p > 

.05.  

Differences in age were controlled by the previous norming procedures of the 

CTB, HSDT, and MAND. The possible influence of age at onset of visual impairment 

was accounted for by making age at onset a covariate in the subsequent analysis. The 

means, standard deviations, and ANCOVA (Covariate: Age at onset) for all CVES 

components are presented in Table 6 (Appendix D). Tukey's HSD was used for post hoc 

analysis whenever overall significant differences were found.  

No differences in verbal ability were found among the groups. Likewise, spatial 

abilities were not different. Differences were found in the ability to discriminate shape 

and texture. The Shape scaled score was different, F (2,414) = 3.56, p < .05, with post-

hoc analysis revealing that the TB group (M = 11.5) had better shape discrimination than 

the VI group (M = 10.0), p < .05. Texture discrimination was also different, F (3, 509) = 
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4.15, p < .01, with post-hoc tests revealing better texture identification skills in the TB 

group (M = 11.6) than in the VI (M = 9.8) and LB groups (M = 9.9), p < .01.  

HSDT standard scores include information about overall sensory discrimination 

ability and right and left side of the body scores. Results showed significant differences 

for the Total HSDT score, F (2, 414) = 3.97, p < .05, and the Left HSDT score, F (2, 414) 

= 3.42, p < .05. Post-hoc analysis of the Total HSDT score revealed that the TB group (M 

= 105.0) had better overall tactile discrimination than the VI group (M = 97.6), p < .05. 

Post-hoc of the Left side HSDT score showed a clear advantage for the TB group (M = 

105.2) compared to the VI group (M = 97.8), p < .05. 

Somewhat surprisingly, the motor abilities were not significantly different 

between the groups, with the exception of a test of lower body strength. Scores on the 

Jumping subtest of the MAND were different, F (2,414) = 4.29, p < .05, with post-hoc 

tests revealing that the VI (M = 101.1) and LB (M = 100.5) groups had more lower body 

strength than the TB group (M = 92.6), p < .05. No other differences were noted on 

MAND subtests or factor scores. See Table 6 (Appendix D) for the means, standard 

deviations, and ANCOVAs for the visual status comparisons.   

Comparisons Based on Age at Onset of Blindness. 

The third main analysis focused on understanding the effects of age at onset of 

blindness on perceptual motor abilities. Four age levels were specified, including 

Congenital Blindness (CB: ages zero to one); Early Blindness (EB: ages two to five); 

School Age Blindness (SB: ages six to 18); and Adult Blindness (AB: over 18). An 

ANOVA was used to evaluate possible differences in educational level. The differences 

between the groups were not significant, F (3, 405) = 1.59, p > .05. Chi-square was used 
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to evaluate differences in gender, race, and visual status. No differences were found for 

gender, χ² (3, N = 409) = .73, p > .05, or ethnicity χ² (9, N = 409) = 8.02, p > .05. A 

significant difference was found for visual status, χ² (6, N = 409) = 50.01, p < .001. An 

ANCOVA was used to examine differences between the groups, with visual status as the 

covariate. Table 7 (Appendix D) shows the means, standard deviations, and ANCOVAs 

for this analysis. Tukey’s HSD was utilized whenever post-hoc analysis was necessary.  

CTB verbal and spatial abilities were not significantly different between the 

groups. Haptic sensory discrimination abilities were different in the areas of shape and 

texture. For shape, F (3,404) = 2.84, p < .05, no significant post-hoc differences were 

found. For texture, F (3,404) = 10.85, p < .001, post-hoc revealed that the AB group (M = 

8.6) had less ability to identify textures than the CB (M = 10.4), p < .001, and EB (M = 

10.1), p < .05 groups.  

Several differences in motor abilities were noted, all of which were small in 

magnitude. On the MAND, the groups differed on the Beads on a Rod, Rod Slide, and 

HTW subtests. For Beads on a Rod, F (3,404) = 4.34, p < .01, post-hoc analysis indicated 

that the SB group (M = 106.1) performed better than the EB group (M = 94.4), p < .01. 

For the Rod Slide subtest, F (3,404) = 2.78, p < .05, post-hoc revealed a significant 

advantage for the AB group (M = 104.2) over the EB group (M = 93.8), p < .05. The 

HTW subtest also showed a significant effect, F (3,404) = 2.76, p < .05, but post-hoc 

analysis did not show significant differences between the groups. The only MAND factor 

score that was different between the groups was Persistent Control, F (3,404) = 2.95, p < 

.05. Post-hoc analysis did not indicate significant differences between the groups.   
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CHAPTER 4 

 

DISCUSSION 

 
The following section provides a discussion of the findings, with emphasis on 

how the results can be applied to the real world problems of persons with blindness. 

Limitations of the study and recommendations for future research are also presented. In 

general, tactile perceptual abilities of adults with blindness are at least equal to those of 

sighted adults. In contrast, the motor abilities of VI/B adults are inferior to those of 

sighted persons.  

Perceptual Abilities 

No differences were found in the spatial abilities of blind and sighted adults, 

supporting Juurmaa’s (1973) hypothesis that the slow improvement of haptic ability in 

persons with blindness may, over time, lead to concurrent improvements in spatial 

ability. This finding contradicts earlier research that found better spatial abilities in 

sighted children than in blind children (Fletcher, 1980). Equal spatial abilities in blind 

and sighted adults suggests important implications for the education of persons with 

blindness, especially if future research links the development of haptic imagery with 

improvements in spatial functioning.  

Haptic sensory discrimination is a particularly important skill for blind 

individuals. Sensory discrimination correlates with job success, while texture 

identification is necessary for Braille reading. (McCarron & Dial, 1986). The current 

study found that adults with blindness were better able to discriminate shape and 



 35

configuration than sighted adults. These findings are similar to those found in earlier 

research (Davidson et al., 1974; Heller, 1989b; Heller & Kennedy, 1990). The blind 

group’s advantage may be related to kinesthetic integration; moving their fingers around 

objects and developing a haptic image of the objects may help persons with blindness to 

form an understanding of simple and complex spatial configurations.  

Analysis within the blind subgroups showed that persons who became blind 

earlier in life had better shape and texture abilities than persons who became blind as 

adults (c.f. ttt & Moylan, 1994). However, interaction with level of visual impairment is 

found in that persons who are totally blind have better shape and texture identification 

ability than those who retain some vision. Texture identification skills are actually better 

when blindness occurs earlier in life and to the extent that the blindness is total. To the 

extent that VI/B persons have more residual vision, regardless of age of onset, they tend 

to have less ability to identify textures. One would assume the totally blind congenital 

group would have better haptic abilities than even sighted persons, but this could not be 

analyzed directly because not enough totally blind congenital cases were available. From 

this result, the argument can be made that haptic discrimination ability improves as haptic 

imagery replaces visual imagery.  

Later onset of blindness and the preservation of some residual vision were 

associated with decreased ability to identify textures. The finding suggests that only with 

congenital blindness is rewiring of brain mechanisms likely to occur. Later onset 

blindness does not lead to the refocusing of attentional states necessary for the 

development of tactile imagery. The use of vision enables sighted persons to see textures 

and make strong associations with specific surfaces. Individuals who are VI/B and retain 
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some vision may have difficulty making the shift from dependence on visual analysis to 

dependence on haptic analysis for texture identification. The findings suggest some 

interesting hypotheses that could explain the occipital activation of individuals with 

blindness that occurs during processing of non-visual tasks. 

The occipital lobes of totally blind persons are activated during tactile processing 

tasks (Roder et al., 1996; Roder et al., 1997; Rosler et al., 1993). Whether this activation 

is functional or generalized is unclear. The current study provides evidence that the 

occipital activation may be functional in nature. The blind group as a whole had better 

ability to discriminate simple and complex shapes than the sighted group. More 

importantly, the totally blind group had better ability to discriminate simple shapes and 

textures than the visually impaired and legally blind groups. Totally blind individuals 

may make use of the occipital lobes as they develop new neural connections to process 

tactile information and develop haptic images. It makes intuitive sense that occipital 

activation would occur during the development of images, whether visual or haptic. This 

possibility has profound implications for the education and training of individuals who 

are blind. Future research combining brain imaging tools and neuropsychological tests 

may provide a clearer understanding of this topic.  

Motor abilities 
 

This study found that the motor skills of sighted adults, almost without exception, 

were much better than the motor skills of adults who are blind. These findings are similar 

to previous research showing that children with blindness are less physically fit than 

sighted peers, have deficits in posture and balance, delays in self-initiated locomotion, 

and are physically weaker than sighted peers (George et al., 1975; Jarowski & Evans, 
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1981; Seelye, 1983; Troster et al., 1994; Wyatt, 1997). Unlike the spatial abilities of blind 

adults, it appears that the motor functioning of persons with blindness does not improve 

with time. 

There are several possible explanations for the motor deficits experienced by 

adults with blindness. Persons with blindness may fear participation in a variety of 

physical activities due to concerns of injury. This could lead to decreased muscle strength 

beginning in early childhood and continuing on into adulthood. Interestingly, no 

differences in strength were found based on age at onset of blindness. In contrast, the 

amount of residual vision appears to affect strength; persons who had some residual 

visual were stronger than persons who were totally blind. Residual vision may influence 

an individual’s willingness to engage in physical activity.  

Deficits in balance and coordination were found in individuals with blindness. 

Visual cues help sighted persons to maintain balance, while VI/B persons must rely on 

proprioceptive and kinesthetic cues. Current findings indicate that individuals who are 

totally blind have less ability to maintain balance and integrate kinesthetic cues than do 

individuals who are visually impaired or legally blind.  

The Rod Slide was the only motor task in which persons with blindness 

performed better than sighted persons. The Rod Slide is a test that measures the ability to 

make slow, controlled movements of the arm and hand. Several possible explanations for 

this finding were considered. The most plausible explanation was that the sighted group 

experienced some performance anxiety that was not present in the blind group. The Rod 

Slide is the most sensitive motor measure of anxiety on the MAND (J. G. Dial, personal 

communication, October 22, 2001). The sighted group was made up mainly of well-
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educated professionals and college students; the perceived demand characteristics of the 

testing by the sighted group may have made them overly concerned with performance, 

thus having difficulty with a task involving inhibition of their responses.  

Recommendations. 

Based upon the findings of this study, several recommendations can be offered in 

hopes of optimizing the functioning and capabilities of individuals who are blind. The 

finding that texture identification was better in persons who are totally blind provides 

important information that is applicable to Braille reading. Persons who are totally blind 

have better aptitude in the skills necessary for Braille reading than individuals who are 

visually impaired or legally blind. Individuals with residual vision will likely find Braille 

reading a difficult and cumbersome task due to their (relative) deficits in texture 

discrimination. The Texas Commission for the Blind recently adopted a policy requiring 

that all VI/B individuals receive training in Braille reading (Murphy, 1997). Visually 

impaired individuals who can read large print would be better served by receiving 

training in the use of CCTV machines, large print books, and the like.  

A greater emphasis should be placed on physical fitness activities for individuals 

with blindness. Along with mobility training, weight and cardiovascular training 

programs should be offered. Accommodations should be developed to encourage 

participation of persons who are blind. While some of the motor deficits of blind 

individuals are inherent (i.e. balance and coordination), other deficits are somewhat 

correctable (i.e. strength and endurance). Weight training is an example of a relatively 

safe physical activity for persons with blindness. In addition, counselors and health care 
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providers of persons with blindness should increase their awareness of the likelihood of 

motor deficits in their consumers and encourage an active exercise regime.  

This study has laid the groundwork for future research in which some specific 

hypotheses can be tested. Future studies should compare spatial abilities in adults with 

blindness and sighted adults; a reasonable hypothesis might be that no differences in 

spatial abilities would be expected. Perceptual abilities might also be examined, with a 

possible hypothesis that sensory discrimination tasks involving analysis of simple and 

complex shapes would be performed better by individuals who were blind than by 

sighted persons. A prospective study examining the motor abilities of blind adults, some 

of whom received mobility training as children, would help us to understand the effects 

of mobility training on motor abilities. 

Limitations  

The exploratory nature of this study precludes causal statements about the 

findings. Although an effort was made to find sighted subjects who were similar to the 

blind group, several demographic differences were found between the blind and sighted 

groups. These included differences in age, gender, ethnicity, and education. 

Demographically corrected norms and covariates were utilized to correct these 

differences.  

Differences in perceptual-motor abilities based on the analysis of subsets of blind 

groups were found, including visual status and age of onset of blindness. Other important 

subsets likely exist. For example, etiology of blindness can affect perceptual motor 

abilities. Persons with insulin dependent Diabetes Mellitus have shown 

neuropsychological deficits (Ryan & Williams, 1993). The current study excluded 



 40

persons with diabetes who also had peripheral neuropathy, but the remaining diabetic 

group may have contributed some error variance. Individuals who became blind as a 

result of complications of diabetes are likely to present a different neuropsychological 

profile than individuals whose blindness was caused by macular degeneration (e.g. 

Stargardt’s Disease).  

There are inherent variables associated with age of onset of blindness that have 

neuropsychological implications. For example, Retinopathy of Prematurity (ROP) is a 

common congenital onset problem that has a high incidence of right parietal dysfunction, 

which could affect spatial and tactile abilities. In future research, etiology of blindness 

needs to be taken into account when attempting to explain differences between blind 

subgroups.  

A related point involves multivariate analysis. This study could have been 

improved by multivariate analysis combining level of visual functioning with age of 

onset of blindness. Regrettably, this was not possible due to the limited number of totally 

blind individuals, but it points to the need of taking into account the various influences on 

blindness. “The blind” should not be studied as a singular entity, a mistake that many 

researchers make at one level or another. Instead, variables such as level of visual 

functioning, age at onset of blindness, etiology of blindness and the influence of 

education should be assessed at the multivariate level.  

 

 

 

 



 41

 

 

 

 

 

 

 

 

APPENDIX A 

INFORMED CONSENT 

 

 

 

 

 

 

 

 

 

 

 

 

 



 42

Informed Consent 

I agree to participate in a study investigating the perceptual and motor abilities of blind 

and sighted adults. Specifically, this study will compare the abilities of blind and sighted 

adults on a variety of neuropsychological measures.  

I understand that as a participant in the sighted group, my involvement is 

contingent upon my meeting the following criteria: 

1. I must be between the ages of 18 and 65 

2. I must have no history of: 

a. brain damage (traumatic brain injury; seizures) 

b. alcohol or chemical dependency 

c. sensory impairment (glasses and hearing aids are acceptable if they 

fully correct and must be worn during the study as needed) 

d. diagnosed or suspected learning disability or attention-deficit disorder 

I also understand that my participation will include approximately four 

and one-half hours of neuropsychological evaluation. Roughly three hours of the 

evaluation will require my wearing a blindfold to simulate conditions of 

blindness. I will be allowed breaks as needed. This evaluation will include tasks 

assessing general intelligence, problem solving, sensory and motor functions, 

memory, and attention. I will also be asked to provide demographic information 

including my age, race, education level, and occupation. I understand that all 

information will be confidential and anonymous. I will be assigned a three-digit 

code, which will replace my name on all data collection forms.  
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I understand that there is no personal risk or discomfort directly involved 

with this research. Furthermore, I understand that my participation is voluntary 

and that I am free to withdraw my consent and discontinue participation in this 

study at any time without penalty, prejudice or loss of benefits.  

If I have questions or problems that arise in connection with my 

participation in this study, I should contact either Arthur Joyce (Health 

Psychology student investigator) or Dr. Harrell (project supervisor) at (940) 565-

2339. 

 I have received a copy of this written informed consent. 

                                          

Signature         Date 

____________________          

Experimenter         Date 

 

This project has been reviewed and approved by the UNT Committee for the Protection 

of Human Subjects. Please contact Shelia Bourns (Institutional Review Board Secretary) 

if you have further questions (940) 565- 3940. 
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Test Description 

Haptic Sensory Discrimination Test (HSDT). Tactile discrimination involves the 

manipulation of objects in the hand to discriminate their particular shape, size, texture, 

and spatial arrangements and to conceptually integrate these sensations to form an 

accurate mental representation of the total object. Geometrically shaped and textured 

objects are obscured from the visual field and manipulated in one hand for a ten-second 

time period. After feeling and manipulating the object in the hand, the person attempts to 

haptically identify a correct replica of the object from a set of five similar objects. A raw 

score is derived from the number of objects correctly identified. While haptic-visual 

discrimination is partly a cognitive function and associated with intelligence, the ability 

to recognize objects by haptic manipulation primarily involves sensory 

(cutaneokinsesthetic) processes. Higher cortical functions involved in organization of 

sensory input and conceptualization appear related to performance of haptic tasks. From a 

psychological perspective, the task requires a synthesis and integration of particular 

elements into a unified whole.  

The parietal-occipital areas of the brain process tactile discrimination and 

integration skills. Higher cortical functions involving organization and integration of 

bimodal sensory information are involved in the performance of the task (Luria’s Unit II, 

primary detection, recognition, and association of haptic-kinesthetic sensory 

information). The association of complex tactile information with short-term memory 

processes requires the integration of sensory inputs by the tertiary zones of Unit II 

(angular and supramarginal gyri). These same areas also participate in the mediation of 

very complex cognitive functions, perceptions, learning, and the performance of language 
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and academic tasks. Therefore, tactile deficits in either or both sides of the body may be 

identified by the HSDT and subsequently related to educational and vocational potential. 

Thus, a relationship exists between the performance scores on instruments that assess 

complex tactile integration and cognitive skills. Poor HSDT performance on the right as 

contrasted to the left side of the body may suggest neuropsychological dysfunction 

involving the left, language hemisphere. This disparity is most obvious in individuals 

with known traumatic lesions of this hemisphere but can also be observed in some cases 

of learning disabled individuals. These persons my perform poorly in basic academic 

subjects such as reading, spelling, and arithmetic due to a congenital anomaly of 

development involving the left parietal associative area. In contrast, lateralized deficits to 

the right cerebral hemisphere may be suggested by low left hand performance. In these 

cases, problems in spatial analysis and specific learning disabilities involving poor 

academic performance in arithmetic and probably expressive writing may be observed. 

Tactile discrimination difficulties may also lead to problems with basic prevocational and 

vocational skills such as appropriate use of small hand tools, and discrimination among 

small parts and assembly tasks.  

The HSDT materials consist of: a cloth screen to obscure the individual’s vision 

of the hand used to manipulate objects; a series of geometric and textured shapes; a series 

of plates with shapes on them; and scoring sheets. The HSDT is relatively easy to 

administer and score and has a reliability of .92. The predictive validity with work 

potential has been reported at .67 for individuals with visual impairments (Kaskel, 1994).   

McCarron Assessment of Neuromuscular Development – Blind Adaptation.  
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The MAND is the primary CVES measure used to assess the motor factor in 

vocational, educational and clinical neuropsychological assessment. The MAND consists 

of five fine and five gross motor tests combined to produce a total motor score. In 

vocational and educational evaluation of adolescents and adults, the MAND total raw 

score and separate raw score totals for the fine and gross motor sections are computed 

and used in developing individual program plans. Various factor scores and subtest 

scores from the MAND are also used in this process. The MAND has demonstrated 

excellent reliability (test-retest correlation of .99) for use with brain-damaged groups. 

The predictive validity between the MAND and work performance is significant (r = .70, 

p < .001). 

Since many neuropsychological and vocational assessment procedures tend to 

redundantly measure only bimanual dexterity or hand strength, it is important to include a 

comprehensive yet efficient measure of neuro-motor skills. The MAND provides such a 

comprehensive assessment of the individual’s neuromuscular functioning. The following 

sections describe these factors: 

Persistent Control. This factor is assessed by the Rod Slide and Finger-Nose-

Finger subtests. This factor involves the integration of perceptual skills with the 

regulation of hand-arm movement. The tasks require controlled hand-arm coordination 

(cerebellum), the ability to focus attention while inhibiting extraneous motor movements 

(Unit I reticular formation and Unit II parietal area). Inadequate persistent control may 

also suggest poorly focused attention. In a vocational setting, depressed persistent control 

scores may be associated with poor quality in workmanship, tendencies to make frequent 

errors and increased risk for accidents.  
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Muscle Power. This factor is measured by the Hand Strength and Jumping 

subtests. This factor involves the healthy functioning of the skeletal muscles reflecting 

timing and coordination. The greatest muscle power is elicited when the muscles are 

contracted simultaneously. The tasks include a measure of hand/arm strength and a 

measure of leg strength. In children, poor muscle power may interfere with recreational 

activities and participation in sports, thus leading to secondary social/emotional 

problems. In a vocational setting, depressed muscle power may interfere with tasks that 

require lifting, carrying, pushing, or pulling. In clinical assessment, reduced muscle 

power, particularly to the upper body, may indicate cortical level brain damage (posterior 

frontal lobes – Luria’s Unit III).  

Kinesthetic Integration. The Heel-Toe Walk and the Standing on One Foot 

subtests measure this factor. The factor is defined as the control of balance and 

orientation of the body in space. Performance on these subtests involves static balance 

and equilibrium as well as dynamic balance with the integration of sensorimotor input 

from large muscle systems. Deficits in balance and gross motor coordination may 

interfere with play and recreational activities. Deaf and visually impaired/blind 

individuals may experience problems in kinesthetic integration. Work tasks that require 

extended reaching, crawling, climbing, etc., may be hazardous or require individual 

accommodation. In clinical diagnosis, severe deficits may be observed in persons with 

subcortical vestibular system and cerebellar lesions.  

Bimanual Dexterity. This factor is measured by the Beads-on-a-Rod and Nut and 

Bolt subtests. Adequate performance on the bimanual dexterity factor requires integration 

of proprioceptive and kinesthetic information with fine motor coordination of both hands. 



 49

The Nut-and-Bolt subtest requires inhibition of movement of one hand while 

simultaneously manipulating the fingers and wrist of the other hand. A good score in this 

area requires precise bimanual coordination. Deficits in bimanual dexterity have a 

negative impact on a wide range of daily living and work activities. Slow and 

uncoordinated performance may interfere with a variety of work tasks. Activities such as 

operating powered machinery may also be compromised. In clinical assessment, these 

deficits may be associated with lateralized lesions involving predominant impairment on 

one side of the body.  

In addition to the four factors, specific MAND scores related to speed, strength, 

and fine motor coordination are combined to form a Hand Preference Index (HPI) for 

both the right and left hands. The assessment procedures may be used with the sighted, 

deaf, or visually impaired/blind populations.  

Reprinted from the McCarron-Dial Evaluation System (1986) 

Cognitive Test for the Blind. The CTB is the chief CVES measure of cognitive, 

intellectual, and information processing skills. It consists of a verbal and a non-visual 

performance scale from which a total score is derived. Early studies of the CTB indicate 

very good test-retest reliability (r = .95). The two CTB subtests used for this study were 

the Pattern Recall and Spatial Analysis.  

Pattern Recall. The Pattern Recall subtest measures complex immediate and 

short-term spatial memory by presenting subjects with various textured patterns and 

asking that they remember the pattern. The alternate form reliability of the Pattern Recall 

subtest was .94 (Dial, Mezger, et al., 1991). 
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Spatial Analysis. This subtest measures complex spatial analysis and orientation. 

Subjects match shapes and assemble patterns using wooden shapes and tactile frames for 

reference. Test-retest reliability of the Spatial Analysis subtest was .92 (Dial, Mezger, et 

al., 1991). In addition, a Spatial Factor was obtained using the Pattern Recall and the 

Spatial Analysis subtests. This factor is thought to measure spatial organization and 

analysis.  

Spatial Factor. This standard score is obtained by averaging the Pattern Recall and 

Spatial analysis subtests.  
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Table 1 

CVES Variables Used in All Analyses 

             

Cognitive Test for the Blind     

Pattern Recall     Verbal Factor Score    

Spatial Analysis    Spatial Factor Score 

Haptic Sensory Discrimination Test 

Shape Scaled     Right Standard 

Size Scaled    Left Standard 

Texture Scaled    Total Standard 

Configuration Scaled  

McCarron Assessment of Neuromuscular Development Subtests  

Beads in Box    Hand Strength 

Beads on Rod    Finger Nose Finger 

Finger Tapping    Jumping  

Nut and Bolt    Heel Toe Walk  

Rod Slide    Standing on One Foot 

McCarron Assessment of Neuromuscular Development Factors    

Persistent Control    NDI        

Muscle Power    Fine Motor Index 

Kinesthetic Integration  Gross Motor Index 

Bimanual Dexterity 
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Table 2 

Etiology of Blindness* 

             

Etiology      Number  Percentage 

             

ALBINISM:       34   2.8 

APHAKIA DEVEL. ANOMALY NOS   35   7.4  

CATARACTS:      72   15.3  

COLOBOMA:      13    2.7 

NYSTAGMUS/STRABISMUS:    93   19.7 

DEMOISIERS SYNDROME:    1   0.2 

DIABETES      44   9.3 

GLAUCOMA :      69   14.6 

INFECTIOUS DISEASE     7   1.5 

LAURENCE MOON BIEDL SYNDROME  5   1.1 

LEBERS AMAUROSIS    9   1.9 

MACULAR DEGENERATION   38   8.1 

OPTIC ATROPHY, HYDROPLASIA  61   12.9 

RETINAL DETACHMENT    26   5.5 

 
RETROLENTAL FIBROPLASIA/   23   4.9 

RETINOPATHY OF PREMATURITY  61   11.0 

(table continues) 
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Table 2 (continued) 

             

Etiology      Number  Percentage 

             

RETINITIS PIGMENTOSA    68   14.4 

STARGARDTS DISEASE    18   3.8 

TOXIC EXPOSURE      3   0.6 

PHYSICAL TRAUMA TO THE EYE   21   4.5 

TUMOR      5   1.1 

 

*Note: Multiple etiologies were prevalent in many cases.  
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Table 3 

Means, Standard Deviations, and t-tests for Blind and Sighted Groups Demographic 

Characteristics 

             
 
Variable  Blind    Sighted  t 
   Mean/SD   Mean/SD 
 
             
 
 
Age (541)  30.5/12.5   42.7/11.4  6.20*** 
 
Education (401) 12.1/1.8   15.8/1.8  15.09*** 
 
             
*** p < .001 
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Table 4 

Chi-Square Analyses for Blind and Sighted Groups Demographic Characteristics 

             
 
Variable    Chi-Square 
             
 
 
Sex     χ²(1, N=514) = 8.68** 

Race      χ²(3, N = 514) = 12.11** 

Handedness    χ²(1, N = 514) = 1.44 

             
* p < .05 ** p < .01  
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Table 5 

Means, Standard Deviations, and ANCOVAs (Covariate: Education) for Blind and 

Sighted Groups 

             
 
Variable  Blind  Sighted  F (1, 511) 
   Mean  Mean 
   SD  SD 
             
 
CTB 
 
Pattern Recall  10.5  11.3   .01 
   2.9  2.9 
    
Spatial Analysis 10.5  10.2   .75 

3.0  3.5 
 

Verbal   100.5  109.8   .61 
15.1             13.4 
 

Spatial   101.6  100.6   .19 
   15.0  11.7    
 
HSDT SCALED 
 
Shape   10.4  9.9   4.26*  

3.0            2.9 
 

Size   10.5  11.0   1.23 
   3.0  2.6 
 
Texture  10.1  11.6   3.45 (p=.06) 
   3.0  3.1 
 
Config   10.5  9.2   6.26* 
   3.0  3.6 
 
             
*p<.05 **p<.01 ***p<.001 
 

(table continues) 
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Table 5 cont. 
 
Variable  Blind  Sighted  F (1, 511) 
   Mean  Mean 
   SD  SD 
             
 
HSDT STANDARD 
 
Right    100.4  101.9   .29 
   15.1  13.0 
 
Left   100.7  105.4   .13 
   13.9  16.4 
 
Total   100.9  104.4   .22 
   14.2  14.2 
 
MAND SUBTESTS 
 
BB   100.5  122.6   57.99*** 
   14.9  11.6 
 
BR   100.7  122.5   63.99*** 
   15.0  7.6    
 
FT   100.5  105.1   1.12 
   15.0  9.2 
 
NB   100.4  111.8   15.68*** 
   15.0  9.8 
 
RS   101.1  89.6   17.62*** 
   16.1  24.2 
 
HS   100.7  107.3   5.20*    
   15.1  17.4 
 
FNF   100.8  112.0   15.17*** 
   14.9  6.3  
 
             
*p<.05 **p<.01 ***p<.001 
 

(table continues) 
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Table 5 cont. 
 
Variable  Blind  Sighted  F (1, 511) 
   Mean  Mean 
   SD  SD 
             
 
JUMP   100.5  106.9   4.01* 
   15.0  15.9 
 
HTW   100.5  117.9   39.80*** 
   15.0  9.9 
 
SOF   100.5  110.3   9.68** 
   15.0  9.5    
 
MAND FACTOR SCORES 
 
FMI   100.5  110.7   10.85** 
   15.0  6.5 
 
 
GMI   100.5  111.3   14.67*** 
   15.0  8.2 
 
NDI   100.5  111.1   12.23*** 
   15.0  5.7 
 
PC   100.5  101.1   .11 
   14.9  12.1 
 
MP   100.6  107.3   5.36* 
   15.0  15.0 
 
KI   100.5  114.3   23.09*** 
   15.0  8.5 
 
BD   101.3  117.5   57.92*** 
   11.5  7.3 
             
*p<.05 **p<.01 ***p<.001       
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Table 6 

Means, Standard Deviations, and ANCOVAs (Covariate: Age of Onset) for Visual Status 

             
 
Variable  VI  LB  TB  F (2,414) 
   Mean  Mean  Mean   
   SD  SD  SD   
             
 
CTB 
 
Pattern Recall  10.2  10.7  10.6  .74  
   3.4  2.5  3.6   
    
Spatial Analysis 10.5  10.5  10.5  .23 

3.0  3.0  2.9   
 

Verbal   100.6  100.3  102.6  .27 
16.4  14.0  15.3   
 

Spatial   99.7  101.2  100.5  .60 
   16.4  14.1  17.9    
 
HSDT SCALED 
 
Shape   10.0  10.3  11.5  3.56* 

3.7  2.8  2.3   
 

Size   10.0  10.6  10.9  2.17 
   3.1  2.9  3.1   
 
Texture  9.8  9.8  11.6  5.55** 
   3.1  2.9  2.4   
 
Config   10.3  10.4  10.4  .16 
   3.3  2.9  3.4   
 
             
*p<.05 **p<.01 ***p<.001 
 

(table continues) 
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Table 6 cont. 
 
Variable  VI  LB  TB  F (2,414) 
   Mean  Mean  Mean   
   SD  SD  SD   
             
 
HSDT STANDARD 
 
Right    97.4  100.2  103.2  2.70 
   16.0  14.5  16.1   
Left   97.8  100.6  105.2  3.42* 
   15.5  13.0  13.5   
 
Total   97.6  100.7  105.0  3.97* 
   15.8  13.1  14.4   
 
MAND SUBTESTS 
 
BB   100.3  100.5  100.5  .01 
   14.7  14.0  22.8   
 
BR   100.3  102.7  98.5  1.45 
   14.8  14.9  18.4      
 
FT   99.6  101.4  101.8  .41 
   14.5  15.4  15.8   
 
NB   98.7  101.3  97.0  1.56 
   17.8  13.0  22.3   
 
RS   97.8  102.4  102.8  2.60 
   21.2  13.5  7.8   
 
HS   100.3  100.4  100.1  .01   
     13.5  15.5  20.6   
 
FNF   100.6  101.1  95.7  1.82 
   15.5  13.8  18.8    
 
JUMP   101.1  100.5  92.6  4.29* 
   15.9  14.5  13.2   
             
*p<.05 **p<.01 ***p<.001 

(table continues) 



 63

Table 6 cont. 
 
Variable  VI  LB  TB  F (2,414) 
   Mean  Mean  Mean   
   SD  SD  SD   
             
 
HTW   100.3  100.4  95.3  2.41 
   15.8  14.5  18.4   
 
SOF   98.9  100.9  96.7  1.03 
   15.7  14.3  16.2 
 

MAND FACTOR SCORES 

 
FMI   98.4  102.1  99.8  1.72 
   16.3  14.1  19.6   
 
GMI   100.2  100.6  93.9  2.61 
   15.3  14.6  17.6   
 
NDI   99.4  101.4  96.4  1.48 
   15.6  14.5  19.3   
 
PC   98.5  101.5  98.4  1.45 
   17.7  13.1  13.8      
 
MP   100.6  100.4  95.7  1.41 
   14.4  15.0  17.5   
 
KI   100.1  100.8  95.3  1.60 
   15.9  14.6  16.8   
 
BD   100.3  102.6  98.6  2.21 
   12.6  10.7  17.0  
             
*p<.05 **p<.01 ***p<.001 
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Table 7 

Means, Standard Deviations, and ANCOVAs (Covariate: Visual Status) for Age of Onset 

of Blindness 

             
 
Variable  Congenital Early  School  Adult  F (3,404) 
   Mean  Mean  Mean  Mean 
   SD  SD  SD  SD 
             
 
CTB 
 
Pattern Recall  10.5  10.0  10.8  10.8  .44 
   3.1  3.1  2.3  2.2 
    
Spatial Analysis 10.8  10.3  10.4  10.0  1.88 

2.9  3.1  3.1  3.0 
 

Verbal   101.8  100.4  96.9  98.9  1.91 
15.5  16.7  10.3  13.5 
 

Spatial   101.5  98.8  101.1  99.4  .74 
   15.8  17.1  12.9  12.7   
 
HSDT SCALED 
 
Shape   10.6  10.4  9.9  9.7  2.84*  
   3.2  3.4  2.2  2.9 

 
Size   10.4  10.1  10.8  10.5  .18 
   3.0  3.2  2.9  2.9 
 
Texture  10.4  10.1  9.7  8.6  10.85*** 
   3.0  2.6  3.2  2.7 
 
Config   10.5  10.6  10.1  10.1  .81 
   3.0  3.9  3.0  2.7 
 
             
*p<.05 **p<.01 ***p<.001 
 

                                                                                                                      (table continues) 
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Table 7 cont. 
 
Variable  Congenital Early  School  Adult  F (3,404) 
   Mean  Mean  Mean  Mean 
   SD  SD  SD  SD 
             
 
HSDT STANDARD 
 
Right    100.4  99.4  99.6  99.7  1.20 
   15.0  18.9  14.7  14.3 
 
Left   99.7  100.4  97.4  100.9  .70 
   14.2  14.2  15.5  11.6 
 
Total   100.4  100.1  98.4  99.5  .63 
   14.5  17.2  13.8  12.1 
 
MAND SUBTESTS 
 
BB   100.1  96.7  102.4  99.0  1.64 
   13.9  16.6  14.2  14.2 
 
BR   101.4  94.4  106.1  101.8  4.34** 
   15.1  15.6  15.4  13.6    
 
FT   100.3  98.7  102.9  102.2  .65 
   15.9  16.1  14.6  13.4 
 
NB   99.1  103.1  101.1  100.5  .79 
   16.5  15.6  16.2  11.1 
 
RS   100.8  93.8  101.4  104.2  2.78* 
   16.5  24.4  13.2  10.3 
 
HS   99.9  99.7  101.0  100.1  .14  
   15.1  16.7  18.2  14.3 
 
FNF   100.2  98.8  100.1  101.8  .81 
   15.1  18.0  13.3  13.2  
 
             
*p<.05 **p<.01 ***p<.001 
 

                                                                                                      (table continues) 
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Table 7 cont. 
 
Variable  Congenital Early  School  Adult  F (3,404) 
   Mean  Mean  Mean  Mean 
   SD  SD  SD  SD 
             
 
JUMP   100.1  101.2  99.3  100.0  .02 
   15.1  15.7  14.9  14.8   
 
HTW   99.1  99.4  102.0  102.8  2.76* 
   15.9  17.2  10.3  14.0 
 
SOF   98.6  99.4  101.9  102.3  1.92 
   15.0  17.5  14.4  13.3  
 
MAND FACTOR SCORES 
 
FMI   100.0  95.4  103.6  102.1  2.45 (p=.06) 
   15.4  18.7  14.4  12.1 
 
GMI   99.1  99.1  100.8  101.4  1.20 
   15.6  16.9  14.3  13.4 
 
NDI   99.3  97.2  102.7  102.0  2.21 
   15.5  17.3  14.6  12.0 
 
PC   99.8  95.2  100.4  103.2  2.55 (p=.055) 
   15.6  19.5  12.0  10.6 
 
MP   99.9  100.3  100.1  100.0  .07 
   15.0  14.9  17.3  14.8 
 
KI   98.6  99.1  102.0  102.8  2.95* 
   15.4  18.0  12.2  14.0 
 
BD   101.0  99.7  104.0  101.7  .18 
   12.6  12.5  11.2  9.0 
             
*p<.05 **p<.01 ***p<.001       
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